WO2020091035A1 - Material for bone regeneration having surface including hydrophilized biodegradable fibers, and production method therefor - Google Patents

Material for bone regeneration having surface including hydrophilized biodegradable fibers, and production method therefor Download PDF

Info

Publication number
WO2020091035A1
WO2020091035A1 PCT/JP2019/043010 JP2019043010W WO2020091035A1 WO 2020091035 A1 WO2020091035 A1 WO 2020091035A1 JP 2019043010 W JP2019043010 W JP 2019043010W WO 2020091035 A1 WO2020091035 A1 WO 2020091035A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable fiber
biodegradable
fiber
calcium phosphate
bone
Prior art date
Application number
PCT/JP2019/043010
Other languages
French (fr)
Japanese (ja)
Inventor
敏宏 春日
松原 孝至
将央 渡部
直也 大坂
Original Assignee
国立大学法人 名古屋工業大学
Orthorebirth株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 名古屋工業大学, Orthorebirth株式会社 filed Critical 国立大学法人 名古屋工業大学
Priority to JP2020554976A priority Critical patent/JP7429391B2/en
Publication of WO2020091035A1 publication Critical patent/WO2020091035A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/68Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof
    • D06M11/70Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof with oxides of phosphorus; with hypophosphorous, phosphorous or phosphoric acids or their salts
    • D06M11/71Salts of phosphoric acids

Definitions

  • the present invention relates to a bone regenerating material comprising biodegradable fibers having hydrophilicity imparted by coating the surface of biodegradable fibers with an amorphous calcium phosphate layer, and a method for producing the same.
  • an artificial bone of a type in which a bone regenerating material composed of a biodegradable fiber is implanted in a living body to form a bone is used.
  • the biodegradable fiber contains bone-forming particles such as calcium phosphate, and when the bone regeneration material is implanted in the body and comes into contact with body fluid and the biodegradable resin is hydrolyzed, the surface of the fiber causes bone formation. The effective ions are gradually released to promote bone formation in the affected area.
  • the biodegradable fiber can be spun using the melt spinning method or the electrospinning method.
  • the electrospinning method it is possible to spin by adding inorganic particles to a spinning solution in which a resin is dissolved in a solvent, so that a bone regenerating material composed of biodegradable fibers containing osteogenic particles such as calcium phosphate can be used. It can be easily manufactured.
  • biodegradable fiber Since the polymer surface of biodegradable fiber has water repellency and hydrophobicity, when implanting the material in the affected area, it will be repelled at the earliest stage of mixing with blood, which will increase the time required for shaping during surgery. The problem has been pointed out. In order to deal with this problem, an attempt to make the surface of the biodegradable fiber hydrophilic has been proposed.
  • a hydrophilic treatment method plasma treatment, hydrophilic polymer coating, inorganic film coating, calcium phosphate (CaP) coating are known. CaP coating is performed by immersing biodegradable fibers in an aqueous solution containing phosphate ions. Since the surface can be easily coated with calcium hydroxyphosphate (HA), it is a suitable method for hydrophilizing a fibrous bone regenerating material having a complicated three-dimensional structure.
  • alternate dipping method and biomimetic method are known.
  • the material is alternately immersed in a solution containing calcium ions and a solution containing phosphate ions to form HA on the surface. It can be performed at room temperature and normal pressure, and can be applied to a material having a three-dimensional structure (Non-Patent Document 1).
  • the biomimetic method forms HA on the surface of a material by immersing the material in a simulated body fluid (SBF) whose inorganic ion concentration is adjusted to be equal to that of human plasma. This method can form HA more easily than the alternate dipping method, and can also coat HA on a three-dimensional structure as in the alternate dipping method (Non-Patent Document 2).
  • SBF simulated body fluid
  • the phase produced by the conventional alternate dipping method or biomimetic method has a high content of HA crystals, so it is difficult to dissolve in contact with water. Further, in order to coat the surface of the material fiber with HA using these methods, the material must be immersed in the solution for several hours to several days, so that the bone-forming particles contained in the biodegradable fiber during There is a problem that the ions are eluted into the solution, and the stimulating effect on the tissue due to the elution of the bone-forming particles is weakened.
  • the inventors of the present invention have studied the means for solving the above-mentioned problems, and have concluded that it is best to coat the surface of the biodegradable fiber with the amorphous calcium phosphate layer in a short time. Since amorphous calcium phosphate has a high solubility in water, it does not dissolve and disappear in a short time in contact with body fluid or blood, and does not prevent the elution of osteogenic particles. Further, since this amorphous phase has high ionicity, the hydrophilicity of the surface of the polymer fiber coated with it is significantly improved.
  • the inventors of the present invention have conducted extensive experiments and studies, and as a result, heat the biodegradable resin in a state where the vaterite phase calcium carbonate particles are attached to the surface of the biodegradable fiber by using the triboelectric charging method.
  • the triboelectric charging method By adhering and fixing the particles to the fiber surface by doing so, when the material is immersed in an aqueous solution containing phosphate ions of a predetermined concentration in that state, the amorphous calcium phosphate layer starts from the vaterite phase calcium carbonate particles in a short time. It was envisioned that they could grow and coat the entire surface of the fiber.
  • the inventors of the present invention are a method for producing a bone regeneration material comprising a biodegradable fiber whose surface is hydrophilized, Vaterite phase calcium carbonate particles are electrostatically attached to the surface of the biodegradable fiber containing the bone-forming particles by using a triboelectric charging method, The vaterite phase calcium carbonate particles adhered to the biodegradable fiber, by heating at a temperature above the glass transition point of the biodegradable resin of the biodegradable fiber, the vaterite phase on the surface of the biodegradable fiber Adhere and fix calcium carbonate particles, The vaterite phase calcium carbonate particles are adhered and fixed The biodegradable fiber is immersed in an aqueous solution containing a phosphate ion of a predetermined concentration for a predetermined time, whereby the vaterite phase is fixedly adhered to the surface of the biodegradable fiber.
  • amorphous calcium phosphate is grown along the surface of the biodegradable fiber to cover the entire surface of the biodegradable fiber, A bone regenerating material consisting of the biodegradable fiber whose surface is coated with the amorphous calcium phosphate is taken out from the aqueous solution containing the phosphate ion and dried,
  • the present invention has arrived at a method for producing a bone regeneration material comprising a biodegradable fiber having a hydrophilic surface.
  • the inventors of the present invention further provide a bone regeneration material comprising a biodegradable fiber whose surface is hydrophilized,
  • the biodegradable fiber constituting the bone regeneration material contains bone-forming particles,
  • the entire surface of the biodegradable fiber is covered with an amorphous calcium phosphate layer containing substantially no crystalline phase,
  • the present invention has reached the invention of a bone regeneration material comprising a biodegradable fiber having a hydrophilic surface.
  • the amorphous calcium phosphate layer contains carbonate apatite containing carbonic acid in a part of calcium phosphate.
  • the inventors of the present invention further provide a method for producing a biodegradable fiber whose surface is hydrophilized, Vaterite phase calcium carbonate particles are electrostatically attached to the surface of the biodegradable fiber containing the bone-forming particles by using a triboelectric charging method, The vaterite phase calcium carbonate particles adhered to the biodegradable fiber, by heating at a temperature above the glass transition point of the biodegradable resin of the biodegradable fiber, the vaterite phase on the surface of the biodegradable fiber Adhere and fix calcium carbonate particles, The vaterite phase calcium carbonate particles are adhered and fixed The biodegradable fiber is immersed in an aqueous solution containing a phosphate ion of a predetermined concentration for a predetermined time, whereby the vaterite phase is fixedly adhered to the surface of the biodegradable fiber.
  • amorphous calcium phosphate is grown along the surface of the biodegradable fiber to cover the entire surface of the biodegradable fiber, A bone regenerating material consisting of the biodegradable fiber whose surface is coated with the amorphous calcium phosphate is taken out from the aqueous solution containing the phosphate ion and dried,
  • the invention has arrived at a method for producing a biodegradable fiber having a hydrophilic surface.
  • the inventors of the present invention further have a biodegradable fiber whose surface is hydrophilized,
  • the biodegradable fiber contains bone-forming particles,
  • the entire surface of the biodegradable fiber is covered with an amorphous calcium phosphate layer containing substantially no crystalline phase,
  • the invention has been reached, which is a biodegradable fiber whose surface is hydrophilized.
  • the amorphous calcium phosphate layer contains carbonate apatite containing carbonic acid in a crystal structure in a part of calcium phosphate.
  • the vaterite phase calcium carbonate particles include siloxane
  • the amorphous calcium phosphate layer grown from the vaterite phase calcium carbonate particles including siloxane includes silicon.
  • the aqueous solution containing phosphate ions is a disodium hydrogen phosphate solution
  • the bone regenerating material comprising biodegradable fibers having the vaterite phase calcium carbonate particles adhered and fixed to the surface thereof is used as the disodium hydrogen phosphate.
  • the amorphous calcium phosphate layer is formed containing sodium and coats the surface of the fiber.
  • the diameter of the biodegradable fiber is 10 to 100 ⁇ m, and the diameter of the vaterite phase calcium carbonate particles is 0.5 to 4 ⁇ m. More preferably, the diameter of the biodegradable fiber is 20 to 60 ⁇ m, and the diameter of the vaterite phase calcium carbonate particles is 0.7 to 2.0 ⁇ m.
  • the biodegradable resin of the biodegradable fiber is PLGA.
  • the osteogenic particles are ⁇ -phase tricalcium phosphate particles.
  • the bone-forming particles are silicon-eluting type vaterite phase calcium carbonate particles.
  • the inventors of the present invention further provide a method for hydrophilizing the surface of the biodegradable fiber constituting the cell culture substrate, Vaterite phase calcium carbonate particles on the surface of the biodegradable fiber constituting the cell culture substrate, electrostatically attached using a triboelectric charging method, By heating the biodegradable fiber to which the vaterite phase calcium carbonate particles are attached at a temperature equal to or higher than the glass transition point of the biodegradable resin of the biodegradable fiber, the vaterite phase carbonate is formed on the surface of the biodegradable fiber.
  • the vaterite phase calcium carbonate particles are adhered and fixed
  • the biodegradable fiber is immersed in an aqueous solution containing a phosphate ion of a predetermined concentration for a predetermined time, whereby the vaterite phase is fixedly adhered to the surface of the biodegradable fiber.
  • amorphous calcium phosphate is grown along the surface of the biodegradable fiber to cover the entire surface of the biodegradable fiber, Removing the biodegradable fiber whose surface is coated with the amorphous calcium phosphate from an aqueous solution containing the phosphate ion and drying the biodegradable fiber;
  • the invention has been reached, which is a method of hydrophilizing the surface of the biodegradable fiber constituting the cell culture substrate.
  • the inventors of the present invention further provide a cell culture substrate comprising a biodegradable fiber whose surface is hydrophilized,
  • the biodegradable fiber constituting the cell culture substrate contains an inorganic filler, Substantially the entire surface of the biodegradable fiber is covered with an amorphous calcium phosphate layer,
  • the amorphous calcium phosphate layer may include carbonate apatite containing carbonic acid in a crystal structure in a part of calcium phosphate,
  • the invention has been reached, which is a cell culture substrate comprising a biodegradable fiber whose surface is hydrophilized.
  • the inventors of the present invention further have a biodegradable fiber whose surface is hydrophilized,
  • the biodegradable fiber consists essentially of biodegradable resin, Substantially the entire surface of the biodegradable fiber is covered with an amorphous calcium phosphate layer, The invention has been reached, which is a biodegradable fiber whose surface is hydrophilized.
  • the amorphous calcium phosphate layer contains carbonate apatite containing carbonic acid in a crystal structure in a part of calcium phosphate.
  • the vaterite phase calcium carbonate particles include siloxane
  • the amorphous calcium phosphate layer grown from the vaterite phase calcium carbonate particles including siloxane includes silicon.
  • the aqueous solution containing phosphate ions is a disodium hydrogen phosphate solution
  • the bone regeneration material comprising biodegradable fibers having the vaterite phase calcium carbonate particles adhered and fixed on the surface thereof is used as the disodium hydrogen phosphate.
  • the amorphous calcium phosphate layer is formed containing sodium and coats the surface of the fiber.
  • the diameter of the biodegradable fiber is 10 to 100 ⁇ m, and the diameter of the vaterite phase calcium carbonate particles is 0.5 to 4 ⁇ m. More preferably, the diameter of the biodegradable fiber is 20 to 60 ⁇ m, and the diameter of the vaterite phase calcium carbonate particles is 0.7 to 2.0 ⁇ m.
  • the biodegradable resin of the biodegradable fiber is PLGA.
  • the vaterite phase calcium carbonate particles fixed on the surface of the biodegradable fiber are immersed in an aqueous solution containing phosphate ions and rapidly dissolved to supply carbonate ions to form a calcium phosphate layer. It can be formed on the fiber surface in a short time.
  • the calcium phosphate layer thus formed is substantially entirely occupied by the amorphous phase and has no crystal structure (see FIG. 6).
  • a large amount of carbonate ions are supplied from the calcium carbonate particles fixed on the surface of the fiber to form a highly soluble amorphous phase calcium phosphate.
  • soluble carbonate-containing apatite may be formed.
  • the amorphous calcium phosphate coating the surface of the biodegradable fiber is bioabsorbable and the layer is so thin that it is absorbed shortly after implanting the material in vivo. It decomposes and disappears from the fiber surface. As a result, the elution of ions from the bone-forming particles contained in the biodegradable fiber is not impeded by the presence of the amorphous calcium phosphate layer.
  • the calcium phosphate phase coated on the surface of the biodegradable fiber has a large specific surface area and high ionicity, so that many proteins can be adsorbed. As a result, high initial adhesiveness of cells is obtained when the bone regeneration material is implanted in the body.
  • silicon is supported on the vaterite phase calcium carbonate particles fixed on the surface of the fiber, and the silicon is eluted in the course of dissolution of the vaterite phase calcium carbonate by the phosphoric acid treatment. It is incorporated in the amorphous calcium phosphate layer formed on the surface.
  • silicon contained in the amorphous calcium phosphate layer is eluted and stimulates osteoblasts to promote bone formation.
  • a disodium hydrogen phosphate solution is used for the phosphoric acid treatment, and sodium is contained in the amorphous calcium phosphate layer during the process of forming the amorphous calcium phosphate layer on the surface of the fiber by the phosphoric acid treatment. Is taken into.
  • One embodiment of the present invention is a cell culture substrate comprising a biodegradable fiber whose surface is hydrophilized.
  • the biodegradable fiber coated with amorphous calcium phosphate has high protein adsorption performance and good initial cell adhesion performance.
  • One embodiment of the present invention is a biodegradable fiber whose surface is hydrophilized, said biodegradable fiber consisting essentially of a biodegradable resin and containing no inorganic particles.
  • FIG. 1 illustrates a method of depositing calcium carbonate particles on the surface of polymer fibers using the triboelectric charging method of the present invention.
  • FIG. 2 shows a method of embedding calcium carbonate particles attached to the surface of a polymer fiber by using the triboelectric charging method of the present invention by utilizing the residual stress of the fiber.
  • FIG. 3 shows a method of immersing a cotton-like bone regeneration material in an aqueous solution containing phosphate ions to perform phosphoric acid treatment.
  • FIG. 1 illustrates a method of depositing calcium carbonate particles on the surface of polymer fibers using the triboelectric charging method of the present invention.
  • FIG. 2 shows a method of embedding calcium carbonate particles attached to the surface of a polymer fiber by using the triboelectric charging method of the present invention by utilizing the residual stress of the fiber.
  • FIG. 3 shows a method of immersing a cotton-like bone regeneration material in an aqueous solution containing phosphate
  • FIG. 4 (A) is a phosphoric acid treatment in which a biodegradable fiber having calcium carbonate particles adhered to the surface of a polymer fiber is immersed in a 0.02 M disodium hydrogen phosphate solution using the triboelectric charging method of the present invention and treated with phosphoric acid The state of the surface of the fiber after applying is shown.
  • FIG. 4B is a phosphoric acid treatment in which a biodegradable fiber having calcium carbonate particles adhered to the surface of a polymer fiber by the triboelectric charging method of the present invention is immersed in a 0.2 M disodium hydrogen phosphate solution. The state of the surface of the fiber after applying is shown.
  • FIG. 4 (A) is a phosphoric acid treatment in which a biodegradable fiber having calcium carbonate particles adhered to the surface of a polymer fiber is immersed in a 0.02 M disodium hydrogen phosphate solution using the triboelectric charging method of the present invention and treated with phosphoric acid The state of the
  • FIG. 4C is a phosphoric acid treatment in which a biodegradable fiber having calcium carbonate particles adhered to the surface of a polymer fiber by the triboelectric charging method of the present invention is immersed in a 2.0 M concentration disodium hydrogen phosphate solution. The state of the surface of the fiber after applying is shown.
  • FIG. 5 shows the hydrophilicity of the phosphorous-treated cotton-shaped bone regeneration material.
  • FIG. 6 shows the results of STEM observation of a cotton-shaped bone regeneration material that has been treated with phosphoric acid. From the vague image in the lower left part a, it can be seen that the calcium phosphate layer is substantially entirely occupied by the amorphous phase.
  • FIG. 5 shows the hydrophilicity of the phosphorous-treated cotton-shaped bone regeneration material.
  • FIG. 6 shows the results of STEM observation of a cotton-shaped bone regeneration material that has been treated with phosphoric acid. From the vague image in the lower left part a, it can be seen that the calcium phosphate layer is substantially entirely
  • FIG. 7 (A) shows the surface of a biodegradable fiber obtained by immersing a sample of the amorphous calcium phosphate coating experiment in a disodium hydrogen phosphate solution having a concentration of 19.2 mM for 5 minutes to grow an amorphous calcium phosphate layer.
  • FIG. 7 (B) shows the surface of a biodegradable fiber obtained by immersing the sample of the amorphous calcium phosphate coating experiment in a disodium hydrogen phosphate solution having a concentration of 19.2 mM for 10 minutes to grow an amorphous calcium phosphate layer. .. FIG.
  • FIG. 8 (A) shows the surface of a biodegradable fiber in which an amorphous calcium phosphate coating experiment sample was immersed in a disodium hydrogen phosphate solution having a concentration of 192 mM for 5 minutes to grow an amorphous calcium phosphate layer.
  • FIG. 8 (B) shows the surface of a biodegradable fiber obtained by immersing a sample of the amorphous calcium phosphate coating experiment in a disodium hydrogen phosphate solution having a concentration of 192 mM for 10 minutes to grow an amorphous calcium phosphate layer.
  • FIG. 8 (B) shows the surface of a biodegradable fiber obtained by immersing a sample of the amorphous calcium phosphate coating experiment in a disodium hydrogen phosphate solution having a concentration of 192 mM for 10 minutes to grow an amorphous calcium phosphate layer.
  • FIG. 9 (A) shows the surface of a biodegradable fiber in which an amorphous calcium phosphate coating experiment sample was immersed in a disodium hydrogen phosphate solution having a concentration of 1.92 M for 5 minutes to grow an amorphous calcium phosphate layer. ..
  • FIG. 9 (B) shows the surface of a biodegradable fiber obtained by immersing a sample of the amorphous calcium phosphate coating experiment in a disodium hydrogen phosphate solution having a concentration of 1.92 M for 10 minutes to grow an amorphous calcium phosphate layer. .. In Fig.
  • Fig. 11 20 mg of the sample (192 mM) was set aside and placed in a test tube, and a weight (56.5 mg) was placed and pressed for 2 min. Then, the weight was removed, and 5 ⁇ l of a red solution prepared by dissolving Rhodamine B in distilled water was dropped on the sample, and after 5 minutes, the red solution permeated the sample.
  • Fig. 11 20 mg of the sample (192 mM) was set aside and placed in a test tube, and a weight (56.5 mg) was placed and pressed for 2 min. Then, the weight was removed, and 5 ⁇ l of a red solution prepared by dissolving Rhodamine B in distilled water was dropped on the sample, and after 5 minutes, the red solution permeated the sample.
  • Fig. 11 20 mg of the sample (192 mM) was set aside and placed in a test tube, and a weight (56.5 mg) was placed and pressed for 2 min. Then, the weight was removed, and 5 ⁇ l of a red
  • FIG. 12 20 mg of the sample (1.92 M) was set aside and placed in a test tube, and a weight (56.5 mg) was placed and pressed for 2 min. Then, the weight was removed, and 5 ⁇ l of a red solution prepared by dissolving Rhodamine B in distilled water was dropped on the sample, and after 10 minutes, the red solution permeated the sample.
  • FIG. 12 20 mg of the sample (1.92 M) was set aside and placed in a test tube, and a weight (56.5 mg) was placed and pressed for 2 min. Then, the weight was removed, and 5 ⁇ l of a red solution prepared by dissolving Rhodamine B in distilled water was dropped on the sample, and after 10 minutes, the red solution permeated the sample.
  • FIG. 13 shows the results of an adsorption test of bovine serum albumin (BSA) on the surface of the biodegradable fiber coated with the amorphous calcium phosphate of the present invention.
  • FIG. 14 shows an evaluation method for evaluating the cell adhesion / proliferation property of the bone regeneration material comprising the biodegradable fiber coated with the amorphous calcium phosphate of the present invention.
  • FIG. 15 shows a diagram of metabolic activity values of cells by Alamar Blue.
  • FIG. 16 shows the morphology of the fiber surface by FE-SEM and the state after the cells have grown. The part surrounded by the line is the part where cells exist.
  • FIG. 17 shows that the CaP phase is confirmed by morphology of the fiber surface by FE-SEM and strong expansion of the fiber surface after 24 hours of culture.
  • FIG. 18 shows the elution behavior of ions from the sample measured by ICP-AES.
  • FIG. 19 shows an example of usage of the cotton-like bone filling material of the present invention.
  • the bone regeneration material of the present invention is composed of biodegradable fibers spun by electrospinning or melt spinning.
  • the biodegradable fiber used in the present invention contains bone-forming particles such as calcium phosphate, and when the material is implanted in the body and the biodegradable resin is decomposed, the bone-forming particles contained in the fiber are changed in the process. Ions are eluted and promote bone formation in the affected area. By collecting the spun biodegradable fibers in the form of cotton or nonwoven fabric, a fibrous bone regeneration material is formed.
  • the thickness of the biodegradable fiber used in the present invention is preferably 10 to 100 ⁇ m in diameter, more preferably 20 to 60 ⁇ m in diameter.
  • the diameter of the biodegradable fiber should be 10 ⁇ m or more. preferable. When the fiber diameter is 10 ⁇ m or less, it becomes difficult to uniformly distribute and fix the particles on the surface of the fiber.
  • Biodegradable fibers having a diameter of 10 ⁇ m or more can be easily spun by using the melt spinning method.
  • the melt spinning method since the amount of inorganic particles that can be mixed with the molten resin is limited, it is difficult to include the bone-forming particles in an amount exceeding 5% by weight.
  • the electrospinning method since the spinning solution is prepared by dissolving the resin or the composite of the resin and the inorganic particles with the solvent, it is possible to include a larger amount of the bone-forming particles.
  • the inventors of the present invention succeeded in spinning a biodegradable fiber containing 70% by weight of inorganic particles by using a thermal kneading method together (Japanese Patent No. 6251462).
  • the solvent is volatilized during the winding process due to the unstable flight trajectory (bending instability) of the spinning solution discharged from the nozzle of the device before reaching the collector.
  • the diameter of the fiber spun by it is usually several tens nm to several ⁇ m, and it is difficult to make the diameter 10 ⁇ m or more.
  • the inventors of the present invention installed a nozzle having a large diameter downward, sent the spinning solution filled in a syringe to the exit of the nozzle at a high speed, and ejected the spinning solution vertically downward to obtain a diameter of 10 ⁇ m or more. Have succeeded in stably spinning the biodegradable fiber (Japanese Patent Application No. 2019-73453).
  • biodegradable resin such as PLA, PLGA, PCL
  • PLA PLGA
  • PCL poly(ethylene glycol)
  • PLGA which is an amorphous resin and has a glass transition point of about 40 ° C.
  • the biodegradable fiber used in the present invention contains a considerable amount of inorganic particles that are bone-forming particles such as calcium phosphate and silicon-eluting calcium carbonate, and the bone regeneration material implanted in the living body is in contact with body fluid. When the biodegradable resin is decomposed, the bone-forming particles contained in the process are eluted to promote bone formation.
  • the bone regeneration material includes an implant material in which biodegradable fibers are collected in a non-woven fabric or cotton form.
  • the operator fills the bone regenerating material with the bone regenerating material as it is, or mixes the material with blood in advance and embeds it in the bone defective portion (see FIG. 19). ).
  • the bone-forming particles refer to inorganic particles that are contained in a bone regenerating material and are implanted into the human body together with the material to elute ions that promote bone formation by coming into contact with body fluid or blood.
  • Bone-forming particles include, but are not limited to, tricalcium phosphate, hydroxyapatite, calcium carbonate, and the like.
  • vaterite phase calcium carbonate particles are preferably used as the inorganic particles to be adhered and fixed on the surface of the biodegradable fiber by using the triboelectric charging method.
  • Calcium carbonate has the most stable calcite phase at room temperature and normal pressure, the metastable aragonite phase, and the metastable vaterite phase.
  • the calcium phosphate phase starts from the particles when immersed in an aqueous solution containing phosphate ions.
  • the vaterite phase which has a high solubility in water, is most suitable for the production of
  • the vaterite phase calcium carbonate particles used in the present invention preferably have a diameter of 0.5 ⁇ m to 4.0 ⁇ m. It is important that the range of the particle size of the vaterite phase calcium carbonate recovered in the form of particles is smaller than the thickness of the biodegradable fiber to which the particles are attached. Furthermore, it is preferable that the particle size is smaller than the larger particle size because the reaction with the aqueous solution containing phosphate ions becomes faster.
  • Siloxane can be supported on the surface of the vaterite phase calcium carbonate particles by the carbonation process (Japanese Patent No. 5131724).
  • the amount of siloxane supported on the surface of the vaterite phase calcium carbonate particles by the carbonation process is increased, the particle diameter increases accordingly, and the maximum particle diameter increases to 4 ⁇ m. If the amount of siloxane is further increased from the level, it becomes difficult to recover the vaterite phase calcium carbonate as particles.
  • the triboelectric charging method refers to a method for adhering and fixing inorganic particles on the surface of polymer fibers. Specifically, when the powder of inorganic particles and the fiber material are housed in a container such as a plastic bag and the container is vibrated up and down or front and back and left and right at high speed with the container in that state, the inorganic particles and the fibers are The resin surface is rubbed to generate static electricity, and the generated electrostatic attraction uniformly attaches the inorganic particles to the entire surface of the fiber material (see FIG. 1). Alternatively, the material can be put into a ball mill and rotated without adding a ball (only by the pot) to uniformly attach the material.
  • the inorganic particles attached to the surface of the fibers by electrostatic attraction can be fixed.
  • the biodegradable fiber is pulled during spinning flight in electrospinning, and in melt spinning, the fiber is pulled when it is wound on a rotating drum and residual stress is generated inside the fiber.
  • heat is applied to the fiber, the fiber shrinks in the longitudinal direction, and during the shrinking process, the inorganic particles adhering to the polymer surface are embedded inside at the contact part with the fiber and firmly fixed at that position (Fig. 2).
  • ⁇ Phosphoric acid treatment> A fibrous material having inorganic particles adhered and fixed on the surface is immersed in an aqueous solution containing phosphate ions, and allowed to stand for a fixed time under a predetermined temperature condition. Then, the fiber material is taken out from the aqueous solution containing phosphate ions and dried (see FIG. 3).
  • an aqueous solution containing a phosphate ion used for the phosphoric acid treatment of the present invention
  • an aqueous solution containing a phosphate ion such as a disodium hydrogen phosphate aqueous solution or a diammonium hydrogen phosphate aqueous solution is preferable.
  • a phosphate ion such as a disodium hydrogen phosphate aqueous solution or a diammonium hydrogen phosphate aqueous solution.
  • amorphous calcium phosphate includes carbonate apatite (Ca 10-x (HPO 4 , CO 3 ) x (PO 4 ) 6-x (OH, CO 3 ) 2-x ⁇ nH 2 O) and / or calcium.
  • Deficient calcium phosphate (Ca 10-x (HPO 4 ) x (PO 4 ) 6-x (OH) 2-x ⁇ nH 2 O may be included.
  • Amorphous calcium phosphate is soluble at around neutral pH Is high and dissolves in a short time on contact with water.
  • an amorphous calcium phosphate layer is formed along the surface of the fiber from the vaterite phase calcium carbonate particles fixed on the surface of the fiber by the triboelectric charging method. And cover the entire surface of the fiber.
  • FIG. 6 shows that, using the method of the present invention, SiV (silicon-eluting calcium carbonate) particles are used as the vaterite phase calcium carbonate to be adhered and fixed on the fiber surface, and disodium hydrogen phosphate (concentration 0) as an aqueous solution containing phosphate ions.
  • the cell culture substrate is composed of a non-woven fabric made of biodegradable fibers spun by the electrospinning method.
  • amorphous calcium phosphate By coating the surface of the biodegradable fiber constituting the cell culture substrate with amorphous calcium phosphate, protein adsorption on the fiber surface is improved, and thus high cell initial adhesion can be obtained.
  • ReBOSSIS registered trademark
  • PLGA 30 wt% / ⁇ -TCP 40 wt % / SiV30 wt%
  • PLLA PGA
  • Evonik LG855S not including D body
  • ⁇ -TCP ⁇ -TCP-100 manufactured by Taihei Chemical Industry Co., Ltd.
  • a ⁇ -TCP crushed product obtained by crushing 1.7 mm in particle size to about 4 ⁇ m was used.
  • ⁇ SiV sicon elution type vaterite phase calcium carbonate: calcium hydroxide (reagent special grade purity of 96% or more Wako Pure Chemical Industries, Ltd.), methanol (reagent special grade purity of 99.8% or more Wako Pure Chemical Industries, Ltd.), ⁇ -Aminopropyltriethoxysilane (SILQUEST A-1100 with a purity of 98.5% or more Momentive Performance Materials Japan LLC), carbon dioxide (high purity liquefied carbon dioxide purity 99.9% Taiyo Chemical Co., Ltd.) was used to prepare a vaterite phase calcium carbonate having a Si content of 2.9% by weight.
  • SiV particle size 1 to 1.5 ⁇ m. Details of the method for producing SiV are disclosed in Japanese Patent Laid-Open No. 2008-100878 (silicon-eluting calcium carbonate and method for producing the same).
  • Step of Adhering SiV Particles to Biodegradable Fibers Constituting ReBOSSIS® 1.
  • Adhesion of SiV particles to the fiber surface 1.0 g of SiV powder and 0.1 g of ReBOSSIS (registered trademark) were put in a glass bottle (5 cm ⁇ ⁇ 10 cm), rotated (264 rpm, 2 min.) For temporary adhesion and heat treatment (60 ° C., 10 min.). Then, electrostatically non-adhering SiV particles existing on the sample surface were removed by a compressor to prepare a sample. Step 2.
  • Step 3 The dried sample was removed from the aqueous disodium hydrogen phosphate solution and then dried in a drier (50 ° C., 2 h). SEM images of the surface of the fiber of the sample obtained as a sample (19.2 mM), a sample (192 mM), and a sample (1.92 M) for each concentration of the disodium hydrogen phosphate aqueous solution are shown in FIG. 7 (A) ( B), FIGS. 8A and 8B, and FIGS. 9A and 9B.
  • the disodium hydrogen phosphate solution concentration was set to 100 mM / L, 150 mM / L for 5 minutes to form a calcium phosphate layer on the surface of the fiber, the disodium hydrogen phosphate solution At a concentration of 100 mM / L, the red solution was not soaked instantly, but at 150 mM / L water was soaked instantly. It is considered that 150 mM / L is more suitable than 100 mM / L as the optimum concentration of the disodium hydrogen phosphate aqueous solution for the water to soak into the water instantly.
  • a higher concentration of disodium hydrogen phosphate is better (eg 192 mM / L), but if the concentration is too high, PLGA will be attacked and SiV particles will fall off. there's a possibility that.
  • the upper limit of the temperature may be limited to 110 ° C, but if it is 60 ° C or higher, the precipitated calcium phosphate phase will be buried again in PLGA, so 50 to 60 ° C is considered optimal.
  • a culture test was performed using osteoblast-like cells MC3T3-E1 strain. The outline is shown in FIG. 80 mg of bone regeneration material was added per well of a 24-well plate, 2 mL of ⁇ -MEM medium was injected, cells were seeded, and a culture test was performed at 37 ° C. in the presence of 5% CO 2 .
  • the cell seeding density was 90,000 cells / mL, and the culture time points were 3 hr, 24 hr, and 72 hr, respectively.
  • the metabolic activity was significantly higher in the bone regenerating material-injected sample than in the control glass plate sample alone, and was significantly higher in the hydrophilized complex than in the untreated complex.
  • the metabolic activity was higher in 24 hr than in 3 hr and in 72 hr than in 24 hr in each sample.
  • the result is shown in FIG. From the morphological observation of the sample surface by FE-SEM, it was found that the hydrophilized composite had a rough surface with larger irregularities than the untreated composite. The cells were covered more with the hydrophilized complex, and the fiber surface was entirely covered with the cells. The result is shown in FIG.
  • the CaP phase was produced on both the untreated complex and the hydrophilized complex on the fiber surface after 24 hours of culturing, and in the latter, the CaP phase was proceeding.
  • the CaP phase was partially formed in the untreated complex, which is probably due to the mechanism similar to that of the biomimetic method. The results are shown in FIG.
  • a biodegradable fiber containing a biodegradable fiber constituting a material for use, and further, a biodegradable fiber containing no inorganic particles and / or a cell culture substrate using such a biodegradable fiber is also coated with an amorphous calcium phosphate layer. As long as it is a material that has been removed, it is similarly applicable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

The polymer surface of biodegradable fibers included in materials for bone regeneration has water repellency and hydrophobicity, and therefore, when such a material is implanted into an affected area, the material repels blood at a very early stage of being mixed with blood, and therefore it takes a long time for the material to be incorporated during an operation. This material for bone regeneration has a surface including hydrophilized biodegradable fibers, wherein the biodegradable fibers included in the material for bone regeneration contain osteogenic particles, and the surfaces of the biodegradable fibers are each substantially entirely covered by an amorphous calcium phosphate layer, and a portion of the calcium phosphate of the amorphous calcium phosphate layer includes carbonate apatite in which the crystal structure of calcium phosphate is replaced with calcium carbonate.

Description

表面が親水化された生分解性繊維からなる骨再生用材料、及びその製造方法Bone regeneration material consisting of biodegradable fiber having hydrophilic surface, and method for producing the same
本発明は生分解性繊維の表面を非晶質リン酸カルシウム層で被覆することによって親水性を付与した生分解性繊維からなる骨再生用材料、及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a bone regenerating material comprising biodegradable fibers having hydrophilicity imparted by coating the surface of biodegradable fibers with an amorphous calcium phosphate layer, and a method for producing the same.
近時、生分解性繊維からなる骨再生用材料を生体内にインプラントして骨形成するタイプの人工骨が用いられている。生分解性繊維はリン酸カルシウム等の骨形成性粒子を含有しており、骨再生用材料が体内にインプラントされて体液に接して生分解性樹脂が加水分解されると、繊維の表面から骨形成に有効なイオンが徐放されて患部における骨形成を促進する。 Recently, an artificial bone of a type in which a bone regenerating material composed of a biodegradable fiber is implanted in a living body to form a bone is used. The biodegradable fiber contains bone-forming particles such as calcium phosphate, and when the bone regeneration material is implanted in the body and comes into contact with body fluid and the biodegradable resin is hydrolyzed, the surface of the fiber causes bone formation. The effective ions are gradually released to promote bone formation in the affected area.
生分解性繊維はメルトスピニング法又はエレクトロスピニング法を用いて紡糸することができる。エレクトロスピニング法を用いると、樹脂を溶媒で溶かした紡糸溶液に無機粒子を含有させて紡糸することができるので、リン酸カルシウム等の骨形成性粒子を含有した生分解性繊維からなる骨再生用材料を容易に製造することができる。 The biodegradable fiber can be spun using the melt spinning method or the electrospinning method. When the electrospinning method is used, it is possible to spin by adding inorganic particles to a spinning solution in which a resin is dissolved in a solvent, so that a bone regenerating material composed of biodegradable fibers containing osteogenic particles such as calcium phosphate can be used. It can be easily manufactured.
生分解性繊維のポリマー表面は撥水性、疎水性を有するため、患部に材料をインプラントする際、血液との混和の最初期に弾いてしまうので、手術中の賦形にかかる時間が伸びてしまうという問題が指摘されている。この問題に対処するために、生分解性繊維の表面を親水化する試みが提案されている。親水化処理法としては、プラズマ処理、親水性ポリマーコーティング、無機膜コーティング、リン酸カルシウム(CaP)コーティングが知られているが、CaPコーティングは生分解性繊維をリン酸イオンを含む水溶液に浸すことによって繊維表面を簡単にハイドロキシリン酸カルシウム(HA)で被覆することができるので複雑な三次元構造を有する繊維質の骨再生用材料を親水化するのに好適な方法である。 Since the polymer surface of biodegradable fiber has water repellency and hydrophobicity, when implanting the material in the affected area, it will be repelled at the earliest stage of mixing with blood, which will increase the time required for shaping during surgery. The problem has been pointed out. In order to deal with this problem, an attempt to make the surface of the biodegradable fiber hydrophilic has been proposed. As a hydrophilic treatment method, plasma treatment, hydrophilic polymer coating, inorganic film coating, calcium phosphate (CaP) coating are known. CaP coating is performed by immersing biodegradable fibers in an aqueous solution containing phosphate ions. Since the surface can be easily coated with calcium hydroxyphosphate (HA), it is a suitable method for hydrophilizing a fibrous bone regenerating material having a complicated three-dimensional structure.
CaPコーティングとしては、交互浸漬法とバイオミメティック法が知られている。交互浸漬法は、材料をカルシウムイオンを含む溶液とリン酸イオンを含む溶液に交互に浸漬し、表面にHAを形成させる。常温常圧下で行うことができ、また三次元構造を有する材料に対してもコーティングが可能である(非特許文献1)。バイオミメティック法は、無機イオン濃度をヒト血漿と等しくなるように調整した疑似体液(SBF)に材料を浸漬することで、材料の表面にHAを形成する。この方法は、交互浸漬法よりも容易にHAを形成可能であり、また交互浸漬法と同じく三次元構造に対してもHAをコーティング可能である(非特許文献2)。 As the CaP coating, alternate dipping method and biomimetic method are known. In the alternate immersion method, the material is alternately immersed in a solution containing calcium ions and a solution containing phosphate ions to form HA on the surface. It can be performed at room temperature and normal pressure, and can be applied to a material having a three-dimensional structure (Non-Patent Document 1). The biomimetic method forms HA on the surface of a material by immersing the material in a simulated body fluid (SBF) whose inorganic ion concentration is adjusted to be equal to that of human plasma. This method can form HA more easily than the alternate dipping method, and can also coat HA on a three-dimensional structure as in the alternate dipping method (Non-Patent Document 2).
従来の交互浸漬法やバイオミメティック法を用いて生成される相にはHA結晶の含有量が多いので、水に接して溶解しづらい。又、これらの方法を用いて材料繊維の表面をHA被覆するためには材料を数時間から数日間溶液に浸漬しなければならないため、その間に生分解性繊維に含有された骨形成性粒子からイオンが溶液中に溶出してしまい、骨形成性粒子のイオン溶出による組織への刺激効果が弱められてしまうという問題があった。 The phase produced by the conventional alternate dipping method or biomimetic method has a high content of HA crystals, so it is difficult to dissolve in contact with water. Further, in order to coat the surface of the material fiber with HA using these methods, the material must be immersed in the solution for several hours to several days, so that the bone-forming particles contained in the biodegradable fiber during There is a problem that the ions are eluted into the solution, and the stimulating effect on the tissue due to the elution of the bone-forming particles is weakened.
本発明の発明者等は上記課題を解決する手段を検討した結果、生分解性繊維の表面を短時間で非晶質リン酸カルシウム層で被覆することが最善であると結論した。非晶質リン酸カルシウムは水に対する溶解性が高いので、体液又は血液に接して短時間で溶解し消滅し、骨形成性粒子の溶出を妨げることがない。またこの非晶質相はイオン性が高いので、それで被覆したポリマー繊維の表面の親水性は格段に向上する。 The inventors of the present invention have studied the means for solving the above-mentioned problems, and have concluded that it is best to coat the surface of the biodegradable fiber with the amorphous calcium phosphate layer in a short time. Since amorphous calcium phosphate has a high solubility in water, it does not dissolve and disappear in a short time in contact with body fluid or blood, and does not prevent the elution of osteogenic particles. Further, since this amorphous phase has high ionicity, the hydrophilicity of the surface of the polymer fiber coated with it is significantly improved.
上記想到に基づいて、本発明の発明者等は実験検討を重ねた結果、摩擦帯電法を用いてバテライト相炭酸カルシウム粒子を生分解性繊維の表面に付着させた状態で生分解性樹脂を加熱することで粒子を繊維表面に接着固定し、その状態で材料を所定の濃度のリン酸イオンを含む水溶液に浸漬すると、短時間のうちにバテライト相炭酸カルシウム粒子を起点として非晶質リン酸カルシウム層が成長して、繊維の表面全体を被覆できることに想到した。 Based on the above idea, the inventors of the present invention have conducted extensive experiments and studies, and as a result, heat the biodegradable resin in a state where the vaterite phase calcium carbonate particles are attached to the surface of the biodegradable fiber by using the triboelectric charging method. By adhering and fixing the particles to the fiber surface by doing so, when the material is immersed in an aqueous solution containing phosphate ions of a predetermined concentration in that state, the amorphous calcium phosphate layer starts from the vaterite phase calcium carbonate particles in a short time. It was envisioned that they could grow and coat the entire surface of the fiber.
上記想到に基づき、本発明の発明者等は、表面が親水化された生分解性繊維からなる骨再生用材料を製造する方法であって、
 
骨形成性粒子を含有する生分解性繊維の表面にバテライト相炭酸カルシウム粒子を、摩擦帯電法を用いて静電的に付着させ、
 
前記バテライト相炭酸カルシウム粒子が付着した前記生分解性繊維を、前記生分解性繊維の生分解性樹脂のガラス転移点以上の温度で加熱することによって、前記生分解性繊維の表面に前記バテライト相炭酸カルシウム粒子を接着固定し、
 
前記バテライト相炭酸カルシウム粒子が接着固定された前記生分解性繊維を所定の濃度のリン酸イオンを含む水溶液に所定時間浸漬することによって、前記生分解性繊維の表面に接着固定された前記バテライト相炭酸カルシウム粒子を起点として、非晶質リン酸カルシウムを前記生分解性繊維の表面に沿って成長させて前記生分解性繊維の表面全体を被覆し、
 
前記非晶質リン酸カルシウムで表面を被覆された前記生分解性繊維からなる骨再生用材料を前記リン酸イオンを含む水溶液から取り出して乾燥させる、
 
前記表面が親水化された生分解性繊維からなる骨再生用材料を製造する方法、という発明に到達した。
Based on the above idea, the inventors of the present invention are a method for producing a bone regeneration material comprising a biodegradable fiber whose surface is hydrophilized,

Vaterite phase calcium carbonate particles are electrostatically attached to the surface of the biodegradable fiber containing the bone-forming particles by using a triboelectric charging method,

The vaterite phase calcium carbonate particles adhered to the biodegradable fiber, by heating at a temperature above the glass transition point of the biodegradable resin of the biodegradable fiber, the vaterite phase on the surface of the biodegradable fiber Adhere and fix calcium carbonate particles,

The vaterite phase calcium carbonate particles are adhered and fixed The biodegradable fiber is immersed in an aqueous solution containing a phosphate ion of a predetermined concentration for a predetermined time, whereby the vaterite phase is fixedly adhered to the surface of the biodegradable fiber. Starting from calcium carbonate particles, amorphous calcium phosphate is grown along the surface of the biodegradable fiber to cover the entire surface of the biodegradable fiber,

A bone regenerating material consisting of the biodegradable fiber whose surface is coated with the amorphous calcium phosphate is taken out from the aqueous solution containing the phosphate ion and dried,

The present invention has arrived at a method for producing a bone regeneration material comprising a biodegradable fiber having a hydrophilic surface.
本発明の発明者等はさらに、表面が親水化された生分解性繊維からなる骨再生用材料であって、
 
前記骨再生用材料を構成する前記生分解性繊維は骨形成性粒子を含有しており、
 
前記生分解性繊維の表面の全域が、実質的に結晶相を含まない非晶質リン酸カルシウム層で被覆されている、
 
表面が親水化された生分解性繊維からなる骨再生用材料、という発明に到達した。
The inventors of the present invention further provide a bone regeneration material comprising a biodegradable fiber whose surface is hydrophilized,

The biodegradable fiber constituting the bone regeneration material contains bone-forming particles,

The entire surface of the biodegradable fiber is covered with an amorphous calcium phosphate layer containing substantially no crystalline phase,

The present invention has reached the invention of a bone regeneration material comprising a biodegradable fiber having a hydrophilic surface.
好ましくは、前記非晶質リン酸カルシウム層は、リン酸カルシウムの一部に炭酸を含有する炭酸アパタイトを含む。 Preferably, the amorphous calcium phosphate layer contains carbonate apatite containing carbonic acid in a part of calcium phosphate.
本発明の発明者等はさらに、表面が親水化された生分解性繊維を製造する方法であって、
 
骨形成性粒子を含有する生分解性繊維の表面にバテライト相炭酸カルシウム粒子を、摩擦帯電法を用いて静電的に付着させ、
 
前記バテライト相炭酸カルシウム粒子が付着した前記生分解性繊維を、前記生分解性繊維の生分解性樹脂のガラス転移点以上の温度で加熱することによって、前記生分解性繊維の表面に前記バテライト相炭酸カルシウム粒子を接着固定し、
 
前記バテライト相炭酸カルシウム粒子が接着固定された前記生分解性繊維を所定の濃度のリン酸イオンを含む水溶液に所定時間浸漬することによって、前記生分解性繊維の表面に接着固定された前記バテライト相炭酸カルシウム粒子を起点として、非晶質リン酸カルシウムを前記生分解性繊維の表面に沿って成長させて前記生分解性繊維の表面全体を被覆し、
 
前記非晶質リン酸カルシウムで表面を被覆された前記生分解性繊維からなる骨再生用材料を前記リン酸イオンを含む水溶液から取り出して乾燥させる、
 
前記表面が親水化された生分解性繊維を製造する方法、という発明に到達した。
The inventors of the present invention further provide a method for producing a biodegradable fiber whose surface is hydrophilized,

Vaterite phase calcium carbonate particles are electrostatically attached to the surface of the biodegradable fiber containing the bone-forming particles by using a triboelectric charging method,

The vaterite phase calcium carbonate particles adhered to the biodegradable fiber, by heating at a temperature above the glass transition point of the biodegradable resin of the biodegradable fiber, the vaterite phase on the surface of the biodegradable fiber Adhere and fix calcium carbonate particles,

The vaterite phase calcium carbonate particles are adhered and fixed The biodegradable fiber is immersed in an aqueous solution containing a phosphate ion of a predetermined concentration for a predetermined time, whereby the vaterite phase is fixedly adhered to the surface of the biodegradable fiber. Starting from calcium carbonate particles, amorphous calcium phosphate is grown along the surface of the biodegradable fiber to cover the entire surface of the biodegradable fiber,

A bone regenerating material consisting of the biodegradable fiber whose surface is coated with the amorphous calcium phosphate is taken out from the aqueous solution containing the phosphate ion and dried,

The invention has arrived at a method for producing a biodegradable fiber having a hydrophilic surface.
本発明の発明者等はさらに、表面が親水化された生分解性繊維であって、
 
前記生分解性繊維は骨形成性粒子を含有しており、
 
前記生分解性繊維の表面の全域が、実質的に結晶相を含まない非晶質リン酸カルシウム層で被覆されている、
 
前記表面が親水化された生分解性繊維、という発明に到達した。
The inventors of the present invention further have a biodegradable fiber whose surface is hydrophilized,

The biodegradable fiber contains bone-forming particles,

The entire surface of the biodegradable fiber is covered with an amorphous calcium phosphate layer containing substantially no crystalline phase,

The invention has been reached, which is a biodegradable fiber whose surface is hydrophilized.
好ましくは、前記非晶質リン酸カルシウム層は、リン酸カルシウムの一部に結晶構造に炭酸を含有する炭酸アパタイトを含む。 Preferably, the amorphous calcium phosphate layer contains carbonate apatite containing carbonic acid in a crystal structure in a part of calcium phosphate.
好ましくは、前記バテライト相炭酸カルシウム粒子はシロキサンを含み、シロキサンを含む前記バテライト相炭酸カルシウム粒子を起点として成長した前記非晶質リン酸カルシウム層はケイ素を含む。 Preferably, the vaterite phase calcium carbonate particles include siloxane, and the amorphous calcium phosphate layer grown from the vaterite phase calcium carbonate particles including siloxane includes silicon.
好ましくは、前記リン酸イオンを含む水溶液はリン酸水素二ナトリウム溶液であり、前記前記バテライト相炭酸カルシウム粒子を表面に接着固定した生分解性繊維からなる骨再生用材料を前記リン酸水素二ナトリウム溶液に浸漬することによって、前記非晶質リン酸カルシウム層はナトリウムを含んで形成し、繊維の表面を被覆する。 Preferably, the aqueous solution containing phosphate ions is a disodium hydrogen phosphate solution, and the bone regenerating material comprising biodegradable fibers having the vaterite phase calcium carbonate particles adhered and fixed to the surface thereof is used as the disodium hydrogen phosphate. Upon immersion in the solution, the amorphous calcium phosphate layer is formed containing sodium and coats the surface of the fiber.
好ましくは、前記生分解性繊維の径は10~100μmであり、前記バテライト相炭酸カルシウム粒子の径は0.5~4μmである。より好ましくは、前記生分解性繊維の径は20~60μmであり、前記バテライト相炭酸カルシウム粒子の径は0.7~2.0μmである。 Preferably, the diameter of the biodegradable fiber is 10 to 100 μm, and the diameter of the vaterite phase calcium carbonate particles is 0.5 to 4 μm. More preferably, the diameter of the biodegradable fiber is 20 to 60 μm, and the diameter of the vaterite phase calcium carbonate particles is 0.7 to 2.0 μm.
好ましくは、前記生分解性繊維の生分解性樹脂はPLGAである。 Preferably, the biodegradable resin of the biodegradable fiber is PLGA.
好ましくは、前記骨形成性粒子はβ相リン酸三カルシウム粒子である。 Preferably, the osteogenic particles are β-phase tricalcium phosphate particles.
好ましくは、前記骨形成性粒子はケイ素溶出型バテライト相炭酸カルシウム粒子である。 Preferably, the bone-forming particles are silicon-eluting type vaterite phase calcium carbonate particles.
本発明の発明者等はさらに、細胞培養基材を構成する生分解性繊維の表面を親水化する方法であって、
 
細胞培養基材を構成する前記生分解性繊維の表面にバテライト相炭酸カルシウム粒子を、摩擦帯電法を用いて静電的に付着させ、
 
前記バテライト相炭酸カルシウム粒子が付着した前記生分解性繊維を前記生分解性繊維の生分解性樹脂のガラス転移点以上の温度で加熱することによって、前記生分解性繊維の表面に前記バテライト相炭酸カルシウム粒子を接着固定し、
 
前記バテライト相炭酸カルシウム粒子が接着固定された前記生分解性繊維を所定の濃度のリン酸イオンを含む水溶液に所定時間浸漬することによって、前記生分解性繊維の表面に接着固定された前記バテライト相炭酸カルシウム粒子を起点として、非晶質リン酸カルシウムを前記生分解性繊維の表面に沿って成長させて前記生分解性繊維の表面全体を被覆し、
 
前記非晶質リン酸カルシウムで表面を被覆された前記生分解性繊維を前記リン酸イオンを含む水溶液から取り出して乾燥させる、
 
前記細胞培養基材を構成する前記生分解性繊維の表面を親水化する方法、という発明に到達した。
The inventors of the present invention further provide a method for hydrophilizing the surface of the biodegradable fiber constituting the cell culture substrate,

Vaterite phase calcium carbonate particles on the surface of the biodegradable fiber constituting the cell culture substrate, electrostatically attached using a triboelectric charging method,

By heating the biodegradable fiber to which the vaterite phase calcium carbonate particles are attached at a temperature equal to or higher than the glass transition point of the biodegradable resin of the biodegradable fiber, the vaterite phase carbonate is formed on the surface of the biodegradable fiber. Adhere and fix calcium particles,

The vaterite phase calcium carbonate particles are adhered and fixed The biodegradable fiber is immersed in an aqueous solution containing a phosphate ion of a predetermined concentration for a predetermined time, whereby the vaterite phase is fixedly adhered to the surface of the biodegradable fiber. Starting from calcium carbonate particles, amorphous calcium phosphate is grown along the surface of the biodegradable fiber to cover the entire surface of the biodegradable fiber,

Removing the biodegradable fiber whose surface is coated with the amorphous calcium phosphate from an aqueous solution containing the phosphate ion and drying the biodegradable fiber;

The invention has been reached, which is a method of hydrophilizing the surface of the biodegradable fiber constituting the cell culture substrate.
本発明の発明者等はさらに、表面が親水化された生分解性繊維からなる細胞培養基材であって、
 
前記細胞培養用基材を構成する前記生分解性繊維は無機フィラーを含有しており、
 
前記生分解性繊維の表面の実質的に全域が非晶質リン酸カルシウム層で被覆されており、
 
前記非晶質リン酸カルシウム層は、リン酸カルシウムの一部に結晶構造に炭酸を含有する炭酸アパタイトを含んでもよい、
 
前記表面が親水化された生分解性繊維からなる細胞培養基材、という発明に到達した。
The inventors of the present invention further provide a cell culture substrate comprising a biodegradable fiber whose surface is hydrophilized,

The biodegradable fiber constituting the cell culture substrate contains an inorganic filler,

Substantially the entire surface of the biodegradable fiber is covered with an amorphous calcium phosphate layer,

The amorphous calcium phosphate layer may include carbonate apatite containing carbonic acid in a crystal structure in a part of calcium phosphate,

The invention has been reached, which is a cell culture substrate comprising a biodegradable fiber whose surface is hydrophilized.
本発明の発明者等はさらに、表面が親水化された生分解性繊維であって、
 
前記生分解性繊維は実質的に生分解性樹脂のみからなり、
 
前記生分解性繊維の表面の実質的に全域が非晶質リン酸カルシウム層で被覆されており、
 
前記表面が親水化された生分解性繊維、という発明に到達した。
The inventors of the present invention further have a biodegradable fiber whose surface is hydrophilized,

The biodegradable fiber consists essentially of biodegradable resin,

Substantially the entire surface of the biodegradable fiber is covered with an amorphous calcium phosphate layer,

The invention has been reached, which is a biodegradable fiber whose surface is hydrophilized.
好ましくは、前記非晶質リン酸カルシウム層は、リン酸カルシウムの一部に結晶構造に炭酸を含有する炭酸アパタイトを含む。 Preferably, the amorphous calcium phosphate layer contains carbonate apatite containing carbonic acid in a crystal structure in a part of calcium phosphate.
好ましくは、前記バテライト相炭酸カルシウム粒子はシロキサンを含み、シロキサンを含む前記バテライト相炭酸カルシウム粒子を起点として成長した前記非晶質リン酸カルシウム層はケイ素を含む。 Preferably, the vaterite phase calcium carbonate particles include siloxane, and the amorphous calcium phosphate layer grown from the vaterite phase calcium carbonate particles including siloxane includes silicon.
好ましくは、前記リン酸イオンを含む水溶液はリン酸水素二ナトリウム溶液であり、前記前記バテライト相炭酸カルシウム粒子を表面に付着固定した生分解性繊維からなる骨再生用材料を前記リン酸水素二ナトリウム溶液に浸漬することによって、前記非晶質リン酸カルシウム層はナトリウムを含んで形成し、繊維の表面を被覆する。 Preferably, the aqueous solution containing phosphate ions is a disodium hydrogen phosphate solution, and the bone regeneration material comprising biodegradable fibers having the vaterite phase calcium carbonate particles adhered and fixed on the surface thereof is used as the disodium hydrogen phosphate. Upon immersion in the solution, the amorphous calcium phosphate layer is formed containing sodium and coats the surface of the fiber.
好ましくは、前記生分解性繊維の径は10~100μmであり、前記バテライト相炭酸カルシウム粒子の径は0.5~4μmである。より好ましくは、前記生分解性繊維の径は20~60μmであり、前記バテライト相炭酸カルシウム粒子の径は0.7~2.0μmである。 Preferably, the diameter of the biodegradable fiber is 10 to 100 μm, and the diameter of the vaterite phase calcium carbonate particles is 0.5 to 4 μm. More preferably, the diameter of the biodegradable fiber is 20 to 60 μm, and the diameter of the vaterite phase calcium carbonate particles is 0.7 to 2.0 μm.
好ましくは、前記生分解性繊維の生分解性樹脂はPLGAである。 Preferably, the biodegradable resin of the biodegradable fiber is PLGA.
本発明の一つの実施態様において、生分解性繊維の表面に固定されたバテライト相炭酸カルシウム粒子がリン酸イオンを含む水溶液に浸漬されて急速に溶解されて炭酸イオンを供給して、リン酸カルシウム層を繊維表面に短時間で形成することができる。このようにして形成されたリン酸カルシウム層は実質的に全て非晶質相で占められており、結晶構造を有しない(図6参照)。 In one embodiment of the present invention, the vaterite phase calcium carbonate particles fixed on the surface of the biodegradable fiber are immersed in an aqueous solution containing phosphate ions and rapidly dissolved to supply carbonate ions to form a calcium phosphate layer. It can be formed on the fiber surface in a short time. The calcium phosphate layer thus formed is substantially entirely occupied by the amorphous phase and has no crystal structure (see FIG. 6).
本発明の一つの実施態様において、生分解性繊維の表面を被覆成長する過程で、繊維の表面に固定された炭酸カルシウム粒子から炭酸イオンが大量に供給されて溶解度の高い非晶質相リン酸カルシウムを作り、その一部には溶解性の炭酸含有アパタイトが形成される場合もある。 In one embodiment of the present invention, in the process of covering and growing the surface of the biodegradable fiber, a large amount of carbonate ions are supplied from the calcium carbonate particles fixed on the surface of the fiber to form a highly soluble amorphous phase calcium phosphate. In some cases, soluble carbonate-containing apatite may be formed.
本発明の一つの実施態様において、生分解性繊維の表面を被覆する非晶質リン酸カルシウムは生体吸収性がありまた、その層は極めて薄いので、材料を生体内にインプラントした後、短時間で吸収分解されて、繊維表面から消失する。その結果、生分解性繊維に含有された骨形成性粒子からのイオンの溶出が非晶質リン酸カルシウム層の存在によって妨げられる恐れがない。 In one embodiment of the invention, the amorphous calcium phosphate coating the surface of the biodegradable fiber is bioabsorbable and the layer is so thin that it is absorbed shortly after implanting the material in vivo. It decomposes and disappears from the fiber surface. As a result, the elution of ions from the bone-forming particles contained in the biodegradable fiber is not impeded by the presence of the amorphous calcium phosphate layer.
本発明の一つの実施態様において、生分解性繊維表面を被覆したリン酸カルシウム相は比表面積が大きく、尚且つイオン性が高いので、多くのタンパク質を吸着できる。その結果、骨再生用材料を体内にインプラントした時に高い細胞の初期接着性が得られる。 In one embodiment of the present invention, the calcium phosphate phase coated on the surface of the biodegradable fiber has a large specific surface area and high ionicity, so that many proteins can be adsorbed. As a result, high initial adhesiveness of cells is obtained when the bone regeneration material is implanted in the body.
本発明の一つの実施態様において、繊維の表面に固定されたバテライト相炭酸カルシウム粒子にケイ素が担持されており、リン酸処理によってバテライト相炭酸カルシウムが溶解する過程でケイ素が溶出されて、繊維の表面に形成される非晶質リン酸カルシウム層に取り込まれている。本発明の骨再生用材料を体内にインプラントすると、非晶質リン酸カルシウム層に含有されたケイ素が溶出して、骨芽細胞を刺激して骨形成を促進する。 In one embodiment of the present invention, silicon is supported on the vaterite phase calcium carbonate particles fixed on the surface of the fiber, and the silicon is eluted in the course of dissolution of the vaterite phase calcium carbonate by the phosphoric acid treatment. It is incorporated in the amorphous calcium phosphate layer formed on the surface. When the bone regenerating material of the present invention is implanted into the body, silicon contained in the amorphous calcium phosphate layer is eluted and stimulates osteoblasts to promote bone formation.
本発明の一つの実施態様では、リン酸処理にはリン酸水素二ナトリウム溶液を用い、リン酸処理によって繊維の表面に非晶質リン酸カルシウム層が形成される過程でナトリウムが非晶質リン酸カルシウム層中に取り込まれる。 In one embodiment of the present invention, a disodium hydrogen phosphate solution is used for the phosphoric acid treatment, and sodium is contained in the amorphous calcium phosphate layer during the process of forming the amorphous calcium phosphate layer on the surface of the fiber by the phosphoric acid treatment. Is taken into.
本発明の一つの実施態様は、表面が親水化された生分解性繊維からなる細胞培養用基材である。非晶質リン酸カルシウムで被覆された生分解性繊維は高いタンパク質吸着性能を有し、良好な細胞初期接着性能を有する。 One embodiment of the present invention is a cell culture substrate comprising a biodegradable fiber whose surface is hydrophilized. The biodegradable fiber coated with amorphous calcium phosphate has high protein adsorption performance and good initial cell adhesion performance.
本発明の一つの実施態様は、表面が親水化された生分解性繊維であり、前記
生分解性繊維は実質的に生分解性樹脂のみからなり、無機粒子を含有していない。
One embodiment of the present invention is a biodegradable fiber whose surface is hydrophilized, said biodegradable fiber consisting essentially of a biodegradable resin and containing no inorganic particles.
図1は本発明の摩擦帯電法を用いてポリマー繊維表面への炭酸カルシウム粒子を付着させる方法を示す。FIG. 1 illustrates a method of depositing calcium carbonate particles on the surface of polymer fibers using the triboelectric charging method of the present invention. 図2は、本発明の摩擦帯電法を用いてポリマー繊維表面に付着させた炭酸カルシウム粒子を、繊維の残留応力を利用して埋め込む方法を示す。FIG. 2 shows a method of embedding calcium carbonate particles attached to the surface of a polymer fiber by using the triboelectric charging method of the present invention by utilizing the residual stress of the fiber. 図3は、綿状の骨再生材料をリン酸イオンを含む水溶液に浸漬してリン酸処理を施す方法を示す。FIG. 3 shows a method of immersing a cotton-like bone regeneration material in an aqueous solution containing phosphate ions to perform phosphoric acid treatment. 図4(A)は、本発明の摩擦帯電法を用いてポリマー繊維表面に炭酸カルシウム粒子を付着させた生分解性繊維を濃度0.02Mのリン酸水素二ナトリウム溶液に浸漬してリン酸処理を施した後の繊維の表面の状態を示す。図4(B)は、本発明の摩擦帯電法を用いてポリマー繊維表面に炭酸カルシウム粒子を付着させた生分解性繊維を濃度0.2Mのリン酸水素二ナトリウム溶液に浸漬してリン酸処理を施した後の繊維の表面の状態を示す。図4(C)は、本発明の摩擦帯電法を用いてポリマー繊維表面に炭酸カルシウム粒子を付着させた生分解性繊維を濃度2.0Mのリン酸水素二ナトリウム溶液に浸漬してリン酸処理を施した後の繊維の表面の状態を示す。FIG. 4 (A) is a phosphoric acid treatment in which a biodegradable fiber having calcium carbonate particles adhered to the surface of a polymer fiber is immersed in a 0.02 M disodium hydrogen phosphate solution using the triboelectric charging method of the present invention and treated with phosphoric acid The state of the surface of the fiber after applying is shown. FIG. 4B is a phosphoric acid treatment in which a biodegradable fiber having calcium carbonate particles adhered to the surface of a polymer fiber by the triboelectric charging method of the present invention is immersed in a 0.2 M disodium hydrogen phosphate solution. The state of the surface of the fiber after applying is shown. FIG. 4C is a phosphoric acid treatment in which a biodegradable fiber having calcium carbonate particles adhered to the surface of a polymer fiber by the triboelectric charging method of the present invention is immersed in a 2.0 M concentration disodium hydrogen phosphate solution. The state of the surface of the fiber after applying is shown. 図5は、リン酸処理をした綿形状の骨再生用材料の親水性を示す。FIG. 5 shows the hydrophilicity of the phosphorous-treated cotton-shaped bone regeneration material. 図6は、リン酸処理をした綿形状の骨再生用材料のSTEM観察をした結果を示す。左下図aの全体にぼんやりした影像から、リン酸カルシウムの層が実質的に全て非晶質相で占められていることがわかる。FIG. 6 shows the results of STEM observation of a cotton-shaped bone regeneration material that has been treated with phosphoric acid. From the vague image in the lower left part a, it can be seen that the calcium phosphate layer is substantially entirely occupied by the amorphous phase. 図7(A)は、非晶質リン酸カルシウムコーティング実験のサンプルを5分間19.2mMの濃度のリン酸水素二ナトリウム溶液に浸漬して非晶質リン酸カルシウム層を成長させた生分解性繊維の表面を示す。図7(B)は、非晶質リン酸カルシウムコーティング実験のサンプルを10分間19.2mMの濃度のリン酸水素二ナトリウム溶液に浸漬して非晶質リン酸カルシウム層を成長させた生分解性繊維の表面を示す。FIG. 7 (A) shows the surface of a biodegradable fiber obtained by immersing a sample of the amorphous calcium phosphate coating experiment in a disodium hydrogen phosphate solution having a concentration of 19.2 mM for 5 minutes to grow an amorphous calcium phosphate layer. .. FIG. 7 (B) shows the surface of a biodegradable fiber obtained by immersing the sample of the amorphous calcium phosphate coating experiment in a disodium hydrogen phosphate solution having a concentration of 19.2 mM for 10 minutes to grow an amorphous calcium phosphate layer. .. 図8(A)は、非晶質リン酸カルシウムコーティング実験のサンプルを5分間192mMの濃度のリン酸水素二ナトリウム溶液に浸漬して非晶質リン酸カルシウム層を成長させた生分解性繊維の表面を示す。図8(B)は、非晶質リン酸カルシウムコーティング実験のサンプルを10分間192mMの濃度のリン酸水素二ナトリウム溶液に浸漬して非晶質リン酸カルシウム層を成長させた生分解性繊維の表面を示す。FIG. 8 (A) shows the surface of a biodegradable fiber in which an amorphous calcium phosphate coating experiment sample was immersed in a disodium hydrogen phosphate solution having a concentration of 192 mM for 5 minutes to grow an amorphous calcium phosphate layer. FIG. 8 (B) shows the surface of a biodegradable fiber obtained by immersing a sample of the amorphous calcium phosphate coating experiment in a disodium hydrogen phosphate solution having a concentration of 192 mM for 10 minutes to grow an amorphous calcium phosphate layer. 図9(A)は、非晶質リン酸カルシウムコーティング実験のサンプルを5分間1.92Mの濃度のリン酸水素二ナトリウム溶液に浸漬して非晶質リン酸カルシウム層を成長させた生分解性繊維の表面を示す。図9(B)は、非晶質リン酸カルシウムコーティング実験のサンプルを10分間1.92Mの濃度のリン酸水素二ナトリウム溶液に浸漬して非晶質リン酸カルシウム層を成長させた生分解性繊維の表面を示す。FIG. 9 (A) shows the surface of a biodegradable fiber in which an amorphous calcium phosphate coating experiment sample was immersed in a disodium hydrogen phosphate solution having a concentration of 1.92 M for 5 minutes to grow an amorphous calcium phosphate layer. .. FIG. 9 (B) shows the surface of a biodegradable fiber obtained by immersing a sample of the amorphous calcium phosphate coating experiment in a disodium hydrogen phosphate solution having a concentration of 1.92 M for 10 minutes to grow an amorphous calcium phosphate layer. .. 図10(A)は、サンプル(19.2mM)を20 mgを取り分けて試験管に入れ、重り(56.5 mg)を載せ2 min.プレスした。その後、重りを外し、Rhodamine Bを蒸留水に溶かした赤色溶液を試料に5 μl滴下し、5分間経過した時点で、赤色溶液がサンプルに浸透した状態を示す。図10(B)は、サンプル(19.2mM)を20 mgを取り分けて試験管に入れ、重り(56.5 mg)を載せ2 min.プレスした。その後、重りを外し、Rhodamine Bを蒸留水に溶かした赤色溶液を試料に5 μl滴下し、10分間経過した時点で、赤色溶液がサンプルに浸透した状態を示す。In Fig. 10 (A), 20 mg of the sample (19.2 mM) was set aside and placed in a test tube, and a weight (56.5 mg) was placed and pressed for 2 min. Then, the weight was removed, and 5 μl of a red solution prepared by dissolving Rhodamine B in distilled water was dropped on the sample, and after 5 minutes, the red solution permeated the sample. In FIG. 10 (B), 20 mg of the sample (19.2 mM) was set aside and placed in a test tube, and a weight (56.5 mg) was placed and pressed for 2 min. Then, the weight was removed, and 5 μl of a red solution prepared by dissolving Rhodamine B in distilled water was dropped on the sample, and after 10 minutes, the red solution permeated the sample. 図11(A)は、サンプル(192mM)を20 mgを取り分けて試験管に入れ、重り(56.5 mg)を載せ2 min.プレスした。その後、重りを外し、Rhodamine Bを蒸留水に溶かした赤色溶液を試料に5 μl滴下し、5分間経過した時点で、赤色溶液がサンプルに浸透した状態を示す。図11(B)は、サンプル(192mM)を20 mgを取り分けて試験管に入れ、重り(56.5 mg)を載せ2 min.プレスした。その後、重りを外し、Rhodamine Bを蒸留水に溶かした赤色溶液を試料に5 μl滴下し、10分間経過した時点で、赤色溶液がサンプルに浸透した状態を示す。In Fig. 11 (A), 20 mg of the sample (192 mM) was set aside and placed in a test tube, and a weight (56.5 mg) was placed and pressed for 2 min. Then, the weight was removed, and 5 μl of a red solution prepared by dissolving Rhodamine B in distilled water was dropped on the sample, and after 5 minutes, the red solution permeated the sample. In Fig. 11 (B), 20 mg of the sample (192 mM) was set aside and placed in a test tube, and a weight (56.5 mg) was placed and pressed for 2 min. Then, the weight was removed, and 5 μl of a red solution prepared by dissolving Rhodamine B in distilled water was dropped on the sample, and after 10 minutes, the red solution permeated the sample. 図12(A)は、サンプル(1.92M)を20 mgを取り分けて試験管に入れ、重り(56.5 mg)を載せ2 min.プレスした。その後、重りを外し、Rhodamine Bを蒸留水に溶かした赤色溶液を試料に5 μl滴下し、5分間経過した時点で、赤色溶液がサンプルに浸透した状態を示す。図12(B)は、サンプル(1.92M)を20 mgを取り分けて試験管に入れ、重り(56.5 mg)を載せ2 min.プレスした。その後、重りを外し、Rhodamine Bを蒸留水に溶かした赤色溶液を試料に5 μl滴下し、10分間経過した時点で、赤色溶液がサンプルに浸透した状態を示す。In Fig. 12 (A), 20 mg of the sample (1.92M) was set aside and placed in a test tube, and a weight (56.5 mg) was placed and pressed for 2 min. Then, the weight was removed, and 5 μl of a red solution prepared by dissolving Rhodamine B in distilled water was dropped on the sample, and after 5 minutes, the red solution permeated the sample. In FIG. 12 (B), 20 mg of the sample (1.92 M) was set aside and placed in a test tube, and a weight (56.5 mg) was placed and pressed for 2 min. Then, the weight was removed, and 5 μl of a red solution prepared by dissolving Rhodamine B in distilled water was dropped on the sample, and after 10 minutes, the red solution permeated the sample. 図13は、本発明の非晶質リン酸カルシウムコーティングをした生分解性繊維の表面に対する牛血清アルブミン(BSA)の吸着試験の結果を示す。FIG. 13 shows the results of an adsorption test of bovine serum albumin (BSA) on the surface of the biodegradable fiber coated with the amorphous calcium phosphate of the present invention. 図14は、本発明の非晶質リン酸カルシウムコーティングをした生分解性繊維からなる骨再生用材料について細胞の接着・増殖性を評価した評価方法を示す。FIG. 14 shows an evaluation method for evaluating the cell adhesion / proliferation property of the bone regeneration material comprising the biodegradable fiber coated with the amorphous calcium phosphate of the present invention. 図15は、Alamar Blueによる細胞の代謝活性値の図を示す。FIG. 15 shows a diagram of metabolic activity values of cells by Alamar Blue. 図16は、FE-SEMによる繊維表面の形態と、細胞が増殖した後の様子を示す。線で囲った部分が細胞が存在する部分である。FIG. 16 shows the morphology of the fiber surface by FE-SEM and the state after the cells have grown. The part surrounded by the line is the part where cells exist. 図17は、FE-SEMによる繊維表面の形態と、24時間培養後の繊維表面の強拡大により、CaP相の確認を行っている様子を示す。FIG. 17 shows that the CaP phase is confirmed by morphology of the fiber surface by FE-SEM and strong expansion of the fiber surface after 24 hours of culture. 図18は、ICP-AESにより測定したサンプルからのイオンの溶出挙動を示す。FIG. 18 shows the elution behavior of ions from the sample measured by ICP-AES. 図19は、本発明の綿状骨充填材料の用法例を示す。FIG. 19 shows an example of usage of the cotton-like bone filling material of the present invention.
以下、本発明の好ましい実施形態について図面を参照しながら説明する。
<生分解性繊維>
本発明の骨再生用材料は、エレクトロスピニング法又はメルトスピニング法によって紡糸された生分解性繊維から構成される。本発明で用いる生分解性繊維にはリン酸カルシウム等の骨形成性粒子を含有し、材料が体内にインプラントされて生分解樹脂が分解されるとその過程で繊維に含有されている骨形成性粒子からイオンが溶出し、患部における骨形成を促進する。紡糸された生分解性繊維を綿状又は不織布状に回収することで、繊維質の骨再生用材料が形成される。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
<Biodegradable fiber>
The bone regeneration material of the present invention is composed of biodegradable fibers spun by electrospinning or melt spinning. The biodegradable fiber used in the present invention contains bone-forming particles such as calcium phosphate, and when the material is implanted in the body and the biodegradable resin is decomposed, the bone-forming particles contained in the fiber are changed in the process. Ions are eluted and promote bone formation in the affected area. By collecting the spun biodegradable fibers in the form of cotton or nonwoven fabric, a fibrous bone regeneration material is formed.
本発明に用いる生分解性繊維の太さは径10μm~100μmが好ましく、より好ましくは径20~60μmである。本発明において、生分解性繊維の表面には1~数μm程度の径の無機粒子をまんべんなく分布させて付着・固定させる必要があるので、生分解性繊維の径は、10μm以上であることが好ましい。繊維の径が10μm以下だと、繊維の表面にまんべんなく粒子を分布して固着させるのが難しくなる。 The thickness of the biodegradable fiber used in the present invention is preferably 10 to 100 μm in diameter, more preferably 20 to 60 μm in diameter. In the present invention, since the inorganic particles having a diameter of about 1 to several μm must be evenly distributed and adhered / fixed on the surface of the biodegradable fiber, the diameter of the biodegradable fiber should be 10 μm or more. preferable. When the fiber diameter is 10 μm or less, it becomes difficult to uniformly distribute and fix the particles on the surface of the fiber.
径10μm以上の生分解性繊維はメルトスピニング法を用いれば容易に紡糸することが可能である。しかし、メルトスピニング法では、溶融した樹脂に混合させることができる無機粒子の量には限界があるので、5重量%を超える量の骨形成性粒子を含有させるのは困難である。これに対して、エレクトロスピニング法は樹脂又は樹脂と無機粒子の複合体を溶剤で溶かして紡糸溶液を調製するので、より多くの量の骨形成性粒子を含有させることが可能である。本発明の発明者等は熱混錬法を併せて用いることで、無機粒子を70重量%含有する生分解性繊維を紡糸することに成功した(日本特許番号6251462号)。
しかし、エレクトロスピニング法は装置のノズルから繊維状に出射された紡糸溶液がコレクターに到達する前の飛行中に飛行軌道が不安定化(bending instability)して巻回する過程で溶剤が揮発すると共に極細繊維化する現象を利用するものであるため、それで紡糸される繊維の径は通常数十nm~数μmであり、10μm以上の径にするのは困難である。本発明の発明者等は、口径が大きいノズルを下向きに設置し、シリンジに充填した紡糸溶液をノズルの出射口に速い速度で送り出して紡糸溶液を垂直下方に出射することによって、10μm以上の径の生分解性繊維を安定して紡糸することに成功している(特願2019-73453)。
Biodegradable fibers having a diameter of 10 μm or more can be easily spun by using the melt spinning method. However, in the melt spinning method, since the amount of inorganic particles that can be mixed with the molten resin is limited, it is difficult to include the bone-forming particles in an amount exceeding 5% by weight. On the other hand, in the electrospinning method, since the spinning solution is prepared by dissolving the resin or the composite of the resin and the inorganic particles with the solvent, it is possible to include a larger amount of the bone-forming particles. The inventors of the present invention succeeded in spinning a biodegradable fiber containing 70% by weight of inorganic particles by using a thermal kneading method together (Japanese Patent No. 6251462).
However, in the electrospinning method, the solvent is volatilized during the winding process due to the unstable flight trajectory (bending instability) of the spinning solution discharged from the nozzle of the device before reaching the collector. Since the phenomenon of making ultrafine fibers is utilized, the diameter of the fiber spun by it is usually several tens nm to several μm, and it is difficult to make the diameter 10 μm or more. The inventors of the present invention installed a nozzle having a large diameter downward, sent the spinning solution filled in a syringe to the exit of the nozzle at a high speed, and ejected the spinning solution vertically downward to obtain a diameter of 10 μm or more. Have succeeded in stably spinning the biodegradable fiber (Japanese Patent Application No. 2019-73453).
本発明に用いる生分解性繊維の樹脂は、PLA、PLGA、PCL等の生分解性樹脂を用いることができる。アモルファス性樹脂であり、ガラス転移点が40℃前後であるPLGAを特に好適に用いる。本発明に用いる生分解性繊維には、リン酸カルシウム、ケイ素溶出型炭酸カルシウム等の骨形成性粒子である無機粒子を相当量含有しており、生体内にインプラントされた骨再生用材料が体液に接して、生分解性樹脂が分解されると、その過程で含有していた骨形成性粒子が溶出されて骨形成を促進する。 As the resin of the biodegradable fiber used in the present invention, biodegradable resin such as PLA, PLGA, PCL can be used. PLGA, which is an amorphous resin and has a glass transition point of about 40 ° C., is particularly preferably used. The biodegradable fiber used in the present invention contains a considerable amount of inorganic particles that are bone-forming particles such as calcium phosphate and silicon-eluting calcium carbonate, and the bone regeneration material implanted in the living body is in contact with body fluid. When the biodegradable resin is decomposed, the bone-forming particles contained in the process are eluted to promote bone formation.
<骨再生用材料>
本発明において骨再生用材料とは、生分解性繊維を不織布状又は綿状に回収したインプラント材料を含む。本発明の骨再生用材料の好ましい使用方法として、術者は、骨再生用材料をそのまま骨欠損部に充填するか、又はあらかじめ材料を血液と混和したうえで骨欠損部に埋め込む(図19参照)。
<Material for bone regeneration>
In the present invention, the bone regeneration material includes an implant material in which biodegradable fibers are collected in a non-woven fabric or cotton form. As a preferred method of using the bone regenerating material of the present invention, the operator fills the bone regenerating material with the bone regenerating material as it is, or mixes the material with blood in advance and embeds it in the bone defective portion (see FIG. 19). ).
<骨形成性粒子>
本発明において、骨形成性粒子とは、骨再生用材料に含有されて、それと共に人体にインプラントされることで、体液又は血液と接して骨形成を促進するイオンを溶出する無機粒子をいう。骨形成性粒子には、リン酸三カルシウム、ハイドロキシアパタイト、炭酸カルシウム等が含まれるが、これらに限定されない。
<Osteogenic particles>
In the present invention, the bone-forming particles refer to inorganic particles that are contained in a bone regenerating material and are implanted into the human body together with the material to elute ions that promote bone formation by coming into contact with body fluid or blood. Bone-forming particles include, but are not limited to, tricalcium phosphate, hydroxyapatite, calcium carbonate, and the like.
<バテライト相炭酸カルシウム粒子>
本発明において、摩擦帯電法を用いて生分解性繊維の表面に付着固定させる無機粒子としては、バテライト相炭酸カルシウム粒子を好適に用いる。炭酸カルシウムには、常温常圧で最安定なカルサイト相、準安定相であるアラゴナイト相、準安定なバテライト相が存在するが、リン酸イオンを含む水溶液に浸漬して粒子を起点としてリン酸カルシウム相を生成させるためには、水に対する溶解性が高いバテライト相が最も適している。
<Vaterite phase calcium carbonate particles>
In the present invention, vaterite phase calcium carbonate particles are preferably used as the inorganic particles to be adhered and fixed on the surface of the biodegradable fiber by using the triboelectric charging method. Calcium carbonate has the most stable calcite phase at room temperature and normal pressure, the metastable aragonite phase, and the metastable vaterite phase.The calcium phosphate phase starts from the particles when immersed in an aqueous solution containing phosphate ions. The vaterite phase, which has a high solubility in water, is most suitable for the production of
本発明で用いるバテライト相炭酸カルシウム粒子の径は0.5μm~4.0μmが好ましい。
粒子形状で回収するバテライト相炭酸カルシウムの粒径の範囲は、粒子を付着させる対象である生分解性繊維の太さよりも小さいことが重要である。さらに、粒径は、大きいよりも小さい方がリン酸イオンを含む水溶液との反応が速くなるので好ましい。
The vaterite phase calcium carbonate particles used in the present invention preferably have a diameter of 0.5 μm to 4.0 μm.
It is important that the range of the particle size of the vaterite phase calcium carbonate recovered in the form of particles is smaller than the thickness of the biodegradable fiber to which the particles are attached. Furthermore, it is preferable that the particle size is smaller than the larger particle size because the reaction with the aqueous solution containing phosphate ions becomes faster.
バテライト相炭酸カルシウム粒子の表面にはカーボネーションプロセスによってシロキサンを担持させることが可能である(日本特許番号5131724)。カーボネーションプロセスによってバテライト相炭酸カルシウム粒子の表面に担持させるシロキサンの量を増やすと、それにつれて粒子の径は増加していき、最大粒径4μmまで大きくなる。そのレヴェルからさらにシロキサンの量を増やすとバテライト相炭酸カルシウムを粒子として回収することが難しくなる。 Siloxane can be supported on the surface of the vaterite phase calcium carbonate particles by the carbonation process (Japanese Patent No. 5131724). When the amount of siloxane supported on the surface of the vaterite phase calcium carbonate particles by the carbonation process is increased, the particle diameter increases accordingly, and the maximum particle diameter increases to 4 μm. If the amount of siloxane is further increased from the level, it becomes difficult to recover the vaterite phase calcium carbonate as particles.
<摩擦帯電法>
本発明において摩擦帯電法とは、ポリマー繊維の表面に無機粒子を付着固定させるための方法をいう。具体的には、無機粒子の粉体と繊維材料とをプラスチック製の袋等の容器に収容して、その状態で収容物を容器ごと高速で上下又は前後左右に振動させると、無機粒子と繊維の樹脂表面とがこすれて静電気が発生し、発生した静電引力によって無機粒子が繊維材料の表面全体にまんべんなく付着される(図1参照)。または、材料をボールミルに投入し、ボールを加えず(ポットのみで)回転させることにて均一に付着させることができる。
<Friction charging method>
In the present invention, the triboelectric charging method refers to a method for adhering and fixing inorganic particles on the surface of polymer fibers. Specifically, when the powder of inorganic particles and the fiber material are housed in a container such as a plastic bag and the container is vibrated up and down or front and back and left and right at high speed with the container in that state, the inorganic particles and the fibers are The resin surface is rubbed to generate static electricity, and the generated electrostatic attraction uniformly attaches the inorganic particles to the entire surface of the fiber material (see FIG. 1). Alternatively, the material can be put into a ball mill and rotated without adding a ball (only by the pot) to uniformly attach the material.
摩擦帯電法を用いて無機粒子を表面に付着した繊維材料を樹脂のガラス転移点以上の温度で加熱することによって、繊維の表面に静電引力で付着した無機粒子を固定することができる。生分解性繊維は、エレクトロスピニングではスピニングの飛行中に、メルトスピニングでは、繊維は回転ドラムで巻き取られる際に引っ張られて繊維内部に残留応力が発生しているので、それで紡糸回収した繊維に対して熱をかけると、繊維が長手方向に収縮し、その縮小する過程でポリマー表面に付着した無機粒子が繊維との接触部分において内部に埋め込まれて、その位置においてしっかりと固定される(図2参照)。 By heating the fibrous material having the inorganic particles attached to the surface thereof by the triboelectric charging method at a temperature equal to or higher than the glass transition point of the resin, the inorganic particles attached to the surface of the fibers by electrostatic attraction can be fixed. The biodegradable fiber is pulled during spinning flight in electrospinning, and in melt spinning, the fiber is pulled when it is wound on a rotating drum and residual stress is generated inside the fiber. When heat is applied to the fiber, the fiber shrinks in the longitudinal direction, and during the shrinking process, the inorganic particles adhering to the polymer surface are embedded inside at the contact part with the fiber and firmly fixed at that position (Fig. 2).
<リン酸処理>
無機粒子を表面に付着固定した繊維材料をリン酸イオンを含む水溶液に浸漬し、一定の時間、所定の温度条件下で静置する。その後、繊維材料をリン酸イオンを含む水溶液から取り出して、乾燥させる(図3参照)。
<Phosphoric acid treatment>
A fibrous material having inorganic particles adhered and fixed on the surface is immersed in an aqueous solution containing phosphate ions, and allowed to stand for a fixed time under a predetermined temperature condition. Then, the fiber material is taken out from the aqueous solution containing phosphate ions and dried (see FIG. 3).
本発明のリン酸処理に用いるリン酸イオンを含む水溶液としては、リン酸水素二ナトリウム水溶液、リン酸水素二アンモニウム水溶液等のリン酸イオンを含む水溶液が好ましい。リン酸水素二ナトリウム水溶液を用いることによって、繊維表面に生成するリン酸カルシウム相にナトリウム(Na)を含有させることが可能である。 As the aqueous solution containing a phosphate ion used for the phosphoric acid treatment of the present invention, an aqueous solution containing a phosphate ion such as a disodium hydrogen phosphate aqueous solution or a diammonium hydrogen phosphate aqueous solution is preferable. By using an aqueous solution of disodium hydrogen phosphate, it is possible to add sodium (Na) to the calcium phosphate phase formed on the fiber surface.
濃度0.02M,0.2M,2.0Mのリン酸水素二ナトリウム水溶液に5分間浸漬して乾燥させた材料の繊維表面を観察すると、濃度0.02Mではリン酸カルシウムはバテライト相炭酸カルシウム粒子の近辺に生成しており、濃度0.2Mではリン酸カルシウムは繊維表面全体に生成していた。2.0Mでは繊維の表面に固定されている粒子が脱落して小孔が形成されていた(図4(A),(B),(C))。リン酸カルシウムが繊維表面全体をくまなく覆うようにするには、材料を浸漬するリン酸イオンを含む水溶液を適当な濃度に調整することが重要である。 When observing the fiber surface of the material dried by immersing it in a 0.02M, 0.2M, 2.0M disodium hydrogen phosphate aqueous solution for 5 minutes, at a concentration of 0.02M, calcium phosphate was found near the vaterite phase calcium carbonate particles. In the concentration of 0.2 M, calcium phosphate was formed on the entire fiber surface. At 2.0 M, the particles fixed on the surface of the fiber fell off and small pores were formed (Fig. 4 (A), (B), (C)). In order for calcium phosphate to cover the entire fiber surface, it is important to adjust the concentration of the aqueous solution containing phosphate ions in which the material is immersed.
<非晶質リン酸カルシウム層>
本発明において非晶質リン酸カルシウムには、炭酸アパタイト(Ca10-x(HPO4, CO3)x(PO4)6-x(OH, CO3)2-x・nH2O)及び/又はカルシウム欠損リン酸カルシウム(Ca10-x(HPO4)x(PO4)6-x(OH)2-x・nH2Oが含まれてもよい。非晶質リン酸カルシウムは、中性付近のpHで溶解性が高く、水と接すると短時間で溶解する。
本発明では、骨再生用材料をリン酸イオンを含む水溶液に浸漬すると、摩擦帯電法で繊維の表面に固定したバテライト相炭酸カルシウム粒子を起点として非晶質リン酸カルシウム層が繊維の表面に沿って生成し、繊維の表面全体を覆う。
<Amorphous calcium phosphate layer>
In the present invention, amorphous calcium phosphate includes carbonate apatite (Ca 10-x (HPO 4 , CO 3 ) x (PO 4 ) 6-x (OH, CO 3 ) 2-x · nH 2 O) and / or calcium. Deficient calcium phosphate (Ca 10-x (HPO 4 ) x (PO 4 ) 6-x (OH) 2-x・ nH 2 O may be included. Amorphous calcium phosphate is soluble at around neutral pH Is high and dissolves in a short time on contact with water.
In the present invention, when the bone regeneration material is immersed in an aqueous solution containing phosphate ions, an amorphous calcium phosphate layer is formed along the surface of the fiber from the vaterite phase calcium carbonate particles fixed on the surface of the fiber by the triboelectric charging method. And cover the entire surface of the fiber.
図6は、本発明の方法を用いて、繊維表面に接着固定するバテライト相炭酸カルシウムとしてSiV(ケイ素溶出型炭酸カルシウム)粒子を用い、リン酸イオンを含む水溶液としてリン酸水素二ナトリウム(濃度0.2M/L)を用いてリン酸カルシウム被覆した生分解性繊維の表面のSTEM観察画像を示す。Na、Siの存在が同定された。尚、生分解性繊維の樹脂表面とは化学的に反応しておらず、繊維の表面に埋め込まれたバテライト相CaCO3粒子を介して固定されている。 FIG. 6 shows that, using the method of the present invention, SiV (silicon-eluting calcium carbonate) particles are used as the vaterite phase calcium carbonate to be adhered and fixed on the fiber surface, and disodium hydrogen phosphate (concentration 0) as an aqueous solution containing phosphate ions. SEM observation image of the surface of the biodegradable fiber coated with calcium phosphate by using S. The presence of Na and Si was identified. The biodegradable fiber did not chemically react with the resin surface and was fixed via the vaterite phase CaCO 3 particles embedded in the fiber surface.
<細胞培養基材>
本発明において、細胞培養基材とは、エレクトロスピニング法によって紡糸された生分解性繊維からなる不織布によって構成される。細胞培養基材を構成する生分解性繊維の表面を非晶質リン酸カルシウムによって被覆することによって繊維表面に対するタンパク質吸着が向上するので、高い細胞初期接着を得ることができる。
<Cell culture substrate>
In the present invention, the cell culture substrate is composed of a non-woven fabric made of biodegradable fibers spun by the electrospinning method. By coating the surface of the biodegradable fiber constituting the cell culture substrate with amorphous calcium phosphate, protein adsorption on the fiber surface is improved, and thus high cell initial adhesion can be obtained.
非晶質リン酸カルシウムコーティング実験
実験に用いるサンプルは以下に示す材料を用いて作製した。
・ReBOSSIS(登録商標)(外径10~60 μmの生分解性繊維からなる綿状骨再生用材料。 販売元ORTHOREBIRTH Co., LTD)ReBOSSIS(登録商標)の組成:PLGA30wt%/β-TCP40 wt%/SiV30 wt%)
・PLLA: PGA (85:15) Evonik社LG855S (D体を含まない)
・β-TCP:太平化学産業(株)β-TCPー100 粒径1.7mmのものを4μm程度に粉砕したβ-TCP粉砕品を用いた。
・SiV(ケイ素溶出型バテライト相炭酸カルシウム):水酸化カルシウム(試薬特級純度96%以上 和光純薬工業(株))、メタノール(試薬特級純度99.8%以上 和光純薬(株))、γ-アミノプロピルトリエトシシラン(SILQUEST A-1100 純度98.5%以上 モメンティブ・パーフォーマンス・マテリアルズ・ジャパン合同会社)、炭酸ガス(高純度液化炭酸ガス純度99.9% 大洋化学工業(株))を用いてSi含有量2.9重量%のバテライト相炭酸カルシウムを調製した。SiVの粒子径:1~1.5μm。SiVの製造方法の詳細は、特開平2008-100878(ケイ素溶出型炭酸カルシウム、及びその製造方法)に開示されている。
Amorphous Calcium Phosphate Coating Experiment Samples used in the experiment were prepared using the materials shown below.
ReBOSSIS (registered trademark) (cotton-like bone regeneration material consisting of biodegradable fibers with an outer diameter of 10 to 60 μm. Distributor ORTHOREBIRTH Co., LTD) Composition of ReBOSSIS (registered trademark): PLGA 30 wt% / β-TCP 40 wt % / SiV30 wt%)
・ PLLA: PGA (85:15) Evonik LG855S (not including D body)
Β-TCP: β-TCP-100 manufactured by Taihei Chemical Industry Co., Ltd. A β-TCP crushed product obtained by crushing 1.7 mm in particle size to about 4 μm was used.
・ SiV (silicon elution type vaterite phase calcium carbonate): calcium hydroxide (reagent special grade purity of 96% or more Wako Pure Chemical Industries, Ltd.), methanol (reagent special grade purity of 99.8% or more Wako Pure Chemical Industries, Ltd.), γ -Aminopropyltriethoxysilane (SILQUEST A-1100 with a purity of 98.5% or more Momentive Performance Materials Japan LLC), carbon dioxide (high purity liquefied carbon dioxide purity 99.9% Taiyo Chemical Co., Ltd.) Was used to prepare a vaterite phase calcium carbonate having a Si content of 2.9% by weight. SiV particle size: 1 to 1.5 μm. Details of the method for producing SiV are disclosed in Japanese Patent Laid-Open No. 2008-100878 (silicon-eluting calcium carbonate and method for producing the same).
1.ReBOSSIS(登録商標)を構成する生分解性繊維へのSiV粒子の接着
ステップ1.繊維表面にSiV粒子を接着
SiV粉末1.0 gとReBOSSIS(登録商標)0.1 gをガラスボトル(5 cmφ×10 cm)に入れて回転 (264 rpm, 2 min.)させて仮接着、熱処理した(60℃, 10 min.)。その後、試料表面に存在する静電的に付着していないSiV粒子をコンプレッサーにて除去して、サンプルを調製した。
 
ステップ2.サンプルをリン酸イオンを含む水溶液に浸漬
サンプル(SiV粉末を接着したReBOSSIS(登録商標))を37 ℃の条件下で異なる濃度 (19.2, 192 mM, 1.92 M)のリン酸水素二ナトリウム水溶液50 mlに5, 10 minそれぞれ浸漬した。
 
ステップ3.乾燥
サンプルをリン酸水素二ナトリウム水溶液から取り出し、その後乾燥機で乾燥させた (50℃, 2 h)。その結果得られたサンプルの繊維の表面のSEM画像をリン酸水素二ナトリウム水溶液の濃度ごとに、サンプル(19.2mM)、サンプル(192mM)、サンプル(1.92M)としてそれぞれ、図7(A)(B)、図8(A)(B)、図9(A)(B)に示す。
1. Step of Adhering SiV Particles to Biodegradable Fibers Constituting ReBOSSIS® 1. Adhesion of SiV particles to the fiber surface
1.0 g of SiV powder and 0.1 g of ReBOSSIS (registered trademark) were put in a glass bottle (5 cmφ × 10 cm), rotated (264 rpm, 2 min.) For temporary adhesion and heat treatment (60 ° C., 10 min.). Then, electrostatically non-adhering SiV particles existing on the sample surface were removed by a compressor to prepare a sample.

Step 2. Dip the sample in an aqueous solution containing phosphate ions (ReBOSSIS® with SiV powder adhered) 50 ml of disodium hydrogen phosphate aqueous solution with different concentrations (19.2, 192 mM, 1.92 M) at 37 ° C It was soaked for 5 and 10 min respectively.

Step 3. The dried sample was removed from the aqueous disodium hydrogen phosphate solution and then dried in a drier (50 ° C., 2 h). SEM images of the surface of the fiber of the sample obtained as a sample (19.2 mM), a sample (192 mM), and a sample (1.92 M) for each concentration of the disodium hydrogen phosphate aqueous solution are shown in FIG. 7 (A) ( B), FIGS. 8A and 8B, and FIGS. 9A and 9B.
2.親水性の評価
サンプル(19.2mM)、サンプル(192mM)、サンプル(1.92M)をそれぞれ20 mgを取り分けて試験管に入れ、重り(56.5 mg)を載せ2 min.プレスした。その後、重りを外し、Rhodamine Bを蒸留水に溶かした赤色溶液を試料に5 μl滴下し、親水性を評価した。その結果をそれぞれ 図10(A)(B)、図11(A)(B)、図12(A)(B)に示す。
2. 20 mg each of the hydrophilic evaluation sample (19.2 mM), sample (192 mM) and sample (1.92 M) was placed in a test tube, and a weight (56.5 mg) was placed thereon and pressed for 2 min. Then, the weight was removed, and 5 μl of a red solution prepared by dissolving Rhodamine B in distilled water was added dropwise to the sample to evaluate hydrophilicity. The results are shown in FIGS. 10 (A) and (B), FIGS. 11 (A) and (B), and FIGS. 12 (A) and 12 (B).
2.親水性の評価結果
(1)全体を通して、リン酸溶液の濃度を上昇させるにつれて赤色溶液が染み込むまでの時間が短くなる様子が観察された。
(2)全体を通して、リン酸イオンを含む水溶液に浸漬した時間が5分よりも10分のサンプルの方が赤色溶液が染み込むまでの時間が短くなる様子が観察された。
(3)19.2 mMでリン酸処理したサンプルに関しては、部分的にリン酸カルシウムあるいは他のリン酸カルシウム塩が生成してはいるが、付着量が不均一であったため赤色溶液が染み込むまでに時間を要したと思われる。処理時間を長くするにつれて染み込むまでの時間は短くなった。
(4)1.92 Mでリン酸処理した試料に関しては、繊維表面に孔が生成する様子が観察された。この孔は、SiV粒子が埋め込まれていた部分と考えられる。1.92 Mの高濃度で処理することで、PLGAが浸食されSiV粒子が脱落したと考えられる。1.92 Mでリン酸処理した試料に関しては、試料が一部崩れ、形状を維持できない様子が観察された。これは、ReBOSSIS(登録商標)の繊維がリン酸水素二ナトリウム水溶液(アルカリ性)によって侵食されたことを示していると考えられる。
2. Throughout the hydrophilicity evaluation result (1), it was observed that the time until the red solution permeated became shorter as the concentration of the phosphoric acid solution was increased.
(2) Throughout the whole, it was observed that the sample soaked in the aqueous solution containing phosphate ions for 10 minutes had a shorter time until the red solution soaked in the sample for 10 minutes.
(3) Regarding the sample treated with phosphoric acid at 19.2 mM, although calcium phosphate or other calcium phosphate salt was partially formed, it was said that it took time until the red solution permeated because the amount of adhesion was uneven. Seem. As the treatment time was lengthened, the time until soaking became shorter.
(4) Regarding the sample treated with phosphoric acid at 1.92 M, it was observed that pores were formed on the fiber surface. This hole is considered to be a portion where SiV particles were embedded. It is considered that the treatment with the high concentration of 1.92 M caused the PLGA to erode and the SiV particles to fall off. Regarding the sample treated with phosphoric acid at 1.92 M, it was observed that the sample partly collapsed and the shape could not be maintained. This is considered to indicate that the fibers of ReBOSSIS (registered trademark) were eroded by the aqueous disodium hydrogen phosphate solution (alkaline).
上記実験と同じ条件で、但しSiV粉末1.0 gとReBOSSIS登録商標0.5 gをガラスボトル(5 cmφ×10 cm)に入れて回転 (264 rpm, 2 min.)させて粒子を繊維表面に接着固定し、熱処理した場合の実験でも同様の結果が得られた。  Under the same conditions as the above experiment, except that 1.0g of SiV powder and 0.5g of ReBOSSIS registered trademark were put in a glass bottle (5cm × 10cm) and rotated (264rpm, 2min.) To adhere and fix the particles to the fiber surface. The same result was obtained in the case of heat treatment. ‥
上記実験と同じ条件で、但しSiV粉末5.0 gとReBOSSIS登録商標0.5 gをガラスボトル(5 cmφ×10 cm)に入れて回転 (264 rpm, 2 min.)させて粒子を繊維表面に接着固定し、熱処理した場合の実験でも同様の結果が得られた。 Under the same conditions as the above experiment, except that 5.0g of SiV powder and 0.5g of ReBOSSIS registered trademark are put in a glass bottle (5cm x 10cm) and rotated (264rpm, 2min) to adhere and fix the particles to the fiber surface. The same result was obtained in the case of heat treatment.
上記実験と同じ条件で、但しリン酸水素二ナトリウムの溶液濃度を100 mM/L, 150 mM/Lとして5分間浸漬して繊維の表面にリン酸カルシウム層を形成したところ、リン酸水素二ナトリウムの溶液濃度が100 mM/Lでは、赤色溶液のしみこみかたが瞬時でなかったが、150 mM/Lでは瞬時に水がしみ込んだ。瞬時に水がしみこむための最適なリン酸水素二ナトリウム水溶液の濃度として100mM/Lよりも150 mM/Lの方が適していると考えられる。
バテライト相炭酸カルシウムからリン酸カルシウムを析出させるという目的のためにはリン酸水素二ナトリウムの濃度は高い方が良い(例えば192 mM/L)が、濃度が高すぎるとPLGAが侵されてSiV粒子が脱落する可能性がある。
Under the same conditions as the above experiment, except that the disodium hydrogen phosphate solution concentration was set to 100 mM / L, 150 mM / L for 5 minutes to form a calcium phosphate layer on the surface of the fiber, the disodium hydrogen phosphate solution At a concentration of 100 mM / L, the red solution was not soaked instantly, but at 150 mM / L water was soaked instantly. It is considered that 150 mM / L is more suitable than 100 mM / L as the optimum concentration of the disodium hydrogen phosphate aqueous solution for the water to soak into the water instantly.
For the purpose of precipitating calcium phosphate from vaterite phase calcium carbonate, a higher concentration of disodium hydrogen phosphate is better (eg 192 mM / L), but if the concentration is too high, PLGA will be attacked and SiV particles will fall off. there's a possibility that.
上記実験と同じ条件で、但しリン酸水素二ナトリウム水溶液に浸漬した後、乾燥機で乾燥させる温度を37℃にして乾燥してみたところ、繊維が細かく破壊してしまう現象が見られた。
その原因は、37℃で乾燥すると、4時間経っても十分に乾燥できず、リン酸液が付いたまま4時間も放置されることとなった結果、反応が進み、繊維の亀裂部分に高濃度のリン酸液がしみこみそこにリン酸カルシウムが析出してくるため、それが破壊の原因となったと考えられる。
このような現象を避けるためには、リン酸水素二ナトリウム水溶液に浸漬した後は50℃以上でできるだけ早く乾燥させる必要があると考えられる。温度の上限は110℃で限定できる可能性があるが、60℃以上の場合、析出したリン酸カルシウム相が再度PLGAに埋もれてしまう点から、50~60℃が最適と考えられる。
Under the same conditions as in the above experiment, except that the fibers were finely broken when they were immersed in an aqueous solution of disodium hydrogen phosphate and dried with a dryer at a temperature of 37 ° C.
The reason is that after drying at 37 ° C, it could not be dried sufficiently even after 4 hours, and it was left for 4 hours with the phosphoric acid solution, as a result, the reaction proceeded and the cracks in the fiber became high. The phosphoric acid solution with a high concentration was infiltrated, and calcium phosphate was deposited there, which is considered to have caused the destruction.
In order to avoid such a phenomenon, it is considered necessary to dry at 50 ° C. or higher as soon as possible after immersing in an aqueous solution of disodium hydrogen phosphate. The upper limit of the temperature may be limited to 110 ° C, but if it is 60 ° C or higher, the precipitated calcium phosphate phase will be buried again in PLGA, so 50 to 60 ° C is considered optimal.
非晶質リン酸カルシウムを被覆した骨再生用材料に対するタンパク質吸着測定
本発明の非晶質リン酸カルシウム被覆のタンパク質吸着に対して及ぼす影響を見るために、非晶質リン酸カルシウムで被覆したサンプル(192mM)に対するBSA吸着量とリン酸カルシウム被覆していないサンプルに対するBSA吸着量とを比較した。図13にその結果を示す。
Protein Adsorption Measurement on Bone Regenerating Material Coated with Amorphous Calcium Phosphate In order to see the effect of the amorphous calcium phosphate coating of the present invention on protein adsorption, BSA adsorption on a sample (192 mM) coated with amorphous calcium phosphate The amount was compared with the amount of BSA adsorbed on the sample not coated with calcium phosphate. The result is shown in FIG.
上記BSA吸着実験の結果から以下の考察が得られた。
(1)非晶質リン酸カルシウム被覆によって親水化したサンプルは、比表面積が大きいため、タンパク質の吸着量が大きくなったと考えられる。
(2)リン酸カルシウム被覆をしていないサンプルでは、繊維中に含まれる骨形成性粒子のSiVが表面付近にも存在するため、BSA分子のCOO-と静電相互作用によって吸着したと考えられる。
(3)非晶質リン酸カルシウム被覆で親水化したサンプルでは、繊維表面に存在する非晶質リン酸カルシウム表面のCa2+、SiV中のNH4+とBSA分子のCOO- が静電相互作用によって吸着に寄与していると考えられる。
(4)一定時間経過後に吸着量がほぼ一定になったのは、吸着サイトがなくなったためであると考えられる。
The following considerations were obtained from the results of the BSA adsorption experiment.
(1) It is considered that since the sample hydrophilized with the amorphous calcium phosphate coating has a large specific surface area, the amount of adsorbed protein becomes large.
(2) In the sample not coated with calcium phosphate, since the bone-forming particles contained in the fibers, SiV, are also present near the surface, it is considered that they are adsorbed by COO − of BSA molecule and electrostatic interaction.
(3) In the sample hydrophilized with the amorphous calcium phosphate coating, Ca 2+ on the surface of the amorphous calcium phosphate present on the fiber surface, NH 4+ in SiV and COO − of the BSA molecule are adsorbed by electrostatic interaction. It is considered to have contributed.
(4) It is considered that the reason why the adsorption amount became almost constant after the elapse of a certain time is because the adsorption sites disappeared.
非晶質リン酸カルシウムをコーティングした骨再生用材料を用いた細胞増殖試験
骨芽細胞様細胞MC3T3-E1株を使用して培養試験を行った。図14にその概要を示す。24ウェルプレート一穴あたり骨再生用材料を80 mg投入し、α-MEM培地を2 mL注入した後、細胞を播種し、37℃, 5 % CO2存在下で培養試験を行った。細胞播種密度は90,000 cells/mLで、培養タイムポイントはそれぞれ3 hr, 24 hr, 72 hrとした。ICP-AESによる培地中のイオン量の評価を行った後、未使用のウェルプレートに溶液を移してAlamar Blueを4時間反応させることによる代謝活性評価を行い、細胞が増殖した後の骨再生用材料についてはFE-SEMによる試料表面の形態観察を行った。
Cell Proliferation Test Using Bone Regeneration Material Coated with Amorphous Calcium Phosphate A culture test was performed using osteoblast-like cells MC3T3-E1 strain. The outline is shown in FIG. 80 mg of bone regeneration material was added per well of a 24-well plate, 2 mL of α-MEM medium was injected, cells were seeded, and a culture test was performed at 37 ° C. in the presence of 5% CO 2 . The cell seeding density was 90,000 cells / mL, and the culture time points were 3 hr, 24 hr, and 72 hr, respectively. After assessing the amount of ions in the medium by ICP-AES, transfer the solution to an unused well plate and allow Alamar Blue to react for 4 hours to assess metabolic activity, and for bone regeneration after cell proliferation. Regarding the material, the morphology of the sample surface was observed by FE-SEM.
代謝活性は対照群であるガラスプレート単体の試料よりも骨再生用材料を投入したもののほうが有意に高く、未処理の複合体よりも親水化した複合体の方が有意に高かった。また、3 hrよりも24 hr、24 hrよりも72 hrの方が代謝活性はそれぞれの試料において高くなっていた。図15にその結果を示す。
FE-SEMによる試料表面の形態観察からは、親水化した複合体は未処理の複合体に比べて凹凸が大きい粗な表面であることがわかった。細胞の被覆は親水化した複合体の方が多く、繊維表面を全体的に細胞が覆っていた。図16にその結果を示す。24時間の培養後の繊維表面は未処理の複合体も親水化した複合体もCaP相が生成されており、後者においてはCaP相の生成が進行していた。未処理の複合体でCaP相が部分的に生成されていたが、これはバイオミメティック法と同様の機序に拠るものと考えられる。図17にその結果を示す。
The metabolic activity was significantly higher in the bone regenerating material-injected sample than in the control glass plate sample alone, and was significantly higher in the hydrophilized complex than in the untreated complex. In addition, the metabolic activity was higher in 24 hr than in 3 hr and in 72 hr than in 24 hr in each sample. The result is shown in FIG.
From the morphological observation of the sample surface by FE-SEM, it was found that the hydrophilized composite had a rough surface with larger irregularities than the untreated composite. The cells were covered more with the hydrophilized complex, and the fiber surface was entirely covered with the cells. The result is shown in FIG. The CaP phase was produced on both the untreated complex and the hydrophilized complex on the fiber surface after 24 hours of culturing, and in the latter, the CaP phase was proceeding. The CaP phase was partially formed in the untreated complex, which is probably due to the mechanism similar to that of the biomimetic method. The results are shown in FIG.
本発明のリン酸カルシウム被覆をされた生分解性繊維からのイオン溶出挙動について、Caイオン、Pイオンの溶出は親水化した複合体と未処理の複合体でほぼ差は無かったが、Siイオンの溶出のみ、24時間、72時間のタイムポイントにおいて親水化した複合体の方が少なくなる傾向にあった。リン酸処理において溶液に浸漬させた際にSiVからSiの溶出が起こったこと、および、非晶質リン酸カルシウム層による被覆によることと考えられる。なお、3時間のタイムポイントでは同等の溶出量であった。これは、親水化した繊維表面のSiV粒子/非晶質相からの溶出に起因すると考えられる。図18にその結果を示す。 Regarding the ion elution behavior from the biodegradable fiber coated with calcium phosphate of the present invention, the elution of Ca ion and P ion was almost the same between the hydrophilized complex and the untreated complex, but the elution of Si ion Only at the 24-hour and 72-hour time points, the hydrophilized complex tended to be less. It is considered that Si was eluted from SiV when it was immersed in the solution in the phosphoric acid treatment, and that it was due to the coating with the amorphous calcium phosphate layer. Note that the amount of elution was the same at the time point of 3 hours. It is considered that this is due to elution from the SiV particles / amorphous phase on the surface of the hydrophilized fiber. The results are shown in FIG.
以上、本発明を骨形成性粒子を含有する生分解性繊維を用いた骨再生用材料の実施例に即して説明したが、本発明はその実施例に限定されるものではなく、骨再生用材料を構成する生分解性繊維を含み、さらに、無機粒子を含有しない生分解性繊維及び/又はそのような生分解性繊維を用いた細胞培養基材についても、非晶質リン酸カルシウム層による被覆がされた材料である限り、同様に適用可能である。
 
 
Although the present invention has been described with reference to the examples of the bone regeneration material using the biodegradable fiber containing the bone-forming particles, the present invention is not limited to the examples, and the bone regeneration is not limited thereto. A biodegradable fiber containing a biodegradable fiber constituting a material for use, and further, a biodegradable fiber containing no inorganic particles and / or a cell culture substrate using such a biodegradable fiber is also coated with an amorphous calcium phosphate layer. As long as it is a material that has been removed, it is similarly applicable.

Claims (18)

  1. 表面が親水化された生分解性繊維からなる骨再生用材料を製造する方法であって、
     
    骨形成性粒子を含有する生分解性繊維の表面にバテライト相炭酸カルシウム粒子を、摩擦帯電法を用いて静電的に付着させ、
     
    前記バテライト相炭酸カルシウム粒子が付着した前記生分解性を、前記生分解性繊維の生分解性樹脂のガラス転移点以上の温度で加熱することによって、前記生分解性繊維の表面に前記バテライト相炭酸カルシウム粒子を接着固定し、
     
    前記バテライト相炭酸カルシウム粒子が接着固定された前記生分解性繊維を所定の濃度のリン酸イオンを含む水溶液に所定時間浸漬することによって、前記生分解性繊維の表面に接着固定された前記バテライト相炭酸カルシウム粒子を起点として、非晶質リン酸カルシウムを前記生分解性繊維の表面に沿って成長させて前記生分解性繊維の表面全体を被覆し、
     
    前記非晶質リン酸カルシウムで表面を被覆された前記生分解性繊維からなる骨再生用材料を前記リン酸イオンを含む水溶液から取り出して乾燥させる、
     
    前記表面が親水化された生分解性繊維からなる骨再生用材料を製造する方法。
     
    A method for producing a bone regeneration material comprising a biodegradable fiber whose surface is hydrophilized,

    Vaterite phase calcium carbonate particles are electrostatically attached to the surface of the biodegradable fiber containing the bone-forming particles by using a triboelectric charging method,

    The biodegradability to which the vaterite phase calcium carbonate particles are attached, by heating at a temperature not lower than the glass transition point of the biodegradable resin of the biodegradable fiber, the vaterite phase carbonate on the surface of the biodegradable fiber. Adhere and fix calcium particles,

    The vaterite phase calcium carbonate particles are adhered and fixed The biodegradable fiber is immersed in an aqueous solution containing a phosphate ion of a predetermined concentration for a predetermined time, whereby the vaterite phase is fixedly adhered to the surface of the biodegradable fiber. Starting from calcium carbonate particles, amorphous calcium phosphate is grown along the surface of the biodegradable fiber to cover the entire surface of the biodegradable fiber,

    A bone regenerating material consisting of the biodegradable fiber whose surface is coated with the amorphous calcium phosphate is taken out from the aqueous solution containing the phosphate ion and dried,

    A method for producing a bone regeneration material comprising a biodegradable fiber having a hydrophilic surface.
  2. 前記生分解性繊維の径は10μm~100μmである、請求項1に記載の方法。
     
    The method according to claim 1, wherein the biodegradable fiber has a diameter of 10 μm to 100 μm.
  3. 前記バテライト相炭酸カルシウム粒子の径は0.5μm~4μmである、請求項1又は2に記載の方法。
     
    The method according to claim 1 or 2, wherein the vaterite phase calcium carbonate particles have a diameter of 0.5 µm to 4 µm.
  4. 前記リン酸イオンを含む水溶液はリン酸水素二ナトリウム溶液である、請求項1~3のいずれか一項に記載の方法。
     
    The method according to any one of claims 1 to 3, wherein the aqueous solution containing phosphate ions is a disodium hydrogen phosphate solution.
  5. 前記生分解性繊維は、PLGA樹脂を含む、請求項1~4のいずれか一項に記載の方法。
     
    The method according to any one of claims 1 to 4, wherein the biodegradable fiber comprises PLGA resin.
  6. 表面が親水化された生分解性繊維からなる骨再生用材料であって、
     
    前記骨再生用材料を構成する前記生分解性繊維は骨形成性粒子を含有しており、
     
    前記生分解性繊維の表面の全域が、実質的に結晶構造を含まない非晶質リン酸カルシウム層で被覆されている、
     
    前記表面が親水化された生分解性繊維からなる骨再生用材料。
     
    A bone regenerating material comprising a biodegradable fiber having a hydrophilic surface,

    The biodegradable fiber constituting the bone regeneration material contains bone-forming particles,

    The entire surface of the biodegradable fiber is covered with an amorphous calcium phosphate layer containing substantially no crystal structure,

    A bone regeneration material comprising a biodegradable fiber whose surface is hydrophilized.
  7. 前記非晶質リン酸カルシウム層は、リン酸カルシウムの一部に結晶構造に炭酸を含む炭酸アパタイトを含む、請求項6に記載の骨再生用材料。
     
    The bone regenerating material according to claim 6, wherein the amorphous calcium phosphate layer contains carbonate apatite containing carbonic acid in a crystal structure in a part of calcium phosphate.
  8. 前記生分解性繊維の径は10μm~100μmである、請求項6又は7に記載の骨再生用材料。
     
    The bone regeneration material according to claim 6 or 7, wherein the biodegradable fiber has a diameter of 10 µm to 100 µm.
  9. 前記生分解性繊維はPLGA樹脂を含む、請求項6~8のいずれか一項に記載の骨再生用材料。
     
    The bone regeneration material according to any one of claims 6 to 8, wherein the biodegradable fiber contains PLGA resin.
  10. 表面が親水化された生分解性繊維を製造する方法であって、
     
    骨形成性粒子を含有する前記生分解性繊維の表面にバテライト相炭酸カルシウム粒子を、摩擦帯電法を用いて静電的に付着させ、
     
    前記バテライト相炭酸カルシウム粒子が付着した前記生分解性繊維を、前記生分解性繊維の生分解性樹脂のガラス転移点以上の温度で加熱することによって、前記生分解性繊維の表面に前記バテライト相炭酸カルシウム粒子を接着固定し、
     
    前記バテライト相炭酸カルシウム粒子が接着固定された前記生分解性繊維を所定の濃度のリン酸イオンを含む水溶液に所定時間浸漬することによって、前記生分解性繊維の表面に接着固定された前記バテライト相炭酸カルシウム粒子を起点として、非晶質リン酸カルシウムを前記生分解性繊維の表面に沿って成長させて前記生分解性繊維の表面全体を被覆し、
     
    前記非晶質リン酸カルシウムで表面を被覆された前記生分解性繊維を前記リン酸イオンを含む水溶液から取り出して乾燥させる、
     
    前記表面が親水化された生分解性繊維を製造する方法。
     
    A method for producing a biodegradable fiber whose surface is hydrophilized,

    Vaterite phase calcium carbonate particles on the surface of the biodegradable fiber containing bone-forming particles, electrostatically attached using a triboelectric charging method,

    The vaterite phase calcium carbonate particles adhered to the biodegradable fiber, by heating at a temperature above the glass transition point of the biodegradable resin of the biodegradable fiber, the vaterite phase on the surface of the biodegradable fiber Adhere and fix calcium carbonate particles,

    The vaterite phase calcium carbonate particles are adhered and fixed The biodegradable fiber is immersed in an aqueous solution containing a phosphate ion of a predetermined concentration for a predetermined time, whereby the vaterite phase is fixedly adhered to the surface of the biodegradable fiber. Starting from calcium carbonate particles, amorphous calcium phosphate is grown along the surface of the biodegradable fiber to cover the entire surface of the biodegradable fiber,

    Removing the biodegradable fiber whose surface is coated with the amorphous calcium phosphate from an aqueous solution containing the phosphate ion and drying the biodegradable fiber;

    A method for producing a biodegradable fiber having a hydrophilic surface.
  11. 前記生分解性繊維の径は10μm~100μmである、請求項10に記載の方法。
     
    The method according to claim 10, wherein the diameter of the biodegradable fiber is 10 μm to 100 μm.
  12. 前記バテライト相炭酸カルシウム粒子の径は0.5μm~4μmである、請求項10又は11に記載の方法。
     
    The method according to claim 10 or 11, wherein the vaterite phase calcium carbonate particles have a diameter of 0.5 µm to 4 µm.
  13. 前記リン酸イオンを含む水溶液はリン酸水素二ナトリウム溶液である、請求項10~12のいずれか一項に記載の方法。
     
    The method according to any one of claims 10 to 12, wherein the aqueous solution containing phosphate ions is a disodium hydrogen phosphate solution.
  14. 前記生分解性繊維は、PLGA樹脂を含む、請求項10~13のいずれか一項に記載の方法。
     
    The method according to any one of claims 10 to 13, wherein the biodegradable fiber comprises PLGA resin.
  15. 表面が親水化された生分解性繊維であって、
     
    前記生分解性繊維は骨形成性粒子を含有しており、
     
    前記生分解性繊維の表面の全域が、実質的に結晶構造を含まない非晶質リン酸カルシウム層で被覆されている、
     
    前記表面が親水化された生分解性繊維。
     
    A biodegradable fiber whose surface is hydrophilized,

    The biodegradable fiber contains bone-forming particles,

    The entire surface of the biodegradable fiber is covered with an amorphous calcium phosphate layer containing substantially no crystal structure,

    A biodegradable fiber whose surface is hydrophilized.
  16. 前記非晶質リン酸カルシウム層は、リン酸カルシウムの一部に結晶構造に炭酸を含む炭酸アパタイトを含む、請求項15に記載の表面が親水化された生分解性繊維。
     
    The surface-hydrophilized biodegradable fiber according to claim 15, wherein the amorphous calcium phosphate layer contains carbonate apatite containing carbonic acid in a crystal structure in a part of calcium phosphate.
  17. 前記生分解性繊維の径は10μm~100μmである、請求項15又は16に記載の生分解性繊維。
     
    The biodegradable fiber according to claim 15 or 16, wherein the diameter of the biodegradable fiber is 10 μm to 100 μm.
  18. 前記生分解性繊維はPLGA樹脂を含む、請求項15~17のいずれか一項に記載の生分解性繊維。
     
    The biodegradable fiber according to any one of claims 15 to 17, wherein the biodegradable fiber contains PLGA resin.
PCT/JP2019/043010 2018-11-02 2019-11-01 Material for bone regeneration having surface including hydrophilized biodegradable fibers, and production method therefor WO2020091035A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020554976A JP7429391B2 (en) 2018-11-02 2019-11-01 Bone regeneration material made of biodegradable fibers with a hydrophilic surface and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862755387P 2018-11-02 2018-11-02
US62/755,387 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020091035A1 true WO2020091035A1 (en) 2020-05-07

Family

ID=70461928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043010 WO2020091035A1 (en) 2018-11-02 2019-11-01 Material for bone regeneration having surface including hydrophilized biodegradable fibers, and production method therefor

Country Status (2)

Country Link
JP (1) JP7429391B2 (en)
WO (1) WO2020091035A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285151A (en) * 1993-04-01 1994-10-11 Nippon Sherwood Kk Medical instrument coated with amorphous calcium phosphate
WO2017188435A1 (en) * 2016-04-28 2017-11-02 国立大学法人名古屋工業大学 Method for manufacturing bone-regeneration material comprising biodegradable fibers by using electrospinning method
JP2019183322A (en) * 2018-04-10 2019-10-24 株式会社バイオアパタイト Fine fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371029C (en) 2003-06-24 2008-02-27 国立大学法人九州大学 Medical bone prosthetic material and process for producing the same.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285151A (en) * 1993-04-01 1994-10-11 Nippon Sherwood Kk Medical instrument coated with amorphous calcium phosphate
WO2017188435A1 (en) * 2016-04-28 2017-11-02 国立大学法人名古屋工業大学 Method for manufacturing bone-regeneration material comprising biodegradable fibers by using electrospinning method
JP2019183322A (en) * 2018-04-10 2019-10-24 株式会社バイオアパタイト Fine fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MUCALO, M.R. ET AL.: "Growth of calcium phosphate on surface-modified cotton", JOURNAL OF MATERIALS SCIENCE :MATERIALS IN MEDICINE, vol. 6, 1995, pages 597 - 605, XP55703978 *

Also Published As

Publication number Publication date
JP7429391B2 (en) 2024-02-08
JPWO2020091035A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
US9498561B2 (en) Fiber wadding for filling bone defects
Maeda et al. Preparation of poly (L-lactic acid)-polysiloxane-calcium carbonate hybrid membranes for guided bone regeneration
US6340648B1 (en) Calcium phosphate porous sintered body and production thereof
MX2013003089A (en) Pressure control apparatus.
Kasuga et al. Siloxane-poly (lactic acid)-vaterite composites with 3D cotton-like structure
Wutticharoenmongkol et al. Novel bone scaffolds of electrospun polycaprolactone fibers filled with nanoparticles
Sachot et al. Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies
CA2978002A1 (en) Mineral coated scaffolds and methods of producing such scaffolds
EP2682135A1 (en) Non-woven fabric containing bone prosthetic material
JP2006517451A (en) Nanocrystal surface coating methods and materials and peptide amphiphile nanofiber deposits thereon
JPS62221358A (en) Bone lack part and gap part filling material
WO2009156226A2 (en) A silk membrane for bone graft material and a method for manufacture thereof
US8512732B2 (en) Method for producing bioactive composites
Ramírez-Rodríguez et al. Biomineralized recombinant collagen-based scaffold mimicking native bone enhances mesenchymal stem cell interaction and differentiation
EP3691700B1 (en) Method of making an osteoconductive fibrous article and a medical implant comprising such osteoconductive fibrous article
Koh et al. Modification of polyglutamic acid with silanol groups and calcium salts to induce calcification in a simulated body fluid
CN203235057U (en) Fibrous filler for filling bone defect
US20110245922A1 (en) Material for filling bone defects and production method thereof
WO2020091035A1 (en) Material for bone regeneration having surface including hydrophilized biodegradable fibers, and production method therefor
US20120219595A1 (en) Biodegradable fiber and fiber wadding for filling bone defects and method for producing the same
US20110009522A1 (en) Material for filling bone defects and production method thereof
SE537635C2 (en) Method of producing an alginate coated titanium dioxide scaffold, this titanium dioxide scaffold and medical implant containing scaffold
Pishva et al. Gallic acid-grafted hybrid strontium fluoride/polycaprolactone nanocomposite fibers for bone regeneration
JP3718708B2 (en) Calcium phosphate bioceramic sintered body and method for producing the same
Swain Processing of porous hydroxyapatite scaffold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020554976

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19880802

Country of ref document: EP

Kind code of ref document: A1