WO2020090819A1 - Small speed reducer - Google Patents
Small speed reducer Download PDFInfo
- Publication number
- WO2020090819A1 WO2020090819A1 PCT/JP2019/042384 JP2019042384W WO2020090819A1 WO 2020090819 A1 WO2020090819 A1 WO 2020090819A1 JP 2019042384 W JP2019042384 W JP 2019042384W WO 2020090819 A1 WO2020090819 A1 WO 2020090819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- planetary
- speed reducer
- resin
- shaft portion
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/06—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of threaded articles, e.g. nuts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/46—Systems consisting of a plurality of gear trains each with orbital gears, i.e. systems having three or more central gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/06—Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
Definitions
- the present invention relates to a small reducer mounted on, for example, a small and thin electronic device.
- This small reduction gear is composed of a fixed internal gear, a movable internal gear, a planetary gear meshed with the fixed internal gear and the movable internal gear, and a planetary gear held by a holder body and a holder retainer, and a motor meshing with the planetary gear.
- a small speed reducer including a sun gear directly connected to a shaft, a support beam provided in a holder body and a guide portion provided at a contact portion between a fixed internal gear and a movable internal gear.
- Patent Document 2 discloses that components such as a sun gear and a planetary wheel in a small reduction gear are integrally molded products such as resin.
- a synthetic resin material it is illustrated that a basic resin such as a polyacetal resin or a polyamide resin contains carbon fiber, glass fiber or the like.
- Japanese Unexamined Patent Publication No. 2003-130145 describes that a polyacetal resin, a polyamide resin, and a polyester resin are used as a resin material, and carbon fibers, whiskers, glass fibers, mica, and the like are mixed using these as a base polymer. ..
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a small speed reducer that is compact and highly accurately molded, and is composed of parts having high durability and dust resistance.
- an exemplary invention of the present application is a small reducer that reduces the power from an input shaft and transmits the power to an output shaft, and includes a casing and an annular first first inner peripheral surface of the casing.
- a first planetary carrier that has a rotating shaft part and a sun gear that rotates together with the first rotating shaft part, and is rotatable around the first rotating shaft part; and the first planetary carrier is rotatably supported by the first planetary carrier.
- a plurality of first planetary gears that mesh with the input gear and the first internal gear; a second rotating shaft portion that is disposed coaxially with the input shaft in the casing and that is connected to the output shaft;
- Second A second planetary carrier rotatable about a rolling shaft portion, and a plurality of second gears arranged in the circumferential direction of the sun gear and rotatably supported by the second planetary carrier and meshing with the sun gear and the second internal gear.
- Second planetary gear, the first planetary carrier, the first rotating shaft portion, and the sun gear are a single member, and the input gear, the first planetary carrier, and the first planetary carrier.
- the planetary gear is a molded product of a resin composition containing a thermoplastic resin as a base resin and an inorganic whisker as a predetermined functional expression component, and the base resin and the inorganic whiskers in the resin composition. Content of 99.5% by weight or more, the first internal gear is formed of a metal sintered body, and the relationship between the tooth thickness T of the first internal gear and the arithmetic mean roughness Ra is 5. It is characterized in that 0 ⁇ 10 ⁇ 3 ⁇ (Ra / T) ⁇ 66.7 ⁇ 10 ⁇ 3 is satisfied.
- FIG. 1 is a vertical cross-sectional view of a small reducer according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view taken along the line AA and the line BB in FIG. 1 (reference numerals are shown in parentheses).
- FIG. 1 is a vertical cross-sectional view showing the configuration of a small reducer according to an exemplary embodiment of the present invention.
- FIG. 2 is a cross-sectional view taken along the line AA and the line BB in FIG. 1 (reference numerals are shown in parentheses).
- FIG. 1 shows a cross section by a plane including the central axis J1 of the small reduction gear 1 (hereinafter also simply referred to as a reduction gear). Further, hereinafter, for convenience of description, the upper side in FIG. 1 is referred to as “upper” or “upper”, and the lower side is referred to as “lower” or “lower”.
- the up-down direction which is the direction in which the central axis J1 faces, is also called the “axial direction”.
- the direction of the central axis J1 does not necessarily have to match the direction of gravity.
- the circumferential direction centering on the central axis J1 is simply referred to as “circumferential direction”
- the radial direction centering on the central axis J1 is simply referred to as “radial direction”.
- a small speed reducer (hereinafter simply referred to as “speed reducer”) 1 includes a casing 2, an input unit 3, a first rotation assembly 4, a second rotation assembly 6, and a first inner. It includes a Lugear 5, a second internal gear 7, an input shaft (first input shaft) 8, an output shaft 9, and a motor 15 directly connected to the input shaft 8 to reduce the power from the input shaft 8. It can be transmitted to the output shaft 9.
- the speed reducer 1 has a planetary gear mechanism having a two-stage structure including a first rotation assembly 4 and a second rotation assembly 6, and is formed to have an outer dimension of, for example, a width of 5 mm, a depth of 5 mm, and a height of 20 mm or less. ing. As a result, the speed reducer 1 can be made smaller and thinner, and thus can be easily mounted in a device such as a small and thin electronic device. Further, the two-stage configuration of the first rotation assembly 4 and the second rotation assembly 6 can provide the speed reducer 1 that satisfies the mechanical characteristics required for the input side and the output side.
- the motor 15 serves as a drive source of a structure (not shown) on which the speed reducer 1 is mounted, that is, a power source.
- the structure is not particularly limited, and may be a small camera, for example. Further, as the motor 15, for example, various motors are appropriately selected according to the usage of the structure.
- the input shaft 8 is also the motor shaft of the motor 15 that is rotationally driven about the central axis J1.
- the casing 2 is arranged and fixed on the upper side of the motor 15.
- the casing 2 has a substantially cylindrical shape centered on the central axis J1.
- the input unit 3, the first rotation assembly 4, a part of the second rotation assembly 6, the first internal gear 5, and the second internal gear 7 are housed.
- the second rotation assembly 6 side is the upper side and the first rotation assembly 4 side is the lower side along the central axis J1, but the direction of the central axis J1 does not necessarily have to coincide with the gravity direction. There is no.
- the gear ratio between the first rotary assembly 4 and the second rotary assembly 6 is appropriately set depending on the usage of the structure. Thereby, the power from the motor 15 can be decelerated and output from the output shaft 9.
- the input unit 3 includes an input shaft (second input shaft) 31 and an input gear 33.
- the input shaft 31 and the input gear 33 are located inside the casing 2.
- the input shaft 31 is located on the central axis J1 and is connected to the upper part of the input shaft 8. As a result, the input shaft 31 can rotate around the central axis J1 together with the input shaft 8 in the casing 2.
- the input shaft 31 has a substantially cylindrical shape or a substantially cylindrical shape, and its outer diameter is smaller than the outer diameter of the input shaft 8.
- a substantially cylindrical or cylindrical input gear 33 is connected to the outer peripheral portion of the input shaft 31.
- the input shaft 31 and the input gear 33 are arranged on a concentric shaft. As a result, the input gear 33 can rotate around the central axis J1 together with the input shaft 31.
- the method of fixing the input gear 33 to the input shaft 31 is not particularly limited, and for example, a fixing method using another member, that is, a fixing method using a key and a key groove can be used.
- the input shaft 31 and the input gear 33 are configured separately from each other in the illustrated configuration, the present invention is not limited to this and may be a single connected member. For example, it may be composed of one gear member formed integrally.
- the input gear 33 is a spur gear having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 331 protruding on the outer peripheral portion thereof.
- the first rotation assembly 4 includes a first rotation shaft portion 41, a first planet carrier 42, a plurality of first planet shaft members 43, a plurality of first planet gears 44, and a sun gear 45. Further, the first rotation shaft portion 41, the first planetary carrier 42, the plurality of first planetary shaft members 43, the plurality of first planetary gears 44, and the sun gear 45 are located inside the casing 2.
- the first rotating shaft portion 41, the first planetary carrier 42, and the plurality of first planetary shaft members 43 are supports that support the respective first planetary gears 44 and the sun gears 45.
- this support may further include another member.
- the first rotation shaft portion 41 has a substantially cylindrical shape or a substantially columnar shape, and its central axis coincides with the central axis J1.
- the first rotation shaft portion 41 is coaxial with the input shaft 31 of the input unit 3 and is arranged above the input shaft 33.
- a disk-shaped first planetary carrier 42 is arranged concentrically with the first rotation shaft portion 41 below the first rotation shaft portion 41. That is, the first rotation shaft portion 41 is arranged so as to project upward at the center of the disk-shaped first planetary carrier 42.
- the first planet carrier 42 can rotate around the central axis J1.
- a plurality of first planetary shaft members 43 are arranged radially outside the first planet carrier 42.
- the plurality of first planetary shaft members 43 are arranged at positions eccentric from the central axis J1.
- the plurality of first planetary shaft members 43 have the same substantially cylindrical shape, and are arranged with their longitudinal directions oriented along the central axis J1 (hereinafter also referred to as “along the central axis J1”). There is.
- each first planetary shaft member 43 is in a state of being non-rotatably fixed to the first planetary carrier 42.
- first planetary shaft members 43 arranged is three in the configuration shown in FIG. 2, but is not limited to this and may be two or four or more.
- the first planetary shaft members 43 are arranged at equal angular intervals around the central axis J1.
- the first planetary shaft members 43 are arranged at 120 ° intervals around the central axis J1.
- the central axis of each first planetary shaft member 43 is referred to as "first planetary shaft J2".
- a first planetary gear 44 is rotatably supported on each first planetary shaft member 43. As a result, each first planetary gear 44 can rotate about the first planetary axis J2, that is, can rotate on its axis. Further, each of the first planetary gears 44 can rotate, that is, revolve around the central axis J1. As described above, each of the first planetary gears 44 is a planetary gear (also referred to as “P gear”) that rotates about the first planetary axis J2 and revolves around the central axis J1.
- Each of the first planetary gears 44 is a spur gear having a cylindrical shape and having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 441 protruding on the outer peripheral portion thereof.
- the first planetary gears 44 are arranged radially outside the input gear 33 along the circumferential direction thereof.
- the outer peripheral teeth 441 of each first planetary gear 44 mesh with the outer peripheral teeth 331 of the input gear 33.
- module of the first planetary gear 44 is preferably 0.2 mm or less, and more preferably 0.05 to 0.2 mm.
- the sun gear 45 is concentrically connected to the outer peripheral portion of the first rotating shaft portion 41. As a result, the sun gear 45 can rotate around the central axis J1 together with the first rotation shaft portion 41 in the casing 2.
- the method for fixing the sun gear 45 to the first rotating shaft portion 41 is not particularly limited, and for example, a fixing method using a key and a key groove can be used.
- the sun gear 45 is a spur gear having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 451 protruding on the outer peripheral portion thereof.
- first rotating shaft portion 41, the first planet carrier 42, and the sun gear 45 are composed of a single member that is integrally connected by integral molding. Further, this member and the plurality of first planetary shaft members 43 may be configured as one gear member integrally formed, and such a gear member is also referred to as “C gear”.
- the first internal gear 5 has an annular shape with the central axis J1 as the central axis.
- the first internal gear 5 is arranged and fixed concentrically with the casing 2 inside the casing 2 (on the side of the first inner peripheral surface).
- the fixing method is not particularly limited, and for example, a fixing method by fitting can be used. In this case, intermediate fitting is preferred.
- the first internal gear 5 is an internal gear having a plurality of teeth (hereinafter referred to as “inner peripheral teeth”) 51 protruding on the inner peripheral portion thereof.
- the inner peripheral teeth 51 mesh with the outer peripheral teeth 441 of each first planetary gear 44 at different positions in the circumferential direction.
- the first internal gear 5 may be indirectly fixed to the casing 2 via another member, or may be a member that is connected to the casing 2. That is, the first internal gear 5 and the casing 2 may be separate members from each other, or may be a single member by integral molding.
- the second rotation assembly 6 is arranged above the first rotation assembly.
- the second rotation assembly 6 includes a second rotation shaft portion 61, a second planet carrier 62, a plurality of second planet shaft members 63, and a plurality of second planet gears 64.
- the second planet carrier 62, the plurality of second planetary shaft members 63, and the plurality of second planetary gears 64 are located inside the casing 2.
- the second rotating shaft portion 61, the second planet carrier 62, and the plurality of second planetary shaft members 63 are supports that support the respective second planetary shaft members 63.
- this support may further include another member.
- the second rotating shaft portion 61, the second planetary carrier 62, and the plurality of second planetary shaft members 63 are formed as one gear member by integral molding in this embodiment. That is, the second planet carrier 62 and the plurality of second planetary shaft members 63 are configured as one continuous member, but the present invention is not limited to this, and for example, they are configured as separate bodies, and these separate bodies are coupled to each other. It may be composed of a connected body.
- the second rotary shaft portion 61 has a substantially cylindrical shape or a substantially cylindrical shape, and is arranged coaxially with the input shaft 3, that is, the central axis thereof coincides with the central axis J1 like the first rotary shaft portion 41. ing.
- the second rotary shaft portion 61 projects upward from the upper surface of the casing 2 to the outside of the casing 2 and is connected to the output shaft 9.
- a disc-shaped second planet carrier 62 is arranged concentrically with the second rotating shaft portion 61 below the second rotating shaft portion 61. That is, the second rotation shaft portion 61 is arranged so as to project upward at the center of the disk-shaped second planet carrier 62.
- the second planet carrier 62 can rotate about the central axis J1 (second rotating shaft portion 61).
- a plurality of second planetary shaft members 63 are arranged below the second planetary carrier 62 in a radial direction of the second planetary carrier 62, that is, at positions eccentric from the central axis J1.
- the plurality of second planetary shaft members 63 have the same substantially cylindrical shape and are arranged with their longitudinal directions oriented along the central axis J1 (along the central axis J1). Further, each second planetary shaft member 63 is in a state of being non-rotatably fixed to the second planetary carrier 62.
- the number of the second planetary shaft members 63 arranged is three in the configuration shown in FIG. 2, but is not limited to this and may be two or four or more, and particularly the first planetary shaft member 43. It is preferable that the number is the same as the number of arrangements.
- these second planetary shaft members 63 are arranged at equal angular intervals around the central axis J1. For example, as shown in FIG. 2, when the number of the second planetary shaft members 63 arranged is three, these second planetary shaft members 63 are arranged at 120 ° intervals around the central axis J1. In the following description, the central axis of each second planetary shaft member 63 is referred to as "second planetary shaft J3".
- a second planetary gear 64 is rotatably supported on each second planetary shaft member 63.
- each second planetary gear 64 can rotate about the second planetary axis J3, that is, can rotate on its axis.
- each second planetary gear 64 can rotate about the central axis J1, that is, can revolve.
- each second planetary gear 64 is a planetary gear (also referred to as “P gear”) that rotates about the second planetary axis J3 and revolves around the central axis J1.
- Each second planetary gear 64 is a spur gear having a cylindrical shape and a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 641 protruding on the outer peripheral portion thereof.
- the second planetary gears 64 are arranged radially outward of the sun gear 45 along the circumferential direction thereof, and the outer peripheral teeth 641 mesh with the outer peripheral teeth 451 of the sun gear 45.
- the module of the second planetary gear 64 is preferably 0.2 mm or less, and more preferably 0.05 to 0.2 mm.
- the first planetary gear 44 and the second planetary gear 64 are each obtained as a microminiature molded part. Further, by using such a component, it becomes possible to manufacture a precise speed reducer 1 suitable for mounting on another small-sized device, in combination with the outer dimensions of the speed reducer 1 described above.
- the second internal gear 7 is annular with the central axis J1 as the central axis.
- the second internal gear 7 is arranged inside the casing 2 (on the side of the second inner peripheral surface), above the first internal gear 5, and axially separated from the first internal gear 5.
- the second internal gear 7 is arranged and fixed concentrically with the casing 2.
- the fixing method is not particularly limited, and for example, a fixing method by fitting can be used. In this case, intermediate fitting is preferred.
- the second internal gear 7 is an internal gear having a plurality of teeth 71 (hereinafter referred to as “inner peripheral teeth”) 71 protruding from the inner peripheral portion thereof.
- the inner peripheral teeth 71 mesh with the outer peripheral teeth 641 of each second planetary gear 64 at different positions in the circumferential direction.
- the second internal gear 7 may be indirectly fixed to the casing 2 via another member, or may be a single connected member. That is, the second internal gear 7 and the casing 2 may be separate members, or may be a single member by integral molding.
- the output shaft 9 is connected (coupled) to the upper portion (upper end portion) of the second rotating shaft portion 61 on the outside of the casing 2 and can rotate around the central axis J1 together with the second rotating shaft portion 61.
- the output shaft 9 has a substantially cylindrical shape or a substantially cylindrical shape, and its outer diameter is the same as the outer diameter of the second rotating shaft portion 61.
- the output shaft 9 may be directly connected to the second rotating shaft portion 61 or indirectly, that is, connected via another member.
- the connecting method between the output shaft 9 and the second rotating shaft portion 61 is not particularly limited, and various methods such as a connecting method using a key and a key groove, a connecting method using a D-cut, a connecting method using a gear component, etc. Methods are available.
- the output shaft 9 and the second rotation shaft portion 61 are configured as separate bodies in the present embodiment, the output shaft 9 and the second rotation shaft portion 61 are not limited to this and may be a single connected member. For example, it may be composed of one member formed by integral molding.
- each first planetary gear 44 can rotate in the direction of the arrow ⁇ 2 around the first planetary axis J2, that is, can rotate on its axis.
- each first planetary gear 44 also meshes with the first internal gear 5 fixed to the casing 2.
- each first planetary gear 44 can transmit its rotational force to the first internal gear 5 when the first planetary gear 44 rotates in the direction of the arrow ⁇ 2, and thus the arrow about the central axis J1. It can also rotate in the ⁇ 3 direction, that is, can revolve. By this revolution, the sun gear 45 can be rotated around the central axis J1 in the arrow ⁇ 1 direction.
- each second planetary gear 64 meshes with the sun gear 45. As a result, when the sun gear 45 rotates in the direction of arrow ⁇ 1, the rotational force is transmitted to each second planetary gear 64. Then, by this transmission, as shown in FIG. 2, each second planetary gear 64 can rotate in the direction of arrow ⁇ 2 around the second planetary axis J3, that is, can rotate on its axis.
- each second planetary gear 64 meshes with the second internal gear 7 fixed to the casing 2.
- each second planetary gear 64 can transmit its rotational force to the second internal gear 7 when the second planetary gear 64 rotates in the direction of arrow ⁇ 2. It can rotate in the ⁇ 3 direction, that is, can revolve. By this revolution, the output shaft 9 can be rotated around the central axis J1 in the same direction as the arrow ⁇ 1 direction.
- the output shaft 9 outputs decelerated power.
- the power here refers to a rotational force, but is not limited to this.
- the direction along the central axis J1 means a direction substantially parallel to the central axis J1 (axial direction), and does not need to be strictly parallel to the axial direction. That is, the first planetary axis J2 and the second planetary axis J3 may be parallel to the central axis J1 or may be inclined by a small angle with respect to the central axis J1.
- the first planetary gear In order to reduce the size and weight of the speed reducer according to the first embodiment, some components such as the first planetary gear are molded with a resin composition containing a thermoplastic resin as a base resin. Further, in the speed reducer according to the first embodiment, the first internal gear is formed by a sintered body formed by powder compacting or a metal injection molding (MIM) method. More specifically, the input gear 33, the first rotation shaft portion 41 that is a component of the first rotation assembly 4, the first planet carrier 42, the plurality of first planetary shaft members 43, and the plurality of first planetary gears.
- the 44 and the sun gear 45 are, for example, a molded body of a resin composition in which a thermoplastic resin such as a polyamide resin is used as a base resin, and the base resin contains an inorganic whisker.
- the inorganic whiskers are, for example, potassium titanate fibers having an aspect ratio of 10 or more.
- This inorganic whisker is a component in which the first planetary carrier 42, the first planetary gear 44, and the like described above exhibit functionality such as fine moldability, durability, and releasability as a small component.
- the potassium titanate fiber has a function of providing not only a high aspect ratio but also high strength and high rigidity in the mixed material with the resin. Further, the potassium titanate fiber has an extremely fine shape because its average fiber length is almost equal to the diameter of glass fiber, carbon fiber and the like. For this reason, in addition to the reinforcing property as the resin filler, the moldability and the like are exerted in the microminiature (microsize) component used in the speed reducer according to the present embodiment.
- the total content of the base resin and the inorganic whiskers in the above resin composition is 99.5% by weight or more.
- the content of the base resin is, for example, 59.5 to 94.5% by weight
- the content of the inorganic whiskers is, for example, 5 to 40% by weight.
- the content of the inorganic whiskers in the resin composition is preferably 15-40% by weight, more preferably 20-30% by weight.
- the resin composition may contain components that are unavoidably mixed as other components (the balance) in addition to the above components.
- the first planetary carrier 42, the first planetary gear 44, etc. are made of a thermoplastic resin containing an inorganic whisker, they can be molded by using a method such as injection molding.
- a resin composition containing a polyamide resin containing an inorganic whisker is excellent in strength such as impact resistance and load resistance and in dimensional accuracy, and is therefore suitable as a constituent material for a small precision gear.
- thermoplastic resin for example, a polycarbonate resin, an acrylic resin, a polyphenylene resin, a fluorine resin, or the like can be used instead of the polyamide resin.
- inorganic whiskers instead of potassium titanate fibers, for example, zinc oxide fibers, magnesium oxide fibers, aluminum oxide fibers, calcium sulfate fibers, silicon carbide fibers, silicon nitride fibers, mullite fibers, magnesium borate fibers, borated Titanium fiber or the like can be used.
- the resin composition can be appropriately selected and combined from the above-mentioned thermoplastic resin and inorganic whiskers. Above all, a configuration in which a polyamide resin and potassium titanate fiber are combined is preferable.
- the speed reducer according to the second embodiment is similar to the first embodiment, in which the input gear 33, the first rotating shaft portion 41, the first planetary carrier 42, the plurality of first planetary shaft members 43, and the plurality of first planetary gears 44 are included.
- the sun gear 45 are formed of a resin composition containing a thermoplastic resin such as a polyamide resin as a base resin and containing an inorganic whisker.
- the second rotary shaft portion 61, the second planet carrier 62, the plurality of second planetary shaft members 63, the plurality of second planetary gears 64, and the second internal gear 7, which are the components of the second rotary assembly 6, are It is formed by a powder compacted sintered body or a metal injection molding method (MIM).
- MIM metal injection molding method
- the speed reducer according to the third embodiment includes a plurality of first gears 33, a first rotating shaft portion 41, a first planet carrier 42, a plurality of first planetary shaft members 43, a plurality of first planetary gears 44, and a sun gear 45.
- the two-planetary gear 64 is formed of a resin composition containing a thermoplastic resin such as a polyamide resin as a base resin and containing an inorganic whisker, as in the first embodiment.
- the second rotary shaft portion 61, the second planet carrier 62, the plurality of second planetary shaft members 63, and the second internal gear 7 are formed by a sintered body by compaction molding or a metal injection molding method (MIM). Has been done.
- the plurality of first planetary gears 44 and the plurality of second planetary gears 64 can be molded with a common mold as a resin molded body, and the cost can be reduced. Further, by using a common mold, the first planetary gear 44 and the second planetary gear 64 have the same tooth thickness, and the same tooth thickness results in the same surface roughness and tooth ratio. Therefore, the effect that it is easy to assemble is obtained.
- the gears that form the gear unit are microminiature molded bodies, and in order to obtain good rotation between the gears, the tooth thickness portion of one gear is the tooth of the other gear. Between the teeth and the teeth must be exactly engaged. In this case, if the surface roughness of the teeth is rough, it is difficult for the teeth to mesh, and if the surface roughness is small, it is difficult for the teeth to mesh. Therefore, the ratio between the surface roughness and the tooth thickness of the internal gear is examined below.
- ⁇ Standard circle pitch diameter of planet gear (first planet gear): 1.5mm ⁇ Number of teeth of planetary gear: 14 ⁇ Module of planetary gear: standard circle pitch diameter / number of teeth 0.107 ⁇ Planet gear tooth thickness: ⁇ / 2 ⁇ module ⁇ 0.168 mm Surface roughness of the internal gear (first internal gear): 1.0 ⁇ 10 ⁇ 3 mm or more and 8.0 ⁇ 10 ⁇ 3 mm or less.
- the tooth thickness of the internal gear is approximately 0.168 mm as described above. Therefore, it is considered that a reasonable range is 0.12 mm or more and 0.2 mm or less for the tooth thickness of the internal gear by giving a margin to the tooth thickness.
- Table 1 shows the ratio (surface roughness / tooth thickness) of the surface roughness Ra to the tooth thickness T that the internal gear can take from the above numerical values. Therefore, from Table 1, the range of the ratio of surface roughness that can be realistically obtained when molding by the metal injection molding method (MIM) is 5.0 ⁇ 10 ⁇ 3 ⁇ (Ra / T) ⁇ 66.7 ⁇ 10 ⁇ 3 It turns out that
- the surface roughness Ra can be 1 ⁇ 10 ⁇ 3 mm.
- the surface roughness Ra can be 8 ⁇ 10 ⁇ 3 mm.
- the relationship between the tooth thickness T and the arithmetic mean roughness Ra described above can be applied to the first internal gear, but can also be applied to the second internal gear.
- the gear meshing with the internal gear for example, the meshing with the planet gear that is a molded product of the resin composition is improved.
- the planetary gears that form the rotating assembly rotate smoothly.
- the small reduction gear according to the present embodiment is a small reduction gear that reduces the power from the input shaft and transmits the power to the output shaft, and is located on the casing and the first inner peripheral surface of the casing.
- a first planetary carrier having a first rotating shaft portion arranged and a sun gear that rotates together with the first rotating shaft portion, the first planetary carrier being rotatable around the first rotating shaft portion, and rotating around the first planetary carrier.
- a plurality of first planetary gears that are movably supported and mesh with the input gear and the first internal gear; and a second rotation that is arranged coaxially with the input shaft in the casing and that is connected to the output shaft.
- axis Part a second planetary carrier rotatable about the second rotation shaft part, and arranged in the circumferential direction of the sun gear and rotatably supported by the second planetary carrier.
- a plurality of second planetary gears meshing with an internal gear, wherein the first planetary carrier, the first rotating shaft portion, and the sun gear are a single member, the input gear, and the first planetary gear.
- a carrier and the first planetary gear are molded articles of a resin composition containing a thermoplastic resin as a base resin and inorganic whiskers as a predetermined functional expression component, and the base in the resin composition.
- the total content of the resin and the inorganic whiskers is 99.5% by weight or more
- the first internal gear is formed of a metal sintered body
- the tooth thickness T of the first internal gear and the arithmetic mean roughness are Ra Relationship satisfies 5.0 ⁇ 10 -3 ⁇ (Ra / T) ⁇ 66.7 ⁇ 10 -3.
- the member close to the input shaft of the small speed reducer is a resin molded product that is ultra-small, has a good power transmission rate, and has high impact resistance and load resistance.
- the member close to the output shaft is a resin molded product that is ultra-small, has a good power transmission rate, and has high impact resistance and load resistance.
- the base resin does not have a structure in which carbon fibers, glass fibers, etc. are contained, so that the fibers scraped away due to mutual wear of meshing gears become dust or dust. There is no problem of hindering the rotation operation.
- each unit constituting the small speed reducer has an arbitrary configuration capable of exhibiting the same function. Can be replaced. In addition, any constituent may be added.
- the small reducer according to the present invention can be used in various devices such as small cameras, robots, and other small and thin devices.
- the small speed reducer according to the present invention can also be used for other purposes.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Retarders (AREA)
Abstract
Provided is a small speed reducer constituted by small and high-precision-molded parts. In a small speed reducer 1, an input gear 33, a first rotating shaft 41, a first planetary carrier 42, a plurality of first planetary shaft members 43, a plurality of first planetary gears 44, and a sun gear 45 are formed from an inorganic whisker-containing resin composition using a thermoplastic resin, such as a polyamide-based resin, as a base resin. In addition, a second rotating shaft 61, a second planetary carrier 62, a plurality of second planetary shaft members 63, a plurality of second planetary gears 64, and a casing 2 including a first internal gear 5 and a second internal gear 7 are formed into sintered bodies by powder compacting or formed by metal injection molding (MIM).
Description
本発明は、例えば、小型、薄型の電子機器等に搭載される小型減速機に関する。
The present invention relates to a small reducer mounted on, for example, a small and thin electronic device.
遊星歯車機構を用いた小型の減速機として、例えば、特許文献1に記載された小型減速機が知られている。この小型減速機は、固定内歯歯車と、可動内歯歯車と、これら固定内歯歯車および可動内歯歯車に噛み合い、ホルダー体およびホルダー押えにより保持された遊星歯車と、その遊星歯車に噛み合うモータ軸に直結する太陽歯車からなる小型減速機において、ホルダー体に設けられた支柱はり、固定内歯歯車と可動内歯歯車の接触部に設けられたガイド部で構成される。
As a small speed reducer using a planetary gear mechanism, for example, the small speed reducer described in Patent Document 1 is known. This small reduction gear is composed of a fixed internal gear, a movable internal gear, a planetary gear meshed with the fixed internal gear and the movable internal gear, and a planetary gear held by a holder body and a holder retainer, and a motor meshing with the planetary gear. In a small speed reducer including a sun gear directly connected to a shaft, a support beam provided in a holder body and a guide portion provided at a contact portion between a fixed internal gear and a movable internal gear.
特許文献2には、小型減速機において太陽歯車、遊星亜車等の構成部品を樹脂等の一体成形品とする旨が開示されている。
Patent Document 2 discloses that components such as a sun gear and a planetary wheel in a small reduction gear are integrally molded products such as resin.
日本国公開公報特開平4-366046号公報の小型減速機では、構成部品の一部または全部を合成樹脂で構成して、合成樹脂の低摩擦係数により歯車の伝達効率等を向上させている。合成樹脂材料として、ポリアセタール樹脂、ポリアミド樹脂等の基本樹脂に炭素繊維、ガラス繊維等を含有させることを例示している。
In the small speed reducer disclosed in Japanese Patent Laid-Open Publication No. Hei 4-366046, some or all of the components are made of synthetic resin, and the transmission efficiency of gears is improved by the low coefficient of friction of synthetic resin. As a synthetic resin material, it is illustrated that a basic resin such as a polyacetal resin or a polyamide resin contains carbon fiber, glass fiber or the like.
日本国公開公報特開2003-130145号公報には、樹脂材料としてポリアセタール樹脂、ポリアミド樹脂、ポリエステル樹脂、およびこれらをベースポリマーとして炭素繊維、ウィスカ、ガラス繊維、マイカ等を混合する旨の記載がある。
Japanese Unexamined Patent Publication No. 2003-130145 describes that a polyacetal resin, a polyamide resin, and a polyester resin are used as a resin material, and carbon fibers, whiskers, glass fibers, mica, and the like are mixed using these as a base polymer. ..
しかしながら、上記従来の樹脂材料構成は、ベース樹脂による摩擦係数を低減できても、その樹脂材料で超小型歯車を成形した場合には、歯車の面粗度が、減速機のギアユニットの組立性や歯車同士の噛み合いに与える影響が無視できなくなる。その結果、歯車の伝達効率が低下するという問題が生じる。
However, even though the conventional resin material configuration described above can reduce the friction coefficient due to the base resin, when a micro gear is molded from the resin material, the surface roughness of the gear is such that the gear unit of the speed reducer is easy to assemble. The effect on the meshing of gears and gears cannot be ignored. As a result, there arises a problem that the transmission efficiency of the gear is reduced.
本発明は、上記課題に鑑みなされたものであり、小型かつ高精度に成形され、耐久性および防塵性の高い部品により構成された小型減速機を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a small speed reducer that is compact and highly accurately molded, and is composed of parts having high durability and dust resistance.
上記の目的を達成し、上述した課題を解決する一手段として、本発明は以下の構成を備える。すなわち、本願の例示的な発明は、入力軸からの動力を減速して出力軸に伝達する小型減速機であって、ケーシングと、前記ケーシングの第1の内周面に位置する環状の第1インターナルギアと、前記ケーシングの第2の内周面に位置する環状の第2インターナルギアと、前記入力軸に接続された入力ギアと、前記ケーシング内において前記入力軸と同軸に配置された第1回転軸部と、前記第1回転軸部とともに回転する太陽ギアを有し、前記第1回転軸部を中心に回転可能な第1遊星キャリアと、前記第1遊星キャリアに自転可能に支持され、前記入力ギアと前記第1インターナルギアとに噛み合う複数の第1遊星ギアと、前記ケーシング内において前記入力軸と同軸に配置され、かつ、前記出力軸に接続された第2回転軸部と、前記第2回転軸部を中心に回転可能な第2遊星キャリアと、前記太陽ギアの周方向に配置されるとともに前記第2遊星キャリアに自転可能に支持され、前記太陽ギアと前記2インターナルギアとに噛み合う複数の第2遊星ギアとを備え、前記第1遊星キャリアと、前記第1回転軸部と、前記太陽ギアが単一の部材であり、前記入力ギアと、前記第1遊星キャリアと、前記第1遊星ギアは熱可塑性樹脂をベース樹脂とし、所定の機能性発現成分としての無機ウィスカを含有する樹脂組成物の成形体であって、かつ、前記樹脂組成物中における該ベース樹脂と該無機ウィスカとを合わせた含有率が99.5重量%以上であり、前記第1インターナルギアは金属焼結体で形成され、該第1インターナルギアにおける歯厚Tと、算術平均粗さRaとの関係が、5.0×10-3≦(Ra/T)≦66.7×10-3を満たすことを特徴とする。
As one means for achieving the above object and solving the above problems, the present invention has the following configurations. That is, an exemplary invention of the present application is a small reducer that reduces the power from an input shaft and transmits the power to an output shaft, and includes a casing and an annular first first inner peripheral surface of the casing. An internal gear, an annular second internal gear located on a second inner peripheral surface of the casing, an input gear connected to the input shaft, and a first coaxial shaft arranged coaxially with the input shaft in the casing. A first planetary carrier that has a rotating shaft part and a sun gear that rotates together with the first rotating shaft part, and is rotatable around the first rotating shaft part; and the first planetary carrier is rotatably supported by the first planetary carrier. A plurality of first planetary gears that mesh with the input gear and the first internal gear; a second rotating shaft portion that is disposed coaxially with the input shaft in the casing and that is connected to the output shaft; Second A second planetary carrier rotatable about a rolling shaft portion, and a plurality of second gears arranged in the circumferential direction of the sun gear and rotatably supported by the second planetary carrier and meshing with the sun gear and the second internal gear. Second planetary gear, the first planetary carrier, the first rotating shaft portion, and the sun gear are a single member, and the input gear, the first planetary carrier, and the first planetary carrier. The planetary gear is a molded product of a resin composition containing a thermoplastic resin as a base resin and an inorganic whisker as a predetermined functional expression component, and the base resin and the inorganic whiskers in the resin composition. Content of 99.5% by weight or more, the first internal gear is formed of a metal sintered body, and the relationship between the tooth thickness T of the first internal gear and the arithmetic mean roughness Ra is 5. It is characterized in that 0 × 10 −3 ≦ (Ra / T) ≦ 66.7 × 10 −3 is satisfied.
本発明によれば、成形性、耐久性、寸法精度等を向上させた小型精密部品で構成した小型減速機を提供できる。
According to the present invention, it is possible to provide a small reduction gear composed of small precision parts with improved moldability, durability, dimensional accuracy, and the like.
以下、本発明に係る実施形態について添付図面を参照して詳細に説明する。図1は、本発明の例示的な一実施形態に係る小型減速機の構成を示す縦断面図である。図2は、図1中のA-A線断面図およびB-B線断面図(符号についてはかっこ書きで記載)である。
Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a vertical cross-sectional view showing the configuration of a small reducer according to an exemplary embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line AA and the line BB in FIG. 1 (reference numerals are shown in parentheses).
なお、図1では、小型減速機1(以降において単に減速機ともいう)の中心軸J1を含む面による断面を示す。また、以下では、説明の都合上、図1中の上側を「上」または「上方」と言い、下側を「下」または「下方」と言う。
Note that FIG. 1 shows a cross section by a plane including the central axis J1 of the small reduction gear 1 (hereinafter also simply referred to as a reduction gear). Further, hereinafter, for convenience of description, the upper side in FIG. 1 is referred to as “upper” or “upper”, and the lower side is referred to as “lower” or “lower”.
また、以下の説明では、中心軸J1が向く方向である上下方向を「軸方向」とも呼ぶ。中心軸J1の向きは、必ずしも重力方向と一致させる必要はない。また、以下の説明では、中心軸J1を中心とする周方向を単に「周方向」といい、中心軸J1を中心とする径方向を単に「径方向」という。
Also, in the following description, the up-down direction, which is the direction in which the central axis J1 faces, is also called the “axial direction”. The direction of the central axis J1 does not necessarily have to match the direction of gravity. Further, in the following description, the circumferential direction centering on the central axis J1 is simply referred to as “circumferential direction”, and the radial direction centering on the central axis J1 is simply referred to as “radial direction”.
図1に示すように、小型減速機(以下単に「減速機」という)1は、ケーシング2と、入力部3と、第1回転組立体4と、第2回転組立体6と、第1インターナルギア5と、第2インターナルギア7と、入力軸(第1入力軸)8と、出力軸9と、入力軸8に直結されたモータ15とを含み、入力軸8からの動力を減速して出力軸9に伝達することができる。
As shown in FIG. 1, a small speed reducer (hereinafter simply referred to as “speed reducer”) 1 includes a casing 2, an input unit 3, a first rotation assembly 4, a second rotation assembly 6, and a first inner. It includes a Lugear 5, a second internal gear 7, an input shaft (first input shaft) 8, an output shaft 9, and a motor 15 directly connected to the input shaft 8 to reduce the power from the input shaft 8. It can be transmitted to the output shaft 9.
減速機1は、第1回転組立体4と第2回転組立体6との2段構成の遊星ギア機構を有し、例えば外形寸法が幅5mm、奥行き5mm、高さ20mmの容積以下に形成されている。これにより、減速機1の小型化、薄型化が図られ、よって、例えば、小型、薄型の電子機器等の装置に容易に搭載することができる。また、第1回転組立体4と第2回転組立体6との2段構成により、入力側と出力側とに求められる機械的特性を満たす減速機1を提供することができる。
The speed reducer 1 has a planetary gear mechanism having a two-stage structure including a first rotation assembly 4 and a second rotation assembly 6, and is formed to have an outer dimension of, for example, a width of 5 mm, a depth of 5 mm, and a height of 20 mm or less. ing. As a result, the speed reducer 1 can be made smaller and thinner, and thus can be easily mounted in a device such as a small and thin electronic device. Further, the two-stage configuration of the first rotation assembly 4 and the second rotation assembly 6 can provide the speed reducer 1 that satisfies the mechanical characteristics required for the input side and the output side.
<モータ>
モータ15は、減速機1が搭載される構造体(図示せず)の駆動源、すなわち、動力源となる。なお、構造体としては、特に限定されず、例えば小型カメラが挙げられる。また、モータ15としては、例えば、構造体の使用用途に応じて、各種のモータが適宜選択される。 <Motor>
Themotor 15 serves as a drive source of a structure (not shown) on which the speed reducer 1 is mounted, that is, a power source. The structure is not particularly limited, and may be a small camera, for example. Further, as the motor 15, for example, various motors are appropriately selected according to the usage of the structure.
モータ15は、減速機1が搭載される構造体(図示せず)の駆動源、すなわち、動力源となる。なお、構造体としては、特に限定されず、例えば小型カメラが挙げられる。また、モータ15としては、例えば、構造体の使用用途に応じて、各種のモータが適宜選択される。 <Motor>
The
また、入力軸8は、中心軸J1を回転中心として回転駆動するモータ15のモータ軸でもある。
The input shaft 8 is also the motor shaft of the motor 15 that is rotationally driven about the central axis J1.
<ケーシング>
モータ15の上側には、ケーシング2が配置、固定されている。ケーシング2は、中心軸J1を中心とする略円筒状である。ケーシング2の内部には、入力部3、第1回転組立体4、第2回転組立体6の一部、第1インターナルギア5、および第2インターナルギア7が収容される。なお、図1中では、中心軸J1に沿って第2回転組立体6側を上側、第1回転組立体4側を下側としているが、中心軸J1の向きは必ずしも重力方向と一致させる必要はない。また、第1回転組立体4と第2回転組立体6とのギア比は、構造体の使用用途により適宜設定される。これにより、モータ15からの動力を減速して、出力軸9から出力することができる。 <Casing>
Thecasing 2 is arranged and fixed on the upper side of the motor 15. The casing 2 has a substantially cylindrical shape centered on the central axis J1. Inside the casing 2, the input unit 3, the first rotation assembly 4, a part of the second rotation assembly 6, the first internal gear 5, and the second internal gear 7 are housed. In FIG. 1, the second rotation assembly 6 side is the upper side and the first rotation assembly 4 side is the lower side along the central axis J1, but the direction of the central axis J1 does not necessarily have to coincide with the gravity direction. There is no. Further, the gear ratio between the first rotary assembly 4 and the second rotary assembly 6 is appropriately set depending on the usage of the structure. Thereby, the power from the motor 15 can be decelerated and output from the output shaft 9.
モータ15の上側には、ケーシング2が配置、固定されている。ケーシング2は、中心軸J1を中心とする略円筒状である。ケーシング2の内部には、入力部3、第1回転組立体4、第2回転組立体6の一部、第1インターナルギア5、および第2インターナルギア7が収容される。なお、図1中では、中心軸J1に沿って第2回転組立体6側を上側、第1回転組立体4側を下側としているが、中心軸J1の向きは必ずしも重力方向と一致させる必要はない。また、第1回転組立体4と第2回転組立体6とのギア比は、構造体の使用用途により適宜設定される。これにより、モータ15からの動力を減速して、出力軸9から出力することができる。 <Casing>
The
<入力部>
入力部3は、入力軸(第2入力軸)31と、入力ギア33とを含む。入力軸31および入力ギア33は、ケーシング2の内部に位置する。 <Input part>
Theinput unit 3 includes an input shaft (second input shaft) 31 and an input gear 33. The input shaft 31 and the input gear 33 are located inside the casing 2.
入力部3は、入力軸(第2入力軸)31と、入力ギア33とを含む。入力軸31および入力ギア33は、ケーシング2の内部に位置する。 <Input part>
The
入力軸31は、中心軸J1上に位置し、入力軸8の上部に連結されている。これにより、入力軸31は、ケーシング2内で、入力軸8とともに中心軸J1回りに回転することができる。また、入力軸31は、略円筒状または略円柱状であり、その外径が入力軸8の外径よりも小さい。
The input shaft 31 is located on the central axis J1 and is connected to the upper part of the input shaft 8. As a result, the input shaft 31 can rotate around the central axis J1 together with the input shaft 8 in the casing 2. The input shaft 31 has a substantially cylindrical shape or a substantially cylindrical shape, and its outer diameter is smaller than the outer diameter of the input shaft 8.
入力軸31の外周部には、略円筒状または略円柱状の入力ギア33が接続されている。入力軸31と入力ギア33は同心軸上に配置される。これにより、入力ギア33は、入力軸31とともに中心軸J1回りに回転することができる。入力軸31に対する入力ギア33の固定方法としては、特に限定されず、例えば、他の部材を介した固定方法、すなわち、キーとキー溝とを用いた固定方法を用いることができる。また、入力軸31と入力ギア33とは、図示の構成では互いに別体で構成されているが、これに限定されず、一繋がりの部材であってもよい。例えば、一体成形による1つのギア部材で構成されていてもよい。
A substantially cylindrical or cylindrical input gear 33 is connected to the outer peripheral portion of the input shaft 31. The input shaft 31 and the input gear 33 are arranged on a concentric shaft. As a result, the input gear 33 can rotate around the central axis J1 together with the input shaft 31. The method of fixing the input gear 33 to the input shaft 31 is not particularly limited, and for example, a fixing method using another member, that is, a fixing method using a key and a key groove can be used. Further, although the input shaft 31 and the input gear 33 are configured separately from each other in the illustrated configuration, the present invention is not limited to this and may be a single connected member. For example, it may be composed of one gear member formed integrally.
図2に示すように、入力ギア33は、その外周部に突出した複数の歯(以下、「外周歯」という)331を有する平歯車である。
As shown in FIG. 2, the input gear 33 is a spur gear having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 331 protruding on the outer peripheral portion thereof.
<第1回転組立体>
第1回転組立体4は、第1回転軸部41と、第1遊星キャリア42と、複数の第1遊星軸部材43と、複数の第1遊星ギア44と、太陽ギア45とを含む。また、第1回転軸部41、第1遊星キャリア42、複数の第1遊星軸部材43、複数の第1遊星ギア44および太陽ギア45は、ケーシング2内に位置する。 <First rotation assembly>
The first rotation assembly 4 includes a firstrotation shaft portion 41, a first planet carrier 42, a plurality of first planet shaft members 43, a plurality of first planet gears 44, and a sun gear 45. Further, the first rotation shaft portion 41, the first planetary carrier 42, the plurality of first planetary shaft members 43, the plurality of first planetary gears 44, and the sun gear 45 are located inside the casing 2.
第1回転組立体4は、第1回転軸部41と、第1遊星キャリア42と、複数の第1遊星軸部材43と、複数の第1遊星ギア44と、太陽ギア45とを含む。また、第1回転軸部41、第1遊星キャリア42、複数の第1遊星軸部材43、複数の第1遊星ギア44および太陽ギア45は、ケーシング2内に位置する。 <First rotation assembly>
The first rotation assembly 4 includes a first
第1回転組立体4では、第1回転軸部41、第1遊星キャリア42および複数の第1遊星軸部材43は、各第1遊星ギア44および太陽ギア45を支持する支持体である。この支持体は、第1回転軸部41、第1遊星キャリア42および複数の第1遊星軸部材43の他に、さらに別の部材を含んでもよい。
In the first rotating assembly 4, the first rotating shaft portion 41, the first planetary carrier 42, and the plurality of first planetary shaft members 43 are supports that support the respective first planetary gears 44 and the sun gears 45. In addition to the first rotation shaft portion 41, the first planetary carrier 42, and the plurality of first planetary shaft members 43, this support may further include another member.
第1回転軸部41は、略円筒状または略円柱状をであり、その中心軸が中心軸J1に一致している。また、第1回転軸部41は、入力部3の入力軸31と同軸であって、入力軸33よりも上側に配置されている。
The first rotation shaft portion 41 has a substantially cylindrical shape or a substantially columnar shape, and its central axis coincides with the central axis J1. The first rotation shaft portion 41 is coaxial with the input shaft 31 of the input unit 3 and is arranged above the input shaft 33.
第1回転軸部41の下部には、円盤状である第1遊星キャリア42が第1回転軸部41と同心的に配置されている。すなわち、円盤状である第1遊星キャリア42の中心部には、第1回転軸部41が上方に向かって突出して配置されている。第1遊星キャリア42は、中心軸J1を中心に回転することができる。
A disk-shaped first planetary carrier 42 is arranged concentrically with the first rotation shaft portion 41 below the first rotation shaft portion 41. That is, the first rotation shaft portion 41 is arranged so as to project upward at the center of the disk-shaped first planetary carrier 42. The first planet carrier 42 can rotate around the central axis J1.
第1遊星キャリア42の下部には、第1遊星キャリア42の径方向外側に複数の第1遊星軸部材43が配置されている。言い換えると第1遊星キャリア42の径方向外側において、中心軸J1から偏心した位置に複数の第1遊星軸部材43が配置されている。複数の第1遊星軸部材43は、同様の略円柱状であり、その長手方向が中心軸J1に沿う方向を向いて(以下、「中心軸J1に沿って」とも記載する。)配置されている。また、各第1遊星軸部材43は、第1遊星キャリア42に回転不能に固定された状態となっている。
At the lower part of the first planet carrier 42, a plurality of first planetary shaft members 43 are arranged radially outside the first planet carrier 42. In other words, on the outer side in the radial direction of the first planetary carrier 42, the plurality of first planetary shaft members 43 are arranged at positions eccentric from the central axis J1. The plurality of first planetary shaft members 43 have the same substantially cylindrical shape, and are arranged with their longitudinal directions oriented along the central axis J1 (hereinafter also referred to as “along the central axis J1”). There is. In addition, each first planetary shaft member 43 is in a state of being non-rotatably fixed to the first planetary carrier 42.
なお、第1遊星軸部材43の配置数は、図2に示す構成では3つであるが、これに限定されず、2つまたは4つ以上であってもよい。また、これらの第1遊星軸部材43は、中心軸J1回りに等角度間隔に配置されている。例えば、図2に示すように、第1遊星軸部材43の配置数が3つの場合、これらの第1遊星軸部材43は、中心軸J1回りに120°間隔に配置されている。以下の説明では、各第1遊星軸部材43の中心軸を「第1遊星軸J2」と呼ぶ。
Note that the number of first planetary shaft members 43 arranged is three in the configuration shown in FIG. 2, but is not limited to this and may be two or four or more. The first planetary shaft members 43 are arranged at equal angular intervals around the central axis J1. For example, as shown in FIG. 2, when the number of first planetary shaft members 43 arranged is three, the first planetary shaft members 43 are arranged at 120 ° intervals around the central axis J1. In the following description, the central axis of each first planetary shaft member 43 is referred to as "first planetary shaft J2".
各第1遊星軸部材43には、第1遊星ギア44が回転可能に支持されている。これにより、各第1遊星ギア44は、第1遊星軸J2を回転中心として回転すること、すなわち、自転することができる。また、各第1遊星ギア44は、中心軸J1を回転中心として回転すること、すなわち、公転することができる。このように、各第1遊星ギア44は、第1遊星軸J2回りに自転し、中心軸J1回りに公転する遊星ギア(「Pギア」とも呼ぶ。)となっている。
A first planetary gear 44 is rotatably supported on each first planetary shaft member 43. As a result, each first planetary gear 44 can rotate about the first planetary axis J2, that is, can rotate on its axis. Further, each of the first planetary gears 44 can rotate, that is, revolve around the central axis J1. As described above, each of the first planetary gears 44 is a planetary gear (also referred to as “P gear”) that rotates about the first planetary axis J2 and revolves around the central axis J1.
各第1遊星ギア44は、円筒状であり、その外周部に突出した複数の歯(以下、「外周歯」という)441を有する平歯車である。そして、各第1遊星ギア44は、入力ギア33の径方向外側に、その周方向に沿って配置される。各第1遊星ギア44の外周歯441は入力ギア33の外周歯331に噛み合っている。
Each of the first planetary gears 44 is a spur gear having a cylindrical shape and having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 441 protruding on the outer peripheral portion thereof. The first planetary gears 44 are arranged radially outside the input gear 33 along the circumferential direction thereof. The outer peripheral teeth 441 of each first planetary gear 44 mesh with the outer peripheral teeth 331 of the input gear 33.
なお、第1遊星ギア44のモジュールは、0.2mm以下であるのが好ましく、0.05~0.2mmであるのがより好ましい。
Note that the module of the first planetary gear 44 is preferably 0.2 mm or less, and more preferably 0.05 to 0.2 mm.
第1回転軸部41の外周部には、太陽ギア45が同心的に接続されている。これにより、太陽ギア45は、ケーシング2内で、第1回転軸部41とともに中心軸J1回りに回転することができる。なお、第1回転軸部41に対する太陽ギア45の固定方法としては、特に限定されず、例えば、キーとキー溝とを用いた固定方法を用いることができる。太陽ギア45は、その外周部に突出した複数の歯(以下、「外周歯」という)451を有する平歯車である。
The sun gear 45 is concentrically connected to the outer peripheral portion of the first rotating shaft portion 41. As a result, the sun gear 45 can rotate around the central axis J1 together with the first rotation shaft portion 41 in the casing 2. The method for fixing the sun gear 45 to the first rotating shaft portion 41 is not particularly limited, and for example, a fixing method using a key and a key groove can be used. The sun gear 45 is a spur gear having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 451 protruding on the outer peripheral portion thereof.
また、第1回転軸部41と、第1遊星キャリア42と、太陽ギア45は、一体成形により一繋がりになった単一の部材で構成されている。また、この部材と、複数の第1遊星軸部材43とが、一体成形による1つのギア部材として構成されていてもよく、かかるギア部材を「Cギア」とも呼ぶ。
Also, the first rotating shaft portion 41, the first planet carrier 42, and the sun gear 45 are composed of a single member that is integrally connected by integral molding. Further, this member and the plurality of first planetary shaft members 43 may be configured as one gear member integrally formed, and such a gear member is also referred to as “C gear”.
<第1インターナルギア>
第1インターナルギア5は、中心軸J1を中心軸とする環状である。第1インターナルギア5は、ケーシング2の内側(第1の内周面側)にケーシング2と同心的に配置、固定されている。この固定方法としては、特に限定されず、例えば、嵌め合いによる固定方法を用いることができる。この場合、中間嵌めが好ましい。 <First internal gear>
The firstinternal gear 5 has an annular shape with the central axis J1 as the central axis. The first internal gear 5 is arranged and fixed concentrically with the casing 2 inside the casing 2 (on the side of the first inner peripheral surface). The fixing method is not particularly limited, and for example, a fixing method by fitting can be used. In this case, intermediate fitting is preferred.
第1インターナルギア5は、中心軸J1を中心軸とする環状である。第1インターナルギア5は、ケーシング2の内側(第1の内周面側)にケーシング2と同心的に配置、固定されている。この固定方法としては、特に限定されず、例えば、嵌め合いによる固定方法を用いることができる。この場合、中間嵌めが好ましい。 <First internal gear>
The first
図2に示すように、第1インターナルギア5は、その内周部に突出した複数の歯(以下、「内周歯」という)51を有する内歯車である。内周歯51は、その周方向の異なる位置で、各第1遊星ギア44の外周歯441と噛み合っている。
なお、第1インターナルギア5は、他の部材を介してケーシング2に間接的に固定されてもよく、ケーシング2と一繋がりの部材であっても良い。つまり、第1インターナルギア5と、ケーシング2とは、互いに別体の部材であってもよく、一体成形により1つの部材であってもよい。 As shown in FIG. 2, the firstinternal gear 5 is an internal gear having a plurality of teeth (hereinafter referred to as “inner peripheral teeth”) 51 protruding on the inner peripheral portion thereof. The inner peripheral teeth 51 mesh with the outer peripheral teeth 441 of each first planetary gear 44 at different positions in the circumferential direction.
The firstinternal gear 5 may be indirectly fixed to the casing 2 via another member, or may be a member that is connected to the casing 2. That is, the first internal gear 5 and the casing 2 may be separate members from each other, or may be a single member by integral molding.
なお、第1インターナルギア5は、他の部材を介してケーシング2に間接的に固定されてもよく、ケーシング2と一繋がりの部材であっても良い。つまり、第1インターナルギア5と、ケーシング2とは、互いに別体の部材であってもよく、一体成形により1つの部材であってもよい。 As shown in FIG. 2, the first
The first
<第2回転組立体>
第2回転組立体6は、第1回転組立体の上側に配置されている。第2回転組立体6は、第2回転軸部61と、第2遊星キャリア62と、複数の第2遊星軸部材63と、複数の第2遊星ギア64とを含む。第2遊星キャリア62、複数の第2遊星軸部材63および複数の第2遊星ギア64は、ケーシング2内に位置する。 <Second rotation assembly>
The second rotation assembly 6 is arranged above the first rotation assembly. The second rotation assembly 6 includes a secondrotation shaft portion 61, a second planet carrier 62, a plurality of second planet shaft members 63, and a plurality of second planet gears 64. The second planet carrier 62, the plurality of second planetary shaft members 63, and the plurality of second planetary gears 64 are located inside the casing 2.
第2回転組立体6は、第1回転組立体の上側に配置されている。第2回転組立体6は、第2回転軸部61と、第2遊星キャリア62と、複数の第2遊星軸部材63と、複数の第2遊星ギア64とを含む。第2遊星キャリア62、複数の第2遊星軸部材63および複数の第2遊星ギア64は、ケーシング2内に位置する。 <Second rotation assembly>
The second rotation assembly 6 is arranged above the first rotation assembly. The second rotation assembly 6 includes a second
第2回転組立体6では、第2回転軸部61と、第2遊星キャリア62および複数の第2遊星軸部材63は、各第2遊星軸部材63を支持する支持体である。この支持体は、第2回転軸部61と、第2遊星キャリア62および複数の第2遊星軸部材63の他に、さらに別の部材を含んでもよい。
In the second rotating assembly 6, the second rotating shaft portion 61, the second planet carrier 62, and the plurality of second planetary shaft members 63 are supports that support the respective second planetary shaft members 63. In addition to the second rotating shaft portion 61, the second planet carrier 62 and the plurality of second planetary shaft members 63, this support may further include another member.
第2回転軸部61、第2遊星キャリア62および複数の第2遊星軸部材63は、本実施形態では一体成形により1つのギア部材で構成されている。つまり、第2遊星キャリア62および複数の第2遊星軸部材63が一繋がりの部材で構成されているが、これに限定されず、例えば、互いに別体で構成し、これら別体同士が連結された連結体で構成されていてもよい。
The second rotating shaft portion 61, the second planetary carrier 62, and the plurality of second planetary shaft members 63 are formed as one gear member by integral molding in this embodiment. That is, the second planet carrier 62 and the plurality of second planetary shaft members 63 are configured as one continuous member, but the present invention is not limited to this, and for example, they are configured as separate bodies, and these separate bodies are coupled to each other. It may be composed of a connected body.
第2回転軸部61は、略円筒状または略円柱状であり、入力軸3と同軸に配置されている、すなわち、第1回転軸部41と同様にその中心軸が中心軸J1に一致している。また、第2回転軸部61は、ケーシング2の上面から上方に向かってケーシング2の外側へと突出しており、出力軸9に接続されている。
The second rotary shaft portion 61 has a substantially cylindrical shape or a substantially cylindrical shape, and is arranged coaxially with the input shaft 3, that is, the central axis thereof coincides with the central axis J1 like the first rotary shaft portion 41. ing. The second rotary shaft portion 61 projects upward from the upper surface of the casing 2 to the outside of the casing 2 and is connected to the output shaft 9.
第2回転軸部61の下部には、円盤状である第2遊星キャリア62が第2回転軸部61と同心的に配置されている。すなわち、円盤状である第2遊星キャリア62の中心部には、第2回転軸部61が上方に向かって突出して配置されている。第2遊星キャリア62は、中心軸J1(第2回転軸部61)を中心に回転することができる。
A disc-shaped second planet carrier 62 is arranged concentrically with the second rotating shaft portion 61 below the second rotating shaft portion 61. That is, the second rotation shaft portion 61 is arranged so as to project upward at the center of the disk-shaped second planet carrier 62. The second planet carrier 62 can rotate about the central axis J1 (second rotating shaft portion 61).
第2遊星キャリア62の下部には、第2遊星キャリア62の径方向外側、すなわち、中心軸J1から偏心した位置に複数の第2遊星軸部材63が配置されている。複数の第2遊星軸部材63は、同様の略円柱状であり、その長手方向が中心軸J1に沿う方向を向いて(中心軸J1に沿って)配置されている。また、各第2遊星軸部材63は、第2遊星キャリア62に回転不能に固定された状態となっている。
A plurality of second planetary shaft members 63 are arranged below the second planetary carrier 62 in a radial direction of the second planetary carrier 62, that is, at positions eccentric from the central axis J1. The plurality of second planetary shaft members 63 have the same substantially cylindrical shape and are arranged with their longitudinal directions oriented along the central axis J1 (along the central axis J1). Further, each second planetary shaft member 63 is in a state of being non-rotatably fixed to the second planetary carrier 62.
なお、第2遊星軸部材63の配置数は、図2に示す構成では3つであるが、これに限定されず、2つまたは4つ以上であってもよく、特に第1遊星軸部材43の配置数と同数であるのが好ましい。
The number of the second planetary shaft members 63 arranged is three in the configuration shown in FIG. 2, but is not limited to this and may be two or four or more, and particularly the first planetary shaft member 43. It is preferable that the number is the same as the number of arrangements.
また、これらの第2遊星軸部材63は、中心軸J1回りに等角度間隔で配置されている。例えば、図2に示すように、第2遊星軸部材63の配置数が3つの場合、これらの第2遊星軸部材63は、中心軸J1回りに120°間隔で配置される。以下の説明では、各第2遊星軸部材63の中心軸を「第2遊星軸J3」と呼ぶ。
Further, these second planetary shaft members 63 are arranged at equal angular intervals around the central axis J1. For example, as shown in FIG. 2, when the number of the second planetary shaft members 63 arranged is three, these second planetary shaft members 63 are arranged at 120 ° intervals around the central axis J1. In the following description, the central axis of each second planetary shaft member 63 is referred to as "second planetary shaft J3".
各第2遊星軸部材63には、第2遊星ギア64が回転可能に支持されている。これにより、各第2遊星ギア64は、第2遊星軸J3を回転中心として回転すること、すなわち、自転することができる。また、各第2遊星ギア64は、中心軸J1を回転中心として回転すること、すなわち、公転することができる。このように、各第2遊星ギア64は、第2遊星軸J3回りに自転し、中心軸J1回りに公転する遊星ギア(「Pギア」とも呼ぶ。)となっている。
A second planetary gear 64 is rotatably supported on each second planetary shaft member 63. As a result, each second planetary gear 64 can rotate about the second planetary axis J3, that is, can rotate on its axis. In addition, each second planetary gear 64 can rotate about the central axis J1, that is, can revolve. As described above, each second planetary gear 64 is a planetary gear (also referred to as “P gear”) that rotates about the second planetary axis J3 and revolves around the central axis J1.
各第2遊星ギア64は、円筒状であり、その外周部に突出した複数の歯(以下、「外周歯」という)641を有する平歯車である。そして、各第2遊星ギア64は、太陽ギア45の径方向外側に、その周方向に沿って配置され、外周歯641が太陽ギア45の外周歯451に噛み合っている。
Each second planetary gear 64 is a spur gear having a cylindrical shape and a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 641 protruding on the outer peripheral portion thereof. The second planetary gears 64 are arranged radially outward of the sun gear 45 along the circumferential direction thereof, and the outer peripheral teeth 641 mesh with the outer peripheral teeth 451 of the sun gear 45.
なお、第2遊星ギア64のモジュールは、第1遊星ギア44のモジュールと同様に、0.2mm以下であるのが好ましく、0.05~0.2mmであるのがより好ましい。これにより、第1遊星ギア44および第2遊星ギア64は、それぞれ、超小型成形部品として得られる。また、このような部品を使用することで、上記の減速機1の外形寸法と相まって、他の小型機器への搭載に適した精密な減速機1の製造が可能となる。
The module of the second planetary gear 64, like the module of the first planetary gear 44, is preferably 0.2 mm or less, and more preferably 0.05 to 0.2 mm. As a result, the first planetary gear 44 and the second planetary gear 64 are each obtained as a microminiature molded part. Further, by using such a component, it becomes possible to manufacture a precise speed reducer 1 suitable for mounting on another small-sized device, in combination with the outer dimensions of the speed reducer 1 described above.
<第2インターナルギア>
第2インターナルギア7は、中心軸J1を中心軸とする環状である。第2インターナルギア7は、ケーシング2の内側(第2の内周面側)に、第1インターナルギア5よりも上側であって、軸方向に第1インターナルギア5と離れて配置されている。 <Second internal gear>
The secondinternal gear 7 is annular with the central axis J1 as the central axis. The second internal gear 7 is arranged inside the casing 2 (on the side of the second inner peripheral surface), above the first internal gear 5, and axially separated from the first internal gear 5.
第2インターナルギア7は、中心軸J1を中心軸とする環状である。第2インターナルギア7は、ケーシング2の内側(第2の内周面側)に、第1インターナルギア5よりも上側であって、軸方向に第1インターナルギア5と離れて配置されている。 <Second internal gear>
The second
また、第2インターナルギア7は、ケーシング2と同心的に配置、固定されている。この固定方法としては、特に限定されず、例えば、嵌め合いによる固定方法を用いることができる。この場合、中間嵌めが好ましい。
Also, the second internal gear 7 is arranged and fixed concentrically with the casing 2. The fixing method is not particularly limited, and for example, a fixing method by fitting can be used. In this case, intermediate fitting is preferred.
第2インターナルギア7は、その内周部に突出した複数の歯(以下「内周歯」という)71を有する内歯車である。内周歯71は、その周方向の異なる位置で、各第2遊星ギア64の外周歯641と噛み合っている。
The second internal gear 7 is an internal gear having a plurality of teeth 71 (hereinafter referred to as “inner peripheral teeth”) 71 protruding from the inner peripheral portion thereof. The inner peripheral teeth 71 mesh with the outer peripheral teeth 641 of each second planetary gear 64 at different positions in the circumferential direction.
なお、第2インターナルギア7は、他の部材を介してケーシング2に間接的に固定されてもよく、一繋がりの部材であってもよい。つまり、第2インターナルギア7とケーシング2とは、互いに別体の部材であってもよく、一体成形により1つの部材であってもよい。
Note that the second internal gear 7 may be indirectly fixed to the casing 2 via another member, or may be a single connected member. That is, the second internal gear 7 and the casing 2 may be separate members, or may be a single member by integral molding.
<出力軸>
出力軸9は、ケーシング2の外側で第2回転軸部61の上部(上端部)に接続され(連結され)、第2回転軸部61とともに中心軸J1回りに回転することができる。出力軸9は、略円筒状または略円柱状であり、その外径が第2回転軸部61の外径と同じである。 <Output shaft>
The output shaft 9 is connected (coupled) to the upper portion (upper end portion) of the secondrotating shaft portion 61 on the outside of the casing 2 and can rotate around the central axis J1 together with the second rotating shaft portion 61. The output shaft 9 has a substantially cylindrical shape or a substantially cylindrical shape, and its outer diameter is the same as the outer diameter of the second rotating shaft portion 61.
出力軸9は、ケーシング2の外側で第2回転軸部61の上部(上端部)に接続され(連結され)、第2回転軸部61とともに中心軸J1回りに回転することができる。出力軸9は、略円筒状または略円柱状であり、その外径が第2回転軸部61の外径と同じである。 <Output shaft>
The output shaft 9 is connected (coupled) to the upper portion (upper end portion) of the second
なお、出力軸9は、第2回転軸部61に直接的に接続されてもよいし、間接的に、すなわち、他の部材を介して接続されてもよい。出力軸9と第2回転軸部61との接続方法としては、特に限定されず、例えば、キーとキー溝とによる接続方法、Dカットによる接続方法、ギア部品を用いての接続方法等、種々の方法が利用可能である。また、出力軸9と第2回転軸部61とは、本実施形態では互いに別体で構成されているが、これに限定されず、一繋がりの部材であってもよい。例えば、一体成形による1つの部材で構成されていてもよい。
Note that the output shaft 9 may be directly connected to the second rotating shaft portion 61 or indirectly, that is, connected via another member. The connecting method between the output shaft 9 and the second rotating shaft portion 61 is not particularly limited, and various methods such as a connecting method using a key and a key groove, a connecting method using a D-cut, a connecting method using a gear component, etc. Methods are available. Further, although the output shaft 9 and the second rotation shaft portion 61 are configured as separate bodies in the present embodiment, the output shaft 9 and the second rotation shaft portion 61 are not limited to this and may be a single connected member. For example, it may be composed of one member formed by integral molding.
<減速機の動作>
前述したように、減速機1は、第1回転組立体4と第2回転組立体6とのギア比が所定の範囲に設定されている。 <Operation of reducer>
As described above, in thespeed reducer 1, the gear ratio between the first rotary assembly 4 and the second rotary assembly 6 is set within a predetermined range.
前述したように、減速機1は、第1回転組立体4と第2回転組立体6とのギア比が所定の範囲に設定されている。 <Operation of reducer>
As described above, in the
まず、モータ15が作動することにより、その動力が入力軸8および入力軸31を順に介して、入力ギア33に伝達される。これにより、図2に示すように、入力ギア33は、中心軸J1回りに矢印α1方向に回転する。
First, when the motor 15 operates, its power is transmitted to the input gear 33 via the input shaft 8 and the input shaft 31 in order. As a result, as shown in FIG. 2, the input gear 33 rotates about the central axis J1 in the arrow α1 direction.
そして、入力ギア33に噛み合う各第1遊星ギア44には、入力ギア33の回転力が伝達される。これにより、図2に示すように、各第1遊星ギア44は、第1遊星軸J2回りに矢印α2方向に回転すること、すなわち、自転することができる。
Then, the rotational force of the input gear 33 is transmitted to each first planetary gear 44 that meshes with the input gear 33. As a result, as shown in FIG. 2, each first planetary gear 44 can rotate in the direction of the arrow α2 around the first planetary axis J2, that is, can rotate on its axis.
また、各第1遊星ギア44は、ケーシング2に固定された第1インターナルギア5にも噛み合っている。これにより、図2に示すように、各第1遊星ギア44は、矢印α2方向に自転した際、その回転力を第1インターナルギア5に伝達することができ、よって、中心軸J1回りに矢印α3方向にも回転すること、すなわち、公転することができる。この公転により、太陽ギア45を中心軸J1回りに矢印β1方向に回転させることができる。
Moreover, each first planetary gear 44 also meshes with the first internal gear 5 fixed to the casing 2. As a result, as shown in FIG. 2, each first planetary gear 44 can transmit its rotational force to the first internal gear 5 when the first planetary gear 44 rotates in the direction of the arrow α2, and thus the arrow about the central axis J1. It can also rotate in the α3 direction, that is, can revolve. By this revolution, the sun gear 45 can be rotated around the central axis J1 in the arrow β1 direction.
また、太陽ギア45には、各第2遊星ギア64が噛み合っている。これにより、太陽ギア45が矢印β1方向に回転した際、その回転力が各第2遊星ギア64に伝達される。そして、この伝達により、図2に示すように、各第2遊星ギア64は、第2遊星軸J3回りに矢印β2方向に回転すること、すなわち、自転することができる。
Also, each second planetary gear 64 meshes with the sun gear 45. As a result, when the sun gear 45 rotates in the direction of arrow β1, the rotational force is transmitted to each second planetary gear 64. Then, by this transmission, as shown in FIG. 2, each second planetary gear 64 can rotate in the direction of arrow β2 around the second planetary axis J3, that is, can rotate on its axis.
また、各第2遊星ギア64は、ケーシング2に固定された第2インターナルギア7にも噛み合っている。これにより、図2に示すように、各第2遊星ギア64は、矢印β2方向に自転した際、その回転力を第2インターナルギア7に伝達することができ、よって、中心軸J1回りに矢印β3方向に回転する、すなわち、公転することができる。そして、この公転により、出力軸9を中心軸J1回りに矢印β1方向と同方向に回転させることができる。
Also, each second planetary gear 64 meshes with the second internal gear 7 fixed to the casing 2. As a result, as shown in FIG. 2, each second planetary gear 64 can transmit its rotational force to the second internal gear 7 when the second planetary gear 64 rotates in the direction of arrow β2. It can rotate in the β3 direction, that is, can revolve. By this revolution, the output shaft 9 can be rotated around the central axis J1 in the same direction as the arrow β1 direction.
以上のような力伝達により、出力軸9からは、減速された動力が出力されることとなる。ここでいう動力とは、回転力を指すが、これに限られない。
Due to the force transmission as described above, the output shaft 9 outputs decelerated power. The power here refers to a rotational force, but is not limited to this.
以上説明した構成において、中心軸J1に沿う方向とは、中心軸J1(軸方向)にほぼ平行な方向を意味しており、軸方向に厳密に平行である必要はない。すなわち、第1遊星軸J2および第2遊星軸J3は、中心軸J1に平行であってもよく、中心軸J1に対して小さい角度だけ傾斜してもよい。
In the configuration described above, the direction along the central axis J1 means a direction substantially parallel to the central axis J1 (axial direction), and does not need to be strictly parallel to the axial direction. That is, the first planetary axis J2 and the second planetary axis J3 may be parallel to the central axis J1 or may be inclined by a small angle with respect to the central axis J1.
[実施例1]
実施例1に係る減速機は、その小型化・軽量化のために、第1遊星ギア等、一部の部品を熱可塑性樹脂をベース樹脂とする樹脂組成物で成形されている。また、実施例1に係る減速機では、第1インターナルギアを圧粉成形による焼結体、または金属射出成型法(Metal Injection Molding:MIM)によって形成されている。より具体的には、入力ギア33と、第1回転組立体4の構成部品である第1回転軸部41、第1遊星キャリア42、複数の第1遊星軸部材43、複数の第1遊星ギア44、および太陽ギア45とを、例えば、ポリアミド系樹脂等の熱可塑性樹脂をベース樹脂とし、そのベース樹脂に無機ウィスカを含有した樹脂組成物の成形体とする。 [Example 1]
In order to reduce the size and weight of the speed reducer according to the first embodiment, some components such as the first planetary gear are molded with a resin composition containing a thermoplastic resin as a base resin. Further, in the speed reducer according to the first embodiment, the first internal gear is formed by a sintered body formed by powder compacting or a metal injection molding (MIM) method. More specifically, theinput gear 33, the first rotation shaft portion 41 that is a component of the first rotation assembly 4, the first planet carrier 42, the plurality of first planetary shaft members 43, and the plurality of first planetary gears. The 44 and the sun gear 45 are, for example, a molded body of a resin composition in which a thermoplastic resin such as a polyamide resin is used as a base resin, and the base resin contains an inorganic whisker.
実施例1に係る減速機は、その小型化・軽量化のために、第1遊星ギア等、一部の部品を熱可塑性樹脂をベース樹脂とする樹脂組成物で成形されている。また、実施例1に係る減速機では、第1インターナルギアを圧粉成形による焼結体、または金属射出成型法(Metal Injection Molding:MIM)によって形成されている。より具体的には、入力ギア33と、第1回転組立体4の構成部品である第1回転軸部41、第1遊星キャリア42、複数の第1遊星軸部材43、複数の第1遊星ギア44、および太陽ギア45とを、例えば、ポリアミド系樹脂等の熱可塑性樹脂をベース樹脂とし、そのベース樹脂に無機ウィスカを含有した樹脂組成物の成形体とする。 [Example 1]
In order to reduce the size and weight of the speed reducer according to the first embodiment, some components such as the first planetary gear are molded with a resin composition containing a thermoplastic resin as a base resin. Further, in the speed reducer according to the first embodiment, the first internal gear is formed by a sintered body formed by powder compacting or a metal injection molding (MIM) method. More specifically, the
無機ウィスカは、例えば、アスペクト比が10以上のチタン酸カリウム繊維等である。この無機ウィスカは、上記の第1遊星キャリア42、第1遊星ギア44等が、小型部品としての微細成形性、耐久性、離型性等の機能性を発現する成分である。このように、チタン酸カリウム繊維は、高アスペクト比のみならず、樹脂との混合材において高強度、高剛性をもたらす機能を有する。また、チタン酸カリウム繊維は、その平均繊維長がガラス繊維、炭素繊維等の直径とほぼ等しく、極めて微細な形状を有する。このことから、本実施形態に係る減速機に使用する超小型(ミクロサイズ)部品において樹脂充填剤としての補強性に加えて、成形性等を発揮する。
The inorganic whiskers are, for example, potassium titanate fibers having an aspect ratio of 10 or more. This inorganic whisker is a component in which the first planetary carrier 42, the first planetary gear 44, and the like described above exhibit functionality such as fine moldability, durability, and releasability as a small component. As described above, the potassium titanate fiber has a function of providing not only a high aspect ratio but also high strength and high rigidity in the mixed material with the resin. Further, the potassium titanate fiber has an extremely fine shape because its average fiber length is almost equal to the diameter of glass fiber, carbon fiber and the like. For this reason, in addition to the reinforcing property as the resin filler, the moldability and the like are exerted in the microminiature (microsize) component used in the speed reducer according to the present embodiment.
上記の樹脂組成物中におけるベース樹脂と無機ウィスカとを合わせた含有率は99.5重量%以上である。具体的には、ベース樹脂の含有率が、例えば59.5~94.5重量%で、無機ウィスカの含有率が、例えば5~40重量%である。また、樹脂組成物中における無機ウィスカの含有量は、好ましくは15~40重量%、より好ましくは20~30重量%である。なお、樹脂組成物は、上記の成分以外にその他の成分(残部)として不可避的に混入する成分を含んでいてもよい。
The total content of the base resin and the inorganic whiskers in the above resin composition is 99.5% by weight or more. Specifically, the content of the base resin is, for example, 59.5 to 94.5% by weight, and the content of the inorganic whiskers is, for example, 5 to 40% by weight. The content of the inorganic whiskers in the resin composition is preferably 15-40% by weight, more preferably 20-30% by weight. The resin composition may contain components that are unavoidably mixed as other components (the balance) in addition to the above components.
第1遊星キャリア42、第1遊星ギア44等を無機ウィスカを含有した熱可塑性樹脂で形成する場合、射出成型等の方法を用いて成形することができる。ポリアミド系樹脂に無機ウィスカを含有させた樹脂組成物は、耐衝撃性、耐荷重性等の強度、および寸法精度に優れるため、小型精密ギアの構成材料に適している。
When the first planetary carrier 42, the first planetary gear 44, etc. are made of a thermoplastic resin containing an inorganic whisker, they can be molded by using a method such as injection molding. A resin composition containing a polyamide resin containing an inorganic whisker is excellent in strength such as impact resistance and load resistance and in dimensional accuracy, and is therefore suitable as a constituent material for a small precision gear.
なお、上述した熱可塑性樹脂には、ポリアミド系樹脂に代えて、例えばポリカーボネート系樹脂、アクリル系樹脂、ポリフェニレン系樹脂、フッ素系樹脂等を使用できる。また、無機ウィスカには、チタン酸カリウム繊維に代えて、例えば酸化亜鉛繊維、酸化マグネシウム繊維、酸化アルミニウム繊維、硫酸カルシウム繊維、炭化ケイ素繊維、窒化ケイ素繊維、ムライト繊維、ホウ酸マグネシウム繊維、ホウ化チタン繊維等を使用できる。
Note that, for the thermoplastic resin described above, for example, a polycarbonate resin, an acrylic resin, a polyphenylene resin, a fluorine resin, or the like can be used instead of the polyamide resin. Further, in the inorganic whiskers, instead of potassium titanate fibers, for example, zinc oxide fibers, magnesium oxide fibers, aluminum oxide fibers, calcium sulfate fibers, silicon carbide fibers, silicon nitride fibers, mullite fibers, magnesium borate fibers, borated Titanium fiber or the like can be used.
よって、樹脂組成物は、上記の熱可塑性樹脂および無機ウィスカの中から適宜、選択して組み合わせた構成とすることができる。とりわけ、ポリアミド系樹脂とチタン酸カリウム繊維とを組み合わせた構成が好ましい。
Therefore, the resin composition can be appropriately selected and combined from the above-mentioned thermoplastic resin and inorganic whiskers. Above all, a configuration in which a polyamide resin and potassium titanate fiber are combined is preferable.
[実施例2]
実施例2に係る減速機は、上記実施例1と同様に、入力ギア33、第1回転軸部41、第1遊星キャリア42、複数の第1遊星軸部材43、複数の第1遊星ギア44、および太陽ギア45が、ポリアミド系樹脂等の熱可塑性樹脂をベース樹脂とし、無機ウィスカを含有した樹脂組成物で成形されている。 [Example 2]
The speed reducer according to the second embodiment is similar to the first embodiment, in which theinput gear 33, the first rotating shaft portion 41, the first planetary carrier 42, the plurality of first planetary shaft members 43, and the plurality of first planetary gears 44 are included. , And the sun gear 45 are formed of a resin composition containing a thermoplastic resin such as a polyamide resin as a base resin and containing an inorganic whisker.
実施例2に係る減速機は、上記実施例1と同様に、入力ギア33、第1回転軸部41、第1遊星キャリア42、複数の第1遊星軸部材43、複数の第1遊星ギア44、および太陽ギア45が、ポリアミド系樹脂等の熱可塑性樹脂をベース樹脂とし、無機ウィスカを含有した樹脂組成物で成形されている。 [Example 2]
The speed reducer according to the second embodiment is similar to the first embodiment, in which the
一方、第2回転組立体6の構成部品である第2回転軸部61、第2遊星キャリア62、複数の第2遊星軸部材63、複数の第2遊星ギア64、および第2インターナルギア7は、圧粉成形による焼結体、または金属射出成型法(MIM)によって形成されている。
On the other hand, the second rotary shaft portion 61, the second planet carrier 62, the plurality of second planetary shaft members 63, the plurality of second planetary gears 64, and the second internal gear 7, which are the components of the second rotary assembly 6, are It is formed by a powder compacted sintered body or a metal injection molding method (MIM).
[実施例3]
実施例3に係る減速機は、入力ギア33、第1回転軸部41、第1遊星キャリア42、複数の第1遊星軸部材43、複数の第1遊星ギア44、太陽ギア45とともに複数の第2遊星ギア64が、上記実施例1と同様、ポリアミド系樹脂等の熱可塑性樹脂をベース樹脂とし、無機ウィスカを含有した樹脂組成物で成形されている。 [Example 3]
The speed reducer according to the third embodiment includes a plurality offirst gears 33, a first rotating shaft portion 41, a first planet carrier 42, a plurality of first planetary shaft members 43, a plurality of first planetary gears 44, and a sun gear 45. The two-planetary gear 64 is formed of a resin composition containing a thermoplastic resin such as a polyamide resin as a base resin and containing an inorganic whisker, as in the first embodiment.
実施例3に係る減速機は、入力ギア33、第1回転軸部41、第1遊星キャリア42、複数の第1遊星軸部材43、複数の第1遊星ギア44、太陽ギア45とともに複数の第2遊星ギア64が、上記実施例1と同様、ポリアミド系樹脂等の熱可塑性樹脂をベース樹脂とし、無機ウィスカを含有した樹脂組成物で成形されている。 [Example 3]
The speed reducer according to the third embodiment includes a plurality of
一方、第2回転軸部61、第2遊星キャリア62、複数の第2遊星軸部材63、および第2インターナルギア7は、圧粉成形による焼結体、または金属射出成型法(MIM)によって形成されている。
On the other hand, the second rotary shaft portion 61, the second planet carrier 62, the plurality of second planetary shaft members 63, and the second internal gear 7 are formed by a sintered body by compaction molding or a metal injection molding method (MIM). Has been done.
実施例3では、複数の第1遊星ギア44と複数の第2遊星ギア64については、樹脂成形体として共通の金型で成形することができ、コスト低減が可能となる。また、共通の金型を使用することで、第1遊星ギア44と第2遊星ギア64が同じ歯厚となり、さらに、同じ歯厚であることによって、面粗度と歯厚の比率が同じになるため組みやすいという効果が得られる。
In the third embodiment, the plurality of first planetary gears 44 and the plurality of second planetary gears 64 can be molded with a common mold as a resin molded body, and the cost can be reduced. Further, by using a common mold, the first planetary gear 44 and the second planetary gear 64 have the same tooth thickness, and the same tooth thickness results in the same surface roughness and tooth ratio. Therefore, the effect that it is easy to assemble is obtained.
上記いずれの実施例に係る減速機においても、ギアユニットを構成する歯車が超小型の成形体であり、歯車相互の良好な回転を得るには、一方の歯車の歯厚部分が、他方の歯と歯の間に正確に噛み合う必要がある。この場合、歯の面粗度が荒いと噛み合いにくく、面粗度が小さいと噛み合い難い状態が生じることから、以下において、インターナルギアの面粗度と歯厚の比率を検討した。
In the speed reducer according to any of the above embodiments, the gears that form the gear unit are microminiature molded bodies, and in order to obtain good rotation between the gears, the tooth thickness portion of one gear is the tooth of the other gear. Between the teeth and the teeth must be exactly engaged. In this case, if the surface roughness of the teeth is rough, it is difficult for the teeth to mesh, and if the surface roughness is small, it is difficult for the teeth to mesh. Therefore, the ratio between the surface roughness and the tooth thickness of the internal gear is examined below.
例えば、
・遊星ギア(第1遊星ギア)の基準円ピッチ直径:1.5mm
・遊星ギアの歯数:14枚
・遊星ギアのモジュール:基準円ピッチ直径/歯数=0.107
・遊星ギアの歯厚:π/2×モジュール≒0.168mm
・インターナルギア(第1インターナルギア)の面粗度:1.0×10-3mm以上、8.0×10-3mm以下
とする。 For example,
・ Standard circle pitch diameter of planet gear (first planet gear): 1.5mm
・ Number of teeth of planetary gear: 14 ・ Module of planetary gear: standard circle pitch diameter / number of teeth = 0.107
・ Planet gear tooth thickness: π / 2 × module ≈ 0.168 mm
Surface roughness of the internal gear (first internal gear): 1.0 × 10 −3 mm or more and 8.0 × 10 −3 mm or less.
・遊星ギア(第1遊星ギア)の基準円ピッチ直径:1.5mm
・遊星ギアの歯数:14枚
・遊星ギアのモジュール:基準円ピッチ直径/歯数=0.107
・遊星ギアの歯厚:π/2×モジュール≒0.168mm
・インターナルギア(第1インターナルギア)の面粗度:1.0×10-3mm以上、8.0×10-3mm以下
とする。 For example,
・ Standard circle pitch diameter of planet gear (first planet gear): 1.5mm
・ Number of teeth of planetary gear: 14 ・ Module of planetary gear: standard circle pitch diameter / number of teeth = 0.107
・ Planet gear tooth thickness: π / 2 × module ≈ 0.168 mm
Surface roughness of the internal gear (first internal gear): 1.0 × 10 −3 mm or more and 8.0 × 10 −3 mm or less.
ここで、遊星ギアの歯厚と、遊星ギアに噛み合うインターナルギアの歯厚は同じであるため、上記のようにインターナルギアの歯厚≒0.168mmとなる。よって、歯厚にマージンを持たせて、インターナルギアの歯厚は、0.12mm以上、0.2mm以下が妥当な範囲と考えられる。
Here, since the tooth thickness of the planetary gear and the tooth thickness of the internal gear that meshes with the planetary gear are the same, the tooth thickness of the internal gear is approximately 0.168 mm as described above. Therefore, it is considered that a reasonable range is 0.12 mm or more and 0.2 mm or less for the tooth thickness of the internal gear by giving a margin to the tooth thickness.
上記の数値から、インターナルギアの取りうる歯厚Tに対する面粗度Raの比率(面粗度/歯厚)を取ると、表1のようになる。よって、表1から、金属射出成型法(MIM)で成形した場合の現実的に取りうる面粗度の比率の範囲は、
5.0×10-3≦(Ra/T)≦66.7×10-3
となることが分かる。 Table 1 shows the ratio (surface roughness / tooth thickness) of the surface roughness Ra to the tooth thickness T that the internal gear can take from the above numerical values. Therefore, from Table 1, the range of the ratio of surface roughness that can be realistically obtained when molding by the metal injection molding method (MIM) is
5.0 × 10 −3 ≦ (Ra / T) ≦ 66.7 × 10 −3
It turns out that
5.0×10-3≦(Ra/T)≦66.7×10-3
となることが分かる。 Table 1 shows the ratio (surface roughness / tooth thickness) of the surface roughness Ra to the tooth thickness T that the internal gear can take from the above numerical values. Therefore, from Table 1, the range of the ratio of surface roughness that can be realistically obtained when molding by the metal injection molding method (MIM) is
5.0 × 10 −3 ≦ (Ra / T) ≦ 66.7 × 10 −3
It turns out that
例えば、歯厚Tを0.2mmとする場合には、面粗度Raを1×10-3mmとすることができる。また、歯厚Tを0.12mmとする場合には、面粗度Raを8×10-3mmとすることができる。
なお、上記の歯厚Tと算術平均粗さRaとの関係は、第1インターナルギアに適用することができるが、その他に、第2インターナルギアにも適用することもできる。 For example, when the tooth thickness T is 0.2 mm, the surface roughness Ra can be 1 × 10 −3 mm. When the tooth thickness T is 0.12 mm, the surface roughness Ra can be 8 × 10 −3 mm.
The relationship between the tooth thickness T and the arithmetic mean roughness Ra described above can be applied to the first internal gear, but can also be applied to the second internal gear.
なお、上記の歯厚Tと算術平均粗さRaとの関係は、第1インターナルギアに適用することができるが、その他に、第2インターナルギアにも適用することもできる。 For example, when the tooth thickness T is 0.2 mm, the surface roughness Ra can be 1 × 10 −3 mm. When the tooth thickness T is 0.12 mm, the surface roughness Ra can be 8 × 10 −3 mm.
The relationship between the tooth thickness T and the arithmetic mean roughness Ra described above can be applied to the first internal gear, but can also be applied to the second internal gear.
上記のようにインターナルギアの歯厚Tと、算術平均粗さRaとの関係を規定することで、インターナルギアと噛み合うギア、例えば、樹脂組成物の成形体である遊星ギアとの噛み合いが良好になり、回転組立体を構成する遊星ギアが円滑に回転する。一方、比Ra/Tが上記の数値範囲から外れた場合には、インターナルギアは、遊星ギアとの円滑な噛み合いが困難となることが分かった。
By defining the relationship between the tooth thickness T of the internal gear and the arithmetic mean roughness Ra as described above, the gear meshing with the internal gear, for example, the meshing with the planet gear that is a molded product of the resin composition is improved. As a result, the planetary gears that form the rotating assembly rotate smoothly. On the other hand, it has been found that when the ratio Ra / T is out of the above numerical range, it is difficult for the internal gear to smoothly mesh with the planetary gear.
以上説明したように本実施形態に係る小型減速機は、入力軸からの動力を減速して出力軸に伝達する小型減速機であって、ケーシングと、前記ケーシングの第1の内周面に位置する環状の第1インターナルギアと、前記ケーシングの第2の内周面に位置する環状の第2インターナルギアと、前記入力軸に接続された入力ギアと、前記ケーシング内において前記入力軸と同軸に配置された第1回転軸部と、前記第1回転軸部とともに回転する太陽ギアを有し、前記第1回転軸部を中心に回転可能な第1遊星キャリアと、前記第1遊星キャリアに自転可能に支持され、前記入力ギアと前記第1インターナルギアとに噛み合う複数の第1遊星ギアと、前記ケーシング内において前記入力軸と同軸に配置され、かつ、前記出力軸に接続された第2回転軸部と、前記第2回転軸部を中心に回転可能な第2遊星キャリアと、前記太陽ギアの周方向に配置されるとともに前記第2遊星キャリアに自転可能に支持され、前記太陽ギアと前記2インターナルギアとに噛み合う複数の第2遊星ギアとを備え、前記第1遊星キャリアと、前記第1回転軸部と、前記太陽ギアが単一の部材であり、前記入力ギアと、前記第1遊星キャリアと、前記第1遊星ギアは熱可塑性樹脂をベース樹脂とし、所定の機能性発現成分としての無機ウィスカを含有する樹脂組成物の成形体であって、かつ、前記樹脂組成物中における該ベース樹脂と該無機ウィスカとを合わせた含有率が99.5重量%以上であり、前記第1インターナルギアは金属焼結体で形成され、該第1インターナルギアにおける歯厚Tと、算術平均粗さRaとの関係が、5.0×10-3≦(Ra/T)≦66.7×10-3を満たす。
As described above, the small reduction gear according to the present embodiment is a small reduction gear that reduces the power from the input shaft and transmits the power to the output shaft, and is located on the casing and the first inner peripheral surface of the casing. A ring-shaped first internal gear, a ring-shaped second internal gear located on the second inner peripheral surface of the casing, an input gear connected to the input shaft, and coaxially with the input shaft in the casing. A first planetary carrier having a first rotating shaft portion arranged and a sun gear that rotates together with the first rotating shaft portion, the first planetary carrier being rotatable around the first rotating shaft portion, and rotating around the first planetary carrier. A plurality of first planetary gears that are movably supported and mesh with the input gear and the first internal gear; and a second rotation that is arranged coaxially with the input shaft in the casing and that is connected to the output shaft. axis Part, a second planetary carrier rotatable about the second rotation shaft part, and arranged in the circumferential direction of the sun gear and rotatably supported by the second planetary carrier. A plurality of second planetary gears meshing with an internal gear, wherein the first planetary carrier, the first rotating shaft portion, and the sun gear are a single member, the input gear, and the first planetary gear. A carrier and the first planetary gear are molded articles of a resin composition containing a thermoplastic resin as a base resin and inorganic whiskers as a predetermined functional expression component, and the base in the resin composition. The total content of the resin and the inorganic whiskers is 99.5% by weight or more, the first internal gear is formed of a metal sintered body, and the tooth thickness T of the first internal gear and the arithmetic mean roughness are Ra Relationship satisfies 5.0 × 10 -3 ≦ (Ra / T) ≦ 66.7 × 10 -3.
そして、本実施形態に係る小型減速機によれば、小型減速機の入力軸に近い部材を、超小型であって動力伝達率が良好で、耐衝撃性・耐荷重性の高い樹脂成形品で構成し、出力軸に近い部材を金属で構成することで、付加される荷重に応じた耐性と強度を有する小型減速機を実現できる。また、樹脂の採用により部材の大量生産と歩留まりの向上が可能となり、減速機のコストダウンを図ることができる。さらに、高速で回転する入力軸に近い部材を樹脂で構成したことで、小型減速機の動作時における騒音を低減した静音設計が可能となる。
Further, according to the small speed reducer according to the present embodiment, the member close to the input shaft of the small speed reducer is a resin molded product that is ultra-small, has a good power transmission rate, and has high impact resistance and load resistance. By configuring and forming the member close to the output shaft from metal, it is possible to realize a small speed reducer having resistance and strength according to an applied load. Further, by adopting the resin, it becomes possible to mass-produce the members and improve the yield, and it is possible to reduce the cost of the speed reducer. In addition, since the member near the input shaft that rotates at high speed is made of resin, it is possible to perform a silent design that reduces noise during operation of the small reducer.
特に、ポリアミド樹脂等の熱可塑性樹脂にチタン酸カリウム繊維等の無機ウィスカを含有させた樹脂組成物を使用することで、小型部品としての微細成形性と耐久性が向上し、薄肉成形が可能となる。加えて、金型からの離型性が良好となり、バリを抑えた高い寸法精度の小型精密ギアを製造できる。同時に、小型部品の成形の際に樹脂のゲート切れがよくなる。
In particular, by using a resin composition containing an inorganic whisker such as potassium titanate fiber in a thermoplastic resin such as a polyamide resin, fine moldability and durability as a small component are improved, and thin wall molding becomes possible. Become. In addition, the mold releasability from the mold is improved, and it is possible to manufacture a small precision gear with a high dimensional accuracy while suppressing burrs. At the same time, when the small parts are molded, the gate of the resin is easily broken.
さらには、上述した従来の減速機のようにベース樹脂に炭素繊維、ガラス繊維等を含有させた構成をとらないので、噛み合う歯車相互の摩耗により削り取られた繊維がゴミあるいは塵となって歯車の回転動作を妨げるといった問題が生じない。
Further, unlike the conventional speed reducer described above, the base resin does not have a structure in which carbon fibers, glass fibers, etc. are contained, so that the fibers scraped away due to mutual wear of meshing gears become dust or dust. There is no problem of hindering the rotation operation.
上記実施の形態および各実施例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
The configurations in the above-described embodiment and each example may be appropriately combined unless they contradict each other.
以上、本発明の小型減速機を図示の実施形態について説明したが、本発明は、これに限定されるものではなく、小型減速機を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。
Although the small speed reducer of the present invention has been described above with reference to the illustrated embodiment, the present invention is not limited to this, and each unit constituting the small speed reducer has an arbitrary configuration capable of exhibiting the same function. Can be replaced. In addition, any constituent may be added.
本発明に係る小型減速機は、小型カメラ、ロボット、その他小型・薄型の装置等、様々な装置において利用可能である。本発明に係る小型減速機は、さらに他の用途に利用することもできる。
The small reducer according to the present invention can be used in various devices such as small cameras, robots, and other small and thin devices. The small speed reducer according to the present invention can also be used for other purposes.
1 小型減速機(減速機)
2 ケーシング
3 入力部
31 入力軸(第2入力軸)
33 入力ギア
331 外周歯
4 第1回転組立体
41 第1回転軸部
42 第1遊星キャリア
43 第1遊星軸部材
44 第1遊星ギア
441 外周歯
45 太陽ギア
451 外周歯
5 第1インターナルギア
51 内周歯
6 第2回転組立体
61 第2回転軸部
62 第2遊星キャリア
63 第2遊星軸部材
64 第2遊星ギア
641 外周歯
7 第2インターナルギア
71 内周歯
8 入力軸(第1入力軸)
9 出力軸
15 モータ
J1 中心軸
J2 第1遊星軸
J3 第2遊星軸
1 Small speed reducer (speed reducer)
2 casing 3input section 31 input shaft (second input shaft)
33input gear 331 outer peripheral teeth 4 first rotating assembly 41 first rotating shaft portion 42 first planet carrier 43 first planetary shaft member 44 first planetary gear 441 outer peripheral teeth 45 sun gear 451 outer peripheral teeth 5 first internal gear 51 Peripheral tooth 6 Second rotating assembly 61 Second rotating shaft portion 62 Second planet carrier 63 Second planetary shaft member 64 Second planetary gear 641 Outer peripheral tooth 7 Second internal gear 71 Inner peripheral tooth 8 Input shaft (first input shaft) )
9Output shaft 15 Motor J1 Central shaft J2 First planetary shaft J3 Second planetary shaft
2 ケーシング
3 入力部
31 入力軸(第2入力軸)
33 入力ギア
331 外周歯
4 第1回転組立体
41 第1回転軸部
42 第1遊星キャリア
43 第1遊星軸部材
44 第1遊星ギア
441 外周歯
45 太陽ギア
451 外周歯
5 第1インターナルギア
51 内周歯
6 第2回転組立体
61 第2回転軸部
62 第2遊星キャリア
63 第2遊星軸部材
64 第2遊星ギア
641 外周歯
7 第2インターナルギア
71 内周歯
8 入力軸(第1入力軸)
9 出力軸
15 モータ
J1 中心軸
J2 第1遊星軸
J3 第2遊星軸
1 Small speed reducer (speed reducer)
2 casing 3
33
9
Claims (10)
- 入力軸からの動力を減速して出力軸に伝達する小型減速機であって、
ケーシングと、
前記ケーシングの第1の内周面に位置する環状の第1インターナルギアと、
前記ケーシングの第2の内周面に位置する環状の第2インターナルギアと、
前記入力軸に接続された入力ギアと、
前記ケーシング内において前記入力軸と同軸に配置された第1回転軸部と、
前記第1回転軸部とともに回転する太陽ギアを有し、前記第1回転軸部を中心に回転可能な第1遊星キャリアと、
前記第1遊星キャリアに自転可能に支持され、前記入力ギアと前記第1インターナルギアとに噛み合う複数の第1遊星ギアと、
前記ケーシング内において前記入力軸と同軸に配置され、かつ、前記出力軸に接続された第2回転軸部と、
前記第2回転軸部を中心に回転可能な第2遊星キャリアと、
前記太陽ギアの周方向に配置されるとともに前記第2遊星キャリアに自転可能に支持され、前記太陽ギアと前記2インターナルギアとに噛み合う複数の第2遊星ギアと、
を備え、
前記第1遊星キャリアと、前記第1回転軸部と、前記太陽ギアが単一の部材であり、
前記入力ギアと、前記第1遊星キャリアと、前記第1遊星ギアは熱可塑性樹脂をベース樹脂とし、所定の機能性発現成分としての無機ウィスカを含有する樹脂組成物の成形体であって、かつ、前記樹脂組成物中における該ベース樹脂と該無機ウィスカとを合わせた含有率が99.5重量%以上であり、
前記第1インターナルギアは金属焼結体で形成され、該第1インターナルギアにおける歯厚Tと、算術平均粗さRaとの関係が、
5.0×10-3≦(Ra/T)≦66.7×10-3
を満たすことを特徴とする小型減速機。 A small reducer that reduces the power from the input shaft and transmits it to the output shaft.
A casing,
An annular first internal gear located on a first inner peripheral surface of the casing;
An annular second internal gear located on the second inner peripheral surface of the casing;
An input gear connected to the input shaft,
A first rotating shaft portion arranged coaxially with the input shaft in the casing;
A first planetary carrier having a sun gear that rotates together with the first rotating shaft portion and rotatable about the first rotating shaft portion;
A plurality of first planetary gears that are rotatably supported by the first planetary carrier and that mesh with the input gear and the first internal gear;
A second rotating shaft portion arranged coaxially with the input shaft in the casing and connected to the output shaft;
A second planetary carrier rotatable about the second rotating shaft portion;
A plurality of second planetary gears arranged in the circumferential direction of the sun gear and rotatably supported by the second planetary carrier, and meshing with the sun gear and the two internal gears;
Equipped with
The first planetary carrier, the first rotating shaft portion, and the sun gear are a single member,
The input gear, the first planetary carrier, and the first planetary gear are molded products of a resin composition containing a thermoplastic resin as a base resin and containing an inorganic whisker as a predetermined functional expression component, and The total content of the base resin and the inorganic whiskers in the resin composition is 99.5% by weight or more,
The first internal gear is formed of a metal sintered body, and the relationship between the tooth thickness T of the first internal gear and the arithmetic mean roughness Ra is
5.0 × 10 −3 ≦ (Ra / T) ≦ 66.7 × 10 −3
Small speed reducer characterized by satisfying. - 前記第2遊星キャリアと、前記第2遊星ギアと、前記第2インターナルギアは金属焼結体で形成されていることを特徴とする請求項1に記載の小型減速機。 The small reduction gear according to claim 1, wherein the second planet carrier, the second planet gear, and the second internal gear are formed of a metal sintered body.
- 前記第2遊星ギアは熱可塑性樹脂をベース樹脂とし、所定の機能性発現成分としての無機ウィスカを含有する樹脂組成物の成形体であって、かつ、前記樹脂組成物中における該ベース樹脂と該無機ウィスカとを合わせた含有率が99.5重量%以上であり、
前記第2遊星キャリアと、前記第2インターナルギアは金属焼結体で形成されていることを特徴とする請求項1に記載の小型減速機。 The second planetary gear is a molded product of a resin composition containing a thermoplastic resin as a base resin and inorganic whiskers as a predetermined functional expression component, and the base resin in the resin composition and the base resin in the resin composition. The content rate including the inorganic whiskers is 99.5% by weight or more,
The miniature speed reducer according to claim 1, wherein the second planet carrier and the second internal gear are formed of a metal sintered body. - 前記樹脂組成物は、前記無機ウィスカを15~40重量%含有することを特徴とする請求項1~3のいずれか1項に記載の小型減速機。 The small speed reducer according to any one of claims 1 to 3, wherein the resin composition contains 15 to 40% by weight of the inorganic whiskers.
- 前記樹脂組成物は、好ましくは前記無機ウィスカを20~30重量%含有することを特徴とする請求項4に記載の小型減速機。 The small speed reducer according to claim 4, wherein the resin composition preferably contains 20 to 30% by weight of the inorganic whiskers.
- 前記無機ウィスカはチタン酸カリウム繊維であることを特徴とする請求項1~5のいずれか1項に記載の小型減速機。 The small speed reducer according to any one of claims 1 to 5, wherein the inorganic whiskers are potassium titanate fibers.
- 前記熱可塑性樹脂はポリアミド系樹脂であることを特徴とする請求項1~6のいずれか1項に記載の小型減速機。 The small speed reducer according to any one of claims 1 to 6, wherein the thermoplastic resin is a polyamide resin.
- 前記第1遊星ギアおよび前記第2遊星ギアのモジュールは0.2mm以下であることを特徴とする請求項1に記載の小型減速機。 The compact speed reducer according to claim 1, wherein the module of the first planetary gear and the module of the second planetary gear is 0.2 mm or less.
- 当該小型減速機の外形寸法が幅5mm、奥行き5mm、高さ20mmの容積以下に形成されていることを特徴とする請求項1に記載の小型減速機。 The small speed reducer according to claim 1, wherein the external dimensions of the small speed reducer are formed to have a volume of 5 mm in width, 5 mm in depth and 20 mm in height or less.
- 前記入力ギアと、前記太陽ギアを有する前記第1遊星キャリアと、前記第1遊星ギアと、前記第1回転軸部とが前記入力軸との間で回転力の伝達を行う第1回転組立体を構成し、前記第2遊星キャリアと、前記第2遊星ギアと、前記第2回転軸部とが前記第1回転組立体との間で回転力の伝達を行う第2回転組立体を構成することを特徴とする請求項1に記載の小型減速機。
A first rotation assembly in which the input gear, the first planet carrier having the sun gear, the first planetary gear, and the first rotation shaft portion transmit rotational force between the input shaft and the input shaft. And the second planetary carrier, the second planetary gear, and the second rotating shaft portion constitute a second rotating assembly that transmits rotational force between the first rotating assembly. The small reduction gear according to claim 1, wherein
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018207801 | 2018-11-02 | ||
JP2018-207801 | 2018-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020090819A1 true WO2020090819A1 (en) | 2020-05-07 |
Family
ID=70463240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/042384 WO2020090819A1 (en) | 2018-11-02 | 2019-10-29 | Small speed reducer |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020090819A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014052039A (en) * | 2012-09-07 | 2014-03-20 | Ricoh Co Ltd | Rotation driving device and image forming apparatus |
JP2014173708A (en) * | 2013-03-13 | 2014-09-22 | Minebea Co Ltd | Planetary gear device |
-
2019
- 2019-10-29 WO PCT/JP2019/042384 patent/WO2020090819A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014052039A (en) * | 2012-09-07 | 2014-03-20 | Ricoh Co Ltd | Rotation driving device and image forming apparatus |
JP2014173708A (en) * | 2013-03-13 | 2014-09-22 | Minebea Co Ltd | Planetary gear device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI338751B (en) | Eccentric gear mechanism and method of transfering turning force thereby | |
JP5477044B2 (en) | Planetary gear mechanism | |
US10495206B2 (en) | Internal ring gear, driving assembly and application device | |
JP2018080791A (en) | Speed reducer | |
CN107191549B (en) | Planet gear speed reducing mechanism and speed reducer thereof | |
JP2018054120A (en) | Internal ring gear, driving assembly and application device | |
JP2018009699A (en) | Reduction gear | |
TWM497208U (en) | Multi-differential deceleration bearing | |
WO2020090819A1 (en) | Small speed reducer | |
JP2010084842A (en) | Rotary drive device, robot joint structure and robot arm | |
JP2011229393A (en) | Motor with speed reducer | |
JP2013245801A (en) | Internal gear reducer utilizing planetary motion | |
JP6120618B2 (en) | Planetary gear device | |
WO2020110897A1 (en) | Small reduction gear | |
CN1576645A (en) | Speed reducer | |
JP2707473B2 (en) | Internal mesh type planetary gear reducer | |
JP2015175380A (en) | Speed reducer and actuator | |
JP4831319B2 (en) | Motor with reduction gear | |
TWI428521B (en) | Cycloidal gear device | |
WO2020153187A1 (en) | Decelerator | |
TW201346151A (en) | Connection between a drive shaft of a motor and a driven shaft of a driven apparatus | |
WO2020045478A1 (en) | Speed reducer | |
JP2003194158A (en) | Reduction gear adopting marvelous gear mechanism | |
CN113108042B (en) | Shock wave speed reducer | |
US20230279940A1 (en) | Gear box |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19880895 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19880895 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |