WO2020090719A1 - Spin torque generating element, manufacturing method thereof, and magnetization control device - Google Patents

Spin torque generating element, manufacturing method thereof, and magnetization control device Download PDF

Info

Publication number
WO2020090719A1
WO2020090719A1 PCT/JP2019/042137 JP2019042137W WO2020090719A1 WO 2020090719 A1 WO2020090719 A1 WO 2020090719A1 JP 2019042137 W JP2019042137 W JP 2019042137W WO 2020090719 A1 WO2020090719 A1 WO 2020090719A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductor layer
spin torque
ferromagnetic
magnetization
Prior art date
Application number
PCT/JP2019/042137
Other languages
French (fr)
Japanese (ja)
Inventor
義近 大谷
俊延 金
浩太 近藤
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2020553879A priority Critical patent/JPWO2020090719A1/en
Publication of WO2020090719A1 publication Critical patent/WO2020090719A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/06Thin magnetic films, e.g. of one-domain structure characterised by the coupling or physical contact with connecting or interacting conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present invention relates to a spin torque generating element that generates spin torque for magnetization of a ferromagnetic layer by a current flowing through a conductor layer.
  • the present invention also relates to a method of manufacturing a spin torque generating element, and a magnetization control device including the spin torque generating element.
  • the spin torque generating element includes a conductor layer formed of a conductor such as a transition metal and a ferromagnetic layer formed of a ferromagnetic material.
  • a current flows through the conductor layer, the spin torque that acts on the magnetization of the ferromagnetic layer.
  • the spin torque can change the magnetization direction of the ferromagnetic layer. For example, the direction of the magnetization can be reversed, or the precession motion of the magnetization can be self-oscillated.
  • a magnetic memory, a microwave oscillator, a spin wave logic, and the like that utilize such a change in the direction of magnetization have been proposed.
  • Patent Document 1 discloses an STT-MRAM (Spin-Transfer Torque Magnetic Random Access Memory) as a magnetic memory including a spin torque generating element.
  • STT-MRAM Spin-Transfer Torque Magnetic Random Access Memory
  • a conductor layer formed of a heavy metal a conductor layer formed of a heavy metal, a recording layer (ferromagnetic layer) formed of a ferromagnetic material, a barrier layer formed of an insulating material, and a magnetization direction formed of a ferromagnetic material.
  • the reference layers to which is fixed are laminated in this order.
  • the conductor layer needs to be formed of a heavy metal that has a large spin-orbit coupling (SOC: Spin Orbit Coupling).
  • SOC Spin Orbit Coupling
  • the conductor layer is formed of Hf, W, Re, Os, Ir, Pt, Pb, or an alloy thereof which is a heavy metal.
  • a heavy metal has a high electric resistance, and accordingly, the efficiency of passing a current through the conductor layer is reduced. As a result, the efficiency of causing a current to flow through the conductor layer to generate spin torque as described above becomes low. Further, heavy metal materials having a large specific gravity tend to be expensive and difficult to obtain.
  • an object of the present invention is to provide a technique capable of generating a spin torque by the current of the conductor layer without using a conductor layer having a large specific gravity due to the configuration different from the conventional one.
  • the spin torque generating element includes a conductor layer to which a current is supplied, an insulating layer formed on one surface of the conductor layer, and a ferromagnetic layer formed on the other surface of the conductor layer. Equipped with A spin torque that acts on the magnetization of the ferromagnetic layer is generated by the current in the conductor layer.
  • the manufacturing method according to the present invention includes a conductor layer to which an electric current is supplied, an insulating layer formed on one surface of the conductor layer, and a ferromagnetic layer formed on the other surface of the conductor layer.
  • a method for manufacturing a spin torque generating element comprising: generating a spin torque that acts on the magnetization of the ferromagnetic layer by a current in the conductor layer, A first step of forming the ferromagnetic layer, the conductor layer, and the insulating layer with respective materials so that the ferromagnetic layer, the conductor layer, and the insulating layer are laminated in this order; A second step of performing an annealing treatment for heating the laminated ferromagnetic layer, the conductor layer, and the insulating layer.
  • the magnetization control device is A conductor layer to which a current is supplied, an insulating layer formed on one surface of the conductor layer, and a ferromagnetic layer formed on the other surface of the conductor layer are provided.
  • a spin torque generating element that generates a spin torque that acts on the magnetization of the ferromagnetic layer
  • a current supply device for supplying a current to the conductor layer, The current supply device controls the direction of magnetization of the ferromagnetic layer by the spin torque by passing a current through the conductor layer.
  • the spin torque generating element of the present invention includes a conductor layer, an insulating layer formed on one surface of the conductor layer, and a ferromagnetic layer formed on the other surface of the conductor layer.
  • a spin torque that acts on the magnetization of the ferromagnetic layer can be generated by passing an electric current through the layer.
  • the conductor layer does not need to be formed of a heavy metal having a large spin-orbit interaction. Therefore, spin torque can be generated by the current of the conductor layer without using the conductor layer having a large specific gravity.
  • FIG. 1 shows a configuration of a spin torque generating element according to an embodiment of the present invention. It is explanatory drawing of the spin torque generation principle in embodiment of this invention. The periodic table of elements for explaining the material of the conductor layer is shown. The measuring device which measures a spin torque is shown. It is explanatory drawing of the magnetic resonance utilized in the measurement of spin torque. About the Example of a spin torque generating element, the voltage measured value with a voltmeter and its symmetrical component and asymmetrical component are shown. The voltage measurement value by a voltmeter and its symmetrical component and asymmetrical component are shown about another Example of a spin torque generating element. The measurement result of the conversion efficiency with respect to the thickness of a conductor layer is shown.
  • FIG. 6 is a flowchart showing a method of manufacturing a spin torque generating device according to an embodiment of the present invention.
  • 1 shows a schematic configuration of a magnetization control device according to an embodiment of the present invention. It is explanatory drawing at the time of comprising a magnetization control apparatus as a spin logic device. The operation characteristic of the spin torque generation element which comprises a spin logic device is shown. The structural example of the magnetization control apparatus as a spin logic device is shown. It is a table which shows the output digital signal with respect to an input digital signal. An example of the configuration when the magnetization control device is a magnetic sensor is shown.
  • FIG. 1 shows the configuration of a spin torque generating element 10 according to an embodiment of the present invention.
  • the spin torque generating element 10 includes a conductor layer 1, an insulating layer 2 and a ferromagnetic layer 3.
  • the conductor layer 1 is a layer to which an electric current is supplied.
  • the conductor layer 1 may be formed of a metal material (for example, transition metal).
  • the insulating layer 2 is formed of an insulating material on the surface of the conductor layer 1 on one side in the thickness direction.
  • the ferromagnetic layer 3 is formed of a ferromagnetic material on the surface of the conductor layer 1 on the other side in the thickness direction.
  • the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 generate the spin torque that acts on the magnetization of the ferromagnetic layer 3 by the current of the conductor layer 1, respectively, the respective metal material and insulating material. , And a ferromagnetic material.
  • the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 are made of a metal material, an insulating material, and a ferromagnetic material that cause a specific spin torque generation phenomenon described later in the spin torque generation element 10. Has been formed. That is, these metallic materials, insulating materials, and ferromagnetic materials are selected as a combination of materials that cause a specific spin torque generation phenomenon.
  • FIG. 2 is a diagram for explaining the principle of a specific spin torque generation phenomenon according to the embodiment of the present invention.
  • the specific spin torque generation phenomenon in the spin torque generation element 10 occurs as follows. That is, as shown in FIG. 2, when a current Jc flows in the conductor layer 1, the orbital angular momentum (Orbital Angular Momentum) of each electron at the interface 4 between the conductor layer 1 and the insulating layer 2 due to the orbital Rashba effect. L is generated, and each orbital angular momentum L generates spin torque Ts that acts on the magnetization M of the ferromagnetic layer 3.
  • the current Jc flows from one end of the conductor layer 1 to the other end along the interface 4.
  • the current Jc flows not only in the conductor layer 1 but also in the ferromagnetic layer 3.
  • the orbital Rashba effect is an effect in which, in the spin torque generating element 10, a current Jc flows in the conductor layer 1 in a direction along the interface 4, so that the orbital angular momentum of each electron is generated at the interface 4. Due to the action of the spin torque Ts due to the orbital angular momentum of each electron generated by this effect, the orbits of the electrons in the ferromagnetic layer 3 are combined (mixed), and as a result, the spin directions of the electrons in the ferromagnetic layer 3 change. The direction of the magnetization M of the ferromagnetic layer 3 changes. For example, the magnetization M of the ferromagnetic layer 3 is reversed.
  • the conductor layer 1 In the principle of the specific spin torque generation phenomenon described above, unlike the conventional principle of the spin torque generation phenomenon, not the spin torque due to the spin current but the spin torque due to the orbital angular momentum of the electrons is generated. In order to generate spin torque due to the orbital angular momentum of electrons, the conductor layer 1 does not need to be formed of a heavy metal having a large spin orbital interaction. Therefore, in this embodiment, the conductor layer 1 is formed of a metal material having a small specific gravity as described below.
  • the conductor layer 1 can cause the above-described specific spin torque generation phenomenon, as shown in FIG. 3, from the second period to the fifth period in the periodic table of elements.
  • Is formed of a material of a metal element belonging to the range that is, a metal element included in the range R1 in FIG. 3.
  • the conductor layer 1 may be formed of the material of the transition metal included in the range R1 (that is, the metal element belonging to the range R2 in FIG. 3).
  • the conductor layer 1 may be formed of a material having a specific gravity of 10 or less, for example.
  • the specific gravity means the ratio of the standard substance having the same volume (that is, water at 4 ° C.) to the mass.
  • the conductor layer 1 is made of copper (Cu) in the embodiment.
  • the copper may be pure copper or a copper alloy.
  • the main component of the copper alloy is Cu, and the remaining material of the copper alloy may be a material of a metal element included in the range R1 (or the range R2) of the periodic table.
  • the conductor layer 1 may have a thickness of several nm (for example, 4 nm or 5 nm) or more and several tens nm (for example, 20 nm or 30 nm) or less.
  • the insulating layer 2 is an electrical insulator and forms an interface 4 with the conductor layer 1.
  • the insulating layer 2 is a layer for generating the orbital angular momentum of each electron by the above-described orbital Rashba effect at the interface 4.
  • the insulating material forming the insulating layer 2 is aluminum oxide (Al 2 O 3 ) or magnesium oxide (MgO).
  • the ferromagnetic layer 3 is a ferromagnetic material and is magnetized in the direction along the interface 4.
  • the magnetization M of the ferromagnetic layer 3 changes its direction (for example, reverses) under the action of the above-mentioned spin torque Ls generated by the above-mentioned orbital Rashba effect.
  • the ferromagnetic layer 3 is formed of a ferromagnetic material that causes such a change in the direction of the magnetization M.
  • the ferromagnetic material forming the ferromagnetic layer is iron (Fe) or cobalt iron (CoFe) in the examples.
  • the conductor layer 1 is made of copper
  • the insulating layer 2 is made of aluminum oxide or magnesium oxide
  • the ferromagnetic layer 3 is made of iron or cobalt iron.
  • the present embodiment is not limited to this, and the metal material, the insulating material, and the ferromagnetic material that form the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3, respectively, are the same as those described above. It may be selected as a combination of materials that cause the torque generation phenomenon.
  • the metal material of the conductor layer 1 may be limited to the metal element material included in the range R1 of FIG.
  • the selection of such metal material, insulating material, and ferromagnetic material may be performed by confirming whether or not the spin torque Ts is generated by the measuring device 20 described later.
  • the metal material, the insulating material, and the ferromagnetic material that form the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3, respectively have a conversion efficiency ⁇ described below of 0.05 or more, 0.1 or more, or 0.2. It may be selected as a combination of the above materials.
  • FIG. 4 shows a measuring device 20 for measuring the spin torque Ts. Using this measuring device 20, the spin torque Ts or the like generated in the spin torque generating element 10 was measured as follows.
  • the measuring device 20 is a device that uses the spin torque magnetic resonance method, and includes a pair of electrodes 5a and 5b, a capacitor 6, an AC power supply 7, a coil 8, and a voltmeter 9.
  • the pair of electrodes 5a and 5b are in contact with both ends of the spin torque generating element 10, respectively.
  • One electrode 5a is connected to an AC power supply 7 via a capacitor 6, and the other electrode 5b is grounded.
  • the voltmeter 9 is connected to the current path between the one electrode 5a and the capacitor 6 via the coil 8. With this configuration, the voltmeter 9 measures the DC component (DC voltage) of the voltage generated at the one electrode 5a.
  • the x-axis and the y-axis are parallel to the interface 4 between the conductor layer 1 and the insulating layer 2.
  • the AC power supply 7 applies a high frequency current to the conductor layer 1 (and the ferromagnetic layer 3) in the x-axis direction.
  • the external magnetic field H ext is applied by means not shown.
  • the direction of the external magnetic field H ext is a direction orthogonal to the z axis and forms an acute angle ⁇ with the x axis.
  • the external magnetic field H ext and the current in the conductor layer 1 excite magnetic resonance, which is a precession of the magnetization M of the ferromagnetic layer 3.
  • FIG. 5 is an explanatory diagram of magnetic resonance.
  • a coordinate system having an X axis, a Y axis, and a Z axis that are orthogonal to each other is fixed to the ferromagnetic layer 3, and these X axis, Y axis, and Z axis are respectively the x axis of FIG. It is parallel to the axes, the y-axis, and the z-axis.
  • the torque T F due to the magnetic field generated by the current itself acts on the magnetization M of the ferromagnetic layer 3 in the direction parallel to the Z axis, as shown in FIG. To do.
  • the spin torque Ts described above caused by the current acts on the magnetization M in a direction parallel to the XY plane so as to tilt the magnetization M as shown in FIG.
  • the magnetization M performs precession about an axis that points in the direction of the external magnetic field H ext .
  • ⁇ Measurement result of voltage showing magnitude of spin torque> 6 and 7 show the DC voltage measured by the voltmeter 9 of the measuring device 20 of FIG. 4, and its symmetric and asymmetric components.
  • the results of FIGS. 6 and 7 are obtained for the spin torque generating element 10 having the following specific configuration. That is, in the example of the spin torque generating element 10 in which the result of FIG. 6 is obtained, the conductor layer 1 is made of Cu, the insulating layer 2 is made of Al 2 O 3 , and the ferromagnetic layer 3 is made of CoFe. The thicknesses of the conductor layer 1, the insulating layer 2 and the ferromagnetic layer 3 are 6.9 nm, 20 nm and 5 nm, respectively.
  • the conductor layer 1 is formed of Cu
  • the insulating layer 2 is formed of MgO
  • the ferromagnetic layer 3 is formed of CoFe
  • the conductor layer 1 is formed.
  • the thicknesses of the insulating layer 2 and the ferromagnetic layer 3 are 10.9 nm, 20 nm and 5 nm, respectively.
  • the horizontal axis represents the strength of the applied external magnetic field H ext
  • the vertical axis represents the voltage.
  • each square mark indicates the measured value of the DC voltage measured by the voltmeter 9
  • the solid line curve is the fitting curve of each measured value
  • the broken line curve is the symmetric component of the fitting curve.
  • the dashed-dotted curve represents the asymmetric component of the Fitting curve.
  • the symmetric component corresponds to the contribution of spin torque
  • the asymmetric component corresponds to the contribution of torque due to the magnetic field generated by the current itself flowing through the conductor layer 1.
  • the symmetric component and the asymmetric component were obtained according to the calculation formula assuming that the spin torque due to the spin current generated by the current acts on the magnetization of the ferromagnetic layer 3. However, it is unlikely that the spin torque due to the spin current is generated in the copper having a small specific gravity. Therefore, it can be said that the symmetric component and the asymmetric component are values due to the spin torque due to the orbital angular momentum of the electrons generated at the interface 4.
  • the symmetric component having a sharp peak has a considerably large (that is, fairly efficient) spin due to the combination of the materials of the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 being Cu, MgO, and CoFe. It shows that torque is generated.
  • ⁇ Measurement result of conversion efficiency with respect to thickness of conductor layer> 8 and 9 show the measurement results of the conversion efficiency ⁇ with respect to the thickness of the conductor layer 1 obtained using the measuring device 20 of FIG. 4. 8 and 9, the horizontal axis represents the thickness of the conductor layer 1 made of copper, and the vertical axis represents the conversion efficiency ⁇ from the current of the conductor layer 1 to the spin torque.
  • Js is represented by Js / Jc
  • Jc is the value of the current flowing through the conductor layer 1
  • Js is the value of the current corresponding to the spin torque.
  • Js represents the value of the spin current on the assumption that the spin torque generated by the spin current generated by the current Jc acts on the magnetization M of the ferromagnetic layer 3.
  • Js is a current corresponding to the spin torque due to the orbital angular momentum of the electrons generated at the interface 4.
  • a square plot indicates a spin torque generation element 10 in which the conductor layer 1 is made of Cu, the insulating layer 2 is made of Al 2 O 3 , and the ferromagnetic layer 3 is made of CoFe.
  • the circled plots show the case of the spin torque generation element 10 in which the conductor layer 1 is formed of Cu, the insulating layer 2 is formed of Bi 2 O 3 , and the ferromagnetic layer 3 is formed of CoFe.
  • the circled plots show the case of the spin torque generating element 10 in which the conductor layer 1 is made of Cu, the insulating layer 2 is made of MgO, and the ferromagnetic layer 3 is made of CoFe.
  • the conversion efficiency ⁇ is significantly improved as compared with the case where the insulating layer 2 is Bi 2 O 3 .
  • the peak value of the conversion efficiency ⁇ when the insulating layer 2 is Al 2 O 3 is twice the peak value of the conversion efficiency ⁇ when the insulating layer 2 is Bi 2 O 3. Is also getting bigger. Therefore, it can be seen that a large conversion efficiency ⁇ can be obtained when the insulating layer 2 is Al 2 O 3 .
  • the peak value of the conversion efficiency ⁇ when the insulating layer 2 is MgO is the peak value of the conversion efficiency ⁇ when the insulating layer 2 is Al 2 O 3. It is less than twice the size of. Therefore, it can be seen that when the insulating layer 2 is MgO, the conversion efficiency ⁇ is further improved as compared with the case where the insulating layer 2 is Al 2 O 3 .
  • the conversion efficiency ⁇ depends on the thickness of the conductor layer 1. Therefore, it is understood that the conversion of the current J C into the spin torque is caused by the existence of the conductor layer 1 and the interface 4.
  • the conductor layer 1 may have a thickness of 5 nm or more and 19 nm or less.
  • the conversion efficiency ⁇ regarding the plot of the square mark becomes a value of slightly less than 0.05.
  • the thickness of the conductor layer 1 may be a value within the range of 7 nm or more and 15 nm or less. In this case, in FIG. 8, the conversion efficiency ⁇ regarding the plot of the square mark is a value of about 0.10.
  • the thickness of the conductor layer 1 may be a value in the range of 9 nm or more and 13 nm or less.
  • the conversion efficiency ⁇ regarding the plot of the square mark is a value near its maximum value (a little less than 0.13).
  • the conductor layer 1 may have a thickness of 4.5 nm or more and 27 nm or less. In this case, in FIG. 9, it can be said that the conversion efficiency ⁇ regarding the plot of the square mark becomes a value of 0.05 or more. Further, the thickness of the conductor layer 1 may be a value in the range of 6 nm or more and 26 nm or less. In this case, in FIG. 9, the conversion efficiency ⁇ regarding the plot of the square mark is a value larger than 0.10.
  • the thickness of the conductor layer 1 may be a value within the range of 9 nm or more and 17 nm or less.
  • the conversion efficiency ⁇ regarding the plot of the square mark is a value near its maximum value (a little less than 0.25).
  • FIG. 10 shows the measurement results of the conversion efficiency ⁇ with respect to the material of the ferromagnetic layer 3 obtained using the measuring device 20 of FIG. That is, in FIG. 10, in the spin torque generating element 10, the conductor layer 1 is made of Cu and the insulating layer 2 is made of Al 2 O 3 , but the measurement is made for each case in which the material of the ferromagnetic layer 3 is changed. The results are shown.
  • the horizontal axis represents the saturation magnetization of the ferromagnetic layer 3
  • the vertical axis represents the conversion efficiency ⁇ from the current of the conductor layer 1 to the spin torque.
  • each black circle indicates a measured value when the ferromagnetic layer 3 is formed of the material indicated by the arrow indicating the black circle.
  • the highest conversion efficiency ⁇ (less than 0.13) was obtained when the ferromagnetic layer 3 was formed of CoFe. Further, when the ferromagnetic layer 3 was formed of Fe, the next highest conversion efficiency ⁇ (about 0.1) was obtained. When the ferromagnetic layer 3 was Ni (nickel) or Py (permalloy), the conversion efficiency ⁇ became zero or almost zero.
  • the orbital Rashba effect (specific spin torque generation phenomenon) can be obtained when the materials forming the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 are specific combinations.
  • the combination of materials forming the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 may be another combination (for example, Cu, MgO, and Fe, respectively). It may be.
  • the ferromagnetic material forming the ferromagnetic layer 3 is not limited to CoFe or Fe.
  • the saturation magnetization of Fe as the ferromagnetic material is about 10 kOe or more
  • the saturation magnetization of CoFe as the ferromagnetic material is about 13 kOe or more.
  • the upper limit of the saturation magnetization of the ferromagnetic material is not particularly limited, but the saturation magnetization may be, for example, 20 kOe or less.
  • the saturation magnetization of the ferromagnetic material is the ferromagnetic material (that is, the ferromagnetic layer 3) in a state of constituting the spin torque generating element 10 (before or after the annealing treatment described later) after manufacturing. ) Saturation magnetization, and may be a value at room temperature.
  • FIG. 11 shows the measurement result of the conversion efficiency ⁇ with respect to the heating temperature of the annealing treatment, which is obtained using the measuring device 20 of FIG.
  • FIG. 11 shows the case where the conductor layer 1 is made of Cu, the insulating layer 2 is made of Al 2 O 3 , and the ferromagnetic layer 3 is made of CoFe.
  • the horizontal axis represents the saturation magnetization of the ferromagnetic layer 3
  • the vertical axis represents the conversion efficiency ⁇ from the current of the conductor layer 1 to the spin torque.
  • each black circle shows a measured value when the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 were laminated by vapor deposition at a temperature indicated by an arrow indicating the black circle, and then heated for 30 minutes.
  • the temperature is the temperature of the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3.
  • the black circles indicated by the arrows with “NO ANNEALING” indicate the measured values when the annealing treatment was not performed.
  • the conversion efficiency ⁇ is significantly improved by performing the annealing treatment.
  • the conversion efficiency ⁇ was more than doubled and became close to 0.3. In this way, the annealing treatment makes it possible to maximize the conversion efficiency ⁇ .
  • the spin torque generating efficiency is correspondingly increased as follows. It can be said to be expensive.
  • the conversion efficiency ⁇ obtained by the annealing treatment at 400 ° C. is the same value as the case where tungsten is used for the conductor layer in the above-described conventional spin torque generating element.
  • the resistivity of thin film tungsten having a nanoscale thickness is approximately 12 times or more the resistivity of thin film copper having a nanoscale thickness
  • the conductor layer 1 of the spin torque generating element 10 according to each example is The electric resistance of is small by that amount. As a result, in each of the examples, it can be said that the spin torque generation efficiency is improved 12 times or more as compared with the conventional case.
  • the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 are formed of Cu and Al 2 O 3 or MgO and CoFe, respectively, or when the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 are formed, respectively.
  • annealing treatment can be performed in order to improve the conversion efficiency ⁇ .
  • the annealing treatment may heat the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 which are laminated on each other at a temperature of 200 ° C. or higher, 300 ° C. or higher, or 400 ° C. or higher.
  • the annealing treatment may be performed so that the temperatures of the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 are 200 ° C. or higher, 300 ° C. or higher, or 400 ° C. or higher. 6 to 10 show the results when the annealing process was not performed.
  • FIG. 12 is a flowchart showing a method of manufacturing the spin torque generating element 10 according to the embodiment of the present invention. This manufacturing method includes steps S1 and S2.
  • the ferromagnetic layer 3, the conductor layer 1 and the insulating layer 2 are formed of respective materials so that the ferromagnetic layer 3, the conductor layer 1 and the insulating layer 2 are laminated in this order.
  • This stacking may be performed by a vapor deposition method.
  • the ferromagnetic layer 3 is formed by adhering the heated and evaporated ferromagnetic material to the surface of the substrate.
  • the insulating layer 2 is formed by adhering the heated and evaporated insulating material to the surface of the ferromagnetic layer 3.
  • the conductor layer 1 is formed by adhering the heated and evaporated metal material to the surface of the insulating layer 2.
  • a laminated body including the ferromagnetic layer 3, the conductor layer 1, and the insulating layer 2 is obtained.
  • the formation and lamination of the ferromagnetic layer 3, the conductor layer 1, and the insulating layer 2 may be performed by other methods.
  • the ferromagnetic layer 3, the conductor layer 1, and the insulating layer 2 are formed of CoFe (or Fe) and Cu and Al 2 O 3 , or CoFe (or Fe) and Cu and MgO, respectively. However, it may be formed of other materials.
  • step S2 annealing treatment for heating the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 laminated in step S1 is performed (for example, 30 minutes).
  • the temperature for heating the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 is 200 ° C. or higher, 300 ° C. or higher, or 400 ° C. or higher. That is, the annealing treatment is performed so that the temperatures of the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 are 200 ° C. or higher, 300 ° C. or higher, or 400 ° C. or higher.
  • the conductor layer 1 is formed of a metal material having a relatively small specific gravity (for example, a metal element material within the range R1 or R2 of the periodic table of FIG. 3). It The metal material (for example, copper) tends to be easily available. Therefore, the spin torque generating element 10 can be mass-produced at low cost.
  • the conductor layer 1 formed of the metal material has a low electric resistivity. Therefore, the generation efficiency of the spin torque Ts is correspondingly improved. Furthermore, by performing the above-described annealing treatment, the conversion efficiency from the current of the conductor layer 1 to the spin torque Ts is improved.
  • FIG. 13 shows a schematic configuration of the magnetization control device 100 according to the embodiment of the present invention.
  • the magnetization control device 100 includes the above-described spin torque generating element 10 and a current supply device 11 that causes a current to flow in the conductor layer 1.
  • the current supply device 11 applies a current to the conductor layer 1 in a direction along the interface 4 from one end of the spin torque generating element 10 to the other end, or from the other end of the spin torque generating element 10 to one end.
  • a current is caused to flow in the conductor layer 1 in the direction toward, and the direction of the magnetization M of the ferromagnetic layer 3 is controlled by the above-described spin torque Ts generated thereby.
  • the spin torque Ts reverses the direction of the magnetization M or causes the magnetization M to precess.
  • the magnetization control device 100 applies a magnetic field application unit (for example, a permanent magnet or an electromagnet) 12 that applies an external magnetic field H ext in a direction that is the central axis of the precession. May be provided.
  • a magnetic field application unit for example, a permanent magnet or an electromagnet
  • the magnetization control device 100 may form a magnetic memory.
  • the spin torque generating element 10 further includes a reference layer 13.
  • the magnetic field applying unit 12 described above may be omitted.
  • the reference layer 13 is formed of a ferromagnetic material, and is formed on the surface of the insulating layer 2 opposite to the conductor layer 1.
  • the ferromagnetic material forming the reference layer 13 is, for example, Co, Fe, Ni or an alloy thereof, but is not limited thereto.
  • the direction of the magnetization of the reference layer 13 (hereinafter simply referred to as the magnetization Mr) is fixed.
  • the current supply device 11 causes a current to flow along the interface 4 to the conductor layer 1 in the same direction as the direction of the magnetization Mr or in the direction opposite to the direction of the magnetization Mr, so that the orbits of electrons due to the above-described orbital Rashba effect at the interface 4.
  • An angular momentum is generated, and the direction of the magnetization M of the ferromagnetic layer 3 is reversed by the spin torque Ts due to the orbital angular momentum.
  • the direction of the magnetization M of the ferromagnetic layer 3 is made the same as the magnetization Mr or opposite to the magnetization Mr.
  • the magnetization control device 100 has a configuration in which a large number of such spin torque generating elements 10 are arranged.
  • the current supply device 11 controls the direction of the magnetization M of the ferromagnetic layer 3 in each spin torque generating element 10 according to the write command. That is, the current supply device 11 causes a current to flow through the conductor layer 1 of each of the one or more spin torque generation elements 10 in accordance with the write command as described above, and the magnetization M of the ferromagnetic layer 3 of the element 10 concerned. Reverse the direction of. 1-bit data of “0” and “1” is assigned to two directions of the magnetization M of the ferromagnetic layer 3 in each element 10, and the data is stored in many elements 10.
  • each spin torque generating element 10 the electric resistance between the reference layer 13 and the ferromagnetic layer 3 differs depending on the direction of the magnetization M of the ferromagnetic layer 3. Therefore, in each spin torque generation element 10, a read current is caused to flow between an electrode (not shown) provided in the reference layer 13 and an electrode (not shown) provided in the ferromagnetic layer 3, and the read current From the value, the electric resistance value between the reference layer 13 and the ferromagnetic layer 3 is detected, and the direction of the magnetization M of the ferromagnetic layer 3 is obtained as recording data based on the detected value.
  • the magnetization control device 100 shown in FIG. 13 may form a microwave oscillation device.
  • the current supply device 11 supplies a current to the conductor layer 1 so that the direction of the magnetization M of the ferromagnetic layer 3 changes, and the microwave is generated by the change of the direction of the magnetization M.
  • the current supply device 11 causes an alternating current to flow in the conductor layer 1 in one direction along the interface 4 (for example, in the left-right direction in FIG. 13) to repeatedly invert the direction of the magnetization M of the ferromagnetic layer 3 to cause a microscopic change. Generate waves.
  • the reference layer 13 and the magnetic field applying unit 12 may be omitted.
  • the current supply device 11 causes a current to flow in the conductor layer 1 in the direction along the interface 4 (for example, the left-right direction in FIG. 13), and the magnetic field applying unit 12 applies the external magnetic field H ext to the ferromagnetic layer 3 to the interface 4.
  • the voltage is applied along the direction (for example, the direction forming an acute angle with the direction of the current of the conductor layer 1).
  • the magnetization M is precessed with the direction of the external magnetic field H ext as the central axis.
  • microwaves are generated.
  • FIG. 14 is an explanatory diagram when the above-described magnetization control device 100 is configured as a spin logic device.
  • the magnetization control device 100 further includes a voltage applying device 14 that applies a gate voltage between the conductor layer 1 and the insulating layer 2, and a voltage that measures the voltage between the ferromagnetic layer 3 and the reference layer 13. It has a total of 15.
  • the magnetic field applying unit 12 described above is omitted.
  • the voltage value measured by the voltmeter 15 represents the direction of the magnetization M of the ferromagnetic layer 3.
  • FIG. 15 is a graph showing the operating characteristics of the spin torque generating element 10 that constitutes the spin logic device.
  • the horizontal axis represents the value of the current supplied to the conductor layer 1 by the current supply device 11, and the positive / negative of the current value represents the direction of the current (rightward or leftward in FIG. 14).
  • the vertical axis represents the voltage value measured by the voltmeter 15.
  • the measured voltage value being 1.0 (arb.) Is one of the two directions in which the magnetizations of the ferromagnetic layers 3 are opposite to each other (for example, the right direction in FIG. 14). That the measured voltage value is ⁇ 1.0 (arb.) Means that it is the other of the above two directions (for example, the left direction in FIG. 14). Note that "arb.” Indicates an arbitrary unit (the same applies hereinafter).
  • the thick dash-dotted line shows the operating characteristics when the above-mentioned gate voltage value is + V G
  • the thick solid line shows the operating characteristics when the above-mentioned gate voltage value is ⁇ V G. Show.
  • the switching of the magnetization direction of the ferromagnetic layer 3 is performed according to the thick solid line in FIG. 15, but is not performed according to the thick dash-dotted line in FIG. 15 (that is, when the absolute value is 6 (arb.) Or less).
  • the current supply device 11 causes a current to flow in the conductor layer 1 by a large amount (less than 7 (arb.)).
  • FIG. 16 shows a configuration example of the magnetization control device 100 as a spin logic device.
  • the magnetization control device 100 includes two sets of spin torque generation elements 10 (hereinafter also referred to as a set A and a set B) that share one conductor layer 1. That is, two sets of the insulating layer 2, the ferromagnetic layer 3 and the reference layer 13 are provided so as to share one conductor layer 1.
  • Each set A, B has the operating characteristics shown in FIG.
  • the above-described voltage application device 14 and voltmeter 15 are provided for each set A and B.
  • the voltage applying device 14 and the voltmeter 15 of the one set A are referred to as the voltage applying device 14A and the voltmeter 15A, respectively, and the voltage applying device 14 and the voltmeter 15 of the other set B are respectively the voltage applying device 14B and the voltmeter 15B. Enter.
  • + V G is an input digital signal of “1” and ⁇ V G is an input digital signal of “0”.
  • the voltage applying device 14A changes the gate voltage applied to the set A while the current supply device 11 applies the current of the above-mentioned intermediate value (for example, ⁇ 6.5 (arb.)) To the conductor layer 1.
  • + V G and ⁇ V G that is, “1” and “0” of the digital signal
  • the voltage application device 14B applies the gate voltage applied to the set B to + V G and ⁇ V G.
  • V T (arb.) Is the voltage measured by the voltmeters 15A and 15B. It means the sum of the values V T (arb.).
  • the magnetization control device 100 further includes an output unit 16 that outputs an output digital signal corresponding to the two input digital signals described above.
  • the output unit 16 is configured as a logical sum (OR)
  • the measured voltage value of the voltmeter 15A and the measured voltage value of the voltmeter 15B are both 0 as in the case of the logical sum of FIG. If it is (arb.), A digital signal of "0" is output, and in other cases, a digital signal of "1" is output.
  • the output unit 16 is configured as a logical product (AND)
  • the measured voltage value of the voltmeter 15A and the measured voltage value of the voltmeter 15B are determined as in the case of the logical product of FIG. Is also 1 (arb.), A digital signal of "1” is output, and in other cases, a digital signal of "0” is output.
  • the output unit 16 may be configured as follows, for example, to output a digital signal as shown in FIG.
  • the current supply device 11 supplies a current whose absolute value is fixed to the intermediate value and whose sign is fixed to the negative value to the conductor layer 1. Due to the current in the conductor layer 1, the magnetization reversal of the ferromagnetic layer 3 of each set A, B is induced, and the total V T (arb.) Of the voltage measurement values from the voltmeters 15A, 15B becomes the respective magnetizations. It changes from -2 (arb.) To 2 (arb.) Depending on the state and the above-mentioned gate voltage as shown in FIG.
  • FIG. 18 shows a configuration example when the above-described magnetization control device 100 is used as a magnetic sensor.
  • the magnetization control device 100 includes first to fourth spin torque generation elements 10A to 10D.
  • Each of these spin torque generating elements 10A to 10D may have the same configuration as the spin torque generating element 10 described above, and may be formed on the substrate 17.
  • the substrate 17 may be formed of SiO 2 , for example.
  • the reference layer 13 and the magnetic field applying unit 12 may be omitted.
  • the xyz coordinate system is a coordinate system fixed with respect to the substrate 17, and its x-axis and y-axis are parallel to the surface (interface 4) of the substrate 17 and are orthogonal to each other. Are orthogonal to the surface (interface 4) of the substrate 17.
  • Each of the spin torque generating elements 10A to 10D may have an elliptical shape when viewed in the thickness direction (z-axis direction) as a whole. The major axis of the ellipse may be oriented in the x-axis direction.
  • One ends of the conductor layers 1 of the first and second spin torque generating elements 10A and 10B in the x-axis direction are connected to each other by a conductive line 18a, and the third and fourth spin torque generating elements 10C and 10D.
  • the one ends of the conductor layer 1 in the x-axis direction are also connected to each other by the conductive line 18b.
  • the other ends of the conductor layers 1 of the first and third spin torque elements 10A and 10C in the x-axis direction are connected to each other by a conductive line 18c, and the second and fourth spin torque elements 10B and 10D are connected to each other.
  • the other ends of the conductor layer 1 in the x-axis direction are also connected to each other by the conductive line 18d.
  • the current supply device 11 applies an alternating current between the conductive line 18a and the conductive line 18b. As a result, an alternating current flows in the x-axis direction in the conductor layer 1 of each of the spin torque generating elements 10A to 10D. The direction of magnetization of the ferromagnetic layer 3 in each of the spin torque generating elements 10A to 10D changes according to the alternating current.
  • the magnetization control device 100 further includes a voltmeter 18.
  • the voltmeter 18 measures the voltage (potential difference) between the conductive line 18c and the conductive line 18d, and outputs the measured voltage value. This voltage value may be a time average value of the voltage measured by the voltmeter 18.
  • the voltage measured by the voltmeter 18 is the external voltage. It has a value corresponding to the magnetic field Hy. Therefore, the external magnetic field Hy can be detected based on the voltage value output by the voltmeter 18.
  • the magnetic sensor by the magnetization control device 100 is very sensitive to the external magnetic field Hy, the attitude of the magnetic sensor (substrate 17) with respect to the ground changes, and the geomagnetic component in the y-axis direction also changes. Therefore, this change can be detected based on the output voltage value of the voltmeter 18. Therefore, since the attitude of the magnetic sensor can be detected, the attitude of the object to which the magnetic sensor is attached can also be detected.
  • the spin torque generating element 10, the manufacturing method thereof, and the magnetization control device 100 may not have all of the plurality of items described above, and may have only a part of the plurality of items described above. Good. Further, the spin torque generating element 10, the method of manufacturing the same, and the magnetization control device 100 may not exhibit all of the above-described operational effects, and may exhibit only some of the above-described operational effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)

Abstract

A spin torque generating element 10 comprises: a conductive layer 1 supplied with a current Jc; an insulating layer 2 formed on a surface on one side of the conductive layer 1; and a ferromagnetic layer 3 formed on a surface on the other side of the conductive layer 1. The current in the conductive layer 1 generates spin torque which acts on the magnetization of the ferromagnetic layer 3.

Description

スピントルク発生素子、その製造方法、及び、磁化制御装置Spin torque generating element, manufacturing method thereof, and magnetization control device
 本発明は、導体層を流れる電流により強磁性層の磁化に対するスピントルクを発生させるスピントルク発生素子に関する。また、本発明は、スピントルク発生素子の製造方法、及び、スピントルク発生素子を備える磁化制御装置に関する。 The present invention relates to a spin torque generating element that generates spin torque for magnetization of a ferromagnetic layer by a current flowing through a conductor layer. The present invention also relates to a method of manufacturing a spin torque generating element, and a magnetization control device including the spin torque generating element.
 スピントルク発生素子は、遷移金属等の導体で形成された導体層と、強磁性材料で形成された強磁性層を備え、導体層に電流が流れると、強磁性層の磁化に作用するスピントルクを発生する素子である。このスピントルクにより、強磁性層の磁化の向きを変えることができる。例えば、磁化の向きを反転させたり、磁化の歳差運動を自励発振させたりすることができる。このような磁化の向きの変化を利用した磁気メモリ、マイクロ波発振器、スピン波ロジック等が提案されている。 The spin torque generating element includes a conductor layer formed of a conductor such as a transition metal and a ferromagnetic layer formed of a ferromagnetic material. When a current flows through the conductor layer, the spin torque that acts on the magnetization of the ferromagnetic layer. Is an element that generates. The spin torque can change the magnetization direction of the ferromagnetic layer. For example, the direction of the magnetization can be reversed, or the precession motion of the magnetization can be self-oscillated. A magnetic memory, a microwave oscillator, a spin wave logic, and the like that utilize such a change in the direction of magnetization have been proposed.
 例えば、スピントルク発生素子を備えた磁気メモリとして、STT-MRAM(Spin-Transfer Torque Magnetic Random Access Memory)が特許文献1に開示されている。このSTT-MRAMでは、重金属で形成された導体層と、強磁性材料で形成された記録層(強磁性層)と、絶縁材料で形成された障壁層と、強磁性材料で形成され磁化の向きが固定された参照層が、この順で積層されている。このSTT-MRAMに外部磁場を各層の積層方向に印加した状態で、導体層に電流を流すと、スピンホール効果により当該導体層にスピン流が発生し、スピン流によるスピントルクの作用で記録層の磁化の向きを反転させている。 For example, Patent Document 1 discloses an STT-MRAM (Spin-Transfer Torque Magnetic Random Access Memory) as a magnetic memory including a spin torque generating element. In this STT-MRAM, a conductor layer formed of a heavy metal, a recording layer (ferromagnetic layer) formed of a ferromagnetic material, a barrier layer formed of an insulating material, and a magnetization direction formed of a ferromagnetic material. The reference layers to which is fixed are laminated in this order. When an electric current is applied to the conductor layer while an external magnetic field is applied to the STT-MRAM in the stacking direction of the layers, a spin current is generated in the conductor layer due to the spin Hall effect, and the spin torque due to the spin current causes the recording layer to act. The magnetization direction of is reversed.
国際公開第2016/021468号International Publication No. 2016/021468
 スピントルク発生素子における従来のスピントルク発生原理では、上述のように、導体層に電流が流れると、スピンホール効果でスピン流が生じ、スピン流によるスピントルクが強磁性層の磁化に作用している。 According to the conventional spin torque generation principle in the spin torque generation element, as described above, when a current flows in the conductor layer, a spin current is generated by the spin Hall effect, and the spin torque due to the spin current acts on the magnetization of the ferromagnetic layer. There is.
 従来において、スピン流を発生させるためには、導体層は、スピン軌道相互作用(SOC: Spin Orbit Coupling)の大きい重金属で形成される必要があると考えられている。例えば、特許文献1では、導体層は、重金属であるHf、W、Re、Os、Ir、Pt、Pb、又はこれらの合金で形成されている。このような重金属は電気抵抗が高く、その分、導体層に電流を流す効率が低下する。その結果、導体層に電流を流して上述のようにスピントルクを発生させる効率が低くなってしまう。また、比重の大きな重金属材料は、高価であり入手し難い傾向にある。 In the past, in order to generate a spin current, it is believed that the conductor layer needs to be formed of a heavy metal that has a large spin-orbit coupling (SOC: Spin Orbit Coupling). For example, in Patent Document 1, the conductor layer is formed of Hf, W, Re, Os, Ir, Pt, Pb, or an alloy thereof which is a heavy metal. Such a heavy metal has a high electric resistance, and accordingly, the efficiency of passing a current through the conductor layer is reduced. As a result, the efficiency of causing a current to flow through the conductor layer to generate spin torque as described above becomes low. Further, heavy metal materials having a large specific gravity tend to be expensive and difficult to obtain.
 そこで、本発明の目的は、従来とは異なる構成により、比重の大きい導体層を用いなくても、導体層の電流によりスピントルクを発生できる技術を提供することにある。 Therefore, an object of the present invention is to provide a technique capable of generating a spin torque by the current of the conductor layer without using a conductor layer having a large specific gravity due to the configuration different from the conventional one.
 本発明によるスピントルク発生素子は、電流が供給される導体層と、該導体層の一方側の面に形成される絶縁層と、前記導体層の他方側の面に形成される強磁性層とを備え、
 前記導体層の電流により、前記強磁性層の磁化に作用するスピントルクを発生させる。
The spin torque generating element according to the present invention includes a conductor layer to which a current is supplied, an insulating layer formed on one surface of the conductor layer, and a ferromagnetic layer formed on the other surface of the conductor layer. Equipped with
A spin torque that acts on the magnetization of the ferromagnetic layer is generated by the current in the conductor layer.
 また、本発明による製造方法は、電流が供給される導体層と、該導体層の一方側の面に形成される絶縁層と、前記導体層の他方側の面に形成される強磁性層とを備え、前記導体層の電流により、前記強磁性層の磁化に作用するスピントルクを発生させるスピントルク発生素子の製造方法であって、
 前記強磁性層と前記導体層と前記絶縁層がこの順に積層されるように、前記強磁性層と前記導体層と前記絶縁層をそれぞれの材料で形成する第1の工程と、
 積層された前記強磁性層と前記導体層と前記絶縁層を加熱するアニール処理を行う第2の工程と、を含む。
Further, the manufacturing method according to the present invention includes a conductor layer to which an electric current is supplied, an insulating layer formed on one surface of the conductor layer, and a ferromagnetic layer formed on the other surface of the conductor layer. A method for manufacturing a spin torque generating element, comprising: generating a spin torque that acts on the magnetization of the ferromagnetic layer by a current in the conductor layer,
A first step of forming the ferromagnetic layer, the conductor layer, and the insulating layer with respective materials so that the ferromagnetic layer, the conductor layer, and the insulating layer are laminated in this order;
A second step of performing an annealing treatment for heating the laminated ferromagnetic layer, the conductor layer, and the insulating layer.
 更に、本発明による磁化制御装置は、
 電流が供給される導体層と、該導体層の一方側の面に形成される絶縁層と、前記導体層の他方側の面に形成される強磁性層とを備え、前記導体層の電流により、前記強磁性層の磁化に作用するスピントルクを発生させるスピントルク発生素子と、
 前記導体層に電流を流す電流供給装置と、を備え、
 前記電流供給装置は、前記導体層に電流を流すことにより、前記スピントルクで前記強磁性層の磁化の向きを制御する。
Further, the magnetization control device according to the present invention is
A conductor layer to which a current is supplied, an insulating layer formed on one surface of the conductor layer, and a ferromagnetic layer formed on the other surface of the conductor layer are provided. A spin torque generating element that generates a spin torque that acts on the magnetization of the ferromagnetic layer,
A current supply device for supplying a current to the conductor layer,
The current supply device controls the direction of magnetization of the ferromagnetic layer by the spin torque by passing a current through the conductor layer.
 本発明のスピントルク発生素子は、導体層と、該導体層の一方側の面に形成される絶縁層と、導体層の他方側の面に形成される強磁性層とを備えることにより、導体層に電流を流すことで、強磁性層の磁化に作用するスピントルクを発生させることができる。このような本発明の構成では、導体層は、スピン軌道相互作用の大きい重金属で形成される必要がない。したがって、比重の大きい導体層を用いなくても、導体層の電流によりスピントルクを発生することが可能となる。 The spin torque generating element of the present invention includes a conductor layer, an insulating layer formed on one surface of the conductor layer, and a ferromagnetic layer formed on the other surface of the conductor layer. A spin torque that acts on the magnetization of the ferromagnetic layer can be generated by passing an electric current through the layer. In such a configuration of the present invention, the conductor layer does not need to be formed of a heavy metal having a large spin-orbit interaction. Therefore, spin torque can be generated by the current of the conductor layer without using the conductor layer having a large specific gravity.
本発明の実施形態によるスピントルク発生素子の構成を示す。1 shows a configuration of a spin torque generating element according to an embodiment of the present invention. 本発明の実施形態におけるスピントルク発生原理の説明図である。It is explanatory drawing of the spin torque generation principle in embodiment of this invention. 導体層の材料を説明するための元素周期表を示す。The periodic table of elements for explaining the material of the conductor layer is shown. スピントルクを測定する測定装置を示す。The measuring device which measures a spin torque is shown. スピントルクの測定で利用する磁気共鳴の説明図である。It is explanatory drawing of the magnetic resonance utilized in the measurement of spin torque. スピントルク発生素子の実施例について、電圧計による電圧測定値と、その対称成分と非対称成分を示す。About the Example of a spin torque generating element, the voltage measured value with a voltmeter and its symmetrical component and asymmetrical component are shown. スピントルク発生素子の別の実施例について、電圧計による電圧測定値と、その対称成分と非対称成分を示す。The voltage measurement value by a voltmeter and its symmetrical component and asymmetrical component are shown about another Example of a spin torque generating element. 導体層の厚みに対する変換効率の測定結果を示す。The measurement result of the conversion efficiency with respect to the thickness of a conductor layer is shown. 導体層の厚みに対する変換効率の別の測定結果を示す。The other measurement result of the conversion efficiency with respect to the thickness of a conductor layer is shown. 強磁性層の材料に対する変換効率の測定結果を示す。The measurement result of the conversion efficiency with respect to the material of the ferromagnetic layer is shown. アニール処理の加熱温度に対する変換効率の測定結果を示す。The measurement result of the conversion efficiency with respect to the heating temperature of annealing treatment is shown. 本発明の実施形態によるスピントルク発生素子の製造方法を示すフローチャートである。6 is a flowchart showing a method of manufacturing a spin torque generating device according to an embodiment of the present invention. 本発明の実施形態による磁化制御装置の概略構成を示す。1 shows a schematic configuration of a magnetization control device according to an embodiment of the present invention. 磁化制御装置をスピンロジックデバイスとして構成する場合の説明図である。It is explanatory drawing at the time of comprising a magnetization control apparatus as a spin logic device. スピンロジックデバイスを構成するスピントルク発生素子の動作特性を示す。The operation characteristic of the spin torque generation element which comprises a spin logic device is shown. スピンロジックデバイスとしての磁化制御装置の構成例を示す。The structural example of the magnetization control apparatus as a spin logic device is shown. 入力デジタル信号に対する出力デジタル信号を示す表である。It is a table which shows the output digital signal with respect to an input digital signal. 磁化制御装置を磁気センサとする場合の構成例を示す。An example of the configuration when the magnetization control device is a magnetic sensor is shown.
 本発明の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 Embodiments of the present invention will be described with reference to the drawings. In addition, in each figure, the common part is denoted by the same reference numeral, and the duplicated description will be omitted.
(スピントルク発生素子の構成の概要)
 図1は、本発明の実施形態によるスピントルク発生素子10の構成を示す。スピントルク発生素子10は、導体層1と絶縁層2と強磁性層3を備える。導体層1は、電流が供給される層である。導体層1は、金属材料(例えば遷移金属)で形成されてよい。絶縁層2は、導体層1の厚み方向一方側の面に絶縁材料で形成されている。強磁性層3は、導体層1の厚み方向他方側の面に強磁性材料で形成されている。
(Outline of configuration of spin torque generating element)
FIG. 1 shows the configuration of a spin torque generating element 10 according to an embodiment of the present invention. The spin torque generating element 10 includes a conductor layer 1, an insulating layer 2 and a ferromagnetic layer 3. The conductor layer 1 is a layer to which an electric current is supplied. The conductor layer 1 may be formed of a metal material (for example, transition metal). The insulating layer 2 is formed of an insulating material on the surface of the conductor layer 1 on one side in the thickness direction. The ferromagnetic layer 3 is formed of a ferromagnetic material on the surface of the conductor layer 1 on the other side in the thickness direction.
 本発明によると、導体層1と絶縁層2と強磁性層3は、導体層1の電流により、強磁性層3の磁化に作用するスピントルクを発生させることになるそれぞれの金属材料、絶縁材料、及び強磁性材料で形成されている。本実施形態によると、導体層1と絶縁層2と強磁性層3は、スピントルク発生素子10において後述する特定のスピントルク発生現象を生じさせるそれぞれの金属材料、絶縁材料、及び強磁性材料で形成されている。すなわち、これらの金属材料、絶縁材料、及び強磁性材料は、特定のスピントルク発生現象を生じさせる材料の組み合わせとして選定される。 According to the present invention, the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 generate the spin torque that acts on the magnetization of the ferromagnetic layer 3 by the current of the conductor layer 1, respectively, the respective metal material and insulating material. , And a ferromagnetic material. According to the present embodiment, the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 are made of a metal material, an insulating material, and a ferromagnetic material that cause a specific spin torque generation phenomenon described later in the spin torque generation element 10. Has been formed. That is, these metallic materials, insulating materials, and ferromagnetic materials are selected as a combination of materials that cause a specific spin torque generation phenomenon.
<スピントルク発生現象の原理>
 図2は、本発明の実施形態による特定のスピントルク発生現象の原理を説明するための図である。スピントルク発生素子10における特定のスピントルク発生現象は、次のように生じる。すなわち、図2のように、導体層1に電流Jcが流れると、軌道ラシュバ効果(Orbital Rashba Effect)により導体層1と絶縁層2との界面4において各電子の軌道角運動量(Orbital Angular Momentum)Lが生じ、当該各軌道角運動量Lが、強磁性層3の磁化Mに作用するスピントルクTsを発生させる。ここで、電流Jcは、界面4に沿って、導体層1の一端から他端へ流れる。なお、この電流Jcは、導体層1だけでなく強磁性層3にも流れる。
<Principle of spin torque generation phenomenon>
FIG. 2 is a diagram for explaining the principle of a specific spin torque generation phenomenon according to the embodiment of the present invention. The specific spin torque generation phenomenon in the spin torque generation element 10 occurs as follows. That is, as shown in FIG. 2, when a current Jc flows in the conductor layer 1, the orbital angular momentum (Orbital Angular Momentum) of each electron at the interface 4 between the conductor layer 1 and the insulating layer 2 due to the orbital Rashba effect. L is generated, and each orbital angular momentum L generates spin torque Ts that acts on the magnetization M of the ferromagnetic layer 3. Here, the current Jc flows from one end of the conductor layer 1 to the other end along the interface 4. The current Jc flows not only in the conductor layer 1 but also in the ferromagnetic layer 3.
 軌道ラシュバ効果とは、スピントルク発生素子10において、界面4に沿った方向に電流Jcが導体層1に流れることより、界面4において各電子の軌道角運動量が生じる効果である。この効果で生じた各電子の軌道角運動量によるスピントルクTsの作用により、強磁性層3の電子の軌道が結合(混成)し、その結果、強磁性層3の電子のスピンの向きが変わって強磁性層3の磁化Mの向きが変わる。例えば、強磁性層3の磁化Mが反転する。 The orbital Rashba effect is an effect in which, in the spin torque generating element 10, a current Jc flows in the conductor layer 1 in a direction along the interface 4, so that the orbital angular momentum of each electron is generated at the interface 4. Due to the action of the spin torque Ts due to the orbital angular momentum of each electron generated by this effect, the orbits of the electrons in the ferromagnetic layer 3 are combined (mixed), and as a result, the spin directions of the electrons in the ferromagnetic layer 3 change. The direction of the magnetization M of the ferromagnetic layer 3 changes. For example, the magnetization M of the ferromagnetic layer 3 is reversed.
(スピントルク発生素子の詳しい構成)
 上述した特定のスピントルク発生現象の原理では、従来のスピントルク発生現象の原理と違って、スピン流によるスピントルクではなく、電子の軌道角運動量によるスピントルクを発生させている。電子の軌道角運動量によるスピントルクを発生させるには、導体層1がスピン軌道相互作用の大きい重金属で形成されている必要はない。そのため、導体層1は、本実施形態では、以下のように、比重の小さい金属材料で形成されている。
(Detailed configuration of spin torque generating element)
In the principle of the specific spin torque generation phenomenon described above, unlike the conventional principle of the spin torque generation phenomenon, not the spin torque due to the spin current but the spin torque due to the orbital angular momentum of the electrons is generated. In order to generate spin torque due to the orbital angular momentum of electrons, the conductor layer 1 does not need to be formed of a heavy metal having a large spin orbital interaction. Therefore, in this embodiment, the conductor layer 1 is formed of a metal material having a small specific gravity as described below.
 したがって、本実施形態によると、導体層1は、上述した特定のスピントルク発生現象を生じさせることができる限りにおいて、図3に示すように、元素の周期表において第2周期から第5周期までの範囲に属する金属元素(すなわち図3の範囲R1に含まれる金属元素)の材料で形成されている。この場合、導体層1は、当該範囲R1に含まれる遷移金属(すなわち図3の範囲R2に属する金属元素)の材料で形成されていてよい。 Therefore, according to the present embodiment, as long as the conductor layer 1 can cause the above-described specific spin torque generation phenomenon, as shown in FIG. 3, from the second period to the fifth period in the periodic table of elements. Is formed of a material of a metal element belonging to the range (that is, a metal element included in the range R1 in FIG. 3). In this case, the conductor layer 1 may be formed of the material of the transition metal included in the range R1 (that is, the metal element belonging to the range R2 in FIG. 3).
 あるいは、導体層1は、別の観点から表現すると、例えば、比重が10以下の材料で形成されていてよい。ここで、比重とは、同じ体積を持つ標準物質(すなわち4℃の水)の質量に対する比を意味する。 Alternatively, from another perspective, the conductor layer 1 may be formed of a material having a specific gravity of 10 or less, for example. Here, the specific gravity means the ratio of the standard substance having the same volume (that is, water at 4 ° C.) to the mass.
 導体層1は、実施例では、銅(Cu)で形成されている。ここで、銅は、純銅であっても、銅合金であってもよい。当該銅合金の主成分は、Cuであり、当該銅合金の残りの材料は、元素周期表の上記範囲R1(又は上記範囲R2)に含まれる金属元素の材料であってよい。導体層1の厚みは、数nm(例えば4nm又は5nm)以上であって数十nm(例えば20nm又は30nm)以下であってよい。 The conductor layer 1 is made of copper (Cu) in the embodiment. Here, the copper may be pure copper or a copper alloy. The main component of the copper alloy is Cu, and the remaining material of the copper alloy may be a material of a metal element included in the range R1 (or the range R2) of the periodic table. The conductor layer 1 may have a thickness of several nm (for example, 4 nm or 5 nm) or more and several tens nm (for example, 20 nm or 30 nm) or less.
 絶縁層2は、電気的絶縁体であり、導体層1との間に界面4を形成する。絶縁層2は、界面4において、上述した軌道ラシュバ効果による各電子の軌道角運動量を生じさせるための層である。絶縁層2を形成する絶縁材料は、実施例では、酸化アルミニウム(Al)又は酸化マグネシウム(MgO)である。 The insulating layer 2 is an electrical insulator and forms an interface 4 with the conductor layer 1. The insulating layer 2 is a layer for generating the orbital angular momentum of each electron by the above-described orbital Rashba effect at the interface 4. In the embodiment, the insulating material forming the insulating layer 2 is aluminum oxide (Al 2 O 3 ) or magnesium oxide (MgO).
 強磁性層3は、強磁性体であり、界面4に沿った方向に磁化している。強磁性層3の磁化Mは、上述の軌道ラシュバ効果で発生した上述のスピントルクLsの作用を受けて、向きが変化(例えば反転)する。強磁性層3は、このような磁化Mの向きの変化が生じる強磁性材料で形成されている。強磁性層を形成する強磁性材料は、実施例では、鉄(Fe)又はコバルト鉄(CoFe)である。 The ferromagnetic layer 3 is a ferromagnetic material and is magnetized in the direction along the interface 4. The magnetization M of the ferromagnetic layer 3 changes its direction (for example, reverses) under the action of the above-mentioned spin torque Ls generated by the above-mentioned orbital Rashba effect. The ferromagnetic layer 3 is formed of a ferromagnetic material that causes such a change in the direction of the magnetization M. The ferromagnetic material forming the ferromagnetic layer is iron (Fe) or cobalt iron (CoFe) in the examples.
 上述したように、本実施形態の実施例では、導体層1が銅で形成され、絶縁層2が酸化アルミニウム又は酸化マグネシウムで形成され、強磁性層3は鉄又はコバルト鉄で形成されている。しかし、本実施形態は、これに限定されず、導体層1と絶縁層2と強磁性層3をそれぞれ形成する金属材料、絶縁材料、及び強磁性材料は、上述したように、上記特定のスピントルク発生現象を生じさせる材料の組み合わせとして選定されてよい。この場合、導体層1の金属材料は、図3の範囲R1に含まれる金属元素の材料に限定されてよい。このような金属材料、絶縁材料、及び強磁性材料の選定は、後述する測定装置20により、スピントルクTsが生じているかを確認することにより行われてよい。例えば、導体層1と絶縁層2と強磁性層3をそれぞれ形成する金属材料、絶縁材料、及び強磁性材料は、後述の変換効率θが0.05以上、0.1以上、又は0.2以上となる材料の組み合わせとして選定されてよい。 As described above, in the example of this embodiment, the conductor layer 1 is made of copper, the insulating layer 2 is made of aluminum oxide or magnesium oxide, and the ferromagnetic layer 3 is made of iron or cobalt iron. However, the present embodiment is not limited to this, and the metal material, the insulating material, and the ferromagnetic material that form the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3, respectively, are the same as those described above. It may be selected as a combination of materials that cause the torque generation phenomenon. In this case, the metal material of the conductor layer 1 may be limited to the metal element material included in the range R1 of FIG. The selection of such metal material, insulating material, and ferromagnetic material may be performed by confirming whether or not the spin torque Ts is generated by the measuring device 20 described later. For example, the metal material, the insulating material, and the ferromagnetic material that form the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3, respectively, have a conversion efficiency θ described below of 0.05 or more, 0.1 or more, or 0.2. It may be selected as a combination of the above materials.
(実施例に対する実験)
 図4は、スピントルクTsを測定する測定装置20を示す。この測定装置20を用いて、スピントルク発生素子10において発生するスピントルクTs等を以下のように測定した。
(Experiment for Examples)
FIG. 4 shows a measuring device 20 for measuring the spin torque Ts. Using this measuring device 20, the spin torque Ts or the like generated in the spin torque generating element 10 was measured as follows.
 測定装置20は、スピントルク磁気共鳴法を利用した装置であり、1対の電極5a,5b、コンデンサ6、交流電源7、コイル8、及び電圧計9を備える。1対の電極5a,5bは、それぞれ、スピントルク発生素子10の両端に接触している。一方の電極5aは、コンデンサ6を介して交流電源7に接続されており、他方の電極5bは接地されている。電圧計9は、一方の電極5aとコンデンサ6との間の電流経路に、コイル8を介して接続されている。この構成で、電圧計9は、一方の電極5aに生じた電圧の直流成分(直流電圧)を測定する。 The measuring device 20 is a device that uses the spin torque magnetic resonance method, and includes a pair of electrodes 5a and 5b, a capacitor 6, an AC power supply 7, a coil 8, and a voltmeter 9. The pair of electrodes 5a and 5b are in contact with both ends of the spin torque generating element 10, respectively. One electrode 5a is connected to an AC power supply 7 via a capacitor 6, and the other electrode 5b is grounded. The voltmeter 9 is connected to the current path between the one electrode 5a and the capacitor 6 via the coil 8. With this configuration, the voltmeter 9 measures the DC component (DC voltage) of the voltage generated at the one electrode 5a.
 また、図4において、互いに直交するx軸、y軸、及びz軸を有する座標系において、x軸とy軸は、導体層1と絶縁層2との界面4に平行である。交流電源7は、x軸方向に導体層1(及び強磁性層3)に高周波電流を印加する。また、図示しない手段により、外部磁場Hextを印加する。外部磁場Hextの方向は、z軸と直交する方向であって、x軸と鋭角φを成す。外部磁場Hextと導体層1の電流により、強磁性層3の磁化Mの歳差運動である磁気共鳴が励起される。 Further, in FIG. 4, in the coordinate system having the x-axis, the y-axis, and the z-axis which are orthogonal to each other, the x-axis and the y-axis are parallel to the interface 4 between the conductor layer 1 and the insulating layer 2. The AC power supply 7 applies a high frequency current to the conductor layer 1 (and the ferromagnetic layer 3) in the x-axis direction. Further, the external magnetic field H ext is applied by means not shown. The direction of the external magnetic field H ext is a direction orthogonal to the z axis and forms an acute angle φ with the x axis. The external magnetic field H ext and the current in the conductor layer 1 excite magnetic resonance, which is a precession of the magnetization M of the ferromagnetic layer 3.
 図5は、磁気共鳴の説明図である。図5において、互いに直交するX軸、Y軸、及びZ軸を有する座標系は、強磁性層3に固定されており、これらX軸、Y軸、及びZ軸は、それぞれ、図4のx軸、y軸、及びz軸と平行である。x軸方向に導体層1に高周波電流を印加すると、当該電流自体が発生する磁場によるトルクTが、図5のように、Z軸と平行な方向に、強磁性層3の磁化Mに作用する。また、当該電流に起因する上述のスピントルクTsが、図5のように、磁化Mを傾けるように、X-Y平面に平行な方向に磁化Mに作用する。その結果、磁化Mは、外部磁場Hextの方向を向く軸を中心として歳差運動を行う。 FIG. 5 is an explanatory diagram of magnetic resonance. In FIG. 5, a coordinate system having an X axis, a Y axis, and a Z axis that are orthogonal to each other is fixed to the ferromagnetic layer 3, and these X axis, Y axis, and Z axis are respectively the x axis of FIG. It is parallel to the axes, the y-axis, and the z-axis. When a high frequency current is applied to the conductor layer 1 in the x-axis direction, the torque T F due to the magnetic field generated by the current itself acts on the magnetization M of the ferromagnetic layer 3 in the direction parallel to the Z axis, as shown in FIG. To do. Further, the spin torque Ts described above caused by the current acts on the magnetization M in a direction parallel to the XY plane so as to tilt the magnetization M as shown in FIG. As a result, the magnetization M performs precession about an axis that points in the direction of the external magnetic field H ext .
<スピントルクの大きさを示す電圧の測定結果>
 図6と図7は、図4の測定装置20の電圧計9により計測した直流電圧と、その対称成分及び非対称成分を示す。図6と図7の結果は、次の具体的構成を持つスピントルク発生素子10に対して得られたものである。すなわち、図6の結果が得られたスピントルク発生素子10の実施例では、導体層1がCuで形成され、絶縁層2がAlで形成され、強磁性層3がCoFeで形成され、導体層1と絶縁層2と強磁性層3の厚みが、それぞれ、6.9nm、20nm、5nmである。図7の結果が得られたスピントルク発生素子10の実施例では、導体層1がCuで形成され、絶縁層2がMgOで形成され、強磁性層3がCoFeで形成され、導体層1と絶縁層2と強磁性層3の厚みが、それぞれ、10.9nm、20nm、5nmである。
<Measurement result of voltage showing magnitude of spin torque>
6 and 7 show the DC voltage measured by the voltmeter 9 of the measuring device 20 of FIG. 4, and its symmetric and asymmetric components. The results of FIGS. 6 and 7 are obtained for the spin torque generating element 10 having the following specific configuration. That is, in the example of the spin torque generating element 10 in which the result of FIG. 6 is obtained, the conductor layer 1 is made of Cu, the insulating layer 2 is made of Al 2 O 3 , and the ferromagnetic layer 3 is made of CoFe. The thicknesses of the conductor layer 1, the insulating layer 2 and the ferromagnetic layer 3 are 6.9 nm, 20 nm and 5 nm, respectively. In the embodiment of the spin torque generating element 10 in which the result of FIG. 7 is obtained, the conductor layer 1 is formed of Cu, the insulating layer 2 is formed of MgO, the ferromagnetic layer 3 is formed of CoFe, and the conductor layer 1 is formed. The thicknesses of the insulating layer 2 and the ferromagnetic layer 3 are 10.9 nm, 20 nm and 5 nm, respectively.
 図6と図7において、横軸は、印加した外部磁場Hextの強さを示し、縦軸は、電圧を示す。図6と図7において、各四角印は、電圧計9が計測した直流電圧の測定値を示し、実線の曲線は、各測定値のフィッテング曲線であり、破線の曲線は、フィッテング曲線の対称成分を表わし、一点鎖線の曲線は、フィッテング曲線の非対称成分を表わす。ここで、対称成分は、スピントルクの寄与に相当し、非対称成分は、導体層1に流れる電流自体が発生させた磁場によるトルクの寄与に相当する。 6 and 7, the horizontal axis represents the strength of the applied external magnetic field H ext , and the vertical axis represents the voltage. In FIG. 6 and FIG. 7, each square mark indicates the measured value of the DC voltage measured by the voltmeter 9, the solid line curve is the fitting curve of each measured value, and the broken line curve is the symmetric component of the fitting curve. And the dashed-dotted curve represents the asymmetric component of the Fitting curve. Here, the symmetric component corresponds to the contribution of spin torque, and the asymmetric component corresponds to the contribution of torque due to the magnetic field generated by the current itself flowing through the conductor layer 1.
 なお、電流で発生したスピン流によるスピントルクが強磁性層3の磁化に作用していると仮定した計算式に従って、対称成分と非対称成分を求めた。しかし、比重の小さい銅でスピン流によるスピントルクが生じているとは考えられ難いため、対称成分と非対称成分は、界面4で生じた電子の軌道角運動量によるスピントルクによる値であるといえる。 Note that the symmetric component and the asymmetric component were obtained according to the calculation formula assuming that the spin torque due to the spin current generated by the current acts on the magnetization of the ferromagnetic layer 3. However, it is unlikely that the spin torque due to the spin current is generated in the copper having a small specific gravity. Therefore, it can be said that the symmetric component and the asymmetric component are values due to the spin torque due to the orbital angular momentum of the electrons generated at the interface 4.
 図6と図7において、対称成分には、ピークが生じており、ピークの大きさに対応する大きさのスピントルクが発生していることが分かる。このように、スピントルク発生素子10は、導体層1に電流が流れると、スピントルクを発生することが確認された。 6 and 7, it can be seen that a peak occurs in the symmetrical component, and a spin torque having a magnitude corresponding to the magnitude of the peak is generated. As described above, it was confirmed that the spin torque generating element 10 generates spin torque when a current flows through the conductor layer 1.
 図7において、鮮明なピークを有する対称成分は、導体層1と絶縁層2と強磁性層3の材料の組合せをCuとMgOとCoFeにすることにより、かなり大きな(すなわち、かなり効率よく)スピントルクが生じることを示している。 In FIG. 7, the symmetric component having a sharp peak has a considerably large (that is, fairly efficient) spin due to the combination of the materials of the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 being Cu, MgO, and CoFe. It shows that torque is generated.
<導体層の厚みに対する変換効率の測定結果>
 図8と図9は、図4の測定装置20を用いて得られた、導体層1の厚みに対する変換効率θの測定結果を示す。図8と図9において、横軸は、銅で形成された導体層1の厚みを示し、縦軸は、導体層1の電流からスピントルクへの変換効率θを示す。
<Measurement result of conversion efficiency with respect to thickness of conductor layer>
8 and 9 show the measurement results of the conversion efficiency θ with respect to the thickness of the conductor layer 1 obtained using the measuring device 20 of FIG. 4. 8 and 9, the horizontal axis represents the thickness of the conductor layer 1 made of copper, and the vertical axis represents the conversion efficiency θ from the current of the conductor layer 1 to the spin torque.
 θは、Js/Jcで表わされ、Jcは、導体層1に流れる電流の値であり、Jsは、スピントルクに相当する電流の値である。ここで、Jsは、電流Jcで発生したスピン流によるスピントルクが強磁性層3の磁化Mに作用していると仮定した場合のスピン流の値を示す。しかし、上述のように、比重の小さい銅でスピン流によるスピントルクが生じているとは考えられ難いため、Jsは、界面4で生じた電子の軌道角運動量によるスピントルクに相当する電流であるといえる。 Θ is represented by Js / Jc, Jc is the value of the current flowing through the conductor layer 1, and Js is the value of the current corresponding to the spin torque. Here, Js represents the value of the spin current on the assumption that the spin torque generated by the spin current generated by the current Jc acts on the magnetization M of the ferromagnetic layer 3. However, as described above, it is unlikely that the spin torque due to the spin current is generated in copper having a small specific gravity, and thus Js is a current corresponding to the spin torque due to the orbital angular momentum of the electrons generated at the interface 4. Can be said.
 また、図8において、四角印のプロットは、導体層1がCuで形成され、絶縁層2がAlで形成され、強磁性層3がCoFeで形成されたスピントルク発生素子10の場合を示し、丸印のプロットは、導体層1がCuで形成され、絶縁層2がBiで形成され、強磁性層3がCoFeで形成されたスピントルク発生素子10の場合を示す。 Further, in FIG. 8, a square plot indicates a spin torque generation element 10 in which the conductor layer 1 is made of Cu, the insulating layer 2 is made of Al 2 O 3 , and the ferromagnetic layer 3 is made of CoFe. The circled plots show the case of the spin torque generation element 10 in which the conductor layer 1 is formed of Cu, the insulating layer 2 is formed of Bi 2 O 3 , and the ferromagnetic layer 3 is formed of CoFe.
 図9において、丸印のプロットは、導体層1がCuで形成され、絶縁層2がMgOで形成され、強磁性層3がCoFeで形成されたスピントルク発生素子10の場合を示す。 In FIG. 9, the circled plots show the case of the spin torque generating element 10 in which the conductor layer 1 is made of Cu, the insulating layer 2 is made of MgO, and the ferromagnetic layer 3 is made of CoFe.
 図8から分かるように、絶縁層2がAlある場合には、絶縁層2がBiである場合と比べて、変換効率θが大幅に向上されている。例えば、絶縁層2がAlである場合における変換効率θのピーク値の大きさは、絶縁層2がBiである場合における変換効率θのピーク値の大きさの2倍よりも大きくなっている。したがって、絶縁層2がAlである場合には、大きな変換効率θが得られることが分かる。 As can be seen from FIG. 8, when the insulating layer 2 is Al 2 O 3 , the conversion efficiency θ is significantly improved as compared with the case where the insulating layer 2 is Bi 2 O 3 . For example, the peak value of the conversion efficiency θ when the insulating layer 2 is Al 2 O 3 is twice the peak value of the conversion efficiency θ when the insulating layer 2 is Bi 2 O 3. Is also getting bigger. Therefore, it can be seen that a large conversion efficiency θ can be obtained when the insulating layer 2 is Al 2 O 3 .
 更に、図8と図9から分かるように、絶縁層2がMgOである場合における変換効率θのピーク値の大きさは、絶縁層2がAlである場合における変換効率θのピーク値の大きさの2倍弱になっている。したがって、絶縁層2がMgOである場合には、絶縁層2がAlである場合と比べて更に大幅に向上した変換効率θが得られることが分かる。 Further, as can be seen from FIGS. 8 and 9, the peak value of the conversion efficiency θ when the insulating layer 2 is MgO is the peak value of the conversion efficiency θ when the insulating layer 2 is Al 2 O 3. It is less than twice the size of. Therefore, it can be seen that when the insulating layer 2 is MgO, the conversion efficiency θ is further improved as compared with the case where the insulating layer 2 is Al 2 O 3 .
 また、図8と図9に示すように、絶縁層2がAl又はMgOである場合において、変換効率θは、導体層1の厚みに依存している。したがって、電流Jからスピントルクへの変換は、導体層1及び界面4の存在によって生じていることが分かる。 Further, as shown in FIGS. 8 and 9, when the insulating layer 2 is Al 2 O 3 or MgO, the conversion efficiency θ depends on the thickness of the conductor layer 1. Therefore, it is understood that the conversion of the current J C into the spin torque is caused by the existence of the conductor layer 1 and the interface 4.
 導体層1がCuで形成され、絶縁層2がAlで形成され、強磁性層3がCoFeで形成されている場合における導体層1の厚みの数値範囲の例を説明する。導体層1の厚みは、5nm以上であって19nm以下の範囲内の値であってよい。この場合、図8では、四角印のプロットに関する変換効率θが0.05弱以上の値となる。また、導体層1の厚みは、7nm以上であって15nm以下の範囲内の値であってもよい。この場合、図8では、四角印のプロットに関する変換効率θが約0.10以上の値となる。また、導体層1の厚みは、9nm以上であって13nm以下の範囲内の値であってもよい。この場合、図8では、四角印のプロットに関する変換効率θが、その極大値(0.13弱)近傍の値となる。 An example of the numerical range of the thickness of the conductor layer 1 when the conductor layer 1 is formed of Cu, the insulating layer 2 is formed of Al 2 O 3 and the ferromagnetic layer 3 is formed of CoFe will be described. The conductor layer 1 may have a thickness of 5 nm or more and 19 nm or less. In this case, in FIG. 8, the conversion efficiency θ regarding the plot of the square mark becomes a value of slightly less than 0.05. Moreover, the thickness of the conductor layer 1 may be a value within the range of 7 nm or more and 15 nm or less. In this case, in FIG. 8, the conversion efficiency θ regarding the plot of the square mark is a value of about 0.10. Further, the thickness of the conductor layer 1 may be a value in the range of 9 nm or more and 13 nm or less. In this case, in FIG. 8, the conversion efficiency θ regarding the plot of the square mark is a value near its maximum value (a little less than 0.13).
 導体層1がCuで形成され、絶縁層2がMgOで形成され、強磁性層3がCoFeで形成される場合における導体層1の厚みの数値範囲の例を説明する。導体層1の厚みは、4.5nm以上であって27nm以下の範囲内の値であってよい。この場合、図9では、四角印のプロットに関する変換効率θが0.05以上の値となるといえる。また、導体層1の厚みは、6nm以上であって26nm以下の範囲内の値であってもよい。この場合、図9では、四角印のプロットに関する変換効率θが0.10よりも大きい値となる。また、導体層1の厚みは、9nm以上であって17nm以下の範囲内の値であってもよい。この場合、図9では、四角印のプロットに関する変換効率θが、その極大値(0.25弱)近傍の値となる。 An example of the numerical range of the thickness of the conductor layer 1 when the conductor layer 1 is formed of Cu, the insulating layer 2 is formed of MgO, and the ferromagnetic layer 3 is formed of CoFe will be described. The conductor layer 1 may have a thickness of 4.5 nm or more and 27 nm or less. In this case, in FIG. 9, it can be said that the conversion efficiency θ regarding the plot of the square mark becomes a value of 0.05 or more. Further, the thickness of the conductor layer 1 may be a value in the range of 6 nm or more and 26 nm or less. In this case, in FIG. 9, the conversion efficiency θ regarding the plot of the square mark is a value larger than 0.10. Moreover, the thickness of the conductor layer 1 may be a value within the range of 9 nm or more and 17 nm or less. In this case, in FIG. 9, the conversion efficiency θ regarding the plot of the square mark is a value near its maximum value (a little less than 0.25).
<強磁性層の材料に対する変換効率の測定結果>
 図10は、図4の測定装置20を用いて得られた、強磁性層3の材料に対する変換効率θの測定結果を示す。すなわち、図10は、スピントルク発生素子10において、導体層1がCuで形成され、絶縁層2がAlで形成されるが、強磁性層3の材料を変えた各場合についての測定結果を示す。図10において、横軸は、強磁性層3の飽和磁化を示し、縦軸は、導体層1の電流からスピントルクへの変換効率θを示す。図10において、各黒丸は、当該黒丸を指す矢印に付した材料で強磁性層3が形成された場合の測定値を示す。
<Measurement result of conversion efficiency for material of ferromagnetic layer>
FIG. 10 shows the measurement results of the conversion efficiency θ with respect to the material of the ferromagnetic layer 3 obtained using the measuring device 20 of FIG. That is, in FIG. 10, in the spin torque generating element 10, the conductor layer 1 is made of Cu and the insulating layer 2 is made of Al 2 O 3 , but the measurement is made for each case in which the material of the ferromagnetic layer 3 is changed. The results are shown. In FIG. 10, the horizontal axis represents the saturation magnetization of the ferromagnetic layer 3, and the vertical axis represents the conversion efficiency θ from the current of the conductor layer 1 to the spin torque. In FIG. 10, each black circle indicates a measured value when the ferromagnetic layer 3 is formed of the material indicated by the arrow indicating the black circle.
 図10に示されるように、強磁性層3がCoFeで形成された場合に、最も高い変換効率θ(0.13弱)が得られた。また、強磁性層3がFeで形成された場合に、次に高い変換効率θ(約0.1)が得られた。強磁性層3がNi(ニッケル)又はPy(パーマロイ)である場合には、変換効率θは、ゼロ、又は、ほぼゼロになった。 As shown in FIG. 10, the highest conversion efficiency θ (less than 0.13) was obtained when the ferromagnetic layer 3 was formed of CoFe. Further, when the ferromagnetic layer 3 was formed of Fe, the next highest conversion efficiency θ (about 0.1) was obtained. When the ferromagnetic layer 3 was Ni (nickel) or Py (permalloy), the conversion efficiency θ became zero or almost zero.
 このように、導体層1と絶縁層2と強磁性層3をそれぞれ形成する材料が特定の組み合わせである場合に、上述した軌道ラシュバ効果(特定のスピントルク発生現象)が得られることが分かる。図6~図10の例では、当該組み合わせが、CuとAlとCoFe、CuとAlとFe、又はCuとMgOとCoFeである場合に、上述した軌道ラシュバ効果が得られることが確認された。ただし、本実施形態によると、軌道ラシュバ効果が得られれば、導体層1と絶縁層2と強磁性層3を形成する材料の組み合わせは、他の組み合わせ(例えば、それぞれCuとMgOとFe)であってもよい。 As described above, it is understood that the orbital Rashba effect (specific spin torque generation phenomenon) can be obtained when the materials forming the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 are specific combinations. In the examples of FIGS. 6 to 10, when the combination is Cu and Al 2 O 3 and CoFe, Cu and Al 2 O 3 and Fe, or Cu and MgO and CoFe, the above-mentioned orbital Rashba effect is obtained. It was confirmed. However, according to the present embodiment, if the orbital Rashba effect is obtained, the combination of materials forming the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 may be another combination (for example, Cu, MgO, and Fe, respectively). It may be.
 また、導体層1がCuで形成され、絶縁層2がAl又はMgOで形成される場合に、強磁性層3を形成する強磁性材料は、CoFe又はFeに限定されない。図10に示される例においては、上記強磁性材料としてのFeの飽和磁化は10kOe程度以上であり、上記強磁性材料としてのCoFeの飽和磁化は13kOe程度以上である。なお、上記強磁性材料の飽和磁化の上限は特に限定されないが、当該飽和磁化は、例えば20kOe以下であってもよい。本願において、上記強磁性材料の飽和磁化は、製造後の(後述のアニール処理前の又はアニール処理後の)スピントルク発生素子10を構成している状態の当該強磁性材料(すなわち強磁性層3)の飽和磁化であってよく、室温における値であってよい。 When the conductor layer 1 is made of Cu and the insulating layer 2 is made of Al 2 O 3 or MgO, the ferromagnetic material forming the ferromagnetic layer 3 is not limited to CoFe or Fe. In the example shown in FIG. 10, the saturation magnetization of Fe as the ferromagnetic material is about 10 kOe or more, and the saturation magnetization of CoFe as the ferromagnetic material is about 13 kOe or more. The upper limit of the saturation magnetization of the ferromagnetic material is not particularly limited, but the saturation magnetization may be, for example, 20 kOe or less. In the present application, the saturation magnetization of the ferromagnetic material is the ferromagnetic material (that is, the ferromagnetic layer 3) in a state of constituting the spin torque generating element 10 (before or after the annealing treatment described later) after manufacturing. ) Saturation magnetization, and may be a value at room temperature.
<アニール処理に対する変換効率の測定結果>
 図11は、図4の測定装置20を用いて得られた、アニール処理の加熱温度に対する変換効率θの測定結果を示す。図11は、導体層1がCuで形成され、絶縁層2がAlで形成され、強磁性層3がCoFeで形成された場合を示すが、アニール処理を各加熱温度で行った場合の測定値と、アニール処理を行わなかった場合の測定値を示す。図11において、横軸は、強磁性層3の飽和磁化を示し、縦軸は、導体層1の電流からスピントルクへの変換効率θを示す。
<Results of measurement of conversion efficiency for annealing treatment>
FIG. 11 shows the measurement result of the conversion efficiency θ with respect to the heating temperature of the annealing treatment, which is obtained using the measuring device 20 of FIG. FIG. 11 shows the case where the conductor layer 1 is made of Cu, the insulating layer 2 is made of Al 2 O 3 , and the ferromagnetic layer 3 is made of CoFe. However, when the annealing treatment is performed at each heating temperature. The measured value of 1 and the measured value when the annealing treatment is not performed are shown. In FIG. 11, the horizontal axis represents the saturation magnetization of the ferromagnetic layer 3, and the vertical axis represents the conversion efficiency θ from the current of the conductor layer 1 to the spin torque.
 また、図11において、各黒丸は、当該黒丸を指す矢印に付した温度で、導体層1と絶縁層2と強磁性層3を蒸着により積層した後に30分間加熱した場合の測定値を示す。ここで、当該温度は、導体層1と絶縁層2と強磁性層3の温度である。また、図11において、「NO ANNEALING」が付された矢印が示す黒丸は、アニール処理を行わなかった場合の測定値を示す。 Further, in FIG. 11, each black circle shows a measured value when the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 were laminated by vapor deposition at a temperature indicated by an arrow indicating the black circle, and then heated for 30 minutes. Here, the temperature is the temperature of the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3. Further, in FIG. 11, the black circles indicated by the arrows with “NO ANNEALING” indicate the measured values when the annealing treatment was not performed.
 図11に示されるように、アニール処理を行うことにより、変換効率θが大幅に向上することが分かる。例えば、400℃でアニール処理を行うことにより、変換効率θが、2倍以上も向上して0.3に近くなった。このように、アニール処理により、変換効率θを最大化させることが可能になる。 As shown in FIG. 11, it can be seen that the conversion efficiency θ is significantly improved by performing the annealing treatment. For example, by performing the annealing treatment at 400 ° C., the conversion efficiency θ was more than doubled and became close to 0.3. In this way, the annealing treatment makes it possible to maximize the conversion efficiency θ.
 各実施例によるスピントルク発生素子10では、次のように、導体層1の抵抗率が、タングステン(W)等の重金属の抵抗率よりも大幅に小さいので、その分、スピントルクの発生効率が高いといえる。上述のように400℃でのアニール処理で得られた変換効率θは、上述した従来のスピントルク発生素子において導体層にタングステンを用いた場合と同等の値である。ナノスケールの厚みを有する薄膜状のタングステンの抵抗率は、ナノスケールの厚みを有する薄膜状の銅の抵抗率の概ね12倍以上であるので、各実施例によるスピントルク発生素子10の導体層1の電気抵抗が、その分、小さい。その結果、各実施例では、スピントルクの発生効率が上記従来の場合よりも12倍以上も向上しているといえる。 In the spin torque generating element 10 according to each example, since the resistivity of the conductor layer 1 is significantly smaller than the resistivity of heavy metals such as tungsten (W), the spin torque generating efficiency is correspondingly increased as follows. It can be said to be expensive. As described above, the conversion efficiency θ obtained by the annealing treatment at 400 ° C. is the same value as the case where tungsten is used for the conductor layer in the above-described conventional spin torque generating element. Since the resistivity of thin film tungsten having a nanoscale thickness is approximately 12 times or more the resistivity of thin film copper having a nanoscale thickness, the conductor layer 1 of the spin torque generating element 10 according to each example is The electric resistance of is small by that amount. As a result, in each of the examples, it can be said that the spin torque generation efficiency is improved 12 times or more as compared with the conventional case.
 したがって、導体層1と絶縁層2と強磁性層3がそれぞれCuとAl又はMgOとCoFeで形成される場合に、又は、導体層1と絶縁層2と強磁性層3をそれぞれ形成する材料が他の組み合わせである場合に、変換効率θを向上させるために、アニール処理を行うことができる。この場合、アニール処理は、200℃以上、300℃以上、又は400℃以上の温度で、互いに積層された導体層1と絶縁層2と強磁性層3を加熱してよい。すなわち、導体層1と絶縁層2と強磁性層3の温度が、200℃以上、300℃以上、又は400℃以上になるようにアニール処理を行ってよい。なお、図6~図10は、アニール処理を行わなかった場合の結果を示す。 Therefore, when the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 are formed of Cu and Al 2 O 3 or MgO and CoFe, respectively, or when the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 are formed, respectively. When the materials used are other combinations, annealing treatment can be performed in order to improve the conversion efficiency θ. In this case, the annealing treatment may heat the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 which are laminated on each other at a temperature of 200 ° C. or higher, 300 ° C. or higher, or 400 ° C. or higher. That is, the annealing treatment may be performed so that the temperatures of the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 are 200 ° C. or higher, 300 ° C. or higher, or 400 ° C. or higher. 6 to 10 show the results when the annealing process was not performed.
(スピントルク発生素子の製造方法)
 図12は、本発明の実施形態によるスピントルク発生素子10の製造方法を示すフローチャートである。この製造方法は、ステップS1,S2を有する。
(Method of manufacturing spin torque generating element)
FIG. 12 is a flowchart showing a method of manufacturing the spin torque generating element 10 according to the embodiment of the present invention. This manufacturing method includes steps S1 and S2.
 ステップS1において、強磁性層3と導体層1と絶縁層2をこの順で積層するように、強磁性層3と導体層1と絶縁層2をそれぞれの材料で形成する。この積層は、蒸着法により行われてよい。例えば、加熱蒸発させた強磁性材料を基板の表面に凝着させることにより強磁性層3を形成する。次に、加熱蒸発させた絶縁材料を強磁性層3の表面に凝着させることにより絶縁層2を形成する。その後、加熱蒸発させた金属材料を絶縁層2の表面に凝着させることにより導体層1を形成する。これにより、強磁性層3と導体層1と絶縁層2を有する積層体が得られる。ただし、強磁性層3と導体層1と絶縁層2の形成と積層は、他の方法で行われてもよい。 In step S1, the ferromagnetic layer 3, the conductor layer 1 and the insulating layer 2 are formed of respective materials so that the ferromagnetic layer 3, the conductor layer 1 and the insulating layer 2 are laminated in this order. This stacking may be performed by a vapor deposition method. For example, the ferromagnetic layer 3 is formed by adhering the heated and evaporated ferromagnetic material to the surface of the substrate. Next, the insulating layer 2 is formed by adhering the heated and evaporated insulating material to the surface of the ferromagnetic layer 3. After that, the conductor layer 1 is formed by adhering the heated and evaporated metal material to the surface of the insulating layer 2. Thereby, a laminated body including the ferromagnetic layer 3, the conductor layer 1, and the insulating layer 2 is obtained. However, the formation and lamination of the ferromagnetic layer 3, the conductor layer 1, and the insulating layer 2 may be performed by other methods.
 ステップS1において、実施例では、強磁性層3と導体層1と絶縁層2は、それぞれ、CoFe(又はFe)とCuとAl、若しくはCoFe(又はFe)とCuとMgOで形成されるが、他の材料で形成されてもよい。 In step S1, in the embodiment, the ferromagnetic layer 3, the conductor layer 1, and the insulating layer 2 are formed of CoFe (or Fe) and Cu and Al 2 O 3 , or CoFe (or Fe) and Cu and MgO, respectively. However, it may be formed of other materials.
 ステップS2において、ステップS1で積層された導体層1と絶縁層2と強磁性層3を加熱するアニール処理を(例えば30分間)行う。このアニール処理では、導体層1と絶縁層2と強磁性層3を加熱する温度は、200℃以上、300℃以上、又は400℃以上である。すなわち、導体層1と絶縁層2と強磁性層3の温度が、200℃以上、300℃以上、又は400℃以上となるようにアニール処理を行う。 In step S2, annealing treatment for heating the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 laminated in step S1 is performed (for example, 30 minutes). In this annealing treatment, the temperature for heating the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 is 200 ° C. or higher, 300 ° C. or higher, or 400 ° C. or higher. That is, the annealing treatment is performed so that the temperatures of the conductor layer 1, the insulating layer 2, and the ferromagnetic layer 3 are 200 ° C. or higher, 300 ° C. or higher, or 400 ° C. or higher.
(実施形態の効果)
 上述した実施形態のスピントルク発生素子10によると、導体層1に電流を流すことにより、軌道ラシュバ効果で導体層1と絶縁層2との界面4において発生した各電子の軌道角運動量が、強磁性層3の磁化に作用するスピントルクを発生させる。このようなスピントルク発生の原理では、導体層1は、スピン軌道相互作用の大きい重金属で形成される必要がない。したがって、比重の大きい導体層1を用いなくても、導体層1の電流によりスピントルクを発生させることが可能となる。
 上述した実施形態によるスピントルク発生素子10とその製造方法では、導体層1は、比重が比較的小さい金属材料(例えば図3の周期表の範囲R1又はR2内の金属元素の材料)により形成される。当該金属材料(例えば銅)は、入手しやすい傾向にある。したがって、スピントルク発生素子10を安価に大量生産できる。
(Effects of the embodiment)
According to the spin torque generation element 10 of the above-described embodiment, by passing a current through the conductor layer 1, the orbital angular momentum of each electron generated at the interface 4 between the conductor layer 1 and the insulating layer 2 due to the orbital Rashba effect becomes strong. A spin torque that acts on the magnetization of the magnetic layer 3 is generated. According to such a principle of spin torque generation, the conductor layer 1 does not need to be formed of a heavy metal having a large spin-orbit interaction. Therefore, spin torque can be generated by the current of the conductor layer 1 without using the conductor layer 1 having a large specific gravity.
In the spin torque generating element 10 and the manufacturing method thereof according to the above-described embodiment, the conductor layer 1 is formed of a metal material having a relatively small specific gravity (for example, a metal element material within the range R1 or R2 of the periodic table of FIG. 3). It The metal material (for example, copper) tends to be easily available. Therefore, the spin torque generating element 10 can be mass-produced at low cost.
 また、このような金属材料は、比重が比較的小さいので、当該金属材料で形成された
導体層1は電気抵抗率が低い。したがって、その分、スピントルクTsの発生効率が向上する。更に、上述したアニール処理を行うことにより、導体層1の電流からスピントルクTsへの変換効率が向上する。
Further, since such a metal material has a relatively small specific gravity, the conductor layer 1 formed of the metal material has a low electric resistivity. Therefore, the generation efficiency of the spin torque Ts is correspondingly improved. Furthermore, by performing the above-described annealing treatment, the conversion efficiency from the current of the conductor layer 1 to the spin torque Ts is improved.
 よって、非常に高い変換効率を有するスピントルク発生素子10を安価に大量生産することが可能となる。 Therefore, it becomes possible to mass-produce the spin torque generating element 10 having extremely high conversion efficiency at low cost.
(磁化制御装置)
 図13は、本発明の実施形態による磁化制御装置100の概略構成を示す。磁化制御装置100は、上述したスピントルク発生素子10と、導体層1に電流を流す電流供給装置11とを備える。電流供給装置11は、界面4に沿った方向であって、スピントルク発生素子10の一端から他端へ向かう方向へ導体層1に電流を流し、又は、スピントルク発生素子10の他端から一端へ向かう方向へ導体層1に電流を流し、これにより生じた上述のスピントルクTsで強磁性層3の磁化Mの向きを制御する。例えば、当該スピントルクTsにより、磁化Mの向きを反転させ、又は、磁化Mに歳差運動させる。ここで、後者の場合、歳差運動を生じさせるために、磁化制御装置100は、歳差運動の中心軸となる方向に外部磁場Hextを印加する磁場印加部(例えば永久磁石又は電磁石)12を備えていてよい。
(Magnetization control device)
FIG. 13 shows a schematic configuration of the magnetization control device 100 according to the embodiment of the present invention. The magnetization control device 100 includes the above-described spin torque generating element 10 and a current supply device 11 that causes a current to flow in the conductor layer 1. The current supply device 11 applies a current to the conductor layer 1 in a direction along the interface 4 from one end of the spin torque generating element 10 to the other end, or from the other end of the spin torque generating element 10 to one end. A current is caused to flow in the conductor layer 1 in the direction toward, and the direction of the magnetization M of the ferromagnetic layer 3 is controlled by the above-described spin torque Ts generated thereby. For example, the spin torque Ts reverses the direction of the magnetization M or causes the magnetization M to precess. Here, in the latter case, in order to cause precession, the magnetization control device 100 applies a magnetic field application unit (for example, a permanent magnet or an electromagnet) 12 that applies an external magnetic field H ext in a direction that is the central axis of the precession. May be provided.
<磁気メモリへの適用例>
 磁化制御装置100は、磁気メモリを構成してよい。この場合、図13に示すように、スピントルク発生素子10は、更に参照層13を備える。なお、この場合、上述の磁場印加部12は省略されてよい。参照層13は、強磁性材料で形成され、絶縁層2における導体層1と反対側の表面に形成される。参照層13を形成する強磁性材料は、例えば、Co,Fe,Ni又はそれらの合金であるが、これらに限定されない。参照層13の磁化(以下で単に磁化Mrという)の向きは、固定されている。
<Application example to magnetic memory>
The magnetization control device 100 may form a magnetic memory. In this case, as shown in FIG. 13, the spin torque generating element 10 further includes a reference layer 13. In this case, the magnetic field applying unit 12 described above may be omitted. The reference layer 13 is formed of a ferromagnetic material, and is formed on the surface of the insulating layer 2 opposite to the conductor layer 1. The ferromagnetic material forming the reference layer 13 is, for example, Co, Fe, Ni or an alloy thereof, but is not limited thereto. The direction of the magnetization of the reference layer 13 (hereinafter simply referred to as the magnetization Mr) is fixed.
 電流供給装置11は、磁化Mrの向きと同じ方向に又は磁化Mrの向きと反対方向に導体層1へ電流を界面4に沿って流すことにより、界面4において上述の軌道ラシュバ効果による電子の軌道角運動量を発生させ、当該軌道角運動量によるスピントルクTsにより、強磁性層3の磁化Mの向きを反転させる。これにより、強磁性層3の磁化Mの向きを、磁化Mrと同じにし、又は、磁化Mrと反対にする。 The current supply device 11 causes a current to flow along the interface 4 to the conductor layer 1 in the same direction as the direction of the magnetization Mr or in the direction opposite to the direction of the magnetization Mr, so that the orbits of electrons due to the above-described orbital Rashba effect at the interface 4. An angular momentum is generated, and the direction of the magnetization M of the ferromagnetic layer 3 is reversed by the spin torque Ts due to the orbital angular momentum. As a result, the direction of the magnetization M of the ferromagnetic layer 3 is made the same as the magnetization Mr or opposite to the magnetization Mr.
 磁化制御装置100は、このようなスピントルク発生素子10を多数配列した構成を備える。電流供給装置11は、書き込み指令に従って、各スピントルク発生素子10における強磁性層3の磁化Mの向きを制御する。すなわち、電流供給装置11は、書き込み指令に従って、1つ又は複数の当該スピントルク発生素子10の各々の導体層1に上述のように電流を流して、当該素子10の強磁性層3の磁化Mの向きを反転させる。各素子10における強磁性層3の磁化Mの2種類の向きに、「0」と「1」の1ビットデータを割り当て、多数の素子10にデータを記憶させる。 The magnetization control device 100 has a configuration in which a large number of such spin torque generating elements 10 are arranged. The current supply device 11 controls the direction of the magnetization M of the ferromagnetic layer 3 in each spin torque generating element 10 according to the write command. That is, the current supply device 11 causes a current to flow through the conductor layer 1 of each of the one or more spin torque generation elements 10 in accordance with the write command as described above, and the magnetization M of the ferromagnetic layer 3 of the element 10 concerned. Reverse the direction of. 1-bit data of “0” and “1” is assigned to two directions of the magnetization M of the ferromagnetic layer 3 in each element 10, and the data is stored in many elements 10.
 各スピントルク発生素子10において、強磁性層3の磁化Mの向きに応じて、参照層13と強磁性層3との間の電気抵抗が異なる。したがって、各スピントルク発生素子10において、参照層13に設けた電極(図示せず)と、強磁性層3に設けた電極(図示せず)との間に読み出し電流を流し、当該読み出し電流の値から、参照層13と強磁性層3との間の電気抵抗値を検出し、当該検出値に基づいて、強磁性層3の磁化Mの向きを記録データとして求める。 In each spin torque generating element 10, the electric resistance between the reference layer 13 and the ferromagnetic layer 3 differs depending on the direction of the magnetization M of the ferromagnetic layer 3. Therefore, in each spin torque generation element 10, a read current is caused to flow between an electrode (not shown) provided in the reference layer 13 and an electrode (not shown) provided in the ferromagnetic layer 3, and the read current From the value, the electric resistance value between the reference layer 13 and the ferromagnetic layer 3 is detected, and the direction of the magnetization M of the ferromagnetic layer 3 is obtained as recording data based on the detected value.
<マイクロ波発振装置への適用例>
 図13に示す磁化制御装置100は、マイクロ波発振装置を構成してもよい。この場合、電流供給装置11は、強磁性層3の磁化Mの向きが変化するように、導体層1に電流を供給し、当該磁化Mの向きの変化によりマイクロ波を発生させる。
<Application example to microwave oscillator>
The magnetization control device 100 shown in FIG. 13 may form a microwave oscillation device. In this case, the current supply device 11 supplies a current to the conductor layer 1 so that the direction of the magnetization M of the ferromagnetic layer 3 changes, and the microwave is generated by the change of the direction of the magnetization M.
 例えば、電流供給装置11は、界面4に沿った1方向(例えば図13の左右方向)に交流電流を導体層1に流すことにより、強磁性層3の磁化Mの向きを繰り返し反転させてマイクロ波を発生させる。この場合には、参照層13と磁場印加部12は省略されてよい。 For example, the current supply device 11 causes an alternating current to flow in the conductor layer 1 in one direction along the interface 4 (for example, in the left-right direction in FIG. 13) to repeatedly invert the direction of the magnetization M of the ferromagnetic layer 3 to cause a microscopic change. Generate waves. In this case, the reference layer 13 and the magnetic field applying unit 12 may be omitted.
 あるいは、電流供給装置11は、界面4に沿った方向(例えば図13の左右方向)に電流を導体層1に流すとともに、磁場印加部12が強磁性層3に外部磁場Hextを界面4に沿った方向(例えば導体層1の電流の方向と鋭角を成す方向)に印加する。これにより、図4を参照して上述したように、外部磁場Hextの方向を中心軸として磁化Mに歳差運動させる。これにより、マイクロ波を発生させる。 Alternatively, the current supply device 11 causes a current to flow in the conductor layer 1 in the direction along the interface 4 (for example, the left-right direction in FIG. 13), and the magnetic field applying unit 12 applies the external magnetic field H ext to the ferromagnetic layer 3 to the interface 4. The voltage is applied along the direction (for example, the direction forming an acute angle with the direction of the current of the conductor layer 1). As a result, as described above with reference to FIG. 4, the magnetization M is precessed with the direction of the external magnetic field H ext as the central axis. As a result, microwaves are generated.
<ロジックデバイスへの適用>
 図14は、上述した磁化制御装置100をスピンロジックデバイスとして構成する場合の説明図である。この場合、磁化制御装置100は、更に、導体層1と絶縁層2との間にゲート電圧を印加する電圧印加装置14と、強磁性層3と参照層13との間の電圧を測定する電圧計15を備える。上述の磁場印加部12は省略される。電圧計15が測定した電圧値は、強磁性層3の磁化Mの向きを表わす。
<Application to logic device>
FIG. 14 is an explanatory diagram when the above-described magnetization control device 100 is configured as a spin logic device. In this case, the magnetization control device 100 further includes a voltage applying device 14 that applies a gate voltage between the conductor layer 1 and the insulating layer 2, and a voltage that measures the voltage between the ferromagnetic layer 3 and the reference layer 13. It has a total of 15. The magnetic field applying unit 12 described above is omitted. The voltage value measured by the voltmeter 15 represents the direction of the magnetization M of the ferromagnetic layer 3.
 図15は、スピンロジックデバイスを構成するスピントルク発生素子10の動作特性を示すグラフである。図15において、横軸は、電流供給装置11が、導体層1に流す電流の値を示し、この電流値の正負は、電流の向き(図14の右方向と左方向)を示す。図15において、縦軸は、電圧計15が測定した電圧の値を示す。図15の縦軸において、測定電圧値が1.0(arb.)であることは、強磁性層3の磁化が互いに反対を向く2方向のうちの一方(例えば図14の右方向)であること示し、測定電圧値が-1.0(arb.)であることは、上記2方向のうちの他方(例えば図14の左方向)であること示す。なお、「arb.」は任意単位を示す(以下同様)。 FIG. 15 is a graph showing the operating characteristics of the spin torque generating element 10 that constitutes the spin logic device. In FIG. 15, the horizontal axis represents the value of the current supplied to the conductor layer 1 by the current supply device 11, and the positive / negative of the current value represents the direction of the current (rightward or leftward in FIG. 14). In FIG. 15, the vertical axis represents the voltage value measured by the voltmeter 15. On the vertical axis of FIG. 15, the measured voltage value being 1.0 (arb.) Is one of the two directions in which the magnetizations of the ferromagnetic layers 3 are opposite to each other (for example, the right direction in FIG. 14). That the measured voltage value is −1.0 (arb.) Means that it is the other of the above two directions (for example, the left direction in FIG. 14). Note that "arb." Indicates an arbitrary unit (the same applies hereinafter).
 図15において、太い一点鎖線は、上述のゲート電圧の値が+Vである状態での動作特性を示し、太い実線は、上述のゲート電圧の値が-Vである状態での動作特性を示す。強磁性層3の磁化の向きの切り替えが、図15の太い実線に従って行われるが、図15の太い一点鎖線に従って行われないようにする中間値の(すなわち、絶対値が6(arb.)より大きく7(arb.)より小さい)電流を、電流供給装置11が導体層1に流す。 In FIG. 15, the thick dash-dotted line shows the operating characteristics when the above-mentioned gate voltage value is + V G , and the thick solid line shows the operating characteristics when the above-mentioned gate voltage value is −V G. Show. The switching of the magnetization direction of the ferromagnetic layer 3 is performed according to the thick solid line in FIG. 15, but is not performed according to the thick dash-dotted line in FIG. 15 (that is, when the absolute value is 6 (arb.) Or less). The current supply device 11 causes a current to flow in the conductor layer 1 by a large amount (less than 7 (arb.)).
 図16は、スピンロジックデバイスとしての磁化制御装置100の構成例を示す。図16では、磁化制御装置100は、1つの導体層1を共有する2組(以下で組Aと組Bとも言う)のスピントルク発生素子10を備える。すなわち、1つの導体層1を共有するように、2組の絶縁層2と強磁性層3と参照層13が設けられる。各組A,Bは、図15に示す動作特性を有する。 FIG. 16 shows a configuration example of the magnetization control device 100 as a spin logic device. In FIG. 16, the magnetization control device 100 includes two sets of spin torque generation elements 10 (hereinafter also referred to as a set A and a set B) that share one conductor layer 1. That is, two sets of the insulating layer 2, the ferromagnetic layer 3 and the reference layer 13 are provided so as to share one conductor layer 1. Each set A, B has the operating characteristics shown in FIG.
 各組A,Bに対して、上述した電圧印加装置14と、電圧計15が設けられる。一方の組Aの電圧印加装置14と電圧計15をそれぞれ電圧印加装置14Aと電圧計15Aと記載し、他方の組Bの電圧印加装置14と電圧計15をそれぞれ電圧印加装置14Bと電圧計15Bと記載する。 The above-described voltage application device 14 and voltmeter 15 are provided for each set A and B. The voltage applying device 14 and the voltmeter 15 of the one set A are referred to as the voltage applying device 14A and the voltmeter 15A, respectively, and the voltage applying device 14 and the voltmeter 15 of the other set B are respectively the voltage applying device 14B and the voltmeter 15B. Enter.
 上述のゲート電圧について、+Vを「1」の入力デジタル信号とし、-Vを「0」の入力デジタル信号とする。電流供給装置11が上述の中間値(例えば、-6.5(arb.))の電流を導体層1に流している状態で、電圧印加装置14Aが、組Aに対して印加するゲート電圧を、+Vと-V(すなわち、デジタル信号の「1」と「0」)との間で切り替え、電圧印加装置14Bが、組Bに対して印加するゲート電圧を、+Vと-Vとの間で切り替える場合、2つの入力デジタル信号に対する出力デジタル信号は、図17に示す表のようになる。図17において、組A,Bへのゲート電圧の「1」と「0」は、それぞれ+Vと-Vを意味し、V(arb.)は、電圧計15A,15Bが測定する電圧値の合計V(arb.)を意味する。 Regarding the above gate voltage, + V G is an input digital signal of “1” and −V G is an input digital signal of “0”. The voltage applying device 14A changes the gate voltage applied to the set A while the current supply device 11 applies the current of the above-mentioned intermediate value (for example, −6.5 (arb.)) To the conductor layer 1. , + V G and −V G (that is, “1” and “0” of the digital signal), and the voltage application device 14B applies the gate voltage applied to the set B to + V G and −V G. When switching between and, the output digital signals for the two input digital signals are as shown in the table of FIG. In FIG. 17, “1” and “0” of the gate voltages to the sets A and B mean + V G and −V G , respectively, and V T (arb.) Is the voltage measured by the voltmeters 15A and 15B. It means the sum of the values V T (arb.).
 磁化制御装置100は、更に、上述した2つの入力デジタル信号に対する出力デジタル信号を出力する出力部16を備える。出力部16は、論理和(OR)として構成される場合には、図17の「論理和の場合」のように、電圧計15Aの電圧測定値と電圧計15Bの電圧測定値がいずれも0(arb.)である場合には、「0」のデジタル信号を出力し、その他の場合には、「1」のデジタル信号を出力する。一方、出力部16は、論理積(AND)として構成される場合には、図17の「論理積の場合」のように、電圧計15Aの電圧測定値と電圧計15Bの電圧測定値がいずれも1(arb.)である場合には、「1」のデジタル信号を出力し、その他の場合には、「0」のデジタル信号を出力する。 The magnetization control device 100 further includes an output unit 16 that outputs an output digital signal corresponding to the two input digital signals described above. When the output unit 16 is configured as a logical sum (OR), the measured voltage value of the voltmeter 15A and the measured voltage value of the voltmeter 15B are both 0 as in the case of the logical sum of FIG. If it is (arb.), A digital signal of "0" is output, and in other cases, a digital signal of "1" is output. On the other hand, when the output unit 16 is configured as a logical product (AND), the measured voltage value of the voltmeter 15A and the measured voltage value of the voltmeter 15B are determined as in the case of the logical product of FIG. Is also 1 (arb.), A digital signal of "1" is output, and in other cases, a digital signal of "0" is output.
 出力部16は、図17のようにデジタル信号を出力するために、例えば次のように構成されてよい。電流供給装置11は、絶対値が上記中間値に固定され且つ符号が負に固定された電流を導体層1に流す。導体層1の当該電流のため、各組A、Bの強磁性層3の磁化反転が誘起されて、電圧計15A,15Bからの電圧測定値の合計V(arb.)は、それぞれの磁化状態と上述のゲート電圧に応じて、図17のように-2(arb.)から2(arb.)まで変わる。論理和の場合には、基準電圧を1(arb.)と定義して、V(arb.)が基準電圧より大きい時には、出力部16はデジタル信号「0」を出力し、V(arb.)が基準電圧より小さい時には、出力部16はデジタル信号「1」を出力する。同様に、論理積の場合には、基準電圧を-1(arb.)と定義して、V(arb.)が基準電圧より大きい時には、出力部16はデジタル信号「0」を出力し、合計V(arb.)が基準電圧より小さい時には、出力部16はデジタル信号「1」を出力する。なお、絶対値が上記中間値である負の電流が導体層1に流れている状態で、上述のゲート電圧に対して図17に従った合計V(arb.)が得られるように、参照層13の磁化の向きが設定されている。 The output unit 16 may be configured as follows, for example, to output a digital signal as shown in FIG. The current supply device 11 supplies a current whose absolute value is fixed to the intermediate value and whose sign is fixed to the negative value to the conductor layer 1. Due to the current in the conductor layer 1, the magnetization reversal of the ferromagnetic layer 3 of each set A, B is induced, and the total V T (arb.) Of the voltage measurement values from the voltmeters 15A, 15B becomes the respective magnetizations. It changes from -2 (arb.) To 2 (arb.) Depending on the state and the above-mentioned gate voltage as shown in FIG. When the logical sum is defined as the reference voltage 1 (arb.), V T (arb.) When is greater than the reference voltage, the output unit 16 outputs a digital signal "0", V T (arb .) Is smaller than the reference voltage, the output unit 16 outputs the digital signal “1”. Similarly, in the case of logical product, the reference voltage is defined as -1 (arb.), And when V T (arb.) Is larger than the reference voltage, the output unit 16 outputs a digital signal "0", When the total V T (arb.) Is smaller than the reference voltage, the output unit 16 outputs the digital signal “1”. It should be noted that reference is made so that the total V T (arb.) According to FIG. 17 is obtained for the above-mentioned gate voltage in the state where a negative current whose absolute value is the intermediate value is flowing in the conductor layer 1. The magnetization direction of the layer 13 is set.
<磁気センサへの適用>
 図18は、上述した磁化制御装置100を磁気センサとする場合の構成例を示す。図18の例では、磁化制御装置100は、第1~第4のスピントルク発生素子10A~10Dを備える。これらのスピントルク発生素子10A~10Dの各々は、上述のスピントルク発生素子10と同じ構成を有し、基板17上に形成されてよい。基板17は、例えばSiOで形成されたものであってよい。なお、参照層13と磁場印加部12は、省略されてよい。
<Application to magnetic sensor>
FIG. 18 shows a configuration example when the above-described magnetization control device 100 is used as a magnetic sensor. In the example of FIG. 18, the magnetization control device 100 includes first to fourth spin torque generation elements 10A to 10D. Each of these spin torque generating elements 10A to 10D may have the same configuration as the spin torque generating element 10 described above, and may be formed on the substrate 17. The substrate 17 may be formed of SiO 2 , for example. The reference layer 13 and the magnetic field applying unit 12 may be omitted.
 図18において、xyz座標系は、基板17に対して固定された座標系であり、そのx軸とy軸は、基板17の表面(界面4)と平行であり、互いに直交し、そのz軸は、基板17の表面(界面4)と直交している。各スピントルク発生素子10A~10Dは、全体として、その厚み方向(z軸方向)から見た場合に楕円形であってよい。当該楕円形の長軸はx軸方向を向いていてよい。 In FIG. 18, the xyz coordinate system is a coordinate system fixed with respect to the substrate 17, and its x-axis and y-axis are parallel to the surface (interface 4) of the substrate 17 and are orthogonal to each other. Are orthogonal to the surface (interface 4) of the substrate 17. Each of the spin torque generating elements 10A to 10D may have an elliptical shape when viewed in the thickness direction (z-axis direction) as a whole. The major axis of the ellipse may be oriented in the x-axis direction.
 第1及び第2のスピントルク発生素子10A,10Bの導体層1におけるx軸方向の一端部同士は、導電ライン18aにより互いに接続されており、第3及び第4のスピントルク発生素子10C,10Dの導体層1におけるx軸方向の一端部同士も、導電ライン18bにより互いに接続されている。第1及び第3のスピントルク素子10A,10Cの導体層1におけるx軸方向の他端部同士は、導電ライン18cにより互いに接続されており、第2及び第4のスピントルク素子10B,10Dの導体層1におけるx軸方向の他端部同士も、導電ライン18dにより互いに接続されている。 One ends of the conductor layers 1 of the first and second spin torque generating elements 10A and 10B in the x-axis direction are connected to each other by a conductive line 18a, and the third and fourth spin torque generating elements 10C and 10D. The one ends of the conductor layer 1 in the x-axis direction are also connected to each other by the conductive line 18b. The other ends of the conductor layers 1 of the first and third spin torque elements 10A and 10C in the x-axis direction are connected to each other by a conductive line 18c, and the second and fourth spin torque elements 10B and 10D are connected to each other. The other ends of the conductor layer 1 in the x-axis direction are also connected to each other by the conductive line 18d.
 電流供給装置11は、導電ライン18aと導電ライン18bとの間に交流電流を印加する。これにより、各スピントルク発生素子10A~10Dの導体層1には、交流電流がx軸方向に流れる。当該交流電流に応じて、各スピントルク発生素子10A~10Dにおける強磁性層3の磁化の向きが変化する。 The current supply device 11 applies an alternating current between the conductive line 18a and the conductive line 18b. As a result, an alternating current flows in the x-axis direction in the conductor layer 1 of each of the spin torque generating elements 10A to 10D. The direction of magnetization of the ferromagnetic layer 3 in each of the spin torque generating elements 10A to 10D changes according to the alternating current.
 磁化制御装置100は、更に、電圧計18を備える。電圧計18は、導電ライン18cと導電ライン18dとの間の電圧(電位差)を測定し、その測定した電圧値を出力する。この電圧値は、電圧計18が測定した電圧の時間平均値であってよい。 The magnetization control device 100 further includes a voltmeter 18. The voltmeter 18 measures the voltage (potential difference) between the conductive line 18c and the conductive line 18d, and outputs the measured voltage value. This voltage value may be a time average value of the voltage measured by the voltmeter 18.
 電流供給装置11が導電ライン18aと導電ライン18bとの間に交流電流を印加している状態で、磁気センサにおいてy軸方向の外部磁場Hyが存在すると、電圧計18が測定する電圧は、外部磁場Hyに応じた値になる。したがって、電圧計18が出力する電圧値に基づいて、外部磁場Hyを検出できる。 When an external magnetic field Hy in the y-axis direction is present in the magnetic sensor while the current supply device 11 is applying an alternating current between the conductive line 18a and the conductive line 18b, the voltage measured by the voltmeter 18 is the external voltage. It has a value corresponding to the magnetic field Hy. Therefore, the external magnetic field Hy can be detected based on the voltage value output by the voltmeter 18.
 一例では、磁化制御装置100による磁気センサは、外部磁場Hyに対して非常に敏感であるので、地面に対する磁気センサ(基板17)の姿勢が変化することにより、y軸方向の地磁気成分も変化するので、この変化を、電圧計18の出力電圧値に基づいて検出可能である。したがって、磁気センサの姿勢が検出可能であるので、磁気センサを取り付けた対象物の姿勢も検出可能である。 In one example, since the magnetic sensor by the magnetization control device 100 is very sensitive to the external magnetic field Hy, the attitude of the magnetic sensor (substrate 17) with respect to the ground changes, and the geomagnetic component in the y-axis direction also changes. Therefore, this change can be detected based on the output voltage value of the voltmeter 18. Therefore, since the attitude of the magnetic sensor can be detected, the attitude of the object to which the magnetic sensor is attached can also be detected.
 本発明は上述した実施の形態に限定されず、本発明の技術的思想の範囲内で種々変更を加え得ることは勿論である。例えば、スピントルク発生素子10、その製造方法、及び磁化制御装置100は、上述した複数の事項の全て有していなくてもよく、上述した複数の事項のうち一部のみを有していてもよい。また、スピントルク発生素子10、その製造方法、及び磁化制御装置100は、上述した作用効果の全てを奏するものなくてもよく、上述した作用効果の一部のみを奏するものであってもよい。 The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea of the present invention. For example, the spin torque generating element 10, the manufacturing method thereof, and the magnetization control device 100 may not have all of the plurality of items described above, and may have only a part of the plurality of items described above. Good. Further, the spin torque generating element 10, the method of manufacturing the same, and the magnetization control device 100 may not exhibit all of the above-described operational effects, and may exhibit only some of the above-described operational effects.
1 導体層、2 絶縁層、3 強磁性層、4 界面、5a,5b 電極、6 コンデンサ、7 交流電源、8 コイル、9 電圧計、10 スピントルク発生素子、11 電流供給装置、12 磁場印加部、13 参照層、14,14A,14B 電圧印加装置、15,15A,15B 電圧計、16 出力部、17 基板、18 電圧計、20 測定装置、100 磁化制御装置 1 conductor layer, 2 insulating layer, 3 ferromagnetic layer, 4 interface, 5a, 5b electrode, 6 capacitor, 7 AC power supply, 8 coil, 9 voltmeter, 10 spin torque generating element, 11 current supply device, 12 magnetic field applying section , 13, reference layer, 14, 14A, 14B voltage applying device, 15, 15A, 15B voltmeter, 16 output section, 17 substrate, 18 voltmeter, 20 measuring device, 100 magnetization control device

Claims (11)

  1.  電流が供給される導体層と、該導体層の一方側の面に形成される絶縁層と、前記導体層の他方側の面に形成される強磁性層とを備え、
     前記導体層の電流により、前記強磁性層の磁化に作用するスピントルクを発生させる、
     スピントルク発生素子。
    A conductor layer to which an electric current is supplied; an insulating layer formed on one surface of the conductor layer; and a ferromagnetic layer formed on the other surface of the conductor layer,
    A spin torque acting on the magnetization of the ferromagnetic layer is generated by the current of the conductor layer,
    Spin torque generating element.
  2.  前記導体層と前記絶縁層と前記強磁性層は、前記スピントルク発生素子において特定のスピントルク発生現象を生じさせるそれぞれの材料で形成されており、
     前記特定のスピントルク発生現象は、前記導体層に電流が流れると、軌道ラシュバ効果により前記導体層と前記絶縁層との界面において電子の軌道角運動量が生じ、当該軌道角運動量が、前記強磁性層の磁化に作用するスピントルクを発生させる現象である
     請求項1に記載のスピントルク発生素子。
    The conductor layer, the insulating layer, and the ferromagnetic layer are formed of respective materials that cause a specific spin torque generation phenomenon in the spin torque generation element,
    In the specific spin torque generation phenomenon, when a current flows in the conductor layer, an orbital angular momentum of electrons occurs at the interface between the conductor layer and the insulating layer due to an orbital Rashba effect, and the orbital angular momentum causes The spin torque generating element according to claim 1, which is a phenomenon that generates a spin torque that acts on the magnetization of the layer.
  3.  前記導体層は、元素の周期表において第2周期から第5周期までの範囲に属する金属元素の材料で形成されている
     請求項1又は2に記載のスピントルク発生素子。
    The spin torque generation element according to claim 1 or 2, wherein the conductor layer is made of a material of a metal element belonging to a range from a second period to a fifth period in the periodic table of elements.
  4.  前記導体層は、銅で形成されている
     請求項3に記載のスピントルク発生素子。
    The spin torque generating element according to claim 3, wherein the conductor layer is made of copper.
  5.  前記導体層は銅で形成され、前記絶縁層は酸化アルミニウム又は酸化マグネシウムで形成され、前記強磁性層は鉄又はコバルト鉄で形成されている
     請求項1又は2に記載のスピントルク発生素子。
    The spin torque generating element according to claim 1, wherein the conductor layer is made of copper, the insulating layer is made of aluminum oxide or magnesium oxide, and the ferromagnetic layer is made of iron or cobalt iron.
  6.  前記導体層は銅で形成され、前記絶縁層は酸化アルミニウム又は酸化マグネシウムで形成され、
     前記強磁性層は、飽和磁化が10kOe以上となる強磁性材料で形成されている
     請求項1又は2に記載のスピントルク発生素子。
    The conductor layer is formed of copper, the insulating layer is formed of aluminum oxide or magnesium oxide,
    The spin torque generating element according to claim 1, wherein the ferromagnetic layer is formed of a ferromagnetic material having a saturation magnetization of 10 kOe or more.
  7.  前記導体層の厚みは、数nm以上であって数十nm以下である
     請求項1~6のいずれか一項に記載のスピントルク発生素子。
    7. The spin torque generating element according to claim 1, wherein the conductor layer has a thickness of several nm or more and several tens of nm or less.
  8.  電流が供給される導体層と、該導体層の一方側の面に形成される絶縁層と、前記導体層の他方側の面に形成される強磁性層とを備え、前記導体層の電流により、前記強磁性層の磁化に作用するスピントルクを発生させるスピントルク発生素子の製造方法であって、
     前記強磁性層と前記導体層と前記絶縁層がこの順に積層されるように、前記強磁性層と前記導体層と前記絶縁層をそれぞれの材料で形成する第1の工程と、
     積層された前記強磁性層と前記導体層と前記絶縁層を加熱するアニール処理を行う第2の工程と、を含む
     スピントルク発生素子の製造方法。
    A conductor layer to which a current is supplied, an insulating layer formed on one surface of the conductor layer, and a ferromagnetic layer formed on the other surface of the conductor layer are provided. A method for manufacturing a spin torque generating element for generating a spin torque that acts on the magnetization of the ferromagnetic layer,
    A first step of forming the ferromagnetic layer, the conductor layer, and the insulating layer with respective materials so that the ferromagnetic layer, the conductor layer, and the insulating layer are laminated in this order;
    A second step of performing an annealing treatment for heating the stacked ferromagnetic layer, the conductor layer, and the insulating layer, the method for manufacturing a spin torque generating element.
  9.  前記第1の工程では、前記強磁性層を鉄又はコバルト鉄で形成し、前記導体層を銅で形成し、前記絶縁層を酸化アルミニウム又は酸化マグネシウムで形成する
     請求項8に記載のスピントルク発生素子の製造方法。
    The spin torque generation according to claim 8, wherein in the first step, the ferromagnetic layer is formed of iron or cobalt iron, the conductor layer is formed of copper, and the insulating layer is formed of aluminum oxide or magnesium oxide. Manufacturing method of device.
  10.  前記アニール処理では、前記導体層と前記絶縁層と前記強磁性層を200℃以上、300℃以上、又は400℃以上の温度で加熱する
     請求項8又は9に記載のスピントルク発生素子の製造方法。
    The method for manufacturing a spin torque generating element according to claim 8 or 9, wherein in the annealing treatment, the conductor layer, the insulating layer, and the ferromagnetic layer are heated at a temperature of 200 ° C or higher, 300 ° C or higher, or 400 ° C or higher. ..
  11.  電流が供給される導体層と、該導体層の一方側の面に形成される絶縁層と、前記導体層の他方側の面に形成される強磁性層とを備え、前記導体層の電流により、前記強磁性層の磁化に作用するスピントルクを発生させるスピントルク発生素子と、
     前記導体層に電流を流す電流供給装置と、を備える磁化制御装置であって、
     前記電流供給装置は、前記導体層に電流を流すことにより、前記スピントルクで前記強磁性層の磁化の向きを制御する
     磁化制御装置。
    A conductor layer to which a current is supplied, an insulating layer formed on one surface of the conductor layer, and a ferromagnetic layer formed on the other surface of the conductor layer are provided. A spin torque generating element that generates a spin torque that acts on the magnetization of the ferromagnetic layer,
    A magnetization control device, comprising: a current supply device for supplying a current to the conductor layer,
    The magnetization control device, wherein the current supply device controls the direction of magnetization of the ferromagnetic layer by the spin torque by causing a current to flow through the conductor layer.
PCT/JP2019/042137 2018-10-31 2019-10-28 Spin torque generating element, manufacturing method thereof, and magnetization control device WO2020090719A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553879A JPWO2020090719A1 (en) 2018-10-31 2019-10-28 Spin torque generator, its manufacturing method, and magnetization control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-205256 2018-10-31
JP2018205256 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090719A1 true WO2020090719A1 (en) 2020-05-07

Family

ID=70462034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042137 WO2020090719A1 (en) 2018-10-31 2019-10-28 Spin torque generating element, manufacturing method thereof, and magnetization control device

Country Status (2)

Country Link
JP (1) JPWO2020090719A1 (en)
WO (1) WO2020090719A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238334A1 (en) * 2022-06-09 2023-12-14 Tdk株式会社 Spin inductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018505555A (en) * 2015-05-13 2018-02-22 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation Magnetic memory element
JP2019047030A (en) * 2017-09-05 2019-03-22 Tdk株式会社 Spin current magnetization reversal element, magnetoresistance effect element, magnetic memory, and high frequency magnetic element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018505555A (en) * 2015-05-13 2018-02-22 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation Magnetic memory element
JP2019047030A (en) * 2017-09-05 2019-03-22 Tdk株式会社 Spin current magnetization reversal element, magnetoresistance effect element, magnetic memory, and high frequency magnetic element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSAI, HANSHEN ET AL.: "Clear variation of spin splitting by changing electron distribution at non-magnetic metal/Bi2O3 interfaces", SCIENTIFIC REPORTS, vol. 8, 3 April 2018 (2018-04-03), pages 5564 - 1-5564-8, XP081224334 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238334A1 (en) * 2022-06-09 2023-12-14 Tdk株式会社 Spin inductor

Also Published As

Publication number Publication date
JPWO2020090719A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
US9478729B2 (en) Spin transfer torque magnetic memory device using magnetic resonance precession and the spin filtering effect
Grünberg Layered magnetic structures: History, highlights, applications
JP5673951B2 (en) Field ferromagnetic resonance excitation method and magnetic functional element using the same
JP6719515B2 (en) Spin-orbit torque magnetic element
Li et al. Strain-mediated 180 perpendicular magnetization switching of a single domain multiferroic structure
KR102006671B1 (en) Magnetic element, skyrmion memory, solid-state electronic device, data-storage device, data processing and communication device
Zhang et al. Electrical control over perpendicular magnetization switching driven by spin-orbit torques
KR102055999B1 (en) Low-Power Terahertz Magnetic Nano-oscillators
Wu et al. Field-free approaches for deterministic spin–orbit torque switching of the perpendicular magnet
Tao et al. Field-free spin–orbit torque switching in L1-FePt single layer with tilted anisotropy
Huang et al. Pure spin current phenomena
Bose et al. Recent advances in the spin Nernst effect
CN105449097A (en) Double-magnetism barrier tunnel junction and self-rotating electronic device comprising the same
Leon et al. Voltage control of rare-earth magnetic moments at the magnetic-insulator–metal interface
Yamamoto et al. Developments in voltage-controlled subnanosecond magnetization switching
TW202240610A (en) Thin film inductor element and thin film variable inductor element
WO2020090719A1 (en) Spin torque generating element, manufacturing method thereof, and magnetization control device
KR20170084392A (en) Magnetic Memory Device
Li et al. High Spin Hall Conductivity Induced by Ferromagnet and Interface
Li et al. Spin hall nano-oscillators based on two-dimensional Fe 3 GeTe 2 magnetic materials
KR101375871B1 (en) Spin-transfer-torque magnetic random access memory using resonant and dual-spin-filter effects
JP2008071720A (en) Battery, battery system, and microwave transmitter
WO2018198713A1 (en) Magnetic element
CN112514012B (en) Inductance element and device including the same
WO2018146713A1 (en) Thermoelectric conversion element and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553879

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878670

Country of ref document: EP

Kind code of ref document: A1