WO2020090911A1 - Distance measurement device - Google Patents

Distance measurement device Download PDF

Info

Publication number
WO2020090911A1
WO2020090911A1 PCT/JP2019/042624 JP2019042624W WO2020090911A1 WO 2020090911 A1 WO2020090911 A1 WO 2020090911A1 JP 2019042624 W JP2019042624 W JP 2019042624W WO 2020090911 A1 WO2020090911 A1 WO 2020090911A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pulsed light
distance measuring
pulsed
intensity
Prior art date
Application number
PCT/JP2019/042624
Other languages
French (fr)
Japanese (ja)
Inventor
木村 禎祐
尾崎 憲幸
謙太 東
武廣 秦
松原 弘幸
勇 高井
峰樹 曽我
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020090911A1 publication Critical patent/WO2020090911A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present disclosure relates to a distance measuring device.
  • a distance measuring device measures the distance from a measurement position to an object by emitting pulsed light from a light source and receiving the reflected light reflected by the object.
  • Patent Document 1 discloses a laser radar including a transmission optical system that irradiates a measurement object with a laser beam, and a reception optical system that receives reflected light of a laser beam that is irradiated and then reflected by the measurement object.
  • a device is disclosed.
  • the laser radar device samples the reception signal of the reflected light from the reception optical system. If the signal strength of the reception signal sampled this time is lower than the signal strength of the reception signal sampled last time, the laser radar device uses the signal strength of the reception signal sampled this time and the reception time to attribute the medium on the propagation path. The attenuation coefficient of the energy of the laser light is calculated.
  • Non-Patent Document 1 discloses a method of fitting a reflection component due to disturbance with a function to remove the fitted disturbance component (Non-Patent Document 1).
  • Patent Documents 2 to 4 a method of excluding the reflection peak due to disturbance such as fog in a multi-echo detection type laser radar that detects a plurality of reflection peaks is disclosed.
  • a distance measuring device that is one aspect of the technique of the present disclosure includes a light irradiation unit, a light receiving unit, and a signal processing unit.
  • the light irradiation unit outputs pulsed light.
  • the light receiving unit receives light and outputs the received light intensity as an intensity signal.
  • the signal processing unit acquires an intensity waveform including the reflected light of the pulsed light from the time change of the input intensity signal, and calculates the distance from the measurement position to the object based on the acquired intensity waveform.
  • the light irradiation unit outputs the first pulsed light and the second pulsed light whose waveform and / or output timing is changed with respect to the first pulsed light.
  • the signal processing unit performs predetermined signal processing on the first intensity waveform including the first reflected light of the first pulsed light and the second intensity waveform including the second reflected light of the second pulsed light.
  • a correction signal from which a noise signal due to disturbance is removed is calculated by.
  • the signal processing unit calculates the distance from the measurement position to the object based on the calculated waveform of the correction signal.
  • the signal processing unit calculates a correction signal by linearly adding a first intensity waveform including the first reflected light of the first pulsed light and a second intensity waveform including the second reflected light of the second pulsed light. It is preferable to calculate the distance to the object based on the calculated waveform of the correction signal.
  • the signal processing unit causes the first intensity waveform including the first reflected light of the first pulsed light and the second reflected light of the second pulsed light. It is preferable that the correction signal is calculated based on the difference between the second intensity waveform including the correction signal, and the distance to the object is calculated based on the calculated waveform of the correction signal.
  • the second pulsed light is configured by linear combination of a plurality of signals having different output timings.
  • the second pulsed light has a waveform with a pulse width wider than that of the first pulsed light, and the light irradiation unit outputs the first pulsed light and outputs the second pulsed light when a predetermined condition is satisfied.
  • the predetermined condition is that the intensity of the noise signal due to the disturbance is equal to or higher than the threshold in the first intensity waveform including the first reflected light of the first pulsed light.
  • the light receiving unit includes a first light receiving unit for receiving the first reflected light of the first pulsed light and a second light receiving unit for the second pulsed light.
  • a second light receiving unit that receives the second reflected light may be provided.
  • the light irradiation unit includes a first light irradiation unit and a second light irradiation unit, and the first light irradiation unit is located farther from the position of the light receiving opening of the light receiving unit than the arrangement position of the second light irradiation unit. May be located at.
  • a distance measuring device capable of detecting a reflection signal from an object with high sensitivity.
  • the distance measuring device 100 is configured to include a light irradiation unit 10, a light receiving unit 12, and a signal processing unit 14.
  • the light irradiation unit 10, the light receiving unit 12, and the signal processing unit 14 can be housed in the same housing.
  • the light irradiation unit 10 outputs pulsed light having a predetermined wavelength ⁇ .
  • the light receiving unit 12 receives the reflected light reflected by the measuring object 200. Accordingly, the distance measuring device 100 measures the distance from the device (measurement position) to the measurement object 200.
  • the light irradiation unit 10 emits light used for distance measurement in the distance measuring device 100.
  • the light irradiation unit 10 can be a laser diode (LD), a liquid crystal (LED), or the like.
  • the light irradiation unit 10 may use, for example, a laser diode whose emission wavelength ⁇ is in the infrared band (for example, 870 nm band).
  • the wavelength of the light output from the light irradiation unit 10 is not limited to this, and may be any electromagnetic wave having a wavelength that is reflected by the measurement object 200 and that the reflected light can be received by the light receiving unit 12.
  • the light irradiation unit 10 outputs pulsed light.
  • the emission time t0 of the pulsed light is input from the light irradiation unit 10 to the signal processing unit 14.
  • the distance measuring device 100 may be provided with a configuration for outputting light from the light irradiation unit 10 in a wide range.
  • the distance measuring device 100 may have a configuration in which the irradiation angle of the light output from the light irradiation unit 10 can be changed by rotating the polygon mirror.
  • the light receiving unit 12 includes a light receiving element.
  • the light receiving unit 12 has, for example, a configuration in which a plurality of light receiving elements are arranged.
  • the light-receiving unit 12 can be configured, for example, by arranging a total of 16 light-receiving elements (4 vertically ⁇ 4 horizontally) in an array.
  • the arrangement of the light receiving elements in the light receiving unit 12 is not limited to this, and may be configured by a single light receiving element.
  • the light receiving elements may be arranged in a one-dimensional array of a plurality of light receiving elements or in a two-dimensional array of N in the vertical direction ⁇ M in the horizontal direction (N ⁇ M).
  • the light receiving unit 12 converts the incident light into an electric signal according to the intensity of the light (light receiving intensity), and outputs the intensity signal of the incident light to the signal processing unit 14. Therefore, the signal processing unit 14 can acquire the intensity waveform of the incident light from the time change of the intensity signal output from the light receiving unit 12 (time change of the received light intensity).
  • the signal processing unit 14 performs a predetermined signal processing on the intensity waveform of the incident light input from the light receiving unit 12, and calculates the distance from the distance measuring device 100 to the measurement object 200. That is, the signal processing unit 14 calculates the distance from the measurement position to the object based on the reflected light of the pulsed light included in the waveform (intensity waveform) acquired from the input signal (intensity signal) from the light receiving unit 12. Specifically, the pulsed light output from the light irradiation unit 10 is reflected by the measuring object 200, and the reflected light is received by the light receiving unit 12. The signal processing unit 14 extracts the reflected light component from the intensity waveform acquired from the intensity signal of the reflected light from the light receiving unit 12.
  • the signal processing unit 14 acquires the reception time td of the reflected light of the pulsed light output from the light irradiation unit 10 from the extraction result.
  • the signal processing unit 14 multiplies the difference ⁇ t by the speed of light c ( ⁇ t ⁇ c) and divides the multiplication result by 2 (( ⁇ t ⁇ c) / 2). Thereby, the signal processing unit 14 obtains the distance D from the distance measuring device 100 to the measurement object 200.
  • the light irradiation unit 10 outputs the first pulsed light and the second pulsed light whose waveform and / or output timing is changed with respect to the first pulsed light. Then, the signal processing unit 14 performs predetermined signal processing on the first intensity waveform including the first reflected light of the first pulsed light and the second intensity waveform including the second reflected light of the second pulsed light. I do. Thereby, the signal processing unit 14 calculates the distance from the measurement position to the object.
  • FIG. 2A shows the first intensity when the light receiving unit 12 receives the first reflected light of the first pulsed light that is output from the first pulsed light (first energy E1) and is reflected by the measurement object 200.
  • An example of the waveform S1 is shown.
  • FIG. 2B shows the second reflected light of the second pulsed light which is output from the second pulsed light (second energy E2) having a wider pulse width than the first pulsed light and is reflected by the measurement object 200.
  • An example of the second intensity waveform S2 when the light receiving unit 12 receives light is shown. In the present embodiment, as shown in FIGS.
  • the light irradiation unit 10 includes a first pulse wave and a second pulse wave having different pulse widths so that the center positions of the pulse widths coincide with each other. Output pulse wave and. Further, the light irradiation unit 10 outputs the first pulse wave and the second pulse wave so that the numbers of pulsed lights match.
  • the reflected light from the measurement object 200 is only the reflection from the surface of the measurement object 200. Therefore, the reflected light from the measurement object 200 has substantially the same waveform as the first pulsed light or the second pulsed light output from the light irradiation unit 10.
  • FIG. 2C shows an example of the correction signal S calculated based on the first and second intensity waveforms S1 and S2 shown in FIGS. 2A and 2B.
  • the signal processing unit 14 includes a first intensity waveform S1 including the first reflected light of the first pulsed light and a second intensity waveform S2 including the second reflected light of the second pulsed light.
  • the correction signal S is calculated by linear addition using the equation (1).
  • the distance measuring device 100 of the present embodiment can obtain the correction signal S from which the noise signal due to the disturbance (disturbance light) caused by the scatterer is removed.
  • the distance measuring apparatus 100 has the first intensity waveform S1 including the first reflected light of the first pulsed light and the second intensity waveform S2 including the second reflected light of the second pulsed light.
  • the correction signal S from which the influence of the reflection from the scatterer that causes the disturbance is removed is obtained.
  • the distance measuring device 100 can improve the signal noise ratio (S / N) of the intensity signal of the reflected light from the light receiving unit 12.
  • the distance measuring device 100 obtains the light reception time td of the reflected light of the pulsed light based on the correction signal S.
  • the distance measuring apparatus 100 can eliminate the influence of disturbance such as the weather, and can obtain the distance D from the apparatus to the measuring object 200 with higher accuracy and accuracy.
  • the signal processing unit 14 when processing the first and second intensity waveforms S1 and S2, the signal processing unit 14 does not obtain a single acquisition result (measured value) from the light receiving unit 12, but a total value of a plurality of acquisition results or Calculate the average value.
  • the distance measuring apparatus 100 can reduce random noise such as noise due to background light and shot noise.
  • the method of using the first and second intensity waveforms S1 and S2 is effective in removing the noise signal due to the disturbance caused by the scatterer, as described above.
  • this method has room for improvement from the viewpoint of improving the signal noise ratio (S / N) of the intensity signal when there is no disturbance due to the scatterer. Therefore, when the signal processing unit 14 can determine from the first intensity waveform S1 that the intensity of the ambient light caused by the scatterer is relatively strong, the first and second intensity waveforms S1 and S2 (two intensity waveforms). It is preferable to execute the disturbance removal processing using.
  • the light irradiation unit 10 when the light irradiation unit 10 is normally configured to output the first pulsed light and the intensity of the ambient light caused by the scatterer is determined to be equal to or higher than a predetermined value (threshold value) in the first intensity waveform S1.
  • the light irradiation unit 10 outputs the second pulsed light.
  • the signal processing unit 14 acquires the first intensity waveform S1 when the above-described predetermined condition is not satisfied, and when the predetermined condition is satisfied, the first and second intensity waveforms S1. , S2 (two intensity waveforms) may be acquired.
  • the first pulse wave and the second pulse wave are arranged so that the center positions of the pulse widths of the first pulsed light and the second pulsed light output from the light irradiation unit 10 coincide with each other.
  • the output timing of the pulse wave is controlled.
  • the distance measuring device according to the present embodiment is arranged so that the first pulse wave and the second pulse wave by the light irradiating section are shifted so that the center positions of the pulse widths of the first pulse light and the second pulse light are displaced. May be configured to control the output timing of.
  • the same components as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 3A shows an example of the first intensity waveform S1 when the light receiving section 12 outputs the first pulsed light and receives the first reflected light of the first pulsed light reflected by the measurement object 200. .. Further, in the present embodiment, the light irradiation unit 10 outputs the second pulsed light whose pulse width is wider than that of the first pulsed light, and the rising start position of the pulse coincides with the rising start position of the pulse of the first pulsed light. To do.
  • FIG. 3B shows an example of the intensity waveform S2 when the light receiving unit 12 receives the second reflected light of the second pulsed light reflected by the measurement object 200 at this time.
  • 3C shows an example of the correction signal S calculated based on the first and second intensity waveforms S1 and S2 shown in FIGS. 3A and 3B.
  • the signal processing unit 14 linearly adds the intensity waveforms S1 and S2 using the above-described mathematical expression (1) to calculate the correction signal S.
  • the amount of subtraction of the peak position of the intensity signal is smaller than that in the case where the center positions of the pulse widths of the first pulse light and the second pulse light are matched. ..
  • the distance measuring apparatus 100 can obtain a larger peak value as compared with the case where the center positions of the pulse widths of the first pulsed light and the second pulsed light match.
  • the distance measuring device is configured so that the number of first pulsed lights and the number of second pulsed lights output from the light irradiation unit 10 are different.
  • the same components as those in the first and second embodiments will be designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 4A shows a first intensity waveform when one pulsed light is output as the first pulsed light and the light receiving unit 12 receives the first reflected light of the first pulsed light reflected by the measurement object 200.
  • An example of S1 is shown.
  • the light irradiation part 10 outputs two continuous pulsed lights as 2nd pulsed light.
  • FIG. 4B shows an example of the second intensity waveform S2 when the light receiving unit 12 receives the second reflected light of the second pulsed light reflected by the measurement object 200 at this time.
  • the pulsed light including one pulse having a pulse width wider than that of the first pulsed light instead of using the pulsed light including one pulse having a pulse width wider than that of the first pulsed light as the second pulsed light, two consecutive pulses having the same or narrower pulse width as the first pulsed light are used. Pulsed light including pulses is used as the second pulsed light. At this time, it is preferable that the peak position of the pulse included in the second pulsed light does not match the peak position of the pulse included in the first pulsed light.
  • the pulse waveforms of the first pulsed light and the second pulsed light need not be similar shapes. Further, instead of two continuous pulses, a linear combination of signals obtained by emitting light individually may be used as the second pulse light.
  • FIG. 4C shows an example of the correction signal S calculated based on the first and second intensity wavelengths S1 and S2 shown in FIGS. 4A and 4B.
  • the signal processing unit 14 linearly adds the intensity waveforms S1 and S2 using the above-described mathematical expression (1) to calculate the correction signal S.
  • the distance measuring apparatus 100 can reduce the reduction in the peak value of the intensity signal and the reduction in the removal rate of the disturbance component.
  • FIG. 5 shows the configuration of the distance measuring device 102 according to the fourth embodiment.
  • the distance measuring device 102 includes a first light irradiation unit 10a and a second light irradiation unit 10b (two light irradiation units) as light sources.
  • the 1st light irradiation part 10a functions as a 1st light source for outputting a 1st pulsed light
  • the 2nd light irradiation part 10b functions as a 2nd light source for outputting a 2nd pulsed light.
  • the first light irradiation unit 10a is arranged at a position Pa farther from the position Po of the light receiving opening of the light receiving unit 12 than the position Pb of the second light irradiation unit 10b.
  • the second light irradiation unit 10b is arranged at a position Pb closer to the position Po of the light receiving opening of the light receiving unit 12 than the position Pa of the first light irradiation unit 10a.
  • the first light irradiation unit 10a is arranged from the position Po to the arrangement position of the light irradiation unit 10a more than the distance B from the position Po of the light receiving opening of the light reception unit 12 to the arrangement position Pb of the second light irradiation unit 10b. It is preferable that the distance A to Pa be long (B ⁇ A).
  • the distance measuring device 102 of the present embodiment the first light irradiation unit 10a and the second light irradiation unit 10b (two light irradiation units) are arranged as described above.
  • the distance measuring device 102 can reduce the disturbance component in the correction signal S, which remains in the range of the fixed section (short range) close to the emission position of the pulse wave.
  • the configuration of the single light irradiation unit 10 disclosed in the first to third embodiments can output the first pulsed light and the second pulsed light with the same illuminance distribution, so that the compensation accuracy of the correction signal S is improved. There is an advantage that.
  • FIG. 6 shows the configuration of the distance measuring device 104 according to the fifth embodiment.
  • the distance measuring device 104 includes a first light emitting unit 10a and a second light emitting unit 10b (two light emitting units) as light sources, and a second light receiving unit 12a and a second light receiving unit 12b (two light receiving units) as light receiving elements. ) Is provided.
  • the first light irradiation unit 10a functions as a first light source for outputting the first pulsed light
  • the second light irradiation unit 10b functions as a second light source for outputting the second pulsed light.
  • the first light irradiation unit 10a and the second light irradiation unit 10b output lights having wavelengths ⁇ 1 and ⁇ 2 ( ⁇ 1 ⁇ ⁇ 2) different from each other.
  • the first light irradiation unit 10a outputs the first pulsed light of the first wavelength ⁇ 1
  • the second light irradiation unit 10b outputs the second pulsed light of the second wavelength ⁇ 2.
  • the first pulsed light and the second pulsed light respectively output from the first light irradiation unit 10a and the second light irradiation unit 10b are combined by the two-color combining half mirror 16 and output to the outside.
  • the first light receiving unit 12a functions as a first light receiving element that receives the light of the first wavelength ⁇ 1 of the first pulsed light
  • the second light receiving unit 12b receives the light of the first wavelength ⁇ 2 of the second pulsed light. It functions as a second light receiving element.
  • the first light receiving unit 12a receives the light of the first wavelength ⁇ 1
  • the second light receiving unit 12b receives the light of the second wavelength ⁇ 2.
  • the light input from the outside is separated by the two-color separation half mirror 18 into light of the first wavelength ⁇ 1 and light of the second wavelength ⁇ 2.
  • the separated light of the first wavelength ⁇ 1 is introduced into the first light receiving unit 12a.
  • the separated light of the second wavelength ⁇ 2 is introduced into the second light receiving unit 12b.
  • the distance measuring device 104 is configured to be able to input and output the first pulsed light and the second pulsed light having wavelengths ⁇ 1 and ⁇ 2 different from each other. Specifically, the distance measuring device 104 simultaneously outputs the first pulsed light of wavelength ⁇ 1 and the second pulsed light of wavelength ⁇ 2. After that, the distance measuring device 104 separates the input light into the light of the first wavelength ⁇ 1 and the light of the second wavelength ⁇ 2, and receives each of the separated lights. Accordingly, the distance measuring device 104 simultaneously acquires the first intensity waveform S1 including the first reflected light of the first pulsed light and the second intensity waveform S2 including the second reflected light of the second pulsed light.
  • the distance measuring device 104 can reduce the influence of the difference in measurement time between the first intensity waveform S1 and the second intensity waveform S2 (influence such as environmental change). As a result, the distance measuring device 104 can reduce the influence of the environmental change or the like on the correction signal S, and can improve the accuracy and accuracy of the distance measurement.
  • 10 (10a, 10b): Light irradiation unit, 12 (12a, 12b): Light receiving unit, 14: Signal processing unit, 16: Half mirror for combining, 18: Half mirror for separating, 100, 102, 104: Distance measuring device , 200: object to be measured.

Abstract

[Problem] To provide a distance measurement device that can detect a reflection signal from an object with high sensitivity. [Solution] A distance measurement device 100 includes a light irradiation unit 10, a light reception unit 12, and a signal processing unit 14. The signal processing unit 14 acquires an intensity waveform which includes the reflected light of pulse light on the basis of the temporal change of an intensity signal outputted as reception intensity from the light reception unit 12, and calculates the distance from the measurement device to an object on the basis of the intensity waveform. The light irradiation unit 10 outputs first pulse light, and second pulse light having at least one of a waveform and an output timing changed with respect to the first pulse light. The signal processing unit 14 calculates a correction signal from which a noise signal caused by an external disturbance has been removed by carrying out prescribed signal processing with respect to a first intensity waveform including the first reflected light of the first pulse light and a second intensity waveform including the second reflected light of second pulse light. The signal processing unit 14 calculates the distance from the measurement device to an object 200 to be measured on the basis of the waveform of a correction signal.

Description

距離測定装置Distance measuring device
 本開示は、距離測定装置に関する。 The present disclosure relates to a distance measuring device.
 光源からパルス光を照射し、物体によって反射された反射光を受光することによって、測定位置から物体までの距離を測定する距離測定装置が知られている。 A distance measuring device is known that measures the distance from a measurement position to an object by emitting pulsed light from a light source and receiving the reflected light reflected by the object.
 特許文献1には、レーザ光を測定対象物に向けて照射する送信光学系と、照射されたのち測定対象物により反射されたレーザ光の反射光を受信する受信光学系と、を備えるレーザレーダ装置が開示されている。レーザレーダ装置は、受信光学系による反射光の受信信号をサンプリングする。レーザレーダ装置は、今回サンプリングした受信信号の信号強度が前回サンプリングした受信信号の信号強度より低ければ、今回サンプリングの受信信号の信号強度と受信時刻を用いて、伝搬経路上の媒質を起因とするレーザ光のエネルギーの減衰係数を算出する。レーザレーダ装置は、算出された減衰係数を用いて、受信光学系による反射光の受信信号の信号強度を補償する。レーザレーダ装置は、信号強度が補償された受信信号の中から測定対象物に係る受信信号を抽出して、受信信号に対応するレーザ光の送信時刻と受信信号の受信時刻との差から、測定対象物までの距離を導出する。また、非特許文献1には、外乱による反射成分を、関数でフィッティングして、フィッティングされた外乱成分を除去する方法が開示されている(非特許文献1)。 Patent Document 1 discloses a laser radar including a transmission optical system that irradiates a measurement object with a laser beam, and a reception optical system that receives reflected light of a laser beam that is irradiated and then reflected by the measurement object. A device is disclosed. The laser radar device samples the reception signal of the reflected light from the reception optical system. If the signal strength of the reception signal sampled this time is lower than the signal strength of the reception signal sampled last time, the laser radar device uses the signal strength of the reception signal sampled this time and the reception time to attribute the medium on the propagation path. The attenuation coefficient of the energy of the laser light is calculated. The laser radar device uses the calculated attenuation coefficient to compensate the signal strength of the received signal of the reflected light from the receiving optical system. The laser radar device extracts a reception signal related to the measurement object from the reception signal of which the signal strength is compensated, and measures from the difference between the transmission time of the laser light corresponding to the reception signal and the reception time of the reception signal. Derive the distance to the object. Further, Non-Patent Document 1 discloses a method of fitting a reflection component due to disturbance with a function to remove the fitted disturbance component (Non-Patent Document 1).
 また、複数の反射ピークを検出するマルチエコー検出型のレーザレーダにおいて霧などの外乱による反射ピークを除外する方法が開示されている(特許文献2~4)。 Also, a method of excluding the reflection peak due to disturbance such as fog in a multi-echo detection type laser radar that detects a plurality of reflection peaks is disclosed (Patent Documents 2 to 4).
特開2013-124882号公報JP, 2013-124882, A 特開2010-286307号公報JP, 2010-286307, A 特開2013-167479号公報JP, 2013-167479, A 特開2017-219383号公報JP, 2017-219383, A
 特許文献2~4の技術では、外乱光のピークを除去するだけであり、物体からの反射光と重なっている外乱成分は除去できない。そのため、物体からの反射光の信号ノイズ比(S/N)は向上させることができない。 With the technologies of Patent Documents 2 to 4, only the peak of the disturbance light is removed, and the disturbance component overlapping with the reflected light from the object cannot be removed. Therefore, the signal noise ratio (S / N) of the reflected light from the object cannot be improved.
 特許文献1及び非特許文献1の技術では、物質の散乱に起因する外乱の波形を均一な外乱と近似させてフィッティングしている。そのため、外乱の原因となる伝搬経路上の媒質の空間的な濃度分布にむらがある場合に対して効果的ではない。 In the techniques of Patent Document 1 and Non-Patent Document 1, the waveform of the disturbance caused by the scattering of the substance is approximated to a uniform disturbance for fitting. Therefore, it is not effective when the spatial concentration distribution of the medium on the propagation path that causes the disturbance is uneven.
 本開示の技術の一態様である距離測定装置は、光照射部、受光部、及び信号処理部を含む。光照射部は、パルス光を出力する。受光部は、光を受光し、受光強度を強度信号として出力する。信号処理部は、入力された前記強度信号の時間変化から、前記パルス光の反射光を含む強度波形を取得し、取得した前記強度波形に基づいて、測定位置から物体までの距離を算出する。光照射部は、第1パルス光と、第1パルス光に対して波形及び出力タイミングの少なくとも一方を変更した第2パルス光と、を出力する。信号処理部は、第1パルス光の第1反射光を含む第1強度波形と、第2パルス光の第2反射光を含む第2強度波形と、に対して、所定の信号処理を行うことによって、外乱によるノイズ信号が除去された補正信号を算出する。信号処理部は、算出した補正信号の波形に基づいて、測定位置から物体までの距離を算出する。 A distance measuring device that is one aspect of the technique of the present disclosure includes a light irradiation unit, a light receiving unit, and a signal processing unit. The light irradiation unit outputs pulsed light. The light receiving unit receives light and outputs the received light intensity as an intensity signal. The signal processing unit acquires an intensity waveform including the reflected light of the pulsed light from the time change of the input intensity signal, and calculates the distance from the measurement position to the object based on the acquired intensity waveform. The light irradiation unit outputs the first pulsed light and the second pulsed light whose waveform and / or output timing is changed with respect to the first pulsed light. The signal processing unit performs predetermined signal processing on the first intensity waveform including the first reflected light of the first pulsed light and the second intensity waveform including the second reflected light of the second pulsed light. A correction signal from which a noise signal due to disturbance is removed is calculated by. The signal processing unit calculates the distance from the measurement position to the object based on the calculated waveform of the correction signal.
 信号処理部は、第1パルス光の第1反射光を含む第1強度波形と、第2パルス光の第2反射光を含む第2強度波形と、を線形加算することによって補正信号を算出し、算出した補正信号の波形に基づいて、物体までの距離を算出することが好適である。 The signal processing unit calculates a correction signal by linearly adding a first intensity waveform including the first reflected light of the first pulsed light and a second intensity waveform including the second reflected light of the second pulsed light. It is preferable to calculate the distance to the object based on the calculated waveform of the correction signal.
 また、第1パルス光と第2パルス光との出力エネルギーが等しい場合、信号処理部は、第1パルス光の第1反射光を含む第1強度波形と、第2パルス光の第2反射光を含む第2強度波形と、の差分によって補正信号を算出し、算出した補正信号の波形に基づいて、物体までの距離を算出することが好適である。 When the output energies of the first pulsed light and the second pulsed light are equal, the signal processing unit causes the first intensity waveform including the first reflected light of the first pulsed light and the second reflected light of the second pulsed light. It is preferable that the correction signal is calculated based on the difference between the second intensity waveform including the correction signal, and the distance to the object is calculated based on the calculated waveform of the correction signal.
 また、第2パルス光は、出力タイミングが異なる複数の信号の線形結合からなることを特徴とすることが好適である。 Moreover, it is preferable that the second pulsed light is configured by linear combination of a plurality of signals having different output timings.
 また、第2パルス光は、第1パルス光よりパルス幅が広い波形を有し、光照射部は、第1パルス光を出力し、所定の条件を満たす場合に第2パルス光を出力することが好適である。所定の条件は、第1パルス光の第1反射光を含む第1強度波形において、外乱によるノイズ信号の強度が閾値以上であることが好適である。 Further, the second pulsed light has a waveform with a pulse width wider than that of the first pulsed light, and the light irradiation unit outputs the first pulsed light and outputs the second pulsed light when a predetermined condition is satisfied. Is preferred. It is preferable that the predetermined condition is that the intensity of the noise signal due to the disturbance is equal to or higher than the threshold in the first intensity waveform including the first reflected light of the first pulsed light.
 また、第1パルス光の第1波長と第2パルス光の第2波長とは異なり、受光部は、第1パルス光の第1反射光を受光する第1受光部と、第2パルス光の第2反射光を受光する第2受光部と、を備えてもよい。光照射部は、第1光照射部と第2光照射部とを備え、第1光照射部は、第2光照射部の配置位置に比べて、受光部の受光開口部の位置から遠い位置に配置されてもよい。 Further, unlike the first wavelength of the first pulsed light and the second wavelength of the second pulsed light, the light receiving unit includes a first light receiving unit for receiving the first reflected light of the first pulsed light and a second light receiving unit for the second pulsed light. A second light receiving unit that receives the second reflected light may be provided. The light irradiation unit includes a first light irradiation unit and a second light irradiation unit, and the first light irradiation unit is located farther from the position of the light receiving opening of the light receiving unit than the arrangement position of the second light irradiation unit. May be located at.
 本開示の技術によれば、物体からの反射信号を高い感度で検出することが可能な距離測定装置を提供することができる。 According to the technology of the present disclosure, it is possible to provide a distance measuring device capable of detecting a reflection signal from an object with high sensitivity.
第1の実施の形態の距離測定装置の構成を示す図である。It is a figure which shows the structure of the distance measuring device of 1st Embodiment. 第1の実施の形態の強度波形S1,S2及び補正信号Sの例を示す図である。It is a figure which shows the example of intensity | strength waveform S1, S2 and correction signal S of 1st Embodiment. 第2の実施の形態の強度波形S1,S2及び補正信号Sの例を示す図である。It is a figure which shows the example of intensity | strength waveform S1 and S2 of 2nd Embodiment, and the correction signal S. 第3の実施の形態の強度波形S1,S2及び補正信号Sの例を示す図である。It is a figure which shows the example of intensity | strength waveform S1, S2 and correction signal S of 3rd Embodiment. 第4の実施の形態の距離測定装置の構成を示す図である。It is a figure which shows the structure of the distance measuring device of 4th Embodiment. 第5の実施の形態の距離測定装置の構成を示す図である。It is a figure which shows the structure of the distance measuring device of 5th Embodiment.
[第1の実施の形態]
 第1の実施の形態における距離測定装置100は、図1に示すように、光照射部10、受光部12及び信号処理部14を含んで構成される。光照射部10、受光部12及び信号処理部14は同一の筐体内に収めることができる。
[First Embodiment]
As shown in FIG. 1, the distance measuring device 100 according to the first embodiment is configured to include a light irradiation unit 10, a light receiving unit 12, and a signal processing unit 14. The light irradiation unit 10, the light receiving unit 12, and the signal processing unit 14 can be housed in the same housing.
 距離測定装置100は、光照射部10が、所定の波長λのパルス光を出力する。距離測定装置100は、受光部12が、測定対象物200において反射された反射光を受光する。これにより、距離測定装置100は、当該装置(測定位置)から測定対象物200までの距離を測定する。 In the distance measuring device 100, the light irradiation unit 10 outputs pulsed light having a predetermined wavelength λ. In the distance measuring device 100, the light receiving unit 12 receives the reflected light reflected by the measuring object 200. Accordingly, the distance measuring device 100 measures the distance from the device (measurement position) to the measurement object 200.
 光照射部10は、距離測定装置100において測距に利用される光を出射する。光照射部10は、レーザダイオード(LD)や液晶(LED)等とすることができる。光照射部10は、例えば、発光波長λが赤外線の帯域(例えば870nm等の帯域)であるレーザダイオードを使用してもよい。ただし、光照射部10から出力される光の波長は、これに限定されるものではなく、測定対象物200において反射され、受光部12において当該反射光が受光できる波長の電磁波であればよい。 The light irradiation unit 10 emits light used for distance measurement in the distance measuring device 100. The light irradiation unit 10 can be a laser diode (LD), a liquid crystal (LED), or the like. The light irradiation unit 10 may use, for example, a laser diode whose emission wavelength λ is in the infrared band (for example, 870 nm band). However, the wavelength of the light output from the light irradiation unit 10 is not limited to this, and may be any electromagnetic wave having a wavelength that is reflected by the measurement object 200 and that the reflected light can be received by the light receiving unit 12.
 本実施の形態では、光照射部10はパルス光を出力する。光照射部10からパルス光が出射されると、パルス光の出射時刻t0が光照射部10から信号処理部14に入力される。 In this embodiment, the light irradiation unit 10 outputs pulsed light. When the pulsed light is emitted from the light irradiation unit 10, the emission time t0 of the pulsed light is input from the light irradiation unit 10 to the signal processing unit 14.
 また、距離測定装置100には、光照射部10から光を広範囲に出力するための構成が設けられていてもよい。例えば、距離測定装置100は、ポリゴンミラーを回転させて、光照射部10から出力される光の照射角度を変更できる構成を備えていてもよい。 Further, the distance measuring device 100 may be provided with a configuration for outputting light from the light irradiation unit 10 in a wide range. For example, the distance measuring device 100 may have a configuration in which the irradiation angle of the light output from the light irradiation unit 10 can be changed by rotating the polygon mirror.
 受光部12は、受光素子を含んで構成される。受光部12は、例えば、複数の受光素子を配列させた構成とされる。受光部12は、例えば、縦4個×横4個の合計16個の受光素子をアレイ状に並べた構成とすることができる。ただし、受光部12における受光素子の配置は、これに限定されるものではなく、単一の受光素子で構成してもよい。また、受光素子の配置は、複数の受光素子を1次元配列によって配置、又は、縦N個×横M個(N≠M)の2次元配列によって配置する構成としてもよい。 The light receiving unit 12 includes a light receiving element. The light receiving unit 12 has, for example, a configuration in which a plurality of light receiving elements are arranged. The light-receiving unit 12 can be configured, for example, by arranging a total of 16 light-receiving elements (4 vertically × 4 horizontally) in an array. However, the arrangement of the light receiving elements in the light receiving unit 12 is not limited to this, and may be configured by a single light receiving element. The light receiving elements may be arranged in a one-dimensional array of a plurality of light receiving elements or in a two-dimensional array of N in the vertical direction × M in the horizontal direction (N ≠ M).
 受光部12の受光素子に光が入射すると、受光部12は、入射光を光の強度(受光強度)に応じた電気信号に変換し、信号処理部14へ入射光の強度信号を出力する。したがって、信号処理部14は、受光部12から出力される強度信号の時間変化(受光強度の時間変化)から、入射光の強度波形を取得することができる。 When light is incident on the light receiving element of the light receiving unit 12, the light receiving unit 12 converts the incident light into an electric signal according to the intensity of the light (light receiving intensity), and outputs the intensity signal of the incident light to the signal processing unit 14. Therefore, the signal processing unit 14 can acquire the intensity waveform of the incident light from the time change of the intensity signal output from the light receiving unit 12 (time change of the received light intensity).
 信号処理部14は、受光部12から入力された入射光の強度波形に対して所定の信号処理を行い、距離測定装置100から測定対象物200までの距離を算出する。すなわち、信号処理部14は、受光部12からの入力信号(強度信号)から取得した波形(強度波形)に含まれるパルス光の反射光に基づいて、測定位置から物体までの距離を算出する。具体的には、光照射部10から出力されたパルス光は測定対象物200によって反射され、反射光は受光部12によって受光される。信号処理部14は、受光部12からの反射光の強度信号から取得した強度波形から、反射光の成分を抽出する。信号処理部14は、抽出結果から、光照射部10から出力されたパルス光の反射光の受光時刻tdを取得する。信号処理部14は、パルス光の出射時刻t0と、当該パルス光の反射光の受光時刻tdと、の差分Δt(=td-t0)に基づいて、距離測定装置100から測定対象物200までの距離を演算する。すなわち、パルス光の出射時刻t0から当該パルス光の反射光の受光時刻tdまでの経過時間Δtに基づいて、距離測定装置100から測定対象物200までの距離を演算する。具体的には、信号処理部14は、差分Δtに光速cを乗算し(Δt×c)、乗算結果を2で除算する((Δt×c)/2)。これにより、信号処理部14は、距離測定装置100から測定対象物200までの距離Dを求める。 The signal processing unit 14 performs a predetermined signal processing on the intensity waveform of the incident light input from the light receiving unit 12, and calculates the distance from the distance measuring device 100 to the measurement object 200. That is, the signal processing unit 14 calculates the distance from the measurement position to the object based on the reflected light of the pulsed light included in the waveform (intensity waveform) acquired from the input signal (intensity signal) from the light receiving unit 12. Specifically, the pulsed light output from the light irradiation unit 10 is reflected by the measuring object 200, and the reflected light is received by the light receiving unit 12. The signal processing unit 14 extracts the reflected light component from the intensity waveform acquired from the intensity signal of the reflected light from the light receiving unit 12. The signal processing unit 14 acquires the reception time td of the reflected light of the pulsed light output from the light irradiation unit 10 from the extraction result. The signal processing unit 14 detects the distance from the distance measuring device 100 to the measurement object 200 based on the difference Δt (= td−t0) between the emission time t0 of the pulsed light and the reception time td of the reflected light of the pulsed light. Calculate the distance. That is, the distance from the distance measuring device 100 to the measurement object 200 is calculated based on the elapsed time Δt from the emission time t0 of the pulsed light to the reception time td of the reflected light of the pulsed light. Specifically, the signal processing unit 14 multiplies the difference Δt by the speed of light c (Δt × c) and divides the multiplication result by 2 ((Δt × c) / 2). Thereby, the signal processing unit 14 obtains the distance D from the distance measuring device 100 to the measurement object 200.
 本実施の形態における距離測定装置100では、光照射部10は、第1パルス光と、第1パルス光に対して波形及び出力タイミングの少なくとも一方を変更した第2パルス光と、を出力する。そして、信号処理部14は、第1パルス光の第1反射光を含む第1強度波形と、第2パルス光の第2反射光を含む第2強度波形と、に対して、所定の信号処理を行う。これにより、信号処理部14は、測定位置から物体までの距離を算出する。 In the distance measuring device 100 according to the present embodiment, the light irradiation unit 10 outputs the first pulsed light and the second pulsed light whose waveform and / or output timing is changed with respect to the first pulsed light. Then, the signal processing unit 14 performs predetermined signal processing on the first intensity waveform including the first reflected light of the first pulsed light and the second intensity waveform including the second reflected light of the second pulsed light. I do. Thereby, the signal processing unit 14 calculates the distance from the measurement position to the object.
 図2(A)は、第1パルス光(第1エネルギーE1)を出力し、測定対象物200によって反射された第1パルス光の第1反射光を受光部12が受光したときの第1強度波形S1の例を示す。また、図2(B)は、第1パルス光よりもパルス幅が広い第2パルス光(第2エネルギーE2)を出力し、測定対象物200によって反射された第2パルス光の第2反射光を受光部12が受光したときの第2強度波形S2の例を示す。本実施の形態では、図2(A),(B)に示すように、光照射部10は、パルス幅の中心位置が一致するように、互いに異なるパルス幅を有する第1パルス波と第2パルス波とを出力する。また、光照射部10は、パルス光の数が一致するように、第1パルス波と第2パルス波とを出力する。 FIG. 2A shows the first intensity when the light receiving unit 12 receives the first reflected light of the first pulsed light that is output from the first pulsed light (first energy E1) and is reflected by the measurement object 200. An example of the waveform S1 is shown. Further, FIG. 2B shows the second reflected light of the second pulsed light which is output from the second pulsed light (second energy E2) having a wider pulse width than the first pulsed light and is reflected by the measurement object 200. An example of the second intensity waveform S2 when the light receiving unit 12 receives light is shown. In the present embodiment, as shown in FIGS. 2 (A) and 2 (B), the light irradiation unit 10 includes a first pulse wave and a second pulse wave having different pulse widths so that the center positions of the pulse widths coincide with each other. Output pulse wave and. Further, the light irradiation unit 10 outputs the first pulse wave and the second pulse wave so that the numbers of pulsed lights match.
 このとき、霧、煙、粉塵等の外乱の原因となる散乱体は、パルス光の照射方向(照射位置から遠くなる方向)に拡がっている。そのため、散乱体がパルス光を反射したことによる反射光の信号は、外乱によるノイズ信号に相当し、第1及び第2強度波形S1,S2において、時間的に幅をもつバックグラウンド信号として検出される。このようなバックグラウンド信号を時間的に積算すると、積算値はパルス光のエネルギーに比例した大きさとなる。一方、測定対象物200からの反射光は、測定対象物200の表面からの反射だけである。よって、測定対象物200からの反射光は、光照射部10から出力した第1パルス光又は第2パルス光と略同一波形となる。 At this time, the scatterers that cause disturbances such as fog, smoke, and dust spread in the irradiation direction of the pulsed light (direction away from the irradiation position). Therefore, the signal of the reflected light due to the reflection of the pulsed light by the scatterer corresponds to a noise signal due to disturbance, and is detected as a background signal having a temporal width in the first and second intensity waveforms S1 and S2. It When such background signals are temporally integrated, the integrated value has a magnitude proportional to the energy of the pulsed light. On the other hand, the reflected light from the measurement object 200 is only the reflection from the surface of the measurement object 200. Therefore, the reflected light from the measurement object 200 has substantially the same waveform as the first pulsed light or the second pulsed light output from the light irradiation unit 10.
 図2(C)は、図2(A),(B)に示す第1及び第2強度波形S1,S2に基づき算出された補正信号Sの例を示す。信号処理部14は、図2(C)に示すように、第1パルス光の第1反射光を含む第1強度波形S1と、第2パルス光の第2反射光を含む第2強度波形S2と、に基づいて、数式(1)を用いて線形加算し補正信号Sを算出する。これによって、本実施の形態の距離測定装置100は、散乱体に起因する外乱(外乱光)によるノイズ信号を除去した補正信号Sを得ることができる。ただし、補正信号Sには、パルス光の出射時刻t0からの経過時間が短い期間に除去しきれない外乱成分が残る。言い換えると、補正信号Sの波形には、パルス波の出射位置に近い一定区間の範囲(近距離範囲)に除去しきれない外乱成分(外乱信号)が残る。これについては、補正信号Sの波形と第1強度波形S1との比較(例えばピーク高さや位置など)によって、外乱ピークであることを推定し、外乱成分を除去することが可能である。
(数1)
S=S1×E2-S2×E1・・・(1)
FIG. 2C shows an example of the correction signal S calculated based on the first and second intensity waveforms S1 and S2 shown in FIGS. 2A and 2B. As shown in FIG. 2C, the signal processing unit 14 includes a first intensity waveform S1 including the first reflected light of the first pulsed light and a second intensity waveform S2 including the second reflected light of the second pulsed light. Based on the above, the correction signal S is calculated by linear addition using the equation (1). As a result, the distance measuring device 100 of the present embodiment can obtain the correction signal S from which the noise signal due to the disturbance (disturbance light) caused by the scatterer is removed. However, in the correction signal S, a disturbance component that cannot be completely removed remains in a period when the elapsed time from the emission time t0 of the pulsed light is short. In other words, in the waveform of the correction signal S, a disturbance component (disturbance signal) that cannot be completely removed remains in the range (short range) close to the emission position of the pulse wave. In this regard, it is possible to estimate the disturbance peak and remove the disturbance component by comparing the waveform of the correction signal S and the first intensity waveform S1 (for example, peak height or position).
(Equation 1)
S = S1 × E2-S2 × E1 (1)
 このように、本実施の形態の距離測定装置100は、第1パルス光の第1反射光を含む第1強度波形S1と、第2パルス光の第2反射光を含む第2強度波形S2と、に基づいて、外乱の原因となる散乱体からの反射の影響を除去した補正信号Sを求める。これにより、距離測定装置100は、受光部12からの反射光の強度信号の信号ノイズ比(S/N)を向上させることができる。そして、距離測定装置100は、補正信号Sに基づいて、パルス光の反射光の受光時刻tdを求める。これにより、距離測定装置100は、例えば天候などによる外乱の影響を除去し、当該装置から測定対象物200までの距離Dをより高い精度及び確度で求めることができる。 As described above, the distance measuring apparatus 100 according to the present embodiment has the first intensity waveform S1 including the first reflected light of the first pulsed light and the second intensity waveform S2 including the second reflected light of the second pulsed light. , The correction signal S from which the influence of the reflection from the scatterer that causes the disturbance is removed is obtained. Thereby, the distance measuring device 100 can improve the signal noise ratio (S / N) of the intensity signal of the reflected light from the light receiving unit 12. Then, the distance measuring device 100 obtains the light reception time td of the reflected light of the pulsed light based on the correction signal S. As a result, the distance measuring apparatus 100 can eliminate the influence of disturbance such as the weather, and can obtain the distance D from the apparatus to the measuring object 200 with higher accuracy and accuracy.
 なお、第1パルス光の第1エネルギーE1と第2パルス光の第2エネルギーE2とが等しい場合(E1=E2)、信号処理部14は、数式(2)を用いて差分波形を算出することで、補正信号Sを求めることができる。
(数2)
S=S1-S2・・・(2)
When the first energy E1 of the first pulsed light and the second energy E2 of the second pulsed light are equal (E1 = E2), the signal processing unit 14 calculates the differential waveform using the mathematical expression (2). Thus, the correction signal S can be obtained.
(Equation 2)
S = S1-S2 (2)
 また、信号処理部14は、第1及び第2強度波形S1,S2を処理する際に、受光部12からの1回の取得結果(測定値)ではなく、複数回の取得結果の合計値又は平均値を算出する。これにより、本実施の形態の距離測定装置100は、背景光によるノイズやショットノイズといったランダムノイズを低減することができる。 Further, when processing the first and second intensity waveforms S1 and S2, the signal processing unit 14 does not obtain a single acquisition result (measured value) from the light receiving unit 12, but a total value of a plurality of acquisition results or Calculate the average value. As a result, the distance measuring apparatus 100 according to the present embodiment can reduce random noise such as noise due to background light and shot noise.
 なお、第1及び第2強度波形S1,S2(2つの強度波形)を用いる方法は、上述の通り、散乱体に起因する外乱によるノイズ信号を除去するのに有効である。しかし、本方法は、散乱体に起因する外乱が無い場合には、強度信号の信号ノイズ比(S/N)を向上させる観点から、改善の余地がある。したがって、信号処理部14は、第1強度波形S1から散乱体に起因する外乱光の強度が、ある程度強いと判定できた場合に、第1及び第2強度波形S1,S2(2つの強度波形)を用いた外乱除去処理を実行することが好適である。例えば、光照射部10は、通常は第1パルス光を出力するように構成し、第1強度波形S1において、散乱体に起因する外乱光の強度が所定値(閾値)以上と判定された場合に、光照射部10は、第2パルス光を出力する。このように、信号処理部14は、上述した所定の条件が満たされていない場合に、第1強度波形S1を取得し、所定の条件が満たされた場合に、第1及び第2強度波形S1,S2(2つの強度波形)を取得するように構成してもよい。 Note that the method of using the first and second intensity waveforms S1 and S2 (two intensity waveforms) is effective in removing the noise signal due to the disturbance caused by the scatterer, as described above. However, this method has room for improvement from the viewpoint of improving the signal noise ratio (S / N) of the intensity signal when there is no disturbance due to the scatterer. Therefore, when the signal processing unit 14 can determine from the first intensity waveform S1 that the intensity of the ambient light caused by the scatterer is relatively strong, the first and second intensity waveforms S1 and S2 (two intensity waveforms). It is preferable to execute the disturbance removal processing using. For example, when the light irradiation unit 10 is normally configured to output the first pulsed light and the intensity of the ambient light caused by the scatterer is determined to be equal to or higher than a predetermined value (threshold value) in the first intensity waveform S1. In addition, the light irradiation unit 10 outputs the second pulsed light. In this way, the signal processing unit 14 acquires the first intensity waveform S1 when the above-described predetermined condition is not satisfied, and when the predetermined condition is satisfied, the first and second intensity waveforms S1. , S2 (two intensity waveforms) may be acquired.
[第2の実施の形態]
 第1の実施の形態における距離測定装置100では、光照射部10から出力される第1パルス光と第2パルス光とのパルス幅の中心位置が一致するように、第1パルス波と第2パルス波との出力タイミングを制御する構成としている。これに対して、本実施の形態の距離測定装置は、第1パルス光と第2パルス光とのパルス幅の中心位置がずれるように、光照射部による第1パルス波と第2パルス波との出力タイミングを制御する構成にしてもよい。なお、本実施の形態の説明では、第1の実施の形態と同一の構成要素については、同一符号を付し、その説明を省略する。
[Second Embodiment]
In the distance measuring device 100 according to the first embodiment, the first pulse wave and the second pulse wave are arranged so that the center positions of the pulse widths of the first pulsed light and the second pulsed light output from the light irradiation unit 10 coincide with each other. The output timing of the pulse wave is controlled. On the other hand, the distance measuring device according to the present embodiment is arranged so that the first pulse wave and the second pulse wave by the light irradiating section are shifted so that the center positions of the pulse widths of the first pulse light and the second pulse light are displaced. May be configured to control the output timing of. In the description of the present embodiment, the same components as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted.
 図3(A)は、第1パルス光を出力し、測定対象物200によって反射された第1パルス光の第1反射光を受光部12が受光したときの第1強度波形S1の例を示す。また、本実施の形態では、光照射部10は、第1パルス光よりもパルス幅が広く、パルスの立ち上がり開始位置が第1パルス光のパルスの立ち上がり開始位置と一致する第2パルス光を出力する。図3(B)は、このとき測定対象物200によって反射された第2パルス光の第2反射光を受光部12が受光したときの強度波形S2の例を示す。 FIG. 3A shows an example of the first intensity waveform S1 when the light receiving section 12 outputs the first pulsed light and receives the first reflected light of the first pulsed light reflected by the measurement object 200. .. Further, in the present embodiment, the light irradiation unit 10 outputs the second pulsed light whose pulse width is wider than that of the first pulsed light, and the rising start position of the pulse coincides with the rising start position of the pulse of the first pulsed light. To do. FIG. 3B shows an example of the intensity waveform S2 when the light receiving unit 12 receives the second reflected light of the second pulsed light reflected by the measurement object 200 at this time.
 図3(C)は、図3(A),(B)に示す第1及び第2強度波形S1,S2に基づき算出された補正信号Sの例を示す。信号処理部14は、図3(C)に示すように、強度波形S1,S2について、上述した数式(1)を用いて線形加算し補正信号Sを算出する。これにより、本実施の形態の距離測定装置100は、第1パルス光と第2パルス光とのパルス幅の中心位置を一致させた場合に比べて、強度信号のピーク位置の減算量が小さくなる。その結果、距離測定装置100は、第1パルス光と第2パルス光とのパルス幅の中心位置を一致させた場合に比べて、より大きいピーク値を得ることができる。 3C shows an example of the correction signal S calculated based on the first and second intensity waveforms S1 and S2 shown in FIGS. 3A and 3B. As shown in FIG. 3C, the signal processing unit 14 linearly adds the intensity waveforms S1 and S2 using the above-described mathematical expression (1) to calculate the correction signal S. As a result, in the distance measuring apparatus 100 of the present embodiment, the amount of subtraction of the peak position of the intensity signal is smaller than that in the case where the center positions of the pulse widths of the first pulse light and the second pulse light are matched. .. As a result, the distance measuring apparatus 100 can obtain a larger peak value as compared with the case where the center positions of the pulse widths of the first pulsed light and the second pulsed light match.
[第3の実施の形態]
 第2の実施の形態では、第1パルス光と第2パルス光とのパルス幅の中心位置を一致させた場合に比べて、外乱の原因となる散乱体からの反射の影響(外乱成分)の除去率が低下する可能性があり、改善の余地がある。そこで、本実施の形態の距離測定装置は、光照射部10から出力される第1パルス光の数と第2パルス光の数とを異ならせる構成とする。なお、本実施の形態の説明では、第1及び第2の実施の形態と同一の構成要素については、同一符号を付し、その説明を省略する。
[Third Embodiment]
In the second embodiment, compared to the case where the central positions of the pulse widths of the first pulsed light and the second pulsed light are matched, the influence of reflection from the scatterer (disturbance component) that causes disturbance is The removal rate may decrease and there is room for improvement. Therefore, the distance measuring device according to the present embodiment is configured so that the number of first pulsed lights and the number of second pulsed lights output from the light irradiation unit 10 are different. In the description of the present embodiment, the same components as those in the first and second embodiments will be designated by the same reference numerals, and the description thereof will be omitted.
 図4(A)は、第1パルス光として1つのパルス光を出力し、測定対象物200によって反射された第1パルス光の第1反射光を受光部12が受光したときの第1強度波形S1の例を示す。また、本実施の形態では、光照射部10は、第2パルス光として2つの連続するパルス光を出力する。図4(B)は、このとき測定対象物200によって反射された第2パルス光の第2反射光を受光部12が受光したときの第2強度波形S2の例を示す。 FIG. 4A shows a first intensity waveform when one pulsed light is output as the first pulsed light and the light receiving unit 12 receives the first reflected light of the first pulsed light reflected by the measurement object 200. An example of S1 is shown. Moreover, in this Embodiment, the light irradiation part 10 outputs two continuous pulsed lights as 2nd pulsed light. FIG. 4B shows an example of the second intensity waveform S2 when the light receiving unit 12 receives the second reflected light of the second pulsed light reflected by the measurement object 200 at this time.
 すなわち、本実施の形態では、第1パルス光よりパルス幅が広い1つのパルスを含むパルス光を第2パルス光とする代わりに、第1パルス光とパルス幅が同程度又は狭い2つの連続したパルスを含むパルス光を第2パルス光として用いる。このとき、第2パルス光に含まれるパルスのピーク位置は、第1パルス光に含まれるパルスのピーク位置と一致しないようにすることが好適である。 That is, in the present embodiment, instead of using the pulsed light including one pulse having a pulse width wider than that of the first pulsed light as the second pulsed light, two consecutive pulses having the same or narrower pulse width as the first pulsed light are used. Pulsed light including pulses is used as the second pulsed light. At this time, it is preferable that the peak position of the pulse included in the second pulsed light does not match the peak position of the pulse included in the first pulsed light.
 なお、本実施の形態において、第1パルス光と第2パルス光とのパルス波形は、相似形である必要はない。また、2つの連続したパルスの代わりに、それぞれ個別に発光して得られた信号の線形結合を第2パルス光としてもよい。 Note that, in the present embodiment, the pulse waveforms of the first pulsed light and the second pulsed light need not be similar shapes. Further, instead of two continuous pulses, a linear combination of signals obtained by emitting light individually may be used as the second pulse light.
 図4(C)は、図4(A),(B)に示す第1及び第2強度波長S1,S2に基づき算出された補正信号Sの例を示す。信号処理部14は、図4(C)に示すように、強度波形S1,S2について、上述した数式(1)を用いて線形加算し補正信号Sを算出する。これにより、本実施の形態の距離測定装置100は、強度信号のピーク値の減少を低減しつつ、外乱成分の除去率の低下も低減することができる。 FIG. 4C shows an example of the correction signal S calculated based on the first and second intensity wavelengths S1 and S2 shown in FIGS. 4A and 4B. As shown in FIG. 4C, the signal processing unit 14 linearly adds the intensity waveforms S1 and S2 using the above-described mathematical expression (1) to calculate the correction signal S. As a result, the distance measuring apparatus 100 according to the present embodiment can reduce the reduction in the peak value of the intensity signal and the reduction in the removal rate of the disturbance component.
[第4の実施の形態]
 図5は、第4の実施の形態における距離測定装置102の構成を示す。距離測定装置102は、光源として第1光照射部10a及び第2光照射部10b(2つの光照射部)を備える。第1光照射部10aは、第1パルス光を出力するための第1光源として機能し、第2光照射部10bは、第2パルス光を出力するための第2光源として機能する。このとき、第1光照射部10aは、第2光照射部10bの配置位置Pbに比べて、受光部12の受光開口部の位置Poから遠い位置Paに配置されことが好適である。一方、第2光照射部10bは、第1光照射部10aの配置位置Paに比べて、受光部12の受光開口部の位置Poから近い位置Pbに配置されることが好適である。言い換えると、第1光照射部10aは、受光部12の受光開口部の位置Poから第2光照射部10bの配置位置Pbまでの距離Bよりも、位置Poから当該光照射部10aの配置位置Paまでの距離Aが長くなるように配置されること(B<A)が好適である。
[Fourth Embodiment]
FIG. 5 shows the configuration of the distance measuring device 102 according to the fourth embodiment. The distance measuring device 102 includes a first light irradiation unit 10a and a second light irradiation unit 10b (two light irradiation units) as light sources. The 1st light irradiation part 10a functions as a 1st light source for outputting a 1st pulsed light, and the 2nd light irradiation part 10b functions as a 2nd light source for outputting a 2nd pulsed light. At this time, it is preferable that the first light irradiation unit 10a is arranged at a position Pa farther from the position Po of the light receiving opening of the light receiving unit 12 than the position Pb of the second light irradiation unit 10b. On the other hand, it is preferable that the second light irradiation unit 10b is arranged at a position Pb closer to the position Po of the light receiving opening of the light receiving unit 12 than the position Pa of the first light irradiation unit 10a. In other words, the first light irradiation unit 10a is arranged from the position Po to the arrangement position of the light irradiation unit 10a more than the distance B from the position Po of the light receiving opening of the light reception unit 12 to the arrangement position Pb of the second light irradiation unit 10b. It is preferable that the distance A to Pa be long (B <A).
 このように、本実施の形態の距離測定装置102は、第1光照射部10a及び第2光照射部10b(2つの光照射部)を、上述したように配置する。これにより、距離測定装置102は、補正信号Sにおいて、パルス波の出射位置に近い一定区間の範囲(近距離範囲)に残ってしまう外乱成分を低減することができる。なお、第1から第3の実施の形態において開示した1つの光照射部10による構成は、第1パルス光及び第2パルス光を同じ照度分布で出力できるので、補正信号Sの補償精度がよくなるという利点がある。 In this way, in the distance measuring device 102 of the present embodiment, the first light irradiation unit 10a and the second light irradiation unit 10b (two light irradiation units) are arranged as described above. As a result, the distance measuring device 102 can reduce the disturbance component in the correction signal S, which remains in the range of the fixed section (short range) close to the emission position of the pulse wave. Note that the configuration of the single light irradiation unit 10 disclosed in the first to third embodiments can output the first pulsed light and the second pulsed light with the same illuminance distribution, so that the compensation accuracy of the correction signal S is improved. There is an advantage that.
[第5の実施の形態]
 図6は、第5の実施の形態における距離測定装置104の構成を示す。距離測定装置104は、光源として第1光照射部10a及び第2光照射部10b(2つの光照射部)、並びに、受光素子として第2受光部12a及び第2受光部12b(2つの受光部)を備える。
[Fifth Embodiment]
FIG. 6 shows the configuration of the distance measuring device 104 according to the fifth embodiment. The distance measuring device 104 includes a first light emitting unit 10a and a second light emitting unit 10b (two light emitting units) as light sources, and a second light receiving unit 12a and a second light receiving unit 12b (two light receiving units) as light receiving elements. ) Is provided.
 第1光照射部10aは、第1パルス光を出力するための第1光源として機能し、第2光照射部10bは、第2パルス光を出力するための第2光源として機能する。本実施の形態では、第1光照射部10aと第2光照射部10bとは、互いに異なる波長λ1,λ2(λ1≠λ2)の光を出力する。例えば、第1光照射部10aは、第1波長λ1の第1パルス光を出力し、第2光照射部10bは、第2波長λ2の第2パルス光を出力する。第1光照射部10a及び第2光照射部10bからそれぞれ出力された第1パルス光及び第2パルス光は、2色合成用のハーフミラー16によって合成されて外部へ出力される。 The first light irradiation unit 10a functions as a first light source for outputting the first pulsed light, and the second light irradiation unit 10b functions as a second light source for outputting the second pulsed light. In the present embodiment, the first light irradiation unit 10a and the second light irradiation unit 10b output lights having wavelengths λ1 and λ2 (λ1 ≠ λ2) different from each other. For example, the first light irradiation unit 10a outputs the first pulsed light of the first wavelength λ1, and the second light irradiation unit 10b outputs the second pulsed light of the second wavelength λ2. The first pulsed light and the second pulsed light respectively output from the first light irradiation unit 10a and the second light irradiation unit 10b are combined by the two-color combining half mirror 16 and output to the outside.
 第1受光部12aは、第1パルス光の第1波長λ1の光を受光する第1受光素子として機能し、第2受光部12bは、第2パルス光の第1波長λ2の光を受光する第2受光素子として機能する。例えば、第1受光部12aは、第1波長λ1の光を受光し、第2受光部12bは、第2波長λ2の光を受光する。外部から入力された光は、2色分離用のハーフミラー18によって、第1波長λ1の光と、第2波長λ2の光と、に分離される。分離された第1波長λ1の光は、第1受光部12aへ導入される。また、分離された第2波長λ2の光は、第2受光部12bへ導入される。 The first light receiving unit 12a functions as a first light receiving element that receives the light of the first wavelength λ1 of the first pulsed light, and the second light receiving unit 12b receives the light of the first wavelength λ2 of the second pulsed light. It functions as a second light receiving element. For example, the first light receiving unit 12a receives the light of the first wavelength λ1, and the second light receiving unit 12b receives the light of the second wavelength λ2. The light input from the outside is separated by the two-color separation half mirror 18 into light of the first wavelength λ1 and light of the second wavelength λ2. The separated light of the first wavelength λ1 is introduced into the first light receiving unit 12a. The separated light of the second wavelength λ2 is introduced into the second light receiving unit 12b.
 このように、本実施の形態の距離測定装置104は、互いに異なる波長λ1,λ2の第1パルス光と第2パルス光とを入出力可能な構成としている。具体的には、距離測定装置104は、波長λ1の第1パルス光と波長λ2の第2パルス光とを同時に出力する。その後、距離測定装置104は、入力された光を、第1波長λ1の光と第2波長λ2の光とに分離して、分離した光それぞれを受光する。これにより、距離測定装置104は、第1パルス光の第1反射光を含む第1強度波形S1と、第2パルス光の第2反射光を含む第2強度波形S2と、を同時に取得することができる。よって、距離測定装置104は、第1強度波形S1と第2強度波形S2との計測時刻の差による影響(環境変化等の影響)を低減することができる。その結果、距離測定装置104は、補正信号Sにおける環境変化等の影響も低減することができ、距離測定の精度及び確度を向上することができる。 As described above, the distance measuring device 104 according to the present embodiment is configured to be able to input and output the first pulsed light and the second pulsed light having wavelengths λ1 and λ2 different from each other. Specifically, the distance measuring device 104 simultaneously outputs the first pulsed light of wavelength λ1 and the second pulsed light of wavelength λ2. After that, the distance measuring device 104 separates the input light into the light of the first wavelength λ1 and the light of the second wavelength λ2, and receives each of the separated lights. Accordingly, the distance measuring device 104 simultaneously acquires the first intensity waveform S1 including the first reflected light of the first pulsed light and the second intensity waveform S2 including the second reflected light of the second pulsed light. You can Therefore, the distance measuring device 104 can reduce the influence of the difference in measurement time between the first intensity waveform S1 and the second intensity waveform S2 (influence such as environmental change). As a result, the distance measuring device 104 can reduce the influence of the environmental change or the like on the correction signal S, and can improve the accuracy and accuracy of the distance measurement.
 10(10a,10b):光照射部、12(12a,12b):受光部、14:信号処理部、16:合成用ハーフミラー、18:分離用ハーフミラー、100,102,104:距離測定装置、200:測定対象物。 10 (10a, 10b): Light irradiation unit, 12 (12a, 12b): Light receiving unit, 14: Signal processing unit, 16: Half mirror for combining, 18: Half mirror for separating, 100, 102, 104: Distance measuring device , 200: object to be measured.

Claims (8)

  1.  パルス光を出力する光照射部と、
     光を受光し、受光強度を強度信号として出力する受光部と、
     入力された前記強度信号の時間変化から、前記パルス光の反射光を含む強度波形を取得し、取得した前記強度波形に基づいて、測定位置から物体までの距離を算出する信号処理部と、
    を備え、
     前記光照射部は、第1パルス光と、前記第1パルス光に対して波形及び出力タイミングの少なくとも一方を変更した第2パルス光と、を出力し、
     前記信号処理部は、前記第1パルス光の第1反射光を含む第1強度波形と、前記第2パルス光の第2反射光を含む第2強度波形と、に対して、所定の信号処理を行うことによって、外乱によるノイズ信号が除去された補正信号を算出し、算出した前記補正信号に基づいて、前記物体までの距離を算出する、距離測定装置。
    A light irradiation unit that outputs pulsed light,
    A light-receiving unit that receives light and outputs the received light intensity as an intensity signal,
    From the temporal change of the input intensity signal, obtain an intensity waveform including reflected light of the pulsed light, based on the obtained intensity waveform, a signal processing unit that calculates the distance from the measurement position to the object,
    Equipped with
    The light irradiation unit outputs a first pulsed light and a second pulsed light in which at least one of a waveform and an output timing is changed with respect to the first pulsed light,
    The signal processing unit performs predetermined signal processing on a first intensity waveform including the first reflected light of the first pulsed light and a second intensity waveform including the second reflected light of the second pulsed light. A distance measuring device that calculates a correction signal from which a noise signal due to disturbance is removed by performing, and calculates a distance to the object based on the calculated correction signal.
  2.  請求項1に記載の距離測定装置であって、
     前記信号処理部は、前記第1パルス光の前記第1反射光を含む前記第1強度波形と、前記第2パルス光の前記第2反射光を含む前記第2強度波形と、を線形加算することによって前記補正信号を算出し、算出した前記補正信号の波形に基づいて、前記物体までの距離を算出する、距離測定装置。
    The distance measuring device according to claim 1,
    The signal processing unit linearly adds the first intensity waveform including the first reflected light of the first pulsed light and the second intensity waveform including the second reflected light of the second pulsed light. A distance measuring device that calculates the correction signal by doing so and calculates the distance to the object based on the calculated waveform of the correction signal.
  3.  請求項1又は2に記載の距離測定装置であって、
     前記第1パルス光と前記第2パルス光との出力エネルギーが等しい場合、前記信号処理部は、前記第1パルス光の前記第1反射光を含む前記第1強度波形と、前記第2パルス光の前記第2反射光を含む前記第2強度波形と、の差分によって前記補正信号を算出し、算出した前記補正信号に基づいて、前記物体までの距離を算出する、距離測定装置。
    The distance measuring device according to claim 1 or 2, wherein
    When the output energies of the first pulsed light and the second pulsed light are equal, the signal processing unit includes the first intensity waveform including the first reflected light of the first pulsed light and the second pulsed light. A distance measuring device that calculates the correction signal based on a difference between the second intensity waveform including the second reflected light and the distance to the object based on the calculated correction signal.
  4.  請求項1に記載の距離測定装置であって、
     前記第2パルス光は、出力タイミングが異なる複数の信号の線形結合からなる、距離測定装置。
    The distance measuring device according to claim 1,
    The distance measuring device, wherein the second pulsed light is a linear combination of a plurality of signals having different output timings.
  5.  請求項1に記載の距離測定装置であって、
     前記第2パルス光は、前記第1パルス光よりパルス幅が広い波形を有し、
     前記光照射部は、前記第1パルス光を出力し、所定の条件を満たす場合に前記第2パルス光を出力する、距離測定装置。
    The distance measuring device according to claim 1,
    The second pulsed light has a waveform having a pulse width wider than that of the first pulsed light,
    The said light irradiation part outputs the said 1st pulsed light, and outputs the said 2nd pulsed light, when predetermined conditions are satisfy | filled, The distance measuring apparatus.
  6.  請求項1~5のいずれか1項に記載の距離測定装置であって、
     前記第1パルス光の第1波長と前記第2パルス光の第2波長とは異なり、
     前記受光部は、前記第1パルス光の前記第1反射光を受光する第1受光部と、前記第2パルス光の前記第2反射光を受光する第2受光部と、を備える、距離測定装置。
    The distance measuring device according to any one of claims 1 to 5,
    The first wavelength of the first pulsed light and the second wavelength of the second pulsed light are different,
    The light receiving unit includes a first light receiving unit that receives the first reflected light of the first pulsed light, and a second light receiving unit that receives the second reflected light of the second pulsed light. apparatus.
  7.  請求項1~6のいずれか1項に記載の距離測定装置であって、
     前記光照射部は、第1光照射部と第2光照射部とを備え、
     前記第1光照射部は、前記第2光照射部の配置位置に比べて、前記受光部の受光開口部の位置から遠い位置に配置されている、距離測定装置。
    The distance measuring device according to any one of claims 1 to 6,
    The light irradiation unit includes a first light irradiation unit and a second light irradiation unit,
    The distance measuring device in which the first light irradiation unit is arranged at a position farther from the position of the light receiving opening of the light receiving unit than the position of the second light irradiation unit.
  8.  請求項5に記載の距離測定装置であって、
     前記所定の条件は、前記第1パルス光の前記第1反射光を含む前記第1強度波形において、前記外乱による前記ノイズ信号の強度が閾値以上である、距離測定装置。
    The distance measuring device according to claim 5,
    The predetermined condition is a distance measuring device in which, in the first intensity waveform including the first reflected light of the first pulsed light, the intensity of the noise signal due to the disturbance is equal to or more than a threshold value.
PCT/JP2019/042624 2018-11-01 2019-10-30 Distance measurement device WO2020090911A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018206357A JP7256631B2 (en) 2018-11-01 2018-11-01 distance measuring device
JP2018-206357 2018-11-01

Publications (1)

Publication Number Publication Date
WO2020090911A1 true WO2020090911A1 (en) 2020-05-07

Family

ID=70463734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042624 WO2020090911A1 (en) 2018-11-01 2019-10-30 Distance measurement device

Country Status (2)

Country Link
JP (1) JP7256631B2 (en)
WO (1) WO2020090911A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017112951A1 (en) 2015-12-24 2017-06-29 The Regents Of The University Of California Cftr regulators and methods of use thereof
TWI835520B (en) 2022-01-21 2024-03-11 日商松下知識產權經營股份有限公司 Measurement device and measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288512A (en) * 1986-06-09 1987-12-15 Mitsubishi Electric Corp Displacement measuring apparatus
JPH03188322A (en) * 1989-12-07 1991-08-16 Kaman Aerospace Corp Method for image-forming two wavelength original position of single internal wave
JPH07234282A (en) * 1993-12-29 1995-09-05 Nissan Motor Co Ltd Radar equipment for vehicle
JP2000137076A (en) * 1998-11-02 2000-05-16 Denso Corp Distance measuring device
JP2000266537A (en) * 1999-03-15 2000-09-29 Showa Optronics Kk Electro-optical distance measuring apparatus
JP2017173207A (en) * 2016-03-25 2017-09-28 パイオニア株式会社 Device and method for measuring distance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304532A (en) * 1996-05-13 1997-11-28 Toshiba Corp Laser distance-measuring apparatus
JP6867769B2 (en) 2016-09-15 2021-05-12 健 坪井 Deposit account information disclosure system for virtual currency addresses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288512A (en) * 1986-06-09 1987-12-15 Mitsubishi Electric Corp Displacement measuring apparatus
JPH03188322A (en) * 1989-12-07 1991-08-16 Kaman Aerospace Corp Method for image-forming two wavelength original position of single internal wave
JPH07234282A (en) * 1993-12-29 1995-09-05 Nissan Motor Co Ltd Radar equipment for vehicle
JP2000137076A (en) * 1998-11-02 2000-05-16 Denso Corp Distance measuring device
JP2000266537A (en) * 1999-03-15 2000-09-29 Showa Optronics Kk Electro-optical distance measuring apparatus
JP2017173207A (en) * 2016-03-25 2017-09-28 パイオニア株式会社 Device and method for measuring distance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017112951A1 (en) 2015-12-24 2017-06-29 The Regents Of The University Of California Cftr regulators and methods of use thereof
TWI835520B (en) 2022-01-21 2024-03-11 日商松下知識產權經營股份有限公司 Measurement device and measurement method

Also Published As

Publication number Publication date
JP2020071164A (en) 2020-05-07
JP7256631B2 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP6846506B2 (en) Laser ranging system by time domain waveform matching and its method
CN109900602B (en) Particle counter
IL261489A (en) Optical phasograms for ladar vibrometry
WO2010025845A3 (en) Device and method for determining an object position
US9726546B2 (en) Distributed optical sensing with two-step evaluation
JP2020046247A (en) Distance measuring device and distance measuring method
JP2008002815A (en) Wavelength variable pulse light generator, and optical tomographic measuring instrument using the same
US20190234872A1 (en) Inspection apparatus, inspection method, computer program and recording medium
JP2016224009A (en) Signal processor and method for determining noise intensity
US20120182553A1 (en) Method of estimating a degree of contamination of a front screen of an optical detection apparatus and optical detection apparatus
WO2020090911A1 (en) Distance measurement device
JP6298654B2 (en) Transient absorption response detection apparatus and transient absorption response detection method
WO1999051967A1 (en) Method and device for measuring concentration of absorbing component of scattering/absorbing body
WO2018016709A3 (en) Frequency domain-based multi-wavelength biometric signal analysis apparatus and method thereof
WO2011015298A8 (en) Thz spectroscope and method for determining the spectral frequency and/or phase response of a sample
JPH0469546A (en) Marine laser observation device using multitrace simultaneous light measurement system
RU2653558C1 (en) Optical device for determining distance to object
JP2010528309A (en) Optical remote detection method for compounds in media
KR101866764B1 (en) Range Image Sensor comprised of Combined Pixel
WO2017142443A3 (en) Method of evaluating vibration signals along long objects
JP6756999B2 (en) Gas measuring device
JP3486223B2 (en) Distance measuring device
US20190302261A1 (en) Range imaging camera and a method thereof
Choe et al. Correction method for walk error based on the shape of reflective surface in LiDAR
Fink et al. Simulation of coaxial time-of-flight measurements using SiPM as detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879411

Country of ref document: EP

Kind code of ref document: A1