WO2020090696A1 - Rubber composition, molded foam, fire protective member, and method for producing molded foam - Google Patents

Rubber composition, molded foam, fire protective member, and method for producing molded foam Download PDF

Info

Publication number
WO2020090696A1
WO2020090696A1 PCT/JP2019/042075 JP2019042075W WO2020090696A1 WO 2020090696 A1 WO2020090696 A1 WO 2020090696A1 JP 2019042075 W JP2019042075 W JP 2019042075W WO 2020090696 A1 WO2020090696 A1 WO 2020090696A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
mass
parts
thermal expansion
foamed molded
Prior art date
Application number
PCT/JP2019/042075
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 寿雄
石黒 博行
阿部 靖
英也 相馬
高津 知道
真佐之 藤谷
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2020090696A1 publication Critical patent/WO2020090696A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers

Definitions

  • the present invention relates to a rubber composition, a foam molded article using the rubber composition, a fireproof member using the foam molded article, and a method for producing the foam molded article.
  • Patent Document 1 proposes a refractory resin composition having excellent residue stability and general physical properties.
  • Patent Document 2 proposes a heat-expandable fire-resistant resin composition having both high expandability and high residue hardness.
  • Patent Document 3 proposes a refractory resin composition having excellent expandability, surface finish, and strength.
  • the main object of the present invention is to provide a rubber composition having an excellent balance of thermal expansion properties, shape retention properties and flame retardancy, and a foamed molded product having a small specific gravity.
  • Specific gravity and flame retardancy which are the characteristics of foamed molded products, are generally in a trade-off relationship, so it is difficult to improve flame retardancy while reducing specific gravity.
  • thermal expansion property and the shape retention property which are the characteristics of the foamed article after combustion, are generally in a trade-off relationship, it is difficult to maintain the shape while increasing the volume expansion ratio after combustion. That is, it has been considered difficult to obtain a foamed molded product having a low specific gravity and good flame retardancy, thermal expansion properties and shape retention.
  • the present invention provides a foamed molded article using the rubber composition.
  • the present invention further provides a fireproof member using the foamed molded product.
  • the present invention also includes a step of vulcanizing the rubber composition, wherein the vulcanizing temperature in the vulcanizing treatment is 110 to 170 ° C. and the vulcanizing time is 3 to 40 minutes. A manufacturing method is provided.
  • a rubber composition according to an embodiment of the present invention includes (1) a thermosetting elastomer, (2) a thermal expansion agent, (3) a solid metal (sub) phosphate, (4) an inorganic filler, and (5). ) Including a foaming agent.
  • the rubber composition of the present embodiment is suitable for a foamed molded product and can be used as a raw material for a foamed molded product described later.
  • each component contained in the rubber composition of the present embodiment will be described.
  • thermosetting elastomers examples include chloroprene rubber (CR), ethylene-propylene-diene rubber (EPDM), styrene-butadiene rubber (SBR), natural rubber (NR), acrylonitrile-butadiene rubber ( NBR), silicone rubber, chlorosulfonated polyethylene (CSM), chlorinated polyethylene (CPE), hydrogenated nitrile rubber (HNBR), acrylic rubber (ACM), urethane rubber, butyl rubber and the like. These thermosetting elastomers may be used alone or in combination of two or more.
  • thermosetting elastomers chloroprene rubber or ethylene-propylene-diene rubber is preferable.
  • the rubber composition containing chloroprene rubber is suitably used for a fire prevention member that places importance on mechanical strength and flame retardancy.
  • a rubber composition containing ethylene-propylene-diene rubber is suitably used for a fireproof member that places importance on weather resistance.
  • heat-expandable graphite known ones may be used, for example, a powder of natural graphite or pyrolytic graphite, an inorganic acid such as sulfuric acid or nitric acid, and a strong oxidizer such as concentrated nitric acid or permanganate. And a crystalline compound which maintains the graphite layer structure.
  • the powder of natural graphite, pyrolytic graphite, or the like may be subjected to deoxidation treatment or neutralization treatment.
  • the content of the thermal expansion agent in the rubber composition of the present embodiment is 10 to 120 parts by mass, preferably 10 to 100 parts by mass, and more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the thermosetting elastomer. It is a mass part.
  • the content of the thermal expansion agent is less than 10 parts by mass, sufficient foaming properties cannot be imparted to the foamed molded product obtained from the rubber composition, and when it is more than 120 parts by mass, the above foamed molded product is obtained. Has a large specific gravity and becomes heavy, which may lead to a reduction in workability such as difficulty in transportation.
  • the content of the thermal expansion agent in the rubber composition is more preferably 40 to 80 parts by mass with respect to 100 parts by mass of the chloroprene rubber. Within such a range, a foamed molded article having a better balance of thermal expansion, shape retention and flame retardancy can be obtained.
  • the thermosetting elastomer contained in the rubber composition is ethylene-propylene-diene rubber
  • the content of the thermal expansion agent in the rubber composition is 40 to 80 parts by mass with respect to 100 parts by mass of the ethylene-propylene-diene rubber. It is more preferable that the amount is 65 to 80 parts by mass. Within such a range, a foamed molded article having a better balance of thermal expansion, shape retention and flame retardancy can be obtained.
  • Solid Metal (Sub) Phosphate Solid metal (sub) phosphate is a shape-retaining agent for imparting shape-retaining properties after combustion to the foamed molded product obtained from the rubber composition of the present embodiment. Used. That is, the foamed molded body does not become powdery even after being burned by containing the solid metal (sub) phosphite, and can maintain the shape.
  • the content of the solid metal (sub) phosphate in the rubber composition of the present embodiment is 15 to 100 parts by mass, preferably 15 to 60 parts by mass, based on 100 parts by mass of the thermosetting elastomer.
  • the amount is preferably 20 to 60 parts by mass, more preferably 30 to 50 parts by mass.
  • the content of the solid metal (sub) phosphate is less than 15 parts by mass, the shape retention of the foamed molded product obtained from the rubber composition after combustion is deteriorated.
  • it is more than 100 parts by mass the specific gravity of the foam molded article becomes large and heavy, which may cause a decrease in workability such as difficulty in transportation, and also the thermal expansion property of the foam molded article decreases. ..
  • the solid metal (phosphite) salt is preferably one that can maintain its shape stably under high temperature heating.
  • Such solid metal (phosphite) salts include various phosphoric acids / phosphorous acids and at least one metal selected from metals of groups IA to IVB of the periodic table, ammonia, aliphatic amines, and aromatic amines.
  • a phosphate / phosphite salt formed of a salt with a compound may be mentioned.
  • various phosphoric acids / phosphorous acids include phosphoric acid, phosphorous acid, pyrophosphoric acid, and polyphosphoric acid.
  • metals of Groups IA to IVB of the Periodic Table include lithium, sodium, potassium, magnesium, calcium, barium, iron (II), iron (III), zinc and aluminum.
  • aliphatic amines examples include methylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, piperazine and the like.
  • aromatic amine examples include pyridine, triazine, melamine, ammonium and the like.
  • the above-mentioned solid metal (phosphite) salt may be subjected to a known water resistance improving treatment such as treatment with a silane coupling agent and coating with a melamine resin, and a known foaming auxiliary agent such as melamine and pentaerythritol is added. May be.
  • phosphate / phosphite constituting the solid metal (phosphite) examples include ammonium salts such as ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, monosodium phosphate and diphosphate.
  • the content of the inorganic filler in the rubber composition of the present embodiment is 30 to 100 parts by mass, preferably 30 to 80 parts by mass, and more preferably 30 to 60 parts by mass with respect to 100 parts by mass of the thermosetting elastomer. Parts by mass, more preferably 30 to 50 parts by mass.
  • the content of the inorganic filler is less than 30 parts by mass, the flame-retardant property of the foamed molded product obtained from the rubber composition decreases, and when it is more than 100 parts by mass, the specific gravity of the foamed molded product increases. There is a possibility that workability may be deteriorated such that it becomes heavy and difficult to carry.
  • organic foaming agent examples include azo foaming agents such as azodicarbonamide (ADCA), azobisisobutyronitrile, azodiaminobenzene, and azocyclohexylnitrile; N, N′-dinitrosopentamethylenetetramine, N, N Nitroso-based blowing agents such as'-dimethyl N, N'-dinitrosoterephthalamide; p, p'-oxybisbenzenesulfonyl hydrazide (OBSH), benzenesulfonyl hydrazide, toluenesulfonyl hydrazide, diphenyl sulfone-3,3'-di Sulfonyl hydrazide type foaming agents such as sulfonyl hydrazide; and the like.
  • azo foaming agents such as azodicarbonamide (ADCA), azobisisobutyronitrile, azodiaminobenzen
  • the content of the foaming agent in the rubber composition of the present embodiment is 5 to 30 parts by mass, preferably 10 to 30 parts by mass, and more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the thermosetting elastomer. It is a department.
  • the content of the foaming agent is less than 5 parts by mass, the specific gravity of the foamed molded product obtained from the rubber composition becomes large and heavy, and there is a possibility that workability may be deteriorated such as difficulty in transportation. If it is more than 30 parts by mass, the thermal expansion property of the foamed molded product will be reduced.
  • the rubber composition of the present embodiment may contain additives other than the above components, if necessary.
  • the additive include a lubricant, an antioxidant, a reinforcing agent such as carbon book, a plasticizer, a processing aid, a vulcanizing agent, a vulcanization accelerator, and a vulcanization retarder.
  • a foamed molded article according to one embodiment of the present invention comprises the above rubber composition.
  • the foamed molded article of the present embodiment is characterized by an excellent balance of thermal expansion, shape retention and flame retardancy, and low specific gravity.
  • the foamed molded article of this embodiment has good shape retention after combustion.
  • Good shape retention means specifically that powder does not become powdery after burning at 600 ° C. for 30 minutes.
  • the foamed molded product of the present embodiment is obtained by kneading the above rubber composition, preforming the obtained compound into a desired shape, and subjecting it to vulcanization.
  • a kneading device such as a mixer, a Banbury mixer, a kneader mixer, or a twin roll can be used.
  • a molding apparatus for performing press molding, extrusion molding, calender molding and the like can be mentioned.
  • a rubber composition is extruded and molded into a product shape by an extruder for rubber, then introduced into a vulcanization tank, and vulcanized by heating with a means such as hot air, a fluidized bed, or a microwave. Foaming can be performed.
  • the shape of the foamed molded article is not particularly limited, and may be appropriately selected depending on the application, the installation location, etc., such as a sheet shape or a tape shape.
  • the foamed molded product of this embodiment is preferably used as a fire protection member.
  • the foamed molded article of the present embodiment can be placed in a gap between structures that compose a building such as a building.
  • the foamed molded article of the present embodiment having excellent thermal expansion property, when exposed to high temperature during a fire, thermally expands to fill the gaps in the structure, block flames and smoke, and prevent the spread of fire damage. it can.
  • the foamed molded article of the present embodiment has good shape retention and flame retardancy, the foamed molded article that has undergone thermal expansion does not fall into a powdery state even when a flame approaches, and the foamed molded article does not collapse. It is less likely that it will burn itself and cause fire spread.
  • the ingredients having the compounding amounts shown in Tables 1 and 2 below were kneaded at 40 ° C. for 30 minutes using an 8-inch roll to obtain a rubber composition.
  • the obtained rubber composition was molded into a sheet with an 8-inch roll, and then vulcanized using a press.
  • the vulcanization temperature and vulcanization time in the vulcanization treatment were as shown in Tables 1 and 2 below. After that, foaming treatment was performed to produce a foamed molded product having a width of 120 mm, a length of 120 mm and a thickness of 12 mm.
  • the physical properties (specific gravity, flame retardancy, thermal expansion and shape retention after combustion) of the obtained foamed molded product were evaluated by the following procedures.
  • the oxygen index was used as an index showing flame retardancy.
  • the oxygen index was measured using a flammability tester (“ON-1” manufactured by Suga Test Instruments Co., Ltd.) based on JIS K6269 of Japanese Industrial Standards. The higher the oxygen index, the higher the flame retardancy.
  • 35 or more was evaluated as A
  • 30 or more and less than 35 was evaluated as B
  • 25 or more and less than 30 was evaluated as C
  • less than 25 was evaluated as D. It was judged that A to C were acceptable and D was not acceptable.
  • (C) Thermal Expansion The volume expansion ratio under combustion was measured as an index showing thermal expansion. Specifically, the volume expansion coefficient was calculated by dividing the volume after burning at 300 ° C. for 30 minutes by the volume before burning. The volume before and after combustion was calculated by actually measuring the length, width, and height. The volume expansion ratio was evaluated as A for 5 times or more, B for 4 times or more and less than 5 times, C for 3 times or more and less than 4 times, and D for 3 times or less. It was judged that A to C were acceptable and D was not acceptable.
  • a foamed molded product having no D evaluation was used as an example, and a foamed molded product having a D evaluation of 1 or more was used as a comparative example. Examples are shown in Table 1 below, and comparative examples are shown in Table 2 below. In addition, in Tables 1 and 2, the unit of numerical values is "parts by mass".
  • Comparative Example 3 in which the content of aluminum phosphite is less than 15 parts by mass cannot retain its shape after combustion, and Comparative Example 4 in which the content of aluminum phosphite exceeds 100 parts by mass has large specific gravity and thermal expansion property.
  • Comparative Example 4 in which the content of aluminum phosphite exceeds 100 parts by mass has large specific gravity and thermal expansion property.
  • the content of the solid metal (phosphite) salt is preferably 15 to 100 parts by mass.
  • Comparative Example 5 in which the content of the inorganic filler was less than 30 parts by mass was inferior in flame retardancy

Abstract

The present invention provides a rubber composition which enables the achievement of a molded foam that has low specific gravity, while having an excellent balance among thermal expansion, shape retainability and flame retardancy. A rubber composition which contains 100 parts by mass of a thermosetting elastomer, 10-120 parts by mass of a thermal expansion agent, 15-100 parts by mass of a solid metal phosphite or phosphate, 30-100 parts by mass of an inorganic filler and 5-30 parts by mass of a foaming agent; and a molded foam which is obtained using the rubber composition.

Description

ゴム組成物、発泡成形体及び防火部材、並びに発泡成形体の製造方法RUBBER COMPOSITION, FOAM MOLDED BODY, FIRE PROTECTION MEMBER, AND METHOD FOR PRODUCING FOAM MOLDED BODY
 本発明は、ゴム組成物、該ゴム組成物を用いた発泡成形体及び該発泡成形体を用いた防火部材、並びに該発泡成形体の製造方法に関する。 The present invention relates to a rubber composition, a foam molded article using the rubber composition, a fireproof member using the foam molded article, and a method for producing the foam molded article.
 従来、樹脂組成物の防火性能を向上させる技術が種々研究されている。例えば、特許文献1には、残渣安定性と一般物性に優れた耐火性樹脂組成物が提案されている。特許文献2には、高膨張性と高い残渣硬さとを兼ね備えた熱膨張性耐火樹脂組成物が提案されている。特許文献3には、膨張性に優れ、かつ、表面仕上がり、強度にも優れる耐火性樹脂組成物が提案されている。 Conventionally, various techniques for improving the fire protection performance of resin compositions have been studied. For example, Patent Document 1 proposes a refractory resin composition having excellent residue stability and general physical properties. Patent Document 2 proposes a heat-expandable fire-resistant resin composition having both high expandability and high residue hardness. Patent Document 3 proposes a refractory resin composition having excellent expandability, surface finish, and strength.
特開2018-100410号公報Japanese Patent Laid-Open No. 2018-100410 特開2018-024891号公報JP, 2018-024891, A 特開2017-133028号公報JP, 2017-1333028, A
 しかしながら、従来の耐火性樹脂組成物は、熱膨張性、形状保持性及び難燃性のバランスが良好とはいえず、また、比重が大きいために運搬が困難で作業性が悪い。 However, the conventional fire-resistant resin composition does not have a good balance of thermal expansion, shape retention and flame retardancy, and its large specific gravity makes it difficult to transport and poor workability.
 そこで、本発明は、熱膨張性、形状保持性及び難燃性のバランスに優れ、比重が小さい発泡成形体が得られるゴム組成物を提供することを主目的とする。 Therefore, the main object of the present invention is to provide a rubber composition having an excellent balance of thermal expansion properties, shape retention properties and flame retardancy, and a foamed molded product having a small specific gravity.
 発泡成形体の特性である比重と難燃性は、一般的に背反関係にあるので、比重を小さくしつつ難燃性を向上させることは難しい。また、燃焼後の発泡成形体の特徴である熱膨張性と形状保持性は、一般的に背反関係にあるので、燃焼後の体積膨張倍率を上げつつ形状を保持することは難しい。すなわち、比重が小さく、且つ、難燃性、熱膨張性及び形状保持性が良好な発泡成形体を得ることは困難であると考えられていた。しかしながら、本発明者は、鋭意検討を行った結果、熱硬化性エラストマー、熱膨張剤、固体金属(亜)リン酸塩、無機充填剤及び発泡剤をそれぞれ特定量含むゴム組成物を用いることにより、熱膨張性、形状保持性及び難燃性がいずれも良好で、これらの性質をバランスよく備え、比重が小さい発泡成形体が得られることを見出し、本発明を完成させるに至った。 Specific gravity and flame retardancy, which are the characteristics of foamed molded products, are generally in a trade-off relationship, so it is difficult to improve flame retardancy while reducing specific gravity. Further, since the thermal expansion property and the shape retention property, which are the characteristics of the foamed article after combustion, are generally in a trade-off relationship, it is difficult to maintain the shape while increasing the volume expansion ratio after combustion. That is, it has been considered difficult to obtain a foamed molded product having a low specific gravity and good flame retardancy, thermal expansion properties and shape retention. However, as a result of intensive studies, the present inventor has found that by using a rubber composition containing a thermosetting elastomer, a thermal expansion agent, a solid metal (sub) phosphate, an inorganic filler and a foaming agent in specific amounts, respectively. It was found that a foamed molded product having good thermal expansion properties, shape retention properties, and flame retardancy and having these properties in a well-balanced manner and having a low specific gravity was obtained, and completed the present invention.
 すなわち、本発明は、熱硬化性エラストマー100質量部と、熱膨張剤10~120質量部と、固体金属(亜)リン酸塩15~100質量部と、無機充填剤30~100質量部と、発泡剤5~30質量部と、を含む、ゴム組成物を提供する。
 前記熱硬化性エラストマーは、クロロプレンゴム又はエチレン-プロピレン-ジエンゴムであってもよい。
 前記熱膨張剤は、熱膨張性黒鉛であってもよい。
 前記固体金属(亜)リン酸塩は、亜リン酸アルミニウムであってもよい。
 前記無機充填剤は、水酸化アルミニウム及び/又はクレーであってもよい。
 前記発泡剤は、有機発泡剤であってもよい。
 前記ゴム組成物は、発泡成形体用であってもよい。
That is, the present invention comprises 100 parts by mass of a thermosetting elastomer, 10 to 120 parts by mass of a thermal expansion agent, 15 to 100 parts by mass of a solid metal (sub) phosphite, and 30 to 100 parts by mass of an inorganic filler. A rubber composition comprising 5 to 30 parts by mass of a foaming agent is provided.
The thermosetting elastomer may be chloroprene rubber or ethylene-propylene-diene rubber.
The thermal expansion agent may be thermally expandable graphite.
The solid metal (phosphite) salt may be aluminum phosphite.
The inorganic filler may be aluminum hydroxide and / or clay.
The foaming agent may be an organic foaming agent.
The rubber composition may be for a foamed molded product.
 本発明は、前記ゴム組成物を用いた発泡成形体を提供する。
 本発明は、さらに、上記発泡成形体を用いた防火部材を提供する。
 また、本発明は、前記ゴム組成物を加硫処理する工程を含み、前記加硫処理における加硫温度が110~170℃であり、加硫時間が3~40分間である、発泡成形体の製造方法を提供する。
The present invention provides a foamed molded article using the rubber composition.
The present invention further provides a fireproof member using the foamed molded product.
The present invention also includes a step of vulcanizing the rubber composition, wherein the vulcanizing temperature in the vulcanizing treatment is 110 to 170 ° C. and the vulcanizing time is 3 to 40 minutes. A manufacturing method is provided.
 本発明によれば、熱膨張性、形状保持性及び難燃性のバランスに優れ、比重が小さい発泡成形体が得られるゴム組成物が提供されうる。 According to the present invention, it is possible to provide a rubber composition which has an excellent balance of thermal expansion properties, shape retention properties and flame retardancy properties, and which can give a foamed molded product having a small specific gravity.
 以下、本発明を実施するための形態について説明する。なお、以下に説明する実施形態は、本発明の実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 Hereinafter, modes for carrying out the present invention will be described. It should be noted that the embodiment described below is an example of the embodiment of the present invention, and the scope of the present invention is not narrowly interpreted by this.
<1.ゴム組成物>
 本発明の一実施形態に係るゴム組成物は、(1)熱硬化性エラストマー、(2)熱膨張剤、(3)固体金属(亜)リン酸塩、(4)無機充填剤、及び(5)発泡剤を含む。本実施形態のゴム組成物は、発泡成形体用として好適であり、後述する発泡成形体の原料として用いられうる。以下、本実施形態のゴム組成物に含まれる各成分について説明する。
<1. Rubber composition>
A rubber composition according to an embodiment of the present invention includes (1) a thermosetting elastomer, (2) a thermal expansion agent, (3) a solid metal (sub) phosphate, (4) an inorganic filler, and (5). ) Including a foaming agent. The rubber composition of the present embodiment is suitable for a foamed molded product and can be used as a raw material for a foamed molded product described later. Hereinafter, each component contained in the rubber composition of the present embodiment will be described.
(1)熱硬化性エラストマー
 熱硬化性エラストマーとしては、例えば、クロロプレンゴム(CR)、エチレン-プロピレン-ジエンゴム(EPDM)、スチレン-ブタジエンゴム(SBR)、天然ゴム(NR)、アクリロニトリル-ブタジエンゴム(NBR)、シリコーンゴム、クロロスルフォン化ポリエチレン(CSM)、塩素化ポリエチレン(CPE)、水素化ニトリルゴム(HNBR)、アクリルゴム(ACM)、ウレタンゴム、ブチルゴムなどが挙げられる。これらの熱硬化性エラストマーは、単独で用いられてもよく、2種以上が併用されてもよい。
(1) Thermosetting Elastomer Examples of thermosetting elastomers include chloroprene rubber (CR), ethylene-propylene-diene rubber (EPDM), styrene-butadiene rubber (SBR), natural rubber (NR), acrylonitrile-butadiene rubber ( NBR), silicone rubber, chlorosulfonated polyethylene (CSM), chlorinated polyethylene (CPE), hydrogenated nitrile rubber (HNBR), acrylic rubber (ACM), urethane rubber, butyl rubber and the like. These thermosetting elastomers may be used alone or in combination of two or more.
 これらの熱硬化性エラストマー中でも、クロロプレンゴム又はエチレン-プロピレン-ジエンゴムが好ましい。クロロプレンゴムを含むゴム組成物は、機械的強度と難燃性を重視する防火部材に好適に用いられる。エチレン-プロピレン-ジエンゴムを含むゴム組成物は、耐候性を重視する防火部材に好適に用いられる。 Among these thermosetting elastomers, chloroprene rubber or ethylene-propylene-diene rubber is preferable. The rubber composition containing chloroprene rubber is suitably used for a fire prevention member that places importance on mechanical strength and flame retardancy. A rubber composition containing ethylene-propylene-diene rubber is suitably used for a fireproof member that places importance on weather resistance.
(2)熱膨張剤
 熱膨張剤は、加熱時に膨張する特性を有し、本実施形態のゴム組成物から得られる発泡成形体に熱膨張性を付与するために用いられる。熱膨張剤としては、例えば、熱膨張性黒鉛、熱可塑性ポリマーセル内に低沸点炭化水素を内包した熱膨張性マイクロカプセルなどが挙げられ、これらを1種又は2種以上用いることができる。これらの中でも、熱膨張性効果が大きいことから、熱膨張性黒鉛が好ましい。熱膨張性黒鉛としては、公知のものを用いればよく、例えば、天然グラファイトや熱分解グラファイトなどの粉末を、硫酸や硝酸などの無機酸と、濃硝酸や過マンガン酸塩などの強酸化剤とで処理し、グラファイト層状構造を維持した結晶化合物などが挙げられる。天然グラファイト、熱分解グラファイトなどの粉末は、脱酸処理や中和処理が施されたものであってもよい。
(2) Thermal Expansion Agent The thermal expansion agent has the property of expanding when heated, and is used to impart thermal expansion properties to the foamed molded product obtained from the rubber composition of the present embodiment. Examples of the heat-expanding agent include heat-expanding graphite and heat-expanding microcapsules in which a low-boiling-point hydrocarbon is included in a thermoplastic polymer cell, and these may be used alone or in combination of two or more. Among these, the thermally expansive graphite is preferable because it has a large thermal expansive effect. As the heat-expandable graphite, known ones may be used, for example, a powder of natural graphite or pyrolytic graphite, an inorganic acid such as sulfuric acid or nitric acid, and a strong oxidizer such as concentrated nitric acid or permanganate. And a crystalline compound which maintains the graphite layer structure. The powder of natural graphite, pyrolytic graphite, or the like may be subjected to deoxidation treatment or neutralization treatment.
 本実施形態のゴム組成物における熱膨張剤の含有量は、熱硬化性エラストマー100質量部に対して10~120質量部であり、好ましくは10~100質量部であり、より好ましくは10~80質量部である。熱膨張剤の含有量が10質量部未満であると、ゴム組成物から得られる発泡成形体に充分な熱膨張性を付与することができず、120質量部超であると、上記発泡成形体の比重が大きくなって重くなり、運搬が困難になるなどの作業性低下をもたらすおそれがある。 The content of the thermal expansion agent in the rubber composition of the present embodiment is 10 to 120 parts by mass, preferably 10 to 100 parts by mass, and more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the thermosetting elastomer. It is a mass part. When the content of the thermal expansion agent is less than 10 parts by mass, sufficient foaming properties cannot be imparted to the foamed molded product obtained from the rubber composition, and when it is more than 120 parts by mass, the above foamed molded product is obtained. Has a large specific gravity and becomes heavy, which may lead to a reduction in workability such as difficulty in transportation.
 ゴム組成物に含まれる熱硬化性エラストマーがクロロプレンゴムである場合、ゴム組成物における熱膨張剤の含有量は、クロロプレンゴム100質量部に対して40~80質量部であることがさらに好ましい。このような範囲とすることで、熱膨張性、形状保持性及び難燃性のバランスがより良好な発泡成形体が得られうる。ゴム組成物に含まれる熱硬化性エラストマーがエチレン-プロピレン-ジエンゴムである場合、ゴム組成物における熱膨張剤の含有量は、エチレン-プロピレン-ジエンゴム100質量部に対して40~80質量部であることがさらに好ましく、65~80質量部であることが特に好ましい。このような範囲とすることで、熱膨張性、形状保持性及び難燃性のバランスがより良好な発泡成形体が得られうる。 When the thermosetting elastomer contained in the rubber composition is chloroprene rubber, the content of the thermal expansion agent in the rubber composition is more preferably 40 to 80 parts by mass with respect to 100 parts by mass of the chloroprene rubber. Within such a range, a foamed molded article having a better balance of thermal expansion, shape retention and flame retardancy can be obtained. When the thermosetting elastomer contained in the rubber composition is ethylene-propylene-diene rubber, the content of the thermal expansion agent in the rubber composition is 40 to 80 parts by mass with respect to 100 parts by mass of the ethylene-propylene-diene rubber. It is more preferable that the amount is 65 to 80 parts by mass. Within such a range, a foamed molded article having a better balance of thermal expansion, shape retention and flame retardancy can be obtained.
(3)固体金属(亜)リン酸塩
 固体金属(亜)リン酸塩は、本実施形態のゴム組成物から得られる発泡成形体に燃焼後の形状保持性を付与するための形状保持剤として用いられる。すなわち、上記発泡成形体は、固体金属(亜)リン酸塩を含有することにより燃焼を受けた後であっても粉状にならず、形状を保持することができる。
(3) Solid Metal (Sub) Phosphate Solid metal (sub) phosphate is a shape-retaining agent for imparting shape-retaining properties after combustion to the foamed molded product obtained from the rubber composition of the present embodiment. Used. That is, the foamed molded body does not become powdery even after being burned by containing the solid metal (sub) phosphite, and can maintain the shape.
 本実施形態のゴム組成物における固体金属(亜)リン酸塩の含有量は、熱硬化性エラストマー100質量部に対して15~100質量部であり、好ましくは15~60質量部であり、より好ましくは20~60質量部であり、さらに好ましくは30~50質量部である。固体金属(亜)リン酸塩の含有量が15質量部未満であると、ゴム組成物から得られる発泡成形体の燃焼後の形状保持性が悪化する。100質量部超であると、上記発泡成形体の比重が大きくなって重くなり、運搬が困難になるなどの作業性低下をもたらすおそれがあり、また、上記発泡成形体の熱膨張性が低下する。 The content of the solid metal (sub) phosphate in the rubber composition of the present embodiment is 15 to 100 parts by mass, preferably 15 to 60 parts by mass, based on 100 parts by mass of the thermosetting elastomer. The amount is preferably 20 to 60 parts by mass, more preferably 30 to 50 parts by mass. When the content of the solid metal (sub) phosphate is less than 15 parts by mass, the shape retention of the foamed molded product obtained from the rubber composition after combustion is deteriorated. When it is more than 100 parts by mass, the specific gravity of the foam molded article becomes large and heavy, which may cause a decrease in workability such as difficulty in transportation, and also the thermal expansion property of the foam molded article decreases. ..
 固体金属(亜)リン酸塩は、高温加熱下において形状を安定に保つことができるものが好ましい。このような固体金属(亜)リン酸塩としては、各種リン酸/亜リン酸と周期律表IA族~IVB族の金属、アンモニア、脂肪族アミン、芳香族アミンから選ばれる少なくとも1種の金属又は化合物との塩からなるリン酸塩/亜リン酸塩を挙げることができる。各種リン酸/亜リン酸としては、リン酸、亜リン酸、ピロリン酸、ポリリン酸が挙げられる。 The solid metal (phosphite) salt is preferably one that can maintain its shape stably under high temperature heating. Examples of such solid metal (phosphite) salts include various phosphoric acids / phosphorous acids and at least one metal selected from metals of groups IA to IVB of the periodic table, ammonia, aliphatic amines, and aromatic amines. Alternatively, a phosphate / phosphite salt formed of a salt with a compound may be mentioned. Examples of various phosphoric acids / phosphorous acids include phosphoric acid, phosphorous acid, pyrophosphoric acid, and polyphosphoric acid.
 周期律表IA族~IVB族の金属としては、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、バリウム、鉄(II)、鉄(III)、亜鉛、アルミニウム等が挙げられる。 Examples of metals of Groups IA to IVB of the Periodic Table include lithium, sodium, potassium, magnesium, calcium, barium, iron (II), iron (III), zinc and aluminum.
 脂肪族アミンとしては、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、ピペラジン等が挙げられる。 Examples of aliphatic amines include methylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, piperazine and the like.
 また前記芳香族アミンとしては、ピリジン、トリアジン、メラミン、アンモニウム等が挙げられる。 Further, examples of the aromatic amine include pyridine, triazine, melamine, ammonium and the like.
 上記の固体金属(亜)リン酸塩は、シランカップリング剤処理、メラミン樹脂で被覆する等の公知の耐水性向上処理を加えてもよく、メラミン、ペンタエリスリトール等の公知の発泡助剤を加えてもよい。 The above-mentioned solid metal (phosphite) salt may be subjected to a known water resistance improving treatment such as treatment with a silane coupling agent and coating with a melamine resin, and a known foaming auxiliary agent such as melamine and pentaerythritol is added. May be.
 固体金属(亜)リン酸塩を構成するリン酸塩/亜リン酸塩としては、リン酸アンモニウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のアンモニウム塩、リン酸一ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、亜リン酸一ナトリウム、亜リン酸二ナトリウム、次亜リン酸ナトリウム等のナトリウム塩、リン酸一カリウム、リン酸二カリウム、リン酸三カリウム、亜リン酸一カリウム、亜リン酸二カリウム、次亜リン酸カリウム等のカリウム塩、リン酸一リチウム、リン酸二リチウム、リン酸三リチウム、亜リン酸一リチウム、亜リン酸二リチウム、次亜リン酸リチウム等のリチウム塩、リン酸二水素バリウム、リン酸水素バリウム、リン酸三バリウム、次亜リン酸バリウム等のバリウム塩、リン酸一水素マグネシウム、リン酸水素マグネシウム、リン酸三マグネシウム、次亜リン酸マグネシウム等のマグネシウム塩、リン酸二水素カルシウム、リン酸水素カルシウム、リン酸三カルシウム、次亜リン酸カルシウム等のカルシウム塩、リン酸亜鉛、亜リン酸亜鉛、次亜リン酸亜鉛等の亜鉛塩、第一リン酸アルミニウム、第二リン酸アルミニウム、第三リン酸アルミニウム、亜リン酸アルミニウム、次亜リン酸アルミニウム等のアルミニウム塩等が挙げられる。 Examples of the phosphate / phosphite constituting the solid metal (phosphite) include ammonium salts such as ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, monosodium phosphate and diphosphate. Sodium, trisodium phosphate, monosodium phosphite, disodium phosphite, sodium salts such as sodium hypophosphite, monopotassium phosphate, dipotassium phosphate, tripotassium phosphate, monopotassium phosphite, Dipotassium phosphite, potassium salts such as potassium hypophosphite, monolithium phosphate, dilithium phosphate, trilithium phosphate, monolithium phosphite, dilithium phosphite, lithium hypophosphite, etc. Lithium salt, barium dihydrogen phosphate, barium hydrogen phosphate, barium triphosphate, barium hypophosphite, etc., magnesium monohydrogen phosphate Magnesium, magnesium hydrogen phosphate, trimagnesium phosphate, magnesium hypophosphite and other magnesium salts, calcium dihydrogen phosphate, calcium hydrogen phosphate, tricalcium phosphate, calcium hypophosphite and other calcium salts, zinc phosphate, Zinc phosphite, zinc salts such as zinc hypophosphite, aluminum monophosphate, dibasic aluminum phosphate, aluminum triphosphate, aluminum phosphite, aluminum salts such as aluminum hypophosphite and the like. Be done.
 ポリリン酸塩としては、ポリリン酸アンモニウム、ポリリン酸ピペラジン、ポリリン酸メラミン、ポリリン酸アンモニウムアミド、ポリリン酸アルミニウム等が挙げられる。 Examples of the polyphosphate include ammonium polyphosphate, piperazine polyphosphate, melamine polyphosphate, ammonium polyphosphate amide, and aluminum polyphosphate.
 固体金属(亜)リン酸塩は、好ましくは固体金属亜リン酸塩であり、より好ましくは亜リン酸アルミニウム、亜リン酸アンモニウム、亜リン酸二ナトリウム、及び亜リン酸二カリウムであり、さらに好ましくは亜リン酸アルミニウムである。これらの固体金属(亜)リン酸塩は、単独で用いられてもよく、2種以上が併用されてもよい。 The solid metal (phosphite) salt is preferably a solid metal phosphite salt, more preferably aluminum phosphite, ammonium phosphite, disodium phosphite, and dipotassium phosphite, and Aluminum phosphite is preferred. These solid metal (sub) phosphates may be used alone or in combination of two or more.
(4)無機充填剤
 無機充填剤は、本実施形態のゴム組成物から得られる発泡成形体に難燃性を付与するために用いられる。無機充填剤としては、例えば、シリカ、珪藻土、アルミナ、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ホウ酸亜鉛、ホウ酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、ケイ酸カルシウム、タルク、クレー、マイカ、ベントナイト、活性白土、セピオライト、ガラス繊維、ガラスビーズ、窒化アルミニウム、窒化ホウ素などが挙げられる。難燃性向上の観点からは、水酸化アルミニウム、水酸化カルシウム、炭酸カルシウム、炭酸マグネシウム、クレー、シリカ及びタルクが好ましく、これらの中でも水酸化アルミニウム及び/又はクレーが、汎用性、ゴム加工性の観点から、より好ましい。さらに、難燃性を向上させるために、三酸化アンチモンを併用することも有効な手法である。これらの無機充填剤は、単独で用いられてもよく、2種以上が併用されてもよい。
(4) Inorganic Filler The inorganic filler is used to impart flame retardancy to the foamed molded product obtained from the rubber composition of the present embodiment. Examples of the inorganic filler include silica, diatomaceous earth, alumina, titanium oxide, magnesium hydroxide, aluminum hydroxide, zinc borate, sodium borate, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, hydrotalcite, and sulfuric acid. Examples thereof include calcium, barium sulfate, calcium silicate, talc, clay, mica, bentonite, activated clay, sepiolite, glass fiber, glass beads, aluminum nitride, and boron nitride. From the viewpoint of improving the flame retardancy, aluminum hydroxide, calcium hydroxide, calcium carbonate, magnesium carbonate, clay, silica and talc are preferable, and among these, aluminum hydroxide and / or clay have general versatility and rubber processability. From the viewpoint, it is more preferable. Furthermore, in order to improve flame retardancy, it is also effective to use antimony trioxide together. These inorganic fillers may be used alone or in combination of two or more.
 本実施形態のゴム組成物における無機充填剤の含有量は、熱硬化性エラストマー100質量部に対して30~100質量部であり、好ましくは30~80質量部であり、より好ましくは30~60質量部であり、さらに好ましくは30~50質量部である。無機充填剤の含有量が30質量部未満であると、ゴム組成物から得られる発泡成形体の難燃性が低下し、100質量部超であると、上記発泡成形体の比重が大きくなって重くなり、運搬が困難になるなどの作業性低下をもたらすおそれがある。 The content of the inorganic filler in the rubber composition of the present embodiment is 30 to 100 parts by mass, preferably 30 to 80 parts by mass, and more preferably 30 to 60 parts by mass with respect to 100 parts by mass of the thermosetting elastomer. Parts by mass, more preferably 30 to 50 parts by mass. When the content of the inorganic filler is less than 30 parts by mass, the flame-retardant property of the foamed molded product obtained from the rubber composition decreases, and when it is more than 100 parts by mass, the specific gravity of the foamed molded product increases. There is a possibility that workability may be deteriorated such that it becomes heavy and difficult to carry.
(5)発泡剤
 発泡剤は、本実施形態のゴム組成物から発泡成形体を得るために必須の成分である。一般的に、発泡剤は化学発泡剤と物理発泡剤とに大別され、化学発泡剤は有機発泡剤と無機発泡剤に分類することができる。本実施形態のゴム組成物で用いられる発泡剤は、好ましくは有機発泡剤又は無機発泡剤である。
(5) Foaming agent The foaming agent is an essential component for obtaining a foam molded article from the rubber composition of the present embodiment. Generally, foaming agents are roughly classified into chemical foaming agents and physical foaming agents, and chemical foaming agents can be classified into organic foaming agents and inorganic foaming agents. The foaming agent used in the rubber composition of the present embodiment is preferably an organic foaming agent or an inorganic foaming agent.
 有機発泡剤としては、例えば、アゾジカルボンアミド(ADCA)、アゾビスイソブチロニトリル、アゾジアミノベンゼン、アゾシクロヘキシルニトリルなどのアゾ系発泡剤;N,N’-ジニトロソペンタメチレンテトラミン、N,N’-ジメチルN,N’-ジニトロソテレフタルアミドなどのニトロソ系発泡剤;p,p’-オキシビスベンゼンスルホニルヒドラジド(OBSH)、ベンゼンスルホニルヒドラジド、トルエンスルホニルヒドラジド、ジフェニルスルホン-3,3’-ジスルホニルヒドラジドなどのスルホニルヒドラジド系発泡剤;などが挙げられる。無機発泡剤としては、例えば、重炭酸アンモニウム、炭酸アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、カルシウムアジドなどが挙げられる。これらの中でも、より好ましくは有機発泡剤であり、さらに好ましくはアゾジカルボンアミド(ADCA)及び/又はp,p’-オキシビスベンゼンスルホニルヒドラジド(OBSH)である。これらの発泡剤は、単独で用いられてもよく、2種以上が併用されてもよい。 Examples of the organic foaming agent include azo foaming agents such as azodicarbonamide (ADCA), azobisisobutyronitrile, azodiaminobenzene, and azocyclohexylnitrile; N, N′-dinitrosopentamethylenetetramine, N, N Nitroso-based blowing agents such as'-dimethyl N, N'-dinitrosoterephthalamide; p, p'-oxybisbenzenesulfonyl hydrazide (OBSH), benzenesulfonyl hydrazide, toluenesulfonyl hydrazide, diphenyl sulfone-3,3'-di Sulfonyl hydrazide type foaming agents such as sulfonyl hydrazide; and the like. Examples of the inorganic foaming agent include ammonium bicarbonate, ammonium carbonate, sodium hydrogen carbonate, ammonium nitrite, calcium azide and the like. Among these, an organic foaming agent is more preferable, and azodicarbonamide (ADCA) and / or p, p'-oxybisbenzenesulfonyl hydrazide (OBSH) is more preferable. These foaming agents may be used alone or in combination of two or more kinds.
 本実施形態のゴム組成物における発泡剤の含有量は、熱硬化性エラストマー100質量部に対して5~30質量部であり、好ましくは10~30質量部であり、より好ましくは10~20質量部である。発泡剤の含有量が5質量部未満であると、ゴム組成物から得られる発泡成形体の比重が大きくなって重くなり、運搬が困難になるなどの作業性低下をもたらすおそれがある。30質量部超であると、上記発泡成形体の熱膨張性が低下する。 The content of the foaming agent in the rubber composition of the present embodiment is 5 to 30 parts by mass, preferably 10 to 30 parts by mass, and more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the thermosetting elastomer. It is a department. When the content of the foaming agent is less than 5 parts by mass, the specific gravity of the foamed molded product obtained from the rubber composition becomes large and heavy, and there is a possibility that workability may be deteriorated such as difficulty in transportation. If it is more than 30 parts by mass, the thermal expansion property of the foamed molded product will be reduced.
 本実施形態のゴム組成物は、必要に応じて、上記成分以外の添加剤を含んでもよい。添加剤としては、例えば、滑剤、老化防止剤、カーボンブックなどの補強剤、可塑剤、加工助剤、加硫剤、加硫促進剤、加硫遅延剤などが挙げられる。 The rubber composition of the present embodiment may contain additives other than the above components, if necessary. Examples of the additive include a lubricant, an antioxidant, a reinforcing agent such as carbon book, a plasticizer, a processing aid, a vulcanizing agent, a vulcanization accelerator, and a vulcanization retarder.
<2.発泡成形体>
 本発明の一実施形態に係る発泡成形体は、上記ゴム組成物を用いてなる。このため、本実施形態の発泡成形体は、熱膨張性、形状保持性及び難燃性のバランスに優れ、比重が小さいことが特徴である。
<2. Foam molding>
A foamed molded article according to one embodiment of the present invention comprises the above rubber composition. For this reason, the foamed molded article of the present embodiment is characterized by an excellent balance of thermal expansion, shape retention and flame retardancy, and low specific gravity.
 本実施形態の発泡成形体は、300℃で30分間燃焼した後の体積膨張倍率が、好ましくは3倍以上であり、より好ましくは4倍以上であり、さらに好ましくは5倍以上である。熱膨張性の観点からは体積膨張倍率は大きいことが好ましいが、形状保持持性とのバランスの観点からは体積膨張倍率は10倍以下が好ましい。 The expanded molded article of the present embodiment has a volume expansion ratio after burning at 300 ° C. for 30 minutes of preferably 3 times or more, more preferably 4 times or more, and further preferably 5 times or more. The volume expansion ratio is preferably large from the viewpoint of thermal expansion property, but the volume expansion ratio is preferably 10 times or less from the viewpoint of the balance with the shape retainability.
 本実施形態の発泡成形体は、燃焼後の形状保持性が良好である。形状保持性が良好とは、具体的には600℃で30分間燃焼した後に粉状にならないことを意味する。 The foamed molded article of this embodiment has good shape retention after combustion. Good shape retention means specifically that powder does not become powdery after burning at 600 ° C. for 30 minutes.
 本実施形態の発泡成形体は、日本工業規格のJIS K6269に基づいて測定される酸素指数が、好ましくは25以上であり、より好ましくは30以上であり、さらに好ましくは35以上である。酸素指数は、規定の試験条件下において、材料が燃焼を持続するのに必要な酸素及び窒素の混合ガス中の容量%で表される最低酸素濃度の数値であり、難燃性を示す指標である。酸素指数の数値が大きいほど難燃性が高い(燃えにくい)ことを意味する。 The foamed molded article of the present embodiment has an oxygen index measured in accordance with JIS K6269 of Japanese Industrial Standards of preferably 25 or more, more preferably 30 or more, and further preferably 35 or more. The oxygen index is the numerical value of the minimum oxygen concentration expressed by volume% in the mixed gas of oxygen and nitrogen required for the material to sustain combustion under the specified test conditions, and is an index showing flame retardancy. is there. The larger the value of the oxygen index, the higher the flame retardancy (hard to burn).
 本実施形態の発泡成形体は、日本工業規格のJIS K6229に基づいて測定される比重が、好ましくは1.1未満であり、より好ましくは0.8未満であり、さらに好ましくは0.5未満である。このように比重を小さくすることで、発泡成形体を軽量化し、運搬などの作業性を向上させることが可能である。 The foamed molded article of the present embodiment has a specific gravity of preferably less than 1.1, more preferably less than 0.8, still more preferably less than 0.5, measured according to Japanese Industrial Standard JIS K6229. Is. By reducing the specific gravity in this way, it is possible to reduce the weight of the foamed molded product and improve workability such as transportation.
 本実施形態の発泡成形体は、上記ゴム組成物を混練し、得られたコンパウンドを所望の形状に予備成形し、加硫処理を行うことで得られる。 The foamed molded product of the present embodiment is obtained by kneading the above rubber composition, preforming the obtained compound into a desired shape, and subjecting it to vulcanization.
 ゴム組成物を混練する装置としては、例えば、ミキサー、バンバリーミキサー、ニーダーミキサー、二本ロールなどの混練装置が挙げられる。混練したゴム組成物を成形する装置としては、例えば、プレス成形、押し出し成形、カレンダー成形などを行う成形装置が挙げられる。一般的には、ゴム組成物をゴム用押出し機で製品形状に押し出し成型し、次いで、加硫槽内に導入し、熱空気、流動床、マイクロ波などの手段によって加熱することにより加硫及び発泡を行うことができる。発泡成形体の形状は、特に限定されず、シート状やテープ状など、用途や設置場所などに応じて適宜選択されうる。 As a device for kneading the rubber composition, for example, a kneading device such as a mixer, a Banbury mixer, a kneader mixer, or a twin roll can be used. As an apparatus for molding the kneaded rubber composition, for example, a molding apparatus for performing press molding, extrusion molding, calender molding and the like can be mentioned. Generally, a rubber composition is extruded and molded into a product shape by an extruder for rubber, then introduced into a vulcanization tank, and vulcanized by heating with a means such as hot air, a fluidized bed, or a microwave. Foaming can be performed. The shape of the foamed molded article is not particularly limited, and may be appropriately selected depending on the application, the installation location, etc., such as a sheet shape or a tape shape.
 上記ゴム組成物の加硫処理において、加硫温度は110~170℃が好ましく、加硫時間は3~40分間が好ましい。このような範囲とすることで、熱膨張性、形状保持性及び難燃性のバランスがより良好で比重が小さい発泡成形体が得られうる。 In the vulcanization treatment of the rubber composition, the vulcanization temperature is preferably 110 to 170 ° C., and the vulcanization time is preferably 3 to 40 minutes. Within such a range, it is possible to obtain a foamed molded product having a better balance of thermal expansion properties, shape retention properties and flame retardancy and a small specific gravity.
 上記ゴム組成物に含まれる熱硬化性エラストマーがクロロプレンゴムの場合、加硫温度はより好ましくは135~170℃、さらに好ましくは140~165℃であり、加硫時間はより好ましくは3~15分間、さらに好ましくは3~10分間である。上記ゴム組成物に含まれる熱硬化性エラストマーがエチレン-プロピレン-ジエンゴムの場合、加硫温度はより好ましくは110~145℃、さらに好ましくは115~140℃であり、加硫時間はより好ましくは10~40分間、さらに好ましくは15~35分間である。 When the thermosetting elastomer contained in the rubber composition is chloroprene rubber, the vulcanization temperature is more preferably 135 to 170 ° C., further preferably 140 to 165 ° C., and the vulcanization time is more preferably 3 to 15 minutes. And more preferably 3 to 10 minutes. When the thermosetting elastomer contained in the rubber composition is ethylene-propylene-diene rubber, the vulcanization temperature is more preferably 110 to 145 ° C, further preferably 115 to 140 ° C, and the vulcanization time is more preferably 10 ˜40 minutes, more preferably 15-35 minutes.
 本実施形態の発泡成形体は、防火部材として好適に用いられる。例えば、本実施形態の発泡成形体を、ビルなどの建築物を構成する構造体の隙間に配置することができる。熱膨張性に優れる本実施形態の発泡成形体は、火災発生時に高温下に晒されると熱膨張して構造体の隙間を埋め、火炎や煙を遮断して、火災被害の拡大を防止することできる。さらに、本実施形態の発泡成形体は、形状保持性及び難燃性が良好であるため、火炎が接近しても熱膨張した発泡成形体が粉状になって崩れ落ちることがなく、発泡成形体自体が燃焼して延焼の原因となるおそれが少ない。また、一般的に、防火部材を設置する作業現場において比重が大きく重い防火部材は運搬が困難で作業性が悪い場合があるが、本実施形態の発泡成形体は比重が小さいため運搬しやすく作業性が良好であるという利点もある。 The foamed molded product of this embodiment is preferably used as a fire protection member. For example, the foamed molded article of the present embodiment can be placed in a gap between structures that compose a building such as a building. The foamed molded article of the present embodiment having excellent thermal expansion property, when exposed to high temperature during a fire, thermally expands to fill the gaps in the structure, block flames and smoke, and prevent the spread of fire damage. it can. Furthermore, since the foamed molded article of the present embodiment has good shape retention and flame retardancy, the foamed molded article that has undergone thermal expansion does not fall into a powdery state even when a flame approaches, and the foamed molded article does not collapse. It is less likely that it will burn itself and cause fire spread. Further, generally, in a work site where a fireproof member is installed, a fireproof member having a large specific gravity and a heavy weight may be difficult to carry and workability may be poor, but the foamed molded article of the present embodiment has a low specific gravity and thus is easy to carry and work. There is also an advantage that the property is good.
 例えば、ビルなどの建築物には、ケーブルなどが収容される各種配管が配置されており、ケーブルなどと配管との間には隙間が存在している。上記発泡成形体を用いた防火部材は、このような配管内の隙間を閉塞するための防火部材として好適に用いられる。また、上記防火部材は、地下鉄車両の防火部材としても有用である。 For example, in buildings such as buildings, various pipes that accommodate cables are placed, and there are gaps between cables and pipes. A fireproof member using the foamed molded article is preferably used as a fireproof member for closing such a gap in a pipe. Further, the fireproof member is also useful as a fireproof member for subway vehicles.
 以下、実施例に基づいて本発明を更に詳細に説明する。なお、以下に説明する実施例は、本発明の代表的な実施例の一例を示したものであり、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. The embodiments described below are examples of typical embodiments of the present invention, and the present invention is not limited to the following embodiments.
 実施例及び比較例において、下記の材料を使用した。
(1)熱硬化性エラストマー
 クロロプレンゴム(デンカ株式会社製「S-40V」)
 エチレン-プロピレン-ジエンゴム(三井化学株式会社製「4045H」)
(2)熱膨張剤
 熱膨張性黒鉛(三洋貿易株式会社製「SYZR509517」)
(3)形状保持剤
 亜リン酸アルミニウム(太平化学産業株式会社製「APA-100」)
(4)無機充填剤
 水酸化アルミニウム(住友化学株式会社製「C-301N」)
 クレー(Vanderbilt Minerals, LLC製「DIXIE CLAY」)
(5)発泡剤
 アゾジカルボンアミド(三協化成株式会社製「セルマイクC-1」)
 p,p’-オキシビスベンゼンスルホニルヒドラジド(三協化成株式会社製「セルマイクS」)
(6)滑剤
 ステアリン酸(花王株式会社製「ルナックS-90」)
(7)老化防止剤
 オクチル化ジフェニルアミン(白石カルシム株式会社製「OCTAMINE」)
(8)充填剤
 カーボンブラック(FEF)(旭カーボン株式会社製「旭#60」)
(9)可塑剤
 ナフテン系オイル(出光興産株式会社製「ダイアナプロセスオイルNP-24」)
 流動パラフィン(カネダ株式会社製「ハイコールK-230」)
(10)加工助剤
 黒サブ(日本サブ化工株式会社製「黒サブBFA」)
 パラフィンワックス(日本精鑞株式会社製「パラフィンワックス135」)
(11)加硫剤
 酸化亜鉛(堺化学工業株式会社製「酸化亜鉛」)
 エチレンチオウレア(川口化学工業株式会社製「アクセル22S」)
 硫黄(細井化学工業株式会社製「硫黄末」)
 2-メルカプトベンゾチアゾール(大内新興化学工業株式会社製「ノクセラーM」)
(12)加硫遅延剤
 酸化マグネシウム(協和化学工業株式会社製「キョーワマグ150」)
 テトラメチルチウラムモノスルフィド(大内新興化学工業株式会社製「ノクセラーTS」)
In the examples and comparative examples, the following materials were used.
(1) Thermosetting elastomer chloroprene rubber (“S-40V” manufactured by Denka Co., Ltd.)
Ethylene-propylene-diene rubber ("4045H" manufactured by Mitsui Chemicals, Inc.)
(2) Thermal expansion agent Thermal expansion graphite ("SYZR509517" manufactured by Sanyo Trading Co., Ltd.)
(3) Shape-retaining agent Aluminum phosphite ("APA-100" manufactured by Taihei Chemical Industry Co., Ltd.)
(4) Inorganic filler Aluminum hydroxide (“C-301N” manufactured by Sumitomo Chemical Co., Ltd.)
Clay (“DIXIE CLAY” made by Vanderbilt Minerals, LLC)
(5) Foaming agent Azodicarbonamide (“Selmic C-1” manufactured by Sankyo Kasei Co., Ltd.)
p, p'-oxybisbenzenesulfonyl hydrazide (“Selmic S” manufactured by Sankyo Kasei Co., Ltd.)
(6) Lubricant Stearic acid ("Lunack S-90" manufactured by Kao Corporation)
(7) Antiaging agent Octylated diphenylamine (“OCTAMINE” manufactured by Shiraishi Calcim Co., Ltd.)
(8) Filler Carbon black (FEF) ("Asahi # 60" manufactured by Asahi Carbon Co., Ltd.)
(9) Plasticizer naphthenic oil (“Diana Process Oil NP-24” manufactured by Idemitsu Kosan Co., Ltd.)
Liquid paraffin ("High Coal K-230" manufactured by Kaneda Corporation)
(10) Processing aid Black Sub ("Black Sub BFA" manufactured by Nippon Sub Chemical Co., Ltd.)
Paraffin wax ("Paraffin wax 135" manufactured by Nippon Seiro Co., Ltd.)
(11) Vulcanizing agent Zinc oxide ("Zinc oxide" manufactured by Sakai Chemical Industry Co., Ltd.)
Ethylene thiourea (Kawaguchi Chemical Co., Ltd. "Axel 22S")
Sulfur (“Sulfur powder” made by Hosoi Chemical Co., Ltd.)
2-Mercaptobenzothiazole ("Nox Cellar M" manufactured by Ouchi Shinko Chemical Co., Ltd.)
(12) Vulcanization retarder Magnesium oxide (Kyowa Mag 150 manufactured by Kyowa Chemical Industry Co., Ltd.)
Tetramethylthiuram monosulfide ("Nox Cellar TS" manufactured by Ouchi Shinko Chemical Co., Ltd.)
 下記表1及び2に示す配合量の成分を、8インチロールを用いて40℃で30分間混練し、ゴム組成物を得た。得られたゴム組成物を、8インチロールにてシート状に成形し、次いで、プレスを用いて加硫処理を行った。加硫処理における加硫温度及び加硫時間は下記表1及び2に示す通りとした。その後、発泡処理を行い、幅120mm、長さ120mm、厚さ12mmの発泡成形体を製造した。 The ingredients having the compounding amounts shown in Tables 1 and 2 below were kneaded at 40 ° C. for 30 minutes using an 8-inch roll to obtain a rubber composition. The obtained rubber composition was molded into a sheet with an 8-inch roll, and then vulcanized using a press. The vulcanization temperature and vulcanization time in the vulcanization treatment were as shown in Tables 1 and 2 below. After that, foaming treatment was performed to produce a foamed molded product having a width of 120 mm, a length of 120 mm and a thickness of 12 mm.
 得られた発泡成形体の物性(比重、難燃性、熱膨張性及び燃焼後の形状保持性)を、以下の手順により評価した。 The physical properties (specific gravity, flame retardancy, thermal expansion and shape retention after combustion) of the obtained foamed molded product were evaluated by the following procedures.
(A)比重
 日本工業規格のJIS K6229に基づいて、自動比重計(東洋精機製作所社製「DENSIMETER-H」)を用いて比重を測定した。比重は、0.5未満をA、0.5以上0.8未満をB、0.8以上1.1未満をC、1.1以上をDと評価した。A~Cを合格、Dを不合格と判断した。
(A) Specific gravity Based on Japanese Industrial Standard JIS K6229, specific gravity was measured using an automatic specific gravity meter (“DENSIMETER-H” manufactured by Toyo Seiki Seisaku-sho, Ltd.). The specific gravity was evaluated such that A is less than 0.5, B is 0.5 or more and less than 0.8, C is 0.8 or more and less than 1.1, and D is 1.1 or more. It was judged that A to C were acceptable and D was not acceptable.
(B)難燃性
 難燃性を示す指標として酸素指数を用いた。日本工業規格のJIS K6269に基づいて、燃焼性試験器(スガ試験機社製「ON-1」)を用いて酸素指数を測定した。酸素指数は、数値が大きい程難燃性が高いことを示す。酸素指数は、35以上をA、30以上35未満をB、25以上30未満をC、25未満をDと評価した。A~Cを合格、Dを不合格と判断した。
(B) Flame retardance The oxygen index was used as an index showing flame retardancy. The oxygen index was measured using a flammability tester (“ON-1” manufactured by Suga Test Instruments Co., Ltd.) based on JIS K6269 of Japanese Industrial Standards. The higher the oxygen index, the higher the flame retardancy. Regarding the oxygen index, 35 or more was evaluated as A, 30 or more and less than 35 was evaluated as B, 25 or more and less than 30 was evaluated as C, and less than 25 was evaluated as D. It was judged that A to C were acceptable and D was not acceptable.
(C)熱膨張性
 熱膨張性を示す指標として燃焼下における体積膨張倍率を測定した。具体的には、300℃で30分間燃焼した後の体積を、燃焼前の体積で除することにより、体積膨張倍率を算出した。燃焼前後の体積は、縦、横、高さを実測し算出した。体積膨張倍率は、5倍以上をA、4倍以上5倍未満をB、3倍以上4倍未満をC、3倍未満をDと評価した。A~Cを合格、Dを不合格と判断した。
(C) Thermal Expansion The volume expansion ratio under combustion was measured as an index showing thermal expansion. Specifically, the volume expansion coefficient was calculated by dividing the volume after burning at 300 ° C. for 30 minutes by the volume before burning. The volume before and after combustion was calculated by actually measuring the length, width, and height. The volume expansion ratio was evaluated as A for 5 times or more, B for 4 times or more and less than 5 times, C for 3 times or more and less than 4 times, and D for 3 times or less. It was judged that A to C were acceptable and D was not acceptable.
(D)燃焼後の形状保持性
 600℃で30分間燃焼した後の発泡成形体を指で押して、粉状であるか否かを目視で確認した。粉状であるものをA、粉状ではないものをDと評価した。Aを合格、Dを不合格と判断した。
(D) Shape Retention after Burning The foamed molded article after burning at 600 ° C. for 30 minutes was pressed with a finger to visually confirm whether it was powdery. A powdery material was evaluated as A, and a non-powdered material was evaluated as D. It was judged that A was a pass and D was a failure.
 D評価が1つもない発泡成形体を実施例、D評価が1つ以上である発泡成形体を比較例とした。実施例を下記表1に、比較例を下記表2に示す。なお、表1及び2中、数値の単位は「質量部」である。 A foamed molded product having no D evaluation was used as an example, and a foamed molded product having a D evaluation of 1 or more was used as a comparative example. Examples are shown in Table 1 below, and comparative examples are shown in Table 2 below. In addition, in Tables 1 and 2, the unit of numerical values is "parts by mass".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~26の発泡成形体は、熱膨張性、形状保持性及び難燃性がいずれも良好であること、すなわち、熱膨張性、形状保持性及び難燃性のバランスに優れていることが確認された。また、実施例1~26の発泡成形体は、比重が小さいことも確認された。 The foamed molded products of Examples 1 to 26 have good thermal expansion properties, shape retention properties and flame retardancy, that is, excellent balance of thermal expansion properties, shape retention properties and flame retardancy. Was confirmed. It was also confirmed that the foamed molded articles of Examples 1 to 26 had a small specific gravity.
 熱膨張剤の含有量が10質量部未満である比較例1は熱膨張性に劣り、熱膨張剤の含有量が120質量部超である比較例2は比重が大きかった。これらの結果から、熱膨張剤の含有量は10~120質量部が好適であることが確認された。 Comparative Example 1 in which the content of the thermal expansion agent was less than 10 parts by mass was inferior in thermal expansion property, and Comparative Example 2 in which the content of the thermal expansion agent was over 120 parts by mass had a large specific gravity. From these results, it was confirmed that the content of the thermal expansion agent is preferably 10 to 120 parts by mass.
 亜リン酸アルミニウムの含有量が15質量部未満である比較例3は燃焼後に形状を保持できず、亜リン酸アルミニウムの含有量が100質量部超である比較例4は比重が大きく熱膨張性に劣っていた。これらの結果から、固体金属(亜)リン酸塩の含有量は15~100質量部が好適であることが確認された。 Comparative Example 3 in which the content of aluminum phosphite is less than 15 parts by mass cannot retain its shape after combustion, and Comparative Example 4 in which the content of aluminum phosphite exceeds 100 parts by mass has large specific gravity and thermal expansion property. Was inferior to From these results, it was confirmed that the content of the solid metal (phosphite) salt is preferably 15 to 100 parts by mass.
 無機充填剤の含有量が30質量部未満である比較例5は難燃性に劣り、無機充填剤の含有量が100質量部超である比較例6は比重が大きかった。これらの結果から、無機充填剤の含有量は30~100質量部が好適であることが確認された。 Comparative Example 5 in which the content of the inorganic filler was less than 30 parts by mass was inferior in flame retardancy, and Comparative Example 6 in which the content of the inorganic filler was more than 100 parts by mass had a large specific gravity. From these results, it was confirmed that the content of the inorganic filler is preferably 30 to 100 parts by mass.
 発泡剤の含有量が5質量部未満である比較例7は比重が大きく、発泡剤の含有量が30質量部超である比較例8は熱膨張性に劣っていた。これらの結果から、発泡剤の含有量は5~30質量部が好適であることが確認された。 Comparative Example 7 in which the content of the foaming agent was less than 5 parts by mass had a large specific gravity, and Comparative Example 8 in which the content of the foaming agent exceeded 30 parts by mass was inferior in thermal expansion property. From these results, it was confirmed that the content of the foaming agent is preferably 5 to 30 parts by mass.

Claims (10)

  1.  熱硬化性エラストマー100質量部と、
     熱膨張剤10~120質量部と、
     固体金属(亜)リン酸塩15~100質量部と、
     無機充填剤30~100質量部と、
     発泡剤5~30質量部と、
     を含む、ゴム組成物。
    100 parts by mass of thermosetting elastomer,
    10 to 120 parts by mass of the thermal expansion agent,
    15 to 100 parts by mass of solid metal (sub) phosphate,
    30 to 100 parts by mass of inorganic filler,
    5 to 30 parts by mass of foaming agent,
    A rubber composition comprising:
  2.  前記熱硬化性エラストマーは、クロロプレンゴム又はエチレン-プロピレン-ジエンゴムである、請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the thermosetting elastomer is chloroprene rubber or ethylene-propylene-diene rubber.
  3.  前記熱膨張剤は、熱膨張性黒鉛である、請求項1又は2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the thermal expansion agent is thermally expandable graphite.
  4.  前記固体金属(亜)リン酸塩は、亜リン酸アルミニウムである、請求項1から3のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3, wherein the solid metal (phosphite) salt is aluminum phosphite.
  5.  前記無機充填剤は、水酸化アルミニウム及び/又はクレーである、請求項1から4のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 4, wherein the inorganic filler is aluminum hydroxide and / or clay.
  6.  前記発泡剤は、有機発泡剤である、請求項1から5のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 5, wherein the foaming agent is an organic foaming agent.
  7.  発泡成形体用である、請求項1から6のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 6, which is for a foam molded article.
  8.  請求項1から7のいずれか一項に記載のゴム組成物を用いた発泡成形体。 A foam molded article using the rubber composition according to any one of claims 1 to 7.
  9.  請求項8に記載の発泡成形体を用いた防火部材。 A fireproof member using the foam molded article according to claim 8.
  10.  請求項1から7のいずれか一項に記載のゴム組成物を加硫処理する工程を含み、
     前記加硫処理における加硫温度が110~170℃であり、加硫時間が3~40分間である、発泡成形体の製造方法。
    Vulcanizing the rubber composition according to any one of claims 1 to 7,
    A method for producing a foamed molded product, wherein the vulcanization temperature in the vulcanization treatment is 110 to 170 ° C., and the vulcanization time is 3 to 40 minutes.
PCT/JP2019/042075 2018-10-31 2019-10-26 Rubber composition, molded foam, fire protective member, and method for producing molded foam WO2020090696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018205363 2018-10-31
JP2018-205363 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090696A1 true WO2020090696A1 (en) 2020-05-07

Family

ID=70463726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042075 WO2020090696A1 (en) 2018-10-31 2019-10-26 Rubber composition, molded foam, fire protective member, and method for producing molded foam

Country Status (2)

Country Link
TW (1) TW202024209A (en)
WO (1) WO2020090696A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024490A1 (en) * 2020-07-31 2022-02-03 デンカ株式会社 Foamable composition and foam body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128932A (en) * 2000-10-24 2002-05-09 Nitto Denko Corp Rubber-based, flame-retardant foam
JP2005206648A (en) * 2004-01-21 2005-08-04 Denki Kagaku Kogyo Kk Rubber composition and foamed molded item using the rubber composition
JP2007031707A (en) * 2005-06-23 2007-02-08 Denki Kagaku Kogyo Kk Foamed molding
US20120153242A1 (en) * 2009-06-24 2012-06-21 Zephyros, Inc. Insulation materials
JP2017132985A (en) * 2016-01-27 2017-08-03 積水化学工業株式会社 Fire-resistant resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128932A (en) * 2000-10-24 2002-05-09 Nitto Denko Corp Rubber-based, flame-retardant foam
JP2005206648A (en) * 2004-01-21 2005-08-04 Denki Kagaku Kogyo Kk Rubber composition and foamed molded item using the rubber composition
JP2007031707A (en) * 2005-06-23 2007-02-08 Denki Kagaku Kogyo Kk Foamed molding
US20120153242A1 (en) * 2009-06-24 2012-06-21 Zephyros, Inc. Insulation materials
JP2017132985A (en) * 2016-01-27 2017-08-03 積水化学工業株式会社 Fire-resistant resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024490A1 (en) * 2020-07-31 2022-02-03 デンカ株式会社 Foamable composition and foam body

Also Published As

Publication number Publication date
TW202024209A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6147101B2 (en) Thermally expandable refractory resin composition
JP6200622B1 (en) Fireproof resin composition
ES2617072T3 (en) Flexible insulation foam with low smoke emission
WO2018117075A1 (en) Fire-resistant resin composition and fire-resistant resin molded body
WO2020090696A1 (en) Rubber composition, molded foam, fire protective member, and method for producing molded foam
EP2824134B1 (en) Compressible fire retardant foam
JP2007031707A (en) Foamed molding
KR100496175B1 (en) A composition and manufacturing method of flame retarding rubber/plastics foams with low toxic gas liberation and low smoke density under fire atmosphere
JP3934612B2 (en) Rubber composition and foam molded article using the rubber composition
ES2769909T3 (en) Expandable and crosslinkable elastomeric formulation for the manufacture of insulation materials that have properties of high fire retardancy and low smoke creation
KR100415682B1 (en) A composition for flame retarding polyolefin foams with ground tire rubber and its manufacturing method
JP6460982B2 (en) Thermally expandable refractory resin composition
JP5498150B2 (en) Flame retardant chloroprene rubber foam and method for producing the same
JP2003041038A (en) Rubber foam
JP6244000B2 (en) Fireproof resin composition
JP2018100410A (en) Fire-resistant resin composition
WO2017150515A1 (en) Refractory elastomer composition and molded article thereof
JP6914405B1 (en) Refractory material
KR100536568B1 (en) A composition of modified flame retarding foams
KR102635703B1 (en) Gasket rubber composition and heat-expandable flame retardant gasket by using the same
US20170015803A1 (en) Compressible fire retardant foam
JP6744044B2 (en) Rubber composition for rubber foam, rubber foam and sealing material obtained by foaming the same
JP2023154189A (en) Rubber foam, and method for producing the rubber foam
JPS6243436A (en) Foaming phosphazene polymer composition
CA2896138A1 (en) Compressible fire retardant foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP