WO2020090974A1 - Biosensor - Google Patents

Biosensor Download PDF

Info

Publication number
WO2020090974A1
WO2020090974A1 PCT/JP2019/042761 JP2019042761W WO2020090974A1 WO 2020090974 A1 WO2020090974 A1 WO 2020090974A1 JP 2019042761 W JP2019042761 W JP 2019042761W WO 2020090974 A1 WO2020090974 A1 WO 2020090974A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
biosensor
enzyme
mutant
vesicle
Prior art date
Application number
PCT/JP2019/042761
Other languages
French (fr)
Japanese (ja)
Inventor
上田 宏
九龍 蘇
哲也 北口
有紀 大室
フーン ショーン
ベー サイラス
Original Assignee
国立大学法人東京工業大学
エージェンシー フォー サイエンス、テクノロジー アンド リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, エージェンシー フォー サイエンス、テクノロジー アンド リサーチ filed Critical 国立大学法人東京工業大学
Publication of WO2020090974A1 publication Critical patent/WO2020090974A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/40Apparatus specially designed for the use of free, immobilised, or carrier-bound enzymes, e.g. apparatus containing a fluidised bed of immobilised enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to an antibody detection biosensor, a method for manufacturing the biosensor, and a method for detecting an antibody using the biosensor.
  • the present invention also relates to an antigen detection biosensor and a method for detecting an antigen using the biosensor.
  • GUS ⁇ -glucuronidase
  • the above-mentioned measurement method utilizes such a property of GUS, and there are two types of fusion proteins, that is, a fusion protein containing an antibody V H region and a GUS variant and a fusion protein containing an antibody V L region and a GUS variant.
  • a fusion protein containing an antibody V H region and a GUS variant
  • a fusion protein containing an antibody V L region and a GUS variant Use a fusion protein.
  • the principle of this measuring method is as follows. If the sample does not exist antigen, since remains weak interaction V H and V L domains, the most tetramer dimer in intact variant of GUS connecting the V H region and the V L region Don't
  • the antigen is present in the sample, the interaction between the V H and V L regions is strengthened, and this interaction also binds the dimer of the GUS mutant linked to the V H and V L regions. Then, it forms a tetramer and becomes active. Therefore, the amount of antigen in the sample can
  • Patent Document 1 is a method capable of detecting an antigen with high sensitivity, but in the use in the medical field such as clinical diagnosis, a detection method with higher sensitivity is required.
  • the present invention has been made under such a background, and an object thereof is to provide a highly sensitive homogeneous immunoassay means.
  • the present inventor is a biosensor comprising a fusion protein containing a GUS variant into which a mutation that inhibits tetramer formation is introduced and a His tag, and a vesicle composed of a lipid membrane.
  • a biosensor in which the His tag is located outside the vesicle and the GUS mutant is located inside the vesicle, which penetrates the lipid membrane of the vesicle, and this biosensor is highly sensitive to the antibody that binds to the His tag. It was found that can be detected by.
  • the antigen that binds to the antibody variable region can be detected with high sensitivity. Also found.
  • the present invention has been completed based on the above findings. That is, the present invention provides the following [1] to [16].
  • a biosensor for detecting an antibody that binds to a peptide comprising: 1) a fusion protein containing a variant of an enzyme activated by formation of a multimer, a transmembrane domain, and the peptide, and 2) A) a vesicle composed of a lipid membrane, wherein A) the mutant of the enzyme is a mutant into which a mutation that reduces the binding affinity between monomers is introduced, and B) the transmembrane domain has the small size.
  • Penetrate the lipid membrane of the vesicle C) a variant of the enzyme that is activated by the formation of the multimer is exposed inside the vesicle, and D) the peptide is exposed outside the vesicle.
  • [3] A mutant of ⁇ -glucuronidase, wherein 51st phenylalanine in the amino acid sequence of Escherichia coli ⁇ -glucuronidase is replaced with tyrosine, 64th alanine is replaced with valine, 185th aspartic acid is replaced with asparagine, and 516th position Methionine is replaced with lysine, 525th tyrosine is replaced with phenylalanine, 559th glycine is replaced with serine, 567th lysine is replaced with arginine, 585th glutamine is replaced with histidine, and 601st position.
  • the method for producing a biosensor comprises the following steps (1) to (5): (1) Includes a vector expressing a fusion protein containing a mutant of an enzyme activated by the formation of a multimer, a transmembrane domain and a peptide, a reagent required for cell-free transcription, and a reagent required for cell-free translation Preparing an aqueous solution, (2) A step of dispersing the aqueous solution prepared in step (1) in an oil phase containing phospholipids and cholesterol to produce a W / O emulsion, (3) A step of forming a liposome containing the vector and the reagent inside in an aqueous solution by overlaying the W / O emulsion generated in step (2) on the aqueous solution and sedimenting by centrifugation. (4) a step of collecting the liposome formed in the step (3), (5) A step of advancing transcription and translation reactions in the liposome recovered in step (4).
  • a method for detecting an antibody in a sample comprising the step of contacting the sample with the biosensor according to any one of [1] to [6], and detecting the formation of a multimer by a change in enzyme activity.
  • a method for detecting an antibody which comprises a step.
  • a biosensor for detecting an antigen that binds to an antibody variable region comprising: 1) a first fusion protein containing a variant of an enzyme that is activated by the formation of a multimer, a transmembrane domain, and a peptide. 2) a second fusion protein containing the antibody variable region and a protein having an affinity for the peptide, and 3) a vesicle composed of a lipid membrane, A mutant into which a mutation that reduces binding affinity between the bodies is introduced, B) the transmembrane domain penetrates the lipid membrane of the vesicle, and C) an enzyme that is activated by the formation of the multimer.
  • the ⁇ -glucuronidase mutant has a configuration in which the 51st phenylalanine in the amino acid sequence of Escherichia coli ⁇ -glucuronidase is replaced by tyrosine, the 64th alanine is replaced by valine, the 185th aspartic acid is replaced by asparagine, and the 516th position.
  • Methionine is replaced with lysine
  • 525th tyrosine is replaced with phenylalanine
  • 559th glycine is replaced with serine
  • 567th lysine is replaced with arginine
  • 585th glutamine is replaced with histidine, and 601st position.
  • the biosensor according to [10] wherein the glycine is a mutant in which aspartic acid is substituted.
  • a method for detecting an antigen in a sample which comprises contacting the sample with the biosensor according to any of [9] to [15], and detecting the formation of a multimer by a change in enzyme activity.
  • a method for detecting an antigen which comprises a step.
  • the present invention provides a novel biosensor. Since this biosensor can detect a substance easily and with high sensitivity, it is expected to be used in the medical field such as clinical diagnosis.
  • the upper left is an image when expressing His 6 -GUS_IV5_KY and His 6 -TM-GUS_IV5_KY vector, and an anti-His antibody is added
  • the lower left is expressing His 6 -GUS_IV5_KY and His 6 -TM-GUS_IV5_KY vector, and anti-His
  • the image when no antibody was added the upper right is an image when only the His 6 -GUS_IV5_KY vector was expressed, and the image when an anti-His antibody was added, the lower right is only the His 6 -GUS_IV5_KY vector was expressed, and the anti-His It is an image when an antibody is not added.
  • the antibody-detecting biosensor of the present invention is a biosensor for detecting an antibody that binds to a peptide, and is 1) a mutant of an enzyme and a transmembrane domain that are activated by the formation of a multimer. And a peptide containing the above-mentioned peptide, and 2) a vesicle composed of a lipid membrane, and A) a mutant of the enzyme, wherein the mutant has a mutation that reduces binding affinity between monomers.
  • the transmembrane domain penetrates the lipid membrane of the vesicle
  • a biosensor wherein the peptide is exposed to the outside of the vesicle.
  • This biosensor contains a fusion protein and a vesicle.
  • the fusion protein penetrates the lipid membrane of the vesicles, the peptide portion that binds the antibody is exposed outside the vesicle, and the enzyme portion is exposed inside the vesicle.
  • the enzyme does not form a multimer and is not activated because a mutation that reduces the binding affinity between the monomers is introduced. Therefore, even if an enzyme substrate is present, reaction products such as fluorescent substances are scarcely produced.
  • the two peptides exposed on the outside of the vesicle are attracted to the antibody, whereby the enzyme moiety linked to the peptide binds, forms a multimer, and is activated.
  • a reaction product is generated in the vesicle by the activated enzyme, but since this reaction product is concentrated in the vesicle, even a trace amount can be easily detected.
  • enzyme activation occurs for each vesicle, vesicles that produce a reaction product and vesicles that do not produce a reaction product occur unless the amount of antibody is very large. Since the number of vesicles that produce a reaction product increases depending on the amount of antibody, the amount of antibody can be grasped as the “number” of vesicles.
  • the enzyme that is activated by the formation of a multimer means an enzyme that exhibits activity or improves activity only when several monomers are bound.
  • the number of monomers constituting the multimer is not particularly limited, and an enzyme that activates any of a dimer, a trimer, a tetramer, a pentamer, a hexamer and the like may be used.
  • the enzyme activated by the formation of the multimer is preferably an enzyme whose activity can be easily detected or measured. For example, an enzyme that can detect or measure a product or a substrate based on the absorbance, fluorescence intensity, and emission intensity.
  • enzymes that are activated by the formation of multimers include those commonly used as reporter enzymes, for example, ⁇ -glucuronidase (activated by tetramer), ⁇ -galactosidase (activated by tetramer). , Alkaline phosphatase (activated by dimer), malate dehydrogenase (activated by dimer) and the like.
  • the mutations that reduce the binding affinity between the monomers include the mutations introduced at the binding sites between the monomers. For many enzymes that are activated by the formation of multimers, the amino acid sequence and the binding site between the monomers have been clarified. Understand how affinity can be reduced. The degree of decrease in affinity may be such that the formation of multimers becomes difficult due to the decrease in binding affinity between the monomers, and thus the difference in activity from the wild-type enzyme can be recognized. Mutants in which mutations that reduce the binding affinity between monomers are introduced include those with reduced affinity for all bonds between monomers, as well as the affinity for some bonds between monomers. It also includes the ones that have decreased only.
  • a mutant that forms a dimer but does not easily form a tetramer such as a ⁇ -glucuronidase mutant described below, is also introduced with a mutation that reduces the binding affinity between the monomers. Included in the mutant.
  • mutant in which the binding affinity between the monomers is reduced a mutant in which the 516th methionine and / or the 517th tyrosine in the amino acid sequence of Escherichia coli ⁇ -glucuronidase is substituted with another amino acid is given.
  • other amino acid substituted with the 516th methionine include lysine
  • examples of the other amino acid substituted with the 517th tyrosine include glutamic acid.
  • a mutation may be introduced into the ⁇ -glucuronidase mutant in addition to the above-mentioned mutation that decreases the binding affinity between the monomers.
  • An example of such a mutation is a mutation that improves thermostability.
  • a large number of references for example, Flores H. et al., J Mol Biol. 2002 Jan 18; 315 (3): 325-37 describe what mutations should be introduced to improve the thermostability of ⁇ -glucuronidase. As described, the person skilled in the art can identify the mutations according to those documents.
  • mutations that improve the thermostability of ⁇ -glucuronidase include a mutation in which the 27th asparagine in the amino acid sequence of Escherichia coli ⁇ -glucuronidase is replaced with tyrosine, a mutation in which the 51st phenylalanine is replaced with tyrosine, and a 64th mutation.
  • Alanine is replaced with valine, 185th aspartic acid is replaced with asparagine, 349th isoleucine is replaced with phenylalanine, 369th asparagine is replaced with serine, 525th tyrosine Is a mutation in which is substituted with phenylalanine, a mutation in which glycine at position 559 is replaced with serine, a mutation in which lysine at position 567 is replaced with arginine, a mutation in which phenylalanine at position 582 is replaced with tyrosine, and a glutamine at position 585 are histidine Placed in Mutation, substitution of 601st glycine with aspartic acid (these mutations are Flores H.
  • the position of the above-mentioned amino acid mutation indicates the position in the amino acid sequence of ⁇ -glucuronidase derived from Escherichia coli, so in the amino acid sequences of ⁇ -glucuronidase derived from other organisms, the amino acid corresponding to the above-mentioned position may not exist. .. In such a case, the amino acid sequence is aligned with the amino acid sequence of ⁇ -glucuronidase derived from Escherichia coli on the basis of the amino acid sequence identity, thereby identifying the position of the amino acid mutation.
  • the amino acid sequence of wild-type ⁇ -glucuronidase derived from Escherichia coli is shown in SEQ ID NO: 1.
  • suitable ⁇ -glucuronidase mutants include a mutant in which the 516th methionine in the amino acid sequence of Escherichia coli ⁇ -glucuronidase is replaced with lysine, and the 517th tyrosine is replaced with glutamic acid (see International Publication No. 2017/130610. 51) phenylalanine in the amino acid sequence of Escherichia coli ⁇ -glucuronidase is replaced with tyrosine, 64th alanine is replaced with valine, 185th aspartic acid is replaced with asparagine, and 516th methionine.
  • the transmembrane domain in the present invention may be any as long as it allows the fusion protein to penetrate the lipid membrane of vesicles.
  • the transmembrane domain in the present invention the whole or a part of the transmembrane domain of a natural membrane protein can be used as it is, but those into which a mutation is introduced may be used.
  • Suitable transmembrane domains can include the transmembrane domain of human epidermal growth factor receptor (EGFR).
  • the peptide in the present invention is not limited to a particular peptide, but a short peptide is preferable because it is difficult to expose it to the outside of the vesicle when the number of amino acid residues is large.
  • the number of amino acid residues in the peptide is preferably 3 to 25, more preferably 5 to 20.
  • Peptides are also protein tags such as His tag, Spy tag 002 (Keeble AH et al., Angew Chem Int Ed Engl. 2017 Dec 22; 56 (52): 16521-16525), Snoop tag (Vegginiani F et al). ., Proc. Natl. Acad. Sci. USA113 (5): 1202-1207, 2016), HA tags, myc tags, and FLAG tags are preferable.
  • the variant of the enzyme activated by the formation of the multimer, the transmembrane domain, and the peptide are arranged in this order, but the variant of the enzyme activated by the formation of the multimer is N-terminal and the variant of the enzyme is also C-terminal.
  • the variant of the enzyme that is activated by the formation of multimers may be C-terminal and the peptide N-terminal.
  • the fusion protein may consist of only the mutant enzyme, transmembrane domain, and peptide that are activated by the formation of multimers, but may also contain other peptides or proteins.
  • the fusion protein may also contain a linker between the variant of the enzyme that is activated by the formation of multimers and the transmembrane domain and / or between the transmembrane domain and the peptide.
  • the linker may be any one as long as it can normally function the mutant of the enzyme which is activated by the formation of the multimer, the transmembrane domain, and the peptide.
  • the length of the linker varies depending on the type of enzyme, transmembrane domain, and peptide used, but is usually 10 to 60 ⁇ , preferably 30 to 40 ⁇ .
  • the number of amino acids in the linker may be any number so long as it has the above-mentioned length, but is usually 5 to 50, preferably 15 to 20.
  • the amino acid sequence of the linker may be the same as the amino acid sequence of a general linker used when producing a fusion protein. Specifically, Gly-Gly-Gly-Gly-Ser (G 4 S) repeat sequence (repetition number is usually 2 to 5), Glu-Ala-Ala-Ala-Lys (EAAAK) repeat sequence, Asp- Asp-Ala-Lys-Lys (DDAKK) repeat sequence and the like can be mentioned.
  • One mutant of the enzyme that is activated by the formation of the multimer may be contained in the fusion protein, but two or more mutants may be contained in the fusion protein.
  • two variants of the enzyme are included, they are arranged adjacent to each other via a linker.
  • the linker used at this time may be the same as the above-mentioned linker.
  • Vesicles composed of lipid membranes may be similar to liposomes used for artificial cells.
  • the component of the lipid membrane may be the same as the component of a general liposome membrane, and examples thereof include phospholipid and cholesterol.
  • Phospholipids include 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1-palmitoyl-2-oleoyl- Mention may be made of sn-glycero-3-phosphocholine (POPC), of which POPC is preferably used.
  • POPC sn-glycero-3-phosphocholine
  • the size of the vesicles may be about the same as that of liposomes used for artificial cells and the like. Vesicles can be prepared in the same manner as general liposomes.
  • the biosensor of the present invention contains a fusion protein and vesicles, but may contain other substances.
  • the enzyme activated by the formation of multimers is ⁇ -glucuronidase
  • the biosensor of the present invention has the following advantages. 1) Homogeneous measurement is possible, and the antibody can be measured simply and quickly. 2) Since the enzymatic reaction is carried out in a narrow space within the vesicle, the reaction product is not diluted and the antibody can be measured with high sensitivity. 3) The vesicles to which the antibody is bound emit a signal such as fluorescence, and the vesicles to which the antibody is not bound do not emit a signal, so that the signal can be binarized and the influence of measurement error can be reduced.
  • the method for producing a biosensor of the present invention is a method for producing the above-mentioned antibody detection biosensor, which is characterized by including the following steps (1) to (5). ..
  • An aqueous solution containing reagents is prepared.
  • a commercially available expression vector into which a gene encoding the fusion protein is inserted can be used.
  • a reagent necessary for cell-free transcription a reagent used in a general cell-free transcription reaction can be used, and examples thereof include ribonucleotide, RNA polymerase, transcription cofactor and the like.
  • a reagent required for cell-free translation a reagent used in a general cell-free translation reaction can be used, and examples thereof include amino acids, ribosomes, and translation cofactors. Since reagents necessary for cell-free transcription and reagents necessary for cell-free translation are commercially available, commercially available products may be used.
  • the concentrations of the vector and the reagent in the aqueous solution are not particularly limited, and may be the same as those in general cell-free transcription reaction and cell-free translation reaction.
  • step (2) the aqueous solution prepared in step (1) is dispersed in an oil phase containing phospholipids and cholesterol to form a W / O emulsion.
  • the amount of the aqueous solution dispersed in the oil phase is not particularly limited as long as it is an amount capable of forming a W / O emulsion.
  • the concentrations of phospholipid and cholesterol in the oil phase are not particularly limited, and may be the same as those in a general method for producing a W / O emulsion.
  • the W / O emulsion generated in the step (2) is overlaid on the aqueous solution, and then centrifuged to precipitate the liposome, which contains the vector and the reagent therein, in the aqueous solution. ..
  • the aqueous solution may be any as long as it can form an aqueous phase for the W / O emulsion (oil phase).
  • the conditions of centrifugation are not particularly limited, and may be the same as the conditions in a general method for forming liposomes.
  • step (4) the liposomes formed in step (3) are collected.
  • the method for collecting the liposomes is not particularly limited, and for example, when an oil phase is formed in the upper part of the tube and an aqueous phase is formed in the lower part, and centrifugation is performed, the bottom part of the tube may be perforated to collect the liposomes. it can.
  • step (5) transcription and translation reactions proceed in the liposomes collected in step (4).
  • the method for detecting an antibody of the present invention is a method for detecting an antibody in a sample, which comprises contacting the sample with the antibody detection biosensor described above, It is characterized by having a step of detecting by a change.
  • the sample may be any sample as long as it may contain the antibody to be detected.
  • the contact method between the sample and the biosensor is not particularly limited, but usually it is carried out by allowing the sample and the biosensor to coexist in a solution.
  • Conditions such as temperature, time, pH of the solution, and amount of the biosensor used in this contacting step may be those generally used for the enzyme contained in the biosensor.
  • the temperature in this contacting step is preferably about 20 to 37 ° C.
  • the contacting time is preferably about 10 to 60 minutes
  • the pH of the solution is 6.8 to 7
  • the concentration of the biosensor in the solution is preferably about 10 to 100 nM.
  • the formation of multimers can be detected by the change (increase or expression) in the activity of the enzyme mutant contained in the biosensor.
  • the activity of the enzyme variant contained in the biosensor can be measured by an activity measuring method generally used for the enzyme.
  • the activity can be measured by adding a chromogenic substrate or a fluorescent substrate and quantifying a substance produced from the substrate.
  • chromogenic substrates for ⁇ -glucuronidase include X-Gluc, 4-nitrophenyl ⁇ -glucopyranoside, 4-nitrophenyl ⁇ -D-glucuronide, and the like
  • fluorescent substrates include 4-methylumbelliferyl- ⁇ -D- Examples thereof include glucuronide, fluorescein di- ⁇ -D-glucuronide, fluorescein di- ⁇ -D-glucuronide and dimethyl ester.
  • the substances produced from these substrates can be quantified by measuring the absorbance at a specific wavelength, the fluorescence intensity and the like.
  • the product can be quantified by measuring the absorbance around 405 nm, and if the substrate is 4-methylumbelliferyl- ⁇ -D-glucuronide, the product can be 340 The product can be quantified by exciting with fluorescence of nm and measuring the fluorescence intensity around 480 nm.
  • the substrate is membrane-permeable like fluorescein di- ⁇ -D-glucuronide and dimethyl ester, and the fluorescent substance of the product is water-soluble like fluorescein, the substrate is added from the outside of the liposome and reacted, It is preferable because the fluorescence of the product in each liposome can be individually detected.
  • the antigen detection biosensor of the present invention comprises an antibody variable region and a protein having an affinity for the peptide in the peptide portion exposed to the outside of the vesicle in the antibody detection biosensor of the present invention.
  • a biosensor for detecting an antigen that binds to an antibody variable region and more specifically, 1) a mutation of an enzyme that is activated by the formation of a multimer.
  • A) the mutant of the enzyme is a mutant into which a mutation that reduces the binding affinity between monomers has been introduced, and B) the transmembrane domain.
  • B) the transmembrane domain In penetrates the lipid membrane of the vesicle, C) a variant of the enzyme that is activated by the formation of the multimer is exposed inside the vesicle, and D) the peptide is outside the vesicle.
  • the biosensor which is exposed and which has the affinity with the peptide E), binds to the peptide exposed to the outside of the vesicle.
  • the biosensor includes a first fusion protein, a second fusion protein, and vesicles.
  • the first fusion protein penetrates the lipid membrane of the vesicle, exposing the peptide portion outside the vesicle and the enzyme portion inside the vesicle.
  • the protein portion showing affinity for the peptide in the second fusion protein binds to the peptide portion in the first fusion protein, so that the vesicle exposes the antibody variable region to the outside.
  • the enzyme does not form a multimer and is not activated because the mutation that reduces the binding affinity between the monomers is introduced.
  • reaction products such as fluorescent substances are scarcely produced.
  • the two antibody variable regions exposed outside the vesicle are attracted to the antigen. Since the antibody variable region is indirectly linked to the enzyme part inside the vesicle, the two antibody variable regions are attracted to the antigen, and the enzyme part inside the vesicle binds to form a multimer, Activate. A reaction product is generated in the vesicle by the activated enzyme, but since this reaction product is concentrated in the vesicle, even a trace amount can be easily detected.
  • vesicles that produce reaction products and vesicles that do not produce reaction products occur unless the amount of antigen is very large. Since the number of vesicles that produce a reaction product increases depending on the amount of antigen, it is possible to grasp the amount of antigen as the “number” of vesicles.
  • the same biosensors as those of the antibody detection biosensor of the present invention can be used.
  • the protein having an affinity for the peptide is not particularly limited, and can be appropriately selected according to the type of peptide.
  • An example of a combination of a peptide and a protein having an affinity for the peptide is Spy tag and Spy catcher. When Spy tag and Spy catcher are mixed, they form an isopeptide bond (Keeble AH et al., Angew Chem Int Ed Engl. 2017 Dec 22; 56 (52): 16521-16525).
  • a derivative of Spy tag capable of binding to the Spy catcher can be used, and in place of the Spy catcher, a derivative of Spy catcher capable of binding to the Spy tag can be used.
  • Snoop tag and Snoop catcher that has orthogonality with this (Vegginiani F et al., Proc. Natl. Acad. Sci. USA 113 (5): 1202-1207, 2016) is used for Alternatively or simultaneously, they can be used.
  • Snoop tags and Snoop catchers as with Spy tags and Spy catchers, these derivatives can be used instead of Snoop tags and Snoop catchers.
  • a V H region or V L region of an ordinary antibody (IgG), a single chain antibody scFv or Fab region can be used, but a VHH (camel that forms a dimer by antigen binding) Derived H chain antibody) (Chang HJ et al., ACS Synth Biol. 2018 Jan 19; 7 (1): 166-175, Sonneson GJ et al., Biochemistry. 2009 Jul 28; 48 (29): 6693-5. ) Is preferably used.
  • the antibody variable region can select the variable region of any antibody according to the antigen to be detected, and is not limited to the variable region of a specific antibody. Specifically, the variable region of an antibody that specifically binds to an antigen to be detected, which will be described later, can be used.
  • the second fusion protein may consist of only the antibody variable region and the protein showing affinity for the peptide, but may also contain other peptides or proteins.
  • the second fusion protein may include a linker between the antibody variable region and the protein membrane showing affinity for the peptide.
  • the linker may be the same as the linker contained in the fusion protein in the antibody detection biosensor described above.
  • the antigen detection method of the present invention is a method for detecting an antigen in a sample, which comprises the step of contacting the sample with the above biosensor, and the formation of a multimer by changing the enzymatic activity. It is characterized by having a step of detecting.
  • the antigen to be detected is not particularly limited, and a low molecular weight compound (for example, a compound having a molecular weight of 1000 or less) may be a detection target, and a high molecular compound such as a protein may be a detection target.
  • the detection of high molecular weight proteins can be performed using two single chain antibodies or Fab fragments. Further, since the method of the present invention can be used for diagnosis of diseases, food toxicity test, environmental analysis, etc., it is preferable to target substances related to these.
  • neonicotinoid pesticides such as imidacloprid, polychlorinated biphenyls, environmental pollutants such as bisphenol A, toxic substances such as mycotoxin, osteocalcin (effective for diagnosing osteoporosis), corticoid, estradiol, aldosterone, lysozyme (chicken).
  • Biological materials such as egg white lysozyme) and drugs such as digoxin.
  • the sample may be any sample as long as it may contain the antigen to be detected, such as samples collected from humans (blood, saliva, urine, etc.), contaminated water or Examples thereof include soil, food and raw materials for food.
  • the method of contacting the sample with the biosensor and the method of detecting the formation of the multimer can be performed in the same manner as in the antibody detection biosensor described above.
  • CACCATCATCATCATCAT a DNA encoding His 6 (CACCATCATCATCATCAT) (SEQ ID NO: 4) was constructed by using two overlapping primers (His_NdeI_Back: AAGGAGACATACATATGCACCATCATCATCATCAT (SEQ ID NO: 5) and His_Hind_Forward: ACCGCCACCAAGCTTATGATGATGATGATGGTGCA (SEQ ID NO: 6)) by thermal cycling. ..
  • the His 6 -TM fusion sequence was constructed by overlap extension PCR using His_NdeI_Back and TM_Hind_Forward as primers and the His 6 and TM DNA obtained in the previous step as template.
  • the His 6 and His 6 -TM genes thus constructed were inserted into the NdeI / HindIII digested linear pET32 vector encoding the GUS_IV5_KY gene using the In-Fusion HD cloning kit (Clontech, Takara-Bio). As a result, two types of expression vectors His 6 -GUS_IV5_KY and His 6 -TM-GUS_IV5_KY were obtained (Fig. 1).
  • the GUS_IV5_KY gene is a gene encoding a mutant of Escherichia coli GUS containing 13 mutations of N27Y, F51Y, A64V, D185N, I349F, N369S, M516K, Y525F, G559S, K567R, F582Y, Q585H, and G601D.
  • Detection of enzyme activity (5.1) The liposome suspension was incubated at 37 ° C for 2 to 4 hours. (5.2) Centrifuge at 18,000 g for 30 minutes, discard the supernatant and add 150 ⁇ L of dilution buffer to resuspend the liposomes. (5.3) Add anti-His antibody (0.1 ⁇ M, anti-His 6 Mab28-75, Wako Pure Chemical Industries), 0.1 mg / mL fluorescein di- ⁇ -D-glucuronide, dimethyl ester (Marker Gene Technologies) to the liposome suspension.
  • anti-His antibody 0.1 ⁇ M, anti-His 6 Mab28-75, Wako Pure Chemical Industries
  • fluorescein di- ⁇ -D-glucuronide dimethyl ester
  • the present invention relates to biosensors, it can be used in the industrial field handling such biosensors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

To detect an antibody at a high sensitivity, provided is a biosensor for detecting an antibody binding to a peptide, said biosensor containing 1) a fused protein containing an enzyme mutant which is activated by multimer formation, a transmembrane domain and the aforesaid peptide and 2) a vesicle composed of a lipid membrane, characterized in that: A) the enzyme mutant is a mutant having a mutation introduced thereinto by which the binding affinity between monomers is lowered; B) the transmembrane domain penetrates through the lipid membrane of the vesicle; C) the enzyme mutant, which is activated by multimer formation, is exposed inside the vesicle; and D) the peptide is exposed outside the vesicle.

Description

バイオセンサーBiosensor
 本発明は、抗体検出バイオセンサー、そのバイオセンサーの製造方法、及びそのバイオセンサーを用いた抗体の検出方法に関する。また、本発明は、抗原検出バイオセンサー、及びそのバイオセンサーを用いた抗原の検出方法に関する。 The present invention relates to an antibody detection biosensor, a method for manufacturing the biosensor, and a method for detecting an antibody using the biosensor. The present invention also relates to an antigen detection biosensor and a method for detecting an antigen using the biosensor.
 現在、臨床診断において免疫測定法はますます重要な測定技術となってきている。個々の免疫測定法を採択するにあたっては、感度・特異性の向上のみならず、測定の迅速・簡便化も大きな要素となってきている。現在主流の免疫測定法においては、タンパク質バイオマーカーの検出にあたってはサンドイッチ法、低分子検出においては競合法が測定原理として用いられる。しかしそのどちらも、数回の反応と洗浄の後に主にラベルに用いた酵素活性を測定する酵素免疫測定法であることが多く、測定には手間と数時間の時間がかかる問題がある。これに比べ、サンプルと測定試薬を混ぜて反応させ、検出するホモジニアス免疫測定法は、簡便かつ迅速な測定が可能であることから、近年注目を集めている。 Currently, immunoassays are becoming an increasingly important measurement technique in clinical diagnosis. In adopting individual immunoassays, not only improvement in sensitivity and specificity, but also rapid and simple measurement are becoming major factors. In the currently mainstream immunoassays, the sandwich method is used as a measurement principle for detecting protein biomarkers, and the competitive method is used as a measurement principle for detecting small molecules. However, both of them are often enzyme immunoassays that mainly measure the enzyme activity used for the label after several times of reaction and washing, and there is a problem that the measurement takes time and takes several hours. On the other hand, the homogeneous immunoassay method in which a sample and a measurement reagent are mixed and allowed to react with each other and detected is simple and rapid, and thus has attracted attention in recent years.
 ホモジニアス免疫測定法については、最近、本発明者によってβグルクロニダーゼ(GUS)の変異体を利用した方法が報告されている(特許文献1)。GUSは4量体を形成することで活性を示すが、アミノ酸配列に変異(例えば、大腸菌GUSの516番目のメチオニン及び517番目のチロシンがそれぞれリジン及びグルタミン酸に置換される変異)があると単量体間の親和性が低下し、2量体は形成するが、通常の状態では4量体を形成しなくなる。上記測定法は、このようなGUSの性質を利用するもので、抗体のVH領域及びGUSの変異体を含む融合タンパク質と抗体のVL領域及びGUSの変異体を含む融合タンパク質の2種類の融合タンパク質を使用する。この測定法の原理は以下の通りである。試料中に抗原が存在しない場合、VH領域とVL領域の相互作用は弱いままなので、VH領域及びVL領域と連結するGUSの変異体の2量体もそのままでほとんど4量体にはならない。一方、試料中に抗原が存在する場合、VH領域とVL領域の相互作用が強化され、この相互作用により、VH領域及びVL領域と連結するGUSの変異体の2量体も結合し、4量体を形成し、活性を示すようになる。従って、GUSの活性を測定することにより、試料中に抗原量を測定することができる。 Regarding the homogeneous immunoassay, a method utilizing a mutant of β-glucuronidase (GUS) has recently been reported by the present inventor (Patent Document 1). GUS shows activity by forming a tetramer, but if there is a mutation in the amino acid sequence (for example, mutations in which methionine at position 516 and tyrosine at position 517 of E. coli GUS are replaced by lysine and glutamic acid, respectively) Affinity between the bodies decreases, and dimers are formed, but tetramers do not form under normal conditions. The above-mentioned measurement method utilizes such a property of GUS, and there are two types of fusion proteins, that is, a fusion protein containing an antibody V H region and a GUS variant and a fusion protein containing an antibody V L region and a GUS variant. Use a fusion protein. The principle of this measuring method is as follows. If the sample does not exist antigen, since remains weak interaction V H and V L domains, the most tetramer dimer in intact variant of GUS connecting the V H region and the V L region Don't On the other hand, when the antigen is present in the sample, the interaction between the V H and V L regions is strengthened, and this interaction also binds the dimer of the GUS mutant linked to the V H and V L regions. Then, it forms a tetramer and becomes active. Therefore, the amount of antigen in the sample can be measured by measuring the activity of GUS.
国際公開第2017/130610号International Publication No. 2017/130610
 特許文献1に記載の方法は高感度で抗原を検出できる方法であるが、臨床診断などの医療分野での利用においては、より高い感度の検出方法が求められる。本発明は、このような背景の下になされたものであり、高感度のホモジニアス免疫測定手段を提供することを目的とする。 The method described in Patent Document 1 is a method capable of detecting an antigen with high sensitivity, but in the use in the medical field such as clinical diagnosis, a detection method with higher sensitivity is required. The present invention has been made under such a background, and an object thereof is to provide a highly sensitive homogeneous immunoassay means.
 本発明者は、4量体の形成を阻害する変異を導入したGUS変異体とHisタグとを含有する融合タンパク質及び脂質膜から構成される小胞からなるバイオセンサーであって、融合タンパク質が小胞の脂質膜を貫通し、Hisタグが小胞の外側、GUS変異体が小胞の内側になるように配置されるバイオセンサーを作製し、このバイオセンサーがHisタグと結合する抗体を高感度で検出できることを見出した。また、このバイオセンサーにおけるHisタグをSpyタグに置き換え、Spyタグと結合するSpyキャッチャーを介してSpyタグと抗体可変領域とを連結させると、その抗体可変領域と結合する抗原を高感度で検出できることも見出した。 The present inventor is a biosensor comprising a fusion protein containing a GUS variant into which a mutation that inhibits tetramer formation is introduced and a His tag, and a vesicle composed of a lipid membrane. We have constructed a biosensor in which the His tag is located outside the vesicle and the GUS mutant is located inside the vesicle, which penetrates the lipid membrane of the vesicle, and this biosensor is highly sensitive to the antibody that binds to the His tag. It was found that can be detected by. Also, by replacing the His tag in this biosensor with the Spy tag and connecting the Spy tag and the antibody variable region via the Spy catcher that binds to the Spy tag, the antigen that binds to the antibody variable region can be detected with high sensitivity. Also found.
 本発明は、以上の知見に基づき、完成されたものである。
 即ち、本発明は、以下の〔1〕~〔16〕を提供するものである。
The present invention has been completed based on the above findings.
That is, the present invention provides the following [1] to [16].
〔1〕ペプチドに結合する抗体を検出するためのバイオセンサーであって、1)多量体の形成により活性化する酵素の変異体と膜貫通ドメインと前記ペプチドとを含有する融合タンパク質、及び2)脂質膜から構成される小胞を含み、A)前記酵素の変異体は単量体間の結合親和性を低下させる変異が導入された変異体であること、B)前記膜貫通ドメインは前記小胞の脂質膜を貫通すること、C)前記多量体の形成により活性化する酵素の変異体は前記小胞の内部に露出すること、及びD)前記ペプチドは前記小胞の外部に露出することを特徴とするバイオセンサー。 [1] A biosensor for detecting an antibody that binds to a peptide, comprising: 1) a fusion protein containing a variant of an enzyme activated by formation of a multimer, a transmembrane domain, and the peptide, and 2) A) a vesicle composed of a lipid membrane, wherein A) the mutant of the enzyme is a mutant into which a mutation that reduces the binding affinity between monomers is introduced, and B) the transmembrane domain has the small size. Penetrate the lipid membrane of the vesicle, C) a variant of the enzyme that is activated by the formation of the multimer is exposed inside the vesicle, and D) the peptide is exposed outside the vesicle. A biosensor characterized by.
〔2〕多量体の形成により活性化する酵素の変異体が、βグルクロニダーゼの変異体であることを特徴とする〔1〕に記載のバイオセンサー。 [2] The biosensor according to [1], wherein the mutant of the enzyme activated by the formation of the multimer is a mutant of β-glucuronidase.
〔3〕βグルクロニダーゼの変異体が、大腸菌βグルクロニダーゼのアミノ酸配列における51番目のフェニルアラニンがチロシンに置換され、64番目のアラニンがバリンに置換され、185番目のアスパラギン酸がアスパラギンに置換され、516番目のメチオニンがリジンに置換され、525番目のチロシンがフェニルアラニンに置換され、559番目のグリシンがセリンに置換され、567番目のリジンがアルギニンに置換され、585番目のグルタミンがヒスチジンに置換され、601番目のグリシンがアスパラギン酸に置換された変異体であることを特徴とする〔2〕に記載のバイオセンサー。 [3] A mutant of β-glucuronidase, wherein 51st phenylalanine in the amino acid sequence of Escherichia coli β-glucuronidase is replaced with tyrosine, 64th alanine is replaced with valine, 185th aspartic acid is replaced with asparagine, and 516th position Methionine is replaced with lysine, 525th tyrosine is replaced with phenylalanine, 559th glycine is replaced with serine, 567th lysine is replaced with arginine, 585th glutamine is replaced with histidine, and 601st position. The biosensor according to [2], wherein the glycine is a mutant in which aspartic acid is substituted.
〔4〕膜貫通ドメインが、上皮成長因子受容体の膜貫通ドメインであることを特徴とする〔1〕乃至〔3〕のいずれかに記載のバイオセンサー。 [4] The biosensor according to any one of [1] to [3], wherein the transmembrane domain is a transmembrane domain of epidermal growth factor receptor.
〔5〕脂質膜が、リン脂質とコレステロールを含む脂質膜であることを特徴とする〔1〕乃至〔4〕のいずれかに記載のバイオセンサー。 [5] The biosensor according to any one of [1] to [4], wherein the lipid membrane is a lipid membrane containing phospholipid and cholesterol.
〔6〕ペプチドが、Hisタグ、Spyタグ、Snoopタグ、HAタグ、mycタグ、又はFLAGタグであることを特徴とする〔1〕乃至〔5〕のいずれに記載のバイオセンサー。 [6] The biosensor according to any one of [1] to [5], wherein the peptide is a His tag, Spy tag, Snoop tag, HA tag, myc tag, or FLAG tag.
〔7〕以下の工程(1)~(5)を含むことを特徴とする〔1〕乃至〔6〕のいずれかに記載のバイオセンサーの製造方法、
(1)多量体の形成により活性化する酵素の変異体と膜貫通ドメインとペプチドとを含有する融合タンパク質を発現するベクター、無細胞転写に必要な試薬、及び無細胞翻訳に必要な試薬を含む水溶液を調製する工程、
(2)工程(1)で調製した水溶液を、リン脂質及びコレステロールを含む油相に分散させ、W/Oエマルションを生成させる工程、
(3)工程(2)で生成させたW/Oエマルションを、水溶液上に重層し、遠心分離によって沈降させることによって、内部に前記ベクター及び前記試薬を含むリポソームを水溶液中に形成させる工程、
(4)工程(3)で形成させたリポソームを回収する工程、
(5)工程(4)で回収したリポソーム内で、転写及び翻訳反応を進行させる工程。
[7] The method for producing a biosensor according to any one of [1] to [6], which comprises the following steps (1) to (5):
(1) Includes a vector expressing a fusion protein containing a mutant of an enzyme activated by the formation of a multimer, a transmembrane domain and a peptide, a reagent required for cell-free transcription, and a reagent required for cell-free translation Preparing an aqueous solution,
(2) A step of dispersing the aqueous solution prepared in step (1) in an oil phase containing phospholipids and cholesterol to produce a W / O emulsion,
(3) A step of forming a liposome containing the vector and the reagent inside in an aqueous solution by overlaying the W / O emulsion generated in step (2) on the aqueous solution and sedimenting by centrifugation.
(4) a step of collecting the liposome formed in the step (3),
(5) A step of advancing transcription and translation reactions in the liposome recovered in step (4).
〔8〕試料中の抗体を検出する方法であって、試料を〔1〕乃至〔6〕のいずれかに記載のバイオセンサーと接触させる工程、及び多量体の形成を酵素活性の変化により検出する工程を有することを特徴とする抗体の検出方法。 [8] A method for detecting an antibody in a sample, comprising the step of contacting the sample with the biosensor according to any one of [1] to [6], and detecting the formation of a multimer by a change in enzyme activity. A method for detecting an antibody, which comprises a step.
〔9〕抗体可変領域に結合する抗原を検出するためのバイオセンサーであって、1)多量体の形成により活性化する酵素の変異体と膜貫通ドメインとペプチドとを含有する第一の融合タンパク質、2)前記抗体可変領域と前記ペプチドに親和性を示すタンパク質とを含有する第二の融合タンパク質、及び3)脂質膜から構成される小胞を含み、A)前記酵素の変異体は単量体間の結合親和性を低下させる変異が導入された変異体であること、B)前記膜貫通ドメインは前記小胞の脂質膜を貫通すること、C)前記多量体の形成により活性化する酵素の変異体は前記小胞の内部に露出すること、D)前記ペプチドは前記小胞の外部に露出すること、及びE)ペプチドに親和性を示す前記タンパク質は、前記小胞の外部に露出した前記ペプチドと結合することを特徴とするバイオセンサー。 [9] A biosensor for detecting an antigen that binds to an antibody variable region, comprising: 1) a first fusion protein containing a variant of an enzyme that is activated by the formation of a multimer, a transmembrane domain, and a peptide. 2) a second fusion protein containing the antibody variable region and a protein having an affinity for the peptide, and 3) a vesicle composed of a lipid membrane, A mutant into which a mutation that reduces binding affinity between the bodies is introduced, B) the transmembrane domain penetrates the lipid membrane of the vesicle, and C) an enzyme that is activated by the formation of the multimer. Is exposed inside the vesicle, D) the peptide is exposed outside the vesicle, and E) the protein having an affinity for the peptide is exposed outside the vesicle. With the peptide Biosensor, characterized in that the coupling.
〔10〕多量体の形成により活性化する酵素の変異体が、βグルクロニダーゼの変異体であることを特徴とする〔9〕に記載のバイオセンサー。 [10] The biosensor according to [9], wherein the mutant of the enzyme activated by the formation of the multimer is a mutant of β-glucuronidase.
〔11〕βグルクロニダーゼの変異体が、大腸菌βグルクロニダーゼのアミノ酸配列における51番目のフェニルアラニンがチロシンに置換され、64番目のアラニンがバリンに置換され、185番目のアスパラギン酸がアスパラギンに置換され、516番目のメチオニンがリジンに置換され、525番目のチロシンがフェニルアラニンに置換され、559番目のグリシンがセリンに置換され、567番目のリジンがアルギニンに置換され、585番目のグルタミンがヒスチジンに置換され、601番目のグリシンがアスパラギン酸に置換された変異体であることを特徴とする〔10〕に記載のバイオセンサー。 [11] The β-glucuronidase mutant has a configuration in which the 51st phenylalanine in the amino acid sequence of Escherichia coli β-glucuronidase is replaced by tyrosine, the 64th alanine is replaced by valine, the 185th aspartic acid is replaced by asparagine, and the 516th position. Methionine is replaced with lysine, 525th tyrosine is replaced with phenylalanine, 559th glycine is replaced with serine, 567th lysine is replaced with arginine, 585th glutamine is replaced with histidine, and 601st position. The biosensor according to [10], wherein the glycine is a mutant in which aspartic acid is substituted.
〔12〕膜貫通ドメインが、上皮成長因子受容体の膜貫通ドメインであることを特徴とする〔9〕乃至〔11〕のいずれかに記載のバイオセンサー。 [12] The biosensor according to any one of [9] to [11], wherein the transmembrane domain is a transmembrane domain of epidermal growth factor receptor.
〔13〕脂質膜が、リン脂質とコレステロールを含む脂質膜であることを特徴とする〔9〕乃至〔12〕のいずれかに記載のバイオセンサー。 [13] The biosensor according to any one of [9] to [12], wherein the lipid membrane is a lipid membrane containing phospholipid and cholesterol.
〔14〕ペプチドがSpyタグ、Snoopタグ又はその誘導体であり、ペプチドに親和性を示すタンパク質がSpyキャッチャー、Snoopキャッチャー又はその誘導体であることを特徴とする〔9〕乃至〔13〕のいずれかに記載のバイオセンサー。 [14] The peptide according to any one of [9] to [13], wherein the peptide is an Spy tag, a Snoop tag or a derivative thereof, and the protein having an affinity for the peptide is an Spy catcher, a Snoop catcher or a derivative thereof The biosensor described.
〔15〕 抗体可変領域が、ラクダ属重鎖抗体由来VHHであることを特徴とする〔9〕乃至〔14〕のいずれかに記載のバイオセンサー。 [15] The biosensor according to any one of [9] to [14], wherein the antibody variable region is VHH derived from a camelid heavy chain antibody.
〔16〕試料中の抗原を検出する方法であって、試料を〔9〕乃至〔15〕のいずれかに記載のバイオセンサーと接触させる工程、及び多量体の形成を酵素活性の変化により検出する工程を有することを特徴とする抗原の検出方法。 [16] A method for detecting an antigen in a sample, which comprises contacting the sample with the biosensor according to any of [9] to [15], and detecting the formation of a multimer by a change in enzyme activity. A method for detecting an antigen, which comprises a step.
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2018-207624の明細書および/または図面に記載される内容を包含する。 The present specification includes the contents described in the specification and / or drawings of the Japanese patent application, Japanese Patent Application No. 2018-207624, which is the basis of the priority right of the present application.
 本発明は、新規なバイオセンサーを提供する。このバイオセンサーは、簡便かつ高感度で物質を検出することができるので、臨床診断などの医療分野での利用が期待される。 The present invention provides a novel biosensor. Since this biosensor can detect a substance easily and with high sensitivity, it is expected to be used in the medical field such as clinical diagnosis.
発現ベクター His6-GUS_IV5_KYおよびHis6-TM-GUS_IV5_KYの構造を示す図。Shows the structure of the expression vector His 6 -GUS_IV5_KY and His 6 -TM-GUS_IV5_KY. 酵素基質添加10分後のリポソームの透過画像(上段)及び蛍光画像(下段)。A transmission image (top) and a fluorescence image (bottom) of the liposome 10 minutes after the addition of the enzyme substrate. 酵素基質添加1時間後のリポソームの透過画像(上段)及び蛍光画像(下段)。A transmission image (upper row) and a fluorescence image (lower row) of the liposome 1 hour after the addition of the enzyme substrate. 抗His抗体存在下で、GUS4量体が形成される機序を模式的に表した図。The figure which represented typically the mechanism in which GUS tetramer is formed in presence of anti-His antibody. 酵素基質添加5~10分後のリポソームの透過画像及び蛍光画像。左上はHis6-GUS_IV5_KY及びHis6-TM-GUS_IV5_KYベクターを発現させ、抗His抗体を加えた場合の画像であり、左下はHis6-GUS_IV5_KY及びHis6-TM-GUS_IV5_KYベクターを発現させ、抗His抗体を加えなかった場合の画像であり、右上はHis6-GUS_IV5_KYベクターのみを発現させ、抗His抗体を加えた場合の画像であり、右下はHis6-GUS_IV5_KYベクターのみを発現させ、抗His抗体を加えなかった場合の画像である。Transmission and fluorescence images of liposomes 5 to 10 minutes after addition of enzyme substrate. The upper left is an image when expressing His 6 -GUS_IV5_KY and His 6 -TM-GUS_IV5_KY vector, and an anti-His antibody is added, and the lower left is expressing His 6 -GUS_IV5_KY and His 6 -TM-GUS_IV5_KY vector, and anti-His The image when no antibody was added, the upper right is an image when only the His 6 -GUS_IV5_KY vector was expressed, and the image when an anti-His antibody was added, the lower right is only the His 6 -GUS_IV5_KY vector was expressed, and the anti-His It is an image when an antibody is not added.
 以下、本発明を詳細に説明する。
(A)抗体検出バイオセンサー
 本発明の抗体検出バイオセンサーは、ペプチドに結合する抗体を検出するためのバイオセンサーであって、1)多量体の形成により活性化する酵素の変異体と膜貫通ドメインと前記ペプチドとを含有する融合タンパク質、及び2)脂質膜から構成される小胞を含み、A)前記酵素の変異体は単量体間の結合親和性を低下させる変異が導入された変異体であること、B)前記膜貫通ドメインは前記小胞の脂質膜を貫通すること、C)前記多量体の形成により活性化する酵素の変異体は前記小胞の内部に露出すること、及びD)前記ペプチドは前記小胞の外部に露出することを特徴とするバイオセンサーである。
Hereinafter, the present invention will be described in detail.
(A) Antibody-detecting biosensor The antibody-detecting biosensor of the present invention is a biosensor for detecting an antibody that binds to a peptide, and is 1) a mutant of an enzyme and a transmembrane domain that are activated by the formation of a multimer. And a peptide containing the above-mentioned peptide, and 2) a vesicle composed of a lipid membrane, and A) a mutant of the enzyme, wherein the mutant has a mutation that reduces binding affinity between monomers. B) the transmembrane domain penetrates the lipid membrane of the vesicle, C) the variant of the enzyme activated by the formation of the multimer is exposed inside the vesicle, and ) A biosensor, wherein the peptide is exposed to the outside of the vesicle.
 本発明のバイオセンサーにより、試料中の抗体を検出する原理を以下に記載する。このバイオセンサーは、融合タンパク質及び小胞を含んでいる。融合タンパク質は小胞の脂質膜を貫通し、抗体と結合するペプチド部分は小胞の外部に露出し、酵素部分は小胞の内部に露出する。試料中に抗体が存在しない場合、酵素は、単量体間の結合親和性を低下させる変異が導入されているため、多量体を形成せず、活性化しない。このため、酵素基質が存在しても、蛍光物質などの反応生成物はほとんど生成しない。一方、試料中に抗体が存在する場合、小胞の外部に露出した二つのペプチドが抗体に引き寄せられ、これにより、ペプチドに連結する酵素部分が結合し、多量体を形成し、活性化する。活性化した酵素によって小胞内に反応生成物が生じるが、この反応生成物は小胞内で濃縮されるので、微量であっても容易に検出することができる。また、このような酵素の活性化は、小胞ごとに起きるので、抗体の量が非常に多い場合を除き、反応生成物を生成する小胞と反応生成物を生成しない小胞とが生じる。反応生成物を生成する小胞の数は、抗体の量に応じて多くなるので、抗体量を小胞の「数」として捉えることが可能になる。 The principle of detecting an antibody in a sample by the biosensor of the present invention is described below. This biosensor contains a fusion protein and a vesicle. The fusion protein penetrates the lipid membrane of the vesicles, the peptide portion that binds the antibody is exposed outside the vesicle, and the enzyme portion is exposed inside the vesicle. When the antibody is not present in the sample, the enzyme does not form a multimer and is not activated because a mutation that reduces the binding affinity between the monomers is introduced. Therefore, even if an enzyme substrate is present, reaction products such as fluorescent substances are scarcely produced. On the other hand, when the antibody is present in the sample, the two peptides exposed on the outside of the vesicle are attracted to the antibody, whereby the enzyme moiety linked to the peptide binds, forms a multimer, and is activated. A reaction product is generated in the vesicle by the activated enzyme, but since this reaction product is concentrated in the vesicle, even a trace amount can be easily detected. Further, since such enzyme activation occurs for each vesicle, vesicles that produce a reaction product and vesicles that do not produce a reaction product occur unless the amount of antibody is very large. Since the number of vesicles that produce a reaction product increases depending on the amount of antibody, the amount of antibody can be grasped as the “number” of vesicles.
 「多量体の形成により活性化する酵素」とは、単量体が幾つか結合することによって初めて活性を示す、又は活性が向上する酵素を意味する。多量体を構成する単量体の数は特に限定されず、2量体、3量体、4量体、5量体、6量体などのいずれで活性化する酵素でもよい。多量体の形成により活性化する酵素は、活性を容易に検出又は測定できる酵素であることが好ましい。例えば、生成物又は基質を吸光度、蛍光強度、発光強度により検出又は測定できる酵素である。多量体の形成により活性化する酵素の具体例としては、レポーター酵素として一般的に使用されているもの、例えば、βグルクロニダーゼ(4量体で活性化)、βガラクトシダーゼ(4量体で活性化)、アルカリフォスファターゼ(2量体で活性化)、リンゴ酸脱水素酵素(2量体で活性化)などを挙げることができる。 “The enzyme that is activated by the formation of a multimer” means an enzyme that exhibits activity or improves activity only when several monomers are bound. The number of monomers constituting the multimer is not particularly limited, and an enzyme that activates any of a dimer, a trimer, a tetramer, a pentamer, a hexamer and the like may be used. The enzyme activated by the formation of the multimer is preferably an enzyme whose activity can be easily detected or measured. For example, an enzyme that can detect or measure a product or a substrate based on the absorbance, fluorescence intensity, and emission intensity. Specific examples of enzymes that are activated by the formation of multimers include those commonly used as reporter enzymes, for example, β-glucuronidase (activated by tetramer), β-galactosidase (activated by tetramer). , Alkaline phosphatase (activated by dimer), malate dehydrogenase (activated by dimer) and the like.
 単量体間の結合親和性を低下させる変異としては、単量体間の結合部位に導入されている変異を挙げることができる。多量体の形成により活性化する酵素の多くは、そのアミノ酸配列や単量体間の結合部位が明らかになっているので、当業者は、どのような変異を導入すれば単量体間の結合親和性を低下させることができるかを理解している。親和性の低下の程度は、単量体間の結合親和性の低下により、多量体が形成しにくくなり、それにより野生型酵素との活性の違いを認識できる程度であればよい。単量体間の結合親和性を低下させる変異が導入された変異体には、単量体間のすべての結合の親和性が低下したもののほか、単量体間の一部の結合の親和性のみが低下したものも含まれる。従って、後述するβグルクロニダーゼの変異体のように、2量体を形成するが、4量体を形成しにくいような変異体も、この単量体間の結合親和性を低下させる変異が導入された変異体に含まれる。 The mutations that reduce the binding affinity between the monomers include the mutations introduced at the binding sites between the monomers. For many enzymes that are activated by the formation of multimers, the amino acid sequence and the binding site between the monomers have been clarified. Understand how affinity can be reduced. The degree of decrease in affinity may be such that the formation of multimers becomes difficult due to the decrease in binding affinity between the monomers, and thus the difference in activity from the wild-type enzyme can be recognized. Mutants in which mutations that reduce the binding affinity between monomers are introduced include those with reduced affinity for all bonds between monomers, as well as the affinity for some bonds between monomers. It also includes the ones that have decreased only. Therefore, a mutant that forms a dimer but does not easily form a tetramer, such as a β-glucuronidase mutant described below, is also introduced with a mutation that reduces the binding affinity between the monomers. Included in the mutant.
 単量体間の結合親和性を低下させた変異体の具体例としては、大腸菌βグルクロニダーゼのアミノ酸配列における516番目のメチオニン及び/又は517番目のチロシンが他のアミノ酸に置換された変異体を挙げることができる。516番目のメチオニンと置換される他のアミノ酸としては、リジンを挙げることができ、517番目のチロシンと置換される他のアミノ酸としては、グルタミン酸を挙げることができる。 As a specific example of the mutant in which the binding affinity between the monomers is reduced, a mutant in which the 516th methionine and / or the 517th tyrosine in the amino acid sequence of Escherichia coli β-glucuronidase is substituted with another amino acid is given. be able to. Examples of the other amino acid substituted with the 516th methionine include lysine, and examples of the other amino acid substituted with the 517th tyrosine include glutamic acid.
 βグルクロニダーゼ変異体には、上述した単量体間の結合親和性を低下させる変異の他にも変異が導入されていてもよい。このような変異としては、熱安定性を向上させる変異を例示できる。どのような変異を導入すればβグルクロニダーゼの熱安定性が向上するかは多くの文献(例えば、Flores H. et al., J Mol Biol. 2002 Jan 18;315(3):325-37)に記載されているので、当業者であればそれらの文献に従って変異を特定することができる。βグルクロニダーゼの熱安定性を向上させる変異の具体例としては、大腸菌βグルクロニダーゼのアミノ酸配列における27番目のアスパラギンがチロシンに置換される変異、51番目のフェニルアラニンがチロシンに置換される変異、64番目のアラニンがバリンに置換される変異、185番目のアスパラギン酸がアスパラギンに置換される変異、349番目のイソロイシンがフェニルアラニンに置換される変異、369番目のアスパラギンがセリンに置換される変異、525番目のチロシンがフェニルアラニンに置換される変異、559番目のグリシンがセリンに置換される変異、567番目のリジンがアルギニンに置換される変異、582番目のフェニルアラニンがチロシンに置換される変異、585番目のグルタミンがヒスチジンに置換される変異、601番目のグリシンがアスパラギン酸に置換される変異(これらの変異は、Flores H. et al., J Mol Biol. 2002 Jan 18;315(3):325-37の変異体IV-5に含まれる変異である。)を挙げることができる。なお、上述したアミノ酸の変異の位置は、大腸菌由来のβグルクロニダーゼのアミノ酸配列における位置を示すので、他の生物由来のβグルクロニダーゼのアミノ酸配列では、上述した位置に該当するアミノ酸が存在しない場合もある。このような場合には、アミノ酸配列の同一性に基づいて、大腸菌由来のβグルクロニダーゼのアミノ酸配列と整列させ、それによってアミノ酸の変異の位置を特定する。大腸菌由来の野生型のβグルクロニダーゼのアミノ酸配列を配列番号1に示す。 A mutation may be introduced into the β-glucuronidase mutant in addition to the above-mentioned mutation that decreases the binding affinity between the monomers. An example of such a mutation is a mutation that improves thermostability. A large number of references (for example, Flores H. et al., J Mol Biol. 2002 Jan 18; 315 (3): 325-37) describe what mutations should be introduced to improve the thermostability of β-glucuronidase. As described, the person skilled in the art can identify the mutations according to those documents. Specific examples of mutations that improve the thermostability of β-glucuronidase include a mutation in which the 27th asparagine in the amino acid sequence of Escherichia coli β-glucuronidase is replaced with tyrosine, a mutation in which the 51st phenylalanine is replaced with tyrosine, and a 64th mutation. Alanine is replaced with valine, 185th aspartic acid is replaced with asparagine, 349th isoleucine is replaced with phenylalanine, 369th asparagine is replaced with serine, 525th tyrosine Is a mutation in which is substituted with phenylalanine, a mutation in which glycine at position 559 is replaced with serine, a mutation in which lysine at position 567 is replaced with arginine, a mutation in which phenylalanine at position 582 is replaced with tyrosine, and a glutamine at position 585 are histidine Placed in Mutation, substitution of 601st glycine with aspartic acid (these mutations are Flores H. et al., J Mol Biol. 2002 Jan 18; 315 (3): 325-37 variant IV -5 is a mutation included in -5). The position of the above-mentioned amino acid mutation indicates the position in the amino acid sequence of β-glucuronidase derived from Escherichia coli, so in the amino acid sequences of β-glucuronidase derived from other organisms, the amino acid corresponding to the above-mentioned position may not exist. .. In such a case, the amino acid sequence is aligned with the amino acid sequence of β-glucuronidase derived from Escherichia coli on the basis of the amino acid sequence identity, thereby identifying the position of the amino acid mutation. The amino acid sequence of wild-type β-glucuronidase derived from Escherichia coli is shown in SEQ ID NO: 1.
 好適なβグルクロニダーゼ変異体の具体例としては、大腸菌βグルクロニダーゼのアミノ酸配列における516番目のメチオニンがリジンに置換され、517番目のチロシンがグルタミン酸に置換された変異体(国際公開第2017/130610号に記載されている変異体)や大腸菌βグルクロニダーゼのアミノ酸配列における51番目のフェニルアラニンがチロシンに置換され、64番目のアラニンがバリンに置換され、185番目のアスパラギン酸がアスパラギンに置換され、516番目のメチオニンがリジンに置換され、525番目のチロシンがフェニルアラニンに置換され、559番目のグリシンがセリンに置換され、567番目のリジンがアルギニンに置換され、585番目のグルタミンがヒスチジンに置換され、601番目のグリシンがアスパラギン酸に置換された変異体を挙げることができる。 Specific examples of suitable β-glucuronidase mutants include a mutant in which the 516th methionine in the amino acid sequence of Escherichia coli β-glucuronidase is replaced with lysine, and the 517th tyrosine is replaced with glutamic acid (see International Publication No. 2017/130610. 51) phenylalanine in the amino acid sequence of Escherichia coli β-glucuronidase is replaced with tyrosine, 64th alanine is replaced with valine, 185th aspartic acid is replaced with asparagine, and 516th methionine. Is replaced with lysine, 525th tyrosine is replaced with phenylalanine, 559th glycine is replaced with serine, 567th lysine is replaced with arginine, 585th glutamine is replaced with histidine, and 601st glycine is replaced. Asus Can be exemplified mutants substituted Ragin acid.
 本発明における膜貫通ドメインは、融合タンパク質が小胞の脂質膜を貫通できるようにするものであればどのようなものでもよい。本発明における膜貫通ドメインとしては、天然の膜タンパク質の膜貫通ドメインの全部又は一部をそのまま使用することができるが、それらに変異を導入したものを使用してもよい。好適な膜貫通ドメインとしては、ヒト上皮成長因子受容体(EGFR)の膜貫通ドメインを挙げることができる。 The transmembrane domain in the present invention may be any as long as it allows the fusion protein to penetrate the lipid membrane of vesicles. As the transmembrane domain in the present invention, the whole or a part of the transmembrane domain of a natural membrane protein can be used as it is, but those into which a mutation is introduced may be used. Suitable transmembrane domains can include the transmembrane domain of human epidermal growth factor receptor (EGFR).
 本発明におけるペプチドは特定のものに限定されないが、アミノ酸残基数が多いと小胞の外部に露出し難くなるため、短いペプチドであることが好ましい。具体的には、ペプチドのアミノ酸残基数は、3~25が好ましく、5~20がより好ましい。また、ペプチドは、タンパク質タグ、例えば、Hisタグ、Spyタグ002(Keeble AH et al., Angew Chem Int Ed Engl. 2017 Dec 22;56(52):16521-16525)、Snoopタグ (Vegginiani F et al., Proc. Natl. Acad. Sci. USA 113(5):1202-1207, 2016)、HAタグ、mycタグ、FLAGタグであることが好ましい。 The peptide in the present invention is not limited to a particular peptide, but a short peptide is preferable because it is difficult to expose it to the outside of the vesicle when the number of amino acid residues is large. Specifically, the number of amino acid residues in the peptide is preferably 3 to 25, more preferably 5 to 20. Peptides are also protein tags such as His tag, Spy tag 002 (Keeble AH et al., Angew Chem Int Ed Engl. 2017 Dec 22; 56 (52): 16521-16525), Snoop tag (Vegginiani F et al). ., Proc. Natl. Acad. Sci. USA113 (5): 1202-1207, 2016), HA tags, myc tags, and FLAG tags are preferable.
 融合タンパク質では、多量体の形成により活性化する酵素の変異体、膜貫通ドメイン、ペプチドの順に配置されるが、多量体の形成により活性化する酵素の変異体がN末端でペプチドがC末端でもよく、逆に、多量体の形成により活性化する酵素の変異体がC末端でペプチドがN末端でもよい。 In the fusion protein, the variant of the enzyme activated by the formation of the multimer, the transmembrane domain, and the peptide are arranged in this order, but the variant of the enzyme activated by the formation of the multimer is N-terminal and the variant of the enzyme is also C-terminal. Well, conversely, the variant of the enzyme that is activated by the formation of multimers may be C-terminal and the peptide N-terminal.
 融合タンパク質は、多量体の形成により活性化する酵素の変異体、膜貫通ドメイン、ペプチドの三者のみからなっていてもよいが、他のペプチドやタンパク質などを含んでいてもよい。また、融合タンパク質は、多量体の形成により活性化する酵素の変異体と膜貫通ドメインとの間及び/又は膜貫通ドメインとペプチドとの間に、リンカーを含んでいてもよい。リンカーは、多量体の形成により活性化する酵素の変異体、膜貫通ドメイン、ペプチドを正常に機能させることのできるものであればどのようなものでもよい。リンカーの長さは、使用する酵素、膜貫通ドメイン、ペプチドの種類により異なるが、通常は、10~60Åであり、好ましくは、30~40Åである。リンカーのアミノ酸の数は、前記した長さになるようなアミノ酸数であればよいが、通常は、5~50であり、好ましくは、15~20である。リンカーのアミノ酸配列は、融合タンパク質の作製の際に使用される一般的なリンカーのアミノ酸配列と同様のものでよい。具体的には、Gly-Gly-Gly-Gly-Ser(G4S)の繰り返し配列(繰り返し数は通常2~5)、Glu-Ala-Ala-Ala-Lys (EAAAK)の繰り返し配列、Asp-Asp-Ala-Lys-Lys (DDAKK)の繰り返し配列などを挙げることができる。 The fusion protein may consist of only the mutant enzyme, transmembrane domain, and peptide that are activated by the formation of multimers, but may also contain other peptides or proteins. The fusion protein may also contain a linker between the variant of the enzyme that is activated by the formation of multimers and the transmembrane domain and / or between the transmembrane domain and the peptide. The linker may be any one as long as it can normally function the mutant of the enzyme which is activated by the formation of the multimer, the transmembrane domain, and the peptide. The length of the linker varies depending on the type of enzyme, transmembrane domain, and peptide used, but is usually 10 to 60 Å, preferably 30 to 40 Å. The number of amino acids in the linker may be any number so long as it has the above-mentioned length, but is usually 5 to 50, preferably 15 to 20. The amino acid sequence of the linker may be the same as the amino acid sequence of a general linker used when producing a fusion protein. Specifically, Gly-Gly-Gly-Gly-Ser (G 4 S) repeat sequence (repetition number is usually 2 to 5), Glu-Ala-Ala-Ala-Lys (EAAAK) repeat sequence, Asp- Asp-Ala-Lys-Lys (DDAKK) repeat sequence and the like can be mentioned.
 多量体の形成により活性化する酵素の変異体は、融合タンパク質中に一つ含まれればよいが、二つ含まれていてもよく、またそれ以上含まれていてもよい。前記酵素の変異体が二つ含まれる場合、これらはリンカーを介して隣接するように配置される。このとき使用されるリンカーは、上述したリンカーと同様のものでよい。 One mutant of the enzyme that is activated by the formation of the multimer may be contained in the fusion protein, but two or more mutants may be contained in the fusion protein. When two variants of the enzyme are included, they are arranged adjacent to each other via a linker. The linker used at this time may be the same as the above-mentioned linker.
 脂質膜から構成される小胞は、人工細胞などに使用されるリポソームと同様のものでよい。脂質膜の成分は、一般的なリポソームの膜の成分と同様のものでよく、例えば、リン脂質やコレステロールなどである。リン脂質としては、1,2-ジパルミトイル-sn-グリセロ-3-ホスホコリン(DPPC)、1,2-ジステアロイル-sn-グリセロ-3-ホスホコリン(DSPC)、1-パルミトイル-2-オレオイル-sn-グリセロ-3-ホスホコリン(POPC)を挙げることができ、これらの中ではPOPCを使用するのが好ましい。小胞の大きさは、人工細胞などに使用されるリポソームと同程度の大きさでよい。小胞は、一般的なリポソームと同様の方法で作製することができる。 Vesicles composed of lipid membranes may be similar to liposomes used for artificial cells. The component of the lipid membrane may be the same as the component of a general liposome membrane, and examples thereof include phospholipid and cholesterol. Phospholipids include 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1-palmitoyl-2-oleoyl- Mention may be made of sn-glycero-3-phosphocholine (POPC), of which POPC is preferably used. The size of the vesicles may be about the same as that of liposomes used for artificial cells and the like. Vesicles can be prepared in the same manner as general liposomes.
 本発明のバイオセンサーは、融合タンパク質と小胞を含むが、これら以外のものを含んでいてもよい。例えば、多量体の形成により活性化する酵素がβグルクロニダーゼである場合、膜貫通ドメインを持たない融合タンパク質が小胞中に含まれていることが好ましい。これは、以下の理由からである。βグルクロニダーゼは4量体を形成することにより活性型になるが、抗体の存在により、二つの融合タンパク質が近接しても、融合タンパク質には通常1分子のβグルクロニダーゼ変異体しか含まれないので、形成されるのは2量体であり、4量体は形成されない。このとき、小胞内に膜貫通ドメインを持たない融合タンパク質が存在すれば、それらは、上記2量体に更に結合し、4量体を形成することができる。 The biosensor of the present invention contains a fusion protein and vesicles, but may contain other substances. For example, when the enzyme activated by the formation of multimers is β-glucuronidase, it is preferable that the vesicle contains a fusion protein having no transmembrane domain. This is for the following reason. β-glucuronidase becomes an active form by forming a tetramer, but even if two fusion proteins come close to each other due to the presence of an antibody, the fusion protein usually contains only one molecule of β-glucuronidase mutant. It is a dimer that forms, and a tetramer does not. At this time, if there are fusion proteins having no transmembrane domain in the vesicles, they can further bind to the above dimer and form a tetramer.
 本発明のバイオセンサーは、以下のような利点を有する。
1)ホモジニアス測定が可能であり、簡便かつ迅速に抗体を測定できる。
2)酵素反応は小胞内の狭い空間内で行われるので、反応生成物が希釈されず、抗体を高感度で測定することができる。
3)抗体の結合した小胞は蛍光などのシグナルを発し、抗体の結合しない小胞はシグナルを発しないので、シグナルを2値化することができ、測定誤差の影響を低減することができる。
The biosensor of the present invention has the following advantages.
1) Homogeneous measurement is possible, and the antibody can be measured simply and quickly.
2) Since the enzymatic reaction is carried out in a narrow space within the vesicle, the reaction product is not diluted and the antibody can be measured with high sensitivity.
3) The vesicles to which the antibody is bound emit a signal such as fluorescence, and the vesicles to which the antibody is not bound do not emit a signal, so that the signal can be binarized and the influence of measurement error can be reduced.
(B)バイオセンサーの製造方法
 本発明のバイオセンサーの製造方法は、上記抗体検出バイオセンサーの製造方法であって、下記の工程(1)~(5)を含むことを特徴とするものである。
(B) Method for producing biosensor The method for producing a biosensor of the present invention is a method for producing the above-mentioned antibody detection biosensor, which is characterized by including the following steps (1) to (5). ..
 工程(1)では、多量体の形成により活性化する酵素の変異体と膜貫通ドメインとペプチドとを含有する融合タンパク質を発現するベクター、無細胞転写に必要な試薬、及び無細胞翻訳に必要な試薬を含む水溶液を調製する。 In the step (1), a vector expressing a fusion protein containing a mutant of an enzyme activated by the formation of a multimer, a transmembrane domain and a peptide, a reagent required for cell-free transcription, and a cell-free translation necessary. An aqueous solution containing reagents is prepared.
 上記融合タンパク質を発現するベクターとしては、融合タンパク質をコードする遺伝子を市販の発現ベクターに挿入したものを使用することができる。無細胞転写に必要な試薬としては、一般的な無細胞転写反応において使用される試薬を使用でき、例えば、リボヌクレオチド、RNAポリメラーゼ、転写補助因子などを挙げることができる。無細胞翻訳に必要な試薬としては、一般的な無細胞翻訳反応において使用される試薬を使用でき、例えば、アミノ酸、リボソーム、翻訳補助因子などを挙げることができる。無細胞転写に必要な試薬及び無細胞翻訳に必要な試薬は、市販されているので、市販品を使用してもよい。ベクター及び試薬の水溶液中の濃度は特に限定されず、一般的な無細胞転写反応及び無細胞翻訳反応における濃度と同様の濃度でよい。 As the vector expressing the above fusion protein, a commercially available expression vector into which a gene encoding the fusion protein is inserted can be used. As a reagent necessary for cell-free transcription, a reagent used in a general cell-free transcription reaction can be used, and examples thereof include ribonucleotide, RNA polymerase, transcription cofactor and the like. As a reagent required for cell-free translation, a reagent used in a general cell-free translation reaction can be used, and examples thereof include amino acids, ribosomes, and translation cofactors. Since reagents necessary for cell-free transcription and reagents necessary for cell-free translation are commercially available, commercially available products may be used. The concentrations of the vector and the reagent in the aqueous solution are not particularly limited, and may be the same as those in general cell-free transcription reaction and cell-free translation reaction.
 工程(2)では、工程(1)で調製した水溶液を、リン脂質及びコレステロールを含む油相に分散させ、W/Oエマルションを生成させる。 In step (2), the aqueous solution prepared in step (1) is dispersed in an oil phase containing phospholipids and cholesterol to form a W / O emulsion.
 油相に分散させる水溶液の量は、W/Oエマルションを生成させることができる量であれば特に限定されない。油相中のリン脂質及びコレステロールの濃度は特に限定されず、W/Oエマルションを生成させる一般的な方法における濃度と同様の濃度でよい。 The amount of the aqueous solution dispersed in the oil phase is not particularly limited as long as it is an amount capable of forming a W / O emulsion. The concentrations of phospholipid and cholesterol in the oil phase are not particularly limited, and may be the same as those in a general method for producing a W / O emulsion.
 工程(3)では、工程(2)で生成させたW/Oエマルションを、水溶液上に重層し、遠心分離によって沈降させることによって、内部に上記ベクター及び上記試薬を含むリポソームを水溶液中に形成させる。 In the step (3), the W / O emulsion generated in the step (2) is overlaid on the aqueous solution, and then centrifuged to precipitate the liposome, which contains the vector and the reagent therein, in the aqueous solution. ..
 水溶液は、W/Oエマルション(油相)に対して水相を形成できるものであればどのようなものでもよい。遠心分離の条件は特に限定されず、リポソームを形成させる一般的な方法における条件と同様の条件でよい。 The aqueous solution may be any as long as it can form an aqueous phase for the W / O emulsion (oil phase). The conditions of centrifugation are not particularly limited, and may be the same as the conditions in a general method for forming liposomes.
 工程(4)では、工程(3)で形成させたリポソームを回収する。リポソームを回収する方法は特に限定されず、例えば、チューブ内の上部に油相、下部に水相を形成させ、遠心分離を行った場合は、チューブの底部を穿孔し、リポソームを回収することができる。 In step (4), the liposomes formed in step (3) are collected. The method for collecting the liposomes is not particularly limited, and for example, when an oil phase is formed in the upper part of the tube and an aqueous phase is formed in the lower part, and centrifugation is performed, the bottom part of the tube may be perforated to collect the liposomes. it can.
 工程(5)では、工程(4)で回収したリポソーム内で、転写及び翻訳反応を進行させる。 In step (5), transcription and translation reactions proceed in the liposomes collected in step (4).
(C)抗体の検出方法
 本発明の抗体の検出方法は、試料中の抗体を検出する方法であって、試料を上記の抗体検出バイオセンサーと接触させる工程、及び多量体の形成を酵素活性の変化により検出する工程を有することを特徴とするものである。
(C) Method for detecting antibody The method for detecting an antibody of the present invention is a method for detecting an antibody in a sample, which comprises contacting the sample with the antibody detection biosensor described above, It is characterized by having a step of detecting by a change.
 試料は、検出対象とする抗体が含まれる可能性があるものであればどのようなものでもよい。 The sample may be any sample as long as it may contain the antibody to be detected.
 試料とバイオセンサーの接触方法は特に限定されないが、通常は、溶液中に試料とバイオセンサーを共存させることにより行う。この接触工程における温度、時間、溶液のpH、使用するバイオセンサーの量などの条件は、バイオセンサーに含まれる酵素において一般的に使用されている条件でよい。例えば、酵素がβグルクロニダーゼの変異体を含む場合、この接触工程における温度は20~37℃ぐらいが好ましく、接触させている時間は10~60分ぐらいが好ましく、溶液のpHは6.8~7.5ぐらいが好ましく、溶液中のバイオセンサーの濃度は10~100 nMぐらいが好ましい。 The contact method between the sample and the biosensor is not particularly limited, but usually it is carried out by allowing the sample and the biosensor to coexist in a solution. Conditions such as temperature, time, pH of the solution, and amount of the biosensor used in this contacting step may be those generally used for the enzyme contained in the biosensor. For example, when the enzyme contains a β-glucuronidase mutant, the temperature in this contacting step is preferably about 20 to 37 ° C., the contacting time is preferably about 10 to 60 minutes, and the pH of the solution is 6.8 to 7 The concentration of the biosensor in the solution is preferably about 10 to 100 nM.
 多量体の形成は、バイオセンサー中に含まれる酵素変異体の活性の変化(上昇又は発現)により検出することができる。バイオセンサー中に含まれる酵素変異体の活性は、その酵素において一般的に使用される活性測定法によって測定できる。例えば、バイオセンサーに含まれる酵素変異体がβグルクロニダーゼの変異体である場合、発色基質又は蛍光基質を加え、その基質から生成する物質を定量することにより、活性を測定できる。βグルクロニダーゼの発色基質としてはX-Gluc、4-ニトロフェニルα-グルコピラノシド、4-ニトロフェニルβ-D-グルクロニドなどを挙げることができ、蛍光基質としては4-メチルウンベリフェニル-β-D-グルクロニド、フルオレセインジ-β-D-グルクロニド、フルオレセインジ-β-D-グルクロニド、ジメチルエステルなどを挙げることができる。これらの基質から生成する物質の定量は、特定の波長の吸光度、蛍光強度などを測定することにより行うことができる。例えば、基質が4-ニトロフェニルβ-D-グルクロニドであれば405 nm付近の吸光度の測定により生成物を定量でき、また、基質が4-メチルウンベリフェニル-β-D-グルクロニドであれば340 nmの蛍光で励起し、480 nm付近の蛍光強度の測定により生成物を定量できる。但し、基質がフルオレセインジ-β-D-グルクロニド、ジメチルエステルのように膜透過性であり、生産物の蛍光物質がフルオレセインのように水溶性であると、リポソーム外から基質を加えて反応させ、各リポソーム内の生産物の蛍光を個別に検出することができて好ましい。 The formation of multimers can be detected by the change (increase or expression) in the activity of the enzyme mutant contained in the biosensor. The activity of the enzyme variant contained in the biosensor can be measured by an activity measuring method generally used for the enzyme. For example, when the enzyme variant contained in the biosensor is a β-glucuronidase variant, the activity can be measured by adding a chromogenic substrate or a fluorescent substrate and quantifying a substance produced from the substrate. Examples of chromogenic substrates for β-glucuronidase include X-Gluc, 4-nitrophenyl α-glucopyranoside, 4-nitrophenyl β-D-glucuronide, and the like, and fluorescent substrates include 4-methylumbelliferyl-β-D- Examples thereof include glucuronide, fluorescein di-β-D-glucuronide, fluorescein di-β-D-glucuronide and dimethyl ester. The substances produced from these substrates can be quantified by measuring the absorbance at a specific wavelength, the fluorescence intensity and the like. For example, if the substrate is 4-nitrophenyl β-D-glucuronide, the product can be quantified by measuring the absorbance around 405 nm, and if the substrate is 4-methylumbelliferyl-β-D-glucuronide, the product can be 340 The product can be quantified by exciting with fluorescence of nm and measuring the fluorescence intensity around 480 nm. However, if the substrate is membrane-permeable like fluorescein di-β-D-glucuronide and dimethyl ester, and the fluorescent substance of the product is water-soluble like fluorescein, the substrate is added from the outside of the liposome and reacted, It is preferable because the fluorescence of the product in each liposome can be individually detected.
(D)抗原検出バイオセンサー
 本発明の抗原検出バイオセンサーは、上記の本発明の抗体検出バイオセンサーにおける小胞の外部に露出するペプチド部分に、抗体可変領域と前記ペプチドに親和性を示すタンパク質とを含有する融合タンパク質を結合させたものであり、より具体的には、抗体可変領域に結合する抗原を検出するためのバイオセンサーであって、1)多量体の形成により活性化する酵素の変異体と膜貫通ドメインとペプチドとを含有する第一の融合タンパク質、2)前記抗体可変領域と前記ペプチドに親和性を示すタンパク質とを含有する第二の融合タンパク質、及び3)脂質膜から構成される小胞を含み、A)前記酵素の変異体は単量体間の結合親和性を低下させる変異が導入された変異体であること、B)前記膜貫通ドメインは前記小胞の脂質膜を貫通すること、C)前記多量体の形成により活性化する酵素の変異体は前記小胞の内部に露出すること、D)前記ペプチドは前記小胞の外部に露出すること、及びE)ペプチドに親和性を示す前記タンパク質は、前記小胞の外部に露出した前記ペプチドと結合することを特徴とするバイオセンサーである。
(D) Antigen detection biosensor The antigen detection biosensor of the present invention comprises an antibody variable region and a protein having an affinity for the peptide in the peptide portion exposed to the outside of the vesicle in the antibody detection biosensor of the present invention. Which is a biosensor for detecting an antigen that binds to an antibody variable region, and more specifically, 1) a mutation of an enzyme that is activated by the formation of a multimer. A first fusion protein containing a body, a transmembrane domain and a peptide, 2) a second fusion protein containing the antibody variable region and a protein having an affinity for the peptide, and 3) a lipid membrane A) the mutant of the enzyme is a mutant into which a mutation that reduces the binding affinity between monomers has been introduced, and B) the transmembrane domain. In penetrates the lipid membrane of the vesicle, C) a variant of the enzyme that is activated by the formation of the multimer is exposed inside the vesicle, and D) the peptide is outside the vesicle. The biosensor, which is exposed and which has the affinity with the peptide E), binds to the peptide exposed to the outside of the vesicle.
 本発明のバイオセンサーにより、試料中の抗原を検出する原理を以下に記載する。このバイオセンサーは、第一の融合タンパク質、第二の融合タンパク質、及び小胞を含んでいる。第一の融合タンパク質は小胞の脂質膜を貫通し、ペプチド部分は小胞の外部に露出し、酵素部分は小胞の内部に露出する。また、第二の融合タンパク質におけるペプチドに親和性を示すタンパク質部分は、第一の融合タンパク質におけるペプチド部分と結合するので、小胞は、抗体可変領域を外部に露出することになる。試料中に抗原が存在しない場合、酵素は、単量体間の結合親和性を低下させる変異が導入されているため、多量体を形成せず、活性化しない。このため、酵素基質が存在しても、蛍光物質などの反応生成物はほとんど生成しない。一方、試料中に抗原が存在する場合、小胞の外部に露出した二つの抗体可変領域が抗原に引き寄せられる。抗体可変領域は、小胞内部の酵素部分と間接的に連結しているので、二つの抗体可変領域が抗原に引き寄せられることにより、小胞内部の酵素部分が結合し、多量体を形成し、活性化する。活性化した酵素によって小胞内に反応生成物が生じるが、この反応生成物は小胞内で濃縮されるので、微量であっても容易に検出することができる。また、このような酵素の活性化は、小胞ごとに起きるので、抗原の量が非常に多い場合を除き、反応生成物を生成する小胞と反応生成物を生成しない小胞とが生じる。反応生成物を生成する小胞の数は、抗原の量に応じて多くなるので、抗原量を小胞の「数」として捉えることが可能になる。 The principle of detecting an antigen in a sample by the biosensor of the present invention is described below. The biosensor includes a first fusion protein, a second fusion protein, and vesicles. The first fusion protein penetrates the lipid membrane of the vesicle, exposing the peptide portion outside the vesicle and the enzyme portion inside the vesicle. In addition, the protein portion showing affinity for the peptide in the second fusion protein binds to the peptide portion in the first fusion protein, so that the vesicle exposes the antibody variable region to the outside. When the antigen is not present in the sample, the enzyme does not form a multimer and is not activated because the mutation that reduces the binding affinity between the monomers is introduced. Therefore, even if an enzyme substrate is present, reaction products such as fluorescent substances are scarcely produced. On the other hand, when the antigen is present in the sample, the two antibody variable regions exposed outside the vesicle are attracted to the antigen. Since the antibody variable region is indirectly linked to the enzyme part inside the vesicle, the two antibody variable regions are attracted to the antigen, and the enzyme part inside the vesicle binds to form a multimer, Activate. A reaction product is generated in the vesicle by the activated enzyme, but since this reaction product is concentrated in the vesicle, even a trace amount can be easily detected. Further, since such enzyme activation occurs for each vesicle, vesicles that produce reaction products and vesicles that do not produce reaction products occur unless the amount of antigen is very large. Since the number of vesicles that produce a reaction product increases depending on the amount of antigen, it is possible to grasp the amount of antigen as the “number” of vesicles.
 多量体の形成により活性化する酵素の変異体、膜貫通ドメイン、ペプチド、及び小胞は、上記の本発明の抗体検出バイオセンサーと同様のものを使用することができる。 As the enzyme mutants, transmembrane domains, peptides, and vesicles that are activated by the formation of multimers, the same biosensors as those of the antibody detection biosensor of the present invention can be used.
 ペプチドに親和性を示すタンパク質は特に限定されず、ペプチドの種類に応じて適宜選択することができる。ペプチドとペプチドに親和性を示すタンパク質の組み合わせの例としては、SpyタグとSpyキャッチャーを挙げることができる。SpyタグとSpyキャッチャーを混合すると、これらはイソペプチド結合を形成する(Keeble AH et al., Angew Chem Int Ed Engl. 2017 Dec 22;56(52):16521-16525)。Spyタグの代わりに、Spyキャッチャーと結合可能なSpyタグの誘導体を使用することができ、また、Spyキャッチャーの代わりに、Spyタグと結合可能なSpyキャッチャーの誘導体を使用することもできる。また、これと直交性のあるSnoopタグとSnoopキャッチャーのペア(Vegginiani F et al., Proc. Natl. Acad. Sci. USA 113(5):1202-1207, 2016)を、SpyタグとSpyキャッチャーの代わりに、あるいは同時に用いることもできる。SnoopタグとSnoopキャッチャーについても、SpyタグとSpyキャッチャーと同様に、SnoopタグとSnoopキャッチャーの代わりに、これらの誘導体を使用することができる。 The protein having an affinity for the peptide is not particularly limited, and can be appropriately selected according to the type of peptide. An example of a combination of a peptide and a protein having an affinity for the peptide is Spy tag and Spy catcher. When Spy tag and Spy catcher are mixed, they form an isopeptide bond (Keeble AH et al., Angew Chem Int Ed Engl. 2017 Dec 22; 56 (52): 16521-16525). Instead of the Spy tag, a derivative of Spy tag capable of binding to the Spy catcher can be used, and in place of the Spy catcher, a derivative of Spy catcher capable of binding to the Spy tag can be used. Also, a pair of Snoop tag and Snoop catcher that has orthogonality with this (Vegginiani F et al., Proc. Natl. Acad. Sci. USA 113 (5): 1202-1207, 2016) is used for Alternatively or simultaneously, they can be used. Regarding Snoop tags and Snoop catchers, as with Spy tags and Spy catchers, these derivatives can be used instead of Snoop tags and Snoop catchers.
 抗体可変領域としては、通常の抗体(IgG)のVH領域やVL領域、一本鎖抗体scFvあるいはFab領域を使用することができるが、抗原結合により二量体を形成するVHH(ラクダ類由来のH鎖抗体)(Chang HJ et al., ACS Synth Biol. 2018 Jan 19;7(1):166-175、Sonneson GJ et al., Biochemistry. 2009 Jul 28;48(29):6693-5)を使用するのが好ましい。抗体可変領域は、検出対象とする抗原に応じて任意の抗体の可変領域を選択することができ、特定の抗体の可変領域に限定されない。具体的には、後述する検出対象とする抗原と特異的に結合する抗体の可変領域を使用することができる。 As the antibody variable region, a V H region or V L region of an ordinary antibody (IgG), a single chain antibody scFv or Fab region can be used, but a VHH (camel that forms a dimer by antigen binding) Derived H chain antibody) (Chang HJ et al., ACS Synth Biol. 2018 Jan 19; 7 (1): 166-175, Sonneson GJ et al., Biochemistry. 2009 Jul 28; 48 (29): 6693-5. ) Is preferably used. The antibody variable region can select the variable region of any antibody according to the antigen to be detected, and is not limited to the variable region of a specific antibody. Specifically, the variable region of an antibody that specifically binds to an antigen to be detected, which will be described later, can be used.
 第二の融合タンパク質は、抗体可変領域及びペプチドに親和性を示すタンパク質のみからなっていてもよいが、他のペプチドやタンパク質などを含んでいてもよい。また、第二の融合タンパク質は、抗体可変領域及びペプチドに親和性を示すタンパク質膜との間にリンカーを含んでいてもよい。リンカーは、上記の抗体検出バイオセンサーにおける融合タンパク質中に含まれるリンカーと同様のものでよい。 The second fusion protein may consist of only the antibody variable region and the protein showing affinity for the peptide, but may also contain other peptides or proteins. In addition, the second fusion protein may include a linker between the antibody variable region and the protein membrane showing affinity for the peptide. The linker may be the same as the linker contained in the fusion protein in the antibody detection biosensor described above.
(E)抗原の検出方法
 本発明の抗原の検出方法は、試料中の抗原を検出する方法であって、試料を上記のバイオセンサーと接触させる工程、及び多量体の形成を酵素活性の変化により検出する工程を有することを特徴とするものである。
(E) Antigen Detection Method The antigen detection method of the present invention is a method for detecting an antigen in a sample, which comprises the step of contacting the sample with the above biosensor, and the formation of a multimer by changing the enzymatic activity. It is characterized by having a step of detecting.
 検出対象とする抗原は特に限定されず、低分子化合物(例えば、分子量が1000以下の化合物)を検出対象としてもよく、タンパク質などの高分子化合物を検出対象としてもよい。高分子のタンパク質の検出は、二つの一本鎖抗体やFab断片などを用いて,行うことができる。また、本発明の方法は、疾患の診断、食品の毒性検査、環境分析などに利用できるので、これらに関連する物質を検出対象とすることが好ましい。具体的には、イミダクロプリドなどのネオニコチノイド系農薬、ポリ塩化ビフェニル、ビスフェノールAなどの環境汚染物質、マイコトキシンなどの毒性物質、オステオカルシン(骨粗鬆症の診断に有効)、コルチコイド、エストラジオール、アルドステロン、リゾチーム(ニワトリ卵白リゾチームなど)などの生体物質、ジゴキシンなどの薬剤となどを挙げることができる。 The antigen to be detected is not particularly limited, and a low molecular weight compound (for example, a compound having a molecular weight of 1000 or less) may be a detection target, and a high molecular compound such as a protein may be a detection target. The detection of high molecular weight proteins can be performed using two single chain antibodies or Fab fragments. Further, since the method of the present invention can be used for diagnosis of diseases, food toxicity test, environmental analysis, etc., it is preferable to target substances related to these. Specifically, neonicotinoid pesticides such as imidacloprid, polychlorinated biphenyls, environmental pollutants such as bisphenol A, toxic substances such as mycotoxin, osteocalcin (effective for diagnosing osteoporosis), corticoid, estradiol, aldosterone, lysozyme (chicken). Biological materials such as egg white lysozyme) and drugs such as digoxin.
 試料は、検出対象とする抗原が含まれる可能性があるものであればどのようなものでもよく、例えば、ヒトからの採取物(血液、唾液、尿など)、汚染の可能性のある水や土壌、食品や食品の原料などを挙げることができる。 The sample may be any sample as long as it may contain the antigen to be detected, such as samples collected from humans (blood, saliva, urine, etc.), contaminated water or Examples thereof include soil, food and raw materials for food.
 試料とバイオセンサーの接触方法、及び多量体の形成の検出方法は、上記の抗体検出バイオセンサーと同様に行うことができる。 The method of contacting the sample with the biosensor and the method of detecting the formation of the multimer can be performed in the same manner as in the antibody detection biosensor described above.
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
(A)方法
(1)発現ベクターの構築
 ヒトEGFR膜貫通ドメイン(TM)をコードするcDNAを2つのプライマー(His_TM_Back:TGCACCATCATCATCATCATCATCATATCGCCACTGGGATG(配列番号2)、TM_Hind_Forward:CACCGCCACCAAGCTTCATGAAGAGGCCGATCCC(配列番号3))とテンプレートとしてpCO12-EGFR(Riken gene bank)を用いて常法に従いPCRにより増幅した。またHis6(CACCATCATCATCATCAT)(配列番号4)をコードするDNAを、オーバーラップする二つのプライマー(His_NdeI_Back:AAGGAGATATACATATGCACCATCATCATCATCAT(配列番号5)およびHis_Hind_Forward:ACCGCCACCAAGCTTATGATGATGATGATGGTGCA(配列番号6))を用いたサーマルサイクリングにより構築した。His6-TM融合配列は、His_NdeI_BackおよびTM_Hind_Forwardをプライマーとし、前のステップで得られたHis6およびTM DNAをテンプレートとして用いたオーバーラップ伸長PCRによって構築した。
(A) Method
(1) Construction of Expression Vector cDNA encoding the human EGFR transmembrane domain (TM) was prepared using two primers (His_TM_Back: TGCACCATCATCATCATCATCATCATATCGCCACTGGGATG (SEQ ID NO: 2), TM_Hind_Forward: CACCGCCACCAAGCTTCATGAAGAGGCCGATCCC (SEQ ID NO: 3)) and RCOiken-EGFR (RCO12-EGFR) as a template. gene bank) and amplified by PCR according to a conventional method. In addition, a DNA encoding His 6 (CACCATCATCATCATCAT) (SEQ ID NO: 4) was constructed by using two overlapping primers (His_NdeI_Back: AAGGAGACATACATATGCACCATCATCATCATCAT (SEQ ID NO: 5) and His_Hind_Forward: ACCGCCACCAAGCTTATGATGATGATGATGGTGCA (SEQ ID NO: 6)) by thermal cycling. .. The His 6 -TM fusion sequence was constructed by overlap extension PCR using His_NdeI_Back and TM_Hind_Forward as primers and the His 6 and TM DNA obtained in the previous step as template.
 このようにして構築されたHis6およびHis6-TM遺伝子は、In-Fusion HDクローニングキット(Clontech、Takara-Bio)を用いてGUS_IV5_KY遺伝子をコードするNdeI / HindIII消化した直鎖状pET32ベクターに挿入され、2種類の発現ベクター His6-GUS_IV5_KYおよびHis6-TM-GUS_IV5_KYが得られた(図1)。なお、GUS_IV5_KY遺伝子は、N27Y、F51Y、A64V、D185N、I349F、N369S、M516K、Y525F、G559S、K567R、F582Y、Q585H、及びG601Dの13の変異を含む大腸菌GUSの変異体をコードする遺伝子である。 The His 6 and His 6 -TM genes thus constructed were inserted into the NdeI / HindIII digested linear pET32 vector encoding the GUS_IV5_KY gene using the In-Fusion HD cloning kit (Clontech, Takara-Bio). As a result, two types of expression vectors His 6 -GUS_IV5_KY and His 6 -TM-GUS_IV5_KY were obtained (Fig. 1). The GUS_IV5_KY gene is a gene encoding a mutant of Escherichia coli GUS containing 13 mutations of N27Y, F51Y, A64V, D185N, I349F, N369S, M516K, Y525F, G559S, K567R, F582Y, Q585H, and G601D.
(2)試験管内転写/翻訳反応
 His6-GUS_IV5_KYおよびHis6-TM-GUS_IV5_KYベクター(1:1)(合計0.1μg)、PUREfrex (登録商標、ジーンフロンティア)1.0(溶液I 10μL、溶液II 1μLおよび溶液III 1μL)、RNase阻害剤(和光純薬20 unit/μL x 1μL)、GSSG(3 mM)、及びスクロース(330 mM)に、Milli-Q水を加えて全容量を20μLにした。
(2) In vitro transcription / translation reaction His 6 -GUS_IV5_KY and His 6 -TM-GUS_IV5_KY vectors (1: 1) (total 0.1 μg), PUREfrex (registered trademark, Gene Frontier) 1.0 (solution I 10 μL, solution II 1 μL and Solution III 1 μL), RNase inhibitor (Wako Pure Chemicals 20 unit / μL x 1 μL), GSSG (3 mM), and sucrose (330 mM) were added Milli-Q water to make the total volume 20 μL.
(3)W/Oエマルション
(3.1)1-パルミトイル-2-オレオイル-sn-グリセロ-3-ホスホコリン(POPC、日油)およびコレステロール(和光純薬)をクロロホルム(和光純薬)に,それぞれ100 mg/mLになるよう溶解した。
(3.2)最後の工程で得られたクロロホルム溶液に流動パラフィン(和光純薬)を添加することにより、POPCおよびコレステロールを最終濃度5 mg/mLになるよう希釈した。
(3.3)クロロホルムを除去するために80℃20分間加熱した。
(3.4)POPCとコレステロールを9:1の重量比で混合した。
(3.5)混合液を80℃で20分間加熱して残留クロロホルムを除去した。
(3.6)20μLの反応混合物をPOPC /コレステロール溶液400μLと30秒間ボルテックスして混合し、W/Oエマルションを得た。
(3) W / O emulsion
(3.1) Dissolve 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, NOF) and cholesterol (Wako Pure Chemical Industries) in chloroform (Wako Pure Chemical Industries) at 100 mg / mL each. did.
(3.2) By adding liquid paraffin (Wako Pure Chemical Industries, Ltd.) to the chloroform solution obtained in the final step, POPC and cholesterol were diluted to a final concentration of 5 mg / mL.
(3.3) Heated at 80 ° C for 20 minutes to remove chloroform.
(3.4) POPC and cholesterol were mixed at a weight ratio of 9: 1.
(3.5) The mixture was heated at 80 ° C for 20 minutes to remove residual chloroform.
(3.6) 20 μL of the reaction mixture was mixed with 400 μL of POPC / cholesterol solution by vortexing for 30 seconds to obtain a W / O emulsion.
(4)リポソーム懸濁液の調製
(4.1)150μLの希釈緩衝液(100 mM HEPES pH 7.6、280 mMグルタミン酸カリウム、20 mM Mg(OAc)2、NTP (3.75 mM ATP、2.5 mM GTP、1.35 mM CTP、1.35 mM UTP、20アミノ酸(各0.3 mMのTyrとCysを除く)、15 mMのクレアチンリン酸、330 mMのグルコース、3 mMのGSSG、20μg/mLウシ膵臓RNase (Sigma-Aldrich))をマイクロチューブに入れた。
(4.2)二相系を4℃で18,000 gで30分間遠心分離して、水相(希釈緩衝液)中に巨大単層リポソームを形成させた。
(4.3)18 G×1 1/2インチ針を備えたシリンジを用いてチューブの底部を穿孔することによって、水相(リポソーム懸濁液)を収集した。
(4) Preparation of liposome suspension
(4.1) 150 μL of dilution buffer (100 mM HEPES pH 7.6, 280 mM potassium glutamate, 20 mM Mg (OAc) 2 , NTP (3.75 mM ATP, 2.5 mM GTP, 1.35 mM CTP, 1.35 mM UTP, 20 amino acids (each (Excluding 0.3 mM Tyr and Cys), 15 mM creatine phosphate, 330 mM glucose, 3 mM GSSG, 20 μg / mL bovine pancreatic RNase (Sigma-Aldrich)) were placed in a microtube.
(4.2) The biphasic system was centrifuged at 18,000 g for 30 minutes at 4 ° C to form giant unilamellar liposomes in the aqueous phase (dilution buffer).
(4.3) The aqueous phase (liposome suspension) was collected by piercing the bottom of the tube with a syringe equipped with an 18 G x 1 1/2 inch needle.
(5)酵素活性の検出
(5.1)リポソーム懸濁液を37℃で2~4時間インキュベートした。
(5.2)18,000gで30分間遠心分離し、上清を捨て、リポソームを再懸濁するために150μLの希釈緩衝液を添加した。
(5.3)リポソーム懸濁液に抗His抗体(0.1μM、抗His6 Mab28-75, 和光純薬)および0.1 mg/mLフルオレセインジ-β-D-グルクロニド、ジメチルエステル(Marker Gene Technologies)を添加し、約10分間室温で反応させ倒立蛍光顕微鏡(オリンパスIX71、x10接眼レンズ、x60対物レンズ、Ex.460~480 nm、Em. 495~540 nm)下で観察した。
(5) Detection of enzyme activity
(5.1) The liposome suspension was incubated at 37 ° C for 2 to 4 hours.
(5.2) Centrifuge at 18,000 g for 30 minutes, discard the supernatant and add 150 μL of dilution buffer to resuspend the liposomes.
(5.3) Add anti-His antibody (0.1 μM, anti-His 6 Mab28-75, Wako Pure Chemical Industries), 0.1 mg / mL fluorescein di-β-D-glucuronide, dimethyl ester (Marker Gene Technologies) to the liposome suspension. After reacting for about 10 minutes at room temperature, the cells were observed under an inverted fluorescence microscope (Olympus IX71, x10 eyepiece, x60 objective lens, Ex. 460 to 480 nm, Em. 495 to 540 nm).
(B)結果
 His6-GUS_IV5_KYおよびHis6-TM-GUS_IV5_KYベクターを発現させた場合、リポソームは抗His抗体存在下で蛍光を発したが(図2及び図3の左から3番目)、抗His抗体非存在下では蛍光を発しなかった(図2及び図3の左から2番目)。抗His抗体存在下でリポソームが蛍光を発したのは、抗His抗体とHis6部分の相互作用により、二つのHis6-TM-GUS_IV5_KY融合タンパク質が近接し、更にこれらに二つのHis6-GUS_IV5_KY融合タンパク質が近接し、活性型の4量体GUSが形成されたためであると考えられる(図4)。リポソームが蛍光を発するためには、融合タンパク質のGUS_IV5_KY部分は、リポソームの内部に存在しなければならず、また、融合タンパク質のHis6部分が抗His抗体と相互作用をするためには、この部分はリポソームの外部に存在しなければならない。従って、抗His抗体存在下でのみ蛍光が観察されたということは、融合タンパク質のGUS_IV5_KY部分はリポソーム内部に、His6部分はリポソーム外部に存在していたことを示す。一方、ベクターを発現させない場合、リポソームの蛍光は観察されず(図2及び図3の左から1番目)、また、野生型GUSを含むベクターを発現させた場合、抗His抗体非存在下でもリポソームの蛍光は観察された(図2及び図3の左から4番目)。
(B) Results When the His 6 -GUS_IV5_KY and His 6 -TM-GUS_IV5_KY vectors were expressed, the liposomes fluoresced in the presence of the anti-His antibody (third from the left in FIGS. 2 and 3), but the anti-His It did not fluoresce in the absence of antibody (second from the left in FIGS. 2 and 3). The fluorescence of the liposomes in the presence of the anti-His antibody was due to the interaction between the anti-His antibody and the His 6 portion, which brought the two His 6 -TM-GUS_IV5_KY fusion proteins into close proximity, and further to these two His 6 -GUS_IV5_KY. It is considered that this is because the fusion proteins were close to each other and active tetrameric GUS was formed (FIG. 4). In order for the liposome to fluoresce, the GUS_IV5_KY portion of the fusion protein must be inside the liposome, and in order for the His 6 portion of the fusion protein to interact with the anti-His antibody, this portion must be present. Must be outside the liposome. Therefore, the fact that fluorescence was observed only in the presence of the anti-His antibody indicates that the GUS_IV5_KY portion of the fusion protein was inside the liposome and the His 6 portion was outside the liposome. On the other hand, when the vector is not expressed, fluorescence of the liposome is not observed (first from the left in FIGS. 2 and 3), and when the vector containing the wild-type GUS is expressed, the liposome is not present even in the presence of the anti-His antibody. Fluorescence was observed (fourth from the left in FIGS. 2 and 3).
 融合タンパク質中の膜貫通ドメインの機能を調べるため、膜貫通ドメインをコードする配列を含まないHis6-GUS_IV5_KYベクターのみを発現させ、リポソームが蛍光を発するかどうかを調べた。図5右上の画像が示すように、His6-GUS_IV5_KYベクターのみを発現させた場合は、抗His抗体を加えても、蛍光は観察されなかった。 In order to investigate the function of the transmembrane domain in the fusion protein, only the His 6 -GUS_IV5_KY vector, which does not contain the sequence encoding the transmembrane domain, was expressed, and it was investigated whether the liposome fluoresces. As shown in the image on the upper right of FIG. 5, when only the His 6 -GUS_IV5_KY vector was expressed, no fluorescence was observed even when the anti-His antibody was added.
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated as they are in this specification.
 本発明は、バイオセンサーに関するものなので、このようなバイオセンサーを取り扱う産業分野に利用可能である。 Since the present invention relates to biosensors, it can be used in the industrial field handling such biosensors.

Claims (16)

  1.  ペプチドに結合する抗体を検出するためのバイオセンサーであって、1)多量体の形成により活性化する酵素の変異体と膜貫通ドメインと前記ペプチドとを含有する融合タンパク質、及び2)脂質膜から構成される小胞を含み、A)前記酵素の変異体は単量体間の結合親和性を低下させる変異が導入された変異体であること、B)前記膜貫通ドメインは前記小胞の脂質膜を貫通すること、C)前記多量体の形成により活性化する酵素の変異体は前記小胞の内部に露出すること、及びD)前記ペプチドは前記小胞の外部に露出することを特徴とするバイオセンサー。 A biosensor for detecting an antibody that binds to a peptide, comprising: 1) a fusion protein containing a variant of an enzyme activated by formation of a multimer, a transmembrane domain, and the peptide, and 2) a lipid membrane A) the enzyme is a mutant in which a mutation that reduces the binding affinity between monomers is introduced, and B) the transmembrane domain is a lipid of the vesicle. Characterized in that it penetrates the membrane, C) a variant of the enzyme that is activated by the formation of the multimer is exposed inside the vesicle, and D) the peptide is exposed outside the vesicle. Biosensor to do.
  2.  多量体の形成により活性化する酵素の変異体が、βグルクロニダーゼの変異体であることを特徴とする請求項1に記載のバイオセンサー。 The biosensor according to claim 1, wherein the mutant of the enzyme activated by the formation of the multimer is a mutant of β-glucuronidase.
  3.  βグルクロニダーゼの変異体が、大腸菌βグルクロニダーゼのアミノ酸配列における51番目のフェニルアラニンがチロシンに置換され、64番目のアラニンがバリンに置換され、185番目のアスパラギン酸がアスパラギンに置換され、516番目のメチオニンがリジンに置換され、525番目のチロシンがフェニルアラニンに置換され、559番目のグリシンがセリンに置換され、567番目のリジンがアルギニンに置換され、585番目のグルタミンがヒスチジンに置換され、601番目のグリシンがアスパラギン酸に置換された変異体であることを特徴とする請求項2に記載のバイオセンサー。 In the mutant β-glucuronidase, the 51st phenylalanine in the amino acid sequence of Escherichia coli β-glucuronidase was replaced with tyrosine, the 64th alanine was replaced with valine, the 185th aspartic acid was replaced with asparagine, and the 516th methionine was replaced with Substituting lysine, 525th tyrosine with phenylalanine, 559th glycine with serine, 567th lysine with arginine, 585th glutamine with histidine, 601st glycine with The biosensor according to claim 2, which is a mutant substituted with aspartic acid.
  4.  膜貫通ドメインが、上皮成長因子受容体の膜貫通ドメインであることを特徴とする請求項1乃至3のいずれか一項に記載のバイオセンサー。 The biosensor according to any one of claims 1 to 3, wherein the transmembrane domain is a transmembrane domain of epidermal growth factor receptor.
  5.  脂質膜が、リン脂質とコレステロールを含む脂質膜であることを特徴とする請求項1乃至4のいずれか一項に記載のバイオセンサー。 The biosensor according to any one of claims 1 to 4, wherein the lipid membrane is a lipid membrane containing phospholipid and cholesterol.
  6.  ペプチドが、Hisタグ、Spyタグ、Snoopタグ、HAタグ、mycタグ、又はFLAGタグであることを特徴とする請求項1乃至5のいずれか一項に記載のバイオセンサー。 The biosensor according to any one of claims 1 to 5, wherein the peptide is a His tag, Spy tag, Snoop tag, HA tag, myc tag, or FLAG tag.
  7.  以下の工程(1)~(5)を含むことを特徴とする請求項1乃至6のいずれか一項に記載のバイオセンサーの製造方法、
    (1)多量体の形成により活性化する酵素の変異体と膜貫通ドメインとペプチドとを含有する融合タンパク質を発現するベクター、無細胞転写に必要な試薬、及び無細胞翻訳に必要な試薬を含む水溶液を調製する工程、
    (2)工程(1)で調製した水溶液を、リン脂質及びコレステロールを含む油相に分散させ、W/Oエマルションを生成させる工程、
    (3)工程(2)で生成させたW/Oエマルションを、水溶液上に重層し、遠心分離によって沈降させることによって、内部に前記ベクター及び前記試薬を含むリポソームを水溶液中に形成させる工程、
    (4)工程(3)で形成させたリポソームを回収する工程、
    (5)工程(4)で回収したリポソーム内で、転写及び翻訳反応を進行させる工程。
    7. The method for manufacturing a biosensor according to claim 1, further comprising the following steps (1) to (5):
    (1) Includes a vector expressing a fusion protein containing a mutant of an enzyme activated by the formation of a multimer, a transmembrane domain and a peptide, a reagent required for cell-free transcription, and a reagent required for cell-free translation Preparing an aqueous solution,
    (2) A step of dispersing the aqueous solution prepared in step (1) in an oil phase containing phospholipids and cholesterol to produce a W / O emulsion,
    (3) A step of forming a liposome containing the vector and the reagent inside in an aqueous solution by overlaying the W / O emulsion generated in step (2) on the aqueous solution and sedimenting by centrifugation.
    (4) a step of collecting the liposome formed in the step (3),
    (5) A step of advancing transcription and translation reactions in the liposome recovered in step (4).
  8.  試料中の抗体を検出する方法であって、試料を請求項1乃至6のいずれか一項に記載のバイオセンサーと接触させる工程、及び多量体の形成を酵素活性の変化により検出する工程を有することを特徴とする抗体の検出方法。 A method for detecting an antibody in a sample, which comprises a step of contacting the sample with the biosensor according to any one of claims 1 to 6, and a step of detecting the formation of a multimer by a change in enzyme activity. A method for detecting an antibody, comprising:
  9.  抗体可変領域に結合する抗原を検出するためのバイオセンサーであって、1)多量体の形成により活性化する酵素の変異体と膜貫通ドメインとペプチドとを含有する第一の融合タンパク質、2)前記抗体可変領域と前記ペプチドに親和性を示すタンパク質とを含有する第二の融合タンパク質、及び3)脂質膜から構成される小胞を含み、A)前記酵素の変異体は単量体間の結合親和性を低下させる変異が導入された変異体であること、B)前記膜貫通ドメインは前記小胞の脂質膜を貫通すること、C)前記多量体の形成により活性化する酵素の変異体は前記小胞の内部に露出すること、D)前記ペプチドは前記小胞の外部に露出すること、及びE)ペプチドに親和性を示す前記タンパク質は、前記小胞の外部に露出した前記ペプチドと結合することを特徴とするバイオセンサー。 A biosensor for detecting an antigen that binds to an antibody variable region, comprising: 1) a first fusion protein containing a variant of an enzyme activated by the formation of a multimer, a transmembrane domain and a peptide, 2) A second fusion protein containing the antibody variable region and a protein having an affinity for the peptide, and 3) a vesicle composed of a lipid membrane, wherein A) the mutant of the enzyme is between monomers. A variant into which a mutation that reduces binding affinity is introduced, B) the transmembrane domain penetrates the lipid membrane of the vesicle, and C) a variant of an enzyme that is activated by the formation of the multimer. Is exposed inside the vesicle, D) the peptide is exposed outside the vesicle, and E) the protein having an affinity for the peptide is the peptide exposed outside the vesicle. Union Biosensor characterized by Rukoto.
  10.  多量体の形成により活性化する酵素の変異体が、βグルクロニダーゼの変異体であることを特徴とする請求項9に記載のバイオセンサー。 The biosensor according to claim 9, wherein the mutant of the enzyme activated by the formation of the multimer is a mutant of β-glucuronidase.
  11.  βグルクロニダーゼの変異体が、大腸菌βグルクロニダーゼのアミノ酸配列における51番目のフェニルアラニンがチロシンに置換され、64番目のアラニンがバリンに置換され、185番目のアスパラギン酸がアスパラギンに置換され、516番目のメチオニンがリジンに置換され、525番目のチロシンがフェニルアラニンに置換され、559番目のグリシンがセリンに置換され、567番目のリジンがアルギニンに置換され、585番目のグルタミンがヒスチジンに置換され、601番目のグリシンがアスパラギン酸に置換された変異体であることを特徴とする請求項10に記載のバイオセンサー。 In the mutant β-glucuronidase, the 51st phenylalanine in the amino acid sequence of Escherichia coli β-glucuronidase was replaced with tyrosine, the 64th alanine was replaced with valine, the 185th aspartic acid was replaced with asparagine, and the 516th methionine was replaced with Substituting lysine, 525th tyrosine with phenylalanine, 559th glycine with serine, 567th lysine with arginine, 585th glutamine with histidine, 601st glycine with The biosensor according to claim 10, wherein the biosensor is a mutant substituted with aspartic acid.
  12.  膜貫通ドメインが、上皮成長因子受容体の膜貫通ドメインであることを特徴とする請求項9乃至11のいずれか一項に記載のバイオセンサー。 The biosensor according to any one of claims 9 to 11, wherein the transmembrane domain is a transmembrane domain of epidermal growth factor receptor.
  13.  脂質膜が、リン脂質とコレステロールを含む脂質膜であることを特徴とする請求項9乃至12のいずれか一項に記載のバイオセンサー。 The biosensor according to any one of claims 9 to 12, wherein the lipid membrane is a lipid membrane containing phospholipid and cholesterol.
  14.  ペプチドがSpyタグ、Snoopタグ又はその誘導体であり、ペプチドに親和性を示すタンパク質がSpyキャッチャー、Snoopキャッチャー又はその誘導体であることを特徴とする請求項9乃至13のいずれか一項に記載のバイオセンサー。 14. The bio according to any one of claims 9 to 13, wherein the peptide is Spy tag, Snoop tag or a derivative thereof, and the protein having an affinity for the peptide is Spy catcher, Snoop catcher or a derivative thereof. sensor.
  15.  抗体可変領域が、ラクダ属重鎖抗体由来VHHであることを特徴とする請求項9乃至14のいずれか一項に記載のバイオセンサー。 The biosensor according to any one of claims 9 to 14, wherein the antibody variable region is a VHH derived from a camelid heavy chain antibody.
  16.  試料中の抗原を検出する方法であって、試料を請求項9乃至15のいずれか一項に記載のバイオセンサーと接触させる工程、及び多量体の形成を酵素活性の変化により検出する工程を有することを特徴とする抗原の検出方法。 A method for detecting an antigen in a sample, which comprises a step of bringing the sample into contact with the biosensor according to any one of claims 9 to 15, and a step of detecting the formation of a multimer by a change in enzyme activity. A method for detecting an antigen, comprising:
PCT/JP2019/042761 2018-11-02 2019-10-31 Biosensor WO2020090974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018207624A JP7169582B2 (en) 2018-11-02 2018-11-02 biosensor
JP2018-207624 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020090974A1 true WO2020090974A1 (en) 2020-05-07

Family

ID=70462574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042761 WO2020090974A1 (en) 2018-11-02 2019-10-31 Biosensor

Country Status (2)

Country Link
JP (1) JP7169582B2 (en)
WO (1) WO2020090974A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102674109B1 (en) * 2021-01-14 2024-06-12 (주)옵토레인 Switching peptides, immunoassay apparatus having the switching peptide, and immunoassay method using the switching peptides
KR102674098B1 (en) * 2021-01-14 2024-06-12 (주)옵토레인 Switching peptides and multiplex immunoassay method using the switching peptides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078436A (en) * 1996-07-31 1998-03-24 Boehringer Mannheim Corp Antigen-concentration measuring method
JP2004113062A (en) * 2002-09-25 2004-04-15 Teruyuki Nagamune Animal cell having chimera receptor and its utilization
WO2017130610A1 (en) * 2016-01-25 2017-08-03 国立大学法人東京工業大学 Fusion protein and method for detecting antigen using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101827943B (en) 2007-05-22 2016-04-13 康乃尔研究基金会有限公司 Protein is at the composition and method and uses thereof of bacterium and derived vesicles surface display thereof
JP7029123B2 (en) 2016-08-24 2022-03-03 国立研究開発法人産業技術総合研究所 Complex of Si-tag fusion heterologous enzyme and mesoporous silica

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078436A (en) * 1996-07-31 1998-03-24 Boehringer Mannheim Corp Antigen-concentration measuring method
JP2004113062A (en) * 2002-09-25 2004-04-15 Teruyuki Nagamune Animal cell having chimera receptor and its utilization
WO2017130610A1 (en) * 2016-01-25 2017-08-03 国立大学法人東京工業大学 Fusion protein and method for detecting antigen using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
UEDA, H. ET AL.: "An optimized homogeneous noncompetitive immunoassay based on the antigen-driven enzymatic complementation", JOURNAL OF IMMUNOLOGICAL METHODS, vol. 279, 2003, pages 209 - 218, XP004455321, DOI: 10.1016/S0022-1759(03)00256-4 *
UEDA, HIROSHI ET. AL.: "Development of various highly sensitive homogeneous immunoassays by creating artificial allosteric enzymes", LECTURE ABSTRACTS OF THE 68TH ANNUAL MEETING OF THE SOCIETY OF BIOTECHNOLOGY, JAPAN, vol. 68, 25 August 2016 (2016-08-25), pages 160 *
YOKOZEKI, T. ET AL.: "A Homogeneous Noncompetitive Immunoassay for the Detection of Small Haptens", ANALYTICAL CHEMISTRY, vol. 74, no. 11, 1 June 2002 (2002-06-01), pages 2500 - 2504, XP001132315, DOI: 10.1021/ac015743x *

Also Published As

Publication number Publication date
JP7169582B2 (en) 2022-11-11
JP2020068746A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
US11198864B2 (en) Protease-resistant systems for polypeptide display and methods of making and using thereof
JP2020097597A (en) Activation of bioluminescence by structural complementation
JP5323356B2 (en) Development of high sensitivity FRET sensor and its use
US7741128B2 (en) Cooperative reporter systems, components, and methods for analyte detection
US6235535B1 (en) Fluorescent energy transfer ligand interaction assay on a lipid film
WO2020090974A1 (en) Biosensor
KR20220121816A (en) Multiparticulate luciferase peptides and polypeptides
WO2009079212A2 (en) Linked peptide fluorogenic biosensors
EP2141230B1 (en) Fluorescent labeled fused protein for assaying adenosine triphosphate
JP6873483B2 (en) Fusion protein and method for detecting antigen using it
JP2007511226A (en) Resonant energy transfer assay system for multiple component detection
US11499965B2 (en) Kit for detecting antigen or measuring its amount
JP2007040834A (en) Immunoassay reagent
US20180095076A1 (en) Linked Peptide Fluorogenic Biosensors
US8586315B2 (en) Fluorescent protein particles
CN101278194A (en) Cooperative reporter systems, components, and methods for analyte detection
WO2020162203A1 (en) Enzymatic mutant suitable for homogeneous immunoassay method
US20240140995A1 (en) Thermostable affinity polypeptides
US20100317032A1 (en) Method for detecting antigen and antigen detection device
WO2023131871A1 (en) And-gate allosteric protein-based switches
JP2004201526A (en) Method for detecting residual property of test substance in body, nucleic acid, protein, cell and probe-immobilizing chip
EP2688912B1 (en) Recombinant protein biosensors and a method for detecting the presence of an analyte molecule
JP5576585B2 (en) Phosphorylated protein immunoassay reagent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878891

Country of ref document: EP

Kind code of ref document: A1