WO2020090947A1 - Program, learning model, information processing device, information processing method, information display method, and method for producing learning model - Google Patents

Program, learning model, information processing device, information processing method, information display method, and method for producing learning model Download PDF

Info

Publication number
WO2020090947A1
WO2020090947A1 PCT/JP2019/042705 JP2019042705W WO2020090947A1 WO 2020090947 A1 WO2020090947 A1 WO 2020090947A1 JP 2019042705 W JP2019042705 W JP 2019042705W WO 2020090947 A1 WO2020090947 A1 WO 2020090947A1
Authority
WO
WIPO (PCT)
Prior art keywords
sperm
microinsemination
image
learning model
captured image
Prior art date
Application number
PCT/JP2019/042705
Other languages
French (fr)
Japanese (ja)
Inventor
山下 英俊
佑季 川▲崎▼
Original Assignee
合同会社みらか中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合同会社みらか中央研究所 filed Critical 合同会社みらか中央研究所
Priority to CN201980068885.XA priority Critical patent/CN112889088A/en
Priority to JP2020554016A priority patent/JPWO2020090947A1/en
Publication of WO2020090947A1 publication Critical patent/WO2020090947A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention relates to a program, a learning model, an information processing device, an information processing method, an information display method, and a learning model manufacturing method.
  • Assisted reproductive technology is performed as one of infertility treatment methods.
  • One of the clinically assisted reproductive medical treatments is microinsemination in which sperm is injected into an egg under a microscope to inseminate.
  • an embryo cultivator assisting reproductive medicine or a clinical embryologist injects sperm selected by visual inspection into an egg under a microscope to inseminate.
  • ICSI Intracytoplasmic Sperm Injection
  • IMSI Intracytoplasmic Morphologically selected Sperm Injection
  • the incubator observes and collects sperm using a microscope with a magnification of 200 to 400 times.
  • the incubator uses a microscope with a high magnification of 1000 times or more to perform detailed observation and collection of sperm.
  • a fertilized egg can be obtained from one sperm and one egg. Therefore, it is an effective treatment method for male infertility such as oligospermia, azoospermia, and asthenozoospermia. Is expected. However, a method for surely obtaining a normal fertilized egg by microinsemination and a method for surely obtaining a normal embryo growth after fertilization have not been established.
  • Fertilized eggs can be obtained with higher efficiency than in vitro fertilization, depending on the incubator performing microinsemination, and further, compared with natural pregnancy and artificial insemination, a highly efficient implantation rate or pregnancy rate, or a low miscarriage rate. In some cases (Non-Patent Document 1). Therefore, microinsemination is used as a fertility treatment method not limited to male infertility.
  • the laboratory manual (Non-patent document 2) published by WHO (World Health Organization) regarding sperm evaluation methods introduces an index for statistically evaluating multiple sperms contained in sperm of sperm donors. Has been done. According to this index, the success rate of assisted reproductive medicine (also referred to herein as the success probability or the predicted success probability) is reduced when the proportion of sperm having a normal morphology is less than 4%.
  • Non-Patent Document 3 a technique for objectively selecting sperm by evaluating the shape of sperm on a rule basis has been proposed.
  • Patent Document 1 and Non-Patent Documents 1 to 3 cannot be directly applied to microinsemination in which it is necessary to evaluate each sperm separately. Even if the technology could be applied, evaluation of sperm takes a long time and labor, and invasion of sperm and eggs becomes great during that time, so that it is not practical. Furthermore, it is not possible to support the selection of spermatozoa from which sperm with no abnormal morphology or motility is likely to undergo normal embryo development after microinsemination and after fertilization.
  • an object is to provide an information processing device or the like that supports selection of sperm with a high probability of successful microinsemination, or selection of sperm with a high possibility of normal development of embryos after insemination.
  • the program acquires a captured image in which a candidate sperm used for microinsemination is captured, receives a captured image in which the sperm has been captured, and outputs to a learning model that outputs a prediction regarding the success or failure of microinsemination using the sperm.
  • a captured image is input, and the computer is caused to execute a process of outputting the prediction result output from the learning model based on the input captured image.
  • an information processing device or the like that supports selection of sperm with a high probability of successful microinsemination, or selection of sperm with a high probability of normal development of embryos after insemination.
  • FIG. 7 is an explanatory diagram illustrating a record layout of a preliminary shooting DB according to the second embodiment.
  • 9 is a flowchart showing a flow of processing of a subroutine of sample distribution calculation according to the second embodiment.
  • FIG. 16 is an explanatory diagram showing a screen displayed by the information processing device according to the third embodiment. It is explanatory drawing explaining the structure of the information processing system of Embodiment 4. It is explanatory drawing explaining the record layout of a normal sperm determination DB. It is explanatory drawing which shows the structure of a normal sperm determination model.
  • FIG. 16 is an explanatory diagram showing a screen displayed by the information processing device according to the fourth embodiment.
  • FIG. 16 is an explanatory diagram showing a screen displayed by the information processing device according to the fourth embodiment.
  • FIG. 16 is an explanatory diagram showing a screen displayed by the information processing device according to the fourth embodiment.
  • 16 is a flowchart showing the flow of processing of a program according to the fourth embodiment.
  • FIG. 16 is an explanatory diagram showing a screen displayed by the information processing device according to the fifth embodiment. It is a functional block diagram of the information processing apparatus of Embodiment 6. It is explanatory drawing which shows the structure of the information processing system of Embodiment 7. It is a table which shows the incidence rate and carrier rate of a sex-linked recessive (latent) genetic disease. It is a table which shows the incidence rate and carrier rate of a sex-linked dominant (overt) genetic disease. It is a table which shows the incidence rate and carrier rate of the sex-linked genetic disease inherited via the Y chromosome.
  • FIG. 28 is an explanatory diagram showing a screen displayed by the information processing device according to the eighth embodiment.
  • 28 is a flowchart showing the flow of processing of a program according to the eighth embodiment.
  • FIG. 28 is an explanatory diagram showing a screen displayed by the information processing device according to the ninth embodiment.
  • FIG. 28 is an explanatory diagram showing a screen displayed by the information processing device according to the ninth embodiment.
  • 28 is a flowchart showing the flow of processing of a program according to the ninth embodiment. It is a flow chart which shows a flow of processing of a subroutine of an onset rate and a carrier rate calculation.
  • FIG. 1 is an explanatory diagram illustrating a flow of processing using the information processing system 10.
  • FIG. 1A shows a first preparatory stage for processing information relating to past microinsemination.
  • an incubator observes sperm in semen using a microscope 41 (see FIG. 2) having a high optical magnification of 200 to 400 times or 1000 times or more.
  • the incubator selects one sperm that has a normal shape and performs a normal movement per egg.
  • the camera 48 the photographing I / F 28, or the display I / F 25, the incubator may observe the image displayed on the display device 15 by further enlarging the microscope image several times using a digital zoom.
  • An incubator takes a microscopic image containing sperm selected from moving images or still images.
  • the part in which the sperm is reflected may be cut out by image processing or the like.
  • a photographed microscope image may be referred to as a photographed image.
  • An incubator collects selected sperm using a micropipette.
  • the incubator inserts the selected sperm by inserting the tip of a micropipette into the egg. Microinsemination is performed as described above. After that, the incubator cultivates the egg under predetermined conditions. An egg that has started fertilization and has started to grow is called an embryo. An obstetrician transplants an embryo that has grown to a predetermined stage, such as a quadrant or a blastocyst, to a mother. Pregnancy is established when the embryo is implanted in the uterus. After that, the fetus grows in the womb as in the case of normal natural pregnancy, and if normal, gives birth.
  • a predetermined stage such as a quadrant or a blastocyst
  • Image feature amount and motion feature amount (hereinafter, referred to as feature amount) extracted from the image taken when sperm is selected, clinical profile of sperm donor (age, medical history, current medical history, treatment history, and , Genomic information such as gene mutations) and the growth process of a fertilized egg or embryo after microinsemination are recorded in the teacher data DB 51 in association with each other. Details of the teacher data DB 51 will be described later.
  • Machine learning with a teacher is performed based on the teacher data DB 51, and a machine learning model (hereinafter, referred to as “progress learning model”) 53 that predicts a growth process of a fertilized egg or an embryo is created.
  • the progress learning model 53 is a learned model that outputs a success probability of normally growing to each stage in the process from fertilization to childbirth when a feature amount of a captured image of sperm is input. Details of the feature amount and the progress learning model 53 will be described later.
  • success probability can be easily calculated by subtracting the success probability from 1. Therefore, the above-mentioned success probability can be restated as a failure probability. This is true for all success probabilities below.
  • the first distribution f (shown by the solid line in the lower right of FIG. 1 and the graph of FIG. X) is created. It should be noted that the graphs shown in the lower right part of FIG. 1 and FIG. 4 are made one at each stage.
  • the first distribution f (X) represents a probability density distribution of success probability of normally growing up to each stage, and corresponds to a so-called prior distribution in Bayesian estimation. Details of the first distribution f (X) will be described later.
  • first preparatory stage shown in FIG. 1A images of sperm taken in a plurality of cases and data on the growth process of fertilized eggs or embryos are used.
  • the progress learning model 53 and the first distribution f (X) created in the first preparatory stage are used in cases to be performed thereafter.
  • FIGS. 1B and 1C show the second preparatory stage and sperm selection stage, which are performed for each case of newly performing microinsemination.
  • the incubator After receiving the semen collected from the sperm donor, the incubator preferably performs the second preparation step and the sperm selection step in succession.
  • a sample distribution g (X) based on the characteristics of sperm contained in semen collected from a sperm donor is created.
  • the incubator performs pretreatment such as washing and dilution of semen, and then takes preliminary images of sperm.
  • the feature amount extracted from the photographed image is input to the progress learning model 53 that predicts the growth process of the fertilized egg or embryo, so that the probability of normal growth at each stage from fertilization to delivery of the sperm (hereinafter, The “prediction success probability”) is obtained.
  • a sample distribution g (X) indicated by broken lines in the lower right part of FIG. 1 and the graph of FIG. 4 is created based on the predicted success probabilities acquired for a plurality of spermatozoa.
  • the sample distribution g (X) represents the distribution of the prediction success probability obtained by sampling and evaluating the sperm contained in the semen of the individual sperm donor, and corresponds to the so-called likelihood distribution in Bayesian estimation. Details of the sample distribution g (X) will be described later.
  • a second distribution h (X) is generated based on the first distribution f (X) and the sample distribution g (X).
  • the second distribution h (X) corresponds to a so-called posterior distribution in Bayesian estimation. Details of the second distribution h (X) will be described later.
  • the sperm to be used for microinsemination is selected from the sperm donor's semen.
  • the incubator takes an image of the candidate sperm.
  • the prediction success probability that the candidate sperm will normally grow to each stage from fertilization to birth is acquired.
  • the positioning of the prediction success probability within the second distribution h (X) is displayed by an evaluation index such as a deviation value.
  • the incubator can use the displayed evaluation index to judge whether to use the candidate sperm for microinsemination.
  • the incubator collects candidate sperm under a microscope and injects them into the egg. If it is determined that it will not be used for microinsemination, the incubator will evaluate other candidate sperm.
  • the incubator can select sperm from the collected semen that has a high probability of successful microinsemination.
  • sperm in which the evaluation index at each stage satisfies a predetermined criterion that is, a sperm expected to have a sufficiently high possibility of successful microinsemination to reach normal birth is referred to as “high-quality sperm”. ".
  • the incubator since the evaluation of each candidate sperm can be displayed in real time, the incubator can easily determine whether or not to use the candidate sperm, and at the same time, collect the target candidate sperm.
  • a method may be considered in which a sperm with a relatively excellent evaluation result is captured, set aside separately, and the sperm of the highest quality among the sperm set aside at the final stage is used.
  • a method of storing there are a method of sucking a specific sperm with a capillary and transferring to a microwell, and a method of independently retaining a droplet containing a specific sperm in a solution-free region on a slide glass.
  • a mathematical optimal solution is known for evaluating candidates one by one and ending the evaluation when a good candidate is found. This is called a secretary problem, which is one of the optimal stopping problems.
  • the process of calculating the optimal solution for the secretary problem will be described.
  • the total number of candidates the total number of sperms in semen
  • n the total number of sperms in semen
  • e the number of Napiers
  • the statistical occurrence frequency is low in all cases, but it is desirable to avoid these events. Therefore, it is desirable to select sperm with reference to the index such as the deviation value and the reliability obtained based on the second distribution h (X). In this case, the work efficiency is statistically lower than that of the optimum solution of the secretary problem, but it is possible to select a candidate of excellent quality.
  • the second preparatory step described with reference to FIG. 1B and the sperm selection step described with reference to FIG. 1C be performed successively using the same semen.
  • the semen collected by the same sperm donor at different times in the second preparation stage and the sperm selection stage. May be.
  • sperm should be collected by surgery such as epididymal sperm collection method or intratesticular sperm collection method. To collect. When the collected sperm are few, it may be difficult to perform both the second preparation stage and the sperm selection stage. In such a case, the second preparatory step may be omitted, and the sperm selection step may be performed by diverting the sample distribution g (X) of sperm donors having similar symptoms.
  • FIG. 2 is an explanatory diagram illustrating the configuration of the information processing system 10.
  • the information processing system 10 includes an information processing device 20, a display device 15, and a microscope 41.
  • the information processing device 20 includes a control unit 21, a main storage device 22, an auxiliary storage device 23, a communication unit 24, a display I / F (Interface) 25, a photographing I / F 28, and a bus.
  • the control unit 21 is an arithmetic and control unit that executes the program of this embodiment.
  • the control unit 21 includes one or more CPUs (Central Processing Units), multi-core CPUs, GPUs (Graphics Processing Units), and the like.
  • the control unit 21 is connected to each of the hardware units configuring the information processing device 20 via a bus.
  • the main storage device 22 is a storage device such as SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), and flash memory.
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • flash memory temporary stores information required during the process performed by the control unit 21 and a program being executed by the control unit 21.
  • the auxiliary storage device 23 is a storage device such as SRAM, flash memory, or hard disk.
  • the auxiliary storage device 23 stores a teacher data DB 51, a preliminary shooting DB 52, a progress learning model 53, an image encoder 546, a program to be executed by the control unit 21, and various data necessary for executing the program.
  • teacher data DB 51 the preliminary shooting DB 52, the progress learning model 53, and the image encoder 546 may be stored in an external mass storage device or the like connected to the information processing device 20.
  • the communication unit 24 is an interface that communicates between the information processing device 20 and the network.
  • the display I / F 25 is an interface that connects the display device 15 such as a liquid crystal display device or an organic EL (Electro Luminescence) display device to the information processing device 20.
  • the photographing I / F 28 is an interface that connects a camera 48 described later and the information processing device 20.
  • the display I / F 25 is, for example, a VGA terminal, a DVI (Digital Visual Interface) terminal, an HDMI (registered trademark) (High-Definition Multimedia Interface) terminal, a USB (Universal Serial Bus) terminal, or the like.
  • the photographing I / F 28 is, for example, a USB terminal.
  • the display I / F 25 and the display device 15 may be wirelessly connected to each other, and the photographing I / F 28 and the camera 48 may be wirelessly connected to each other.
  • the microscope 41 is, for example, a differential interference microscope, a bright field microscope, a polarization microscope, a phase contrast microscope or an inverted microscope.
  • the microscope 41 includes a stage 42, an eyepiece lens 43, an objective lens 47, and an illumination unit 44.
  • an observation container 421 containing semen that has undergone pretreatment such as washing and dilution is placed.
  • the observation container 421 is, for example, a petri dish, a well, a slide glass, or the like.
  • the observation container 421 is illuminated by the illumination light emitted from the illumination unit 44.
  • An incubator who is a user observes the sperm in the observation container 421 through the objective lens 47 and the eyepiece lens 43.
  • An optical path splitting unit 45 is arranged between the objective lens 47 and the eyepiece lens 43. With the camera 48 connected to the optical path splitting unit 45, the sperm under observation by the incubator can be photographed as a moving image or a still image. The photographed image is recorded in the auxiliary storage device 23 via the photographing I / F 28 and is displayed on the display device 15 in real time via the display I / F 25.
  • the incubator looks at the sperm displayed on the display device 15.
  • the incubator visually confirms the candidate sperm and the tip of the micropipette using the eyepiece lens 43.
  • the incubator can appropriately use the display device 15 and the eyepiece lens 43, so that it is possible to provide the information processing system 10 in which fatigue of the incubator is small and sperm can be accurately collected.
  • the information processing device 20 of the present embodiment is a general-purpose personal computer, a tablet, a large computer, or a virtual machine that operates on a large computer.
  • the information processing device 20 may be configured by hardware such as a plurality of personal computers, tablets or large-scale computers.
  • the information processing device 20 may be composed of a quantum computer.
  • the information processing device 20 may be built in the microscope 41.
  • the information processing device 20 may be connected to the network via a hospital network system (not shown).
  • FIG. 3 is an explanatory diagram for explaining the process leading to childbirth.
  • a few to a dozen or so eggs are collected from an egg donor. Of the collected eggs, those with abnormalities such as deformation and eggs that have not matured to the fertilizable stage are discarded.
  • Tens of thousands to tens of millions of sperm are collected from sperm donors.
  • Microinsemination in which sperm are selected and injected into an egg is performed. The egg is cultured under predetermined conditions.
  • the embryo After fertilization is established, the embryo starts cell division and develops into morula, blastocyst, through 2 divided embryos, 4 divided embryos, etc. The development process of the embryo is appropriately observed, and whether or not the embryo has normally grown to each development stage is recorded. Embryos found to be abnormal by observation are discarded.
  • Embryos that have grown to the prescribed stage are transferred to the mother, and the remaining embryos are cryopreserved.
  • frozen embryo transfer is performed, in which all embryos are once frozen and stored, and embryo transfer is performed when the maternal condition is ready.
  • the fetus grows like natural pregnancy. Pregnancy checkups are performed and the development of the fetus is recorded. If the course is normal, the child is born and a newborn baby is born.
  • the embryo that has been cryopreserved will be re-transferred.
  • the cryopreserved embryo is discarded.
  • FIG. 4 is an explanatory diagram illustrating the distribution of success probabilities.
  • the horizontal axis X represents the probability of success as a random variable
  • the vertical axis Y represents the probability corresponding to the random variable X.
  • a success probability of 0 indicates that no case succeeds
  • a success probability of 1 indicates that all cases succeed.
  • the graph shown in the lower right of FIG. 1 also displays the same distribution as in FIG. 4, but the vertical axis X shows the success probability as a random variable, and the horizontal axis Y shows the probability corresponding to the random variable X.
  • -Success probability is calculated for each stage of development such as fertilization, blastocyst formation, implantation, and childbirth.
  • the success probability of fertilization and blastocyst formation is calculated by the number of eggs that have normally grown to fertilization and blastocyst formation with respect to the number of eggs that have undergone microinsemination.
  • the success rate of implantation and delivery is calculated based on the number of embryos successfully implanted and delivered with respect to the number of embryos transplanted into the mother.
  • the first distribution f (X) indicated by the solid line is a probability density distribution in which the success / failure of all recorded cases is represented by a beta distribution.
  • the first distribution f (X) is expressed by equation (1).
  • p is the number of cases that grew normally up to each growth stage.
  • q is the number of cases that did not grow normally up to each growth stage.
  • C 1 is a normalization constant.
  • the sample distribution g (X) indicated by a broken line indicates the distribution of success probabilities predicted from the preliminarily photographed images in the second preparatory stage described using FIG. 1B. For example, when predicting whether or not normal growth can be achieved up to each growth stage based on a pre-captured image, the sample distribution g (X) is expressed by equation (2) based on the binomial distribution. ..
  • a is the number of preliminary captured images predicted to grow normally up to each growth stage.
  • b is the number of preliminary captured images predicted not to grow normally up to each growth stage.
  • C 2 is a normalization constant.
  • the second distribution h (X) indicated by the alternate long and short dash line is the posterior distribution obtained by Bayesian estimation using the first distribution f (X) as the prior distribution and the sample distribution g (X) as the likelihood distribution, and sperm It means the result of predicting the probability density distribution of sperm success probability provided by the provider.
  • the second distribution h (X) is expressed by equation (3).
  • C 3 is a normalization constant.
  • sperm with a success probability of about 0.55 are spermatozoa with a relatively low success probability among all the data shown by the first distribution f (X), but the second distribution h (X).
  • the incubator decides whether to use the sperm under observation for microinsemination or to look for sperm with a higher probability of success.
  • FIG. 5 is an explanatory diagram illustrating a method of creating the image encoder 546 that extracts the image feature amount from the still image obtained by photographing the sperm.
  • the image feature amount model 54 is a CNN (Convolution Neural Network) including an input layer 541, an intermediate layer 542, and an output layer 543.
  • CNN Convolution Neural Network
  • CNN is a neural network in which the convolutional layer and the pooling layer are iterated using the ReLU (Rectified Linear Unit) function or the softmax function as the activation function, and then the fully connected layer is repeated multiple times. Illustration of the convolutional layer and the pooling layer is omitted.
  • ReLU Rectified Linear Unit
  • the input layer 541 and the output layer 543 have the same number of neurons as the number of pixels of the captured image which is the teacher data.
  • the number of neurons in the middle layer 542 is the smallest in the middle layer 545.
  • the still image of the captured image is input to the input layer 541. Specifically, the pixel value of each pixel of the captured image is input to each neuron of the input layer 541.
  • the control unit 21 performs supervised machine learning that calculates the parameters of the intermediate layer 542 by using the error backpropagation method or the like so that the same captured image as the input layer 541 is output from the output layer 543.
  • Each neuron in the central layer 545 after the supervised machine learning is finished shows the image feature amount of the captured image.
  • the control unit 21 divides a captured image, which is teacher data, into training data and verification data before performing supervised machine learning.
  • the control unit 21 verifies the accuracy of the image feature amount model 54 subjected to the machine learning with the teacher using the training data, using the verification data. From the above, it is confirmed that the image feature amount model 54 does not have a problem such as over-learning. Since the learning and verification process is a process generally performed in supervised machine learning, description thereof will be omitted in supervised machine learning described below.
  • the part of the learned image feature amount model 54 from the input layer 541 to the central layer 545 is used for the image encoder 546 that extracts the image feature amount from the captured image.
  • the control unit 21 cuts out the image encoder 546 from the image feature amount model 54 and records it in the auxiliary storage device 23. As described above, the image encoder 546 that outputs the image feature amount is completed when the captured image of the sperm is input.
  • the teacher data when creating the image encoder 546 include only one sperm. If an image containing a plurality of spermatozoa or foreign substances is used, the image is subjected to clipping processing or the like, and an image processed so as not to include a portion other than the target sperm is used as the teacher data.
  • the image encoder 546 may be created using any computer.
  • the created image encoder 546 is transmitted to the information processing device 20 used by the microinsemination performing institution via a network or the like and recorded in the auxiliary storage device 23.
  • the information processing system 10 that creates the image encoder 546 and the information processing system 10 that uses the image encoder 546 use the microscopes 41 having the same or similar specifications.
  • FIG. 6 is an explanatory diagram for explaining the extraction of the image feature amount from the moving image file. Extraction of the image feature amount when the captured image at the time of microinsemination is recorded as a moving image will be described with reference to FIG.
  • video features such as sperm movement speed, linear movement distance, and tail flagella movement cycle are extracted.
  • the moving image feature amount is calculated, for example, based on the amount of movement of a plurality of feature points defined on the captured image between frames.
  • the moving image feature amount may be extracted using an RNN (Recurrent Neural Network).
  • the moving image feature amount may be extracted using an existing arbitrary moving image analysis method.
  • the feature amount of the still image and the feature amount of the moving image are recorded in the teacher data DB 51 in association with the progress after microinsemination.
  • control unit 21 uses the still image instead of cutting out the frame from the moving image file to determine the image feature amount. Extract.
  • FIG. 7 is an explanatory diagram illustrating the progress learning model 53.
  • the progress learning model 53 is a neural network including an input layer 531, an intermediate layer 532, and an output layer 533.
  • the case where the progress learning model 53 is CNN is illustrated. Illustration of the convolutional layer and the pooling layer is omitted.
  • the progress learning model 53 is created at various stages of development such as fertilization, blastocyst formation, implantation, and childbirth.
  • the input of the progress learning model 53 is the image feature amount of the captured image, that is, the image feature amount of the still image described using FIG. 5, and the image feature amount of the moving image described using FIG.
  • the output of the progress learning model 53 is the probability of successful growth up to each stage (success probability) and the probability of failure to grow normally (unsuccessful probability).
  • the progress learning model 53 outputs the success and failure probabilities to the output layer 533 when the feature amounts of the still image and the moving image are input to the input layer 531.
  • the control unit 21 uses the teacher data DB 51 in which the feature amounts of the still image and the moving image are recorded in association with the progress after microinsemination, and uses the error backpropagation method or the like to set the parameters of the intermediate layer 532.
  • the supervised machine learning is performed by calculating.
  • Supervised machine learning can be performed by any method such as logistic regression, SVM (Support Vector Machine), random forest, CNN, RNN, or XGBoost (eXtreme Gradient Boosting).
  • logistic regression logistic regression
  • SVM Small Vector Machine
  • random forest CNN
  • RNN random forest
  • XGBoost eXtreme Gradient Boosting
  • the input layer 531 may additionally include items other than the image feature amount, such as age, medical history, current medical history including health status, family history, past infertility treatment history of the sperm donor and the egg donor. ..
  • the input layer 531 includes sperm concentration, total sperm count, sperm motility, motile sperm concentration, linear velocity, curve velocity, average velocity, linearity, and straightness obtained by low-power microscope observation or a commercially available sperm evaluation device or the like. Items related to sperm quality such as sex, head amplitude, and head frequency may be input.
  • the control unit 21 determines the success or failure of a later stage such as a blastocyst stage by the transfer learning using the completed progress learning model 53.
  • the progress learning model 53 may be created. From fertilization to childbirth, the number of teacher data decreases in later stages. However, by using transfer learning, it is possible to create an appropriate progress learning model 53 even in the later stage.
  • the progress learning model 53 may be created using any computer.
  • the created progress learning model 53 is transmitted to the information processing device 20 used by the microinsemination performing institution via a network or the like and recorded in the auxiliary storage device 23.
  • the information processing system 10 that creates the image encoder 546 and the progress learning model 53 and the information processing system 10 that uses the image encoder 546 and the progress learning model 53 have the same specifications or similar specifications. It is desirable to use 41.
  • FIG. 8 is an explanatory diagram illustrating a record layout of the teacher data DB 51.
  • the teacher data DB 51 is a DB that records the photographed image of the sperm used for microinsemination and the process after microinsemination in association with each other.
  • the teacher data DB 51 has a sperm ID field, an image data field, a sperm image feature amount field, and a progress information field.
  • the sperm image feature amount field has a still image field and a moving image field.
  • the still image field and the moving image field each have a first feature amount field, a second feature amount field, and the like.
  • the progress information field includes a fertilization field, a blastocyst formation field, an implantation field, a birth field, and a health status field.
  • the teacher data DB 51 has one record for each sperm used for microinsemination.
  • the sperm ID field the sperm ID uniquely assigned to the sperm is recorded.
  • image data field image data of a sperm photographed is recorded.
  • FIG. 8 shows an example in which a moving image file with the extension “mpg” is recorded, but the image data format is arbitrary. A plurality of files such as a moving image file and a still image file may be recorded in the image data field.
  • each subfield of the still image field the feature amount of the still image obtained by inputting the image data to the image encoder 546 is recorded.
  • the characteristic amount of the moving image obtained by analyzing the image data is recorded.
  • the fertilization field records the success or failure of fertilization
  • the blastocyst formation field records the success or failure of blastocyst formation
  • the implantation field records the success or failure of implantation
  • the birth field records the success or failure of childbirth. “OK” indicates that each stage has been normally reached, and “NG” indicates that each stage has not been normally reached. “-” Indicates that the success or failure of each stage cannot be determined.
  • the health status field indicates the health status of the newborn. "OK” indicates that the newborn is healthy. “NG” indicates, for example, a very premature baby, which is a newborn baby having a health problem.
  • the progress information field may have a field that records an arbitrary developmental stage of the embryo, such as a 2-split embryo field, a 4-split embryo field, or a morula embryo field.
  • the progress information field may have a field for recording the result of the pregnant woman examination, such as the 20th week of pregnancy field.
  • the progress information field may have a field for recording the result of prenatal diagnosis such as amniotic fluid test or NIPT (Non-Invasive Prenatal Genetic Testing).
  • the information recorded in each subfield of the progress information field may be acquired from an electronic medical record or the like based on the sperm ID recorded in the sperm ID field.
  • FIG. 9 is an explanatory diagram illustrating a record layout of the preliminary shooting DB 52.
  • the preliminary shooting DB 52 is a DB that records a prediction result using the progress learning model 53 in the second preparatory stage described using FIG. 1B.
  • the preliminary imaging DB 52 has a patient ID field, an imaging date field, and a prediction result field.
  • the prediction result field has a fertilization field, a blastocyst formation field, an implantation field, a birth field, and a health status field.
  • the preliminary photographing DB 52 has one field for one preliminary photographing.
  • the patient ID uniquely assigned to the sperm provider is recorded in the patient ID field.
  • the shooting date field the shooting date when the shot image was shot is recorded.
  • the prediction result of whether or not each stage is normally reached is recorded. “OK” indicates that each stage was predicted to reach normal, and “NG” indicates that each stage did not reach normal.
  • the control unit 21 extracts the sperm image feature amount from the captured image captured by the camera 48 and inputs it to the progress learning model 53 created for each stage to acquire the success probability.
  • the control unit 21 records “OK” when the success probability is equal to or higher than the predetermined threshold value, and records “NG” when the success probability is lower than the predetermined threshold value.
  • FIG. 10 shows the screen displayed on the display device 15 by the control unit 21 when the preliminary imaging of the sperm contained in the semen provided by the sperm donor is performed in the second preparatory step described using FIG. 1B.
  • FIG. 10 shows the screen displayed on the display device 15 by the control unit 21 when the preliminary imaging of the sperm contained in the semen provided by the sperm donor is performed in the second preparatory step described using FIG. 1B.
  • An image column 61, a target number column 62, a photographed number column 63, a photographing button 66, and an end button 67 are displayed on the screen.
  • a microscope image taken by the camera 48 is displayed in real time.
  • the target number column 62 the target number of preliminary shooting is displayed.
  • the target number for preliminary imaging is about 37% of the number of sperm collected.
  • this number is usually an unrealistically large value, it is set to a workable value.
  • the number of pre-photographed spermatozoa is displayed in the photographed number column 63.
  • the control unit 21 extracts the still image feature amount and the moving image feature amount of the image displayed in the image column 61.
  • the control unit 21 inputs the extracted feature amount into the progress learning model 53 created for each stage, and acquires the success probability.
  • the control unit 21 determines a prediction result of whether or not normal growth is achieved up to each stage based on a predetermined threshold value.
  • the control unit 21 creates a new record in the preliminary shooting DB 52 and records the prediction result.
  • the user determines whether to move to the sperm selection stage described using FIG. 1C based on the target number column 62, the photographed number column 63, and the state of sperm contained in the semen under observation.
  • the control unit 21 ends the preliminary imaging and shifts to the sperm selection stage.
  • the control unit 21 may automatically shift to the sperm selection stage when the number of pre-captured sperm reaches the target number.
  • FIG. 11 shows an example of a screen displayed by the control unit 21 on the display device 15 at the sperm selection stage described using FIG. 1C.
  • An image field 61, a determination button 68, and an end button 67 are displayed on the screen.
  • a microscope image taken by the camera 48 is displayed in real time.
  • control unit 21 extracts the still image feature amount and the moving image feature amount of the image displayed in the image column 61.
  • the control unit 21 inputs the feature amount into the progress learning model 53, and acquires the prediction success probability of each stage from fertilization to delivery.
  • the control unit 21 ends the process.
  • FIG. 12 shows an example of a screen displayed by the control unit 21 on the display device 15 when the selection of the determination button 68 is accepted.
  • An image field 61, an evaluation field 65 and a next button 69 are displayed on the screen.
  • the evaluation section 65 includes a first evaluation section 651, a second evaluation section 652, a third evaluation section 653, a fourth evaluation section 654, and a comprehensive evaluation section 659.
  • the microscope image displayed in the image column 61 when the determination button 68 is accepted on the screen described with reference to FIG. 11 is displayed in a still state.
  • the user can confirm the candidate sperm under determination from the image column 61.
  • the control unit 21 inputs the image feature amount of the candidate sperm under determination into the progress learning model 53 regarding success or failure of fertilization, and displays the evaluation of the success probability acquired in the first evaluation column 651.
  • the evaluation is represented by the deviation value in the second distribution h (X) described using FIG.
  • control unit 21 displays the evaluation of the success probability obtained by inputting the image feature amount of the candidate sperm into the progress learning model 53 regarding the success or failure of blastocyst formation in the second evaluation column 652.
  • the control unit 21 displays the evaluation of the success probability obtained by inputting the image feature amount of the candidate sperm into the progress learning model 53 regarding the success or failure of implantation in the third evaluation column 653.
  • the control unit 21 displays the evaluation of the success probability obtained by inputting the image feature amount of the candidate sperm into the progress learning model 53 regarding the success or failure of childbirth in the fourth evaluation column 654.
  • the control unit 21 displays, in the comprehensive evaluation column 659, the comprehensive evaluation of candidate sperm that is a combination of the evaluations displayed in the first evaluation field 651 to the fourth evaluation field 654.
  • the comprehensive evaluation for example, the candidate spermatozoa were classified into “good”, “normal”, “poor”, etc. based on the average value or the minimum value of the evaluations displayed in the first evaluation field 651 to the fourth evaluation field 654. The result.
  • the control unit 21 may call the user's attention by an arbitrary method such as sounding when the comprehensive evaluation is equal to or higher than a predetermined threshold.
  • the user determines whether to use the candidate sperm for microinsemination. When it is determined that the sperm is to be used, the user collects it in the micropipette while checking the candidate sperm with the eyepiece lens 43. When it is determined not to be used or when the collection is completed, the user selects the next button 69.
  • the control unit 21 When the user selects the next button 69, the control unit 21 returns the screen displayed on the display device 15 to the screen described using FIG. 11. The user can select a new candidate sperm.
  • the control unit 21 may display a real-time microscope image in the image column 61.
  • the user can determine whether or not to use the candidate sperm by viewing the motion state of the candidate sperm and the evaluation column 65 at the same time.
  • the user appropriately operates the stage 42 to keep the candidate sperm within the microscope field of view.
  • Both a still image of a candidate sperm and a real-time microscope image may be displayed in the image column 61 by using screen division or child screen display.
  • FIG. 13 is a flowchart showing the flow of processing of the program used in the first preparation stage. The flow of processing performed in the first preparatory stage described with reference to FIG. 1A will be described with reference to FIG.
  • the teacher data DB 51 in the initial state, the photographed image and the progress information regarding the past microinsemination are recorded in the sperm ID field, the image data field, and the progress information field, and the sperm image feature amount field is blank. ..
  • the control unit 21 extracts one processing target record from the teacher data DB 51.
  • the control unit 21 acquires an image from the image data field (step S501).
  • the control unit 21 extracts the image feature amount (step S502). Specifically, the control unit 21 cuts out a still image from the image and extracts the moving image feature amount, as described with reference to FIG. 6, for example.
  • the control unit 21 inputs the cut out still image to the image encoder 546 to acquire the still image feature amount.
  • the control unit 21 records the image feature amount in each subfield of the sperm image feature amount field of the processing target record (step S503).
  • the control unit 21 determines whether or not the processing of the captured image recorded in the teacher data DB 51 is completed (step S504). When it is determined that the processing is not completed (NO in step S504), the control unit 21 returns to step S501.
  • control unit 21 uses the data recorded in one subfield of the sperm image feature amount field and the progress information field as teacher data to perform supervised machine learning. Then, the progress learning model 53 for one stage in the process from fertilization to delivery is created (step S511).
  • the control unit 21 uses an error backpropagation method or the like so that a predetermined value is output to the output layer 533 when input data such as a sperm image feature amount is input to the input layer 531. Is calculated.
  • the predetermined value is “1” in the “success” neuron, “0” in the “unsuccessful” neuron, and “NG” in the progress subfield. Is recorded, it is “0” for the “successful” neuron and “1” for the “unsuccessful” neuron.
  • the control unit 21 stores the created progress learning model 53 in the auxiliary storage device 23 (step S512).
  • the control unit 21 respectively acquires the number of “OK” and the number of “NG” for the progress information subfield being processed (step S513).
  • the first distribution f (X) described using FIG. 4 is obtained.
  • the control unit 21 records the number of “OK” and the number of “NG” in the auxiliary storage device 23 in association with the progress information subfield being processed (step S514).
  • the control unit 21 determines whether or not processing of all subfields of the progress information field, that is, processing of all stages from fertilization to birth is completed (step S515).
  • step S511 the control unit 21 may perform transfer learning using the created progress learning model 53.
  • step S511 the control unit 21 ends the process.
  • FIG. 14 is a flowchart showing the processing flow of the program used in the second preparation stage and the sperm selection stage. The flow of processing performed in the second preparatory step described with reference to FIG. 1B and the sperm selection step described with reference to FIG. 1C will be described with reference to FIG.
  • the control unit 21 activates a subroutine for sample distribution calculation (step S521).
  • the sample distribution calculation subroutine is a subroutine for performing preliminary imaging of sperm contained in the semen provided by the sperm donor and calculating the sample distribution g (X). The process flow of the sample distribution calculation subroutine will be described later.
  • the control unit 21 acquires the number of OKs and the number of NGs recorded in step S514 of FIG. 13 for each stage from fertilization to delivery (step S522).
  • the control unit 21 substitutes the number of “OK” into p of the equation (1) and the number of “NG” into q and obtains the first distribution f (X) and the sample calculated in the sample distribution calculation subroutine.
  • a second distribution h (X) obtained by substituting the distribution g (X) and the equation (3) is calculated (step S523).
  • the control unit 21 displays the screen described with reference to FIG. 11 on the display device 15.
  • the user moves the stage 42 to search for a sperm candidate to be used for microinsemination.
  • the user selects the determination button 68 with only one normal sperm being displayed in the image column 61 as described with reference to FIG. 11.
  • the control unit 21 acquires a photographed image of sperm through the camera 48 (step S524).
  • the control unit 21 extracts the sperm image feature amount (step S525).
  • the control unit 21 inputs the sperm image feature amount into the progress learning model 53 at each stage from fertilization to delivery, and calculates a prediction success probability of normal growth at each stage (step S526).
  • the control unit 21 calculates an evaluation index for the prediction success probability calculated in step S526 within the second distribution h (X) calculated in step S523 (step S527).
  • the evaluation index is, for example, a deviation value of the prediction success probability.
  • the control unit 21 determines the comprehensive evaluation of the candidate sperm based on the evaluation index for each stage from fertilization to delivery (step S528). For example, the control unit 21 determines that the candidate sperm is “good”, “normal”, or “bad” based on the average value or the minimum value of the deviation values of the prediction success probability for each stage. To do.
  • the control unit 21 displays the screen described with reference to FIG. 12 on the display device 15 (step S529).
  • the control unit 21 determines whether or not the selection of the next button 69 is accepted (step S530). When it is determined that the selection of the next button 69 is accepted (YES in step S530), the control unit 21 displays the screen described with reference to FIG. 11 on the display device 15, and returns to step S524.
  • control unit 21 ends the process.
  • FIG. 15 is a flowchart showing the flow of processing of a subroutine for sample distribution calculation.
  • the sample distribution calculation subroutine is a subroutine for performing preliminary imaging of sperm contained in the semen provided by the sperm donor and calculating the sample distribution g (X).
  • the control unit 21 displays the screen described with reference to FIG. 10 on the display device 15.
  • the control unit 21 displays the screen described with reference to FIG. 11 on the display device 15.
  • the user moves the stage 42 to search for normal sperm that can be used for microinsemination.
  • the user selects the shooting button 66 in the state where only one normal sperm is displayed in the image column 61.
  • the control unit 21 obtains the shot image of the sperm through the camera 48 (step S541).
  • the control unit 21 extracts the sperm image feature amount (step S542).
  • the control unit 21 creates a new record in the preliminary shooting DB 52 (step S543).
  • the control unit 21 inputs the sperm image feature amount into the progress learning model 53 in one of the stages from fertilization to birth, and acquires the prediction success probability (step S544).
  • the control unit 21 determines whether the prediction success probability is equal to or higher than a predetermined threshold value (step S545).
  • control unit 21 When it is determined that it is equal to or more than the threshold value (YES in step S545), the control unit 21 records “OK” in the field corresponding to the stage of processing the record created in step S543 (step S546). When it is determined that the value is less than the threshold value (NO in step S545), the control unit 21 records “NG” in the field corresponding to the stage of processing the record created in step S543 (step S547).
  • the control unit 21 determines whether or not the processing for all stages from fertilization to birth is completed (step S548). When it is determined that the processing has not ended (NO in step S548), the control unit 21 returns to step S544.
  • step S548 the control unit 21 determines whether or not the preliminary shooting is finished. For example, when the selection of the end button 67 is accepted on the screen described with reference to FIG. 10, the control unit 21 determines to end the preliminary shooting.
  • step S549 If it is determined that the preliminary shooting is not finished (NO in step S549), the control unit 21 returns to step S541.
  • step S549 the control unit 21 acquires the number of “OK” and the number of “NG” for the subfield being processed in the prediction result field (step S550). ..
  • the sample distribution g (X) described using FIG. 4 can be obtained.
  • the control unit 21 records the number of “OK” and the number of “NG” in the auxiliary storage device 23 in association with the prediction result subfield being processed (step S551).
  • the control unit 21 determines whether or not the processing of all subfields of the prediction result field, that is, the processing of all stages from fertilization to birth is completed (step S552). When it is determined that the processing has not ended (NO in step S552), the control unit 21 returns to step S550. When it is determined that the process is completed (YES in step S552), the control unit 21 ends the process.
  • the information processing system 10 that supports the selection of sperm having a high probability of successful microinsemination.
  • the success probability predicted by sampling the spermatozoa in the semen with the prior distribution of the first distribution f (X) based on the data recorded by microinsemination using the IMSI in the past and recording the progress is shown.
  • Bayesian estimation for each likelihood distribution whether fertilization is established for sperm contained in semen, success or failure of normal growth up to each stage of 4-splitting embryo, morula, blastocyst, etc. It is possible to accurately predict the posterior distribution of the probability (success probability) that the embryos will normally grow after microinsemination, such as whether or not the condition is established, whether or not there is an abnormality in the pregnant woman screening, and whether or not the baby is born.
  • the incubator in order to evaluate the success probability at each stage such as the fertilization stage and the blastocyst formation stage, the incubator can select sperm in consideration of the clinical characteristics and condition of the patient. For example, when the number of collected ova is large, the incubator can select spermatozoa with a high success probability after implantation even though the success probability of fertilization is low.
  • the number of input dimensions of the progress learning model 53 can be reduced by using the image encoder 546 to extract the feature amount of the captured image. This makes it possible to provide the information processing system 10 that evaluates sperm in real time. Since the captured images can be classified with high accuracy by the image encoder 546, it is possible to provide the information processing system 10 that accurately evaluates sperm.
  • the image encoder 546 may be integrated with the progress learning model 53.
  • the integrated progress learning model 53 is generated by connecting the output of the image encoder 546 to the input layer 531 of the progress learning model 53.
  • the progress learning model 53 that outputs the success probability of each stage in the process from fertilization to birth when a captured image of sperm is input.
  • the image encoder is integrated with the progress learning model 53, in the teacher data DB 51 described using FIG. 8, instead of the subfield for recording the feature amount of the still image, it is extracted from the moving image file. It is desirable to provide a field for recording sperm images.
  • the progress learning model 53 may be integrated with an image encoder 546 and a CNN for determination used when extracting a still image including the entire sperm from a moving image file.
  • the teacher data DB 51 described with reference to FIG. 8 does not need the subfield for recording the feature amount of the still image.
  • the accuracy of the progress learning model 53 can be improved by re-learning using new teacher data.
  • the progress learning model 53 updated by the re-learning may be delivered to another microinsemination performing institution via a network.
  • the first distribution f (X) of the item evaluated by the score is a probability density distribution obtained by approximating the scores of all the recorded cases by the beta distribution.
  • the first distribution f (X) in this case can be expressed by equation (4).
  • E is the average score.
  • V is the variance of points.
  • C 4 is a normalization constant.
  • the first distribution f (X) may be calculated, for example, by using an arbitrary distribution of uniform distribution as a prior distribution and performing Bayes update for each piece of teacher data.
  • the sample distribution g (X) is calculated by performing a Bayes update for each pre-photographed sperm as a prior distribution with an arbitrary distribution such as a uniform distribution or the same distribution as the first distribution f (X). Is also good.
  • a beta distribution may be used for the sample distribution g (X). Specifically, instead of the above equation (2), the equation (5) showing the beta distribution is used.
  • a is the number of preliminarily photographed images estimated to grow normally up to each growth stage.
  • b is the number of preliminarily photographed images estimated not to grow normally up to each growth stage.
  • C 5 is a normalization constant.
  • a Gaussian distribution may be used for both or one of the first distribution f (X) and the sample distribution g (X).
  • the input layer 531 of the progress learning model 53 stores age information, health status information, past infertility treatment history of sperm donors and egg donors, or genomic information such as gene mutations. , Information about sperm donors and egg donors may be added. By doing so, it is possible to realize the progress learning model 53 that predicts the success probability based on the influence of aging and the like.
  • the amount of illumination light emitted from the illumination unit 44 may be increased and the exposure time may be reduced. Even a sperm that is actively moving can take clear still images.
  • a progress learning model 53 capable of clearly discriminating between spermatozoa with high success and low spermatozoa can be created, and candidate spermatozoa can be evaluated with high accuracy.
  • the camera 48 has high resolution. By capturing sperm with high resolution, you can capture images with clear moving images and still images. Therefore, it is possible to create a progress learning model 53 that can clearly discriminate between spermatozoa with a high probability of success and spermatozoa with a low probability of success, and evaluate a candidate sperm with high accuracy. In order to obtain practical accuracy, it is desirable to photograph one sperm with a resolution of at least 32 pixels ⁇ 32 pixels or more.
  • the camera 48 be able to take high-contrast images.
  • a high-contrast image By using a high-contrast image, individual differences in sperm can be clearly identified. Therefore, it is possible to create a progress learning model 53 that can clearly discriminate between spermatozoa with a high probability of success and spermatozoa with a low probability of success, and evaluate a candidate sperm with high accuracy.
  • the present embodiment relates to the information processing system 10 that calculates the sample distribution g (X) based on the success probability acquired from the progress learning model 53. Descriptions of portions common to the first embodiment will be omitted.
  • FIG. 16 is an explanatory diagram illustrating a record layout of the preliminary shooting DB 52 according to the second embodiment.
  • the preliminary shooting DB 52 is a DB that records a prediction result using the progress learning model 53 in the second preparatory stage described using FIG. 1B.
  • the preliminary imaging DB 52 has a patient ID field, an imaging date field, and a prediction result field.
  • the prediction result field has a fertilization field, a blastocyst formation field, an implantation field, a birth field, and a health status field.
  • the preliminary photographing DB 52 has one field for one preliminary photographing.
  • the patient ID uniquely assigned to the sperm provider is recorded in the patient ID field.
  • the shooting date field the shooting date when the shot image was shot is recorded.
  • the predicted value of the probability of reaching each step normally is recorded in percentage.
  • the control unit 21 extracts the sperm image feature amount from the captured image captured by the camera 48 and inputs it to the progress learning model 53 created for each stage to acquire the success probability.
  • the control unit 21 records the acquired probability in each field of the preliminary shooting DB 52.
  • these success probabilities are approximated by the beta distribution g (X) represented by the equation (6).
  • the average and the variance are calculated from the frequency distribution regarding the success probability, and the variables are substituted into E and V, respectively.
  • E is the average (expected value) of the distribution of prediction success probabilities that normally grows to each stage.
  • V is the variance of the distribution of predictive success probabilities for normal growth to each stage.
  • C 6 is a normalization constant.
  • FIG. 17 is a flowchart showing the processing flow of the sample distribution calculation subroutine of the second embodiment.
  • the sample distribution calculation subroutine shown in FIG. 17 is a subroutine used instead of the sample distribution calculation subroutine described with reference to FIG.
  • the flow of processing up to step S544 is the same as the processing of the subroutine of sample distribution calculation described with reference to FIG.
  • the control unit 21 records the prediction success probability acquired in step S544 in the field corresponding to the stage in processing of the record created in step S543 (step S561).
  • the control unit 21 determines whether or not the processing has been completed for all stages from fertilization to delivery (step S562). When it is determined that the processing has not ended (NO in step S562), the control unit 21 returns to step S544.
  • step S562 the control unit 21 determines whether the pre-shooting is finished (step S563). When it is determined that the preliminary shooting is not finished (NO in step S563), the control unit 21 returns to step S541.
  • the control unit 21 calculates the average value E and the variance V for one subfield of the prediction result field of the preliminary shooting DB52.
  • the control unit 21 calculates the variables p, q and C 6 based on the equation (6) (step S564).
  • the control unit 21 records the variables p, q, and C 6 in the auxiliary storage device 23 in association with the prediction result subfield being processed (step S565).
  • the control unit 21 determines whether or not processing of all subfields of the prediction result field, that is, processing of all stages from fertilization to childbirth has been completed (step S566). When it is determined that the processing has not ended (NO in step S566), the control unit 21 returns to step S564. When it is determined that the process is completed (YES in step S566), the control unit 21 ends the process.
  • the present embodiment it is not necessary to set a threshold for determining “OK” and “NG” when creating the preliminary shooting DB 52. Therefore, it is possible to provide the information processing system 10 that evaluates the candidate sperm without being affected by the setting of the threshold value.
  • the information processing system 10 in which the sample distribution g (X) is stable with a small number of preliminary shootings when there are many sperm with a prediction success probability of around 50%.
  • the present embodiment relates to an information processing system 10 that displays a reliability index of a prediction success probability as well as an evaluation index of a prediction success probability of a candidate sperm. Descriptions of portions common to the first embodiment will be omitted.
  • FIG. 18 is an explanatory diagram showing a screen displayed by the information processing device 20 according to the third embodiment.
  • the screen shown in FIG. 18 is an example of a screen displayed on the display device 15 instead of the screen shown in FIG. 12 at the sperm selection stage.
  • An image field 61, an evaluation field 65 and a next button 69 are displayed on the screen.
  • the evaluation section 65 includes a first evaluation section 651, a second evaluation section 652, a third evaluation section 653, and a fourth evaluation section 654.
  • the deviation value as an evaluation index and the reliability of the evaluation index are displayed, respectively.
  • Confidence is the reciprocal of accidental uncertainty due to data inhomogeneity, for example.
  • the reliability is the reciprocal of the uncertainty of recognition, such as the uncertainty of the model subjected to supervised machine learning, the uncertainty of parameters, or the uncertainty of completeness.
  • the uncertainty of recognition can be calculated by using Monte Carlo Dropout Sampling etc. where the parameters of the machine learning model are replaced with Bernoulli distribution. It should be noted that, in order for the incubator to intuitively understand the degree of reliability, by adding an appropriate constant to the calculated reliability and then multiplying it by another appropriate constant, for example, a value from 0 to 100 is converted. The calculated value may be displayed as the reliability.
  • the incubator avoids selecting a candidate sperm if the reliability is low even if the deviation of the candidate sperm is high. I can decide.
  • the present embodiment relates to an information processing system 10 that automatically determines candidate sperm. Descriptions of portions common to the first embodiment will be omitted.
  • FIG. 19 is an explanatory diagram illustrating the configuration of the information processing system 10 according to the fourth embodiment.
  • the information processing device 20 has a stage I / F 26.
  • the stage I / F 26 is, for example, a USB terminal.
  • the microscope 41 has a stage moving unit 46 that operates the stage 42.
  • the stage moving unit 46 is connected to the stage I / F 26.
  • the control unit 21 controls the stage moving unit 46 via the stage I / F 26.
  • the control unit 21 controls the stage moving unit 46 so that the field of view of the microscope 41 scans the entire observation container 421, for example.
  • the control unit 21 may control the stage moving unit 46 based on an instruction from the user.
  • FIG. 20 is an explanatory diagram illustrating the record layout of the normal sperm determination DB.
  • the normal sperm determination DB is teacher data used for supervised machine learning for discriminating between normal sperm and other sperm.
  • the normal sperm determination DB has an image field and a determination field. In the image field, an image obtained by photographing normal sperm, abnormal sperm, foreign matter, or the like is recorded. In the judgment field, the result of the culture person judging whether the image is “normal sperm”, “abnormal sperm” or “foreign matter” is recorded.
  • the normal sperm determination DB has one record for one image.
  • FIG. 21 is an explanatory diagram showing the configuration of the normal sperm determination model 57.
  • the normal sperm determination model 57 is a neural network including an input layer 571, an intermediate layer 572, and an output layer 573.
  • the case where the normal sperm determination model 57 is CNN is illustrated.
  • the image recorded in the image field of the normal sperm determination DB is input to the input layer 571.
  • the input layer 571 has the same number of neurons as the number of pixels of the image, and the pixel value of each pixel of the image is input to each neuron.
  • the output layer 573 has a total of three neurons that output the probability that the determination is “normal sperm”, the probability that the determination is “abnormal sperm”, and the probability that the determination is “foreign matter”.
  • the control unit 21 performs supervised machine learning that calculates the parameters of the intermediate layer 572 using an error backpropagation method or the like so that the determination result recorded in the determination field of the normal sperm determination DB is output from the output layer 543. To do. For example, when “normal sperm” is recorded in the determination field, the control unit 21 determines that the probability of being “normal sperm” is 1, the probability of being “abnormal sperm” and the probability of being “foreign body”. The parameters of the intermediate layer 572 are calculated so as to be 0.
  • control unit 21 can determine whether normal sperm, abnormal sperm, or foreign matter is captured.
  • the normal sperm determination model 57 is created by using transfer learning for additionally learning the normal sperm determination DB to an existing public model such as VGG (Visual Geometry Group) -16, ResNET (Residual Network) -50 or Xception. Good. By using the public model, an accurate normal sperm determination model 57 can be created with less teacher data.
  • VGG Visual Geometry Group
  • ResNET Residual Network
  • FIGS. 22 to 24 are explanatory diagrams showing screens displayed by the information processing device 20 according to the fourth embodiment.
  • the screens shown in FIGS. 22 to 24 are examples of screens displayed on the display device 15 in place of the screen shown in FIG. 12 at the sperm selection stage.
  • An image column 61 and an evaluation column 65 are displayed on the screen.
  • the image taken by the camera 48 is displayed in real time.
  • the control unit 21 determines whether or not the evaluation target is included in the visual field by using a known image recognition technique.
  • the control unit 21 may input the image to a CNN for determination prepared in advance to determine whether or not the evaluation target is included in the visual field.
  • the evaluation column 65 the evaluation result obtained by evaluating the image displayed in the image column 61 in real time is displayed.
  • normal sperm are included in the visual field, and the same evaluation results as in FIG. 12 are displayed.
  • abnormal sperm are included in the visual field, and “abnormal sperm” is displayed in the comprehensive evaluation field 659.
  • the prediction success probability is not acquired using the progress learning model 53, and “-” is displayed in the first evaluation column 651 to the fourth evaluation column 654.
  • the evaluation target is not included in the field of view, and “undecidable” is displayed in the comprehensive evaluation field 659. Since the evaluation target is not included, the prediction success probability is not acquired using the progress learning model 53, and “-” is displayed in the first evaluation column 651 to the fourth evaluation column 654.
  • FIG. 25 is a flowchart showing the flow of processing of the program according to the fourth embodiment.
  • the stage 42 operates automatically or forward, backward, leftward, and rightward based on an instruction from the user to scan the microscope visual field.
  • the control unit 21 activates a sample distribution calculation subroutine (step S601).
  • the sample distribution calculation subroutine is a subroutine for calculating the sample distribution g (X) by performing the same processing as the sample distribution calculation subroutine described using FIG. 15 or FIG.
  • the control unit 21 starts a sperm image acquisition subroutine instead of step S541 of the subroutine described using FIG. 15 or FIG.
  • the sperm image acquisition subroutine is a subroutine for automatically acquiring a normal sperm image from the microscope 41. The processing flow of the sperm image acquisition subroutine will be described later.
  • the control unit 21 acquires the number of OKs and the number of NGs recorded in step S514 of FIG. 13 for each stage from fertilization to birth (step S602).
  • the control unit 21 calculates the second distribution h (X) based on the equations (1) to (3) (step S603).
  • the control unit 21 detects that there is a subject in the field of view photographed by the camera 48 using a known image analysis technique (step S604).
  • the control unit 21 inputs the image including the subject into the normal sperm determination model 57 described using FIG. 21, and acquires the determination result (step S605).
  • the control unit 21 determines whether the probability that the subject is normal sperm is equal to or higher than a predetermined threshold value (step S606). When it determines with it being more than a threshold value (YES in step S606), the control part 21 extracts a sperm image feature-value (step S525). After that, the processing up to step S528 is the same as the processing of the program described with reference to FIG. The control unit 21 displays the screen described with reference to FIG. 22 on the display device 15 (step S607).
  • the control unit 21 determines whether the probability that the subject is abnormal sperm is equal to or higher than a predetermined threshold value (step S611). When it determines with it being more than a threshold value (YES in step S611), the control part 21 displays the screen which shows that it is abnormal sperm which was demonstrated using FIG. 23 on the display device 15 (step S612). When it determines with it being less than a threshold value (NO in step S611), the control part 21 displays the screen which shows that determination is impossible on the display device 15 as described using FIG. 24 (step S613).
  • step S612 determines whether or not the selection of the next button 69 is accepted (step S614).
  • step S614 determines whether or not the selection of the next button 69 is accepted (YES in step S614).
  • control unit 21 ends the process.
  • FIG. 26 is a flowchart showing the flow of processing of a subroutine for sperm image acquisition.
  • the sperm image acquisition subroutine is a subroutine for automatically acquiring a normal sperm image from the microscope 41.
  • the sperm photographing subroutine is used instead of step S541 of the sample distribution calculation subroutine described with reference to FIGS.
  • the control unit 21 detects that there is a subject in the field of view using a known image analysis technique (step S571).
  • the control unit 21 inputs an image including the subject into the normal sperm determination model 57, and acquires the probability that the subject is normal sperm (step S572).
  • the control unit 21 determines whether the probability that the subject is normal sperm is a predetermined threshold abnormality (step S573). When it determines with it being less than a threshold value (NO in step S573), the control part 21 returns to step S571. When it determines with it being more than a threshold value (it is YES at step S573), the control part 21 complete
  • the information processing system 10 that automatically extracts and determines normal sperm. For example, even if the number of normal sperm is extremely small, it is possible to provide the information processing system 10 that places a little burden on the incubator.
  • the present embodiment relates to an information processing system 10 that displays an evaluation result of candidate sperm using a graph. Descriptions of portions common to the third embodiment will be omitted.
  • FIG. 27 is an explanatory diagram showing a screen displayed by the information processing device 20 according to the fifth embodiment.
  • the screen shown in FIG. 27 is an example of a screen displayed on the display device 15 instead of the screen shown in FIG. 18 at the sperm selection stage.
  • An image column 61, an evaluation column 65 and a patient information column 64 are displayed on the screen.
  • the evaluation section 65 includes a first evaluation section 651, a second evaluation section 652, a third evaluation section 653, a fourth evaluation section 654, and a fifth evaluation section 655.
  • the age, medical history, current medical history, and infertility treatment history of each sperm donor and egg donor are displayed.
  • “M” indicates a sperm donor and “F” indicates an egg donor.
  • the candidate sperm under evaluation is displayed as a still image.
  • a microscope image taken by the camera 48 may be displayed in real time.
  • the vertical axis of the graph represents the probability of success as the random variable X
  • the horizontal axis represents the probability Y corresponding to the random variable X.
  • the success rate of the candidate sperm is displayed by the index line 81.
  • the success rate calculated for the candidate sperm the deviation value of the success rate in the second distribution, and the reliability are displayed.
  • the success rate of the candidate sperm is greater than or equal to the maximum success rate of the sperm evaluated in the past contained in the same semen, the word “Best” is displayed below the reliability.
  • a graph showing the distribution of sperm abnormalities is displayed.
  • the vertical axis of the graph represents the degree of abnormality of sperm as the random variable X, and the horizontal axis represents the probability Y corresponding to the random variable X.
  • the degree of abnormality of the candidate sperm is displayed by the index line 81.
  • the degree of abnormality calculated for the candidate sperm and the deviation value and reliability of the degree of abnormality in the distribution of the degree of abnormality are displayed below the graph.
  • the degree of abnormality of the candidate sperm is equal to or lower than the minimum value of the degree of abnormality of sperm evaluated in the past contained in the same semen, the word “Best” is displayed below the reliability.
  • the abnormal degree of sperm is the probability that a sperm is an abnormal sperm, which is acquired using the normal sperm determination model 57 described using FIG. 21, for example.
  • the abnormal degree of sperm may be calculated based on the similarity between the shape of the sperm regarded as “normal” and the shape of the candidate sperm.
  • the graph in the fifth evaluation column 655 is, for example, the distribution of abnormalities of sperm of men of the same age as the sperm donor.
  • the distribution of the abnormalities of sperm of men of the same age is used as the first distribution, and the distribution of the abnormalities of sperm taken in the preliminary imaging is used as the sample distribution, and the second distribution is calculated in the graph of the fifth evaluation column 655. May be used.
  • preliminary image capturing is automatically performed to create a sample distribution of the degree of abnormality of the whole sperm contained in semen. After that, for the candidate sperm determined to have a normal shape, a sample distribution at each stage from fertilization to delivery is created.
  • the incubator can intuitively grasp the position of the candidate sperm in the distribution based on the index line 81. Therefore, the cultivator can quickly determine whether or not to use the candidate sperm for microinsemination.
  • a moving image file obtained by shooting candidate sperms for a few seconds may be temporarily stored in the auxiliary storage device 23 and repeatedly reproduced and displayed in the image column 61.
  • the incubator can fully observe the movement of the candidate sperm by the moving image, and can judge whether or not to use it for microinsemination.
  • a button for instructing fast-forward, reverse-forward, pause, slow-play, high-speed play, or the like of a moving image to be repeatedly played may be displayed around or inside the image column 61.
  • the control unit 21 may accept the designation of the frame from which the still image feature amount is extracted and repeatedly evaluate the candidate sperm during the repeated reproduction of the moving image file.
  • An incubator can evaluate candidate sperm based on the desired frame.
  • Video files taken in the past may be displayed in the image column 61.
  • an information processing system 10 it is possible to provide an information processing system 10 to be used for conferences in medical facilities, training of incubators, and information exchange with other facilities. It is also possible to confirm the operation after updating the progress learning model 53 or the image encoder 546 using a moving image file captured in the past.
  • the camera 48 may be capable of high-speed shooting.
  • the incubator can observe the movement of the candidate sperm.
  • the incubator can accurately confirm the natural movement of the sperm and the defocus of the microscopic image without using a highly viscous solution.
  • An image of a candidate sperm suitable for evaluation can be acquired by the incubator adjusting the position of the objective lens. Furthermore, during microinsemination, it is possible to avoid injecting the highly viscous solution with the sperm into the egg.
  • FIG. 28 is a functional block diagram of the information processing device 20 according to the sixth embodiment.
  • the information processing device 20 includes a captured image acquisition unit 71, an input unit 72, and an output unit 73.
  • the captured image acquisition unit 71 acquires a captured image of a candidate sperm used for microinsemination.
  • the input unit 72 receives the captured image of the sperm and inputs the captured image to the learning model 53 that outputs a prediction regarding the success or failure of microinsemination using the sperm.
  • the output unit 73 outputs the prediction output from the learning model 53 based on the input captured image.
  • the learning model 53 has an input layer 571, an image encoder 546, an intermediate layer 572, and an output layer 573.
  • a captured image of a sperm is input to the input layer 571.
  • the output layer 573 outputs the prediction success probability of normal growth up to each stage after microinsemination using sperm.
  • the middle layer 572 is a teacher that records the captured images of sperm used for microinsemination in the past and the normal growth up to each stage after microinsemination using the sperm. The parameters are learned using the data.
  • the learning model 53 when a captured image of a candidate sperm used for microinsemination is input to the input layer 571, each stage in the case where microinsemination is performed using the candidate sperm through the calculation by the intermediate layer 572 The computer is caused to output from the output layer 573 a prediction as to whether or not it grows normally.
  • the learning model 53 is further provided between the input layer 571 and the intermediate layer 572, and further includes an image encoder 546 that extracts the image feature amount from the captured image.
  • the image feature amount extracted by the image encoder 546 is stored in the intermediate layer 572. Output.
  • FIG. 29 is an explanatory diagram showing the configuration of the information processing system 10 according to the seventh embodiment. Descriptions of portions common to the first embodiment will be omitted.
  • the information processing system 10 of the present embodiment includes a computer 90 and a microscope 41.
  • the computer 90 includes a control unit 21, a main storage device 22, an auxiliary storage device 23, a communication unit 24, a display I / F 25, a photographing I / F 28, a reading unit 29, and a bus.
  • the computer 90 is an information device such as a general-purpose personal computer, tablet or server computer.
  • the program 97 is recorded in the portable recording medium 96.
  • the control unit 21 reads the program 97 via the reading unit 29 and stores it in the auxiliary storage device 23.
  • the control unit 21 may also read the program 97 stored in the semiconductor memory 98 such as a flash memory installed in the computer 90.
  • the control unit 21 may download the program 97 from another server computer (not shown) connected via the communication unit 24 and a network (not shown) and store the program 97 in the auxiliary storage device 23.
  • the program 97 is installed as a control program of the computer 90, loaded into the main storage device 22 and executed. As a result, the computer 90 functions as the information processing device 20 described above.
  • the present embodiment relates to an information processing system 10 that determines whether the sperm under observation is an X sperm having an X chromosome or a Y sperm having a Y chromosome. Descriptions of portions common to the first embodiment will be omitted. In the following description, the effect of mutations on the sex chromosome will not be considered.
  • a sex-linked genetic disease is a genetic disease derived from an abnormality of the sex chromosome.
  • FIG. 30 is a table showing the incidence and carrier rate of sex-linked recessive (latent) genetic diseases (in the following description, “recessive” and “latent” are used synonymously).
  • a sex-linked recessive disease is a disease that is not inherited by having one normal X chromosome among diseases inherited via the X chromosome. Males have a single X chromosome, so they develop if they have an abnormality. A female does not develop if only one of the two X chromosomes is abnormal, but does develop if both are abnormal.
  • a sex-linked recessive genetic disease such as red-green deficiency and hemophilia is known.
  • the leftmost column in FIG. 30 shows whether the sex chromosomes of the sperm donor are normal or abnormal. If it is abnormal, the X chromosome of the sperm donor is abnormal and the disease develops.
  • the second column from the left in FIG. 30 shows the cases when X spermatozoa are used and when Y spermatozoa are used. When X sperm is used, the child's gender is female. When Y sperm are used, the sex of the child is male. In the following description, the distinction whether the sperm is X sperm or Y sperm may be described as the sex of sperm.
  • the three columns on the right side of FIG. 30 indicate whether the sex chromosome of the egg donor is normal or abnormal.
  • it When it is abnormal, there are two types, one is heterozygous in which one X chromosome is abnormal and the other X chromosome is normal, and the other is homozygous in which both X chromosomes are abnormal.
  • heterozygous it is a carrier who does not develop but carries the genetic factor. If it is homozygous, it develops.
  • ⁇ Incidence rate indicates the probability that a child will develop a sex-linked genetic disease.
  • Carriage rate indicates the probability that a child's sex chromosome has a genetic factor that conveys a sex-linked genetic disease, ie, the child has a genetic abnormality.
  • the incidence is 0% regardless of the sex of the child
  • the carrier rate is 100% for girls, and 100% for boys.
  • the incidence or carrier rate varies depending on the sex of the child.
  • FIG. 31 is a table showing the incidence rate and carrier rate of a sex-linked dominant (overtly) genetic disease (in the following description, “dominant” and “overtly” are used synonymously).
  • a sex-linked dominant genetic disease is a disease that develops if there is at least one abnormal X chromosome among diseases inherited via the X chromosome. Males have a single X chromosome, so they develop if they have an abnormality. Women develop if one or both of the two X chromosomes is abnormal.
  • sex-linked dominant genetic diseases such as Rett syndrome and Alport syndrome are known.
  • FIG. 31 The configuration of the table shown in FIG. 31 is the same as the table described in FIG. 30, so description will be omitted. Also in FIG. 31, in the part surrounded by the rounded rectangle, the incidence rate or the carrier rate varies depending on the sex of the child.
  • FIG. 32 is a table showing the incidence and carrier rate of sex-linked genetic diseases inherited via the Y chromosome. Since women do not have the Y chromosome, they are always normal for genes associated with such diseases. It is considered that a part of male infertility includes a disease inherited via the Y chromosome, such as Y chromosome microdeletion.
  • FIG. 32 shows whether the sex chromosome of the sperm donor is normal or abnormal, as in FIG. The egg donor is always normal.
  • FIG. 32 in the part surrounded by a rounded rectangle, the incidence or carrier rate varies depending on the sex of the child.
  • the incidence and carrier rate of the offspring can be reduced.
  • the amount of genome possessed by X sperm is approximately 3% higher than the amount of genome possessed by Y sperm. Due to the difference in the amount of genome, the dimensions such as head length and perimeter of X sperm are about 5% larger than the corresponding portions of Y sperm, and the mass of X sperm is about 2.8 than the mass of Y sperm. It is also known to be percent heavy. Because X sperm are heavier, Y-sperm move faster.
  • FIG. 33 is an explanatory diagram illustrating a record layout of the sex teacher data DB 58.
  • the sex teacher data DB 58 is a DB that records the photographed image of the sperm used for microinsemination and the sex of the child born by microinsemination in association with each other.
  • the sex teacher data DB 58 has a sperm ID field, an image data field, a sperm image feature amount field, and a sex field.
  • the sperm ID field, the image data field, and the sperm image feature amount field are the same as the fields of the teacher data DB 51 described with reference to FIG.
  • the sex teacher data DB 58 has one record for each sperm used for microinsemination.
  • FIG. 34 is an explanatory diagram illustrating the sex determination learning model 56.
  • the gender determination learning model 56 is a neural network including an input layer 561, an intermediate layer 562, and an output layer 563.
  • FIG. 7 the case where the sex determination learning model 56 is CNN is illustrated. Illustration of the convolutional layer and the pooling layer is omitted.
  • the gender determination learning model 56 outputs the probability of being an X sperm and the probability of being a Y sperm to the output layer 563 when a feature amount of a still image or a moving image is input to the input layer 561.
  • the information input to the input layer 561 is the same as the input to the progress learning model 53 described using FIG. 34, and thus the description will be omitted.
  • the gender determination learning model 56 outputs the probability that the sperm under observation is X sperm and the probability that it is Y sperm to the output layer 563 when the feature amounts of a still image and a moving image are input to the input layer 561.
  • the control unit 21 performs the supervised machine learning by calculating the parameters of the intermediate layer 562 by using the error backpropagation method or the like by using the sex teacher data DB 58 described using FIG. To do.
  • Supervised machine learning can be performed by any method such as logistic regression, SVM, random forest, CNN, RNN, or XGBoost.
  • the gender determination learning model 56 may be created using any computer.
  • the created sex determination learning model 56 is transmitted to the information processing device 20 used by the microinsemination executing institution via a network or the like and recorded in the auxiliary storage device 23.
  • the gender determination learning model 56 may be configured integrally with any of the progress learning models 53 described using FIG. 7. In such a case, the output layer 563 of the sex determination learning model 56 has a success node that outputs a probability of success and an unsuccess node that outputs a probability of failure.
  • FIG. 35 is an explanatory diagram showing a screen displayed by the information processing device 20 according to the eighth embodiment.
  • the incubator who is the user causes the display device 15 to display the screen described with reference to FIG.
  • An image field 61, a determination button 68, and an end button 67 are displayed on the screen.
  • a microscope image taken by the camera 48 is displayed in real time.
  • the control unit 21 extracts the still image feature amount and the moving image feature amount of the image displayed in the image column 61.
  • the control unit 21 inputs the feature amount into the sex determination learning model 56, and acquires the probability of being an X sperm and the probability of being a Y sperm.
  • the control unit 21 displays the probability of being X sperm and the probability of being Y sperm in the sex column 82 at the upper right of the screen.
  • control unit 21 updates the probability of being X sperm and the probability of being Y sperm using the image displayed in real time in the image column 61.
  • the control unit 21 ends the process.
  • the control unit 21 can quickly acquire the probability of being an X sperm and the probability of being a Y sperm.
  • the control unit 21 may update the sex column 82 in real time.
  • the determination button 68 is unnecessary.
  • the user After the user has found a sperm with a high probability of successful microinsemination using the screen described with reference to FIG. 12, the user determines the sex of the sperm using the screen described with reference to FIG. After discovering the sperm of the sex designated by the obstetrician using the screen described using FIG. 35, the user determines the success rate of microinsemination using the screen described using FIG. May be.
  • the information processing system 10 of the present embodiment may be a system independent of the information processing system 10 that determines the success probability of microinsemination described in the first embodiment and the like.
  • the control unit 21 may display the evaluation field 65 described using FIG. 12 and the gender field 82 described using FIG. 35 side by side on one screen.
  • FIG. 36 is a flow chart showing the flow of processing of the program of the eighth embodiment.
  • the control unit 21 selects the determination button 68 with only one candidate sperm being displayed in the image field 61 as shown in FIG.
  • the control unit 21 determines whether or not the selection of the determination button 68 has been accepted (step S701). When it is determined that the selection of the determination button 68 has been accepted (YES in step S701), the control unit 21 acquires the captured image of the sperm through the camera 48 (step S702).
  • the control unit 21 extracts the sperm image feature amount (step S703).
  • the control unit 21 inputs the sperm image feature amount into the sex determination learning model 56, and acquires the probability that the sperm under observation is X sperm and the probability that it is Y sperm (step S704).
  • the control unit 21 displays the acquired probability in the gender column 82 (step S705).
  • step S705 determines whether the selection of the termination button 67 has been received.
  • step S706 determines whether the selection of the end button 67 has been received.
  • the control unit 21 returns to step S701.
  • the control unit 21 ends the process.
  • an incubator can perform microinsemination by selecting spermatozoa that are likely to have the sex instructed by the obstetrician. This can reduce the possibility that a child born by microinsemination will develop a sex-linked genetic disease and the possibility of carrying a factor of the sex-linked genetic disease. It is also possible to prevent miscarriage or the like due to a genetic abnormality associated with a sex-linked genetic disease and increase the probability of successful delivery after microinsemination.
  • FIG. 37 is an explanatory diagram showing a screen displayed by the information processing device 20 according to the ninth embodiment.
  • a disease setting field 830, an egg provider field 832, and a sperm provider field 833 are displayed on the screen shown in FIG.
  • the disease setting field 830 includes a disease name field 831, an XY field 834, and a dominant recessive field 835.
  • the egg provider column 832 includes an egg confirmation information column 836 and an egg estimation information column 837.
  • the sperm provider column 833 includes a sperm confirmation information column 838 and a sperm estimation information column 839.
  • the screen shown in FIG. 37 is a setting input screen for inputting settings relating to sex-linked genetic disease.
  • a button for selecting the name of the sex-linked genetic disease to be judged is displayed.
  • the XY column 834 and the dominant recessive column 835 the inheritance pattern corresponding to the congenital genetic disease selected in the disease name column 831 is displayed by a black circle.
  • the XY columns 834 indicate that “hemophilia” set in the disease name column 831 is a disease inherited via the X chromosome. Similarly, “hemophilia” is a sex-linked recessive genetic disease is displayed in the dominant recessive field 835.
  • the user sets the name of the sex-linked genetic disease to be determined based on the medical record in the disease name column 831.
  • the control unit 21 displays the XY column 834 and the dominant recessive column 835 based on the database in which the disease name and the inheritance pattern are recorded in association with each other.
  • the user should make a judgment in the XY column 834 and the dominant recessive column 835 instead of using the disease name column 831.
  • the white circles and the black circles displayed at the left ends of the XY column 834 and the dominant recessive column 835 serve as input buttons that accept the input by the user.
  • the egg provider column 832 accepts input of information regarding the sex donor's sex chromosome. The user confirms whether or not the presence or absence of the sex chromosome abnormality of the egg donor is confirmed based on the medical record or the like.
  • the user selects the check box located in the upper left of the egg confirmation information field 836 to display a check mark.
  • the user inputs whether each of the two X chromosomes possessed by the egg donor is normal or abnormal based on the medical record or the like using the button displayed at the bottom of the egg confirmation information field 836. In FIG. 37, it is input that both of the two X chromosomes are “abnormal”.
  • the egg estimation information column 837 displays columns for inputting the estimated probability that the sex donor's sex chromosome is normal, the estimated probability of being a heterozygous abnormality, and the estimated probability of being a homozygous abnormality in percentage. ..
  • an expert such as an obstetrician estimates the probability related to the presence or absence of the sex chromosome abnormality in the egg donor based on the family history and records it in the medical record, etc. ..
  • the user inputs the estimated probability in each column of the egg estimation information column 837 based on the medical record and the like.
  • the sperm donor column 833 accepts input of information regarding the sex chromosome of the sperm donor. The user confirms whether the presence or absence of the sex chromosome abnormality of the sperm donor is confirmed based on the medical record or the like.
  • the user selects the check box located at the upper left of the sperm confirmation information field 838 to display a check mark.
  • the user inputs whether each of the X chromosome and the Y chromosome possessed by the sperm donor is normal or abnormal based on the medical record and the like using the button displayed at the bottom of the sperm confirmation information field 838. In FIG. 37, the fact that both the X chromosome and the Y chromosome are “normal” is input.
  • the sperm estimation information column 839 displays a column for inputting, as a percentage, the estimated probability that the X chromosome and the Y chromosome of the sperm donor are normal and the estimated probability that they are abnormal.
  • an expert such as an obstetrician estimates the probability of the presence or absence of a sex chromosome abnormality in the sperm donor based on the family history and records it in the medical record, etc. ..
  • the user inputs the estimated probability in each column of the sperm estimation information column 839 based on the medical record or the like.
  • the XY column 834 displays that determination regarding a disease inherited via the X chromosome is displayed, the user has an estimated probability that the X chromosome is normal based on the medical record and the like, and the abnormality.
  • the estimated probability is entered in the sperm estimation information field 839.
  • the user estimates the estimated probability that the Y chromosome is normal and the estimated probability that the Y chromosome is abnormal based on the medical record and the like. Input in the information column 839.
  • control unit 21 calculates and displays the remaining one so that the total probability becomes 1 when a number is input in two of the three fields included in the egg estimation information field 837. You may. Similarly, the control unit 21 may calculate and display the other so that the total probability becomes 1 when the number is input to one of the two fields included in the sperm estimation information field 839. When the total probability of the egg estimation information column 837 and the total probability of the sperm estimation information column 839 are not 1, the control unit 21 may display an error message and prompt the user to make corrections.
  • FIG. 38 is an explanatory diagram showing a screen displayed by the information processing device 20 according to the ninth embodiment.
  • the screen shown in FIG. 38 is displayed instead of the screen described using FIG.
  • an incidence rate column 841 and a carrier rate column 842 are displayed between the sex column 82 and the determination button 68.
  • the incidence rate column 841 displays the probability that a child born by microinsemination will develop a sex-linked genetic disease.
  • the carrier rate column 842 displays the probability that a child born by microinsemination is a carrier of a sex-linked genetic disease.
  • abnormal genes on the X chromosome of the egg donor are homozygous with each other, and the X chromosome of the sperm donor is normal.
  • the incidence rate is 0% and the carrier rate is 100% if the child is a girl, and the incidence rate and the carrier rate are 100% if the child is a boy. Is.
  • the tables shown in FIGS. 30 to 32 are recorded in the auxiliary storage device 23 in the form of a database or a program that outputs the incidence rate and the carrier rate when a predetermined condition is input.
  • the control unit 21 respectively acquires the incidence rate and the carrier rate when the child is a boy and when the child is a girl, based on the input by the user.
  • the probability that a fertilized egg is male is 90%.
  • the probability of being a woman, ie the birth of a girl, is 10%.
  • the control unit 21 adds the product of the probability of birth of a boy and the incidence of boys, and the product of the probability of birth of a girl and the incidence of girls to the incidence of children born by microinsemination. To calculate. Similarly, the control unit 21 adds the product of the probability of birth of a boy and the carrier rate of a boy and the product of the probability of birth of a girl and the carrier rate of a girl to give birth by microinsemination. Calculate the child carrier rate.
  • the incidence rate of children born by microinsemination is 90% and the carrier rate is 100%.
  • the control unit 21 calculates the product of the incidence of males, 50%, the probability of males being born, 90%, the incidence of females, 0%, and the probability of being females, 10%.
  • the disease incidence is calculated to be 45 percent by adding Similarly, the control unit 21 calculates that the carrier rate of the disease is 50%.
  • the control unit 21 determines the respective cases.
  • the disease incidence and carrier rate are calculated by weighted averaging the combinations of
  • control unit 21 displays the setting input screen described using FIG. 37 (step S711).
  • the control unit 21 acquires the setting input by the user (step S712).
  • the control unit 21 activates a subroutine for calculating an onset rate and a carrier rate (step S713).
  • the onset rate and carrier rate calculation subroutines are subroutines for calculating the onset rate and carrier rate of a sex-linked genetic disease when X sperm is used and when Y sperm is used, respectively.
  • the processing flow of the subroutine for calculating the incidence rate and the carrier rate will be described later.
  • the control unit 21 determines whether or not the selection of the determination button 68 has been accepted (step S701). When it is determined that the selection of the determination button 68 has been accepted (YES in step S701), the control unit 21 acquires the captured image of the sperm through the camera 48 (step S702).
  • the control unit 21 extracts the sperm image feature amount (step S703).
  • the control unit 21 inputs the sperm image feature amount into the sex determination learning model 56, and acquires the probability that the sperm under observation is X sperm and the probability that it is Y sperm (step S704).
  • the control unit 21 displays the incidence rate calculated in step S721 in the incidence rate column 841 and the carrier rate calculated in step S722 in the carrier rate column 842 (step S723).
  • step S706 determines whether the selection of the termination button 67 has been accepted.
  • step S706 determines whether the selection of the end button 67 has been accepted.
  • the control unit 21 returns to step S701.
  • the control unit 21 ends the process.
  • FIG. 40 is a flowchart showing the flow of processing of a subroutine for calculating the incidence rate and carrier rate.
  • the onset rate and carrier rate calculation subroutines are subroutines for calculating the onset rate and carrier rate of a sex-linked genetic disease when X sperm is used and when Y sperm is used, respectively.
  • the probability that the gene of the egg donor is normal is Pxn
  • the probability that the gene is heterozygous is Pxt
  • that of the homozygous type is the input gene received through the egg donor column 832 in FIG.
  • the probability of being abnormal is described as Pxm.
  • the probability that the gene of the sperm donor who received the input via the sperm donor column 833 of FIG. 37 is normal is described as Pyn
  • the probability of being abnormal is described as Pya.
  • the egg confirmation information field 836 If the egg confirmation information field 836 is used, one of Pxn, Pxt, and Pxm is 100%, and the rest is 0%. When the sperm confirmation information field 838 is used, one of Pyn and Pya is 100% and the other is 0%.
  • the control unit 21 determines whether or not the sex-linked genetic disease that has been input via the disease setting field 830 is the Y genetic disease (step S731). When it is determined that the disease is Y genetic disease (YES in step S731), the control unit 21 uses the X sperm and the Y sperm, and the incidence rate of the congenital genetic disease in the fertilized egg, that is, in the newborn baby. The carrier rate is calculated (step S732).
  • the incidence and carrier rate when X sperm are used is 0%.
  • the incidence and carrier rate when Y sperm are used are equal to the probability Pya that the sex chromosome of the sperm donor is abnormal. After that, the control unit 21 ends the process.
  • the control unit 21 acquires the incidence rate matrix Mp related to the inherited form of the sex-linked genetic disease that has been input via the disease setting field 830 (step S733). ).
  • the incidence rate matrix Mp is created for each inheritance type and sperm gender based on the incidence rate in the table showing the incidence rate and carrier rate of the sex-linked genetic disease described using FIGS. 30 and 31. It is recorded in the auxiliary storage device 23.
  • the incidence rate matrix Mp is expressed by the equation (9).
  • Mp11 indicates the incidence when the sex chromosomes are normal in both sperm donors and egg donors.
  • Mp12 indicates the incidence when the sex chromosome of the sperm donor is normal and the sex chromosome abnormality of the egg donor is heterozygous.
  • Mp13 indicates the incidence when the sex chromosome of the sperm donor is normal and the sex chromosome abnormality of the egg donor is homozygous.
  • Mp21 indicates the incidence when the sex chromosome of the sperm donor is abnormal and the sex chromosome of the egg donor is normal.
  • Mp22 indicates the incidence when the sex chromosome of the sperm donor is abnormal and the sex chromosome abnormality of the egg donor is heterozygous.
  • Mp21 indicates the incidence when the sex chromosome of the sperm donor is abnormal and the sex chromosome abnormality of the egg donor is homozygous.
  • the incidence rate matrix Mp when X spermatozoa is used is expressed by (10), and the incidence rate matrix Mp when Y sperm is used is (11). Each is shown in the formula.
  • the control unit 21 calculates the incidence rate Pp for each of the X sperm and the Y sperm based on the equation (12) (step S734).
  • the control unit 21 acquires the carrier ratio matrix Mc related to the inherited form of the sex-linked genetic disease, which is input via the disease setting field 830 (step S735).
  • the carrier ratio matrix Mc is created for each inheritance type and sperm gender based on the carrier ratio in the table showing the incidence and carrier ratio of the sex-linked genetic disease described using FIGS. 30 and 31. And is recorded in the auxiliary storage device 23.
  • the carrier ratio matrix Mc is expressed by equation (13).
  • Mc11 indicates the carrier rate when the sex chromosome is normal in both sperm donors and egg donors.
  • Mc12 indicates the carrier rate when the sex chromosome of the sperm donor is normal and the sex chromosome abnormality of the egg donor is heterozygous.
  • Mc13 shows the carrier rate when the sex chromosome of the sperm donor is normal and the sex chromosome abnormality of the egg donor is homozygous.
  • Mc21 indicates the carrier rate when the sex chromosome of the sperm donor is abnormal and the sex chromosome of the egg donor is normal.
  • Mc22 indicates the carrier rate when the sex chromosome of the sperm donor is abnormal and the sex chromosome abnormality of the egg donor is heterozygous.
  • Mc21 indicates the carrier rate when the sex chromosome of the sperm donor is abnormal and the sex chromosome abnormality of the egg donor is homozygous.
  • the control unit 21 calculates the carrier rate Pc for each of the X sperm and the Y sperm based on the equation (14) (step S736). After that, the control unit 21 ends the process.
  • the information processing system 10 that displays the incidence rate and carrier rate of a sex-linked genetic disease in addition to the sex of sperm.
  • the incubator can select sperm with a low incidence and carrier rate of sex-linked genetic disease for microinsemination. This can reduce the possibility that a child born by microinsemination will develop a sex-linked genetic disease and the possibility of carrying a factor of the sex-linked genetic disease. Further, it is possible to prevent a miscarriage or the like due to a genetic abnormality associated with a sex-linked genetic disease and increase the probability of successful delivery after microinsemination.
  • the incidence and carrier rate may be calculated and displayed in a list.
  • the egg donor and the sperm donor have different gene abnormalities related to the sex-linked genetic disease, select a sperm that is predicted to have a low incidence and carrier rate of the sex-linked genetic disease and perform microinsemination. It

Abstract

Provided are an information processing device and the like that assist in the work of selecting sperm for which the possibility of successful micro-insemination is high. This program causes a computer to execute a process in which a photographic image, in which an image of a candidate sperm for use in micro-insemination has been captured, is obtained, the acquired photographic image is input to a learning model (53) that receives a photographic image in which an image of a sperm has been captured and outputs a prediction related to the success or failure of micro-insemination using this sperm, and the prediction output from the learning model (53) on the basis of the input photographic image is output.

Description

プログラム、学習モデル、情報処理装置、情報処理方法、情報表示方法および学習モデルの製造方法Program, learning model, information processing device, information processing method, information display method, and learning model manufacturing method
 本発明は、プログラム、学習モデル、情報処理装置、情報処理方法、情報表示方法および学習モデルの製造方法に関する。 The present invention relates to a program, a learning model, an information processing device, an information processing method, an information display method, and a learning model manufacturing method.
 不妊治療方法の一つとして、生殖補助医療(Assisted Reproductive Technology)が行なわれる。臨床的に実施される生殖補助医療の一つに、顕微鏡観察下で精子を卵子に注入して授精させる顕微授精がある。 Assisted reproductive technology is performed as one of infertility treatment methods. One of the clinically assisted reproductive medical treatments is microinsemination in which sperm is injected into an egg under a microscope to inseminate.
 顕微授精では、顕微鏡観察により生殖補助医療胚培養士または臨床エンブリオロジスト等(以下、培養士と呼ぶ)が、目視で選択した精子を顕微鏡観察下で卵子に注入して授精させる。この際にICSI(Intracytoplasmic Sperm Injection)またはIMSI(Intracytoplasmic Morphologically selected Sperm Injection)が行なわれる場合がある。 In microinsemination, an embryo cultivator assisting reproductive medicine or a clinical embryologist (hereinafter referred to as an “incubator”) injects sperm selected by visual inspection into an egg under a microscope to inseminate. At this time, ICSI (Intracytoplasmic Sperm Injection) or IMSI (Intracytoplasmic Morphologically selected Sperm Injection) may be performed.
 ICSIにおいては、培養士は200倍から400倍の倍率の顕微鏡を用いて精子の観察および採取を行なう。IMSIにおいては、培養士は1000倍以上の高倍率の顕微鏡を用いて、精子の詳細な観察および採取を行なう。 In ICSI, the incubator observes and collects sperm using a microscope with a magnification of 200 to 400 times. In the IMSI, the incubator uses a microscope with a high magnification of 1000 times or more to perform detailed observation and collection of sperm.
 顕微授精では1個の精子と1個の卵子から受精卵を得られる可能性があることから、特に乏精子症、無精子症、および、精子無力症等の男性不妊症に有効な治療法として期待されている。しかしながら、顕微授精により正常な受精卵を確実に得る方法、さらには受精後の正常な胚成長を確実に得る方法は確立されていない。 In microinsemination, a fertilized egg can be obtained from one sperm and one egg. Therefore, it is an effective treatment method for male infertility such as oligospermia, azoospermia, and asthenozoospermia. Is expected. However, a method for surely obtaining a normal fertilized egg by microinsemination and a method for surely obtaining a normal embryo growth after fertilization have not been established.
 顕微授精を行なう培養士によっては、体外受精よりも高効率に受精卵を得ることができ、さらには自然妊娠および人工授精に比べて、高効率な着床率もしくは妊娠率、または、低い流産率を得ることができる場合がある(非特許文献1)。そのため、男性不妊に限定しない不妊治療法として顕微授精が活用されている。 Fertilized eggs can be obtained with higher efficiency than in vitro fertilization, depending on the incubator performing microinsemination, and further, compared with natural pregnancy and artificial insemination, a highly efficient implantation rate or pregnancy rate, or a low miscarriage rate. In some cases (Non-Patent Document 1). Therefore, microinsemination is used as a fertility treatment method not limited to male infertility.
 形態または運動性に異常がある精子には、精子の成熟性やDNA(Deoxyribonucleic Acid)断片化などの遺伝学的な課題等があるために授精に適さないこと、および、受精後の胚成長に問題があることが知られている。そして精子の形態異常を検出する方法が提案されている(特許文献1)。 Sperm with abnormal morphology or motility is not suitable for insemination due to genetic problems such as sperm maturity and DNA (Deoxyribonucleic Acid) fragmentation, and for embryo growth after fertilization. Known to have problems. A method for detecting abnormal sperm morphology has been proposed (Patent Document 1).
 またWHO(World Health Organization)が公表している、精子の評価方法に関する実験室マニュアル(非特許文献2)には、精子提供者の精液に含まれる複数の精子を統計的に評価した指標が紹介されている。この指標によると、形態が正常である精子の割合が4%未満である場合、生殖補助医療の成功率(ここでは成功確率または予測成功確率とも呼ぶ)が低下する。 In addition, the laboratory manual (Non-patent document 2) published by WHO (World Health Organization) regarding sperm evaluation methods introduces an index for statistically evaluating multiple sperms contained in sperm of sperm donors. Has been done. According to this index, the success rate of assisted reproductive medicine (also referred to herein as the success probability or the predicted success probability) is reduced when the proportion of sperm having a normal morphology is less than 4%.
 このような背景から、顕微授精等の不妊治療を実施する際に実施する精液の簡易な品質評価法の1つとして、精液中の複数の精子を低解像度で簡易評価し、そのうち異常を検知できなかった精子の割合を数値評価する(例:正常形状の精子の割合が4%未満かどうかを確認する)装置が多数市販されている。また精子の形状をルールベースで評価することにより、精子の選択を客観的に行なう技術が提案されている(非特許文献3)。 From such a background, as one of the simple quality evaluation methods of semen to be performed when performing infertility treatment such as microinsemination, it is possible to easily evaluate a plurality of sperms in semen at low resolution and detect abnormalities among them. There are many devices on the market that numerically evaluate the percentage of sperm that did not exist (eg, check if the percentage of normal-shaped sperm is less than 4%). In addition, a technique for objectively selecting sperm by evaluating the shape of sperm on a rule basis has been proposed (Non-Patent Document 3).
韓国公開特許第2011-0049606号公報Korean Published Patent No. 2011-0049606
 しかしながら、特許文献1および非特許文献1から3に開示された方法は、精子1つ1つを区別して評価することが必要な顕微授精にそのままでは技術応用できない。仮に技術応用できた場合であっても、精子の評価に長い時間と手間がかかり、その間に精子および卵子に対する侵襲が大きくなることから、実用性がない。さらに形態異常および運動性の異常が見られない精子の中から、顕微授精後、および、受精後の胚成長等が正常に経過する可能性の高い精子を選択することの支援はできない。 However, the methods disclosed in Patent Document 1 and Non-Patent Documents 1 to 3 cannot be directly applied to microinsemination in which it is necessary to evaluate each sperm separately. Even if the technology could be applied, evaluation of sperm takes a long time and labor, and invasion of sperm and eggs becomes great during that time, so that it is not practical. Furthermore, it is not possible to support the selection of spermatozoa from which sperm with no abnormal morphology or motility is likely to undergo normal embryo development after microinsemination and after fertilization.
 一つの側面では、顕微授精の成功可能性が高い精子の選択、または、授精後の胚発生等が正常に経過する可能性の高い精子の選択を支援する情報処理装置等を提供することを目的とする。 In one aspect, an object is to provide an information processing device or the like that supports selection of sperm with a high probability of successful microinsemination, or selection of sperm with a high possibility of normal development of embryos after insemination. And
 プログラムは、顕微授精に使用する候補精子が撮影された撮影画像を取得し、精子が撮影された撮影画像を受け付けて前記精子を用いた顕微授精の成否に関する予測を出力する学習モデルに、取得した撮影画像を入力し、入力された撮影画像に基づいて前記学習モデルから出力された予測結果を出力する処理をコンピュータに実行させる。 The program acquires a captured image in which a candidate sperm used for microinsemination is captured, receives a captured image in which the sperm has been captured, and outputs to a learning model that outputs a prediction regarding the success or failure of microinsemination using the sperm. A captured image is input, and the computer is caused to execute a process of outputting the prediction result output from the learning model based on the input captured image.
 一つの側面では、顕微授精の成功可能性が高い精子の選択、または、授精後の胚発生等が正常に経過する可能性の高い精子の選択、を支援する情報処理装置等を提供できる。 In one aspect, it is possible to provide an information processing device or the like that supports selection of sperm with a high probability of successful microinsemination, or selection of sperm with a high probability of normal development of embryos after insemination.
情報処理システムを用いた処理の流れを説明する説明図である。It is explanatory drawing explaining the flow of a process using an information processing system. 情報処理システムの構成を説明する説明図である。It is explanatory drawing explaining the structure of an information processing system. 出産までの経過を説明する説明図である。It is explanatory drawing explaining the progress to delivery. 成功確率の頻度分布を説明する説明図である。It is explanatory drawing explaining the frequency distribution of a success probability. 精子を撮影した静止画から、画像特徴量を抽出する画像エンコーダの作成方法を説明する説明図である。It is explanatory drawing explaining the preparation method of the image encoder which extracts an image feature-value from the still image which image | photographed sperm. 動画ファイルからの画像特徴量の抽出を説明する説明図である。It is explanatory drawing explaining the extraction of the image feature-value from a moving image file. 経過学習モデルを説明する説明図である。It is explanatory drawing explaining a progress learning model. 教師データDBのレコードレイアウトを説明する説明図である。It is explanatory drawing explaining the record layout of teacher data DB. 予備撮影DBのレコードレイアウトを説明する説明図である。It is explanatory drawing explaining the record layout of preliminary photography DB. 情報処理システムが表示する画面を示す説明図である。It is explanatory drawing which shows the screen which an information processing system displays. 情報処理システムが表示する画面を示す説明図である。It is explanatory drawing which shows the screen which an information processing system displays. 情報処理システムが表示する画面を示す説明図である。It is explanatory drawing which shows the screen which an information processing system displays. 第1準備段階で使用されるプログラムの処理の流れを示すフローチャートである。It is a flow chart which shows a flow of processing of a program used at the 1st preparatory stage. 第2準備段階および精子選択段階で使用されるプログラムの処理の流れを示すフローチャートである。It is a flow chart which shows a flow of processing of a program used at the 2nd preparatory stage and a sperm selection stage. サンプル分布算出のサブルーチンの処理の流れを示すフローチャートである。9 is a flowchart showing the flow of processing of a sample distribution calculation subroutine. 実施の形態2の予備撮影DBのレコードレイアウトを説明する説明図である。FIG. 7 is an explanatory diagram illustrating a record layout of a preliminary shooting DB according to the second embodiment. 実施の形態2のサンプル分布算出のサブルーチンの処理の流れを示すフローチャートである。9 is a flowchart showing a flow of processing of a subroutine of sample distribution calculation according to the second embodiment. 実施の形態3の情報処理装置が表示する画面を示す説明図である。FIG. 16 is an explanatory diagram showing a screen displayed by the information processing device according to the third embodiment. 実施の形態4の情報処理システムの構成を説明する説明図である。It is explanatory drawing explaining the structure of the information processing system of Embodiment 4. 正常精子判定DBのレコードレイアウトを説明する説明図である。It is explanatory drawing explaining the record layout of a normal sperm determination DB. 正常精子判定モデルの構成を示す説明図である。It is explanatory drawing which shows the structure of a normal sperm determination model. 実施の形態4の情報処理装置が表示する画面を示す説明図である。FIG. 16 is an explanatory diagram showing a screen displayed by the information processing device according to the fourth embodiment. 実施の形態4の情報処理装置が表示する画面を示す説明図である。FIG. 16 is an explanatory diagram showing a screen displayed by the information processing device according to the fourth embodiment. 実施の形態4の情報処理装置が表示する画面を示す説明図である。FIG. 16 is an explanatory diagram showing a screen displayed by the information processing device according to the fourth embodiment. 実施の形態4のプログラムの処理の流れを示すフローチャートである。16 is a flowchart showing the flow of processing of a program according to the fourth embodiment. 精子画像取得のサブルーチンの処理の流れを示すフローチャートである。It is a flow chart which shows a flow of processing of a subroutine of sperm image acquisition. 実施の形態5の情報処理装置が表示する画面を示す説明図である。FIG. 16 is an explanatory diagram showing a screen displayed by the information processing device according to the fifth embodiment. 実施の形態6の情報処理装置の機能ブロック図である。It is a functional block diagram of the information processing apparatus of Embodiment 6. 実施の形態7の情報処理システムの構成を示す説明図である。It is explanatory drawing which shows the structure of the information processing system of Embodiment 7. 伴性劣性(潜性)遺伝疾患の発症率および保因率を示す表である。It is a table which shows the incidence rate and carrier rate of a sex-linked recessive (latent) genetic disease. 伴性優性(顕性)遺伝疾患の発症率および保因率を示す表である。It is a table which shows the incidence rate and carrier rate of a sex-linked dominant (overt) genetic disease. Y染色体を介して遺伝する伴性遺伝疾患の発症率および保因率を示す表である。It is a table which shows the incidence rate and carrier rate of the sex-linked genetic disease inherited via the Y chromosome. 性別教師データDBのレコードレイアウトを説明する説明図である。It is explanatory drawing explaining the record layout of sex teacher data DB. 性別判定学習モデルを説明する説明図である。It is explanatory drawing explaining a sex determination learning model. 実施の形態8の情報処理装置が表示する画面を示す説明図である。FIG. 28 is an explanatory diagram showing a screen displayed by the information processing device according to the eighth embodiment. 実施の形態8のプログラムの処理の流れを示すフローチャートである。28 is a flowchart showing the flow of processing of a program according to the eighth embodiment. 実施の形態9の情報処理装置が表示する画面を示す説明図である。FIG. 28 is an explanatory diagram showing a screen displayed by the information processing device according to the ninth embodiment. 実施の形態9の情報処理装置が表示する画面を示す説明図である。FIG. 28 is an explanatory diagram showing a screen displayed by the information processing device according to the ninth embodiment. 実施の形態9のプログラムの処理の流れを示すフローチャートである。28 is a flowchart showing the flow of processing of a program according to the ninth embodiment. 発症率と保因率算出のサブルーチンの処理の流れを示すフローチャートである。It is a flow chart which shows a flow of processing of a subroutine of an onset rate and a carrier rate calculation.
[実施の形態1]
 図1は、情報処理システム10を用いた処理の流れを説明する説明図である。図1Aは、過去の顕微授精にかかる情報を処理する第1準備段階を示す。
[Embodiment 1]
FIG. 1 is an explanatory diagram illustrating a flow of processing using the information processing system 10. FIG. 1A shows a first preparatory stage for processing information relating to past microinsemination.
 顕微授精の概要を説明する。前述のとおり、顕微授精においては、光学倍率として200倍から400倍、または、1000倍以上の高倍率の顕微鏡41(図2参照)を用いて培養士が精液中の精子を観察する。培養士は、形状が正常で、かつ、正常な運動を行なう精子を、卵子1個当たり、1個選択する。なおカメラ48、撮影I/F28または表示I/F25において、デジタルズームを用いて顕微鏡画像をさらに数倍に拡大し、表示装置15に表示した画像を、培養士が観察してもよい。 Explain the outline of microinsemination. As described above, in microinsemination, an incubator observes sperm in semen using a microscope 41 (see FIG. 2) having a high optical magnification of 200 to 400 times or 1000 times or more. The incubator selects one sperm that has a normal shape and performs a normal movement per egg. In addition, in the camera 48, the photographing I / F 28, or the display I / F 25, the incubator may observe the image displayed on the display device 15 by further enlarging the microscope image several times using a digital zoom.
 培養士は、動画または静止画等により選択した精子を含む顕微鏡画像を撮影する。顕微鏡画像は、精子が写っている部分が画像処理等により切り出されても良い。以下の説明では、撮影された顕微鏡画像を撮影画像と記載する場合がある。培養士は、マイクロピペットを用いて選択した精子を採取する。 An incubator takes a microscopic image containing sperm selected from moving images or still images. In the microscopic image, the part in which the sperm is reflected may be cut out by image processing or the like. In the following description, a photographed microscope image may be referred to as a photographed image. An incubator collects selected sperm using a micropipette.
 培養士は、卵子にマイクロピペットの先端を差し込んで選択した精子を注入する。以上により、顕微授精が行なわれる。その後、培養士は所定の条件で卵子を培養する。受精が成立して成長を開始した卵子は、胚と呼ばれる。たとえば4分割胚または胚盤胞等の、所定の段階まで成長した胚を、産科医が母体に移植する。胚が子宮に着床した場合に、妊娠が成立する。以後は、通常の自然妊娠と同様に子宮内で胎児が成長し、正常であれば出産に至る。 The incubator inserts the selected sperm by inserting the tip of a micropipette into the egg. Microinsemination is performed as described above. After that, the incubator cultivates the egg under predetermined conditions. An egg that has started fertilization and has started to grow is called an embryo. An obstetrician transplants an embryo that has grown to a predetermined stage, such as a quadrant or a blastocyst, to a mother. Pregnancy is established when the embryo is implanted in the uterus. After that, the fetus grows in the womb as in the case of normal natural pregnancy, and if normal, gives birth.
 受精の成立の有無、4分割胚、桑実胚、胚盤胞等の各成長段階までの正常な成長の成否、妊娠の成立有無、妊婦検診での異常の有無、出産の成否等の、顕微授精後の胚成長に関する時間経過が、撮影画像と関連づけて記録される。 Whether or not fertilization is established, success or failure of normal growth up to each stage of development such as 4-splitting embryo, morula, blastocyst, presence or absence of pregnancy, presence or absence of abnormalities in pregnant woman screening, success or failure of childbirth, etc. The time course of embryo growth after insemination is recorded in association with the captured image.
 精子を選択した際に撮影した画像から抽出された画像特徴量および運動特徴量(以下、合わせて特徴量と呼ぶ)、精子提供者の臨床プロファイル(年齢、既往歴、現病歴、治療歴、および、遺伝子変異等のゲノム情報等)と、顕微授精後の受精卵または胚の成長経過とが関連づけられて教師データDB51に記録される。教師データDB51の詳細については後述する。 Image feature amount and motion feature amount (hereinafter, referred to as feature amount) extracted from the image taken when sperm is selected, clinical profile of sperm donor (age, medical history, current medical history, treatment history, and , Genomic information such as gene mutations) and the growth process of a fertilized egg or embryo after microinsemination are recorded in the teacher data DB 51 in association with each other. Details of the teacher data DB 51 will be described later.
 教師データDB51に基づいて教師あり機械学習を行ない、受精卵または胚の成長経過を予測する機械学習モデル(以下、“経過学習モデル”と呼ぶ)53が作成される。経過学習モデル53は、精子を撮影した撮影画像の特徴量が入力された場合に、受精から出産までの経過における各段階まで正常に成長する成功確率を出力する学習済モデルである。特徴量および経過学習モデル53の詳細については後述する。 Machine learning with a teacher is performed based on the teacher data DB 51, and a machine learning model (hereinafter, referred to as “progress learning model”) 53 that predicts a growth process of a fertilized egg or an embryo is created. The progress learning model 53 is a learned model that outputs a success probability of normally growing to each stage in the process from fertilization to childbirth when a feature amount of a captured image of sperm is input. Details of the feature amount and the progress learning model 53 will be described later.
 なお成功確率を1から減算することで、不成功確率を容易に算出できる。したがって、上記の成功確率は不成功確率と言い換えることもできる。このことは後出のすべての成功確率について当てはまる。 Note that the success probability can be easily calculated by subtracting the success probability from 1. Therefore, the above-mentioned success probability can be restated as a failure probability. This is true for all success probabilities below.
 受精から出産までの各段階の成否にかかるデータの頻度分布、および、頻度分布の正規化等の統計処理に基づいて、図1の右下および図4のグラフに実線で示す第1分布f(X)が作成される。なお、図1の右下および図4に示すグラフは、各段階についてそれぞれ1枚作成される。第1分布f(X)は、各段階まで正常に成長する成功確率の確率密度分布を示し、ベイズ推定におけるいわゆる事前分布に相当する。第1分布f(X)の詳細については後述する。 Based on the frequency distribution of the data relating to the success or failure of each stage from fertilization to childbirth and the statistical processing such as normalization of the frequency distribution, the first distribution f (shown by the solid line in the lower right of FIG. 1 and the graph of FIG. X) is created. It should be noted that the graphs shown in the lower right part of FIG. 1 and FIG. 4 are made one at each stage. The first distribution f (X) represents a probability density distribution of success probability of normally growing up to each stage, and corresponds to a so-called prior distribution in Bayesian estimation. Details of the first distribution f (X) will be described later.
 図1Aに示す第1準備段階においては、複数の症例で撮影された精子の撮影画像、および、受精卵または胚の成長経過のデータが使用される。第1準備段階で作成された経過学習モデル53および第1分布f(X)が、以後に実施される症例で使用される。 In the first preparatory stage shown in FIG. 1A, images of sperm taken in a plurality of cases and data on the growth process of fertilized eggs or embryos are used. The progress learning model 53 and the first distribution f (X) created in the first preparatory stage are used in cases to be performed thereafter.
 図1Bおよび図1Cは、新たに顕微授精を行なう症例ごとに実施される、第2準備段階および精子選択段階をそれぞれ示す。培養士は、精子提供者から採取された精液を受け取った後に、第2準備段階と精子選択段階とを連続して実施することが望ましい。 1B and 1C show the second preparatory stage and sperm selection stage, which are performed for each case of newly performing microinsemination. After receiving the semen collected from the sperm donor, the incubator preferably performs the second preparation step and the sperm selection step in succession.
 図1Bに示す第2準備段階においては、精子提供者から採取された精液に含まれる精子の特性に基づくサンプル分布g(X)が作成される。培養士は、精液の洗浄および希釈等の前処理を行なった後に、精子の予備撮影を行なう。撮影画像から抽出された特徴量が、受精卵または胚の成長経過を予測する経過学習モデル53に入力されることにより、その精子に関する受精から出産までの各段階に正常に成長する確率(以下、“予測成功確率”と呼ぶ)が取得される。 In the second preparatory stage shown in FIG. 1B, a sample distribution g (X) based on the characteristics of sperm contained in semen collected from a sperm donor is created. The incubator performs pretreatment such as washing and dilution of semen, and then takes preliminary images of sperm. The feature amount extracted from the photographed image is input to the progress learning model 53 that predicts the growth process of the fertilized egg or embryo, so that the probability of normal growth at each stage from fertilization to delivery of the sperm (hereinafter, The “prediction success probability”) is obtained.
 複数の精子について取得された予測成功確率に基づいて、図1の右下および図4のグラフに破線で示すサンプル分布g(X)が作成される。サンプル分布g(X)は、精子提供者個人の精液に含まれる精子をサンプリングして評価した予測成功確率の分布を示し、ベイズ推定におけるいわゆる尤度分布に相当する。サンプル分布g(X)の詳細については後述する。 A sample distribution g (X) indicated by broken lines in the lower right part of FIG. 1 and the graph of FIG. 4 is created based on the predicted success probabilities acquired for a plurality of spermatozoa. The sample distribution g (X) represents the distribution of the prediction success probability obtained by sampling and evaluating the sperm contained in the semen of the individual sperm donor, and corresponds to the so-called likelihood distribution in Bayesian estimation. Details of the sample distribution g (X) will be described later.
 第1分布f(X)とサンプル分布g(X)とに基づき、第2分布h(X)が生成される。第2分布h(X)は、ベイズ推定におけるいわゆる事後分布に相当する。第2分布h(X)の詳細については後述する。 A second distribution h (X) is generated based on the first distribution f (X) and the sample distribution g (X). The second distribution h (X) corresponds to a so-called posterior distribution in Bayesian estimation. Details of the second distribution h (X) will be described later.
 図1Cに示す精子選択段階においては、精子提供者の精液から、顕微授精に使用する精子が選択される。培養士は、候補精子の画像を撮影する。撮影画像から抽出された特徴量が経過学習モデル53に入力されることにより、候補精子に関する受精から出産までの各段階まで正常に成長する予測成功確率が取得される。 At the sperm selection step shown in FIG. 1C, the sperm to be used for microinsemination is selected from the sperm donor's semen. The incubator takes an image of the candidate sperm. By inputting the feature amount extracted from the captured image into the progress learning model 53, the prediction success probability that the candidate sperm will normally grow to each stage from fertilization to birth is acquired.
 予測成功確率の、第2分布h(X)内での位置づけは、たとえば偏差値等の評価指標により表示される。培養士は、表示された評価指標を、候補精子を顕微授精に使用するか否かの判断に用いることができる。顕微授精に使用すると判断した場合、培養士は顕微鏡観察下で候補精子を採取し、卵子に注入する。顕微授精に使用しないと判断した場合、培養士は他の候補精子を評価する。 The positioning of the prediction success probability within the second distribution h (X) is displayed by an evaluation index such as a deviation value. The incubator can use the displayed evaluation index to judge whether to use the candidate sperm for microinsemination. When it is determined that the sperm will be used for microinsemination, the incubator collects candidate sperm under a microscope and injects them into the egg. If it is determined that it will not be used for microinsemination, the incubator will evaluate other candidate sperm.
 以上により、培養士は、採取した精液の中から顕微授精の成功可能性が高い精子を選択できる。以下の説明では、各段階における評価指標が所定の基準を満たす精子、すなわち、顕微授精が成功して正常な出産に至る可能性が十分に高いと期待される精子を、「品質の優れた精子」と記載する。 From the above, the incubator can select sperm from the collected semen that has a high probability of successful microinsemination. In the following description, sperm in which the evaluation index at each stage satisfies a predetermined criterion, that is, a sperm expected to have a sufficiently high possibility of successful microinsemination to reach normal birth is referred to as “high-quality sperm”. ".
 正常な精子は鞭毛運動により溶液中を短時間で高速に移動する。顕微授精を行なう際には、溶液の粘性、および、溶液中の精子濃度等の観察条件を工夫して、精子の動きを緩慢にする。これにより、培養士は精子を十分に観察できる。しかしながら、精子が顕微鏡41の視野外に移動した場合には、同一の精子を追跡または発見することは難しい。 Normal sperm move in solution at high speed in a short time due to flagella movement. When performing microinsemination, devise the observation conditions such as the viscosity of the solution and the sperm concentration in the solution to slow the sperm movement. This allows the incubator to fully observe sperm. However, when the sperm move out of the visual field of the microscope 41, it is difficult to track or find the same sperm.
 したがって、培養士が顕微鏡観察により精子の良否を判断する従来の方法では、培養士が複数の精子を比較検討した場合であっても、顕微授精に使用する精子として同一精子を確保することは困難である。本実施の形態では、個々の候補精子の評価をリアルタイムで表示できるため、培養士は候補精子を使用するか否かを容易に判断すると同時に、対象となる候補精子を採取できる。 Therefore, it is difficult to secure the same sperm as the spermatozoa to be used for microinsemination by the conventional method in which the incubator judges the quality of sperm by microscopic observation, even when the incubator comparatively examines multiple sperms. Is. In the present embodiment, since the evaluation of each candidate sperm can be displayed in real time, the incubator can easily determine whether or not to use the candidate sperm, and at the same time, collect the target candidate sperm.
 精子の選別において、精液中に品質の優れた精子を多数含まれる場合には、そのような精子が得られた時点、または第2の分布h(X)でより優れた指標が得られた時点で精子を採取し、顕微授精に移行する。これにより、培養士の作業効率を高められると同時に、精子および卵子へのダメージを最小限に抑えられる。 When a large number of sperm of high quality are contained in semen in the selection of sperm, the time point when such sperm is obtained or the time point when a better index is obtained in the second distribution h (X) Sperm is collected in and transferred to microinsemination. This improves the work efficiency of the incubator while minimizing damage to sperm and eggs.
 精液中含まれる顕微授精に適した精子が少ない場合であっても、限られた時間内で可能な範囲で最も品質が優れた精子を選別することが望ましい。たとえば、評価結果が比較的優れた精子を発見する都度捕捉して、別途に取り置き、最終段階で取り置いた精子のうち最も品質の優れた精子を使用する方法が考えられる。取り置き方としては、特定の精子をキャピラリーで吸引してマイクロウェルに移し替える方法、および、スライドガラス上で溶液の無い領域に特定の精子を含んだ液滴を独立して保持する方法がある。 Even if there are few sperm suitable for microinsemination contained in semen, it is desirable to select the sperm of the highest quality within the range possible within a limited time. For example, a method may be considered in which a sperm with a relatively excellent evaluation result is captured, set aside separately, and the sperm of the highest quality among the sperm set aside at the final stage is used. As a method of storing, there are a method of sucking a specific sperm with a capillary and transferring to a microwell, and a method of independently retaining a droplet containing a specific sperm in a solution-free region on a slide glass.
 一方、時間的制約および労力的な制約があることから、品質が最も優れた精子を選ぶことを断念した上で、品質が最も優れた精子を選択できる可能性を最も高くする方法を採用することも望ましい。 On the other hand, due to time and labor constraints, abandoning the selection of the sperm with the highest quality, and then adopting the method with the highest probability of selecting the sperm with the highest quality. Is also desirable.
 他分野において、候補を一個ずつ評価して、良好な候補が見付かった場合に評価を終了する場合の数学的な最適解が知られている。これは最適停止問題の1種である秘書問題と呼ばれている。秘書問題の最適解の算出プロセスについて説明する。全候補数(精液中の全精子数)nが十分に大きい値である場合、最初のn/e個(eはネイピア数)の候補については、評価を行なうのみで選択は行なわない。それ以降に評価した候補(候補精子)が、それまでに評価したどの候補よりも良好であると判断した場合に、その候補が最も優れた候補であると判定する。 In other fields, a mathematical optimal solution is known for evaluating candidates one by one and ending the evaluation when a good candidate is found. This is called a secretary problem, which is one of the optimal stopping problems. The process of calculating the optimal solution for the secretary problem will be described. When the total number of candidates (the total number of sperms in semen) n is a sufficiently large value, the first n / e candidates (e is the number of Napiers) are evaluated but not selected. When it is determined that the candidate evaluated thereafter (candidate sperm) is better than any of the candidates evaluated so far, the candidate is determined to be the best candidate.
 より具体的には、1/eが約37%に相当することから、精液中に含まれる全精子のうちの約37%の精子の評価値を確認した上で不採用とする。残りの精子のうち、評価済のどの精子よりも良好な評価値を持つ精子が得られ次第、その精子を採用する。 More specifically, since 1 / e corresponds to about 37%, it will be rejected after confirming the evaluation value of about 37% of the total sperm contained in semen. Of the remaining sperm, the sperm is adopted as soon as a sperm having a better evaluation value than any evaluated sperm is obtained.
 この秘書問題の最適解を用いる場合には、精子の取り置きは不要であり、かつ、統計的に最も品質が優れた作業効率を期待できる。一方、秘書問題の最適解によっても、常に精液中に含まれる最高の評価値の精子を選択できるとは限らない。たとえば次の2種類の場合が考えられる。1つは最初の約37%の候補の中に最も優れた候補が含まれていた場合である。もう1つは、最初の約37%の候補の品質が非常に低く、その後の候補に品質が高い候補を発見したものの、未評価の候補の中にもっと品質が良い候補が含まれる場合である。 When using the optimal solution for this secretary problem, it is not necessary to reserve sperm and statistically the highest quality work efficiency can be expected. On the other hand, even with the optimal solution of the secretary problem, it is not always possible to select the sperm with the highest evaluation value contained in semen. For example, the following two cases can be considered. One is when the best candidate was included in the first about 37% of candidates. The other is when the quality of the first about 37% of the candidates is very low and a candidate with a high quality is found in the subsequent candidates, but a better quality candidate is included in the unevaluated candidates. ..
 いずれも統計的な発生頻度は低いと考えられるが、これらの事象は回避することが望ましい。そのために、第2の分布h(X)に基づいて得られた偏差値、信頼度等の指標を基準として精子を選択することが望ましい。この場合、秘書問題の最適解よりも統計的には作業効率が低下することになるが、優れた品質の候補を選択することができる。 It is considered that the statistical occurrence frequency is low in all cases, but it is desirable to avoid these events. Therefore, it is desirable to select sperm with reference to the index such as the deviation value and the reliability obtained based on the second distribution h (X). In this case, the work efficiency is statistically lower than that of the optimum solution of the secretary problem, but it is possible to select a candidate of excellent quality.
 また精液中の精子の数が非常に多い場合は、約37%の精子を観察することが現実的では無い。したがって、第2の分布h(X)に基づき、候補を選択することが現実的な方法である。なお作業効率を完全に無視する場合、より優れた品質を持つ精子が得られ次第、別途に取り置き、全精子を評価した後に、取り置いた中から最も優れた品質を持つ精子を採用することができる。 Also, when the number of sperms in semen is very large, it is not realistic to observe about 37% of sperms. Therefore, it is a realistic method to select a candidate based on the second distribution h (X). If work efficiency is completely ignored, as soon as a sperm with better quality is obtained, it may be set aside, the whole sperm may be evaluated, and then the sperm with the best quality may be used. it can.
 同一の精子提供者であっても、精液を採取した時期によって含まれる精子の数や特徴量等の特性が異なることが知られている。したがって、図1Bを使用して説明した第2準備段階と、図1Cを使用して説明した精子選択段階とは、同一の精液を使用して、連続して実施することが望ましい。しかしながら、たとえば乏精子症等により精子の数が極度に少ない等の事情がある場合には、第2準備段階と精子選択段階とで、同一の精子提供者において異なる時期に採取した精液を使用しても良い。 It is known that even the same sperm donor has different characteristics such as the number of sperm and the amount of sperm contained depending on the time when semen was collected. Therefore, it is desirable that the second preparatory step described with reference to FIG. 1B and the sperm selection step described with reference to FIG. 1C be performed successively using the same semen. However, if there is an extremely small number of spermatozoa due to oligospermia, etc., use the semen collected by the same sperm donor at different times in the second preparation stage and the sperm selection stage. May be.
 なお、精液に精子が含まれない無精子症等の症状を有する精子提供者である場合には、精液を採取する代わりに、精巣上体精子回収法または精巣内精子回収法等の手術により精子を採取する。採取できた精子が少ない場合には、第2準備段階と精子選択段階との両方の実施が困難な場合がある。このような場合には、第2準備段階を省略し、類似する症状を有する精子提供者のサンプル分布g(X)を流用して、精子選択段階を実施しても良い。 If you are a sperm donor who has symptoms such as azoospermia where semen does not contain sperm, instead of collecting semen, sperm should be collected by surgery such as epididymal sperm collection method or intratesticular sperm collection method. To collect. When the collected sperm are few, it may be difficult to perform both the second preparation stage and the sperm selection stage. In such a case, the second preparatory step may be omitted, and the sperm selection step may be performed by diverting the sample distribution g (X) of sperm donors having similar symptoms.
 図2は、情報処理システム10の構成を説明する説明図である。情報処理システム10は、情報処理装置20、表示装置15および顕微鏡41を備える。 FIG. 2 is an explanatory diagram illustrating the configuration of the information processing system 10. The information processing system 10 includes an information processing device 20, a display device 15, and a microscope 41.
 情報処理装置20は、制御部21、主記憶装置22、補助記憶装置23、通信部24、表示I/F(Interface)25、撮影I/F28およびバスを備える。制御部21は、本実施の形態のプログラムを実行する演算制御装置である。制御部21は、一もしくは複数のCPU(Central Processing Unit)、マルチコアCPUまたはGPU(Graphics Processing Unit)等により構成される。制御部21は、バスを介して情報処理装置20を構成するハードウェア各部と接続されている。 The information processing device 20 includes a control unit 21, a main storage device 22, an auxiliary storage device 23, a communication unit 24, a display I / F (Interface) 25, a photographing I / F 28, and a bus. The control unit 21 is an arithmetic and control unit that executes the program of this embodiment. The control unit 21 includes one or more CPUs (Central Processing Units), multi-core CPUs, GPUs (Graphics Processing Units), and the like. The control unit 21 is connected to each of the hardware units configuring the information processing device 20 via a bus.
 主記憶装置22は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、フラッシュメモリ等の記憶装置である。主記憶装置22には、制御部21が行なう処理の途中で必要な情報および制御部21で実行中のプログラムが一時的に保存される。 The main storage device 22 is a storage device such as SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), and flash memory. The main storage device 22 temporarily stores information required during the process performed by the control unit 21 and a program being executed by the control unit 21.
 補助記憶装置23は、SRAM、フラッシュメモリまたはハードディスク等の記憶装置である。補助記憶装置23には、教師データDB51、予備撮影DB52、経過学習モデル53、画像エンコーダ546、制御部21に実行させるプログラム、およびプログラムの実行に必要な各種データが保存される。 The auxiliary storage device 23 is a storage device such as SRAM, flash memory, or hard disk. The auxiliary storage device 23 stores a teacher data DB 51, a preliminary shooting DB 52, a progress learning model 53, an image encoder 546, a program to be executed by the control unit 21, and various data necessary for executing the program.
 なお、教師データDB51、予備撮影DB52、経過学習モデル53および画像エンコーダ546は、情報処理装置20に接続された外部の大容量記憶装置等に保存されていても良い。 Note that the teacher data DB 51, the preliminary shooting DB 52, the progress learning model 53, and the image encoder 546 may be stored in an external mass storage device or the like connected to the information processing device 20.
 通信部24は、情報処理装置20とネットワークとの間の通信を行なうインターフェイスである。表示I/F25は、液晶表示装置または有機EL(Electro Luminescence)表示装置等の表示装置15と、情報処理装置20とを接続するインターフェイスである。撮影I/F28は、後述するカメラ48と、情報処理装置20とを接続するインターフェイスである。 The communication unit 24 is an interface that communicates between the information processing device 20 and the network. The display I / F 25 is an interface that connects the display device 15 such as a liquid crystal display device or an organic EL (Electro Luminescence) display device to the information processing device 20. The photographing I / F 28 is an interface that connects a camera 48 described later and the information processing device 20.
 表示I/F25は、たとえば、VGA端子、DVI(Digital Visual Interface)端子、HDMI(登録商標)(High-Definition Multimedia Interface)端子、または、USB(Universal Serial Bus)端子等である。撮影I/F28は、たとえばUSB端子である。表示I/F25と表示装置15との間、および、撮影I/F28とカメラ48との間は、それぞれ無線で接続されていても良い。 The display I / F 25 is, for example, a VGA terminal, a DVI (Digital Visual Interface) terminal, an HDMI (registered trademark) (High-Definition Multimedia Interface) terminal, a USB (Universal Serial Bus) terminal, or the like. The photographing I / F 28 is, for example, a USB terminal. The display I / F 25 and the display device 15 may be wirelessly connected to each other, and the photographing I / F 28 and the camera 48 may be wirelessly connected to each other.
 顕微鏡41は、たとえば微分干渉顕微鏡、明視野顕微鏡、偏光顕微鏡、位相差顕微鏡または倒立顕微鏡等である。顕微鏡41は、ステージ42、接眼レンズ43、対物レンズ47および照明部44を備える。ステージ42には、洗浄および希釈等の前処理を行なった精液を入れた観察容器421が載置される。観察容器421は、たとえばシャーレ、ウェル、またはスライドガラス等である。 The microscope 41 is, for example, a differential interference microscope, a bright field microscope, a polarization microscope, a phase contrast microscope or an inverted microscope. The microscope 41 includes a stage 42, an eyepiece lens 43, an objective lens 47, and an illumination unit 44. On the stage 42, an observation container 421 containing semen that has undergone pretreatment such as washing and dilution is placed. The observation container 421 is, for example, a petri dish, a well, a slide glass, or the like.
 観察容器421は、照明部44から照射された照明光により照明される。ユーザである培養士は、対物レンズ47および接眼レンズ43を介して、観察容器421内の精子を観察する。 The observation container 421 is illuminated by the illumination light emitted from the illumination unit 44. An incubator who is a user observes the sperm in the observation container 421 through the objective lens 47 and the eyepiece lens 43.
 対物レンズ47と接眼レンズ43との間に、光路分割部45が配置されている。光路分割部45に接続されたカメラ48により、培養士が観察中の精子を動画または静止画により撮影できる。撮影された画像は、撮影I/F28を介して補助記憶装置23に記録されるとともに、表示I/F25を介して表示装置15にリアルタイムで表示される。 An optical path splitting unit 45 is arranged between the objective lens 47 and the eyepiece lens 43. With the camera 48 connected to the optical path splitting unit 45, the sperm under observation by the incubator can be photographed as a moving image or a still image. The photographed image is recorded in the auxiliary storage device 23 via the photographing I / F 28 and is displayed on the display device 15 in real time via the display I / F 25.
 たとえば候補精子を捜して、評価を確認する際には、培養士は表示装置15に表示された精子を見る。候補精子をマイクロピペットに採取する際には、培養士は接眼レンズ43を使用して、候補精子およびマイクロピペットの先端を目視確認する。このように、培養士が表示装置15と接眼レンズ43とを適宜使い分けられるため、培養士の疲労が少なく、精子を正確に採取できる情報処理システム10を提供できる。 For example, when searching for candidate sperm and confirming the evaluation, the incubator looks at the sperm displayed on the display device 15. When collecting the candidate sperm into the micropipette, the incubator visually confirms the candidate sperm and the tip of the micropipette using the eyepiece lens 43. In this way, the incubator can appropriately use the display device 15 and the eyepiece lens 43, so that it is possible to provide the information processing system 10 in which fatigue of the incubator is small and sperm can be accurately collected.
 本実施の形態の情報処理装置20は、汎用のパソコン、タブレット、大型計算機、または、大型計算機上で動作する仮想マシンである。情報処理装置20は、複数のパソコン、タブレットまたは大型計算機等のハードウェアにより構成されても良い。情報処理装置20は、量子コンピュータにより構成されても良い。情報処理装置20は、顕微鏡41に内蔵されていても良い。情報処理装置20は、図示を省略する病院内ネットワークシステムを介してネットワークに接続されても良い。 The information processing device 20 of the present embodiment is a general-purpose personal computer, a tablet, a large computer, or a virtual machine that operates on a large computer. The information processing device 20 may be configured by hardware such as a plurality of personal computers, tablets or large-scale computers. The information processing device 20 may be composed of a quantum computer. The information processing device 20 may be built in the microscope 41. The information processing device 20 may be connected to the network via a hospital network system (not shown).
 図3は、出産までの経過を説明する説明図である。卵子提供者から数個から十数個程度の卵子が採取される。採取された卵子のうち、変形等の異常がある卵子、および、受精可能な段階まで成熟していない卵子は破棄される。精子提供者から数万個から数千万個の精子が採取される。精子を選択して、卵子に注入する顕微授精が行なわれる。所定の条件で、卵子が培養される。 FIG. 3 is an explanatory diagram for explaining the process leading to childbirth. A few to a dozen or so eggs are collected from an egg donor. Of the collected eggs, those with abnormalities such as deformation and eggs that have not matured to the fertilizable stage are discarded. Tens of thousands to tens of millions of sperm are collected from sperm donors. Microinsemination in which sperm are selected and injected into an egg is performed. The egg is cultured under predetermined conditions.
 受精が成立した後、胚は細胞分裂を開始し、2分割胚、4分割胚等を経て、桑実胚、胚盤胞と成長する。胚の成長経過は適宜観察されて、それぞれの成長段階まで正常に成長したか否かが記録される。観察により異常が発見された胚は破棄される。 After fertilization is established, the embryo starts cell division and develops into morula, blastocyst, through 2 divided embryos, 4 divided embryos, etc. The development process of the embryo is appropriately observed, and whether or not the embryo has normally grown to each development stage is recorded. Embryos found to be abnormal by observation are discarded.
 所定の段階まで成長した胚が母体に移植され、残りの胚は凍結保存される。なお、すべての胚をいったん凍結保存し、母体の状態が整った時期に胚移植を行なう、凍結胚移植が行なわれる場合もある。  Embryos that have grown to the prescribed stage are transferred to the mother, and the remaining embryos are cryopreserved. In some cases, frozen embryo transfer is performed, in which all embryos are once frozen and stored, and embryo transfer is performed when the maternal condition is ready.
 胚が子宮に着床して妊娠が成立した後は、自然妊娠と同様に胎児が成長する。妊婦検診が行なわれて、胎児の成長経過が記録される。経過が正常であれば、出産に至り、新生児が誕生する。 After the embryo is implanted in the uterus and the pregnancy is established, the fetus grows like natural pregnancy. Pregnancy checkups are performed and the development of the fetus is recorded. If the course is normal, the child is born and a newborn baby is born.
 胚が子宮に着床しない場合、流産した場合、または、2人目以降の出産を希望する場合等には、凍結保存された胚を用いて、再度の胚移植が行なわれる。不妊治療を終了する場合等には、凍結保存された胚は破棄される。 If the embryo does not implant in the uterus, has a miscarriage, or wishes to give birth to a second or later child, the embryo that has been cryopreserved will be re-transferred. When the fertility treatment is completed, the cryopreserved embryo is discarded.
 図4は、成功確率の分布を説明する説明図である。横軸Xは確率変数として成功確率を、縦軸Yは確率変数Xに対応する確率を示す。成功確率が0である場合は成功するケースがないことを、成功確率が1である場合はすべてのケースが成功することを示す。 FIG. 4 is an explanatory diagram illustrating the distribution of success probabilities. The horizontal axis X represents the probability of success as a random variable, and the vertical axis Y represents the probability corresponding to the random variable X. A success probability of 0 indicates that no case succeeds, and a success probability of 1 indicates that all cases succeed.
 なお、図1の右下に示すグラフも図4と同一の分布を表示するが、縦軸Xが確率変数として成功確率を、横軸Yが確率変数Xに対応する確率を示す。 The graph shown in the lower right of FIG. 1 also displays the same distribution as in FIG. 4, but the vertical axis X shows the success probability as a random variable, and the horizontal axis Y shows the probability corresponding to the random variable X.
 成功確率は、受精、胚盤胞形成、着床、および出産等の種々の発生段階ごとに算出する。たとえば受精および胚盤胞形成の成功確率は、顕微授精を行なった卵子の数に対する受精および胚盤胞形成にそれぞれ正常に成長した卵子の数により算出する。着床および出産の成功確率は、母体への移植を行なった胚の数に対する着床および出産にそれぞれに成功した胚の数により算出する。 -Success probability is calculated for each stage of development such as fertilization, blastocyst formation, implantation, and childbirth. For example, the success probability of fertilization and blastocyst formation is calculated by the number of eggs that have normally grown to fertilization and blastocyst formation with respect to the number of eggs that have undergone microinsemination. The success rate of implantation and delivery is calculated based on the number of embryos successfully implanted and delivered with respect to the number of embryos transplanted into the mother.
 2分割胚、4分割胚、桑実胚、妊娠初期、妊娠中期等の種々の発生段階に対する成功確率を算出しても良い。出産後の乳幼児の種々の成長段階まで正常に成長する成功確率を算出しても良い。 -The probability of success for various developmental stages such as 2-split embryo, 4-split embryo, morula, early pregnancy, midgestation, etc. may be calculated. You may calculate the success probability that the baby after birth will grow normally up to various stages of growth.
 それぞれの段階については、正常に成長したか否かの2択による評価を行なう。実線で示す第1分布f(X)は、記録をとった全ケースについての成否を、ベータ分布で表現した確率密度分布である。第1分布f(X)は、(1)式により表される。 -Each stage is evaluated by two choices, whether it has grown normally or not. The first distribution f (X) indicated by the solid line is a probability density distribution in which the success / failure of all recorded cases is represented by a beta distribution. The first distribution f (X) is expressed by equation (1).
Figure JPOXMLDOC01-appb-M000001
   pは各成長段階まで正常に成長したケースの数である。
   qは各成長段階まで正常に成長しなかったケースの数である。
   C1は正規化定数である。
Figure JPOXMLDOC01-appb-M000001
p is the number of cases that grew normally up to each growth stage.
q is the number of cases that did not grow normally up to each growth stage.
C 1 is a normalization constant.
 破線で示すサンプル分布g(X)は、図1Bを使用して説明した第2準備段階において、予備撮影した画像から予測した成功確率の分布を示す。たとえば、予備撮影した画像に基づいて各成長段階まで正常に成長できるか否かの2択による予測を行なう場合、サンプル分布g(X)は二項分布に基づいて(2)式により表される。 The sample distribution g (X) indicated by a broken line indicates the distribution of success probabilities predicted from the preliminarily photographed images in the second preparatory stage described using FIG. 1B. For example, when predicting whether or not normal growth can be achieved up to each growth stage based on a pre-captured image, the sample distribution g (X) is expressed by equation (2) based on the binomial distribution. ..
Figure JPOXMLDOC01-appb-M000002
   aは各成長段階まで正常に成長すると予測した予備撮影画像の数である。
   bは各成長段階まで正常に成長しないと予測した予備撮影画像の数である。
   C2は正規化定数である。
Figure JPOXMLDOC01-appb-M000002
a is the number of preliminary captured images predicted to grow normally up to each growth stage.
b is the number of preliminary captured images predicted not to grow normally up to each growth stage.
C 2 is a normalization constant.
 一点鎖線で示す第2分布h(X)は、第1分布f(X)を事前分布に、サンプル分布g(X)を尤度分布にそれぞれ使用したベイズ推定により求めた事後分布であり、精子提供者により提供された精子の成功確率の確率密度分布を予測した結果を意味する。第2分布h(X)は(3)式により表される。 The second distribution h (X) indicated by the alternate long and short dash line is the posterior distribution obtained by Bayesian estimation using the first distribution f (X) as the prior distribution and the sample distribution g (X) as the likelihood distribution, and sperm It means the result of predicting the probability density distribution of sperm success probability provided by the provider. The second distribution h (X) is expressed by equation (3).
Figure JPOXMLDOC01-appb-M000003
   C3は正規化定数である。
Figure JPOXMLDOC01-appb-M000003
C 3 is a normalization constant.
 個々の候補精子について経過学習モデル53を用いて算出した成功確率が第2分布h(X)の右端に近いほど、提供された精子の中で成功確率が高い精子であることを意味する。たとえば、図4においてAで示す成功確率0.55程度の精子は、第1分布f(X)で示す全データの中では比較的成功確率が低い精子であるが、第2分布h(X)で示す提供された精子の中では比較的成功確率が高い精子である。この情報に基づいて、培養士は観察中の精子を顕微授精に使用するか、成功確率がさらに高い精子を探すかを判断する。 The closer the success probability calculated for each candidate sperm using the progress learning model 53 to the right end of the second distribution h (X), the higher the success probability of the provided sperms. For example, in FIG. 4, sperm with a success probability of about 0.55 are spermatozoa with a relatively low success probability among all the data shown by the first distribution f (X), but the second distribution h (X). The spermatozoa that have a relatively high probability of success among the spermatozoa provided as shown in. Based on this information, the incubator decides whether to use the sperm under observation for microinsemination or to look for sperm with a higher probability of success.
 図5は、精子を撮影した静止画から、画像特徴量を抽出する画像エンコーダ546の作成方法を説明する説明図である。 FIG. 5 is an explanatory diagram illustrating a method of creating the image encoder 546 that extracts the image feature amount from the still image obtained by photographing the sperm.
 図5を使用して、オートエンコーダを用いた画像特徴量の抽出方法を説明する。画像特徴量モデル54は、入力層541、中間層542および出力層543を備えるCNN(Convolution Neural Network:畳み込みニューラルネットワーク)である。 A method for extracting image feature amounts using an auto encoder will be described with reference to FIG. The image feature amount model 54 is a CNN (Convolution Neural Network) including an input layer 541, an intermediate layer 542, and an output layer 543.
 CNNは、活性化関数にReLU(Rectified Linear Unit)関数またはソフトマックス関数等を用いて、畳み込み層とプーリング層とを反復した後、全結合層を複数回繰り返したニューラルネットワークである。なお、畳み込み層およびプーリング層については、図示を省略する。 CNN is a neural network in which the convolutional layer and the pooling layer are iterated using the ReLU (Rectified Linear Unit) function or the softmax function as the activation function, and then the fully connected layer is repeated multiple times. Illustration of the convolutional layer and the pooling layer is omitted.
 入力層541および出力層543は、教師データである撮影画像の画素数と同じ数のニューロンを有する。中間層542のニューロン数は、中央層545で最小である。入力層541には、撮影画像の静止画が入力される。具体的には、入力層541の各ニューロンに、撮影画像の各画素の画素値が入力される。 The input layer 541 and the output layer 543 have the same number of neurons as the number of pixels of the captured image which is the teacher data. The number of neurons in the middle layer 542 is the smallest in the middle layer 545. The still image of the captured image is input to the input layer 541. Specifically, the pixel value of each pixel of the captured image is input to each neuron of the input layer 541.
 制御部21は、出力層543から入力層541と同じ撮影画像が出力されるように、誤差逆伝播法等を用いて中間層542のパラメータを演算する教師あり機械学習を行なう。教師あり機械学習が終了した後の中央層545の各ニューロンは、撮影画像の画像特徴量を示す。 The control unit 21 performs supervised machine learning that calculates the parameters of the intermediate layer 542 by using the error backpropagation method or the like so that the same captured image as the input layer 541 is output from the output layer 543. Each neuron in the central layer 545 after the supervised machine learning is finished shows the image feature amount of the captured image.
 制御部21は、教師あり機械学習を行なう前に、教師データである撮影画像を訓練データと検証データとに分ける。制御部21は、訓練データを用いて教師あり機械学習を行なった画像特徴量モデル54の精度を、検証データを用いて検証する。以上により、画像特徴量モデル54に過学習等の問題が生じていないことが確認される。学習および検証のプロセスは、教師あり機械学習において一般的に行なわれるプロセスであるため、以後に説明する教師あり機械学習においては説明を省略する。 The control unit 21 divides a captured image, which is teacher data, into training data and verification data before performing supervised machine learning. The control unit 21 verifies the accuracy of the image feature amount model 54 subjected to the machine learning with the teacher using the training data, using the verification data. From the above, it is confirmed that the image feature amount model 54 does not have a problem such as over-learning. Since the learning and verification process is a process generally performed in supervised machine learning, description thereof will be omitted in supervised machine learning described below.
 学習済の画像特徴量モデル54のうち、入力層541から中央層545までの部分が、撮影画像から画像特徴量を抽出する画像エンコーダ546に使用される。制御部21は、画像特徴量モデル54から画像エンコーダ546を切り出して、補助記憶装置23に記録する。以上により、精子を撮影した撮影画像が入力された場合に、画像特徴量を出力する画像エンコーダ546が完成する。 The part of the learned image feature amount model 54 from the input layer 541 to the central layer 545 is used for the image encoder 546 that extracts the image feature amount from the captured image. The control unit 21 cuts out the image encoder 546 from the image feature amount model 54 and records it in the auxiliary storage device 23. As described above, the image encoder 546 that outputs the image feature amount is completed when the captured image of the sperm is input.
 なお、画像エンコーダ546を作成する際の教師データには、熟練した培養士等の専門家が正常であると判断した精子を撮影した画像を使用することが望ましい。このようにすることにより、正常な精子間の相違点を示す特徴量を抽出する画像エンコーダ546を実現できる。 Note that it is desirable to use an image of a sperm taken by a specialist such as a skilled incubator as the teacher data when creating the image encoder 546. By doing so, it is possible to realize the image encoder 546 that extracts the feature amount indicating the difference between normal spermatozoa.
 画像エンコーダ546を作成する際の教師データには、精子が1個だけ写っていることが望ましい。仮に複数の精子または異物等が写っている画像を使用する場合には、画像のクリッピング処理等を行なって、目的の精子以外の部分が含まれないように加工した画像を教師データに使用する。 It is desirable that the teacher data when creating the image encoder 546 include only one sperm. If an image containing a plurality of spermatozoa or foreign substances is used, the image is subjected to clipping processing or the like, and an image processed so as not to include a portion other than the target sperm is used as the teacher data.
 画像エンコーダ546は任意のコンピュータを用いて作成されても良い。作成された画像エンコーダ546は、ネットワーク等を介して顕微授精実施機関が使用する情報処理装置20に送信されて、補助記憶装置23に記録される。このようにする場合には、画像エンコーダ546を作成する情報処理システム10と、画像エンコーダ546を使用する情報処理システム10とで、同一仕様または類似仕様の顕微鏡41を使用することが望ましい。 The image encoder 546 may be created using any computer. The created image encoder 546 is transmitted to the information processing device 20 used by the microinsemination performing institution via a network or the like and recorded in the auxiliary storage device 23. In this case, it is desirable that the information processing system 10 that creates the image encoder 546 and the information processing system 10 that uses the image encoder 546 use the microscopes 41 having the same or similar specifications.
 図6は、動画ファイルからの画像特徴量の抽出を説明する説明図である。図6を使用して、顕微授精時の撮影画像が動画で記録されている場合の画像特徴量の抽出について説明する。 FIG. 6 is an explanatory diagram for explaining the extraction of the image feature amount from the moving image file. Extraction of the image feature amount when the captured image at the time of microinsemination is recorded as a moving image will be described with reference to FIG.
 時刻t1から時刻t5までの時間の動画が、動画ファイルに記録されている場合を例にして説明する。動画ファイルをフレーム分割することにより、複数の静止画が作成される。それぞれの静止画が、あらかじめ用意された判定用のCNNに入力されて、精子全体が撮影されているか否かが判定される。判定用のCNNにより、複数のフレームに精子全体が撮影されていると判定された場合には、任意の手法により1つのフレームが選択される。 An example will be explained in which the moving image from the time t1 to the time t5 is recorded in the moving image file. Multiple still images are created by dividing the moving image file into frames. Each still image is input to a CNN for determination prepared in advance, and it is determined whether or not the whole sperm is photographed. When it is determined by the CNN for determination that the whole sperm is imaged in a plurality of frames, one frame is selected by an arbitrary method.
 図6に示す例においては、時刻t3のフレームに精子全体が撮影されていると判定される。精子全体が撮影されていると判定された静止画が、図5を使用して説明した画像エンコーダ546に入力されて、静止画の特徴量が抽出される。 In the example shown in FIG. 6, it is determined that the entire sperm has been imaged in the frame at time t3. The still image determined to have the entire sperm photographed is input to the image encoder 546 described using FIG. 5, and the feature amount of the still image is extracted.
 動画ファイルから、精子の移動速度、直線移動距離、尾部の鞭毛運動周期等の、動画特徴量が抽出される。動画特徴量は、たとえば撮影画像上に定義した複数の特徴点の、フレーム間における移動量に基づいて算出する。動画特徴量は、RNN(Recurrent Neural Network:再起型ニューラルネットワーク)を用いて抽出されても良い。その他、既存の任意の動画解析手法を用いて、動画特徴量を抽出しても良い。静止画の特徴量および動画の特徴量は、顕微授精後の経過と関連づけて教師データDB51に記録される。 From video files, video features such as sperm movement speed, linear movement distance, and tail flagella movement cycle are extracted. The moving image feature amount is calculated, for example, based on the amount of movement of a plurality of feature points defined on the captured image between frames. The moving image feature amount may be extracted using an RNN (Recurrent Neural Network). In addition, the moving image feature amount may be extracted using an existing arbitrary moving image analysis method. The feature amount of the still image and the feature amount of the moving image are recorded in the teacher data DB 51 in association with the progress after microinsemination.
 なお、顕微授精時の撮影画像が、動画と静止画との両方で記録されている場合には、制御部21は、動画ファイルからフレームを切り出す代わりに、静止画を使用して画像特徴量を抽出する。 When the captured image at the time of microinsemination is recorded as both a moving image and a still image, the control unit 21 uses the still image instead of cutting out the frame from the moving image file to determine the image feature amount. Extract.
 図7は、経過学習モデル53を説明する説明図である。経過学習モデル53は、入力層531、中間層532および出力層533を備えるニューラルネットワークである。図7においては、経過学習モデル53はCNNである場合を例示する。なお、畳み込み層およびプーリング層については、図示を省略する。 FIG. 7 is an explanatory diagram illustrating the progress learning model 53. The progress learning model 53 is a neural network including an input layer 531, an intermediate layer 532, and an output layer 533. In FIG. 7, the case where the progress learning model 53 is CNN is illustrated. Illustration of the convolutional layer and the pooling layer is omitted.
 経過学習モデル53は、受精、胚盤胞形成、着床、および出産等の種々の発生段階ごとに作成される。経過学習モデル53の入力は、撮影画像の画像特徴量、すなわち、図5を使用して説明した静止画の画像特徴量、および、図6を使用して説明した動画の画像特徴量である。経過学習モデル53の出力は、それぞれの段階まで正常に成長した確率(成功確率)および正常には成長しなかった確率(不成功確率)である。 The progress learning model 53 is created at various stages of development such as fertilization, blastocyst formation, implantation, and childbirth. The input of the progress learning model 53 is the image feature amount of the captured image, that is, the image feature amount of the still image described using FIG. 5, and the image feature amount of the moving image described using FIG. The output of the progress learning model 53 is the probability of successful growth up to each stage (success probability) and the probability of failure to grow normally (unsuccessful probability).
 経過学習モデル53は、入力層531に静止画および動画の特徴量が入力された場合に、出力層533に成功および不成功の確率を出力する。学習段階においては、制御部21は、静止画および動画の特徴量と、顕微授精後の経過とを関連づけて記録した教師データDB51を用いて、誤差逆伝播法等を用いて中間層532のパラメータを演算することにより、教師あり機械学習を行なう。 The progress learning model 53 outputs the success and failure probabilities to the output layer 533 when the feature amounts of the still image and the moving image are input to the input layer 531. In the learning stage, the control unit 21 uses the teacher data DB 51 in which the feature amounts of the still image and the moving image are recorded in association with the progress after microinsemination, and uses the error backpropagation method or the like to set the parameters of the intermediate layer 532. The supervised machine learning is performed by calculating.
 教師あり機械学習は、たとえばロジスティック回帰、SVM(Support Vector Machine)、ランダムフォレスト、CNN、RNNまたは、XGBoost(eXtreme Gradient Boosting)等の任意の手法により行なえる。 Supervised machine learning can be performed by any method such as logistic regression, SVM (Support Vector Machine), random forest, CNN, RNN, or XGBoost (eXtreme Gradient Boosting).
 入力層531には、静止画特徴量または動画特徴量のいずれか一方のみが入力されても良い。入力層531には、精子提供者および卵子提供者の年齢、既往歴、健康状態を含む現病歴、家族歴、過去の不妊治療履歴等、画像特徴量以外の項目が追加で入力されても良い。入力層531には、低倍率の顕微鏡観察または市販の精子評価装置等により取得した、精子濃度、総精子数、精子運動率、運動精子濃度、直線速度、曲線速度、平均速度、直線性、直進性、頭部振幅および頭部振動数等の、精子の質に関する項目が入力されても良い。 Only one of a still image feature amount and a moving image feature amount may be input to the input layer 531. The input layer 531 may additionally include items other than the image feature amount, such as age, medical history, current medical history including health status, family history, past infertility treatment history of the sperm donor and the egg donor. .. The input layer 531 includes sperm concentration, total sperm count, sperm motility, motile sperm concentration, linear velocity, curve velocity, average velocity, linearity, and straightness obtained by low-power microscope observation or a commercially available sperm evaluation device or the like. Items related to sperm quality such as sex, head amplitude, and head frequency may be input.
 制御部21は、たとえば受精の成否を判定する経過学習モデル53の学習を終了した後に、完成した経過学習モデル53を利用した転移学習により、胚盤胞段階等の後の段階の成否を判定する経過学習モデル53を作成しても良い。受精から出産に到るまで、後の段階になるほど教師データの数は減少する。しかし、転移学習を利用することにより、後の段階についても適切な経過学習モデル53を作成できる。 For example, after the learning of the progress learning model 53 for determining the success or failure of fertilization is completed, the control unit 21 determines the success or failure of a later stage such as a blastocyst stage by the transfer learning using the completed progress learning model 53. The progress learning model 53 may be created. From fertilization to childbirth, the number of teacher data decreases in later stages. However, by using transfer learning, it is possible to create an appropriate progress learning model 53 even in the later stage.
 経過学習モデル53は任意のコンピュータを用いて作成されても良い。作成された経過学習モデル53は、ネットワーク等を介して顕微授精実施機関が使用する情報処理装置20に送信されて、補助記憶装置23に記録される。このようにする場合には、画像エンコーダ546および経過学習モデル53を作成する情報処理システム10と、画像エンコーダ546および経過学習モデル53を使用する情報処理システム10とで、同一仕様または類似仕様の顕微鏡41を使用することが望ましい。 The progress learning model 53 may be created using any computer. The created progress learning model 53 is transmitted to the information processing device 20 used by the microinsemination performing institution via a network or the like and recorded in the auxiliary storage device 23. In this case, the information processing system 10 that creates the image encoder 546 and the progress learning model 53 and the information processing system 10 that uses the image encoder 546 and the progress learning model 53 have the same specifications or similar specifications. It is desirable to use 41.
 図8は、教師データDB51のレコードレイアウトを説明する説明図である。教師データDB51は、顕微授精に使用した精子を撮影した撮影画像と、顕微授精後の経過とを関連づけて記録するDBである。教師データDB51は、精子IDフィールド、画像データフィールド、精子画像特徴量フィールドおよび経過情報フィールドを有する。 FIG. 8 is an explanatory diagram illustrating a record layout of the teacher data DB 51. The teacher data DB 51 is a DB that records the photographed image of the sperm used for microinsemination and the process after microinsemination in association with each other. The teacher data DB 51 has a sperm ID field, an image data field, a sperm image feature amount field, and a progress information field.
 精子画像特徴量フィールドは、静止画フィールドおよび動画フィールドを有する。静止画フィールドおよび動画フィールドは、それぞれ第1特徴量フィールド、第2特徴量フィールド等を有する。経過情報フィールドは、受精フィールド、胚盤胞形成フィールド、着床フィールド、出産フィールドおよび健康状態フィールドを有する。教師データDB51は、顕微授精に使用された精子1個について、1つのレコードを有する。 The sperm image feature amount field has a still image field and a moving image field. The still image field and the moving image field each have a first feature amount field, a second feature amount field, and the like. The progress information field includes a fertilization field, a blastocyst formation field, an implantation field, a birth field, and a health status field. The teacher data DB 51 has one record for each sperm used for microinsemination.
 精子IDフィールドには、精子に固有に付与された精子IDが記録されている。画像データフィールドには、精子を撮影した画像データが記録されている。図8には拡張子が「mpg」である動画ファイルが記録された例を示すが、画像データの形式は任意である。画像データフィールドには、動画ファイルと静止画ファイル等、複数のファイルが記録されていても良い。 In the sperm ID field, the sperm ID uniquely assigned to the sperm is recorded. In the image data field, image data of a sperm photographed is recorded. FIG. 8 shows an example in which a moving image file with the extension “mpg” is recorded, but the image data format is arbitrary. A plurality of files such as a moving image file and a still image file may be recorded in the image data field.
 静止画フィールドの各サブフィールドには、画像データを画像エンコーダ546に入力して得た静止画の特徴量が記録されている。動画フィールドの各サブフィールドには、画像データを解析して得た動画の特徴量が記録されている。 In each subfield of the still image field, the feature amount of the still image obtained by inputting the image data to the image encoder 546 is recorded. In each subfield of the moving image field, the characteristic amount of the moving image obtained by analyzing the image data is recorded.
 受精フィールドには受精の成否が、胚盤胞形成フィールドには胚盤胞形成の成否が、着床フィールドには着床の成否が、出産フィールドには出産の成否がそれぞれ記録されている。「OK」はそれぞれの段階に正常に達したことを、「NG」はそれぞれの段階に正常に達しなかったことを示す。「-」はそれぞれの段階の成否が判定できないことを示す。 The fertilization field records the success or failure of fertilization, the blastocyst formation field records the success or failure of blastocyst formation, the implantation field records the success or failure of implantation, and the birth field records the success or failure of childbirth. “OK” indicates that each stage has been normally reached, and “NG” indicates that each stage has not been normally reached. "-" Indicates that the success or failure of each stage cannot be determined.
 健康状態フィールドは、新生児の健康状態を示す。「OK」は、新生児が健康であることを示す。「NG」はたとえば超未熟児等で、健康に問題を抱えた新生児であることを示す。 The health status field indicates the health status of the newborn. "OK" indicates that the newborn is healthy. “NG” indicates, for example, a very premature baby, which is a newborn baby having a health problem.
 経過情報フィールドは、たとえば2分割胚フィールド、4分割胚フィールド、桑実胚フィールド等、胚の任意の成長段階を記録するフィールドを有しても良い。経過情報フィールドは、たとえば妊娠第20週フィールド等の、妊婦検診結果を記録するフィールドを有しても良い。経過情報フィールドは、羊水検査またはNIPT(Non-Invasive Prenatal Genetic Testing:母体血胎児染色体検査)等の出生前診断の結果を記録するフィールドを有しても良い。 The progress information field may have a field that records an arbitrary developmental stage of the embryo, such as a 2-split embryo field, a 4-split embryo field, or a morula embryo field. The progress information field may have a field for recording the result of the pregnant woman examination, such as the 20th week of pregnancy field. The progress information field may have a field for recording the result of prenatal diagnosis such as amniotic fluid test or NIPT (Non-Invasive Prenatal Genetic Testing).
 経過情報フィールドの各サブフィールドに記録される情報は、精子IDフィールドに記録された精子ID等に基づいて、電子カルテ等から取得されても良い。 The information recorded in each subfield of the progress information field may be acquired from an electronic medical record or the like based on the sperm ID recorded in the sperm ID field.
 図9は、予備撮影DB52のレコードレイアウトを説明する説明図である。予備撮影DB52は、図1Bを使用して説明した第2準備段階において、経過学習モデル53を用いた予測結果を記録するDBである。予備撮影DB52は、患者IDフィールド、撮影日フィールドおよび予測結果フィールドを有する。予測結果フィールドは、受精フィールド、胚盤胞形成フィールド、着床フィールド、出産フィールドおよび健康状態フィールドを有する。予備撮影DB52は1回の予備撮影について1つのフィールドを有する。 FIG. 9 is an explanatory diagram illustrating a record layout of the preliminary shooting DB 52. The preliminary shooting DB 52 is a DB that records a prediction result using the progress learning model 53 in the second preparatory stage described using FIG. 1B. The preliminary imaging DB 52 has a patient ID field, an imaging date field, and a prediction result field. The prediction result field has a fertilization field, a blastocyst formation field, an implantation field, a birth field, and a health status field. The preliminary photographing DB 52 has one field for one preliminary photographing.
 患者IDフィールドには、精子提供者に固有に付与された患者IDが記録されている。撮影日フィールドには、撮影画像を撮影した撮影日が記録されている。予測結果フィールドの各サブフィールドには、各段階に正常に達するか否かの予測結果が記録されている。「OK」はそれぞれの段階に正常に達すると予測したことを、「NG」はそれぞれの段階に正常に達しないと予測したことを示す。 The patient ID uniquely assigned to the sperm provider is recorded in the patient ID field. In the shooting date field, the shooting date when the shot image was shot is recorded. In each subfield of the prediction result field, the prediction result of whether or not each stage is normally reached is recorded. “OK” indicates that each stage was predicted to reach normal, and “NG” indicates that each stage did not reach normal.
 制御部21は、カメラ48により撮影された撮影画像から精子画像特徴量を抽出し、各段階について作成した経過学習モデル53に入力して、成功確率を取得する。制御部21は、成功確率が所定の閾値以上である場合に「OK」を、所定の閾値未満である場合に「NG」を記録する。 The control unit 21 extracts the sperm image feature amount from the captured image captured by the camera 48 and inputs it to the progress learning model 53 created for each stage to acquire the success probability. The control unit 21 records “OK” when the success probability is equal to or higher than the predetermined threshold value, and records “NG” when the success probability is lower than the predetermined threshold value.
 図10から図12は、情報処理システム10が表示する画面を示す説明図である。図10は、図1Bを使用して説明した第2準備段階で、精子提供者から提供された精液に含まれる精子の予備撮影を行なう際に、制御部21が表示装置15に表示する画面の例を示す。 10 to 12 are explanatory diagrams showing screens displayed by the information processing system 10. FIG. 10 shows the screen displayed on the display device 15 by the control unit 21 when the preliminary imaging of the sperm contained in the semen provided by the sperm donor is performed in the second preparatory step described using FIG. 1B. Here is an example:
 画面には、画像欄61、目標数欄62、撮影済数欄63、撮影ボタン66および終了ボタン67が表示されている。画像欄61には、カメラ48により撮影された顕微鏡画像がリアルタイムで表示される。目標数欄62には、予備撮影の目標数が表示される。前述の秘書問題に最適解によると、予備撮影の目標数は採取された精子数の約37%に相当する数である。しかしながら、この数は通常非現実的な大きな値となるため、作業可能な値に設定する。撮影済数欄63に予備撮影済の精子の数が表示される。 An image column 61, a target number column 62, a photographed number column 63, a photographing button 66, and an end button 67 are displayed on the screen. In the image column 61, a microscope image taken by the camera 48 is displayed in real time. In the target number column 62, the target number of preliminary shooting is displayed. According to the optimal solution to the secretary problem described above, the target number for preliminary imaging is about 37% of the number of sperm collected. However, since this number is usually an unrealistically large value, it is set to a workable value. The number of pre-photographed spermatozoa is displayed in the photographed number column 63.
 ユーザが撮影ボタン66を選択した場合、制御部21は画像欄61に表示中の画像の静止画特徴量および動画特徴量を抽出する。制御部21は、抽出した特徴量を各段階について作成した経過学習モデル53に入力して、成功確率を取得する。制御部21は、所定の閾値に基づいて各段階まで正常に成長するか否かの予測結果を定める。制御部21は、予備撮影DB52に新規レコードを作成し、予測結果を記録する。 When the user selects the shooting button 66, the control unit 21 extracts the still image feature amount and the moving image feature amount of the image displayed in the image column 61. The control unit 21 inputs the extracted feature amount into the progress learning model 53 created for each stage, and acquires the success probability. The control unit 21 determines a prediction result of whether or not normal growth is achieved up to each stage based on a predetermined threshold value. The control unit 21 creates a new record in the preliminary shooting DB 52 and records the prediction result.
 ユーザは、目標数欄62、撮影済数欄63および観察中の精液に含まれる精子の状態に基づいて、図1Cを使用して説明した精子選択段階に移行するか否かを判定する。ユーザが終了ボタン67を選択した場合、制御部21は予備撮影を終了して、精子選択段階に移行する。制御部21は、予備撮影した精子の数が目標数に達した場合に、自動的に精子選択段階に移行しても良い。 The user determines whether to move to the sperm selection stage described using FIG. 1C based on the target number column 62, the photographed number column 63, and the state of sperm contained in the semen under observation. When the user selects the end button 67, the control unit 21 ends the preliminary imaging and shifts to the sperm selection stage. The control unit 21 may automatically shift to the sperm selection stage when the number of pre-captured sperm reaches the target number.
 図11は、図1Cを使用して説明した精子選択段階で、制御部21が表示装置15に表示する画面の例を示す。画面には、画像欄61、判定ボタン68および終了ボタン67が表示されている。画像欄61には、カメラ48により撮影された顕微鏡画像がリアルタイムで表示される。 FIG. 11 shows an example of a screen displayed by the control unit 21 on the display device 15 at the sperm selection stage described using FIG. 1C. An image field 61, a determination button 68, and an end button 67 are displayed on the screen. In the image column 61, a microscope image taken by the camera 48 is displayed in real time.
 ユーザが判定ボタン68を選択した場合、制御部21は画像欄61に表示中の画像の静止画特徴量および動画特徴量を抽出する。制御部21は、特徴量を経過学習モデル53に入力し、受精から出産までの各段階の予測成功確率を取得する。ユーザが終了ボタン67を選択した場合、制御部21は処理を終了する。 When the user selects the determination button 68, the control unit 21 extracts the still image feature amount and the moving image feature amount of the image displayed in the image column 61. The control unit 21 inputs the feature amount into the progress learning model 53, and acquires the prediction success probability of each stage from fertilization to delivery. When the user selects the end button 67, the control unit 21 ends the process.
 図12は、判定ボタン68の選択を受け付けた場合に、制御部21が表示装置15に表示する画面の例を示す。画面には、画像欄61、評価欄65および次ボタン69が表示されている。評価欄65は、第1評価欄651、第2評価欄652、第3評価欄653、第4評価欄654および総合評価欄659を含む。 FIG. 12 shows an example of a screen displayed by the control unit 21 on the display device 15 when the selection of the determination button 68 is accepted. An image field 61, an evaluation field 65 and a next button 69 are displayed on the screen. The evaluation section 65 includes a first evaluation section 651, a second evaluation section 652, a third evaluation section 653, a fourth evaluation section 654, and a comprehensive evaluation section 659.
 画像欄61には、図11を使用して説明した画面で判定ボタン68を受け付けた時に画像欄61に表示されていた顕微鏡画像が静止した状態で表示されている。ユーザは、画像欄61により判定中の候補精子を確認できる。 In the image column 61, the microscope image displayed in the image column 61 when the determination button 68 is accepted on the screen described with reference to FIG. 11 is displayed in a still state. The user can confirm the candidate sperm under determination from the image column 61.
 制御部21は、判定中の候補精子の画像特徴量を受精の成否にかかる経過学習モデル53に入力して取得した成功確率の評価を第1評価欄651に表示する。評価は、図4を使用して説明した第2分布h(X)内における偏差値により表されている。 The control unit 21 inputs the image feature amount of the candidate sperm under determination into the progress learning model 53 regarding success or failure of fertilization, and displays the evaluation of the success probability acquired in the first evaluation column 651. The evaluation is represented by the deviation value in the second distribution h (X) described using FIG.
 同様に、制御部21は、候補精子の画像特徴量を胚盤胞形成の成否にかかる経過学習モデル53に入力して得た成功確率の評価を第2評価欄652に表示する。制御部21は、候補精子の画像特徴量を着床の成否にかかる経過学習モデル53に入力して得た成功確率の評価を第3評価欄653に表示する。制御部21は、候補精子の画像特徴量を出産の成否にかかる経過学習モデル53に入力して得た成功確率の評価を第4評価欄654に表示する。 Similarly, the control unit 21 displays the evaluation of the success probability obtained by inputting the image feature amount of the candidate sperm into the progress learning model 53 regarding the success or failure of blastocyst formation in the second evaluation column 652. The control unit 21 displays the evaluation of the success probability obtained by inputting the image feature amount of the candidate sperm into the progress learning model 53 regarding the success or failure of implantation in the third evaluation column 653. The control unit 21 displays the evaluation of the success probability obtained by inputting the image feature amount of the candidate sperm into the progress learning model 53 regarding the success or failure of childbirth in the fourth evaluation column 654.
 制御部21は、第1評価欄651から第4評価欄654までに表示した評価を総合した候補精子の総合評価を総合評価欄659に表示する。総合評価は、たとえば第1評価欄651から第4評価欄654までに表示した評価の平均値または最小値等に基づいて、候補精子を「良好」、「普通」、「不良」等に分類した結果である。 The control unit 21 displays, in the comprehensive evaluation column 659, the comprehensive evaluation of candidate sperm that is a combination of the evaluations displayed in the first evaluation field 651 to the fourth evaluation field 654. In the comprehensive evaluation, for example, the candidate spermatozoa were classified into “good”, “normal”, “poor”, etc. based on the average value or the minimum value of the evaluations displayed in the first evaluation field 651 to the fourth evaluation field 654. The result.
 制御部21は、総合評価が所定の閾値以上である場合に、音を鳴らす等の任意の方法によりユーザの注意を促してもよい。 The control unit 21 may call the user's attention by an arbitrary method such as sounding when the comprehensive evaluation is equal to or higher than a predetermined threshold.
 ユーザは、候補精子を顕微授精に使用するか否かを判断する。使用すると判断した場合、ユーザは接眼レンズ43で候補精子を確認しながらマイクロピペットに採取する。使用しないと判断した場合、または、採取を終了した場合、ユーザは次ボタン69を選択する。 The user determines whether to use the candidate sperm for microinsemination. When it is determined that the sperm is to be used, the user collects it in the micropipette while checking the candidate sperm with the eyepiece lens 43. When it is determined not to be used or when the collection is completed, the user selects the next button 69.
 ユーザが次ボタン69を選択した場合、制御部21は表示装置15に表示する画面を、図11を使用して説明した画面に戻す。ユーザは、新たな候補精子を選択できる。 When the user selects the next button 69, the control unit 21 returns the screen displayed on the display device 15 to the screen described using FIG. 11. The user can select a new candidate sperm.
 制御部21は、画像欄61にリアルタイムの顕微鏡画像を表示しても良い。ユーザは、候補精子の運動状態と、評価欄65とを同時に見て、候補精子を使用するか否かを判断できる。また、候補精子が顕微鏡視野外に移動しそうな場合には、ユーザはステージ42を適宜操作することにより、候補精子を顕微鏡視野内に留められる。 The control unit 21 may display a real-time microscope image in the image column 61. The user can determine whether or not to use the candidate sperm by viewing the motion state of the candidate sperm and the evaluation column 65 at the same time. When the candidate sperm is likely to move out of the microscope field of view, the user appropriately operates the stage 42 to keep the candidate sperm within the microscope field of view.
 画面分割または子画面表示等を用いて、画像欄61に、候補精子の静止画と、リアルタイムの顕微鏡画像の両方を表示しても良い。 Both a still image of a candidate sperm and a real-time microscope image may be displayed in the image column 61 by using screen division or child screen display.
 図13は、第1準備段階で使用されるプログラムの処理の流れを示すフローチャートである。図13を使用して、図1Aを使用して説明した第1準備段階で行なわれる処理の流れを説明する。なお、教師データDB51は、初期状態においては、精子IDフィールド、画像データフィールドおよび経過情報フィールドに過去の顕微授精にかかる撮影画像および経過情報が記録されており、精子画像特徴量フィールドは空欄である。 FIG. 13 is a flowchart showing the flow of processing of the program used in the first preparation stage. The flow of processing performed in the first preparatory stage described with reference to FIG. 1A will be described with reference to FIG. In the teacher data DB 51, in the initial state, the photographed image and the progress information regarding the past microinsemination are recorded in the sperm ID field, the image data field, and the progress information field, and the sperm image feature amount field is blank. ..
 制御部21は、教師データDB51から1つの処理対象レコードを抽出する。制御部21は、画像データフィールドから画像を取得する(ステップS501)。制御部21は、画像特徴量を抽出する(ステップS502)。具体的には、制御部21はたとえば図6を使用して説明したように、画像から静止画を切り出すととともに、動画特徴量を抽出する。制御部21は、切り出した静止画を画像エンコーダ546に入力して、静止画特徴量を取得する。 The control unit 21 extracts one processing target record from the teacher data DB 51. The control unit 21 acquires an image from the image data field (step S501). The control unit 21 extracts the image feature amount (step S502). Specifically, the control unit 21 cuts out a still image from the image and extracts the moving image feature amount, as described with reference to FIG. 6, for example. The control unit 21 inputs the cut out still image to the image encoder 546 to acquire the still image feature amount.
 制御部21は、画像特徴量を処理対象レコードの精子画像特徴量フィールドの各サブフィールドに記録する(ステップS503)。制御部21は、教師データDB51に記録された撮影画像の処理を終了したか否かを判定する(ステップS504)。処理を終了していないと判定した場合(ステップS504でNO)、制御部21はステップS501に戻る。 The control unit 21 records the image feature amount in each subfield of the sperm image feature amount field of the processing target record (step S503). The control unit 21 determines whether or not the processing of the captured image recorded in the teacher data DB 51 is completed (step S504). When it is determined that the processing is not completed (NO in step S504), the control unit 21 returns to step S501.
 処理を終了したと判定した場合(ステップS504でYES)、制御部21は、精子画像特徴量フィールドおよび経過情報フィールドの一つのサブフィールドに記録されたデータを教師データに用いて、教師あり機械学習を行ない、受精から出産までの経過のうちの1つの段階についての経過学習モデル53を作成する(ステップS511)。 When it is determined that the processing has been completed (YES in step S504), the control unit 21 uses the data recorded in one subfield of the sperm image feature amount field and the progress information field as teacher data to perform supervised machine learning. Then, the progress learning model 53 for one stage in the process from fertilization to delivery is created (step S511).
 図7を使用して、説明を続ける。制御部21は、精子画像特徴量等の入力データを入力層531に入力した場合に、出力層533に所定の値が出力されるように、誤差逆伝播法等を用いて中間層532のパラメータを演算する。所定の値は、経過サブフィールドに「OK」が記録されている場合には、「成功」のニューロンに「1」、「不成功」のニューロンに「0」であり、経過サブフィールドに「NG」が記録されている場合には、「成功」のニューロンに「0」、「不成功」のニューロンに「1」である。 Continued explanation using FIG. 7. The control unit 21 uses an error backpropagation method or the like so that a predetermined value is output to the output layer 533 when input data such as a sperm image feature amount is input to the input layer 531. Is calculated. When “OK” is recorded in the progress subfield, the predetermined value is “1” in the “success” neuron, “0” in the “unsuccessful” neuron, and “NG” in the progress subfield. Is recorded, it is “0” for the “successful” neuron and “1” for the “unsuccessful” neuron.
 制御部21は、作成した経過学習モデル53を、補助記憶装置23に保存する(ステップS512)。制御部21は、処理中の経過情報サブフィールドについて、「OK」の数と「NG」の数とをそれぞれ取得する(ステップS513)。 The control unit 21 stores the created progress learning model 53 in the auxiliary storage device 23 (step S512). The control unit 21 respectively acquires the number of “OK” and the number of “NG” for the progress information subfield being processed (step S513).
 (1)式のpに「OK」の数を、qに「NG」の数を代入することにより、図4を使用して説明した第1分布f(X)が得られる。制御部21は、「OK」の数および「NG」の数を、処理中の経過情報サブフィールドと関連づけて補助記憶装置23に記録する(ステップS514)。 By substituting the number of “OK” for p and the number of “NG” for q in the equation (1), the first distribution f (X) described using FIG. 4 is obtained. The control unit 21 records the number of “OK” and the number of “NG” in the auxiliary storage device 23 in association with the progress information subfield being processed (step S514).
 制御部21は、経過情報フィールドのすべてのサブフィールドの処理、すなわち、受精から出産までのすべての段階についての処理を終了したか否かを判定する(ステップS515)。 The control unit 21 determines whether or not processing of all subfields of the progress information field, that is, processing of all stages from fertilization to birth is completed (step S515).
 終了していないと判定した場合(ステップS515でNO)、制御部21はステップS511に戻る。なお、前述のとおり2回目以降のステップS511においては、制御部21は作成済の経過学習モデル53を用いた転移学習を行なっても良い。終了したと判定した場合(ステップS515でYES)、制御部21は処理を終了する。 If it is determined that the processing has not ended (NO in step S515), the control unit 21 returns to step S511. As described above, in step S511 after the second time, the control unit 21 may perform transfer learning using the created progress learning model 53. When it is determined that the process is completed (YES in step S515), the control unit 21 ends the process.
 図14は、第2準備段階および精子選択段階で使用されるプログラムの処理の流れを示すフローチャートである。図14を使用して、図1Bを使用して説明した第2準備段階、および、図1Cを使用して説明した精子選択段階で行なわれる処理の流れを説明する。 FIG. 14 is a flowchart showing the processing flow of the program used in the second preparation stage and the sperm selection stage. The flow of processing performed in the second preparatory step described with reference to FIG. 1B and the sperm selection step described with reference to FIG. 1C will be described with reference to FIG.
 制御部21は、サンプル分布算出のサブルーチンを起動する(ステップS521)。サンプル分布算出のサブルーチンは、精子提供者から提供された精液に含まれる精子の予備撮影を行ない、サンプル分布g(X)を算出するサブルーチンである。サンプル分布算出のサブルーチンの処理の流れは後述する。 The control unit 21 activates a subroutine for sample distribution calculation (step S521). The sample distribution calculation subroutine is a subroutine for performing preliminary imaging of sperm contained in the semen provided by the sperm donor and calculating the sample distribution g (X). The process flow of the sample distribution calculation subroutine will be described later.
 制御部21は、受精から出産までのそれぞれの段階について、図13のステップS514で記録したOK数およびNG数を取得する(ステップS522)。制御部21は、(1)式のpに「OK」の数を、qに「NG」の数を代入して得た第1分布f(X)と、サンプル分布算出のサブルーチンで算出したサンプル分布g(X)とを(3)式に代入して得られる第2分布h(X)を算出する(ステップS523)。 The control unit 21 acquires the number of OKs and the number of NGs recorded in step S514 of FIG. 13 for each stage from fertilization to delivery (step S522). The control unit 21 substitutes the number of “OK” into p of the equation (1) and the number of “NG” into q and obtains the first distribution f (X) and the sample calculated in the sample distribution calculation subroutine. A second distribution h (X) obtained by substituting the distribution g (X) and the equation (3) is calculated (step S523).
 制御部21は、図11を使用して説明した画面を表示装置15に表示する。ユーザは、ステージ42を動かして顕微授精に使用する精子の候補を探す。ユーザは、図11を使用して説明したように正常精子が1個だけ画像欄61に表示された状態で、判定ボタン68を選択する。 The control unit 21 displays the screen described with reference to FIG. 11 on the display device 15. The user moves the stage 42 to search for a sperm candidate to be used for microinsemination. The user selects the determination button 68 with only one normal sperm being displayed in the image column 61 as described with reference to FIG. 11.
 判定ボタン68の選択を受け付けた場合、制御部21はカメラ48を介して精子が撮影された撮影画像を取得する(ステップS524)。制御部21は、精子画像特徴量を抽出する(ステップS525)。制御部21は、精子画像特徴量を受精から出産までのそれぞれの段階の経過学習モデル53に入力して、それぞれの段階に正常に成長する予測成功確率を算出する(ステップS526)。 When the selection of the determination button 68 is accepted, the control unit 21 acquires a photographed image of sperm through the camera 48 (step S524). The control unit 21 extracts the sperm image feature amount (step S525). The control unit 21 inputs the sperm image feature amount into the progress learning model 53 at each stage from fertilization to delivery, and calculates a prediction success probability of normal growth at each stage (step S526).
 制御部21は、ステップS523で算出した第2分布h(X)内における、ステップS526で算出した予測成功確率に対する評価指標を算出する(ステップS527)。評価指標は、たとえば予測成功確率の偏差値である。 The control unit 21 calculates an evaluation index for the prediction success probability calculated in step S526 within the second distribution h (X) calculated in step S523 (step S527). The evaluation index is, for example, a deviation value of the prediction success probability.
 制御部21は、受精から出産までのそれぞれの段階に対する評価指標に基づいて、候補精子に対する総合評価を判定する(ステップS528)。たとえば、制御部21は、それぞれの段階についての予測成功確率の偏差値の平均値または最小値等に基づいて、候補精子を「良好」、「普通」、「不良」のいずれかであると判定する。制御部21は、表示装置15に図12を使用して説明した画面を表示する(ステップS529)。 The control unit 21 determines the comprehensive evaluation of the candidate sperm based on the evaluation index for each stage from fertilization to delivery (step S528). For example, the control unit 21 determines that the candidate sperm is “good”, “normal”, or “bad” based on the average value or the minimum value of the deviation values of the prediction success probability for each stage. To do. The control unit 21 displays the screen described with reference to FIG. 12 on the display device 15 (step S529).
 制御部21は、次ボタン69の選択を受け付けたか否かを判定する(ステップS530)。次ボタン69の選択を受け付けたと判定した場合(ステップS530でYES)、制御部21は表示装置15に図11を使用して説明した画面を表示するとともに、ステップS524に戻る。 The control unit 21 determines whether or not the selection of the next button 69 is accepted (step S530). When it is determined that the selection of the next button 69 is accepted (YES in step S530), the control unit 21 displays the screen described with reference to FIG. 11 on the display device 15, and returns to step S524.
 所定の時間が経過しても次ボタン69の選択を受け付けないと判定した場合、または、終了の指示を受け付けたと判定した場合(ステップS530でNO)、制御部21は処理を終了する。 When it is determined that the selection of the next button 69 is not accepted even after the lapse of a predetermined time, or when it is determined that the end instruction is accepted (NO in step S530), the control unit 21 ends the process.
 図15は、サンプル分布算出のサブルーチンの処理の流れを示すフローチャートである。サンプル分布算出のサブルーチンは、精子提供者から提供された精液に含まれる精子の予備撮影を行ない、サンプル分布g(X)を算出するサブルーチンである。 FIG. 15 is a flowchart showing the flow of processing of a subroutine for sample distribution calculation. The sample distribution calculation subroutine is a subroutine for performing preliminary imaging of sperm contained in the semen provided by the sperm donor and calculating the sample distribution g (X).
 制御部21は、図10を使用して説明した画面を表示装置15に表示する。なお、制御部21は、図11を使用して説明した画面を表示装置15に表示する。ユーザは、ステージ42を動かして顕微授精に使用できる正常な精子を探す。ユーザは、図10を使用して説明したように正常精子が1個だけ画像欄61に表示された状態で、撮影ボタン66を選択する。 The control unit 21 displays the screen described with reference to FIG. 10 on the display device 15. The control unit 21 displays the screen described with reference to FIG. 11 on the display device 15. The user moves the stage 42 to search for normal sperm that can be used for microinsemination. As described with reference to FIG. 10, the user selects the shooting button 66 in the state where only one normal sperm is displayed in the image column 61.
 撮影ボタン66の選択を受け付けた場合、制御部21はカメラ48を介して精子が撮影された撮影画像を取得する(ステップS541)。制御部21は、精子画像特徴量を抽出する(ステップS542)。制御部21は、予備撮影DB52に新規レコードを作成する(ステップS543)。 When the selection of the shooting button 66 is accepted, the control unit 21 obtains the shot image of the sperm through the camera 48 (step S541). The control unit 21 extracts the sperm image feature amount (step S542). The control unit 21 creates a new record in the preliminary shooting DB 52 (step S543).
 制御部21は、精子画像特徴量を受精から出産までの段階のうちの一つの段階の経過学習モデル53に入力して、予測成功確率を取得する(ステップS544)。制御部21は、予測成功確率が所定の閾値以上であるか否かを判定する(ステップS545)。 The control unit 21 inputs the sperm image feature amount into the progress learning model 53 in one of the stages from fertilization to birth, and acquires the prediction success probability (step S544). The control unit 21 determines whether the prediction success probability is equal to or higher than a predetermined threshold value (step S545).
 閾値以上であると判定した場合(ステップS545でYES)、制御部21はステップS543で作成したレコードの処理中の段階に対応するフィールドに、「OK」を記録する(ステップS546)。閾値未満であると判定した場合(ステップS545でNO)、制御部21はステップS543で作成したレコードの処理中の段階に対応するフィールドに、「NG」を記録する(ステップS547)。 When it is determined that it is equal to or more than the threshold value (YES in step S545), the control unit 21 records “OK” in the field corresponding to the stage of processing the record created in step S543 (step S546). When it is determined that the value is less than the threshold value (NO in step S545), the control unit 21 records “NG” in the field corresponding to the stage of processing the record created in step S543 (step S547).
 制御部21は、受精から出産までのすべての段階についての処理を終了したか否かを判定する(ステップS548)。終了していないと判定した場合(ステップS548でNO)、制御部21はステップS544に戻る。 The control unit 21 determines whether or not the processing for all stages from fertilization to birth is completed (step S548). When it is determined that the processing has not ended (NO in step S548), the control unit 21 returns to step S544.
 終了したと判定した場合(ステップS548でYES)、制御部21は、予備撮影を終了するか否かを判定する(ステップS549)。たとえば、図10を使用して説明した画面において終了ボタン67の選択を受け付けた場合、制御部21は予備撮影を終了すると判定する。 When it is determined that the pre-shooting is finished (YES in step S548), the control unit 21 determines whether or not the preliminary shooting is finished (step S549). For example, when the selection of the end button 67 is accepted on the screen described with reference to FIG. 10, the control unit 21 determines to end the preliminary shooting.
 予備撮影を終了しないと判定した場合(ステップS549でNO)、制御部21はステップS541に戻る。予備撮影を終了すると判定した場合(ステップS549でYES)、制御部21は、予測結果フィールドの処理中のサブフィールドについて、「OK」の数と「NG」の数とを取得する(ステップS550)。 If it is determined that the preliminary shooting is not finished (NO in step S549), the control unit 21 returns to step S541. When it is determined that the preliminary shooting is finished (YES in step S549), the control unit 21 acquires the number of “OK” and the number of “NG” for the subfield being processed in the prediction result field (step S550). ..
 (2)式のaに「OK」の数を、bに「NG」の数を代入することにより、図4を使用して説明したサンプル分布g(X)が得られる。制御部21は、「OK」の数および「NG」の数を、処理中の予測結果サブフィールドに関連づけて補助記憶装置23に記録する(ステップS551)。 By substituting the number of “OK” into a of the equation (2) and the number of “NG” into b, the sample distribution g (X) described using FIG. 4 can be obtained. The control unit 21 records the number of “OK” and the number of “NG” in the auxiliary storage device 23 in association with the prediction result subfield being processed (step S551).
 制御部21は、予測結果フィールドのすべてのサブフィールドの処理、すなわち、受精から出産までのすべての段階についての処理を終了したか否かを判定する(ステップS552)。終了していないと判定した場合(ステップS552でNO)、制御部21はステップS550に戻る。終了したと判定した場合(ステップS552でYES)、制御部21は処理を終了する。 The control unit 21 determines whether or not the processing of all subfields of the prediction result field, that is, the processing of all stages from fertilization to birth is completed (step S552). When it is determined that the processing has not ended (NO in step S552), the control unit 21 returns to step S550. When it is determined that the process is completed (YES in step S552), the control unit 21 ends the process.
 本実施の形態によると、顕微授精の成功可能性が高い精子の選択を支援する情報処理システム10を提供できる。 According to the present embodiment, it is possible to provide the information processing system 10 that supports the selection of sperm having a high probability of successful microinsemination.
 本実施の形態によると、過去にIMSIを用いた顕微授精を行ない、経過を記録したデータに基づく第1分布f(X)を事前分布に、精液中の精子をサンプリングして予測した成功確率を尤度分布にそれぞれ使用するベイズ推定を用いることにより、精液中に含まれる精子に関する受精の成立の有無、4分割胚、桑実胚、胚盤胞等の各段階まで正常な成長の成否、妊娠の成立有無、妊婦検診での異常の有無、出産の成否等の、顕微授精後の胚が正常に成長する確率(成功確率)の事後分布を精度良く予測できる。 According to the present embodiment, the success probability predicted by sampling the spermatozoa in the semen with the prior distribution of the first distribution f (X) based on the data recorded by microinsemination using the IMSI in the past and recording the progress is shown. By using Bayesian estimation for each likelihood distribution, whether fertilization is established for sperm contained in semen, success or failure of normal growth up to each stage of 4-splitting embryo, morula, blastocyst, etc. It is possible to accurately predict the posterior distribution of the probability (success probability) that the embryos will normally grow after microinsemination, such as whether or not the condition is established, whether or not there is an abnormality in the pregnant woman screening, and whether or not the baby is born.
 本実施の形態によると、精液中に含まれる精子に関する各種成功確率の分布内での、個々の精子の評価をリアルタイムで表示するため、観察中の精子を顕微授精に使用するか否かについての培養士の判断を支援できる。そのため、比較的経験の少ない培養士であっても、ベテランの培養士と同様に的確に精子を選択できる。 According to the present embodiment, in order to display the evaluation of each sperm in real time within the distribution of various success probabilities regarding sperm contained in semen, whether the sperm under observation is used for microinsemination or not Can support the judgment of the incubator. Therefore, even a relatively inexperienced cultivator can select sperm as accurately as a veteran cultivator.
 本実施の形態によると、受精段階、胚盤胞形成段階等の、それぞれの段階ごとの成功確率を評価するため、培養士は患者の臨床的な特徴や状態を考慮して精子を選択できる。たとえば、採取できた卵子の数が多い場合には、培養士は、受精の成功確率は低めであっても、着床以降の成功確率が高い精子を選択できる。 According to the present embodiment, in order to evaluate the success probability at each stage such as the fertilization stage and the blastocyst formation stage, the incubator can select sperm in consideration of the clinical characteristics and condition of the patient. For example, when the number of collected ova is large, the incubator can select spermatozoa with a high success probability after implantation even though the success probability of fertilization is low.
 画像エンコーダ546を使用して撮影画像の特徴量を抽出することにより、経過学習モデル53の入力次元数を削減できる。これにより、精子の評価をリアルタイムで行なう情報処理システム10を提供できる。画像エンコーダ546により高い精度で撮影画像を分類できるため、精子を精度良く評価する情報処理システム10を提供できる。 The number of input dimensions of the progress learning model 53 can be reduced by using the image encoder 546 to extract the feature amount of the captured image. This makes it possible to provide the information processing system 10 that evaluates sperm in real time. Since the captured images can be classified with high accuracy by the image encoder 546, it is possible to provide the information processing system 10 that accurately evaluates sperm.
 経過学習モデル53に、画像エンコーダ546が一体化されていても良い。一体化した経過学習モデル53は、画像エンコーダ546の出力を、経過学習モデル53の入力層531に連結して生成される。 The image encoder 546 may be integrated with the progress learning model 53. The integrated progress learning model 53 is generated by connecting the output of the image encoder 546 to the input layer 531 of the progress learning model 53.
 画像エンコーダ546と一体化することにより、精子を撮影した撮影画像が入力された場合に、受精から出産までの経過における各段階の成功確率を出力する経過学習モデル53を実現できる。なお、経過学習モデル53に画像エンコーダが一体化される場合には、図8を使用して説明した教師データDB51において、静止画の特徴量を記録するサブフィールドの代わりに、動画ファイルから抽出した精子画像を記録するフィールドを設けることが望ましい。 By integrating with the image encoder 546, it is possible to realize the progress learning model 53 that outputs the success probability of each stage in the process from fertilization to birth when a captured image of sperm is input. In the case where the image encoder is integrated with the progress learning model 53, in the teacher data DB 51 described using FIG. 8, instead of the subfield for recording the feature amount of the still image, it is extracted from the moving image file. It is desirable to provide a field for recording sperm images.
 経過学習モデル53に、画像エンコーダ546および動画ファイルから精子全体が含まれる静止画を抽出する際に使用する判定用のCNNが一体化されていても良い。このようにする場合には、図8を使用して説明した教師データDB51において、静止画の特徴量を記録するサブフィールドは不要である。 The progress learning model 53 may be integrated with an image encoder 546 and a CNN for determination used when extracting a still image including the entire sperm from a moving image file. In this case, the teacher data DB 51 described with reference to FIG. 8 does not need the subfield for recording the feature amount of the still image.
 精子選択段階で撮影した撮影画像の画像特徴量と、その後の経緯とを関連づけて記録した追加データを教師データに加えることが望ましい。新たな教師データを用いて再学習を行なうことにより、経過学習モデル53の精度を向上させられる。再学習により更新された経過学習モデル53は、ネットワークを介して他の顕微授精実施機関に配信されても良い。 It is desirable to add to the teacher data additional data that is recorded by associating the image feature amount of the image taken at the sperm selection stage with the subsequent process. The accuracy of the progress learning model 53 can be improved by re-learning using new teacher data. The progress learning model 53 updated by the re-learning may be delivered to another microinsemination performing institution via a network.
 たとえば新生児の健康状態等の項目は、成否の二択による評価の代わりに0パーセントから100パーセントまでの点数による評価を行なっても良い。点数による評価を行なう項目の第1分布f(X)は、記録をとった全ケースの点数をベータ分布により近似して得た確率密度分布である。点数の頻度分布の平均Eおよび分散Vを用いてpおよびqを算出することで、この場合の第1分布f(X)を(4)式により表せる。 For example, items such as the health status of newborns may be evaluated by a score from 0% to 100% instead of the evaluation based on success or failure. The first distribution f (X) of the item evaluated by the score is a probability density distribution obtained by approximating the scores of all the recorded cases by the beta distribution. By calculating p and q using the average E and the variance V of the frequency distribution of points, the first distribution f (X) in this case can be expressed by equation (4).
Figure JPOXMLDOC01-appb-M000004
   Eは、点数の平均である。
   Vは、点数の分散である。
   C4は正規化定数である。
Figure JPOXMLDOC01-appb-M000004
E is the average score.
V is the variance of points.
C 4 is a normalization constant.
 第1分布f(X)は、たとえば一様分布の任意の分布を事前分布とし、1件の教師データごとにベイズ更新を行なって算出しても良い。サンプル分布g(X)は、たとえば一様分布または第1分布f(X)と同一の分布等の任意の分布を事前分布とし、予備撮影した精子1個ごとにベイズ更新を行なって算出しても良い。 The first distribution f (X) may be calculated, for example, by using an arbitrary distribution of uniform distribution as a prior distribution and performing Bayes update for each piece of teacher data. The sample distribution g (X) is calculated by performing a Bayes update for each pre-photographed sperm as a prior distribution with an arbitrary distribution such as a uniform distribution or the same distribution as the first distribution f (X). Is also good.
 サンプル分布g(X)に、ベータ分布を使用しても良い。具体的には前述の(2)式の代わりに、ベータ分布を示す(5)式を使用する。 A beta distribution may be used for the sample distribution g (X). Specifically, instead of the above equation (2), the equation (5) showing the beta distribution is used.
Figure JPOXMLDOC01-appb-M000005
   aは各成長段階まで正常に成長すると推定した予備撮影画像の数である。
   bは各成長段階まで正常に成長しないと推定した予備撮影画像の数である。
   C5は正規化定数である。
Figure JPOXMLDOC01-appb-M000005
a is the number of preliminarily photographed images estimated to grow normally up to each growth stage.
b is the number of preliminarily photographed images estimated not to grow normally up to each growth stage.
C 5 is a normalization constant.
 第1分布f(X)、および、サンプル分布g(X)の両方、または、いずれか一方に、ガウス分布を使用しても良い。 A Gaussian distribution may be used for both or one of the first distribution f (X) and the sample distribution g (X).
 図7を使用して説明したように、経過学習モデル53の入力層531に、精子提供者および卵子提供者の年齢、健康状態、過去の不妊治療履歴、または、遺伝子変異等のゲノム情報等の、精子提供者および卵子提供者に関する情報等を加えてもよい。このようにすることにより、加齢等による影響を踏まえて成功確率を予測する経過学習モデル53を実現できる。 As described using FIG. 7, the input layer 531 of the progress learning model 53 stores age information, health status information, past infertility treatment history of sperm donors and egg donors, or genomic information such as gene mutations. , Information about sperm donors and egg donors may be added. By doing so, it is possible to realize the progress learning model 53 that predicts the success probability based on the influence of aging and the like.
 精子の静止画を撮影する際に、照明部44から放射される照明光の光量を増やし、短い露光時間で撮影しても良い。動きの活発な精子であっても、鮮明な静止画を撮影できる。鮮明な静止画を使用することにより、成功可能性の高い精子と低い精子とを明確に識別できる経過学習モデル53を作成し、候補精子を高い精度で評価できる。 When capturing a still image of sperm, the amount of illumination light emitted from the illumination unit 44 may be increased and the exposure time may be reduced. Even a sperm that is actively moving can take clear still images. By using a clear still image, a progress learning model 53 capable of clearly discriminating between spermatozoa with high success and low spermatozoa can be created, and candidate spermatozoa can be evaluated with high accuracy.
 カメラ48は、高解像度であることが望ましい。高解像度で精子を撮影することにより、鮮明な動画および静止画で画像を撮影できる。したがって、成功可能性の高い精子と低い精子とを明確に識別できる経過学習モデル53を作成し、候補精子を高い精度で評価できる。実用的な精度を得るには、1個の精子を少なくとも32画素×32画素以上の解像度で撮影することが望ましい。 It is desirable that the camera 48 has high resolution. By capturing sperm with high resolution, you can capture images with clear moving images and still images. Therefore, it is possible to create a progress learning model 53 that can clearly discriminate between spermatozoa with a high probability of success and spermatozoa with a low probability of success, and evaluate a candidate sperm with high accuracy. In order to obtain practical accuracy, it is desirable to photograph one sperm with a resolution of at least 32 pixels × 32 pixels or more.
 カメラ48は、高コントラストの画像を撮影できることが望ましい。高コントラストの画像を用いることにより、精子の個体差を明確に識別可能である。したがって、成功可能性の高い精子と低い精子とを明確に識別できる経過学習モデル53を作成し、候補精子を高い精度で評価できる。 It is desirable that the camera 48 be able to take high-contrast images. By using a high-contrast image, individual differences in sperm can be clearly identified. Therefore, it is possible to create a progress learning model 53 that can clearly discriminate between spermatozoa with a high probability of success and spermatozoa with a low probability of success, and evaluate a candidate sperm with high accuracy.
[実施の形態2]
 本実施の形態は、経過学習モデル53から取得した成功確率に基づいてサンプル分布g(X)を算出する情報処理システム10に関する。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 2]
The present embodiment relates to the information processing system 10 that calculates the sample distribution g (X) based on the success probability acquired from the progress learning model 53. Descriptions of portions common to the first embodiment will be omitted.
 図16は、実施の形態2の予備撮影DB52のレコードレイアウトを説明する説明図である。予備撮影DB52は、図1Bを使用して説明した第2準備段階において、経過学習モデル53を用いた予測結果を記録するDBである。予備撮影DB52は、患者IDフィールド、撮影日フィールドおよび予測結果フィールドを有する。予測結果フィールドは、受精フィールド、胚盤胞形成フィールド、着床フィールド、出産フィールドおよび健康状態フィールドを有する。予備撮影DB52は1回の予備撮影について1つのフィールドを有する。 FIG. 16 is an explanatory diagram illustrating a record layout of the preliminary shooting DB 52 according to the second embodiment. The preliminary shooting DB 52 is a DB that records a prediction result using the progress learning model 53 in the second preparatory stage described using FIG. 1B. The preliminary imaging DB 52 has a patient ID field, an imaging date field, and a prediction result field. The prediction result field has a fertilization field, a blastocyst formation field, an implantation field, a birth field, and a health status field. The preliminary photographing DB 52 has one field for one preliminary photographing.
 患者IDフィールドには、精子提供者に固有に付与された患者IDが記録されている。撮影日フィールドには、撮影画像を撮影した撮影日が記録されている。予測結果フィールドの各サブフィールドには、各段階に正常に達する確率の予測値がパーセント単位で記録されている。 The patient ID uniquely assigned to the sperm provider is recorded in the patient ID field. In the shooting date field, the shooting date when the shot image was shot is recorded. In each subfield of the prediction result field, the predicted value of the probability of reaching each step normally is recorded in percentage.
 制御部21は、カメラ48により撮影された撮影画像から精子画像特徴量を抽出し、各段階について作成した経過学習モデル53に入力して、成功確率を取得する。制御部21は、取得した確率を、予備撮影DB52の各フィールドに記録する。 The control unit 21 extracts the sperm image feature amount from the captured image captured by the camera 48 and inputs it to the progress learning model 53 created for each stage to acquire the success probability. The control unit 21 records the acquired probability in each field of the preliminary shooting DB 52.
 本実施の形態においては、これらの成功確率を(6)式で表されるベータ分布g(X)により近似する。近似式において変数p、qを決定するには、成功確率に関する頻度分布から平均および分散を算出し、それぞれEとVに代入することで得る。 In the present embodiment, these success probabilities are approximated by the beta distribution g (X) represented by the equation (6). To determine the variables p and q in the approximate expression, the average and the variance are calculated from the frequency distribution regarding the success probability, and the variables are substituted into E and V, respectively.
Figure JPOXMLDOC01-appb-M000006
   Eは、各段階まで正常に成長する予測成功確率の分布の平均(期待値)である。
   Vは、各段階まで正常に成長する予測成功確率の分布の分散である。
   C6は正規化定数である。
Figure JPOXMLDOC01-appb-M000006
E is the average (expected value) of the distribution of prediction success probabilities that normally grows to each stage.
V is the variance of the distribution of predictive success probabilities for normal growth to each stage.
C 6 is a normalization constant.
 図17は、実施の形態2のサンプル分布算出のサブルーチンの処理の流れを示すフローチャートである。図17に示すサンプル分布算出のサブルーチンは、図15を使用して説明したサンプル分布算出のサブルーチンの代わりに使用するサブルーチンである。ステップS544までの処理の流れは、図15を使用して説明したサンプル分布算出のサブルーチンの処理と同一であるため、説明を省略する。 FIG. 17 is a flowchart showing the processing flow of the sample distribution calculation subroutine of the second embodiment. The sample distribution calculation subroutine shown in FIG. 17 is a subroutine used instead of the sample distribution calculation subroutine described with reference to FIG. The flow of processing up to step S544 is the same as the processing of the subroutine of sample distribution calculation described with reference to FIG.
 制御部21は、ステップS543で作成したレコードの処理中の段階に対応するフィールドに、ステップS544で取得した予測成功確率を記録する(ステップS561)。制御部21は、受精から出産までのすべての段階についての処理を終了したか否かを判定する(ステップS562)。終了していないと判定した場合(ステップS562でNO)、制御部21はステップS544に戻る。 The control unit 21 records the prediction success probability acquired in step S544 in the field corresponding to the stage in processing of the record created in step S543 (step S561). The control unit 21 determines whether or not the processing has been completed for all stages from fertilization to delivery (step S562). When it is determined that the processing has not ended (NO in step S562), the control unit 21 returns to step S544.
 終了したと判定した場合(ステップS562でYES)、制御部21は、予備撮影を終了するか否かを判定する(ステップS563)。予備撮影を終了しないと判定した場合(ステップS563でNO)、制御部21はステップS541に戻る。 When it is determined that the pre-shooting is finished (YES in step S562), the control unit 21 determines whether the pre-shooting is finished (step S563). When it is determined that the preliminary shooting is not finished (NO in step S563), the control unit 21 returns to step S541.
 予備撮影を終了すると判定した場合(ステップS563でYES)、制御部21は、予備撮影DB52の予測結果フィールドの一つのサブフィールドについて、平均値Eおよび分散Vを算出する。制御部21は、(6)式に基づいて変数p、qおよびC6を算出する(ステップS564)。制御部21は、変数p、qおよびC6を、処理中の予測結果サブフィールドに関連づけて補助記憶装置23に記録する(ステップS565)。 When it is determined that the preliminary shooting is finished (YES in step S563), the control unit 21 calculates the average value E and the variance V for one subfield of the prediction result field of the preliminary shooting DB52. The control unit 21 calculates the variables p, q and C 6 based on the equation (6) (step S564). The control unit 21 records the variables p, q, and C 6 in the auxiliary storage device 23 in association with the prediction result subfield being processed (step S565).
 制御部21は、予測結果フィールドのすべてのサブフィールドの処理、すなわち、受精から出産までのすべての段階についての処理を終了したか否かを判定する(ステップS566)。終了していないと判定した場合(ステップS566でNO)、制御部21はステップS564に戻る。終了したと判定した場合(ステップS566でYES)、制御部21は処理を終了する。 The control unit 21 determines whether or not processing of all subfields of the prediction result field, that is, processing of all stages from fertilization to childbirth has been completed (step S566). When it is determined that the processing has not ended (NO in step S566), the control unit 21 returns to step S564. When it is determined that the process is completed (YES in step S566), the control unit 21 ends the process.
 本実施の形態によると、予備撮影DB52を作成する際に、「OK」および「NG」を判定する閾値を定める必要がない。そのため、閾値の設定の影響を受けずに、候補精子を評価する情報処理システム10を提供できる。 According to the present embodiment, it is not necessary to set a threshold for determining “OK” and “NG” when creating the preliminary shooting DB 52. Therefore, it is possible to provide the information processing system 10 that evaluates the candidate sperm without being affected by the setting of the threshold value.
 本実施の形態によると、予測成功確率が50パーセント前後の精子が多い場合に、少ない予備撮影数でサンプル分布g(X)が安定する情報処理システム10を提供できる。 According to the present embodiment, it is possible to provide the information processing system 10 in which the sample distribution g (X) is stable with a small number of preliminary shootings when there are many sperm with a prediction success probability of around 50%.
[実施の形態3]
 本実施の形態は、候補精子の予測成功確率の評価指数とともに、予測成功確率の評価指数の信頼度を表示する情報処理システム10に関する。実施の形態1と共通する部分については、説明を省略する。
[Third Embodiment]
The present embodiment relates to an information processing system 10 that displays a reliability index of a prediction success probability as well as an evaluation index of a prediction success probability of a candidate sperm. Descriptions of portions common to the first embodiment will be omitted.
 図18は、実施の形態3の情報処理装置20が表示する画面を示す説明図である。図18に示す画面は、精子選択段階において図12に示す画面の代わりに、表示装置15に表示される画面の例である。画面には、画像欄61、評価欄65および次ボタン69が表示されている。評価欄65は、第1評価欄651、第2評価欄652、第3評価欄653および第4評価欄654を含む。 FIG. 18 is an explanatory diagram showing a screen displayed by the information processing device 20 according to the third embodiment. The screen shown in FIG. 18 is an example of a screen displayed on the display device 15 instead of the screen shown in FIG. 12 at the sperm selection stage. An image field 61, an evaluation field 65 and a next button 69 are displayed on the screen. The evaluation section 65 includes a first evaluation section 651, a second evaluation section 652, a third evaluation section 653, and a fourth evaluation section 654.
 第1評価欄651から第4評価欄654には、それぞれ評価指標である偏差値と、評価指標の信頼度とが表示されている。信頼度は、たとえばデータの不均一性に基づく偶発的な不確かさの逆数である。ガウス分布に従う偶発的な不確かさでは、分散σ2=Σ(X-Xm)2/N(ただしNはサンプル数、XmはXの平均値)の逆数である精度β=1/σ2が信頼度となる。 In the first evaluation column 651 to the fourth evaluation column 654, the deviation value as an evaluation index and the reliability of the evaluation index are displayed, respectively. Confidence is the reciprocal of accidental uncertainty due to data inhomogeneity, for example. For random uncertainty according to Gaussian distribution, the accuracy β = 1 / σ 2 which is the reciprocal of variance σ 2 = Σ (X−Xm) 2 / N (where N is the number of samples and Xm is the average value of X) is reliable. It becomes degree.
 また信頼度は、教師あり機械学習を行なったモデルの不確かさ、もしくは、パラメータの不確かさ、または、完全性の不確かさ等の、認識の不確かさの逆数である。機械学習モデルのパラメータをベルヌーイ分布に置き換えたMonte Carlo Dropout Sampling等を用いて認識の不確かさを算出できる。なお培養士が信頼度の高低を直観的に理解できるように、算出した信頼度に適当な定数を加えて、さらに別の適当な定数を乗算することで、たとえば0から100までの値に変換した値を信頼度として表示しても良い。 The reliability is the reciprocal of the uncertainty of recognition, such as the uncertainty of the model subjected to supervised machine learning, the uncertainty of parameters, or the uncertainty of completeness. The uncertainty of recognition can be calculated by using Monte Carlo Dropout Sampling etc. where the parameters of the machine learning model are replaced with Bernoulli distribution. It should be noted that, in order for the incubator to intuitively understand the degree of reliability, by adding an appropriate constant to the calculated reliability and then multiplying it by another appropriate constant, for example, a value from 0 to 100 is converted. The calculated value may be displayed as the reliability.
 培養士は、たとえば、候補精子の偏差値が高くても、信頼度が低い場合にはその候補精子の選択を避けるなど、偏差値と信頼度の双方を考慮して顕微授精に使用する精子を決定できる。 For example, the incubator avoids selecting a candidate sperm if the reliability is low even if the deviation of the candidate sperm is high. I can decide.
[実施の形態4]
 本実施の形態は、候補精子を自動的に判定する情報処理システム10に関する。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 4]
The present embodiment relates to an information processing system 10 that automatically determines candidate sperm. Descriptions of portions common to the first embodiment will be omitted.
 図19は、実施の形態4の情報処理システム10の構成を説明する説明図である。情報処理装置20は、ステージI/F26を有する。ステージI/F26は、たとえばUSB端子である。顕微鏡41は、ステージ42を動作させるステージ移動部46を有する。ステージ移動部46は、ステージI/F26に接続されている。 FIG. 19 is an explanatory diagram illustrating the configuration of the information processing system 10 according to the fourth embodiment. The information processing device 20 has a stage I / F 26. The stage I / F 26 is, for example, a USB terminal. The microscope 41 has a stage moving unit 46 that operates the stage 42. The stage moving unit 46 is connected to the stage I / F 26.
 制御部21は、ステージI/F26を介してステージ移動部46を制御する。制御部21は、たとえば顕微鏡41の視野が観察容器421全体を走査するようにステージ移動部46を制御する。制御部21は、ユーザによる指示に基づいてステージ移動部46を制御しても良い。 The control unit 21 controls the stage moving unit 46 via the stage I / F 26. The control unit 21 controls the stage moving unit 46 so that the field of view of the microscope 41 scans the entire observation container 421, for example. The control unit 21 may control the stage moving unit 46 based on an instruction from the user.
 図20は、正常精子判定DBのレコードレイアウトを説明する説明図である。正常精子判定DBは、正常精子とそれ以外とを判別する教師有り機械学習に使用する教師データである。正常精子判定DBは、画像フィールドおよび判定フィールドを有する。画像フィールドには、正常精子、異常精子、または、異物等を撮影した画像が記録されている。判定フィールドには、画像が「正常精子」、「異常精子」および「異物」のいずれであるかを培養士が判定した結果が記録されている。正常精子判定DBは、1つの画像について1つのレコードを有する。 FIG. 20 is an explanatory diagram illustrating the record layout of the normal sperm determination DB. The normal sperm determination DB is teacher data used for supervised machine learning for discriminating between normal sperm and other sperm. The normal sperm determination DB has an image field and a determination field. In the image field, an image obtained by photographing normal sperm, abnormal sperm, foreign matter, or the like is recorded. In the judgment field, the result of the culture person judging whether the image is “normal sperm”, “abnormal sperm” or “foreign matter” is recorded. The normal sperm determination DB has one record for one image.
 図21は、正常精子判定モデル57の構成を示す説明図である。正常精子判定モデル57は、入力層571、中間層572および出力層573を備えるニューラルネットワークである。図21においては、正常精子判定モデル57はCNNである場合を例示する。 FIG. 21 is an explanatory diagram showing the configuration of the normal sperm determination model 57. The normal sperm determination model 57 is a neural network including an input layer 571, an intermediate layer 572, and an output layer 573. In FIG. 21, the case where the normal sperm determination model 57 is CNN is illustrated.
 入力層571には、正常精子判定DBの画像フィールドに記録された画像が入力される。具体的には、入力層571は画像の画素数と同じ数のニューロンを有し、各ニューロンに、画像の各画素の画素値が入力される。出力層573は、判定が「正常精子」である確率、「異常精子」である確率、および「異物」である確率をそれぞれ出力する、合計3個のニューロンを有する。 The image recorded in the image field of the normal sperm determination DB is input to the input layer 571. Specifically, the input layer 571 has the same number of neurons as the number of pixels of the image, and the pixel value of each pixel of the image is input to each neuron. The output layer 573 has a total of three neurons that output the probability that the determination is “normal sperm”, the probability that the determination is “abnormal sperm”, and the probability that the determination is “foreign matter”.
 制御部21は、出力層543から正常精子判定DBの判定フィールドに記録された判定結果が出力されるように、誤差逆伝播法等を用いて中間層572のパラメータを演算する教師あり機械学習が行なう。たとえば、判定フィールドに「正常精子」が記録されている場合には、制御部21は、「正常精子」である確率が1であり、「異常精子」である確率および「異物」である確率が0になるように、中間層572のパラメータを演算する。 The control unit 21 performs supervised machine learning that calculates the parameters of the intermediate layer 572 using an error backpropagation method or the like so that the determination result recorded in the determination field of the normal sperm determination DB is output from the output layer 543. To do. For example, when “normal sperm” is recorded in the determination field, the control unit 21 determines that the probability of being “normal sperm” is 1, the probability of being “abnormal sperm” and the probability of being “foreign body”. The parameters of the intermediate layer 572 are calculated so as to be 0.
 学習済の正常精子判定モデル57にカメラ48により撮影した画像を入力することにより、制御部21は、正常精子、異常精子または異物のいずれが撮影されているかを判定できる。 By inputting the image captured by the camera 48 to the learned normal sperm determination model 57, the control unit 21 can determine whether normal sperm, abnormal sperm, or foreign matter is captured.
 正常精子判定モデル57は、たとえばVGG(Visual Geometry Group)-16、ResNET(Residual Network)-50またはXception等の既存の公開モデルに、正常精子判定DBを追加学習させる転移学習を用いて作成してもよい。公開モデルを利用することにより、少ない教師データで正確な正常精子判定モデル57を作成できる。 The normal sperm determination model 57 is created by using transfer learning for additionally learning the normal sperm determination DB to an existing public model such as VGG (Visual Geometry Group) -16, ResNET (Residual Network) -50 or Xception. Good. By using the public model, an accurate normal sperm determination model 57 can be created with less teacher data.
 図22から図24は、実施の形態4の情報処理装置20が表示する画面を示す説明図である。図22から図24に示す画面は、精子選択段階において図12に示す画面の代わりに、表示装置15に表示される画面の例である。画面には、画像欄61および評価欄65が表示されている。 22 to 24 are explanatory diagrams showing screens displayed by the information processing device 20 according to the fourth embodiment. The screens shown in FIGS. 22 to 24 are examples of screens displayed on the display device 15 in place of the screen shown in FIG. 12 at the sperm selection stage. An image column 61 and an evaluation column 65 are displayed on the screen.
 画像欄61には、カメラ48により撮影された画像がリアルタイムで表示される。制御部21は公知の画像認識技術により、視野内に評価対象が含まれているか否かを判定する。制御部21は、画像をあらかじめ用意された判定用のCNNに入力して、視野内に評価対象が含まれているか否かを判定しても良い。 In the image column 61, the image taken by the camera 48 is displayed in real time. The control unit 21 determines whether or not the evaluation target is included in the visual field by using a known image recognition technique. The control unit 21 may input the image to a CNN for determination prepared in advance to determine whether or not the evaluation target is included in the visual field.
 評価欄65には、画像欄61に表示された画像をリアルタイムで評価した評価結果が表示される。図22に示す例においては、視野内に正常精子が含まれており、図12と同様の評価結果が表示されている。 In the evaluation column 65, the evaluation result obtained by evaluating the image displayed in the image column 61 in real time is displayed. In the example shown in FIG. 22, normal sperm are included in the visual field, and the same evaluation results as in FIG. 12 are displayed.
 図23に示す例においては、視野内に異常精子が含まれており、総合評価欄659には「異常精子」が表示されている。異常精子については、経過学習モデル53を用いた予測成功確率の取得は行なわれず、第1評価欄651から第4評価欄654には「-」が表示される。 In the example shown in FIG. 23, abnormal sperm are included in the visual field, and “abnormal sperm” is displayed in the comprehensive evaluation field 659. For abnormal spermatozoa, the prediction success probability is not acquired using the progress learning model 53, and “-” is displayed in the first evaluation column 651 to the fourth evaluation column 654.
 図24に示す例においては、視野内に評価対象が含まれておらず、総合評価欄659には「判定不能」が表示されている。評価対象が含まれていないため、経過学習モデル53を用いた予測成功確率の取得は行なわれず、第1評価欄651から第4評価欄654には「-」が表示される。 In the example shown in FIG. 24, the evaluation target is not included in the field of view, and “undecidable” is displayed in the comprehensive evaluation field 659. Since the evaluation target is not included, the prediction success probability is not acquired using the progress learning model 53, and “-” is displayed in the first evaluation column 651 to the fourth evaluation column 654.
 図25は、実施の形態4のプログラムの処理の流れを示すフローチャートである。本実施の形態においては、ステージ42は自動で、または、ユーザによる指示に基づいて前後左右に動作し、顕微鏡視野を走査する。 FIG. 25 is a flowchart showing the flow of processing of the program according to the fourth embodiment. In the present embodiment, the stage 42 operates automatically or forward, backward, leftward, and rightward based on an instruction from the user to scan the microscope visual field.
 制御部21は、サンプル分布算出のサブルーチンを起動する(ステップS601)。サンプル分布算出のサブルーチンは、図15または図17を使用して説明したサンプル分布算出のサブルーチンと同様の処理を行ない、サンプル分布g(X)を算出するサブルーチンである。 The control unit 21 activates a sample distribution calculation subroutine (step S601). The sample distribution calculation subroutine is a subroutine for calculating the sample distribution g (X) by performing the same processing as the sample distribution calculation subroutine described using FIG. 15 or FIG.
 ただし、ステップS601で起動するサブルーチンにおいては、図15または図17を使用して説明したサブルーチンのステップS541の代わりに、制御部21は精子画像取得のサブルーチンを起動する。精子画像取得のサブルーチンは、顕微鏡41から正常な精子の画像を自動的に取得するサブルーチンである。精子画像取得のサブルーチンの処理の流れは後述する。 However, in the subroutine started in step S601, the control unit 21 starts a sperm image acquisition subroutine instead of step S541 of the subroutine described using FIG. 15 or FIG. The sperm image acquisition subroutine is a subroutine for automatically acquiring a normal sperm image from the microscope 41. The processing flow of the sperm image acquisition subroutine will be described later.
 制御部21は、受精から出産までのそれぞれの段階について、図13のステップS514で記録したOK数およびNG数を取得する(ステップS602)。制御部21は、(1)式から(3)式に基づいて第2分布h(X)を算出する(ステップS603)。 The control unit 21 acquires the number of OKs and the number of NGs recorded in step S514 of FIG. 13 for each stage from fertilization to birth (step S602). The control unit 21 calculates the second distribution h (X) based on the equations (1) to (3) (step S603).
 制御部21は、公知の画像解析技術を用いてカメラ48により撮影された視野中に被写体があることを検出する(ステップS604)。制御部21は、図21を使用して説明した正常精子判定モデル57に被写体を含む画像を入力し、判定結果を取得する(ステップS605)。 The control unit 21 detects that there is a subject in the field of view photographed by the camera 48 using a known image analysis technique (step S604). The control unit 21 inputs the image including the subject into the normal sperm determination model 57 described using FIG. 21, and acquires the determination result (step S605).
 制御部21は、被写体が正常精子である確率が所定の閾値以上であるか否かを判定する(ステップS606)。閾値以上であると判定した場合(ステップS606でYES)、制御部21は、精子画像特徴量を抽出する(ステップS525)。以後、ステップS528までの処理は、図14を使用して説明したプログラムの処理と同一であるため説明を省略する。制御部21は、表示装置15に図22を使用して説明した画面を表示する(ステップS607)。 The control unit 21 determines whether the probability that the subject is normal sperm is equal to or higher than a predetermined threshold value (step S606). When it determines with it being more than a threshold value (YES in step S606), the control part 21 extracts a sperm image feature-value (step S525). After that, the processing up to step S528 is the same as the processing of the program described with reference to FIG. The control unit 21 displays the screen described with reference to FIG. 22 on the display device 15 (step S607).
 閾値未満であると判定した場合(ステップS606でNO)、制御部21は被写体が異常精子である確率が所定の閾値以上であるか否かを判定する(ステップS611)。閾値以上であると判定した場合(ステップS611でYES)、制御部21は、表示装置15に図23を使用して説明した異常精子である旨を示す画面を表示する(ステップS612)。閾値未満であると判定した場合(ステップS611でNO)、制御部21は、表示装置15に図24を使用して説明した判定不能である旨を示す画面を表示する(ステップS613)。 When it is determined that it is less than the threshold value (NO in step S606), the control unit 21 determines whether the probability that the subject is abnormal sperm is equal to or higher than a predetermined threshold value (step S611). When it determines with it being more than a threshold value (YES in step S611), the control part 21 displays the screen which shows that it is abnormal sperm which was demonstrated using FIG. 23 on the display device 15 (step S612). When it determines with it being less than a threshold value (NO in step S611), the control part 21 displays the screen which shows that determination is impossible on the display device 15 as described using FIG. 24 (step S613).
 ステップS607、ステップS612またはステップS613の終了後、制御部21は、次ボタン69の選択を受け付けたか否かを判定する(ステップS614)。次ボタン69の選択を受け付けたと判定した場合(ステップS614でYES)、制御部21はステップS604に戻る。 After completion of step S607, step S612, or step S613, the control unit 21 determines whether or not the selection of the next button 69 is accepted (step S614). When it is determined that the selection of the next button 69 is accepted (YES in step S614), the control unit 21 returns to step S604.
 所定の時間が経過しても次ボタン69の選択を受け付けないと判定した場合、または、終了の指示を受け付けたと判定した場合(ステップS514でNO)、制御部21は処理を終了する。 If it is determined that the selection of the next button 69 is not accepted even after the lapse of a predetermined time, or if it is determined that the end instruction is accepted (NO in step S514), the control unit 21 ends the process.
 図26は、精子画像取得のサブルーチンの処理の流れを示すフローチャートである。精子画像取得のサブルーチンは、顕微鏡41から正常な精子の画像を自動的に取得するサブルーチンである。精子撮影のサブルーチンは、図15および図17を使用して説明したサンプル分布算出のサブルーチンのステップS541の代わりに使用される。 FIG. 26 is a flowchart showing the flow of processing of a subroutine for sperm image acquisition. The sperm image acquisition subroutine is a subroutine for automatically acquiring a normal sperm image from the microscope 41. The sperm photographing subroutine is used instead of step S541 of the sample distribution calculation subroutine described with reference to FIGS.
 制御部21は、公知の画像解析技術を用いて視野中に被写体があることを検出する(ステップS571)。制御部21は、被写体を含む画像を正常精子判定モデル57に入力し、被写体が正常精子である確率を取得する(ステップS572)。 The control unit 21 detects that there is a subject in the field of view using a known image analysis technique (step S571). The control unit 21 inputs an image including the subject into the normal sperm determination model 57, and acquires the probability that the subject is normal sperm (step S572).
 制御部21は、被写体が正常精子である確率が所定の閾値異常であるか否かを判定する(ステップS573)。閾値未満であると判定した場合(ステップS573でNO)、制御部21はステップS571に戻る。閾値以上であると判定した場合(ステップS573でYES)、制御部21は処理を終了する。 The control unit 21 determines whether the probability that the subject is normal sperm is a predetermined threshold abnormality (step S573). When it determines with it being less than a threshold value (NO in step S573), the control part 21 returns to step S571. When it determines with it being more than a threshold value (it is YES at step S573), the control part 21 complete | finishes a process.
 本実施の形態によると、正常精子を自動的に抽出して判定する情報処理システム10を提供できる。たとえば、正常精子が極端に少ない場合であっても、培養士の負担が少ない情報処理システム10を提供できる。 According to the present embodiment, it is possible to provide the information processing system 10 that automatically extracts and determines normal sperm. For example, even if the number of normal sperm is extremely small, it is possible to provide the information processing system 10 that places a little burden on the incubator.
 正常精子を抽出する正常精子判定モデル57と、正常精子を評価する経過学習モデル53とを分離することにより、精度の高い判定を行なう情報処理システム10を提供できる。 By separating the normal sperm determination model 57 that extracts normal sperm and the progress learning model 53 that evaluates normal sperm, it is possible to provide the information processing system 10 that performs highly accurate determination.
[実施の形態5]
 本実施の形態は、グラフを用いて候補精子の評価結果を表示する情報処理システム10に関する。実施の形態3と共通する部分については、説明を省略する。
[Fifth Embodiment]
The present embodiment relates to an information processing system 10 that displays an evaluation result of candidate sperm using a graph. Descriptions of portions common to the third embodiment will be omitted.
 図27は、実施の形態5の情報処理装置20が表示する画面を示す説明図である。図27に示す画面は、精子選択段階において図18に示す画面の代わりに、表示装置15に表示される画面の例である。画面には、画像欄61、評価欄65および患者情報欄64が表示されている。評価欄65は、第1評価欄651、第2評価欄652、第3評価欄653、第4評価欄654および第5評価欄655を含む。 FIG. 27 is an explanatory diagram showing a screen displayed by the information processing device 20 according to the fifth embodiment. The screen shown in FIG. 27 is an example of a screen displayed on the display device 15 instead of the screen shown in FIG. 18 at the sperm selection stage. An image column 61, an evaluation column 65 and a patient information column 64 are displayed on the screen. The evaluation section 65 includes a first evaluation section 651, a second evaluation section 652, a third evaluation section 653, a fourth evaluation section 654, and a fifth evaluation section 655.
 患者情報欄64には、精子提供者および卵子提供者それぞれの年齢、既往歴、および現病歴と、不妊治療歴とが表示されている。患者情報欄において「M」は精子提供者を、「F」は卵子提供者を示す。 In the patient information column 64, the age, medical history, current medical history, and infertility treatment history of each sperm donor and egg donor are displayed. In the patient information column, “M” indicates a sperm donor and “F” indicates an egg donor.
 画像欄61には、評価中の候補精子が静止画で表示されている。画像欄61には、カメラ48により撮影された顕微鏡画像がリアルタイムで表示されても良い。 In the image column 61, the candidate sperm under evaluation is displayed as a still image. In the image column 61, a microscope image taken by the camera 48 may be displayed in real time.
 第1評価欄651から第4評価欄654には、それぞれの段階における第2分布Y=h(X)のグラフが表示されている。グラフの縦軸は確率変数Xとして成功確率を、横軸は確率変数Xに対応する確率Yを示す。それぞれのグラフには、候補精子の成功確率が指標線81により表示されている。 A graph of the second distribution Y = h (X) at each stage is displayed in the first evaluation column 651 to the fourth evaluation column 654. The vertical axis of the graph represents the probability of success as the random variable X, and the horizontal axis represents the probability Y corresponding to the random variable X. In each graph, the success rate of the candidate sperm is displayed by the index line 81.
 それぞれのグラフの下に、候補精子について算出した成功率と、第2分布中における当該成功率の偏差値および信頼度とが表示されている。候補精子の成功率が、同一の精液中に含まれる過去に評価した精子の成功率の最大値以上である場合には、信頼度の下に「Best」の文字が表示される。 Under each graph, the success rate calculated for the candidate sperm, the deviation value of the success rate in the second distribution, and the reliability are displayed. When the success rate of the candidate sperm is greater than or equal to the maximum success rate of the sperm evaluated in the past contained in the same semen, the word “Best” is displayed below the reliability.
 第5評価欄655には、精子の異常度の分布を示すグラフが表示されている。グラフの縦軸は確率変数Xとして精子の異常度を、横軸は確率変数Xに対応する確率Yを示す。グラフには、候補精子の異常度が指標線81により表示されている。 In the fifth evaluation column 655, a graph showing the distribution of sperm abnormalities is displayed. The vertical axis of the graph represents the degree of abnormality of sperm as the random variable X, and the horizontal axis represents the probability Y corresponding to the random variable X. In the graph, the degree of abnormality of the candidate sperm is displayed by the index line 81.
 グラフの下に、候補精子について算出した異常度と、異常度の分布中における当該異常度の偏差値および信頼度とが表示されている。候補精子の異常度が、同一の精液中に含まれる過去に評価した精子の異常度の最小値以下である場合には、信頼度の下に「Best」の文字が表示される。 The degree of abnormality calculated for the candidate sperm and the deviation value and reliability of the degree of abnormality in the distribution of the degree of abnormality are displayed below the graph. When the degree of abnormality of the candidate sperm is equal to or lower than the minimum value of the degree of abnormality of sperm evaluated in the past contained in the same semen, the word “Best” is displayed below the reliability.
 精子の異常度は、たとえば図21を使用して説明した正常精子判定モデル57を用いて取得する、精子が異常精子である確率である。精子の異常度は、「正常」とされる精子の形状と候補精子の形状との類似度に基づいて算出されても良い。第5評価欄655のグラフは、たとえば精子提供者と同年代の男性の精子の、異常度の分布である。 The abnormal degree of sperm is the probability that a sperm is an abnormal sperm, which is acquired using the normal sperm determination model 57 described using FIG. 21, for example. The abnormal degree of sperm may be calculated based on the similarity between the shape of the sperm regarded as “normal” and the shape of the candidate sperm. The graph in the fifth evaluation column 655 is, for example, the distribution of abnormalities of sperm of men of the same age as the sperm donor.
 同年代の男性の精子の異常度の分布を第1分布に、予備撮影で撮影した精子の異常度の分布をサンプル分布にそれぞれ使用して算出した、第2分布を第5評価欄655のグラフに使用してもよい。このようにする場合には、まず実施の形態4と同様に自動で予備撮影を行なって精液中に含まれる精子全体の異常度のサンプル分布を作成する。その後、形状が正常であると判定された候補精子について、受精から出産までの各段階のサンプル分布を作成する。 The distribution of the abnormalities of sperm of men of the same age is used as the first distribution, and the distribution of the abnormalities of sperm taken in the preliminary imaging is used as the sample distribution, and the second distribution is calculated in the graph of the fifth evaluation column 655. May be used. In such a case, first, similar to the fourth embodiment, preliminary image capturing is automatically performed to create a sample distribution of the degree of abnormality of the whole sperm contained in semen. After that, for the candidate sperm determined to have a normal shape, a sample distribution at each stage from fertilization to delivery is created.
 本実施の形態によると、培養士は指標線81に基づいて分布中の候補精子の位置づけを直感的に把握できる。そのため、培養士は、候補精子を顕微授精に使用するか否かを速やかに判定できる。 According to the present embodiment, the incubator can intuitively grasp the position of the candidate sperm in the distribution based on the index line 81. Therefore, the cultivator can quickly determine whether or not to use the candidate sperm for microinsemination.
 候補精子を数秒間撮影した動画ファイルを補助記憶装置23に一時的に保存して、画像欄61に繰り返し再生表示しても良い。培養士は、動画により候補精子の動きを十分に観察して、顕微授精に使用するか否かを判断できる。繰り返し再生する動画の早送り、逆送り、一時停止、スロー再生、または、高速再生等を指示するボタンが、画像欄61の周囲または内部に表示されても良い。 A moving image file obtained by shooting candidate sperms for a few seconds may be temporarily stored in the auxiliary storage device 23 and repeatedly reproduced and displayed in the image column 61. The incubator can fully observe the movement of the candidate sperm by the moving image, and can judge whether or not to use it for microinsemination. A button for instructing fast-forward, reverse-forward, pause, slow-play, high-speed play, or the like of a moving image to be repeatedly played may be displayed around or inside the image column 61.
 制御部21は、動画ファイルの繰り返し再生中に、静止画像特徴量を抽出するフレームの指定を受け付け、候補精子の評価を再度実施しても良い。培養士は、所望のフレームに基づいて、候補精子を評価できる。 The control unit 21 may accept the designation of the frame from which the still image feature amount is extracted and repeatedly evaluate the candidate sperm during the repeated reproduction of the moving image file. An incubator can evaluate candidate sperm based on the desired frame.
 過去に撮影した動画ファイルが画像欄61に表示されても良い。たとえば、医療施設内のカンファレンス、培養士の研修、他施設との情報交換等に使用する情報処理システム10を提供できる。過去に撮影した動画ファイルを用いて、経過学習モデル53または画像エンコーダ546を更新した後の動作確認を行なうこともできる。  Video files taken in the past may be displayed in the image column 61. For example, it is possible to provide an information processing system 10 to be used for conferences in medical facilities, training of incubators, and information exchange with other facilities. It is also possible to confirm the operation after updating the progress learning model 53 or the image encoder 546 using a moving image file captured in the past.
 カメラ48は、高速度撮影が可能であっても良い。高速度撮影により候補精子を撮影した動画ファイルを画像欄61にスロー再生により表示することにより、培養士は候補精子の動きを観察できる。このようにすることにより、培養士は、高粘性溶液を使用することなく、精子の自然な動きおよび顕微鏡画像の焦点のズレ等を正確に確認できる。培養士が対物レンズの位置の調整等を行なうことにより、評価に適した候補精子の画像を取得できる。さらに顕微授精の際に、精子と共に高粘性溶液が卵子に注入されることを回避できる。 The camera 48 may be capable of high-speed shooting. By displaying a moving image file of the candidate sperm photographed by high-speed photography in the image field 61 by slow reproduction, the incubator can observe the movement of the candidate sperm. By doing so, the incubator can accurately confirm the natural movement of the sperm and the defocus of the microscopic image without using a highly viscous solution. An image of a candidate sperm suitable for evaluation can be acquired by the incubator adjusting the position of the objective lens. Furthermore, during microinsemination, it is possible to avoid injecting the highly viscous solution with the sperm into the egg.
[実施の形態6]
 図28は、実施の形態6の情報処理装置20の機能ブロック図である。情報処理装置20は、撮影画像取得部71と、入力部72と、出力部73とを有する。撮影画像取得部71は、顕微授精に使用する候補精子が撮影された撮影画像を取得する。
[Sixth Embodiment]
FIG. 28 is a functional block diagram of the information processing device 20 according to the sixth embodiment. The information processing device 20 includes a captured image acquisition unit 71, an input unit 72, and an output unit 73. The captured image acquisition unit 71 acquires a captured image of a candidate sperm used for microinsemination.
 入力部72は、精子が撮影された撮影画像を受け付けて、その精子を用いた顕微授精の成否に関する予測を出力する学習モデル53に、取得した撮影画像を入力する。出力部73は、入力された撮影画像に基づいて学習モデル53から出力された予測を出力する。 The input unit 72 receives the captured image of the sperm and inputs the captured image to the learning model 53 that outputs a prediction regarding the success or failure of microinsemination using the sperm. The output unit 73 outputs the prediction output from the learning model 53 based on the input captured image.
 学習モデル53は、入力層571と、画像エンコーダ546と、中間層572と、出力層573とを有する。入力層571には、精子が撮影された撮影画像が入力される。出力層573は、精子を用いて顕微授精を行なった後の各段階まで正常に成長する予測成功確率を出力する。 The learning model 53 has an input layer 571, an image encoder 546, an intermediate layer 572, and an output layer 573. A captured image of a sperm is input to the input layer 571. The output layer 573 outputs the prediction success probability of normal growth up to each stage after microinsemination using sperm.
 中間層572は、過去に顕微授精に使用された精子が撮影された撮影画像と、その精子を用いて顕微授精を行なった後の各段階まで正常に成長するか否かとを関連づけて記録した教師データを用いてパラメータが学習されている。 The middle layer 572 is a teacher that records the captured images of sperm used for microinsemination in the past and the normal growth up to each stage after microinsemination using the sperm. The parameters are learned using the data.
 学習モデル53は、顕微授精に使用する候補精子が撮影された撮影画像が入力層571に入力された場合に、中間層572による演算を経て候補精子を用いて顕微授精を行なった場合の各段階まで正常に成長するか否かに関する予測を出力層573から出力するようにコンピュータを機能させる。 In the learning model 53, when a captured image of a candidate sperm used for microinsemination is input to the input layer 571, each stage in the case where microinsemination is performed using the candidate sperm through the calculation by the intermediate layer 572 The computer is caused to output from the output layer 573 a prediction as to whether or not it grows normally.
 学習モデル53は、入力層571と中間層572との間に設けられ、撮影画像から画像特徴量を抽出する画像エンコーダ546をさらに備え、画像エンコーダ546により抽出された画像特徴量を中間層572に出力する。 The learning model 53 is further provided between the input layer 571 and the intermediate layer 572, and further includes an image encoder 546 that extracts the image feature amount from the captured image. The image feature amount extracted by the image encoder 546 is stored in the intermediate layer 572. Output.
[実施の形態7]
 本実施の形態は、汎用のコンピュータ90とプログラム97とを組み合わせて動作させることにより、本実施の形態の情報処理システム10を実現する形態に関する。図29は、実施の形態7の情報処理システム10の構成を示す説明図である。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 7]
The present embodiment relates to a form in which the information processing system 10 of the present embodiment is realized by operating a general-purpose computer 90 and a program 97 in combination. FIG. 29 is an explanatory diagram showing the configuration of the information processing system 10 according to the seventh embodiment. Descriptions of portions common to the first embodiment will be omitted.
 本実施の形態の情報処理システム10は、コンピュータ90と、顕微鏡41とを含む。 The information processing system 10 of the present embodiment includes a computer 90 and a microscope 41.
 コンピュータ90は、制御部21、主記憶装置22、補助記憶装置23、通信部24、表示I/F25、撮影I/F28、読取部29およびバスを備える。コンピュータ90は、汎用のパーソナルコンピュータ、タブレットまたはサーバコンピュータ等の情報機器である。 The computer 90 includes a control unit 21, a main storage device 22, an auxiliary storage device 23, a communication unit 24, a display I / F 25, a photographing I / F 28, a reading unit 29, and a bus. The computer 90 is an information device such as a general-purpose personal computer, tablet or server computer.
 プログラム97は、可搬型記録媒体96に記録されている。制御部21は、読取部29を介してプログラム97を読み込み、補助記憶装置23に保存する。また制御部21は、コンピュータ90内に実装されたフラッシュメモリ等の半導体メモリ98に記憶されたプログラム97を読出しても良い。さらに、制御部21は、通信部24および図示しないネットワークを介して接続される図示しない他のサーバコンピュータからプログラム97をダウンロードして補助記憶装置23に保存しても良い。 The program 97 is recorded in the portable recording medium 96. The control unit 21 reads the program 97 via the reading unit 29 and stores it in the auxiliary storage device 23. The control unit 21 may also read the program 97 stored in the semiconductor memory 98 such as a flash memory installed in the computer 90. Furthermore, the control unit 21 may download the program 97 from another server computer (not shown) connected via the communication unit 24 and a network (not shown) and store the program 97 in the auxiliary storage device 23.
 プログラム97は、コンピュータ90の制御プログラムとしてインストールされ、主記憶装置22にロードして実行される。これにより、コンピュータ90は上述した情報処理装置20として機能する。 The program 97 is installed as a control program of the computer 90, loaded into the main storage device 22 and executed. As a result, the computer 90 functions as the information processing device 20 described above.
[実施の形態8]
 本実施の形態は、観察中の精子がX染色体を有するX精子と、Y染色体を有するY精子とのいずれであるかを判定する情報処理システム10に関する。実施の形態1と共通する部分については、説明を省略する。なお、以下の説明においては性染色体に生じる突然変異の影響については考慮しない。
[Embodiment 8]
The present embodiment relates to an information processing system 10 that determines whether the sperm under observation is an X sperm having an X chromosome or a Y sperm having a Y chromosome. Descriptions of portions common to the first embodiment will be omitted. In the following description, the effect of mutations on the sex chromosome will not be considered.
 たとえば、赤緑色覚異常、血友病、および、アルポート症候群等のさまざまな伴性遺伝疾患が知られている。伴性遺伝疾患は、性染色体の異常に由来する遺伝疾患である。伴性遺伝疾患を有する親から生まれた子供が伴性遺伝疾患を発症する発症率、および、子供本人は発症しないが子孫に伴性遺伝疾患を伝える遺伝因子を有する保因率は、伴性遺伝疾患の種類および子供の性別によって異なる。 For example, various congenital genetic diseases such as red-green deficiency, hemophilia, and Alport syndrome are known. A sex-linked genetic disease is a genetic disease derived from an abnormality of the sex chromosome. The incidence of children with a congenital disorder who develops a congenital inherited disease, and the prevalence of a genetic factor that does not affect the child itself but conveys the congenital inherited disease to the offspring, is It depends on the type of disease and the sex of the child.
 図30は、伴性劣性(潜性)遺伝疾患の発症率および保因率を示す表である(以下の説明では、「劣性」と「潜性」とを同義で使用する)。伴性劣性遺伝疾患は、X染色体を介して遺伝する疾患のうち、正常なX染色体を1本持っていれば発症しない疾患である。男性はX染色体が1本であるため、異常があれば発症する。女性は、2本のX染色体のうち片方だけが異常であれば発症せず、両方が異常であれば発症する。たとえば赤緑色覚異常および血友病等の伴性劣性遺伝疾患が知られている。 FIG. 30 is a table showing the incidence and carrier rate of sex-linked recessive (latent) genetic diseases (in the following description, “recessive” and “latent” are used synonymously). A sex-linked recessive disease is a disease that is not inherited by having one normal X chromosome among diseases inherited via the X chromosome. Males have a single X chromosome, so they develop if they have an abnormality. A female does not develop if only one of the two X chromosomes is abnormal, but does develop if both are abnormal. For example, a sex-linked recessive genetic disease such as red-green deficiency and hemophilia is known.
 図30の左端の列は、精子提供者の性染色体が正常であるか、異常であるかを示す。異常である場合には、精子提供者のX染色体に異常があり、疾患が発症する。図30の左から2列目は、X精子を使用する場合と、Y精子を使用する場合との場合分けを示す。X精子を使用した場合には、子供の性別は女子になる。Y精子を使用した場合には、子供の性別は男子になる。以下の説明において、精子がX精子であるか、Y精子であるかの区別を、精子の性別と記載する場合がある。 The leftmost column in FIG. 30 shows whether the sex chromosomes of the sperm donor are normal or abnormal. If it is abnormal, the X chromosome of the sperm donor is abnormal and the disease develops. The second column from the left in FIG. 30 shows the cases when X spermatozoa are used and when Y spermatozoa are used. When X sperm is used, the child's gender is female. When Y sperm are used, the sex of the child is male. In the following description, the distinction whether the sperm is X sperm or Y sperm may be described as the sex of sperm.
 図30の右側の3列は、卵子提供者の性染色体が正常であるか、異常であるかを示す。異常である場合には、1本のX染色体が異常であり、他方のX染色体が正常であるヘテロ接合と、両方のX染色体が異常であるホモ接合との2通りが存在する。ヘテロ接合である場合には、発症はしないが遺伝因子を有する保因者である。ホモ接合である場合には、発症する。 The three columns on the right side of FIG. 30 indicate whether the sex chromosome of the egg donor is normal or abnormal. When it is abnormal, there are two types, one is heterozygous in which one X chromosome is abnormal and the other X chromosome is normal, and the other is homozygous in which both X chromosomes are abnormal. When heterozygous, it is a carrier who does not develop but carries the genetic factor. If it is homozygous, it develops.
 発症率は、子供が伴性遺伝疾患を発症する確率を示す。保因率は、子供の性染色体が伴性遺伝疾患を伝える遺伝因子を有する確率、すなわち、子供が遺伝子の異常を有する確率を示す。 ▽ Incidence rate indicates the probability that a child will develop a sex-linked genetic disease. Carriage rate indicates the probability that a child's sex chromosome has a genetic factor that conveys a sex-linked genetic disease, ie, the child has a genetic abnormality.
 たとえば、卵子提供者の性染色体が正常で、精子提供者の性染色体が異常である場合には、子供の性別にかかわらず発症率は0パーセントであり、女子の保因率は100パーセント、男子の保因率は0パーセントである。図30において、角丸四角形で囲んだ部分については、子供の性別により発症率または保因率に差異が生じる。 For example, if the sex donor's sex chromosome is normal and the sperm donor's sex chromosome is abnormal, the incidence is 0% regardless of the sex of the child, the carrier rate is 100% for girls, and 100% for boys. Has a carrier rate of 0%. In FIG. 30, in the part surrounded by a rounded rectangle, the incidence or carrier rate varies depending on the sex of the child.
 図31は、伴性優性(顕性)遺伝疾患の発症率および保因率を示す表である(以下の説明では、「優性」と「顕性」とを同義で使用する)。伴性優性遺伝疾患は、X染色体を介して遺伝する疾患のうち、異常なX染色体が1本でも持っていれば発症する疾患である。男性はX染色体が1本であるため、異常があれば発症する。女性は、2本のX染色体のうち片方または両方が異常であれば発症する。たとえばレット症候群およびアルポート症候群等の伴性優性遺伝疾患が知られている。 FIG. 31 is a table showing the incidence rate and carrier rate of a sex-linked dominant (overtly) genetic disease (in the following description, “dominant” and “overtly” are used synonymously). A sex-linked dominant genetic disease is a disease that develops if there is at least one abnormal X chromosome among diseases inherited via the X chromosome. Males have a single X chromosome, so they develop if they have an abnormality. Women develop if one or both of the two X chromosomes is abnormal. For example, sex-linked dominant genetic diseases such as Rett syndrome and Alport syndrome are known.
 図31に示す表の構成は図30で説明した表と同様であるため、説明を省略する。図31においても、角丸四角形で囲んだ部分については、子供の性別により発症率または保因率に差異が生じる。 The configuration of the table shown in FIG. 31 is the same as the table described in FIG. 30, so description will be omitted. Also in FIG. 31, in the part surrounded by the rounded rectangle, the incidence rate or the carrier rate varies depending on the sex of the child.
 図32は、Y染色体を介して遺伝する伴性遺伝疾患の発症率および保因率を示す表である。女性はY染色体を持たないため、このような疾患に関連する遺伝子に関しては必ず正常である。男性不妊の一部に、Y染色体微小欠失等の、Y染色体を介して遺伝する疾患が含まれていると考えられている。 FIG. 32 is a table showing the incidence and carrier rate of sex-linked genetic diseases inherited via the Y chromosome. Since women do not have the Y chromosome, they are always normal for genes associated with such diseases. It is considered that a part of male infertility includes a disease inherited via the Y chromosome, such as Y chromosome microdeletion.
 図32の左端は、図30と同様に精子提供者の性染色体が正常であるか、異常であるかを示す。卵子提供者は必ず正常である。図32において、角丸四角形で囲んだ部分については、子供の性別により発症率または保因率に差異が生じる。 The left end of FIG. 32 shows whether the sex chromosome of the sperm donor is normal or abnormal, as in FIG. The egg donor is always normal. In FIG. 32, in the part surrounded by a rounded rectangle, the incidence or carrier rate varies depending on the sex of the child.
 精子提供者および卵子提供者の性染色体に異常がある場合には、精子の性別を判定して子供の性別を選択することにより、出生した子供の発症率および保因率を低下させられる。 When the sex chromosomes of sperm donors and egg donors are abnormal, by determining the sex of the sperm and selecting the sex of the child, the incidence and carrier rate of the offspring can be reduced.
 疾患によっては、性染色体に異常を有する胚は着床から出生までの成功確率が低く、流産しやすいことが知られている。精子の性別を判定して子供の性別を選択することにより、顕微授精の成功率を上昇させることもできる。 It is known that, depending on the disease, embryos with abnormal sex chromosomes have a low probability of success from implantation to birth and are prone to miscarriage. The success rate of microinsemination can also be increased by determining the sex of the sperm and selecting the sex of the child.
 ヒトの遺伝子では、X精子が有するゲノム量は、Y精子が有するゲノム量よりも約3パーセント多いことが知られている。ゲノム量の相違に伴い、X精子の頭部長および周囲長等の寸法はY精子の対応する部分の寸法よりも約5パーセント大きく、X精子の質量はY精子の質量よりも約2.8パーセント重いことも知られている。X精子の方が重いため、移動速度はY精子の方が早い。 It is known that, in human genes, the amount of genome possessed by X sperm is approximately 3% higher than the amount of genome possessed by Y sperm. Due to the difference in the amount of genome, the dimensions such as head length and perimeter of X sperm are about 5% larger than the corresponding portions of Y sperm, and the mass of X sperm is about 2.8 than the mass of Y sperm. It is also known to be percent heavy. Because X sperm are heavier, Y-sperm move faster.
 このように、X精子とY精子との間には外観上の相違がある。しかしながら、培養士が瞬時に識別して、必要な精子を採取することは難しい。本実施の形態においては、機械学習により生成した性別判定学習モデル56(図34参照)を使用して、観察中の精子がX精子であるか、Y精子であるかを判定する情報処理システム10を提供する。 Thus, there is a difference in appearance between X sperm and Y sperm. However, it is difficult for an incubator to instantly identify and collect necessary sperm. In the present embodiment, the information processing system 10 for determining whether the sperm under observation is X sperm or Y sperm by using the sex determination learning model 56 (see FIG. 34) generated by machine learning. I will provide a.
 図33は、性別教師データDB58のレコードレイアウトを説明する説明図である。性別教師データDB58は、顕微授精に使用した精子を撮影した撮影画像と、顕微授精により出生した子供の性別とを関連づけて記録するDBである。性別教師データDB58は、精子IDフィールド、画像データフィールド、精子画像特徴量フィールドおよび性別フィールドを有する。精子IDフィールド、画像データフィールドおよび精子画像特徴量フィールドは、図8を使用して説明した教師データDB51の各フィールドと同様であるため、説明を省略する。 FIG. 33 is an explanatory diagram illustrating a record layout of the sex teacher data DB 58. The sex teacher data DB 58 is a DB that records the photographed image of the sperm used for microinsemination and the sex of the child born by microinsemination in association with each other. The sex teacher data DB 58 has a sperm ID field, an image data field, a sperm image feature amount field, and a sex field. The sperm ID field, the image data field, and the sperm image feature amount field are the same as the fields of the teacher data DB 51 described with reference to FIG.
 性別フィールドには、顕微授精により出生した子供の性別が記録されている。性別フィールドには、たとえばNIPT(Non-Invasive Prenatal genetic Testing)等の出生前診断により判定された胚または胎児の性別が記録されても良い。性別教師データDB58は、顕微授精に使用された精子1個について、1つのレコードを有する。 In the gender field, the sex of the child born by microinsemination is recorded. In the sex field, the sex of the embryo or fetus determined by prenatal diagnosis such as NIPT (Non-Invasive Prenatal genetic Testing) may be recorded. The sex teacher data DB 58 has one record for each sperm used for microinsemination.
 図34は、性別判定学習モデル56を説明する説明図である。性別判定学習モデル56は、入力層561、中間層562および出力層563を備えるニューラルネットワークである。図7においては、性別判定学習モデル56はCNNである場合を例示する。なお、畳み込み層およびプーリング層については、図示を省略する。 FIG. 34 is an explanatory diagram illustrating the sex determination learning model 56. The gender determination learning model 56 is a neural network including an input layer 561, an intermediate layer 562, and an output layer 563. In FIG. 7, the case where the sex determination learning model 56 is CNN is illustrated. Illustration of the convolutional layer and the pooling layer is omitted.
 性別判定学習モデル56は、入力層561に静止画および動画の特徴量が入力された場合に、X精子である確率およびY精子である確率を出力層563に出力する。入力層561に入力される情報は、図34を使用して説明した経過学習モデル53への入力と同様であるため、説明を省略する。 The gender determination learning model 56 outputs the probability of being an X sperm and the probability of being a Y sperm to the output layer 563 when a feature amount of a still image or a moving image is input to the input layer 561. The information input to the input layer 561 is the same as the input to the progress learning model 53 described using FIG. 34, and thus the description will be omitted.
 性別判定学習モデル56は、入力層561に静止画および動画の特徴量等が入力された場合に、出力層563に観察中の精子がX精子である確率およびY精子である確率を出力する。学習段階においては、制御部21は、図33を使用して説明した性別教師データDB58を用いて、誤差逆伝播法等を用いて中間層562のパラメータを演算することにより、教師あり機械学習を行なう。 The gender determination learning model 56 outputs the probability that the sperm under observation is X sperm and the probability that it is Y sperm to the output layer 563 when the feature amounts of a still image and a moving image are input to the input layer 561. In the learning stage, the control unit 21 performs the supervised machine learning by calculating the parameters of the intermediate layer 562 by using the error backpropagation method or the like by using the sex teacher data DB 58 described using FIG. To do.
 教師あり機械学習は、たとえばロジスティック回帰、SVM、ランダムフォレスト、CNN、RNNまたは、XGBoost等の任意の手法により行なえる。 Supervised machine learning can be performed by any method such as logistic regression, SVM, random forest, CNN, RNN, or XGBoost.
 性別判定学習モデル56は任意のコンピュータを用いて作成されても良い。作成された性別判定学習モデル56は、ネットワーク等を介して顕微授精実施機関が使用する情報処理装置20に送信されて、補助記憶装置23に記録される。 The gender determination learning model 56 may be created using any computer. The created sex determination learning model 56 is transmitted to the information processing device 20 used by the microinsemination executing institution via a network or the like and recorded in the auxiliary storage device 23.
 性別判定学習モデル56は、図7を使用して説明した経過学習モデル53のいずれかと一体に構成されても良い。そのようにする場合には、性別判定学習モデル56の出力層563は、成功である確率を出力する成功ノードと、不成功である確率を出力する不成功ノードとを有する。 The gender determination learning model 56 may be configured integrally with any of the progress learning models 53 described using FIG. 7. In such a case, the output layer 563 of the sex determination learning model 56 has a success node that outputs a probability of success and an unsuccess node that outputs a probability of failure.
 図35は、実施の形態8の情報処理装置20が表示する画面を示す説明図である。産科医から特定の性別の精子を顕微授精に使用するように指示を受けた場合、ユーザである培養士は図35を使用して説明する画面を表示装置15に表示させる。画面には、画像欄61、判定ボタン68および終了ボタン67が表示されている。画像欄61には、カメラ48により撮影された顕微鏡画像がリアルタイムで表示される。 FIG. 35 is an explanatory diagram showing a screen displayed by the information processing device 20 according to the eighth embodiment. When an obstetrician gives an instruction to use sperm of a specific sex for microinsemination, the incubator who is the user causes the display device 15 to display the screen described with reference to FIG. An image field 61, a determination button 68, and an end button 67 are displayed on the screen. In the image column 61, a microscope image taken by the camera 48 is displayed in real time.
 ユーザが判定ボタン68を選択した場合、制御部21は画像欄61に表示中の画像の静止画特徴量および動画特徴量を抽出する。制御部21は、特徴量を性別判定学習モデル56に入力し、X精子である確率およびY精子である確率を取得する。制御部21は、画面右上の性別欄82に、X精子である確率およびY精子である確率を表示する。 When the user selects the determination button 68, the control unit 21 extracts the still image feature amount and the moving image feature amount of the image displayed in the image column 61. The control unit 21 inputs the feature amount into the sex determination learning model 56, and acquires the probability of being an X sperm and the probability of being a Y sperm. The control unit 21 displays the probability of being X sperm and the probability of being Y sperm in the sex column 82 at the upper right of the screen.
 ユーザが判定ボタン68を再度選択した場合、制御部21は画像欄61にリアルタイムで表示されている画像を用いて、X精子である確率およびY精子である確率を更新する。ユーザが終了ボタン67を選択した場合、制御部21は処理を終了する。 When the user selects the determination button 68 again, the control unit 21 updates the probability of being X sperm and the probability of being Y sperm using the image displayed in real time in the image column 61. When the user selects the end button 67, the control unit 21 ends the process.
 たとえば、性別判定学習モデル56にCNNの一種であるYOLOv3(You Only Look Once version 3)を使用することで、制御部21はX精子である確率およびY精子である確率を高速に取得できる。十分に高速にX精子である確率およびY精子である確率を取得できる場合、制御部21は性別欄82をリアルタイムで更新しても良い。リアルタイムで性別欄82を更新する場合には、判定ボタン68は不要である。 For example, by using YOLOv3 (YouLookLookOnceversion3), which is a type of CNN, for the sex determination learning model 56, the control unit 21 can quickly acquire the probability of being an X sperm and the probability of being a Y sperm. When the probability of being an X sperm and the probability of being a Y sperm can be acquired sufficiently quickly, the control unit 21 may update the sex column 82 in real time. When the gender column 82 is updated in real time, the determination button 68 is unnecessary.
 ユーザは、図12を使用して説明した画面等を用いて顕微授精の成功確率が高い精子を発見した後に、図35を使用して説明した画面を用いて精子の性別を判定する。ユーザは、図35を使用して説明した画面を用いて産科医から指定された性別の精子を発見した後に、図12を使用して説明した画面等を用いて顕微授精の成功確率を判定しても良い。 After the user has found a sperm with a high probability of successful microinsemination using the screen described with reference to FIG. 12, the user determines the sex of the sperm using the screen described with reference to FIG. After discovering the sperm of the sex designated by the obstetrician using the screen described using FIG. 35, the user determines the success rate of microinsemination using the screen described using FIG. May be.
 本実施の形態の情報処理システム10は、実施の形態1等で説明した顕微授精の成功確率を判定する情報処理システム10とは独立したシステムであっても良い。 The information processing system 10 of the present embodiment may be a system independent of the information processing system 10 that determines the success probability of microinsemination described in the first embodiment and the like.
 制御部21は、図12を使用して説明した評価欄65と、図35を使用して説明した性別欄82とを、一つの画面に並べて表示しても良い。 The control unit 21 may display the evaluation field 65 described using FIG. 12 and the gender field 82 described using FIG. 35 side by side on one screen.
 図36は、実施の形態8のプログラムの処理の流れを示すフローチャートである。制御部21は、図35に示すように候補精子が1個だけ画像欄61に表示された状態で、判定ボタン68を選択する。 FIG. 36 is a flow chart showing the flow of processing of the program of the eighth embodiment. The control unit 21 selects the determination button 68 with only one candidate sperm being displayed in the image field 61 as shown in FIG.
 制御部21は、判定ボタン68の選択を受け付けたか否かを判定する(ステップS701)。判定ボタン68の選択を受け付けたと判定した場合(ステップS701でYES)、制御部21はカメラ48を介して精子が撮影された撮影画像を取得する(ステップS702)。 The control unit 21 determines whether or not the selection of the determination button 68 has been accepted (step S701). When it is determined that the selection of the determination button 68 has been accepted (YES in step S701), the control unit 21 acquires the captured image of the sperm through the camera 48 (step S702).
 制御部21は、精子画像特徴量を抽出する(ステップS703)。制御部21は、精子画像特徴量を性別判定学習モデル56に入力して、観察中の精子がX精子である確率およびY精子である確率を取得する(ステップS704)。制御部21は、性別欄82に取得した確率を表示する(ステップS705)。 The control unit 21 extracts the sperm image feature amount (step S703). The control unit 21 inputs the sperm image feature amount into the sex determination learning model 56, and acquires the probability that the sperm under observation is X sperm and the probability that it is Y sperm (step S704). The control unit 21 displays the acquired probability in the gender column 82 (step S705).
 判定ボタン68の選択を受け付けていないと判定した場合(ステップS701でNO)、またはステップS705の終了後、制御部21は、終了ボタン67の選択を受け付けたか否かを判定する(ステップS706)。終了ボタン67の選択を受け付けていないと判定した場合(ステップS706でNO)、制御部21は、ステップS701に戻る。終了ボタン67の選択を受け付けたと判定した場合(ステップS706でYES)、制御部21は処理を終了する。 When it is determined that the selection of the determination button 68 has not been received (NO in step S701), or after the end of step S705, the control unit 21 determines whether the selection of the termination button 67 has been received (step S706). When it is determined that the selection of the end button 67 is not accepted (NO in step S706), the control unit 21 returns to step S701. When it is determined that the selection of the end button 67 is accepted (YES in step S706), the control unit 21 ends the process.
 本実施の形態によると、精子の性別を判定して表示する情報処理システム10を提供できる。培養士は、産科医から指示された性別である可能性が高い精子を選択して顕微授精を行なえる。これにより、顕微授精により出生する子供が伴性遺伝疾患を発症する可能性、および、伴性遺伝疾患の因子を保有する可能性を低減できる。また、伴性遺伝疾患に関連する遺伝子異常による流産等を予防して、顕微授精後による出産の成功確率を高めることもできる。 According to the present embodiment, it is possible to provide the information processing system 10 that determines and displays the sex of sperm. An incubator can perform microinsemination by selecting spermatozoa that are likely to have the sex instructed by the obstetrician. This can reduce the possibility that a child born by microinsemination will develop a sex-linked genetic disease and the possibility of carrying a factor of the sex-linked genetic disease. It is also possible to prevent miscarriage or the like due to a genetic abnormality associated with a sex-linked genetic disease and increase the probability of successful delivery after microinsemination.
[実施の形態9]
 本実施の形態は、観察中の精子がX精子とY精子とのいずれであるかを判定した結果に基づいて、子供が伴性遺伝疾患を発症する確率および因子を保有する確率を表示する情報処理システム10に関する。実施の形態8と共通する部分については、説明を省略する。
[Ninth Embodiment]
The present embodiment, based on the result of determining whether the sperm under observation is X sperm or Y sperm, information that displays the probability that a child will develop a sex-linked genetic disease and the probability that the factor will be retained. Regarding the processing system 10. Descriptions of portions common to the eighth embodiment will be omitted.
 図37は、実施の形態9の情報処理装置20が表示する画面を示す説明図である。図37に示す画面には、疾患設定欄830、卵子提供者欄832および精子提供者欄833が表示されている。疾患設定欄830は、疾患名欄831、XY欄834および優性劣性欄835を含む。卵子提供者欄832は、卵子確定情報欄836および卵子推定情報欄837を含む。精子提供者欄833は、精子確定情報欄838および精子推定情報欄839を含む。図37に示す画面は、伴性遺伝疾患に関する設定を入力する設定入力画面である。 FIG. 37 is an explanatory diagram showing a screen displayed by the information processing device 20 according to the ninth embodiment. A disease setting field 830, an egg provider field 832, and a sperm provider field 833 are displayed on the screen shown in FIG. The disease setting field 830 includes a disease name field 831, an XY field 834, and a dominant recessive field 835. The egg provider column 832 includes an egg confirmation information column 836 and an egg estimation information column 837. The sperm provider column 833 includes a sperm confirmation information column 838 and a sperm estimation information column 839. The screen shown in FIG. 37 is a setting input screen for inputting settings relating to sex-linked genetic disease.
 疾患名欄831には、判定するべき伴性遺伝疾患名を選択するボタンが表示されている。XY欄834および優性劣性欄835には、疾患名欄831で選択を受け付けた伴性遺伝疾患に対応する遺伝形式が黒丸により表示されている。 In the disease name column 831, a button for selecting the name of the sex-linked genetic disease to be judged is displayed. In the XY column 834 and the dominant recessive column 835, the inheritance pattern corresponding to the congenital genetic disease selected in the disease name column 831 is displayed by a black circle.
 図37においては、疾患名欄831に設定された「血友病」がX染色体を介して遺伝する疾患であることが、XY欄834に表示されている。同様に「血友病」が伴性劣性遺伝疾患であることが、優性劣性欄835に表示されている。 In FIG. 37, the XY columns 834 indicate that “hemophilia” set in the disease name column 831 is a disease inherited via the X chromosome. Similarly, "hemophilia" is a sex-linked recessive genetic disease is displayed in the dominant recessive field 835.
 ユーザは、カルテ等に基づいて判定するべき伴性遺伝疾患名を疾患名欄831に設定する。制御部21は、疾患名と遺伝形式とを関連づけて記録したデータベースに基づいて、XY欄834および優性劣性欄835を表示する。 The user sets the name of the sex-linked genetic disease to be determined based on the medical record in the disease name column 831. The control unit 21 displays the XY column 834 and the dominant recessive column 835 based on the database in which the disease name and the inheritance pattern are recorded in association with each other.
 カルテ等に、伴性遺伝疾患名が明示されず、遺伝形式だけが示されている場合には、ユーザは疾患名欄831を使用する代わりに、XY欄834および優性劣性欄835に判定するべき伴性遺伝疾患の遺伝形式を入力する。ユーザが遺伝形式を入力する場合には、XY欄834および優性劣性欄835の左端にそれぞれ表示された白丸および黒丸は、ユーザによる入力を受け付ける入力ボタンの機能を果たす。 When the name of the sex-linked genetic disease is not clearly indicated in the medical record, etc. and only the inheritance pattern is shown, the user should make a judgment in the XY column 834 and the dominant recessive column 835 instead of using the disease name column 831. Enter the inherited form of sex-linked genetic disease. When the user inputs the genetic form, the white circles and the black circles displayed at the left ends of the XY column 834 and the dominant recessive column 835 serve as input buttons that accept the input by the user.
 卵子提供者欄832は、卵子提供者の性染色体に関する情報の入力を受け付ける。ユーザは、カルテ等に基づいて卵子提供者の性染色体異常の有無が確定しているか否かを確認する。 The egg provider column 832 accepts input of information regarding the sex donor's sex chromosome. The user confirms whether or not the presence or absence of the sex chromosome abnormality of the egg donor is confirmed based on the medical record or the like.
 確定している場合には、ユーザは卵子確定情報欄836の左上に配置されたチェックボックスを選択して、チェックマークを表示させる。ユーザは、カルテ等に基づいて卵子提供者が有する2本のX染色体のそれぞれが正常であるか、異常であるかを卵子確定情報欄836の下部に表示されたボタンを用いて入力する。図37においては、2本のX染色体がどちらも「異常」である旨が入力されている。 If it has been confirmed, the user selects the check box located in the upper left of the egg confirmation information field 836 to display a check mark. The user inputs whether each of the two X chromosomes possessed by the egg donor is normal or abnormal based on the medical record or the like using the button displayed at the bottom of the egg confirmation information field 836. In FIG. 37, it is input that both of the two X chromosomes are “abnormal”.
 確定していない場合には、ユーザは卵子推定情報欄837の左上に配置されたチェックボックスを選択して、チェックマークを表示させる。卵子推定情報欄837には、卵子提供者の性染色体が正常である推定確率、ヘテロ型の異常である推定確率、およびホモ型の異常である推定確率を百分率で入力する欄が表示されている。 If not confirmed, the user selects the check box located at the upper left of the egg estimation information field 837 to display a check mark. The egg estimation information column 837 displays columns for inputting the estimated probability that the sex donor's sex chromosome is normal, the estimated probability of being a heterozygous abnormality, and the estimated probability of being a homozygous abnormality in percentage. ..
 卵子提供者の性染色体異常の有無が確定していない場合、産科医等の専門家が家族歴等に基づいて卵子提供者の性染色体異常の有無に関する確率を推定して、カルテ等に記載する。ユーザは、カルテ等に基づいて、卵子推定情報欄837の各欄に推定確率を入力する。 If the presence or absence of the sex chromosome abnormality in the egg donor is not confirmed, an expert such as an obstetrician estimates the probability related to the presence or absence of the sex chromosome abnormality in the egg donor based on the family history and records it in the medical record, etc. .. The user inputs the estimated probability in each column of the egg estimation information column 837 based on the medical record and the like.
 精子提供者欄833は、精子提供者の性染色体に関する情報の入力を受け付ける。ユーザは、カルテ等に基づいて精子提供者の性染色体異常の有無が確定しているか否かを確認する。 The sperm donor column 833 accepts input of information regarding the sex chromosome of the sperm donor. The user confirms whether the presence or absence of the sex chromosome abnormality of the sperm donor is confirmed based on the medical record or the like.
 確定している場合には、ユーザは精子確定情報欄838の左上に配置されたチェックボックスを選択して、チェックマークを表示させる。ユーザは、カルテ等に基づいて精子提供者が有するX染色体およびY染色体のそれぞれが正常であるか、異常であるかを精子確定情報欄838の下部に表示されたボタンを用いて入力する。図37においては、X染色体およびY染色体のいずれも「正常」である旨が入力されている。 If it has been confirmed, the user selects the check box located at the upper left of the sperm confirmation information field 838 to display a check mark. The user inputs whether each of the X chromosome and the Y chromosome possessed by the sperm donor is normal or abnormal based on the medical record and the like using the button displayed at the bottom of the sperm confirmation information field 838. In FIG. 37, the fact that both the X chromosome and the Y chromosome are “normal” is input.
 確定していない場合には、ユーザは精子推定情報欄839の左上に配置されたチェックボックスを選択して、チェックマークを表示させる。精子推定情報欄839には、精子提供者のX染色体およびY染色体のそれぞれが正常である推定確率および異常である推定確率を百分率で入力する欄が表示されている。 If not confirmed, the user selects the check box located at the upper left of the sperm estimation information field 839 to display a check mark. The sperm estimation information column 839 displays a column for inputting, as a percentage, the estimated probability that the X chromosome and the Y chromosome of the sperm donor are normal and the estimated probability that they are abnormal.
 精子提供者の性染色体異常の有無が確定していない場合、産科医等の専門家が家族歴等に基づいて精子提供者の性染色体異常の有無に関する確率を推定して、カルテ等に記載する。ユーザは、カルテ等に基づいて、精子推定情報欄839の各欄に推定確率を入力する。 If the presence or absence of a sex chromosome abnormality in the sperm donor has not been determined, an expert such as an obstetrician estimates the probability of the presence or absence of a sex chromosome abnormality in the sperm donor based on the family history and records it in the medical record, etc. .. The user inputs the estimated probability in each column of the sperm estimation information column 839 based on the medical record or the like.
 具体的には、XY欄834にX染色体を介して遺伝する疾患に関する判定を行なう旨が表示されている場合には、ユーザはカルテ等に基づいてX染色体が正常である推定確率および異常である推定確率を精子推定情報欄839に入力する。XY欄834にY染色体を介して遺伝する疾患に関する判定を行なう旨が表示されている場合には、ユーザはカルテ等に基づいてY染色体が正常である推定確率および異常である推定確率を精子推定情報欄839に入力する。 Specifically, when the XY column 834 displays that determination regarding a disease inherited via the X chromosome is displayed, the user has an estimated probability that the X chromosome is normal based on the medical record and the like, and the abnormality. The estimated probability is entered in the sperm estimation information field 839. When the XY column 834 displays that determination regarding a disease inherited through the Y chromosome is displayed, the user estimates the estimated probability that the Y chromosome is normal and the estimated probability that the Y chromosome is abnormal based on the medical record and the like. Input in the information column 839.
 なお、制御部21は、卵子推定情報欄837に含まれる3個の欄のうち、2個に数字が入力された場合、合計確率が1になるように残りの1個を算出して、表示しても良い。同様に制御部21は精子推定情報欄839に含まれる2個の欄のうち、一方に数字が入力された場合、合計確率が1になるように他方を算出して、表示しても良い。制御部21は、卵子推定情報欄837の合計確率、および、精子推定情報欄839の合計確率がそれぞれ1ではない場合に、エラーメッセージを表示して、ユーザに修正を促しても良い。 Note that the control unit 21 calculates and displays the remaining one so that the total probability becomes 1 when a number is input in two of the three fields included in the egg estimation information field 837. You may. Similarly, the control unit 21 may calculate and display the other so that the total probability becomes 1 when the number is input to one of the two fields included in the sperm estimation information field 839. When the total probability of the egg estimation information column 837 and the total probability of the sperm estimation information column 839 are not 1, the control unit 21 may display an error message and prompt the user to make corrections.
 図38は、実施の形態9の情報処理装置20が表示する画面を示す説明図である。図38に示す画面は、図35を使用して説明した画面の代わりに表示される。図38に示す画面では、性別欄82と判定ボタン68との間に発症率欄841および保因率欄842が表示されている。 FIG. 38 is an explanatory diagram showing a screen displayed by the information processing device 20 according to the ninth embodiment. The screen shown in FIG. 38 is displayed instead of the screen described using FIG. In the screen shown in FIG. 38, an incidence rate column 841 and a carrier rate column 842 are displayed between the sex column 82 and the determination button 68.
 発症率欄841には顕微授精により出生した子供が伴性遺伝子疾患を発症する確率が表示されている。保因率欄842には、顕微授精により出生した子供が伴性遺伝子疾患の保因者である確率が表示されている。 The incidence rate column 841 displays the probability that a child born by microinsemination will develop a sex-linked genetic disease. The carrier rate column 842 displays the probability that a child born by microinsemination is a carrier of a sex-linked genetic disease.
 「X劣性遺伝疾患」の判定をする場合を例にして、発症率および保因率の算出方法の概要を説明する。卵子提供者および精子提供者の遺伝子異常の有無と、子供の発症率および保因率は、図30に示す関係である。 An outline of the method of calculating the incidence rate and the carrier rate will be explained, taking the case of determining "X recessive genetic disease" as an example. The presence or absence of genetic abnormality in the egg donor and the sperm donor, and the incidence and carrier rate in children are shown in FIG. 30.
 図37に示す例では、卵子提供者のX染色体の異常遺伝子同士がホモ接合しており、精子提供者のX染色体は正常である。図30の右上の角丸四角形で囲んだように、子供が女子であれば発症率は0パーセント、保因率は100パーセントであり、子供が男子であれば発症率、保因率とも100パーセントである。 In the example shown in FIG. 37, abnormal genes on the X chromosome of the egg donor are homozygous with each other, and the X chromosome of the sperm donor is normal. As surrounded by the rounded rectangle in the upper right of FIG. 30, the incidence rate is 0% and the carrier rate is 100% if the child is a girl, and the incidence rate and the carrier rate are 100% if the child is a boy. Is.
 図30から図32に示す表は、データベースまたは所定の条件を入力した場合に発症率および保因率を出力するプログラムの形式で、補助記憶装置23に記録されている。制御部21は、ユーザの入力に基づいて、子供が男子である場合と女子である場合の発症率および保因率をそれぞれ取得する。 The tables shown in FIGS. 30 to 32 are recorded in the auxiliary storage device 23 in the form of a database or a program that outputs the incidence rate and the carrier rate when a predetermined condition is input. The control unit 21 respectively acquires the incidence rate and the carrier rate when the child is a boy and when the child is a girl, based on the input by the user.
 X精子である確率が10パーセント、Y精子である確率が90パーセントである精子を顕微授精に使用した場合、受精卵が男性である確率、すなわち男子が生まれる確率は90パーセントであり、受精卵が女性である確率、すなわち女子が生まれる確率は10パーセントである。 When sperm with a probability of X sperm of 10% and a probability of Y sperm of 90% are used for microinsemination, the probability that a fertilized egg is male, that is, the probability that a male will be born is 90%. The probability of being a woman, ie the birth of a girl, is 10%.
 制御部21は、男子が生まれる確率と、男子の発症率との積、および、女子が生まれる確率と、女子の発症率との積とを加算することにより、顕微授精により出生する子供の発症率を算出する。同様に制御部21は、男子が生まれる確率と、男子の保因率との積、および、女子が生まれる確率と、女子の保因率との積とを加算することにより、顕微授精により出生する子供の保因率を算出する。 The control unit 21 adds the product of the probability of birth of a boy and the incidence of boys, and the product of the probability of birth of a girl and the incidence of girls to the incidence of children born by microinsemination. To calculate. Similarly, the control unit 21 adds the product of the probability of birth of a boy and the carrier rate of a boy and the product of the probability of birth of a girl and the carrier rate of a girl to give birth by microinsemination. Calculate the child carrier rate.
 図37に示す例では、顕微授精により出生する子供の発症率は90パーセント、保因率は100パーセントである。 In the example shown in FIG. 37, the incidence rate of children born by microinsemination is 90% and the carrier rate is 100%.
 卵子提供者のX染色体の異常遺伝子同士がヘテロ接合しており、精子提供者の遺伝子が正常である場合の例を説明する。図30の上側中央部の角丸四角形で囲んだように、子供が女子であれば発症率は0パーセント、保因率は50パーセントであり、子供が男子であれば発症率、保因率とも50パーセントである。 Explain an example in which the abnormal gene on the X chromosome of the egg donor is heterozygous for each other and the gene of the sperm donor is normal. As shown by the rounded rectangle in the upper center of FIG. 30, if the child is a girl, the incidence is 0% and the carrier rate is 50%. If the child is a boy, the incidence and carrier rate are both. 50 percent.
 X精子である確率が10パーセント、Y精子である確率が90パーセントである精子を顕微授精に使用した場合、男子が生まれる確率は90パーセント、女子が生まれる確率は10パーセントである。 When using sperm with a 10% chance of being X sperm and a 90% chance of being Y sperm for microinsemination, there is a 90% chance of having a male and a 10% chance of having a female.
 制御部21は、男子の発症率である50パーセントと、男子が生まれる確率である90パーセントとの積と、女子の発症率である0パーセントと、女子が生まれる確率である10パーセントとの積とを加算することにより、疾患の発症率は45パーセントであると算出する。同様に制御部21は、疾患の保因率は50パーセントであると算出する。 The control unit 21 calculates the product of the incidence of males, 50%, the probability of males being born, 90%, the incidence of females, 0%, and the probability of being females, 10%. The disease incidence is calculated to be 45 percent by adding Similarly, the control unit 21 calculates that the carrier rate of the disease is 50%.
 図37を使用して説明した画面で、卵子推定情報欄837または精子推定情報欄839に推定確率が0パーセントまたは100パーセント以外の数値で入力された場合には、制御部21は、それぞれのケースの組み合わせを加重平均することにより、疾患の発症率および保因率を算出する。 In the screen described using FIG. 37, when the estimated probability is input in the egg estimation information column 837 or the sperm estimation information column 839 with a value other than 0% or 100%, the control unit 21 determines the respective cases. The disease incidence and carrier rate are calculated by weighted averaging the combinations of
 図39は、実施の形態9のプログラムの処理の流れを示すフローチャートである。制御部21は、図37を使用して説明した設定入力画面を表示する(ステップS711)。制御部21は、ユーザにより入力された設定を取得する(ステップS712)。 39 is a flowchart showing the flow of processing of the program according to the ninth embodiment. The control unit 21 displays the setting input screen described using FIG. 37 (step S711). The control unit 21 acquires the setting input by the user (step S712).
 制御部21は、発症率と保因率算出のサブルーチンを起動する(ステップS713)。発症率と保因率算出のサブルーチンは、X精子を使用した場合とY精子を使用した場合の、伴性遺伝疾患の発症率および保因率をそれぞれ算出するサブルーチンである。発症率と保因率算出のサブルーチンの処理の流れは後述する。 The control unit 21 activates a subroutine for calculating an onset rate and a carrier rate (step S713). The onset rate and carrier rate calculation subroutines are subroutines for calculating the onset rate and carrier rate of a sex-linked genetic disease when X sperm is used and when Y sperm is used, respectively. The processing flow of the subroutine for calculating the incidence rate and the carrier rate will be described later.
 制御部21は、判定ボタン68の選択を受け付けたか否かを判定する(ステップS701)。判定ボタン68の選択を受け付けたと判定した場合(ステップS701でYES)、制御部21はカメラ48を介して精子が撮影された撮影画像を取得する(ステップS702)。 The control unit 21 determines whether or not the selection of the determination button 68 has been accepted (step S701). When it is determined that the selection of the determination button 68 has been accepted (YES in step S701), the control unit 21 acquires the captured image of the sperm through the camera 48 (step S702).
 制御部21は、精子画像特徴量を抽出する(ステップS703)。制御部21は、精子画像特徴量を性別判定学習モデル56に入力して、観察中の精子がX精子である確率およびY精子である確率を取得する(ステップS704)。 The control unit 21 extracts the sperm image feature amount (step S703). The control unit 21 inputs the sperm image feature amount into the sex determination learning model 56, and acquires the probability that the sperm under observation is X sperm and the probability that it is Y sperm (step S704).
 制御部21は、ステップS713で取得した精子の性別ごとの発症率と、精子の性別ごとの確率とに基づいて、観察中の精子を使用した場合の発症率を算出する(ステップS721)。具体的には、制御部21は(7)式により発症率を算出する。
 発症率=X精子を用いた場合の発症率×X精子である確率
     +Y精子を用いた場合の発症率×Y精子である確率 ‥‥‥(7)
The control unit 21 calculates the incidence rate when the observed sperm is used based on the incidence rate of each sperm by sex and the probability of each sex of the sperm acquired in step S713 (step S721). Specifically, the control unit 21 calculates the onset rate by the expression (7).
Incidence rate = Incidence rate when X sperm is used x Probability of X sperm + Incidence rate when Y sperm is used x Probability of Y sperm ... (7)
 制御部21は、ステップS713で取得した精子の性別ごとの発症率と、精子の性別ごとの確率とに基づいて、観察中の精子を使用した場合の保因率を算出する(ステップS722)。具体的には、制御部21は(8)式により保因率を算出する。
 発症率=X精子を用いた場合の保因率×X精子である確率
      +Y精子を用いた場合の保因率×Y精子である確率 ‥‥‥(8)
The control unit 21 calculates a carrier rate when the observed sperm is used based on the incidence of each sperm by sex and the probability of each sperm acquired in step S713 (step S722). Specifically, the control unit 21 calculates the carrier rate by the equation (8).
Incidence rate = Carrier rate with X sperm x Probability of X sperm + Carrier rate with Y sperm x Probability of Y sperm (8)
 制御部21は、発症率欄841にステップS721で算出した発症率を、保因率欄842にステップS722で算出した保因率を、それぞれ表示する(ステップS723)。 The control unit 21 displays the incidence rate calculated in step S721 in the incidence rate column 841 and the carrier rate calculated in step S722 in the carrier rate column 842 (step S723).
 判定ボタン68の選択を受け付けていないと判定した場合(ステップS701でNO)、またはステップS723の終了後、制御部21は、終了ボタン67の選択を受け付けたか否かを判定する(ステップS706)。終了ボタン67の選択を受け付けていないと判定した場合(ステップS706でNO)、制御部21は、ステップS701に戻る。終了ボタン67の選択を受け付けたと判定した場合(ステップS706でYES)、制御部21は処理を終了する。 When it is determined that the selection of the determination button 68 has not been accepted (NO in step S701), or after the end of step S723, the control unit 21 determines whether the selection of the termination button 67 has been accepted (step S706). When it is determined that the selection of the end button 67 is not accepted (NO in step S706), the control unit 21 returns to step S701. When it is determined that the selection of the end button 67 is accepted (YES in step S706), the control unit 21 ends the process.
 図40は、発症率と保因率算出のサブルーチンの処理の流れを示すフローチャートである。発症率と保因率算出のサブルーチンは、X精子を使用した場合とY精子を使用した場合の、伴性遺伝疾患の発症率および保因率をそれぞれ算出するサブルーチンである。 FIG. 40 is a flowchart showing the flow of processing of a subroutine for calculating the incidence rate and carrier rate. The onset rate and carrier rate calculation subroutines are subroutines for calculating the onset rate and carrier rate of a sex-linked genetic disease when X sperm is used and when Y sperm is used, respectively.
 なお、以下の説明においては、図37の卵子提供者欄832を介して入力を受け付けた、卵子提供者の遺伝子が正常である確率をPxn、ヘテロ型の異常である確率をPxt、ホモ型の異常である確率をPxmと記載する。同様に、図37の精子提供者欄833を介して入力を受け付けた、精子提供者の遺伝子が正常である確率をPyn、異常である確率をPyaと記載する。 In the following description, the probability that the gene of the egg donor is normal is Pxn, the probability that the gene is heterozygous is Pxt, and that of the homozygous type is the input gene received through the egg donor column 832 in FIG. The probability of being abnormal is described as Pxm. Similarly, the probability that the gene of the sperm donor who received the input via the sperm donor column 833 of FIG. 37 is normal is described as Pyn, and the probability of being abnormal is described as Pya.
 なお、卵子確定情報欄836が使用された場合には、Pxn、PxtおよびPxmのいずれか一つが100パーセントであり、残りは0パーセントである。精子確定情報欄838が使用された場合には、PynおよびPyaのいずれか一方が100パーセントであり、他方が0パーセントである。 If the egg confirmation information field 836 is used, one of Pxn, Pxt, and Pxm is 100%, and the rest is 0%. When the sperm confirmation information field 838 is used, one of Pyn and Pya is 100% and the other is 0%.
 制御部21は疾患設定欄830を介して入力を受け付けた伴性遺伝疾患がY遺伝疾患であるか否かを判定する(ステップS731)。Y遺伝疾患であると判定した場合(ステップS731でYES)、制御部21はX精子を使用した場合、および、Y精子を使用した場合の、受精卵すなわち新生児における伴性遺伝疾患の発症率および保因率を算出する(ステップS732)。 The control unit 21 determines whether or not the sex-linked genetic disease that has been input via the disease setting field 830 is the Y genetic disease (step S731). When it is determined that the disease is Y genetic disease (YES in step S731), the control unit 21 uses the X sperm and the Y sperm, and the incidence rate of the congenital genetic disease in the fertilized egg, that is, in the newborn baby. The carrier rate is calculated (step S732).
 具体的には、X精子を使用した場合の発症率および保因率は0パーセントである。Y精子を使用した場合の発症率および保因率は精子提供者の性染色体が異常である確率Pyaに等しい値である。その後、制御部21は処理を終了する。 Specifically, the incidence and carrier rate when X sperm are used is 0%. The incidence and carrier rate when Y sperm are used are equal to the probability Pya that the sex chromosome of the sperm donor is abnormal. After that, the control unit 21 ends the process.
 Y遺伝疾患ではないと判定した場合(ステップS731でNO)、制御部21は、疾患設定欄830を介して入力を受け付けた伴性遺伝疾患の遺伝形式に関する発症率行列Mpを取得する(ステップS733)。発症率行列Mpは、図30および図31を使用して説明した伴性遺伝疾患の発症率および保因率を示す表中の発症率に基づいて、遺伝形式および精子の性別ごとに作成され、補助記憶装置23に記録されている。発症率行列Mpは(9)式で示される If it is determined that the disease is not a Y genetic disease (NO in step S731), the control unit 21 acquires the incidence rate matrix Mp related to the inherited form of the sex-linked genetic disease that has been input via the disease setting field 830 (step S733). ). The incidence rate matrix Mp is created for each inheritance type and sperm gender based on the incidence rate in the table showing the incidence rate and carrier rate of the sex-linked genetic disease described using FIGS. 30 and 31. It is recorded in the auxiliary storage device 23. The incidence rate matrix Mp is expressed by the equation (9).
Figure JPOXMLDOC01-appb-M000007
  Mp11は、精子提供者、卵子提供者共に性染色体が正常である場合の発症率を示す。
  Mp12は、精子提供者の性染色体が正常で、卵子提供者の性染色体異常がヘテロ接合である場合の発症率を示す。
  Mp13は、精子提供者の性染色体が正常で、卵子提供者の性染色体異常がホモ接合である場合の発症率を示す。
  Mp21は、精子提供者の性染色体が異常で、卵子提供者の性染色体が正常である場合の発症率を示す。
  Mp22は、精子提供者の性染色体が異常で、卵子提供者の性染色体異常がヘテロ接合である場合の発症率を示す。
  Mp21は、精子提供者の性染色体が異常で、卵子提供者の性染色体異常がホモ接合である場合の発症率を示す。
Figure JPOXMLDOC01-appb-M000007
Mp11 indicates the incidence when the sex chromosomes are normal in both sperm donors and egg donors.
Mp12 indicates the incidence when the sex chromosome of the sperm donor is normal and the sex chromosome abnormality of the egg donor is heterozygous.
Mp13 indicates the incidence when the sex chromosome of the sperm donor is normal and the sex chromosome abnormality of the egg donor is homozygous.
Mp21 indicates the incidence when the sex chromosome of the sperm donor is abnormal and the sex chromosome of the egg donor is normal.
Mp22 indicates the incidence when the sex chromosome of the sperm donor is abnormal and the sex chromosome abnormality of the egg donor is heterozygous.
Mp21 indicates the incidence when the sex chromosome of the sperm donor is abnormal and the sex chromosome abnormality of the egg donor is homozygous.
 たとえば、図30を使用して説明した伴性劣性遺伝疾患について、X精子を用いた場合の発症率行列Mpを(10)式に、Y精子を用いた場合の発症率行列Mpを(11)式にそれぞれ示す。 For example, regarding the sex-linked recessive disease described using FIG. 30, the incidence rate matrix Mp when X spermatozoa is used is expressed by (10), and the incidence rate matrix Mp when Y sperm is used is (11). Each is shown in the formula.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 制御部21は、(12)式に基づいてX精子、Y精子それぞれに関する発症率Ppを算出する(ステップS734)。 The control unit 21 calculates the incidence rate Pp for each of the X sperm and the Y sperm based on the equation (12) (step S734).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 制御部21は、疾患設定欄830を介して入力を受け付けた伴性遺伝疾患の遺伝形式に関する保因率行列Mcを取得する(ステップS735)。保因率行列Mcは、図30および図31を使用して説明した伴性遺伝疾患の発症率および保因率を示す表中の保因率に基づいて、遺伝形式および精子の性別ごとに作成され、補助記憶装置23に記録されている。保因率行列Mcは(13)式で示される The control unit 21 acquires the carrier ratio matrix Mc related to the inherited form of the sex-linked genetic disease, which is input via the disease setting field 830 (step S735). The carrier ratio matrix Mc is created for each inheritance type and sperm gender based on the carrier ratio in the table showing the incidence and carrier ratio of the sex-linked genetic disease described using FIGS. 30 and 31. And is recorded in the auxiliary storage device 23. The carrier ratio matrix Mc is expressed by equation (13).
Figure JPOXMLDOC01-appb-M000010
  Mc11は、精子提供者、卵子提供者共に性染色体が正常である場合の保因率を示す。
  Mc12は、精子提供者の性染色体が正常で、卵子提供者の性染色体異常がヘテロ接合である場合の保因率を示す。
  Mc13は、精子提供者の性染色体が正常で、卵子提供者の性染色体異常がホモ接合である場合の保因率を示す。
  Mc21は、精子提供者の性染色体が異常で、卵子提供者の性染色体が正常である場合の保因率を示す。
  Mc22は、精子提供者の性染色体が異常で、卵子提供者の性染色体異常がヘテロ接合である場合の保因率を示す。
  Mc21は、精子提供者の性染色体が異常で、卵子提供者の性染色体異常がホモ接合である場合の保因率を示す。
Figure JPOXMLDOC01-appb-M000010
Mc11 indicates the carrier rate when the sex chromosome is normal in both sperm donors and egg donors.
Mc12 indicates the carrier rate when the sex chromosome of the sperm donor is normal and the sex chromosome abnormality of the egg donor is heterozygous.
Mc13 shows the carrier rate when the sex chromosome of the sperm donor is normal and the sex chromosome abnormality of the egg donor is homozygous.
Mc21 indicates the carrier rate when the sex chromosome of the sperm donor is abnormal and the sex chromosome of the egg donor is normal.
Mc22 indicates the carrier rate when the sex chromosome of the sperm donor is abnormal and the sex chromosome abnormality of the egg donor is heterozygous.
Mc21 indicates the carrier rate when the sex chromosome of the sperm donor is abnormal and the sex chromosome abnormality of the egg donor is homozygous.
 制御部21は、(14)式に基づいてX精子、Y精子それぞれに関する保因率Pcを算出する(ステップS736)。その後、制御部21は処理を終了する。 The control unit 21 calculates the carrier rate Pc for each of the X sperm and the Y sperm based on the equation (14) (step S736). After that, the control unit 21 ends the process.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 本実施の形態によると、精子の性別に加えて伴性遺伝子疾患の発症率および保因率を表示する情報処理システム10を提供できる。 According to the present embodiment, it is possible to provide the information processing system 10 that displays the incidence rate and carrier rate of a sex-linked genetic disease in addition to the sex of sperm.
 培養士は、産科医から提示された情報に基づいて、伴性遺伝子疾患の発症率および保因率が低いと予測される精子を選択して顕微授精を行なえる。これにより、顕微授精により出生する子供が伴性遺伝疾患を発症する可能性、および、伴性遺伝疾患の因子を保有する可能性を低減できる。また、伴性遺伝疾患に関連する遺伝子異常による流産等を予防して、顕微授精後による出産の成功確率を高めることもできる。 Based on the information presented by the obstetrician, the incubator can select sperm with a low incidence and carrier rate of sex-linked genetic disease for microinsemination. This can reduce the possibility that a child born by microinsemination will develop a sex-linked genetic disease and the possibility of carrying a factor of the sex-linked genetic disease. Further, it is possible to prevent a miscarriage or the like due to a genetic abnormality associated with a sex-linked genetic disease and increase the probability of successful delivery after microinsemination.
 複数の伴性遺伝子疾患のそれぞれについて、発症率および保因率を算出して、一覧表示しても良い。卵子提供者と精子提供者のそれぞれが異なる伴性遺伝子疾患に関する遺伝子異常を有する場合等に、伴性遺伝子疾患の発症率および保因率が低いと予測される精子を選択して顕微授精を行なえる。 ▽ For each of a plurality of sex-linked genetic diseases, the incidence and carrier rate may be calculated and displayed in a list. When the egg donor and the sperm donor have different gene abnormalities related to the sex-linked genetic disease, select a sperm that is predicted to have a low incidence and carrier rate of the sex-linked genetic disease and perform microinsemination. It
 各実施例で記載されている技術的特徴(構成要件)はお互いに組合せ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The technical features (constituent elements) described in the respective embodiments can be combined with each other, and by combining them, new technical features can be formed.
The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the meanings described above but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
 10  情報処理システム
 15  表示装置
 20  情報処理装置
 21  制御部
 22  主記憶装置
 23  補助記憶装置
 24  通信部
 25  表示I/F
 26  ステージI/F
 28  撮影I/F
 29  読取部
 41  顕微鏡
 42  ステージ
 421 観察容器
 43  接眼レンズ
 44  照明部
 45  光路分割部
 46  ステージ移動部
 47  対物レンズ
 48  カメラ
 51  教師データDB
 52  予備撮影DB
 53  経過学習モデル(学習モデル)
 531 入力層
 532 中間層
 533 出力層
 54  画像特徴量モデル
 541 入力層
 542 中間層
 543 出力層
 545 中央層
 546 画像エンコーダ
 56  性別判定学習モデル
 561 入力層
 562 中間層
 563 出力層
 57  正常精子判定モデル
 571 入力層
 572 中間層
 573 出力層
 58  性別教師データDB
 61  画像欄
 62  目標数欄
 63  撮影済数欄
 64  患者情報欄
 65  評価欄
 651 第1評価欄
 652 第2評価欄
 653 第3評価欄
 654 第4評価欄
 655 第5評価欄
 659 総合評価欄
 66  撮影ボタン
 67  終了ボタン
 68  判定ボタン
 69  次ボタン
 71  撮影画像取得部
 72  入力部
 73  出力部
 81  指標線
 82  性別欄
 830 疾患設定欄
 831 疾患名欄
 832 卵子提供者欄
 833 精子提供者欄
 834 XY欄
 835 優性劣性欄
 836 卵子確定情報欄
 837 卵子推定情報欄
 838 精子確定情報欄
 839 精子推定情報欄
 841 発症率欄
 842 保因率欄
 90  コンピュータ
 96  可搬型記録媒体
 97  プログラム
 98  半導体メモリ
 
10 Information Processing System 15 Display Device 20 Information Processing Device 21 Control Unit 22 Main Storage Device 23 Auxiliary Storage Device 24 Communication Unit 25 Display I / F
26 Stage I / F
28 Shooting I / F
29 Reading unit 41 Microscope 42 Stage 421 Observation container 43 Eyepiece 44 Illumination unit 45 Optical path splitting unit 46 Stage moving unit 47 Objective lens 48 Camera 51 Teacher data DB
52 Preliminary shooting DB
53 Progressive learning model (learning model)
531 Input layer 532 Intermediate layer 533 Output layer 54 Image feature model 541 Input layer 542 Intermediate layer 543 Output layer 545 Central layer 546 Image encoder 56 Gender determination learning model 561 Input layer 562 Intermediate layer 563 Output layer 57 Normal sperm determination model 571 input Layer 572 Intermediate layer 573 Output layer 58 Gender teacher data DB
61 Image column 62 Target number column 63 Photographed number column 64 Patient information column 65 Evaluation column 651 1st evaluation column 652 2nd evaluation column 653 3rd evaluation column 654 4th evaluation column 655 5th evaluation column 659 Overall evaluation column 66 Imaging Button 67 End button 68 Judgment button 69 Next button 71 Captured image acquisition unit 72 Input unit 73 Output unit 81 Index line 82 Gender column 830 Disease setting column 831 Disease name column 832 Egg donor column 833 Sperm provider column 834 XY column 835 Dominance Recessive column 836 Egg confirmation information column 837 Egg estimation information column 838 Sperm confirmation information column 839 Sperm estimation information column 841 Incidence rate column 842 Carrier rate column 90 Computer 96 Portable recording medium 97 Program 98 Semiconductor memory

Claims (22)

  1.  顕微授精に使用する候補精子が撮影された撮影画像を取得し、
     精子が撮影された撮影画像を受け付けて前記精子を用いた顕微授精の成否に関する予測を出力する学習モデルに、取得した撮影画像を入力し、
     入力された撮影画像に基づいて前記学習モデルから出力された予測を出力する
     処理をコンピュータに実行させるプログラム。
    Acquire a captured image of the candidate sperm used for microinsemination,
    A learning model that receives a captured image of a sperm photographed and outputs a prediction regarding success or failure of microinsemination using the sperm, inputs the captured image acquired,
    A program that causes a computer to execute a process of outputting a prediction output from the learning model based on an input captured image.
  2.  前記学習モデルは、
     過去に顕微授精に使用された精子が撮影された撮影画像と、前記精子を用いて顕微授精を行なった後の各段階まで正常に成長するか否かとを関連づけて記録した教師データを用いて機械学習させた学習済モデルである
     請求項1に記載のプログラム。
    The learning model is
    Machines using teacher data recorded by associating captured images of sperm used for microinsemination in the past and whether or not they normally grow to each stage after microinsemination using the sperm The program according to claim 1, which is a learned model that has been learned.
  3.  前記学習モデルは、入力された撮影画像から画像特徴量を抽出する画像エンコーダを備え、
     前記画像エンコーダにより抽出された画像特徴量に基づいて前記予測を出力する
     請求項1または請求項2に記載のプログラム。
    The learning model includes an image encoder that extracts an image feature amount from an input captured image,
    The program according to claim 1, wherein the prediction is output based on the image feature amount extracted by the image encoder.
  4.  前記予測は、顕微授精を行なった後の各段階まで正常に成長する予測成功確率である
     請求項2または請求項3に記載のプログラム。
    The program according to claim 2 or 3, wherein the prediction is a prediction success probability of normally growing up to each stage after microinsemination.
  5.  顕微授精を希望する一人の精子提供者から採取された精液に含まれる精子が撮影された複数の撮影画像をそれぞれ前記学習モデルに入力し、
     前記学習モデルから出力されたそれぞれの予測を取得し、
     取得した前記予測に基づいて各段階の成否にかかるサンプル分布を生成する
     請求項2から請求項4のいずれか一つに記載のプログラム。
    Input a plurality of captured images of the sperm contained in the semen collected from one sperm donor who desires microinsemination to the learning model,
    Obtaining each prediction output from the learning model,
    The program according to any one of claims 2 to 4, which generates a sample distribution regarding success or failure of each stage based on the acquired prediction.
  6.  過去に行なわれた複数の顕微授精の症例における、顕微授精後の各段階まで正常に成長するか否かにかかる第1分布を取得し、
     前記第1分布と前記サンプル分布とに基づいて第2分布を生成する
     請求項5に記載のプログラム。
    In a plurality of cases of microinsemination carried out in the past, a first distribution concerning whether or not to normally grow to each stage after microinsemination is acquired,
    The program according to claim 5, wherein a second distribution is generated based on the first distribution and the sample distribution.
  7.  前記精子提供者から採取された精液に含まれる精子が撮影された撮影画像を取得し、
     前記学習モデルに前記撮影画像を入力して出力された予測を取得し、
     前記第2分布における、前記予測に対応する評価を出力する
     請求項6に記載のプログラム。
    Obtaining a photographed image of sperm contained in semen collected from the sperm donor,
    Obtain the prediction output by inputting the captured image to the learning model,
    The program according to claim 6, which outputs an evaluation corresponding to the prediction in the second distribution.
  8.  前記評価の信頼度を出力する
     請求項7に記載のプログラム。
    The program according to claim 7, which outputs the reliability of the evaluation.
  9.  顕微授精が行なわれた後の各段階における成否を取得し、
     前記顕微授精に使用された精子が撮影された撮影画像と、取得した各段階における成否とを関連づけた追加データを記録する
     請求項5から請求項8のいずれか一つに記載のプログラム。
    Acquire success or failure at each stage after microinsemination is performed,
    The program according to any one of claims 5 to 8, which records additional data that associates a captured image of a sperm used for microinsemination with success or failure at each acquired stage.
  10.  前記追加データを用いて前記学習モデルを更新する
     請求項9に記載のプログラム。
    The program according to claim 9, which updates the learning model using the additional data.
  11.  更新した前記学習モデルを顕微授精実施機関に配信する
     請求項10に記載のプログラム。
    The program according to claim 10, wherein the updated learning model is distributed to a microinsemination performing institution.
  12.  顕微鏡を介して撮影された顕微鏡画像を取得し、
     取得した前記顕微鏡画像に候補精子が含まれているか否かを判定し、
     候補精子が含まれていると判定した場合に、前記顕微鏡画像を前記撮影画像に使用する
     請求項1から請求項11のいずれか一つに記載のプログラム。
    Acquire a microscope image taken through a microscope,
    Determine whether the acquired microscopic image contains a candidate sperm,
    The program according to any one of claims 1 to 11, wherein the microscope image is used as the captured image when it is determined that a candidate sperm is included.
  13.  前記顕微鏡画像のうち、前記候補精子が含まれている部分を選択して前記撮影画像に使用する
     請求項12に記載のプログラム。
    The program according to claim 12, wherein a portion of the microscope image containing the candidate sperm is selected and used as the captured image.
  14.  精子が撮影された撮影画像を受け付けて前記精子に含まれる性染色体に関する予測を出力する性別判定学習モデルに、取得した撮影画像を入力し、
     入力された撮影画像に基づいて前記性別判定学習モデルから出力された予測を出力する
     請求項1から請求項13のいずれか一つに記載のプログラム。
    To the sex determination learning model that accepts the captured image of the sperm and outputs the prediction regarding the sex chromosome contained in the sperm, input the captured image acquired,
    The program according to any one of claims 1 to 13, which outputs the prediction output from the sex determination learning model based on the input captured image.
  15.  卵子提供者および精子提供者の伴性遺伝疾患に関する第1情報を取得し、
     前記伴性遺伝疾患の遺伝形式に関する第2情報を取得し、
     取得した前記第1情報および前記第2情報により得られる伴性遺伝疾患の発症率と、前記性別判定学習モデルから取得した予測とに基づいて、顕微授精により出生する子供が伴性遺伝疾患を発症する確率を出力する
     請求項14に記載のプログラム。
    Obtained the first information on the sex-linked genetic disease of the egg donor and the sperm donor,
    Obtaining second information on the inherited form of the sex-linked genetic disease,
    A child born by microinsemination develops a congenital genetic disease based on the incidence rate of the congenital genetic disease obtained by the acquired first information and the second information and the prediction acquired from the sex determination learning model. The program according to claim 14, which outputs a probability of performing.
  16.  卵子提供者および精子提供者の伴性遺伝疾患に関する第1情報を取得し、
     前記伴性遺伝疾患の遺伝形式に関する第2情報を取得し、
     取得した前記第1情報および前記第2情報により得られる伴性遺伝疾患の保因率と、前記性別判定学習モデルから取得した予測とに基づいて、顕微授精により出生する子供が伴性遺伝疾患の因子を有する確率を出力する
     請求項14に記載のプログラム。
    Obtained the first information on the sex-linked genetic disease of the egg donor and the sperm donor,
    Obtaining second information on the inherited form of the sex-linked genetic disease,
    Based on the carrier rate of the sex-linked genetic disease obtained by the acquired first information and the second information and the prediction acquired from the sex determination learning model, the child born by microinsemination is associated with the sex-linked genetic disease. The program according to claim 14, which outputs the probability of having a factor.
  17.  精子が撮影された撮影画像が入力される入力層と、
     前記精子を用いて顕微授精を行なった後の各段階における成否に関する予測を出力する出力層と、
     過去に顕微授精に使用された精子が撮影された撮影画像と、前記精子を用いて顕微授精を行なった後の各段階における成否とを関連づけて記録した教師データを用いてパラメータが学習された中間層とを備え、
     顕微授精に使用する候補精子が撮影された撮影画像が前記入力層に入力された場合に、前記中間層による演算を経て前記候補精子を用いて顕微授精を行なった場合の各段階まで正常に成長できる予測成功確率を前記出力層から出力するように
     コンピュータを機能させる学習モデル。
    An input layer to which the captured image of sperm is input,
    An output layer that outputs a prediction regarding success or failure at each stage after performing microinsemination using the sperm,
    The parameters were learned using the teacher data that recorded the captured images of sperm used for microinsemination in the past and the success or failure at each stage after performing microinsemination using the sperm. With layers,
    When a photographed image of a candidate sperm used for microinsemination is input to the input layer, normally grows up to each stage when microinsemination is performed using the candidate sperm through the calculation by the intermediate layer A learning model that causes a computer to output possible prediction success probabilities from the output layer.
  18.  前記入力層と前記中間層との間に設けられ、撮影画像から画像特徴量を抽出する画像エンコーダを備え、
     前記画像エンコーダにより抽出された画像特徴量を前記中間層に出力する
     請求項17に記載の学習モデル。
    An image encoder provided between the input layer and the intermediate layer and extracting an image feature amount from a captured image,
    The learning model according to claim 17, wherein the image feature amount extracted by the image encoder is output to the intermediate layer.
  19.  顕微授精に使用する候補精子が撮影された撮影画像を取得する撮影画像取得部と、
     精子が撮影された撮影画像を受け付けて前記精子を用いた顕微授精の成否に関する予測を出力する学習モデルに、取得した撮影画像を入力する入力部と、
     入力された撮影画像に基づいて前記学習モデルから出力された予測を出力する出力部と
     を備える情報処理装置。
    A captured image acquisition unit that acquires a captured image of a candidate sperm used for microinsemination,
    A learning model that receives a captured image of sperm and outputs a prediction regarding success or failure of microinsemination using the sperm, an input unit that inputs the acquired captured image,
    An information processing apparatus, comprising: an output unit that outputs the prediction output from the learning model based on an input captured image.
  20.  顕微授精に使用する候補精子が撮影された撮影画像を取得し、
     精子が撮影された撮影画像を受け付けて前記精子を用いた顕微授精の成否に関する予測を出力する学習モデルに、取得した撮影画像を入力し、
     入力された撮影画像に基づいて前記学習モデルから出力された予測を出力する
     処理をコンピュータに実行させる情報処理方法。
    Acquire a captured image of the candidate sperm used for microinsemination,
    A learning model that receives a captured image of a sperm and outputs a prediction regarding the success or failure of microinsemination using the sperm, inputs the captured image acquired,
    An information processing method for causing a computer to execute a process of outputting a prediction output from the learning model based on an input captured image.
  21.  顕微授精に使用する候補精子を撮影し、
     精子が撮影された撮影画像を受け付けて前記精子を用いた顕微授精の成否に関する予測を出力する学習モデルに、撮影した画像を入力し、
     入力された撮影画像に基づいて前記学習モデルから出力された顕微授精の成否に関する予測に基づく情報を表示する情報表示方法。
    Take a picture of the candidate sperm used for microinsemination,
    The captured image is input to a learning model that receives a captured image of a sperm and outputs a prediction regarding the success or failure of microinsemination using the sperm,
    An information display method for displaying information based on a prediction regarding success or failure of microinsemination output from the learning model based on an input captured image.
  22.  過去に行なわれた複数の顕微授精の症例について、顕微授精に使用された精子が撮影された撮影画像と、前記精子を用いて顕微授精を行なった後の各段階まで正常に成長できるか否かとを関連づけて記録した教師データを取得し、
     前記撮影画像を入力、顕微授精を行なった後の各段階まで正常に成長できるか否かを出力として、顕微授精に使用する候補精子が撮影された撮影画像が入力された場合に、前記候補精子を用いて顕微授精を行なった場合の各段階まで正常に成長できるか否かに関する予測を出力する学習モデルを生成する
     学習モデルの製造方法。
     
    Regarding multiple cases of microinsemination performed in the past, a photographed image of sperm used for microinsemination and whether or not it can grow normally up to each stage after microinsemination using the sperm Acquire the teacher data recorded by associating
    When the photographed image is input, the photographed image in which the candidate sperm to be used for the microinsemination is photographed is input as an output indicating whether or not normal growth can be achieved up to each stage after microinsemination is performed. A method of manufacturing a learning model, which generates a learning model that outputs a prediction regarding whether or not normal growth can be achieved at each stage when microinsemination is performed using.
PCT/JP2019/042705 2018-10-31 2019-10-31 Program, learning model, information processing device, information processing method, information display method, and method for producing learning model WO2020090947A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980068885.XA CN112889088A (en) 2018-10-31 2019-10-31 Program, learning model, information processing device, information processing method, information display method, and learning model manufacturing method
JP2020554016A JPWO2020090947A1 (en) 2018-10-31 2019-10-31 Program, learning model, information processing device, information processing method, information display method and learning model manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-206090 2018-10-31
JP2018206090 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090947A1 true WO2020090947A1 (en) 2020-05-07

Family

ID=70462483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042705 WO2020090947A1 (en) 2018-10-31 2019-10-31 Program, learning model, information processing device, information processing method, information display method, and method for producing learning model

Country Status (3)

Country Link
JP (1) JPWO2020090947A1 (en)
CN (1) CN112889088A (en)
WO (1) WO2020090947A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112200803A (en) * 2020-11-04 2021-01-08 成都朴华科技有限公司 Method and device for detecting maturity of sperm nucleoprotein
WO2021144800A1 (en) * 2020-01-16 2021-07-22 Baibys Fertility Ltd Automated spermatozoa candidate identification
WO2021261140A1 (en) * 2020-06-22 2021-12-30 株式会社片岡製作所 Cell treatment device, learning device, and learned model proposal device
US20220293219A1 (en) * 2021-03-09 2022-09-15 Thread Robotics Inc. System and method for dfi-based gamete selection
US11694344B2 (en) 2021-11-05 2023-07-04 Thread Robotics Inc. System and method for automated cell positioning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507134A (en) * 2011-01-05 2014-03-27 ザ・チャイニーズ・ユニバーシティー・オブ・ホンコン Noninvasive prenatal identification of fetal sex chromosome genotypes
JP2016509845A (en) * 2013-02-28 2016-04-04 プロジェニー, インコーポレイテッド Apparatus, method and system for image-based human germ cell classification
CN105809682A (en) * 2016-03-07 2016-07-27 清华大学深圳研究生院 Sperm analyzing device
JP2017507137A (en) * 2014-02-19 2017-03-16 ユニヴァーシティ オブ テネシー リサーチ ファウンデーションUniversity Of Tennessee Research Foundation Sex ratio skewing antibody and method of using the antibody

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626730B (en) * 2006-10-30 2012-07-18 西乃山医院 Detection of viable sperm using high frequency ultrasonic imaging
WO2017201540A1 (en) * 2016-05-20 2017-11-23 Techcyte, Inc. Machine learning classification of particles or substances in digital microscopy images

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507134A (en) * 2011-01-05 2014-03-27 ザ・チャイニーズ・ユニバーシティー・オブ・ホンコン Noninvasive prenatal identification of fetal sex chromosome genotypes
JP2016509845A (en) * 2013-02-28 2016-04-04 プロジェニー, インコーポレイテッド Apparatus, method and system for image-based human germ cell classification
JP2017507137A (en) * 2014-02-19 2017-03-16 ユニヴァーシティ オブ テネシー リサーチ ファウンデーションUniversity Of Tennessee Research Foundation Sex ratio skewing antibody and method of using the antibody
CN105809682A (en) * 2016-03-07 2016-07-27 清华大学深圳研究生院 Sperm analyzing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021144800A1 (en) * 2020-01-16 2021-07-22 Baibys Fertility Ltd Automated spermatozoa candidate identification
WO2021261140A1 (en) * 2020-06-22 2021-12-30 株式会社片岡製作所 Cell treatment device, learning device, and learned model proposal device
CN112200803A (en) * 2020-11-04 2021-01-08 成都朴华科技有限公司 Method and device for detecting maturity of sperm nucleoprotein
CN112200803B (en) * 2020-11-04 2023-10-10 成都朴华科技有限公司 Sperm nucleoprotein maturity detection method and device
US20220293219A1 (en) * 2021-03-09 2022-09-15 Thread Robotics Inc. System and method for dfi-based gamete selection
US11481900B2 (en) 2021-03-09 2022-10-25 Thread Robotics Inc. System and method for automated gamete selection
US11734822B2 (en) 2021-03-09 2023-08-22 Thread Robotics Inc. System and method for automated gamete selection
US11694344B2 (en) 2021-11-05 2023-07-04 Thread Robotics Inc. System and method for automated cell positioning

Also Published As

Publication number Publication date
CN112889088A (en) 2021-06-01
JPWO2020090947A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2020090947A1 (en) Program, learning model, information processing device, information processing method, information display method, and method for producing learning model
CN102985926B (en) Sterility treatment is assessed the system of multiple birth risk
JP6414310B1 (en) Fertilized egg quality evaluation method, program, and information processing apparatus
JP6525448B2 (en) Evaluation of embryo
EA025172B1 (en) Method for determining developmental potential of one or more human embryos to reach blastocyst stage
US20220392062A1 (en) Method based on image conditioning and preprocessing for human embryo classification
JP2017521067A (en) Method for three-dimensional reconstruction and determination of embryo quality
CN117836820A (en) System and method for the assessment of the outcome of human IVF-derived embryos
US10241108B2 (en) Abnormal syngamy phenotypes observed with time lapse imaging for early identification of embryos with lower development potential
US10031123B2 (en) Mechanical biomarkers for oocyte and embryo viability
CN104755608A (en) Automatic surveillance of in vitro incubating embryos
Erlich et al. Pseudo contrastive labeling for predicting IVF embryo developmental potential
Burai et al. Segmentation of the uterine wall by an ensemble of fully convolutional neural networks
CN116311234A (en) Semen quality assessment method based on deep learning
US11592436B2 (en) System and method for non-invasive embryo sexing
EP4352691A1 (en) Methods and systems for embryo classification
JP2022547900A (en) Automated evaluation of quality assurance metrics used in assisted reproductive procedures
WO2023151578A1 (en) Embryo selection process
Ramanathan A Comparison Study between Machine Learning and Conventional Methods in Successful Embryo Identification Used in Assisted Reproductive Technologies: A Systematic Review and Meta-analysis
Gökhan et al. Basics of Artificial Intelligence for Assisted Reproductive Technologies
Ozer et al. ARE THE MORPHOKINETIC PARAMETERS OF EUPLOID EMBRYOS DIFFERENT FROM THAT OF ANEUPLOID EMBRYOS?
Sciorio et al. Live birth following a single oocyte fertilized with ICSI and embryo biopsy at blastocyst stage: a case report
Bedrick et al. Physical activity is negatively associated with antral follicle count
Khan et al. Role of Artificial Intelligence in Quality Assurance in ART: A Review
Racicot et al. VALIDATION OF A MAIL-IN DELAYED SEMEN ANALYSIS PROTOCOL FOR HOME COLLECTION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879413

Country of ref document: EP

Kind code of ref document: A1