WO2020091185A1 - Method for predicting heath effect of phytochemical, using integrated analysis based on molecular network, chemical property, and ethnopharmacological evidence, and system therefor - Google Patents

Method for predicting heath effect of phytochemical, using integrated analysis based on molecular network, chemical property, and ethnopharmacological evidence, and system therefor Download PDF

Info

Publication number
WO2020091185A1
WO2020091185A1 PCT/KR2019/008244 KR2019008244W WO2020091185A1 WO 2020091185 A1 WO2020091185 A1 WO 2020091185A1 KR 2019008244 W KR2019008244 W KR 2019008244W WO 2020091185 A1 WO2020091185 A1 WO 2020091185A1
Authority
WO
WIPO (PCT)
Prior art keywords
phytochemicals
phytochemical
evidence
molecular
phenotype
Prior art date
Application number
PCT/KR2019/008244
Other languages
French (fr)
Korean (ko)
Inventor
이도헌
유선용
Original Assignee
재단법인 전통천연물기반 유전자동의보감 사업단
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 전통천연물기반 유전자동의보감 사업단, 한국과학기술원 filed Critical 재단법인 전통천연물기반 유전자동의보감 사업단
Publication of WO2020091185A1 publication Critical patent/WO2020091185A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C10/00Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/50Molecular design, e.g. of drugs
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/90ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to alternative medicines, e.g. homeopathy or oriental medicines
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Definitions

  • the present invention relates to a method for predicting the health effect of phytochemicals using a molecular network, chemical properties, and integrated analysis based on national pharmacological evidence and a system therefor.
  • a phytochemical refers to a compound produced by the chemical route of a plant, and is often referred to as a secondary metabolite. Recent studies have reported that many phytochemicals play a beneficial role in the functioning of human cells, and foods rich in these phytochemicals have been reported to promote health (Liu, RH et al. , Am. J. Clin.Nutr. 78, 517S-520S, 2003; and Mursu, J. et al. , Am. J. Clin. Nutr. 99, 328-333, 2013).
  • the molecular-based approach is a method of predicting the potential effects of phytochemicals by focusing on the molecular structure, molecular mechanism of action, or similarity of molecular information, such as target proteins, between phytochemicals and approved drugs.
  • this approach is suitable for predicting the effect of a specific phytochemical on a specific phenotype, and it is a difficult method to predict the systemic effect of phytochemical on the human body.
  • the present invention is a step of inferring the health effect of the phytochemical using a molecular network (step 1); Deriving a phytochemical having a high bioavailability by examining the chemical properties of the phytochemical (step 2); And searching for ethnopharmacological evidence to derive the health effect of phytochemicals having high semantic similarity with the national pharmacological evidence among the inferred health effects (step 3). It provides a method for predicting the health effects of phytochemicals using integrated analysis based on chemical properties and national pharmacological evidence.
  • the present invention provides a computer-readable medium storing a program including instructions for executing a method for predicting the health effect of phytochemicals using integrated analysis based on the molecular network, chemical properties, and ethnographic evidence.
  • the present invention is a module for inferring the health effects of phytochemicals using a molecular network; A module for deriving phytochemicals having high bioavailability by examining phytochemical properties of the phytochemicals; And a module for deriving the health effect of phytochemicals having high semantic similarity with the national pharmacological evidence among the inferred health effects by searching for ethnopharmaceutical evidence, and integrated analysis based on molecular networks, chemical properties, and ethnopharmacological evidence.
  • the method for predicting the health effect of phytochemicals using an integrated analysis based on molecular networks, chemical properties, and national pharmacological evidence according to the present invention is a highly reliable phytochemical health effect by analyzing each information without using it individually. Since it can be analyzed and predicted on a large scale, the method and system for the same can be usefully used for drug development using a phytochemical having a health promotion function.
  • FIGS. 1A to 1C are diagrams illustrating a method for predicting the health effect of phytochemicals using an integrated analysis based on molecular networks, chemical properties, and national pharmacological evidence of the present invention.
  • FIGS. 2A to 2C are diagrams illustrating a process of searching for ethnopharmaceutical uses of phytochemicals
  • FIG. 2A is a process of extracting phenotype-related terms from descriptive expressions
  • Figure 2b is a process for deriving a plant containing a specific phytochemical
  • FIG. 2C is a diagram illustrating a process of analyzing semantic similarity from a phenochemical network of phenotypes.
  • 3 is a graph showing the distribution of predicted health effects of phytochemicals based on molecular networks (left) and the distribution of predicted health effects of phytochemicals based on molecular networks and ethnographic evidence (right).
  • the present invention uses a molecular network to infer the health effect of the phytochemical (phytochemical) (step 1); Deriving a phytochemical having a high bioavailability by examining the chemical properties of the phytochemical (step 2); And searching for ethnopharmacological evidence to derive the health effect of phytochemicals having high semantic similarity with the national pharmacological evidence among the inferred health effects (step 3). It provides a method for predicting the health effects of phytochemicals using integrated analysis based on chemical properties and national pharmacological evidence.
  • the step 1 comprises the steps of producing a phenochemical phenotype vector by performing a random walk with restart (RWR) algorithm in a molecular network (step 1-1); Constructing a random phenotype vector by randomly selecting phytochemical targets from a fixed number of target proteins (step 1-2); And deriving a statistically significant phytochemical phenotype from the random phenotype vector (step 1-3).
  • RWR random walk with restart
  • Step 1-1 may include the following steps:
  • the transition probability of each node is defined by Equation 1 below when the time step is t + 1;
  • W normalized adjacency matrix of the molecular network
  • P t and P 0 probability vector of each node and when the time step is t).
  • Steps 1-3 may include determining a phenotype of a statistically significant phytochemical having a p value lower than 0.01 calculated by a formula represented by Equation 2 below:
  • n number of random phenotype vectors of phytochemicals).
  • step 2 The chemical properties of step 2 include molecular weight, log value of octanol-water partition coefficient (AlogP), number of hydrogen-bond donors, and number of hydrogen-bond acceptors. , Number of rotatable bonds, human intestinal absorption (HIA), Caco-2 permeability, blood-brain barrier (BBB) permeability and 5 rules of Ripinski ( Lipinski's rule of five, RO5).
  • AlogP log value of octanol-water partition coefficient
  • HAA human intestinal absorption
  • Caco-2 Caco-2 permeability
  • BBB blood-brain barrier
  • Ripinski Lipinski's rule of five, RO5
  • step 3 The semantic similarity of step 3 may be calculated by the equation represented by Equation 3 below:
  • depth depth from the root phenotype (root UMLS) to the corresponding phenotype
  • the step of generating visualization data on the information derived through the visualization means and outputting it as visualization data through the output means may be further included.
  • the output means may be any one selected from the group consisting of a monitor, a printer, and a plotter, and any means capable of outputting a result may be used.
  • the present invention provides a computer-readable medium storing a program including instructions for executing a method for predicting the health effect of phytochemicals using integrated analysis based on the molecular network, chemical properties, and ethnographic evidence.
  • the computer-readable medium includes any kind of recording device in which data readable by a computer system is stored. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tapes, floppy disks, optical data storage devices, etc., and those implemented in the form of carrier waves (for example, transmission over the Internet). .
  • the computer-readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • the present invention is a module for inferring the health effects of phytochemicals using a molecular network; A module for deriving phytochemicals having high bioavailability by examining phytochemical properties of the phytochemicals; And a module for deriving the health effect of phytochemicals having high semantic similarity with the national pharmacological evidence among the inferred health effects by searching for ethnopharmaceutical evidence, and integrated analysis based on molecular networks, chemical properties, and ethnopharmacological evidence.
  • the module for inferring the health effect of phytochemicals using the molecular network includes: a module for performing a RWR algorithm in the molecular network to produce a phenochemical phenotype vector; A module for generating random phenotype vectors by randomly selecting phytochemical targets from a fixed number of target proteins; And a module for inferring the phytochemical health effect by deriving a statistically significant phytochemical phenotype from the random phenotype vector.
  • the system may additionally include a module that generates visualization data for the information derived by the modules and an output module that outputs it as visualization data.
  • the output module may be any one selected from the group consisting of a monitor, a printer and a plotter, and any means capable of outputting a result may be used.
  • the present inventors perform a RWR algorithm to produce a list of phenochemical phenotypes, produce a random phenotype vector for phytochemicals, select statistically significant phenotypes, and select phytochemicals. Health effects were inferred (see FIG. 1A).
  • the present inventors calculated the RO5, HIA, Caco-2 permeability, and BBB permeability of phytochemicals with known chemical structure information, thereby obtaining information about the chemical properties of the phytochemicals (see FIG. 1B).
  • the present inventors searched for ethnopharmaceutical uses of phytochemicals, derived health effects with pharmacological evidence among the predicted phytochemical health effects according to molecular network analysis, and compared the distribution (FIGS. 1C to 3).
  • the present inventors analyzed the precision and sensitivity of the method for predicting the health effect of the phytochemical according to the method of the present invention, and confirmed that the prediction method of the present invention has excellent performance, and the health of the phytochemical predicted according to the method of the present invention As the effect was confirmed in external literature, it was confirmed that the prediction method of the present invention is a reliable method.
  • a method for predicting the health effect of phytochemicals using an integrated analysis based on molecular networks, chemical properties and ethnographic evidence according to the present invention, a computer-readable medium storing a program including instructions for executing the same, and the method
  • the system for executing can be useful for drug development using phytochemicals.
  • the phenotypic network was obtained from the 2017AA version of the Unified Medical Language System (UMLS) (Bodenreider, O. Nucleic Acids Res. 32, D267-270, 2004), which provides integrated information on various terms related to biomedicine.
  • UMLS Unified Medical Language System
  • Each distinct biomedical concept in UMLS is assigned a concept unique identifier (CUI), from which the MRREL list, which is a list of related concepts, among the 11 types of UMLS relations, is broder relationships (RB) and sub-words.
  • CUIs having narrower relationships (RN) and other-related relationships (RO) are collected, and a total of 220,104 CUI and 663,018 relationships are collected.
  • initial values were assigned to seed nodes on a molecular network based on target information of phytochemicals.
  • the direct relationship among the target information of the phytochemicals includes binding information between the phytochemical and the target protein, whereas the indirect relationship is an interaction that causes changes due to protein expression, compound-induced phosphorylation, or effects of phytochemicals by active metabolites. It includes. Since the biological activity of phytochemicals in a molecular network can be changed from complex interactions, and the binding target information of phytochemicals is not much known compared to synthetic drugs, both information on direct and indirect relationships was used, and direct And initial values for indirect relationships were assigned to 1 and 0.3, respectively.
  • the transition probability from one node to the neighboring node was calculated. It was assumed that the transition probability represents the drug effect spread on the molecular network, and when the time step is t + 1, the transition probability vector of each node is defined by Equation 1 below:
  • W normalized adjacency matrix of the molecular network
  • P t and P 0 probability vector of each node and when the time step is t).
  • phenotypic values in the phenotype value list produced in Example 2-1 do not necessarily indicate the magnitude of the association in the relationship between phytochemicals and phenotypes
  • a random phenotype vector of phytochemicals is produced, and the inferred phenotype
  • Random phenotype vectors were constructed by randomly selecting phytochemical targets from a fixed number of target proteins. 1,000 random phenotype vectors were produced for each phytochemical, and p values were calculated by Equation 2 below, and phenotypes having a calculated p value lower than 0.01 were selected as statistically significant phenotypes:
  • n number of random phenotype vectors of phytochemicals).
  • physicochemical properties include molecular weight, log value of octanol-water partition coefficient (AlogP), number of hydrogen-bond donors, number of hydrogen-bond acceptors And the number of rotatable bonds.
  • Physiological effects include human intestinal absorption (HIA), Caco-2 permeability, blood-brain barrier (BBB) permeability and Lipinski's rule of five (RO5). It includes. HIA and BBB values are calculated using Shen's work (Shen, J. et al. , J. Chem. Inf. Model, 50, 1034-1041, 2010), and Caco-2 permeability is a quantitative structure-activity relationship (quantitative Structure-activity relationship (QSAR) model (Pham The, H.
  • QSAR quantitative Structure-activity relationship
  • RO5 and other physicochemical properties were calculated using a CDK (Chemistry Development Kit) Descriptor Calculator (Guha, R. http://www.rguha.net/code/java/cdkdesc.html).
  • the number of cells where the horizontal axis and the vertical axis intersect means the number of phytochemicals that satisfy each item at the same time
  • phenotypic terms must be extracted and structured from descriptive expressions, and complex relationships between phenotypes must be quantified.
  • MetaMap tool phenotype-related terms were extracted from descriptive documents (FIG. 2A).
  • depth depth from the root phenotype (root UMLS) to the corresponding phenotype
  • Example 2-3 As a result of the analysis, in Example 2-3, on average, about 129.1 ⁇ 11.4 health effects (about 31%) among the predicted health effects based on the molecular network had national pharmacological evidence (right graph in FIG. 3). ).
  • the experimentally validated information was collected in a gold-standard positive set.
  • Information from DrugBank was used as a set for evaluating treatment effects, and information obtained from Side Effect Resource (SIDER) was used as a set for evaluating side effects.
  • SIDER Side Effect Resource
  • Potential candidate effects were additionally collected from CTD and used as a silver-standard positive set.
  • Precision and sensitivity performance of methods for predicting treatment effects, side effects and potential candidate effects through molecular network analysis Braid Treatment effect Side Effect Potential candidate effects Precision 1: 1 0.921 ⁇ 0.032 0.922 ⁇ 0.021 0.942 ⁇ 0.005 1:10 0.518 ⁇ 0.059 0.432 ⁇ 0.040 0.706 ⁇ 0.013 All 0.006 ⁇ 0.001 0.049 ⁇ 0.010 0.522 ⁇ 0.022 responsiveness All 0.738 ⁇ 0.062 0.576 ⁇ 0.061 0.909 ⁇ 0.011
  • Example 5-2 In order to compare the predicted performance with or without national pharmacological evidence, the health effects of the phytochemicals predicted in Example 5-2 were classified according to the presence or absence of national pharmacological use, and precision was analyzed.
  • the phytochemicals are classified into two independent sets according to whether the BBB is permeable, and the predicted performance for the efficacy of treating neurological diseases is compared.
  • the number of co-occurrences was standardized as a jacquard index.
  • the number of PubMed abstracts containing one or more phytochemicals and phenotypes was counted (n 0 ), and the jacquard index was calculated by dividing n c , which is the co-occurrence number of each phytochemical-phenotype relationship, by n 0 .
  • n c the co-occurrence number of each phytochemical-phenotype relationship
  • the average jacquard index of the predicted relationship set was 18.9 times higher than the average jacquard index of the random relationship set (Table 5).
  • Fischer's exact test was performed by counting the number of PubMed greens including phytochemical and target health effects, and the number of statistically significant relationships with p values less than 0.001 was calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to a method for predicting health effects of phytochemicals by using integrated analysis based on molecular networks, chemical properties, and ethnopharmacological evidences, and a system therefor. Specifically, a method for predicting health effects of phytochemicals, using integrated analysis based on molecular networks, chemical properties, and ethnopharmacological evidences according to the present invention does not utilizes individual information separately, but analyzes the information in an integrated manner and as such, can analyze and predict health effects of phytochemicals on a mass scale with high reliability. Therefore, the method and a system therefor can be advantageously used to develop drugs that utilize phytochemicals having useful functions.

Description

분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법 및 이를 위한 시스템Method for predicting the health effect of phytochemicals using a molecular network, chemical properties, and integrated analysis based on national pharmacological evidence and a system therefor
본 발명은 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법 및 이를 위한 시스템에 관한 것이다.The present invention relates to a method for predicting the health effect of phytochemicals using a molecular network, chemical properties, and integrated analysis based on national pharmacological evidence and a system therefor.
파이토케미컬(phytochemical)은 식물의 화학적 경로에 의해 생산되는 화합물을 말하며, 종종 2차 대사물질(secondary metabolite)이라고도 불린다. 최근 연구들은 많은 파이토케미컬들이 인간 세포의 기능에 이로운 역할을 하는 것으로 보고되고 있고, 이러한 파이토케미컬들이 풍부한 식품들이 건강을 증진시킬 수 있음이 보고되어 왔다(Liu, R. H. et al., Am. J. Clin. Nutr. 78, 517S-520S, 2003; 및 Mursu, J. et al., Am. J. Clin. Nutr. 99, 328-333, 2013). A phytochemical refers to a compound produced by the chemical route of a plant, and is often referred to as a secondary metabolite. Recent studies have reported that many phytochemicals play a beneficial role in the functioning of human cells, and foods rich in these phytochemicals have been reported to promote health (Liu, RH et al. , Am. J. Clin.Nutr. 78, 517S-520S, 2003; and Mursu, J. et al. , Am. J. Clin. Nutr. 99, 328-333, 2013).
그러나, 파이토케미컬의 효능에 대한 연구는 대부분 in vitro 스크리닝 방법을 통해 이루어지고 있어, 다수의 파이토케미컬에 대한 분석을 위해서는 대량 실험이 필요하며, 이는 생산성이 낮고 시간과 비용이 크게 소요된다는 문제점이 있다.However, most studies on the efficacy of phytochemicals have been conducted through in vitro screening methods, so large-scale experiments are required to analyze a large number of phytochemicals, which have problems of low productivity and high time and cost. .
이에, 최근에는 주로 분자적 또는 민족약학적(ethnopharmacological) 정보에 기반한 in silico 접근 방법이 제안되어 왔다. 분자-기반 접근 방법은 파이토케미컬과 승인된 의약품 간의 분자 구조, 분자적 작용기전, 또는 표적 단백질과 같은 분자적 정보의 유사성에 집중하여 파이토케미컬의 잠재적 효과를 예측하는 방법이다. 그러나, 이러한 접근 방법은 특정 파이토케미컬의 특정 표현형에 대한 효과를 예측하는데 적합하며, 파이토케미컬이 인체에 미치는 전신적인 효과를 예측하기는 어려운 방법이다. 또한, 몇 가지 민족약학적 정보에 기반한 접근 방법이 제안되었으나, 이러한 방법들은 특정 질환 치료 목적의 식물들 또는 파이토케미컬을 선별하기 위한 분자적 분석 또는 in vitro 평가 전의 예비적인 수단으로써만 민족약학적 정보를 사용하는데 집중되어 있다. 따라서, 상기와 같은 방법은 대량의 후보물질들 중에서 파이토케미컬들을 선별하는데 유용할 수 있으나, 식물들은 수백 종의 파이토케미컬들을 함유하고 있기 때문에 여전히 생산성이 낮은 문제점이 있다. 따라서, 파이토케미컬의 분자적 정보, 화학적 특성 및 민족약학적 증거를 통합적으로 분석함으로써, 파이토케미컬이 인체에 전신적으로 미치는 건강효과를 예측할 수 있는 새로운 in silico 분석 방법의 발굴이 필요하다.Accordingly, in silico approaches have been proposed in recent years based primarily on molecular or ethnopharmacological information. The molecular-based approach is a method of predicting the potential effects of phytochemicals by focusing on the molecular structure, molecular mechanism of action, or similarity of molecular information, such as target proteins, between phytochemicals and approved drugs. However, this approach is suitable for predicting the effect of a specific phytochemical on a specific phenotype, and it is a difficult method to predict the systemic effect of phytochemical on the human body. In addition, several approaches based on ethnopharmaceutical information have been proposed, but these methods are pharmacologic information only as a preliminary means prior to molecular analysis or in vitro evaluation to select plants or phytochemicals for the treatment of specific diseases. Focused on using. Therefore, the above method may be useful for selecting phytochemicals among a large number of candidate substances, but plants still have a problem of low productivity because they contain hundreds of phytochemicals. Therefore, it is necessary to discover a new in silico analysis method that can predict the health effects of phytochemicals on the human body by integrating the molecular information, chemical properties, and national pharmacological evidence of phytochemicals.
본 발명의 목적은 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법 및 이를 위한 시스템을 제공하는 것이다.It is an object of the present invention to provide a method for predicting the health effect of phytochemicals using a molecular network, chemical properties, and integrated analysis based on national pharmacological evidence and a system therefor.
상기 목적을 달성하기 위하여, 본 발명은 분자 네트워크를 이용하여 파이토케미컬(phytochemical)의 건강효과(health effect)를 추론하는 단계(단계 1); 파이토케미컬의 화학적 특성을 조사하여 생체이용률이 높은 파이토케미컬을 도출하는 단계(단계 2); 및 민족약학적(ethnopharmacological) 증거를 탐색하여 상기 추론된 건강효과 중 민족약학적 증거와 의미 유사도(semantic similarity)가 높은 파이토케미컬의 건강효과를 도출하는 단계(단계 3)를 포함하는, 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법을 제공한다.In order to achieve the above object, the present invention is a step of inferring the health effect of the phytochemical using a molecular network (step 1); Deriving a phytochemical having a high bioavailability by examining the chemical properties of the phytochemical (step 2); And searching for ethnopharmacological evidence to derive the health effect of phytochemicals having high semantic similarity with the national pharmacological evidence among the inferred health effects (step 3). It provides a method for predicting the health effects of phytochemicals using integrated analysis based on chemical properties and national pharmacological evidence.
또한, 본 발명은 상기 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법을 실행시키기 위한 명령들을 포함하는 프로그램이 저장된 컴퓨터로 판독가능한 매체를 제공한다.In addition, the present invention provides a computer-readable medium storing a program including instructions for executing a method for predicting the health effect of phytochemicals using integrated analysis based on the molecular network, chemical properties, and ethnographic evidence.
또한, 본 발명은 분자 네트워크를 이용하여 파이토케미컬의 건강효과를 추론하는 모듈; 파이토케미컬의 화학적 특성을 조사하여 생체이용률이 높은 파이토케미컬을 도출하는 모듈; 및 민족약학적 증거를 탐색하여 상기 추론된 건강효과 중 민족약학적 증거와 의미 유사도가 높은 파이토케미컬의 건강효과를 도출하는 모듈을 포함하는, 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 시스템을 제공한다.In addition, the present invention is a module for inferring the health effects of phytochemicals using a molecular network; A module for deriving phytochemicals having high bioavailability by examining phytochemical properties of the phytochemicals; And a module for deriving the health effect of phytochemicals having high semantic similarity with the national pharmacological evidence among the inferred health effects by searching for ethnopharmaceutical evidence, and integrated analysis based on molecular networks, chemical properties, and ethnopharmacological evidence. Provides a system for predicting the health effect of phytochemicals using.
본 발명에 따른 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법은 각각의 정보를 개별적으로 이용하지 않고 통합적으로 분석함으로써, 신뢰도 높게 파이토케미컬의 건강효과를 대규모로 분석하여 예측할 수 있으므로, 상기 방법 및 이를 위한 시스템은 건강증진 기능을 갖는 파이토케미컬을 이용한 약물 개발에 유용하게 사용될 수 있다.The method for predicting the health effect of phytochemicals using an integrated analysis based on molecular networks, chemical properties, and national pharmacological evidence according to the present invention is a highly reliable phytochemical health effect by analyzing each information without using it individually. Since it can be analyzed and predicted on a large scale, the method and system for the same can be usefully used for drug development using a phytochemical having a health promotion function.
도 1a 내지 도 1c는 본 발명의 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법 과정을 나타낸 도면이다.1A to 1C are diagrams illustrating a method for predicting the health effect of phytochemicals using an integrated analysis based on molecular networks, chemical properties, and national pharmacological evidence of the present invention.
도 2a 내지 도 2c는 파이토케미컬의 민족약학적 용도를 탐색하는 과정을 나타낸 도면으로 도 2a는 서술적인 표현들로부터 표현형 관련 용어들의 추출하는 과정; 도 2b는 특정 파이토케미컬을 포함하는 식물 도출하는 과정; 및 도 2c는 파이토케미컬의 표현형 네트워크로부터 의미 유사도 분석하는 과정을 나타내는 도면이다.2A to 2C are diagrams illustrating a process of searching for ethnopharmaceutical uses of phytochemicals, and FIG. 2A is a process of extracting phenotype-related terms from descriptive expressions; Figure 2b is a process for deriving a plant containing a specific phytochemical; And FIG. 2C is a diagram illustrating a process of analyzing semantic similarity from a phenochemical network of phenotypes.
도 3은 분자 네트워크를 기반으로 예측된 파이토케미컬의 건강효과 분포(왼쪽) 및 분자 네트워크 및 민족약학적 증거를 기반으로 예측된 파이토케미컬의 건강효과 분포(오른쪽)를 나타내는 그래프이다.3 is a graph showing the distribution of predicted health effects of phytochemicals based on molecular networks (left) and the distribution of predicted health effects of phytochemicals based on molecular networks and ethnographic evidence (right).
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 분자 네트워크를 이용하여 파이토케미컬(phytochemical)의 건강효과(health effect)를 추론하는 단계(단계 1); 파이토케미컬의 화학적 특성을 조사하여 생체이용률이 높은 파이토케미컬을 도출하는 단계(단계 2); 및 민족약학적(ethnopharmacological) 증거를 탐색하여 상기 추론된 건강효과 중 민족약학적 증거와 의미 유사도(semantic similarity)가 높은 파이토케미컬의 건강효과를 도출하는 단계(단계 3)를 포함하는, 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법을 제공한다.The present invention uses a molecular network to infer the health effect of the phytochemical (phytochemical) (step 1); Deriving a phytochemical having a high bioavailability by examining the chemical properties of the phytochemical (step 2); And searching for ethnopharmacological evidence to derive the health effect of phytochemicals having high semantic similarity with the national pharmacological evidence among the inferred health effects (step 3). It provides a method for predicting the health effects of phytochemicals using integrated analysis based on chemical properties and national pharmacological evidence.
상기 단계 1은 분자 네트워크에서 RWR(Random Walk with Restart) 알고리즘을 수행하여 파이토케미컬의 표현형 벡터를 제작하는 단계(단계 1-1); 고정된 수의 표적 단백질들로부터 파이토케미컬의 표적들을 무작위로 선택하여 랜덤 표현형 벡터를 제작하는 단계(단계 1-2); 및 상기 랜덤 표현형 벡터에서 통계적으로 유의한 파이토케미컬의 표현형을 도출함으로써 파이토케미컬의 건강효과를 추론하는 단계(단계 1-3)를 포함할 수 있다.The step 1 comprises the steps of producing a phenochemical phenotype vector by performing a random walk with restart (RWR) algorithm in a molecular network (step 1-1); Constructing a random phenotype vector by randomly selecting phytochemical targets from a fixed number of target proteins (step 1-2); And deriving a statistically significant phytochemical phenotype from the random phenotype vector (step 1-3).
상기 단계 1-1은 하기의 단계를 포함하는 것일 수 있다:Step 1-1 may include the following steps:
(a) 파이토케미컬들의 분자 표적 정보에 기반하여 분자 네트워크 상의 시드 노드(seed nodes)에 초기값을 할당하는 단계 및(a) assigning initial values to seed nodes on a molecular network based on molecular target information of phytochemicals, and
(b) 하나의 노드에서 이웃한 노드로의 전이확률(transition probability)을 계산하는 단계,(b) calculating a transition probability from one node to a neighboring node,
여기서 각 노드의 전이확률은 시간 단계가 t+1일 때 하기 수학식 1로 정의 됨;Here, the transition probability of each node is defined by Equation 1 below when the time step is t + 1;
[수학식 1][Equation 1]
Figure PCTKR2019008244-appb-I000001
Figure PCTKR2019008244-appb-I000001
(r: 각 시간 단계의 랜덤 워커(random walker)의 재시작 확률(restarting probability);(r: restarting probability of random walker at each time step;
W: 분자 네트워크의 정규화된 인접 행렬(normalized adjacency matrix); 및W: normalized adjacency matrix of the molecular network; And
Pt 및 P0: 시간단계가 t일 때 및 초기 각 노드의 확률 벡터).P t and P 0 : probability vector of each node and when the time step is t).
상기 단계 1-3은 하기 수학식 2로 표현되는 수식에 의해 계산되는 p 값이 0.01보다 낮은 표현형들을 통계적으로 유의한 파이토케미컬의 표현형으로 판단하는 단계를 포함하는 것일 수 있다:Steps 1-3 may include determining a phenotype of a statistically significant phytochemical having a p value lower than 0.01 calculated by a formula represented by Equation 2 below:
[수학식 2][Equation 2]
p = (r + 1)/(n + 1)p = (r + 1) / (n + 1)
(r: 표현형 값보다 큰 값을 갖는 파이토케미컬의 랜덤 표현형 벡터의 수; 및(r: the number of random phenotype vectors of the phytochemical having a value greater than the phenotype value; and
n: 파이토케미컬의 랜덤 표현형 벡터의 수).n: number of random phenotype vectors of phytochemicals).
상기 단계 2의 화학적 특성은 분자량, 옥탄올(octanol)-물 분배 계수(partition coefficient)의 로그 값(AlogP), 수소결합 공여자(hydrogen-bond donors) 수, 수소결합 수용자(hydrogen-bond acceptor) 수, 회전가능한 결합(rotatable bond)의 수, 인간 장관 흡수(human intestinal absorption, HIA), Caco-2 투과성(permeability), 뇌-혈관 장벽(blood-brain barrier, BBB) 투과성 및 리핀스키의 5 규칙(Lipinski's rule of five, RO5)으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.The chemical properties of step 2 include molecular weight, log value of octanol-water partition coefficient (AlogP), number of hydrogen-bond donors, and number of hydrogen-bond acceptors. , Number of rotatable bonds, human intestinal absorption (HIA), Caco-2 permeability, blood-brain barrier (BBB) permeability and 5 rules of Ripinski ( Lipinski's rule of five, RO5).
상기 단계 3의 의미 유사도는 하기 수학식 3으로 표현되는 수식에 의해 계산되는 것일 수 있다:The semantic similarity of step 3 may be calculated by the equation represented by Equation 3 below:
[수학식 3][Equation 3]
Figure PCTKR2019008244-appb-I000002
Figure PCTKR2019008244-appb-I000002
(sim: 의미 유사도;(sim: semantic similarity;
depth: 근원 표현형(root UMLS)으로부터 해당 표현형까지의 깊이;depth: depth from the root phenotype (root UMLS) to the corresponding phenotype;
path: 각 표현형 간의 거리; 및path: distance between each phenotype; And
lcs(c1, c2): c1 및 c2 개념의 공통적인 가장 낮은 계층의(가장 구체적인) 개념(the lowest common subsumer)).lcs (c 1 , c 2 ): the lowest common subsumer of the c 1 and c 2 concepts.
상기 단계 3 이후에는 시각화 수단을 통해 도출된 정보에 대한 시각화 데이터를 생성하는 단계 및 이를 출력 수단을 통해 시각화 데이터로 출력하는 단계를 추가적으로 포함할 수 있다. 상기 출력 수단은 모니터, 프린터 및 플로터로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며, 결과물을 출력할 수 있는 어떠한 수단이어도 무방하다.After the step 3, the step of generating visualization data on the information derived through the visualization means and outputting it as visualization data through the output means may be further included. The output means may be any one selected from the group consisting of a monitor, a printer, and a plotter, and any means capable of outputting a result may be used.
또한, 본 발명은 상기 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법을 실행시키기 위한 명령들을 포함하는 프로그램이 저장된 컴퓨터로 판독가능한 매체를 제공한다. 컴퓨터로 판독가능한 매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터로 판독가능한 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광데이터 저장장치 등이 있으며, 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한 컴퓨터로 판독가능한 기록매체에는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.In addition, the present invention provides a computer-readable medium storing a program including instructions for executing a method for predicting the health effect of phytochemicals using integrated analysis based on the molecular network, chemical properties, and ethnographic evidence. The computer-readable medium includes any kind of recording device in which data readable by a computer system is stored. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tapes, floppy disks, optical data storage devices, etc., and those implemented in the form of carrier waves (for example, transmission over the Internet). . The computer-readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
또한, 본 발명은 분자 네트워크를 이용하여 파이토케미컬의 건강효과를 추론하는 모듈; 파이토케미컬의 화학적 특성을 조사하여 생체이용률이 높은 파이토케미컬을 도출하는 모듈; 및 민족약학적 증거를 탐색하여 상기 추론된 건강효과 중 민족약학적 증거와 의미 유사도가 높은 파이토케미컬의 건강효과를 도출하는 모듈을 포함하는, 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 시스템을 제공한다.In addition, the present invention is a module for inferring the health effects of phytochemicals using a molecular network; A module for deriving phytochemicals having high bioavailability by examining phytochemical properties of the phytochemicals; And a module for deriving the health effect of phytochemicals having high semantic similarity with the national pharmacological evidence among the inferred health effects by searching for ethnopharmaceutical evidence, and integrated analysis based on molecular networks, chemical properties, and ethnopharmacological evidence. Provides a system for predicting the health effect of phytochemicals using.
상기 분자 네트워크를 이용하여 파이토케미컬의 건강효과를 추론하는 모듈은 분자 네트워크에서 RWR 알고리즘을 수행하여 파이토케미컬의 표현형 벡터를 제작하는 모듈; 고정된 수의 표적 단백질들로부터 파이토케미컬의 표적들을 무작위로 선택하여 랜덤 표현형 벡터를 제작하는 모듈; 및 상기 랜덤 표현형 벡터에서 통계적으로 유의한 파이토케미컬의 표현형을 도출함으로써 파이토케미컬의 건강효과를 추론하는 모듈을 포함하는 것일 수 있다.The module for inferring the health effect of phytochemicals using the molecular network includes: a module for performing a RWR algorithm in the molecular network to produce a phenochemical phenotype vector; A module for generating random phenotype vectors by randomly selecting phytochemical targets from a fixed number of target proteins; And a module for inferring the phytochemical health effect by deriving a statistically significant phytochemical phenotype from the random phenotype vector.
상기 시스템은 상기 모듈들에 의해 도출된 정보에 대한 시각화 데이터를 생성하는 모듈 및 이를 시각화 데이터로 출력하는 출력 모듈을 추가적으로 포함할 수 있다.The system may additionally include a module that generates visualization data for the information derived by the modules and an output module that outputs it as visualization data.
상기 출력 모듈은 모니터, 프린터 및 플로터로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며, 결과물을 출력할 수 있는 어떠한 수단이어도 무방하다.The output module may be any one selected from the group consisting of a monitor, a printer and a plotter, and any means capable of outputting a result may be used.
본 발명의 구체적인 실시예에서, 본 발명자들은 RWR 알고리즘을 수행하여 파이토케미컬의 표현형 값 목록을 제작하고, 파이토케미컬에 대한 랜덤 표현형 벡터를 제작한 후, 통계적으로 유의한 표현형들을 선별하여, 파이토케미컬의 건강효과를 추론하였다(도 1a 참조).In a specific embodiment of the present invention, the present inventors perform a RWR algorithm to produce a list of phenochemical phenotypes, produce a random phenotype vector for phytochemicals, select statistically significant phenotypes, and select phytochemicals. Health effects were inferred (see FIG. 1A).
또한 본 발명자들은 화학 구조 정보가 알려진 파이토케미컬들을 대상으로 RO5, HIA, Caco-2 투과성 및 BBB 투과성을 계산하여 파이토케미컬의 화학적 특성에 대한 정보를 수득하였다(도 1b 참조).In addition, the present inventors calculated the RO5, HIA, Caco-2 permeability, and BBB permeability of phytochemicals with known chemical structure information, thereby obtaining information about the chemical properties of the phytochemicals (see FIG. 1B).
또한 본 발명자들은 파이토케미컬의 민족약학적 용도를 탐색하여, 분자 네트워크 분석에 따라 예측된 파이토케미컬의 건강효과들 중 민족약학적 증거를 갖는 건강효과들을 도출하고, 그 분포를 비교하였다(도 1c 내지 도 3 참조).In addition, the present inventors searched for ethnopharmaceutical uses of phytochemicals, derived health effects with pharmacological evidence among the predicted phytochemical health effects according to molecular network analysis, and compared the distribution (FIGS. 1C to 3).
또한 본 발명자들은 본 발명의 방법에 따른 파이토케미컬의 건강효과 예측 방법의 정밀도 및 민감도를 분석하여 본 발명의 예측 방법이 우수한 성능을 가짐을 확인하였고, 본 발명의 방법에 따라 예측된 파이토케미컬의 건강효과가 외부 문헌에서 확인됨에 따라, 본 발명의 예측 방법이 신뢰성 있는 방법임을 확인하였다.In addition, the present inventors analyzed the precision and sensitivity of the method for predicting the health effect of the phytochemical according to the method of the present invention, and confirmed that the prediction method of the present invention has excellent performance, and the health of the phytochemical predicted according to the method of the present invention As the effect was confirmed in external literature, it was confirmed that the prediction method of the present invention is a reliable method.
따라서, 본 발명에 따른 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법, 이를 실행시키기 위한 명령들을 포함하는 프로그램이 저장된 컴퓨터로 판독가능한 매체, 및 상기 방법을 실행하기 위한 시스템은 파이토케미컬을 이용한 약물 개발에 유용하게 사용될 수 있다.Accordingly, a method for predicting the health effect of phytochemicals using an integrated analysis based on molecular networks, chemical properties and ethnographic evidence according to the present invention, a computer-readable medium storing a program including instructions for executing the same, and the method The system for executing can be useful for drug development using phytochemicals.
이하 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해서 한정되는 것은 아니다.However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited by the following examples.
[실시예 1][Example 1]
데이터 수집Data collection
파이토케미컬 및 식물의 구성 화합물에 대한 정보는 KTKP(http://www.koreantk.com/), TCMID(Xue, R. et al., Nucleic Acids Res. 1089-1095, 2012) 및 FooDB(http://foodb.ca/)로부터 수집하였다. 식물의 민족약학적 용도는 KTKP, TCMID 및 Kampo(http://kampo.ca/)로부터 수집하였고, 파이토케미컬의 분자 표적은 DrugBank, DCDB(Drug Combination Database, v. 2.0, Liu, Y. et al., Database, bau124, 2014), CTD(Comparative Toxicogenomics Database, Davis, A. P. et al., Nucleic Acids Res. 39, D1067-1072, 2011), MATADOR(Gunther, S. et al., Nucleic Acids Res. 36, D919-922, 2008), STITCH(Kuhn, M. et al., Nucleic Acids Res. 42, D401-407, 2013) 및 TTD(Zhu, F. et al., Nucleic Acids Res. 40, D1128-1136, 2011)로부터 수집하였다. 유전자-표현형 관계는 CTD로부터 수집하였고, 19,093 개의 노드 및 270,970 개의 엣지(edge)를 포함하는 단백질-단백질 상호작용 네트워크는 BioGrid(v. 3.4.136, Chatr-Aryamontri, A. et al., Nucleic Acids Res. 43, D470-478, 2015) 및 CODA(Context-Oriented Directed Associations, Hwang, W. et al., BMC Med. Inf. Decis. Making 13, S4, 2013)에서 수집하였다. 표현형 네트워크는 생물의약에 관한 다양한 용어들에 대한 통합 정보를 제공하는 UMLS(unified medical language system; Bodenreider, O. Nucleic Acids Res. 32, D267-270, 2004)의 2017AA 버전으로부터 얻었다. UMLS에서 각각의 구별되는 생물의학적 개념에는 개념 고유 식별자(concept unique identifier, CUI)가 할당되는데, 관련된 개념들의 목록인 MRREL 목록으로부터 UMLS 관계들의 11 개 유형 중 상위어 관계(broder relationships, RB), 하위어 관계(narrower relationships, RN) 및, 동의어, 상위어 및 하위어 이외의 관계(other-related relationships, RO)를 갖는 CUI들을 수집하여, 총 220,104 개의 CUI 및 663,018 개의 관계를 수집하였다.For information on phytochemicals and plant compounds, see KTKP (http://www.koreantk.com/), TCMID (Xue, R. et al., Nucleic Acids Res. 1089-1095, 2012) and FooDB (http: //foodb.ca/). The ethnographic uses of plants were collected from KTKP, TCMID and Kampo (http://kampo.ca/), and the molecular targets of phytochemicals were DrugBank, Drug Combination Database (DCDB), v. 2.0, Liu, Y. et al . , Database, bau124, 2014), CTD (Comparative Toxicogenomics Database, Davis, AP et al. , Nucleic Acids Res. 39, D1067-1072, 2011), MATADOR (Gunther, S. et al. , Nucleic Acids Res. 36 , D919-922, 2008), STITCH (Kuhn, M. et al. , Nucleic Acids Res. 42, D401-407, 2013) and TTD (Zhu, F. et al., Nucleic Acids Res. 40, D1128-1136 , 2011). Gene-phenotype relationships were collected from CTD, and a protein-protein interaction network comprising 19,093 nodes and 270,970 edges was found in BioGrid (v. 3.4.136, Chatr-Aryamontri, A. et al. , Nucleic Acids). Res. 43, D470-478, 2015) and CODA (Context-Oriented Directed Associations, Hwang, W. et al. , BMC Med.Inf. Decis. Making 13, S4, 2013). The phenotypic network was obtained from the 2017AA version of the Unified Medical Language System (UMLS) (Bodenreider, O. Nucleic Acids Res. 32, D267-270, 2004), which provides integrated information on various terms related to biomedicine. Each distinct biomedical concept in UMLS is assigned a concept unique identifier (CUI), from which the MRREL list, which is a list of related concepts, among the 11 types of UMLS relations, is broder relationships (RB) and sub-words. CUIs having narrower relationships (RN) and other-related relationships (RO) are collected, and a total of 220,104 CUI and 663,018 relationships are collected.
골드-스탠다드 세트(gold-standard set)를 위하여 약물 유래 파이토케미컬을 DrugBank(v. 4.0, Law, V. et al., Nucleic Acids Res. 42, D1091-1097, 2014)에서 수집하였다. 표현형-관련 용어들을 추출하기 위하여 DrugBank, CTD, ClinicalTrials.gov(Zarin, D. A. et al., New Engl. J. Med. 364, 852-860, 2011) 및 DCDB에서 MetaMap 도구(Aronson, A. R. et al., J. Am. Med. Inf. Assoc. 17, 229-236, 2010)를 이용하여 약물-표현형 관계를 수집하였고, 135 개의 의미 유형(semantic types) 중 "질환 또는 신드롬"과 같이 표현형에 관련된 20 개의 의미 유형에 할당된 메타시소러스(Metathesaurus) 개념을 이용하였다(표 1).For gold-standard sets, drug derived phytochemicals were collected in DrugBank (v. 4.0, Law, V. et al., Nucleic Acids Res. 42, D1091-1097, 2014). MetaMap tools (Aronson, AR et al. ) In DrugBank, CTD, ClinicalTrials.gov (Zarin, DA et al. , New Engl. J. Med. 364, 852-860, 2011) and DCDB to extract phenotype-related terms . , J. Am. Med. Inf. Assoc. 17, 229-236, 2010), and the phenotypic 20 such as "disease or syndrome" among 135 semantic types. The concept of metathesaurus assigned to the semantic type of dog was used (Table 1).
Semantic typeSemantic type
Acquired AbnormalityAcquired Abnormality Mental ProcessMental Process
Anatomical AbnormalityAnatomical Abnormality Mental or Behavioral DysfunctionMental or Behavioral Dysfunction
Biologic FunctionBiologic Function Neoplastic ProcessNeoplastic Process
Congenital AbnormalityCongenital Abnormality Pathologic FunctionPathologic Function
Cell or Molecular DysfunctionCell or Molecular Dysfunction Physiologic FunctionPhysiologic Function
Disease of SyndromeDisease of Syndrome Sign or SymptomSign or Symptom
Experimental Model of DiseaseExperimental Model of Disease Clinical attributeClinical attribute
FindingFinding Hazardous or Poisonous SubstanceHazardous or Poisonous Substance
Injury or PoisoningInjury or Poisoning Body, Part, Organ, or Organ ComponentBody, Part, Organ, or Organ Component
Laboratory or Test ResultLaboratory or Test Result TissueTissue
[실시예 2][Example 2]
분자 네트워크를 이용한 파이토케미컬의 건강효과 추론Inference of health effects of phytochemicals using molecular networks
2-1. RWR(Random Walk with Restart) 알고리즘 수행을 통한 파이토케미컬의 표현형 값 목록 제작2-1. Phytochemical phenotype list creation through RWR (Random Walk with Restart) algorithm
파이토케미컬의 퍼져있는(propagated) 효과들을 조사하기 위하여, 단백질-단백질 상호작용 정보에 기반하여 분자 네트워크를 제작하고, RWR 알고리즘을 수행하였다.In order to investigate the propagated effects of phytochemicals, a molecular network was constructed based on protein-protein interaction information, and an RWR algorithm was performed.
구체적으로, 파이토케미컬들의 표적 정보에 기반하여 분자 네트워크 상의 시드 노드(seed nodes)에 초기값을 할당하였다. 파이토케미컬들의 표적 정보 중 직접적 관계는 파이토케미컬과 표적 단백질 사이의 결합 정보를 포함하는 반면, 간접적 관계는 단백질 발현, 화합물 유도 인산화 또는 파이토케미컬의 활성 대사체에 의한 영향에 따른 변화를 야기시키는 상호작용을 포함한다. 분자 네트워크에서 파이토케미컬의 생물학적 활성은 복잡한 상호작용들로부터 변화될 수 있고, 파이토케미컬의 결합 표적 정보는 합성 의약품들에 비하여 많이 알려져 있지 않기 때문에, 직접적 및 간접적 관계에 대한 정보를 모두 사용하였고, 직접적 및 간접적 관계에 대한 초기값은 각각 1 및 0.3으로 할당하였다.Specifically, initial values were assigned to seed nodes on a molecular network based on target information of phytochemicals. The direct relationship among the target information of the phytochemicals includes binding information between the phytochemical and the target protein, whereas the indirect relationship is an interaction that causes changes due to protein expression, compound-induced phosphorylation, or effects of phytochemicals by active metabolites. It includes. Since the biological activity of phytochemicals in a molecular network can be changed from complex interactions, and the binding target information of phytochemicals is not much known compared to synthetic drugs, both information on direct and indirect relationships was used, and direct And initial values for indirect relationships were assigned to 1 and 0.3, respectively.
이후, 한 노드에서 이웃한 노드로의 전이확률(transition probability)을 계산하였다. 상기 전이확률은 분자 네트워크 상에 퍼져있는 약물 효과를 나타내는 것으로 가정하였고, 시간 단계가 t + 1일 때 각 노드의 전이확률 벡터는 하기 수학식 1에 의해 정의되었다:Then, the transition probability from one node to the neighboring node was calculated. It was assumed that the transition probability represents the drug effect spread on the molecular network, and when the time step is t + 1, the transition probability vector of each node is defined by Equation 1 below:
[수학식 1][Equation 1]
Figure PCTKR2019008244-appb-I000003
Figure PCTKR2019008244-appb-I000003
(r: 각 시간 단계의 랜덤 워커(random walker)의 재시작 확률(restarting probability)로 본 발명에서는 0.7로 설정함;(r: restart probability of random walker in each time step is set to 0.7 in the present invention;
W: 분자 네트워크의 정규화된 인접 행렬(normalized adjacency matrix); 및W: normalized adjacency matrix of the molecular network; And
Pt 및 P0: 시간단계가 t일 때 및 초기 각 노드의 확률 벡터).P t and P 0 : probability vector of each node and when the time step is t).
RWR 알고리즘을 통하여 모든 노드가 정상 상태(steady state, Pt+1 - Pt < 10-8)에 도달할 때까지 랜덤 워커를 시뮬레이션하였다. 특정 표현형에 대한 치료 표적 또는 바이오마커인 모든 유전자들에 대하여 RWR 결과에서 얻은 유전자 값들을 유전자-표현형 관계에 기반하여 해당하는 표현형에 연결시켜, 최종적으로 각 파이토케미컬에 대한 정량화된 표현형 값 목록을 제작하였다.Through the RWR algorithm, random workers were simulated until all nodes reached a steady state (P t + 1 -P t <10 -8 ). For all genes that are therapeutic targets or biomarkers for a specific phenotype, the gene values obtained from the RWR results are linked to the corresponding phenotype based on the gene-phenotype relationship, and finally a quantitative phenotypic value list for each phytochemical is produced. Did.
2-2. 랜덤 표현형 벡터로부터 유의한 표현형들의 선별2-2. Selection of significant phenotypes from random phenotype vectors
상기 실시예 2-1에서 제작한 표현형 값 목록의 표현형 값들은 파이토케미컬과 표현형 사이의 관계에 있어서 반드시 그 연관성의 크기를 나타내지는 않기 때문에, 파이토케미컬의 랜덤 표현형 벡터를 제작하고, 이를 추론된 표현형 값들의 목록과 비교함으로써, 유의한 값을 가지는 표현형들을 선별하고자 하였다. 랜덤 표현형 벡터는 고정된 수의 표적 단백질들로부터 파이토케미컬의 표적들을 무작위로 선택함으로써 제작하였다. 각 파이토케미컬에 대하여 1,000 개의 랜덤 표현형 벡터들을 제작하였고, 하기 수학식 2에 의해 p 값을 계산하여, 계산된 p 값이 0.01보다 낮은 표현형들을 통계적으로 유의한 표현형들로 선별하였다:Since the phenotypic values in the phenotype value list produced in Example 2-1 do not necessarily indicate the magnitude of the association in the relationship between phytochemicals and phenotypes, a random phenotype vector of phytochemicals is produced, and the inferred phenotype By comparing with a list of values, we tried to select phenotypes with significant values. Random phenotype vectors were constructed by randomly selecting phytochemical targets from a fixed number of target proteins. 1,000 random phenotype vectors were produced for each phytochemical, and p values were calculated by Equation 2 below, and phenotypes having a calculated p value lower than 0.01 were selected as statistically significant phenotypes:
[수학식 2][Equation 2]
p = (r + 1)/(n + 1)p = (r + 1) / (n + 1)
(r: 표현형 값보다 큰 값을 갖는 파이토케미컬의 랜덤 표현형 벡터의 수; 및(r: the number of random phenotype vectors of the phytochemical having a value greater than the phenotype value; and
n: 파이토케미컬의 랜덤 표현형 벡터의 수).n: number of random phenotype vectors of phytochemicals).
2-3. 추론된 파이토케미컬의 건강효과들의 분포2-3. Distribution of deduced phytochemical health effects
상기 실시예 2-1 내지 2-2에 의해, 총 591 개의 파이토케미컬에 대한 잠재적인 건강효과들을 추론하였고, 그 결과 각 파이토케미컬에 대하여 평균적으로 415.6 ± 27.3 개의 건강효과들이 예측되었다(신뢰구간(confidence interval): 0.95, 도 3의 왼쪽 그래프).According to Examples 2-1 to 2-2, potential health effects for a total of 591 phytochemicals were deduced, and as a result, 415.6 ± 27.3 health effects were predicted on average for each phytochemical (trust interval ( confidence interval): 0.95, left graph in FIG. 3).
[실시예 3][Example 3]
파이토케미컬의 화학적 특성의 계산Calculation of phytochemical chemical properties
파이토케미컬의 화학적 특성을 분석하여 생체이용률이 높은 파이토케미컬을 도출하기 위하여, 파이토케미컬의 물리화학적 특성 및 생리학적 영향을 포함하는 화학적 특성을 계산하였으며, 화학 구조들에 대한 정보가 알려진 총 512 개의 파이토케미컬을 대상으로 분석하였다(도 1B).In order to derive phytochemicals with high bioavailability by analyzing the chemical properties of phytochemicals, chemical properties including physicochemical properties and physiological effects of phytochemicals were calculated, and a total of 512 phytos with known chemical structures are known. Chemicals were analyzed (FIG. 1B).
구체적으로, 물리화학적 특성은 분자량, 옥탄올(octanol)-물 분배 계수(partition coefficient)의 로그 값(AlogP), 수소결합 공여자(hydrogen-bond donors) 수, 수소결합 수용자(hydrogen-bond acceptor) 수 및 회전가능한 결합(rotatable bond)의 수를 포함한다. 생리학적 영향은 인간 장관 흡수(human intestinal absorption, HIA), Caco-2 투과성(permeability), 뇌-혈관 장벽(blood-brain barrier, BBB) 투과성 및 리핀스키의 5 규칙(Lipinski's rule of five, RO5)을 포함한다. HIA 및 BBB 값은 Shen's work(Shen, J. et al., J. Chem. Inf. Model, 50, 1034-1041, 2010)를 이용하여 계산하고, Caco-2 투과성은 정량적 구조-활성 관계(quantitative structure-activity relationship, QSAR) 모델(Pham The, H. et al., Mol. Inform. 30, 376-385, 2011)을 통하여 계산하였다. RO5 및 다른 물리화학적 특성들은 CDK(Chemistry Development Kit) Descriptor Calculator(Guha, R. http://www.rguha.net/code/java/cdkdesc.html)를 이용하여 계산하였다.Specifically, physicochemical properties include molecular weight, log value of octanol-water partition coefficient (AlogP), number of hydrogen-bond donors, number of hydrogen-bond acceptors And the number of rotatable bonds. Physiological effects include human intestinal absorption (HIA), Caco-2 permeability, blood-brain barrier (BBB) permeability and Lipinski's rule of five (RO5). It includes. HIA and BBB values are calculated using Shen's work (Shen, J. et al. , J. Chem. Inf. Model, 50, 1034-1041, 2010), and Caco-2 permeability is a quantitative structure-activity relationship (quantitative Structure-activity relationship (QSAR) model (Pham The, H. et al. , Mol. Inform. 30, 376-385, 2011). RO5 and other physicochemical properties were calculated using a CDK (Chemistry Development Kit) Descriptor Calculator (Guha, R. http://www.rguha.net/code/java/cdkdesc.html).
RO5RO5 HIAHIA Caco-2 투과성Caco-2 permeability BBB 투과성BBB permeability
RO5RO5 446446 401401 280280 365365
HIAHIA 482482 330330 407407
Caco-2 투과성Caco-2 permeability 335335 303303
BBB 투과성BBB permeability 428428
(가로축과 세로축이 교차하는 칸의 수치는 각 항목을 동시에 만족하는 파이토케미컬의 수를 의미함)(The number of cells where the horizontal axis and the vertical axis intersect means the number of phytochemicals that satisfy each item at the same time)
파이토케미컬의 RO5, HIA, Caco-2 투과성 및 BBB 투과성을 조사한 결과, 446, 482, 335 및 428 개의 파이토케미컬들이 각각 RO5, HIA, Caco-2 투과성 및 BBB 투과성을 만족하는 것으로 나타났다(표 2). As a result of investigating the RO5, HIA, Caco-2 permeability and BBB permeability of phytochemicals, it was found that 446, 482, 335 and 428 phytochemicals satisfy RO5, HIA, Caco-2 permeability and BBB permeability, respectively (Table 2). .
[실시예 4][Example 4]
파이토케미컬의 민족약학적 용도 탐색Exploring phytochemicals for their pharmacological uses
파이토케미컬의 예측된 효과들의 민족약학적 증거를 갖는 식물들을 추출하기 위하여, 서술적인 표현들로부터 표현형 용어들은 추출되고 구조화되어야 하고, 표현형 간의 복잡한 관계는 정량화되어야 한다. 이를 위하여, 먼저, MetaMap 도구를 적용하여 서술적인 문서들로부터 표현형 관련 용어들을 추출하였다(도 2a).To extract plants with pharmacological evidence of the predicted effects of phytochemicals, phenotypic terms must be extracted and structured from descriptive expressions, and complex relationships between phenotypes must be quantified. To this end, first, by applying the MetaMap tool, phenotype-related terms were extracted from descriptive documents (FIG. 2A).
다음으로, 외부 데이터베이스 정보에 기반하여 알고 싶은 파이토케미컬을 포함하는 식물들을 탐색하였다(도 2b). 다음으로, UMLS의 계층적 관계에 기반하여 표현형 네트워크를 제작하였고, 네트워크 상의 표현형 간의 거리와 깊이를 고려하여 표현형 간의 의미 유사도(semantic similarity)를 Wu, Z. 및 Palmer, M.이 제안하고, 하기 수학식 3으로 표현되는 의미 유사도 측정 방법(Wu, Z. & Palmer, M. 133-138 (Association for Computational Linguistics))에 의해 계산하였다(도 2c).Next, plants containing phytochemicals to be known based on external database information were searched (FIG. 2B). Next, a phenotype network was produced based on the hierarchical relationship of UMLS, and Wu, Z. and Palmer, M. proposed semantic similarity between phenotypes by considering the distance and depth between the phenotypes on the network. It was calculated by the semantic similarity measurement method represented by Equation 3 (Wu, Z. & Palmer, M. 133-138 (Association for Computational Linguistics)) (FIG. 2C).
[수학식 3][Equation 3]
Figure PCTKR2019008244-appb-I000004
Figure PCTKR2019008244-appb-I000004
(sim: 의미 유사도;(sim: semantic similarity;
depth: 근원 표현형(root UMLS)으로부터 해당 표현형까지의 깊이;depth: depth from the root phenotype (root UMLS) to the corresponding phenotype;
path: 각 표형형 간의 거리; 및path: distance between each surface type; And
lcs(c1, c2): c1 및 c2 개념의 공통적인 가장 낮은 계층의(가장 구체적인) 개념(the lowest common subsumer)).lcs (c 1 , c 2 ): the lowest common subsumer of the c 1 and c 2 concepts.
표현형 간의 의미 유사도 점수가 0.8보다 큰 경우, 표현형 간의 관련성이 높은 것으로 가정하였다. 따라서, 파이토케미컬의 예측된 건강효과들에 대한 가능한 모든 쌍(pairs)과 식물의 민족약학적 효과 사이의 의미 유사도를 계산하고, 그 점수가 0.8보다 높은 식물들을 선별함으로써, 최종적으로 파이토케미컬의 민족약학적 용도를 탐색하였다.When the semantic similarity score between phenotypes was greater than 0.8, it was assumed that the relation between phenotypes was high. Thus, by calculating the semantic similarity between all possible pairs of phytochemicals for the predicted health effects of the phytochemicals and the plant's pharmacological effects, and selecting plants whose score is higher than 0.8, finally the phytochemical's ethnicity The pharmaceutical use was explored.
분석 결과, 실시예 2-3에서 분자 네트워크를 기반으로 예측된 건강효과들 중 평균적으로 약 129.1 ± 11.4 개의 건강효과들(약 31%)이 민족약학적 증거를 갖는 것으로 나타났다(도 3의 오른쪽 그래프).As a result of the analysis, in Example 2-3, on average, about 129.1 ± 11.4 health effects (about 31%) among the predicted health effects based on the molecular network had national pharmacological evidence (right graph in FIG. 3). ).
[실시예 5][Example 5]
본 발명에 따른 파이토케미컬의 건강효과 예측 방법의 성능 평가Performance evaluation of the method for predicting the health effect of phytochemicals according to the present invention
5-1. 데이터 수집5-1. Data collection
실험적으로 검증된 정보를 골드-스탠다드 양성 세트로 수집하였다. DrugBank의 정보를 치료 효과를 평가하기 위한 세트로 사용하고, SIDER(Side Effect Resource)로부터 얻은 정보를 부작용 효과를 평가하기 위한 세트로 사용하였다. 보다 많은 수의 파이토케미컬을 분석하기 위하여 추가적으로 CTD로부터 잠재적 후보효과들을 수집하여 실버-스탠다드(silver-standard) 양성 세트로 사용하였다.The experimentally validated information was collected in a gold-standard positive set. Information from DrugBank was used as a set for evaluating treatment effects, and information obtained from Side Effect Resource (SIDER) was used as a set for evaluating side effects. To analyze a larger number of phytochemicals, potential candidate effects were additionally collected from CTD and used as a silver-standard positive set.
5-2. 분자 네트워크 분석을 이용한 방법의 정밀도 및 민감도 분석5-2. Analysis of the precision and sensitivity of the method using molecular network analysis
먼저, 분자 네트워크 분석을 이용한 파이토케미컬의 효과 예측 방법의 정밀도(precision, p) 및 민감도(recall, r) 값을 하기 수학식 4 및 5에 의해 계산하였다:First, the precision (p) and sensitivity (recall, r) values of the method for predicting the effect of phytochemicals using molecular network analysis were calculated by the following equations 4 and 5:
[수학식 4][Equation 4]
정밀도 = TP/(TP + FP); 및Precision = TP / (TP + FP); And
[수학식 5][Equation 5]
민감도 = TP/(TP + FN)Sensitivity = TP / (TP + FN)
(TP: 실제 양성인 데이터가 양성으로 검출된 경우(true positive);(TP: true positive data is detected as true (true positive);
FP: 실제 음성인 데이터가 양성으로 검출된 경우(false positive); 및FP: when data that is actually negative is detected as false (false positive); And
FN: 실제 양성인 데이터가 음성으로 검출된 경우(false negative)).FN: When data that is actually positive is detected as negative (false negative).
분자 네트워크 분석을 통한 치료 효과, 부작용 및 잠재적 후보효과 예측 방법의 정밀도 및 민감도 성능Precision and sensitivity performance of methods for predicting treatment effects, side effects and potential candidate effects through molecular network analysis
편포도Braid 치료 효과Treatment effect 부작용Side Effect 잠재적 후보효과Potential candidate effects
정밀도Precision 1:11: 1 0.921 ± 0.0320.921 ± 0.032 0.922 ± 0.0210.922 ± 0.021 0.942 ± 0.0050.942 ± 0.005
1:101:10 0.518 ± 0.0590.518 ± 0.059 0.432 ± 0.0400.432 ± 0.040 0.706 ± 0.0130.706 ± 0.013
AllAll 0.006 ± 0.0010.006 ± 0.001 0.049 ± 0.0100.049 ± 0.010 0.522 ± 0.0220.522 ± 0.022
민감도responsiveness AllAll 0.738 ± 0.0620.738 ± 0.062 0.576 ± 0.0610.576 ± 0.061 0.909 ± 0.0110.909 ± 0.011
각 파이토케미컬마다 평균 415.6 개의 잠재적 건강효과를 예측하기 때문에, 정밀도가 매우 낮게 나타나므로, 양성 세트 및 음성 세트 간의 편포도(skewness)를 조절하여 정밀도 성능을 평가하고자 하였다. 모든 가능한 건강효과들 중 골드-스탠다드 양성 세트를 제외한 나머지를 골드-스탠다드 음성 세트로 사용하고, 양성 세트 및 음성 세트의 비율을 1:1 또는 1:10으로 조절하여 정밀도를 분석한 결과, 편포도를 조절한 경우 정밀도 성능이 높게 나타났다(표 3).Because predicting the potential health effects of 415.6 on average for each phytochemical, the precision was very low, so we tried to evaluate the precision performance by adjusting the skewness between the positive and negative sets. Of all possible health effects, except for the gold-standard positive set, the rest was used as the gold-standard negative set, and the ratio of the positive set and the negative set was adjusted to 1: 1 or 1:10 to analyze the precision. When was adjusted, the precision performance was high (Table 3).
또한, 민감도 성능을 분석한 결과, 61 개 파이토케미컬의 270 개 치료 효과들 중 191 개의 표현형이 예측되었고(r= 0.738 ± 0.062), 부작용 예측에 있어서 60 개 파이토케미컬의 1,784 개 표현형 중 1,059 개의 표현형이 예측되었으며(r= 0.576 ± 0.061), 잠재적 후보효과 예측에 있어서 453 개 파이토케미컬의 136,862 개 표현형 중 119,233 개의 표현형이 예측되었다(r= 0.909 ± 0.011)(표 3).In addition, as a result of analyzing the sensitivity performance, 191 phenotypes of 270 treatment effects of 61 phytochemicals were predicted (r = 0.738 ± 0.062), and 1,059 phenotypes of 1,784 phenotypes of 60 phytochemicals in predicting side effects This was predicted (r = 0.576 ± 0.061), and 119,233 phenotypes of 136,862 phenotypes of 453 phytochemicals were predicted in predicting potential candidate effects (r = 0.909 ± 0.011) (Table 3).
전반적으로, 분자 네트워크 분석을 통한 건강효과들의 예측은 우수한 성능을 나타내었다.Overall, the prediction of health effects through molecular network analysis showed excellent performance.
5-3. 분자 네트워크 분석 및 민족약학적 증거를 이용한 방법의 정밀도 분석5-3. Molecular network analysis and precision analysis of methods using ethnographic evidence
민족약학적 증거를 고려하거나 고려하지 않은 경우의 예측 성능을 비교하기 위하여, 상기 실시예 5-2에서 예측된 파이토케미컬의 건강효과들을 민족약학적 용도의 존재 여부에 따라 분류하여 정밀도를 분석하였다.In order to compare the predicted performance with or without national pharmacological evidence, the health effects of the phytochemicals predicted in Example 5-2 were classified according to the presence or absence of national pharmacological use, and precision was analyzed.
분자 네트워크 분석 및 민족약학적 증거를 이용한 치료 효과, 부작용 및 잠재적 후보효과 예측 방법의 정밀도 성능Precision performance of methods for predicting treatment effects, side effects and potential candidate effects using molecular network analysis and ethnographic evidence
편포도Braid 치료 효과Treatment effect 부작용Side Effect 잠재적 후보효과Potential candidate effects
정밀도Precision 1:11: 1 0.941 ± 0.0350.941 ± 0.035 0.761 ± 0.0330.761 ± 0.033 0.948 ± 0.0140.948 ± 0.014
1:101:10 0.541 ± 0.0690.541 ± 0.069 0.319 ± 0.0550.319 ± 0.055 0.732 ± 0.0370.732 ± 0.037
AllAll 0.014 ± 0.0030.014 ± 0.003 0.025 ± 0.0050.025 ± 0.005 0.563 ± 0.0590.563 ± 0.059
그 결과, 민족약학적 증거를 고려하는 경우, 그렇지 않은 경우보다 치료 효과 및 잠재적 후보효과 예측 면에서 정밀도 성능이 증가하였다. 다만, 부작용에 대한 예측에서는 정밀도가 감소하였는데, 이는 치료적 용도에 대한 민족약학적 증거만을 사용했기 때문에 나타난 결과로 해석된다(표 4).As a result, when considering pharmacological evidence, precision performance was increased in terms of predicting treatment effects and potential candidate effects than those not. However, precision was reduced in the prediction of side effects, which is interpreted as the result of using only national pharmacological evidence for therapeutic use (Table 4).
5-4. 화학적 특성 분석을 이용한 방법의 정밀도 및 민감도 분석5-4. Method precision and sensitivity analysis using chemical characterization
화학적 특성을 이용하여 파이토케미컬의 건강효과 예측 방법에 있어서 화학적 특성 분석을 이용하는 경우 예측 성능이 개선되는지 여부를 확인하기 위하여 BBB 투과성에 따른 신경질환 치료 효능 예측에 대한 정밀도 및 민감도를 분석하였다.In order to confirm whether the predictive performance is improved when using chemical properties analysis in the method of predicting the health effects of phytochemicals using chemical properties, the precision and sensitivity of predicting the efficacy of treating neurological diseases according to BBB permeability were analyzed.
구체적으로, 신경활성 기능을 조절하기 위해서는 파이토케미컬들이 BBB를 통과해야 하므로, BBB 투과성 여부에 따라 파이토케미컬을 2 개의 독립적인 세트로 분류하고, 신경질환 치료 효능에 대한 예측 성능을 비교하였다. 그 결과, BBB를 통과하는 세트의 정밀도 및 민감도 값(p = 0.611 ± 0.046, r = 0.725 ± 0.033)이 BBB를 통과하지 못하는 세트의 정밀도 및 민감도 값(p = 0.312 ± 0.052, r = 0.558 ± 0.042)보다 높았다.Specifically, in order to regulate neuroactive functions, since the phytochemicals must pass through the BBB, the phytochemicals are classified into two independent sets according to whether the BBB is permeable, and the predicted performance for the efficacy of treating neurological diseases is compared. As a result, the precision and sensitivity values of the set that pass the BBB (p = 0.611 ± 0.046, r = 0.725 ± 0.033), and the precision and sensitivity values of the set that do not pass the BBB (p = 0.312 ± 0.052, r = 0.558 ± 0.042) ).
상기 실시예 5-1 내지 5-4를 통한 분석 결과, 전반적으로 분자 네트워크 분석, 민족약학적 증거 및 화학적 특성을 개별적으로 이용하는 경우보다 이를 통합적으로 이용하는 본 발명의 방법이 파이토케미컬의 건강효과들을 예측하는 성능이 우수함을 알 수 있었다.As a result of the analysis through Examples 5-1 to 5-4, the method of the present invention using the integrated molecular network analysis, ethnographic evidence and chemical properties as a whole is predicted the health effects of phytochemicals. It was found that the performance to be performed is excellent.
[실시예 6][Example 6]
본 발명에 따른 파이토케미컬의 건강효과 예측 방법의 신뢰성 검증Reliability verification of the method for predicting the health effect of phytochemicals according to the present invention
본 발명에 따른 파이토케미컬의 건강효과 예측 방법의 신뢰성을 검증하기 위하여, 예측된 건강효과들이 외부 문헌에서 확인되는지 조사하였다.In order to verify the reliability of the method for predicting the health effect of phytochemicals according to the present invention, it was investigated whether the predicted health effects are confirmed in external documents.
6-1. 데이터 세트 추출6-1. Data set extraction
파이토케미컬의 예측된 건강효과들에 기반하여 2 개의 독립적인 세트를 제작하였다. 먼저, 분자 네트워크, 경구-이용가능성(oral-availability) 및 민족약학적 증거에서 양성으로 예측된 파이토케미컬-표현형 관계 세트를 만들고, 대조군으로, 이와 동일한 수의 무작위 관계를 추출하여 무작위 관계 세트를 만들었다.Two independent sets were made based on the predicted health effects of Phytochemical. First, a set of phytochemical-phenotype relationships predicted to be positive in molecular networks, oral-availability, and pharmacologic evidence was created, and as a control, this same number of random relationships was extracted to create a set of random relationships. .
6-2. 공동발생(co-occurence) 분석6-2. Co-occurence analysis
1950 내지 2013 년 동안 개시된 13,200,786 개의 PubMed 초록들을 대상으로 동일한 문장 안에 파이토케미컬 및 그에 해당하는 표현형이 모두 포함된 초록의 수를 공동발생 수(nc)로 계산하였다.For 13,200,786 PubMed abstracts disclosed during 1950 to 2013, the number of abstracts containing both phytochemicals and corresponding phenotypes in the same sentence was calculated as the number of co-occurrences (n c ).
공동발생Co-occurrence 자카드 인덱스Jacquard index 피셔 검정a Fisher black a FDR 검정b FDR test b
예측된 관계 세트Predicted relationship set 1.251.25 1.8 × 10-4 1.8 × 10 -4 29842984 13411341
무작위 관계 세트Random relationship set 0.090.09 9.5 × 10-6 9.5 × 10 -6 612612 274274
Mann-Whitney U test의 p 값P value of Mann-Whitney U test < 0.001<0.001 < 0.001<0.001 < 0.001<0.001 < 0.001<0.001
a피셔 정확 검정에서 p 값이 0.001보다 낮은 파이토케미컬-건강효과 관계의 수bFDR 검정에서 q 값이 0.05보다 낮은 파이토케미컬-건강효과 관계의 수 a Number of phytochemical-health effects with p values less than 0.001 in the Fisher exact test b Number of phytochemical-health effects relationships with q values less than 0.05 in the FDR test
그 결과, 예측된 관계 세트의 공동발생 수는 무작위 관계 세트의 공동발생 수에 비하여 13.8 배 더 크게 나타났다(표 5).As a result, the number of co-occurrences in the predicted relationship set was 13.8 times larger than the number of co-occurrences in the random relationship set (Table 5).
6-3. 자카드 인덱스(Jaccard index) 분석6-3. Analysis of Jaccard index
파이토케미컬 및 표현형들의 빈도수에서의 차이를 보정하기 위하여 공동발생 수를 자카드 인덱스로 표준화하였다. 먼저, 추가적으로 파이토케미컬 및 표현형을 하나 이상 포함하는 PubMed 초록의 수를 세고(n0), 각 파이토케미컬-표현형 관계의 공동발생 수인 nc를 n0로 나누어 자카드 인덱스를 계산하였다. 예를 들면, '퀘르세틴(quercetin)-뇌졸중'의 파이토케미컬-표현형 쌍에 대한 자카드 인덱스를 계산하는 경우, 퀘르세틴 및 뇌졸중을 모두 포함하는 초록이 50 개가 있고, 이 둘 중 하나 이상을 포함하는 초록이 200 개가 있다면, 자카드 인덱스는 0.25가 된다.In order to correct the difference in the frequency of phytochemicals and phenotypes, the number of co-occurrences was standardized as a jacquard index. First, the number of PubMed abstracts containing one or more phytochemicals and phenotypes was counted (n 0 ), and the jacquard index was calculated by dividing n c , which is the co-occurrence number of each phytochemical-phenotype relationship, by n 0 . For example, when calculating the jacquard index for a phytochemical-phenotype pair of 'quercetin-stroke', there are 50 abstracts containing both quercetin and stroke, and abstracts containing one or more of the two If there are 200, the jacquard index is 0.25.
분석 결과, 예측된 관계 세트의 평균 자카드 인덱스는 무작위 관계 세트의 평균 자카드 인덱스보다 18.9 배 더 높게 나타났다(표 5).As a result of the analysis, the average jacquard index of the predicted relationship set was 18.9 times higher than the average jacquard index of the random relationship set (Table 5).
6-4. 피셔 정확 검정(Fisher's exact test) 분석6-4. Fisher's exact test analysis
파이토케미컬 및 표적 건강효과를 포함하는 PubMed 초록의 수를 세어 피셔 정확 검정을 수행하고, p 값이 0.001보다 낮은 통계적으로 유의한 관계 수를 계산하였다.Fischer's exact test was performed by counting the number of PubMed greens including phytochemical and target health effects, and the number of statistically significant relationships with p values less than 0.001 was calculated.
그 결과, 예측된 관계 세트의 유의한 관계 수는 무작위 관계 세트의 유의한 관계 수보다 4.8 배 더 높게 나타났다(표 5). As a result, the number of significant relationships in the predicted relationship set was 4.8 times higher than the number of significant relationships in the random relationship set (Table 5).
6-5. FDR 검정 분석6-5. FDR assay analysis
많은 수의 관계를 분석하는 경우에는 피셔 정확 검정 시 다중 검정에 따른 문제가 발생하며, 많은 위 양성(false positive) 결과를 초래하므로, 이를 보완하기 위하여 추가적으로 FDR 검정 분석을 수행하여, q 값이 0.05보다 낮은 유의한 관계를 조사하였다.In the case of analyzing a large number of relationships, the problem of multiple tests occurs in Fisher's exact test, and since it results in many false positive results, FDR test analysis is additionally performed to compensate for this, and the q value is 0.05 The lower significant relationship was investigated.
그 결과, q 값이 0.05보다 낮은 관계의 수는 예측된 관계 세트에서 무작위 관계 세트에 비하여 4.9 배 높게 나타났다(표 5).As a result, the number of relationships with q value lower than 0.05 was 4.9 times higher than the random relationship set in the predicted relationship set (Table 5).
6-6. Mann-Whitney U test 분석6-6. Mann-Whitney U test analysis
마지막으로, Mann-Whitney U test를 수행하고 해당하는 p 값을 계산하여 문헌적 증거와 예측된 관계 세트 및 무작위 관계 세트 간의 통계적 차이를 조사하였다. 이 때, p 값은 0.05보다 낮은 경우를 통계적으로 유의한 것으로 판단하였다.Finally, a statistical difference between the literature evidence and the predicted relationship set and the random relationship set was investigated by performing Mann-Whitney U test and calculating the corresponding p value. At this time, it was judged that the p value was lower than 0.05 statistically significant.
그 결과, 모든 항목에서 예측된 관계 세트 및 무작위 관계 세트 간의 p 값이 0.05보다 낮게 나타났으며, 이는 두 세트에 대한 문헌 증거가 통계적으로 유의한 차이를 나타냄을 의미한다(표 5).As a result, the p-value between the predicted relationship set and the random relationship set was lower than 0.05 in all items, indicating that the literature evidence for the two sets showed statistically significant differences (Table 5).
상기 실시예 6-1 내지 6-6을 통한 분석 결과, 본 발명의 방법이 파이토케미컬의 건강효과를 확인하는데 유용하게 사용될 수 있음을 알 수 있었다.As a result of the analysis through Examples 6-1 to 6-6, it was found that the method of the present invention can be usefully used to confirm the health effect of phytochemicals.
[실시예 7][Example 7]
본 발명에 따른 방법을 이용한 파이토케미컬의 잠재적 건강효과 예측Prediction of potential health effects of phytochemicals using the method according to the invention
본 발명에 따라 몇 가지 파이토케미컬에 대한 잠재적 건강효과를 예측하고, ClinicalTrials.gov에서 해당 효과에 대한 임상시험 여부를 조사하였다.The potential health effects for several phytochemicals were predicted in accordance with the present invention, and clinical trials for these effects were investigated at ClinicalTrials.gov.
Figure PCTKR2019008244-appb-T000001
Figure PCTKR2019008244-appb-T000001
(ne: 민족약학적 증거의 수; 및(n e : number of ethnographic evidences; and
Rank: 민족약학적 증거의 수로 분류한 표현형 순서 중 해당 표현형의 순위)Rank: Rank of the corresponding phenotype in the order of phenotype classified by the number of ethnographic evidence)
그 결과, 전반적으로 파이토케미컬과 잠재적 관계가 깊은 표현형일수록 관련된 임상시험이 진행 중인 경우가 많았고, 해당 임상시험들은 대체로 제3상 또는 제4상 임상시험인 경우가 많았다(표 6). 상기 결과는 본 발명에 따른 파이토케미컬의 건강효과 예측 방법이 파이토케미컬의 특정 질병에 대한 잠재적 치료 효과를 예측하는데 유용하게 사용될 수 있음을 제시한다.As a result, in general, the more phenotypes that have a deeper potential relationship with phytochemicals, the more related clinical trials were in progress, and most of those clinical trials were usually phase 3 or 4 clinical trials (Table 6). The above results suggest that the method for predicting the health effect of phytochemicals according to the present invention can be usefully used to predict the potential therapeutic effect of phytochemicals on specific diseases.

Claims (9)

  1. 분자 네트워크를 이용하여 파이토케미컬(phytochemical)의 건강효과(health effect)를 추론하는 단계(단계 1);Deducing the health effect of phytochemicals using a molecular network (step 1);
    파이토케미컬의 화학적 특성을 조사하여 생체이용률이 높은 파이토케미컬을 도출하는 단계(단계 2); 및Deriving a phytochemical having a high bioavailability by examining the chemical properties of the phytochemical (step 2); And
    민족약학적(ethnopharmacological) 증거를 탐색하여 상기 추론된 건강효과 중 민족약학적 증거와 의미 유사도(semantic similarity)가 높은 파이토케미컬의 건강효과를 도출하는 단계(단계 3)를 포함하는, 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법.Molecular network, chemical, including the step of deriving the health effect of phytochemicals having high semantic similarity with the national pharmacological evidence among the deduced health effects by searching for ethnopharmacological evidence (step 3) Method for predicting the health effect of phytochemicals using integrated analysis based on characteristics and national pharmacological evidence.
  2. 제1항에 있어서, 상기 단계 1은 분자 네트워크에서 RWR(Random Walk with Restart) 알고리즘을 수행하여 파이토케미컬의 표현형 벡터를 제작하는 단계(단계 1-1);The method of claim 1, wherein the step 1 comprises: performing a RWR (Random Walk with Restart) algorithm in a molecular network to produce a phenochemical phenotype vector (step 1-1);
    고정된 수의 표적 단백질들로부터 파이토케미컬의 표적들을 무작위로 선택하여 랜덤 표현형 벡터를 제작하는 단계(단계 1-2); 및Constructing a random phenotype vector by randomly selecting phytochemical targets from a fixed number of target proteins (step 1-2); And
    상기 랜덤 표현형 벡터에서 통계적으로 유의한 파이토케미컬의 표현형을 도출함으로써 파이토케미컬의 건강효과를 추론하는 단계(단계 1-3)를 포함하는, 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법.Including the step of inferring the health effects of phytochemicals by deriving statistically significant phytochemical phenotypes from the random phenotype vectors (steps 1-3), an integrated analysis based on molecular networks, chemical properties and ethnographic evidence Method for predicting the health effect of phytochemicals.
  3. 제2항에 있어서, 상기 단계 1-1은 하기의 단계를 포함하는 것인, 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법:The method according to claim 2, wherein the step 1-1 comprises the following steps: a method for predicting the health effect of phytochemicals using an integrated analysis based on molecular networks, chemical properties, and ethnographic evidence:
    (a) 파이토케미컬들의 분자 표적 정보에 기반하여 분자 네트워크 상의 시드 노드(seed nodes)에 초기값을 할당하는 단계 및(a) assigning initial values to seed nodes on a molecular network based on molecular target information of phytochemicals, and
    (b) 하나의 노드에서 이웃한 노드로의 전이확률(transition probability)을 계산하는 단계,(b) calculating a transition probability from one node to a neighboring node,
    여기서 각 노드의 전이확률은 시간 단계가 t+1일 때 하기 수학식 1로 정의 됨;Here, the transition probability of each node is defined by Equation 1 below when the time step is t + 1;
    [수학식 1][Equation 1]
    Figure PCTKR2019008244-appb-I000005
    Figure PCTKR2019008244-appb-I000005
    (r: 각 시간 단계의 랜덤 워커(random walker)의 재시작 확률(restarting probability);(r: restarting probability of random walker at each time step;
    W: 분자 네트워크의 정규화된 인접 행렬(normalized adjacency matrix); 및W: normalized adjacency matrix of the molecular network; And
    pt 및 p0: 시간단계가 t일 때 및 초기 각 노드의 확률 벡터).p t and p 0 : probability vector of each node and when the time step is t).
  4. 제2항에 있어서, 상기 단계 1-3은 하기 수학식 2로 표현되는 수식에 의해 계산되는 p 값이 0.01보다 낮은 표현형들을 통계적으로 유의한 파이토케미컬의 표현형으로 판단하는 단계를 포함하는, 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법:The molecular network of claim 2, wherein the steps 1-3 include determining phenotypes having a p value lower than 0.01 calculated by the formula represented by Equation 2 below as a statistically significant phytochemical phenotype. , Phytochemical's health effect prediction method using integrated analysis based on chemical properties and national pharmacological evidence:
    [수학식 2][Equation 2]
    p = (r + 1)/(n + 1)p = (r + 1) / (n + 1)
    (r: 표현형 값보다 큰 값을 갖는 파이토케미컬의 랜덤 표현형 벡터의 수; 및(r: the number of random phenotype vectors of the phytochemical having a value greater than the phenotype value; and
    n: 파이토케미컬의 랜덤 표현형 벡터의 수).n: number of random phenotype vectors of phytochemicals).
  5. 제1항에 있어서, 상기 단계 2의 화학적 특성은 분자량, 옥탄올(octanol)-물 분배 계수(partition coefficient)의 로그 값(AlogP), 수소결합 공여자(hydrogen-bond donors) 수, 수소결합 수용자(hydrogen-bond acceptor) 수, 회전가능한 결합(rotatable bond)의 수, 인간 장관 흡수(human intestinal absorption, HIA), Caco-2 투과성(permeability), 뇌-혈관 장벽(blood-brain barrier, BBB) 투과성 및 리핀스키의 5 규칙(Lipinski's rule of five, RO5)으로 이루어진 군으로부터 선택되는 어느 하나 이상인, 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법.The method of claim 1, wherein the chemical properties of step 2 are molecular weight, octanol (octanol)-log value of partition coefficient (AlogP), number of hydrogen-bond donors (hydrogen-bond donors), hydrogen bond acceptor ( number of hydrogen-bond acceptors, number of rotatable bonds, human intestinal absorption (HIA), Caco-2 permeability, blood-brain barrier (BBB) permeability, and Method for predicting the health effect of phytochemicals using integrated analysis based on molecular networks, chemical properties, and ethnopharmacological evidence, at least one selected from the group consisting of Lipinski's rule of five (RO5).
  6. 제1항에 있어서, 상기 단계 3의 의미 유사도는 하기 수학식 3으로 표현되는 수식에 의해 계산되는 것인, 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법:According to claim 1, The semantic similarity of step 3 is to be calculated by the formula represented by the following equation (3), predicting the health effect of phytochemicals using an integrated analysis based on molecular networks, chemical properties and national pharmacological evidence Way:
    [수학식 3][Equation 3]
    Figure PCTKR2019008244-appb-I000006
    Figure PCTKR2019008244-appb-I000006
    (sim: 의미 유사도;(sim: semantic similarity;
    depth: 근원 표현형(root UMLS)으로부터 해당 표현형까지의 깊이;depth: depth from the root phenotype (root UMLS) to the corresponding phenotype;
    path: 각 표형형 간의 거리; 및path: distance between each surface type; And
    lcs(c1, c2): c1 및 c2 개념의 공통적인 가장 낮은 계층의(가장 구체적인) 개념(the lowest common subsumer)).lcs (c 1 , c 2 ): the lowest common subsumer of the c 1 and c 2 concepts.
  7. 제1항 내지 제5항 중 어느 한 항에 따른 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 방법을 실행시키기 위한 명령들을 포함하는 프로그램이 저장된 컴퓨터로 판독가능한 매체.A computer storing a program comprising instructions for executing a method for predicting the health effect of phytochemicals using an integrated analysis based on molecular networks, chemical properties and ethnographic evidence according to any one of claims 1 to 5, Medium available.
  8. 분자 네트워크를 이용하여 파이토케미컬의 건강효과를 추론하는 모듈;A module for inferring phytochemical health effects using a molecular network;
    파이토케미컬의 화학적 특성을 조사하여 생체이용률이 높은 파이토케미컬을 도출하는 모듈; 및A module for deriving phytochemicals having high bioavailability by examining phytochemical properties of the phytochemicals; And
    민족약학적 증거를 탐색하여 상기 추론된 건강효과 중 민족약학적 증거와 의미 유사도가 높은 파이토케미컬의 건강효과를 도출하는 모듈을 포함하는, 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 시스템.An integrated analysis based on molecular networks, chemical properties, and national pharmacological evidence, including modules that derive health effects of phytochemicals that have high semantic similarity with national pharmacological evidence among the inferred health effects by searching for ethnopharmacological evidence Phytochemical's health effect prediction system.
  9. 제8항에 있어서, 상기 분자 네트워크를 이용하여 파이토케미컬의 건강효과를 추론하는 모듈은 분자 네트워크에서 RWR 알고리즘을 수행하여 파이토케미컬의 표현형 벡터를 제작하는 모듈;10. The method of claim 8, wherein the module for inferring the health effect of phytochemicals using the molecular network comprises: a module for performing a RWR algorithm in the molecular network to produce a phenochemical vector;
    고정된 수의 표적 단백질들로부터 파이토케미컬의 표적들을 무작위로 선택하여 랜덤 표현형 벡터를 제작하는 모듈; 및A module for generating random phenotype vectors by randomly selecting phytochemical targets from a fixed number of target proteins; And
    상기 랜덤 표현형 벡터에서 통계적으로 유의한 파이토케미컬의 표현형을 도출함으로써 파이토케미컬의 건강효과를 추론하는 모듈을 포함하는, 분자 네트워크, 화학적 특성 및 민족약학적 증거에 기반한 통합 분석을 이용한 파이토케미컬의 건강효과 예측 시스템.A module comprising a module for inferring phytochemical health effects by deriving statistically significant phytochemical phenotypes from the random phenotype vector, phytochemical health effects using integrated analysis based on molecular networks, chemical properties, and national pharmacological evidence Prediction system.
PCT/KR2019/008244 2018-10-29 2019-07-04 Method for predicting heath effect of phytochemical, using integrated analysis based on molecular network, chemical property, and ethnopharmacological evidence, and system therefor WO2020091185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0130202 2018-10-29
KR1020180130202A KR102220004B1 (en) 2018-10-29 2018-10-29 Method and system for predicting health effects of phytochemicals using integrated analysis of the molecular network, chemical properties and ethnopharmacological evidence

Publications (1)

Publication Number Publication Date
WO2020091185A1 true WO2020091185A1 (en) 2020-05-07

Family

ID=70462386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008244 WO2020091185A1 (en) 2018-10-29 2019-07-04 Method for predicting heath effect of phytochemical, using integrated analysis based on molecular network, chemical property, and ethnopharmacological evidence, and system therefor

Country Status (2)

Country Link
KR (1) KR102220004B1 (en)
WO (1) WO2020091185A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060132707A (en) * 2004-01-28 2006-12-21 카운실 오브 사이언티픽 엔드 인더스트리얼 리서치 A method for standardization of chemical and therapeutic values of foods & medicines using animated chromatographic fingerprinting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060132707A (en) * 2004-01-28 2006-12-21 카운실 오브 사이언티픽 엔드 인더스트리얼 리서치 A method for standardization of chemical and therapeutic values of foods & medicines using animated chromatographic fingerprinting

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AKASH TARIQ: "Review on ethnomedicinal, phytochemical and pharmacological evidence of Himalayan anticancer plants", JOURNAL OF ETHNOPHARMACOLOGY, vol. 10, no. 164, 2015, pages 96 - 119, XP029148348, DOI: 10.1016/j.jep.2015.02.003 *
O. SAID ET AL: "Ethnopharmacological survey of medicinal herbs in Israel , the GolanHeights and the West Bank region", JOURNAL OF ETHNOPHARMACOLOGY, vol. 83, no. 3, 1 December 2002 (2002-12-01), pages 251 - 265, XP009151222, DOI: 10.1016/S0378-8741(02)00253-2 *
RUI HAI LIU: "Whole grain phytochemicals and health", JOURNAL OF CEREAL SCIENCE, vol. 46, no. 3, 26 October 2007 (2007-10-26), pages 207 - 219, XP022316970, DOI: 10.1016/j.jcs.2007.06.010 *
SUNYONG YOO: "Discovering Health Benefits of Phytochemicals with Integrat ed Analysis of the Molecular Network, Chemical Properties and Ethnopharmacol ogical Evidence", NUTRIENTS, vol. 10, no. 8, 8 August 2018 (2018-08-08), pages 1042, XP055706190 *
TANIA GOCALVES ALBUQUERQUE: "Nutritional and phytochemical composition of Annona cherimola Mill. fruits and by-products: Potential health benefits", FOOD CHEMISTRY, vol. 193, pages 187 - 195, XP029285992, DOI: 10.1016/j.foodchem.2014.06.044 *

Also Published As

Publication number Publication date
KR102220004B1 (en) 2021-02-25
KR20200048278A (en) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2020204586A1 (en) Drug repositioning candidate recommendation system, and computer program stored in medium in order to execute each function of system
Kumar et al. Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity
WO2019107804A1 (en) Method for predicting drug-drug or drug-food interaction by using structural information of drug
WO2017014469A1 (en) Disease risk prediction method, and device for performing same
Zhang et al. Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring
Wahba et al. An extensive meta-metagenomic search identifies SARS-CoV-2-homologous sequences in pangolin lung viromes
WO2016125949A1 (en) Automatic document summarizing method and server
Laurini et al. Computational mutagenesis at the SARS-CoV-2 spike protein/angiotensin-converting enzyme 2 binding interface: comparison with experimental evidence
WO2019009451A1 (en) Method for screening new targeted drugs through numerical inversion of quantitative structure-performance relationship and molecular dynamics computer simulation
WO2016099019A1 (en) System and method for classifying patent documents
WO2021101105A2 (en) System and method for classifying subjects of medical specialty materials
WO2022145877A1 (en) System for automatically issuing periodically updated genetic mutation test result report
WO2011115315A1 (en) Cognitive rehabilitation training system and a service method using the system
WO2020091185A1 (en) Method for predicting heath effect of phytochemical, using integrated analysis based on molecular network, chemical property, and ethnopharmacological evidence, and system therefor
WO2016085262A2 (en) Virtual drug screening method, intensive screening library constructing method, and system therefor
Rafiei et al. QSAR study of HCV NS5B polymerase inhibitors using the genetic algorithm-multiple linear regression (GA-MLR)
WO2022164236A1 (en) Method and system for searching target node related to queried entity in network
WO2019151620A1 (en) Content information providing device and method therefor
Shahlaei et al. QSAR study of some 5-methyl/trifluoromethoxy-1H-indole-2, 3-dione-3-thiosemicarbazone derivatives as anti-tubercular agents
WO2020071621A1 (en) Method for predicting pharmacological effect of natural compound using phenotype-centered network analysis, and system therefor
WO2019074151A1 (en) Method and device for efficiently calculating similarity between nodes for large scale graph
Cheevers et al. Precursor polypeptides of caprine arthritis-encephalitis lentivirus structural proteins
Saadat et al. Structure based drug discovery by virtual screening of 3699 compounds against the crystal structures of six key SARS-CoV-2 proteins
WO2016093407A1 (en) Clinical decision support system and method for evidence adaption using external resources
Prabhu et al. Identification of potential dual negative allosteric modulators of group I mGluR family: a shape based screening, ADME prediction, induced fit docking and molecular dynamics approach against neurodegenerative diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878258

Country of ref document: EP

Kind code of ref document: A1