WO2020090654A1 - Processing device, control method, and program - Google Patents

Processing device, control method, and program Download PDF

Info

Publication number
WO2020090654A1
WO2020090654A1 PCT/JP2019/041908 JP2019041908W WO2020090654A1 WO 2020090654 A1 WO2020090654 A1 WO 2020090654A1 JP 2019041908 W JP2019041908 W JP 2019041908W WO 2020090654 A1 WO2020090654 A1 WO 2020090654A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
hole
perforation
laser
cells
Prior art date
Application number
PCT/JP2019/041908
Other languages
French (fr)
Japanese (ja)
Inventor
元毅 沖仲
孝介 倉知
尚存 柴田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2020090654A1 publication Critical patent/WO2020090654A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/36Skin; Hair; Nails; Sebaceous glands; Cerumen; Epidermis; Epithelial cells; Keratinocytes; Langerhans cells; Ectodermal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/60Materials for use in artificial skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia

Definitions

  • the disclosure of the present specification relates to a processing device, a control method, and a program.
  • a hair follicle regeneration technique ground hair containing skin tissue pieces is collected, and epithelial stem cells and mesenchymal stem cells obtained from the hair are cultured to form a hair follicle primordia, and the hair follicle primordia is manually prepared in the living body.
  • a method of regenerating a hair follicle by injecting into the dermis is known (Patent Document 1).
  • One of the purposes of the disclosure of the present specification is to efficiently form a hair follicle.
  • the present invention is not limited to the above-mentioned object, and it is also possible to achieve operational effects that are obtained by the respective configurations shown in the modes for carrying out the invention to be described later and that cannot be obtained by conventional techniques. It can be positioned as one of the other purposes.
  • the processing device disclosed in the present specification is provided with a perforation unit that irradiates the skin of a living body with laser light to perforate holes, and an ejection unit that ejects droplets containing cells into the holes.
  • hair follicles can be efficiently formed.
  • the processing apparatus forms a plurality of holes by irradiating the skin of a living body with a laser, and ejects droplets containing cells into the formed holes to form a hair follicle (regeneration).
  • a hair follicle Is a device.
  • regenerating hair follicles and hair by ejecting droplets containing epithelial cells and mesenchymal cells into the holes pierced by irradiating the human scalp with laser.
  • FIG. 1 is a diagram showing an example of the configuration of a processing apparatus.
  • the processing device 100 includes a control device 101, a driving device 102, a punching device 103, a position detector 104, a shape detector 105, a discharge device 106, and a fixing device 108.
  • the control device 101 is a computer for controlling the operation of each part of the processing device 100, and includes a CPU, a ROM, a RAM, an I / O port and the like inside.
  • An operation program of the processing device 100 is stored in the ROM.
  • the program for executing various processing related to the processing may be stored in the ROM like other operation programs, or may be loaded into the RAM from the outside through the network. Alternatively, the program may be loaded into the RAM via a computer-readable recording medium.
  • the I / O port is connected to an external device or a network, and can input / output data and ejection conditions necessary for processing a hole, for example, with an external computer.
  • the data necessary for processing the hole includes shape data of the hole to be manufactured, information on a processing target, laser irradiation conditions, and the like.
  • the ejection conditions include the ejection speed, the amount of ejected droplets, the ejection timing, and the like.
  • the CPU performs overall control of the processing apparatus 100, and has a functional configuration including a position detection unit, a shape detection unit, a position adjustment unit, an intensity adjustment unit, an instruction unit, and a rotation control unit.
  • the position detection unit performs image processing on the image captured by the position detector 104, and converts the position of each device connected to the drive device 102 and the position of the hole drilled in the head 107 into coordinate data. To detect.
  • the shape detection unit performs image processing on the image captured by the shape detector 105, and detects the hole diameter and depth of the hole, the presence or absence of droplets ejected into the hole, and the like.
  • the position adjusting unit and the rotation control unit control the position and posture of each device connected to the drive device 102.
  • the instruction unit issues a discharge instruction to the discharge device 106 when the discharge device 106 whose position and orientation is controlled by the position adjustment unit and the rotation control unit reaches a target position.
  • the instruction unit controls the ejection speed of ejected droplets, the amount of ejected droplets, the ejection timing, and the like.
  • the intensity adjusting unit adjusts the current value of the excitation energy source of the laser oscillation unit in the punching device 103 when the punching device 103 whose position is controlled by the position adjusting unit reaches a target position.
  • the timing for adjusting the current value is not limited to the above.
  • the intensity and pulse number of the laser light emitted from the laser oscillator can be controlled by the current of the excitation energy source. Further, the pulse width and the pulse period can be controlled.
  • a punching device 103, a position detector 104, a shape detector 105, and a discharge device 106 are connected to the driving device 102.
  • the driving device 102 is connected to a hemispherical scan stage, which allows it to move in the X, Y, and Z directions. That is, the driving device 102 is connected to the punching unit, the discharging unit, and the detecting unit, and corresponds to an example of a driving unit that drives each unit.
  • the shape of the scan stage that can drive the driving device 102 is not limited to the above, and it is sufficient that the driving device 102 can be driven in each of the XYZ directions. For example, three-dimensional driving may be possible by connecting to the X scan stage, Y scan stage, and Z scan stage, respectively.
  • the punching device 103 is a pulse laser device including a focusing scanning unit and a laser oscillating unit.
  • the laser oscillating unit emits laser light
  • the focusing scanning unit changes the focusing position and focuses the laser light on the head 107.
  • a hole is drilled in the head 107. That is, it corresponds to an example of a perforation unit that perforates a hole by irradiating the skin of a living body with laser light.
  • the scalp is composed of three layers, the stratum corneum, the epidermis, and the dermis, and it is known that the stratum corneum is several tens of ⁇ m, the epidermis is about 200 ⁇ m, and the dermis is 1 to 3 mm thick.
  • the hair follicle primordium which is the base of the hair follicle, needs to be injected into the dermis where many nerves and blood vessels are present. It is desirable to be able to drill holes of depth. That is, it is desirable that the perforated portion 103 form one hole by removing a part of the epidermis and the dermis of the skin.
  • the depth of the holes is not limited to the above.
  • the opening shape of the holes may be circular or rectangular.
  • the condensing scanning unit is composed of an optical system that condenses the laser light into a minute spot and a robot or stage that can change the position and orientation of the optical system.
  • the condensing scanning unit may have a configuration in which an f ⁇ lens having a condensing function and a scanning function is combined with a galvano scanner, or a configuration in which a galvano scanner and an f ⁇ lens are held by a robot. Since the galvano scanner operates at high speed while reflecting the energy beam, it is desirable that the galvano scanner be made of a material that is lightweight and has a low linear expansion coefficient.
  • the laser beam be narrowed down sufficiently smaller than the target hole diameter and then the laser beam be scanned so as to have a desired shape.
  • the scan pattern of the laser light may be concentric or grid-like.
  • the beam system of the laser beam may be thickened and the laser beam may be perforated without scanning.
  • the laser light is concentrated at one point, the temperature locally rises, so that the laser-irradiated portion is burnt, and the follicle formation efficiency may be reduced. Therefore, in this case, it is preferable that the laser irradiation does not continuously irradiate the adjacent holes, but perforates the skin at a position far from the perforated position to suppress the accumulation of heat damage in the entire scalp.
  • a CO2 laser, an Er: YAG laser, or the like can be used for the laser oscillator.
  • the drive system may be a pulse system or a continuous irradiation system. Note that various effects can be expected in the method of perforation using radiation such as the laser described above, depending on the irradiation conditions (wavelength, pulse period, energy, irradiation time) and the interaction with the skin of the living body.
  • the use of interaction with water allows for efficient drilling.
  • a CO 2 laser having a wavelength of 10.6 ⁇ m and an Er: YAG laser having a wavelength of 2.9 ⁇ m have a water absorption several thousand times larger than that of an Nd: YAG laser having a wavelength of 1.06 ⁇ m. ing.
  • the water in the cells in the skin can be explosively evaporated, and the cells in the skin can be ejected from the inside of the skin to the outside of the skin by the evaporation of the water.
  • an Ar laser, an Nd: YAG laser, a KTP laser, a diode laser or the like, which has a high absorption for hemoglobin may be used.
  • the CO2 laser or the Er: YAG laser may be weakly applied to remove the water without further increasing the depth of the perforations to dry the body fluid. That is, although various effects are obtained depending on the interaction with the skin, the type of laser is not limited to the above, and any laser capable of piercing the head 107 may be used.
  • the pulse period, energy, and irradiation time are controlled, thermal interaction with cells can be expected.
  • thermal interaction with cells can be expected.
  • the irradiated portion of the head 107 reaches a temperature of about 35 to 45 ° C. by irradiating with laser, it has an effect of appropriately warming and activating the skin.
  • the temperature range of 80 to 100 ° C. water easily evaporates, so that perforation using evaporation can be performed as described above.
  • the position detector 104 detects the position of each device connected to the driving device 102 with respect to the head 107.
  • a laser device including a digital camera or a light receiving sensor can be used.
  • the position detection unit in the control device 101 performs image processing on the image captured by the position detector 104, converts the position of each device connected to the drive device 102 into coordinate data, and detects the coordinate data. To do.
  • the head 107 is scanned with a laser beam or the like, and the reflected light is converted into three-dimensional coordinates by the position detection unit of the control device 101 to detect the position of each device connected to the drive device 102. Further, it may be a mechanism that double-checks the position of each device using the coordinates provided in the driving device 102.
  • the shape detector 105 detects the hole diameter and depth of the hole drilled in the head 107 by the punching device 103, and whether or not there is a droplet discharged by the discharging device 106 in the hole.
  • a laser device including a digital camera or a light receiving sensor can be used.
  • the shape detecting unit in the control device 101 When measuring the hole diameter, for example, like the position detector 104, the shape detecting unit in the control device 101 performs image processing on the image captured by the shape detector 105, and the opening diameter of the hole is converted into coordinate data. Detect from the converted value.
  • the reflected light of the laser can be used to detect the depth.
  • the shape detection unit in the control device 101 When detecting whether or not there is a droplet discharged by the discharge device 106 in the hole, the shape detection unit in the control device 101 performs image processing on the image captured by the shape detector 105, and the liquid is discharged. Detect the presence of drops. Specifically, a range of pixel values that can be assumed when the liquid droplets are inside the perforations is designated in advance, and when the pixel values fall within the range as a result of image processing, there are liquid droplets. When the pixel value exceeds the range, it is determined that there is no droplet. In addition, when it is determined that there is no droplet, additional ejection may be performed.
  • the presence or absence of the ejection may be determined by detecting the depth of the hole before and after the ejection of the droplet with a laser. Further, the method of detecting the presence / absence of droplets is not limited to the above. Furthermore, when determining the presence or absence of liquid droplets, it is not a binary value of “Yes” and “No”, but a sufficient amount of liquid droplets ejected to the perforation such as “Sufficiently”, “Slightly insufficient”, and “No”. It may be determined by multi-value according to the amount. In this case, for example, it is determined that there is “sufficiently present”, and it is determined that “somewhat insufficient” and “none” are not present.
  • the processing apparatus 100 may be provided with a detector that detects the position and shape of the hole and whether or not there is a droplet discharged from the discharging device 106 in the hole.
  • the ejection device 106 ejects droplets containing cells into the perforations formed in the head 107. That is, it corresponds to an example of a discharge unit that discharges droplets containing cells to the holes.
  • a thermal inkjet head, a piezoelectric inkjet head, an electrostatic inkjet head, a compressed air jet dispenser, or the like can be used as the ejection device 106, but any device can be used as long as it can eject droplets containing cells.
  • the droplet amount of one droplet discharged by the discharge device 106 is preferably 1 to 500 nl, but the discharge amount is not limited to this.
  • the number of the ejection portions (openings) forming the ejection device 106 may be changed depending on at least one of the type of liquid containing cells to be ejected and the number of droplets containing cells to be ejected. For example, two of a first ejection part that ejects a first droplet containing mesenchymal cells necessary for forming a hair follicle and a second ejection part that ejects a second droplet containing epithelial cells. A configuration including one discharge section may be used.
  • the types of cells to be ejected are not limited to the above, and for example, droplets containing pigment cells that change the color of regenerated hair may be ejected.
  • the positions of the first ejection unit and the second ejection unit may be positions capable of ejecting droplets to the perforations, but when ejecting droplets continuously, scanning of the ejection device 106 is performed. Arrangement arranged in the direction is desirable.
  • the ejection device 106 can eject a plurality of droplets at a speed of 500 droplets / minute or more in consideration of the movement and shape change of the head 107 or the exudation of body fluid.
  • the configuration is not limited to the above.
  • the head 107 is, for example, a human scalp.
  • the head 107 is not limited to the above, and may be skin of various living organisms such as primates of mammals such as monkeys, ungulates such as horses, and rodents of small mammals such as rabbits and mice.
  • the peripheral portion of the treatment is plucked.
  • pretreatment such as moisturizing may be performed in advance. According to the above, it is possible to form a hole having a desired shape and depth regardless of age, sex, external environment, or the like.
  • the fixing device 108 fixes (holds) the head 107 that is the processing target portion. That is, it corresponds to an example of a fixing unit that fixes a living body. For example, as shown in FIG. 1, the head 107 to be processed is fixed.
  • the fixing device 108 is composed of a bed and a fixing belt.
  • a configuration in which a laser displacement meter that detects the shape of the fixed head 107, a contact sensor (not shown), and the like are combined may be used.
  • the configuration of the fixing device 108 is not limited to the above, and may be a configuration in which the head 107 is fixed, for example, by providing a table on which the forehead and the chin are placed. That is, it is sufficient that the head 107 can be fixed.
  • the droplet includes a first droplet containing mesenchymal cells and a second droplet containing epithelial cells.
  • the mesenchymal cells and epithelial cells contained in the two droplets are cells that are at least necessary for forming a hair follicle primordium having a hair regenerating ability.
  • Mesenchymal cells indicate at least one of cells derived from mesenchymal tissue and cells obtained by culturing the cells.
  • mesenchymal cells are obtained from dermal papilla cells, dermal sheath cells, various pluripotent cells, and the like.
  • the epithelial cell indicates at least one of cells derived from epithelial tissue and cells obtained by culturing the cells.
  • epithelial cells are obtained from the outermost layer of the outer root sheath, epithelial cells of the hair matrix, various pluripotent cells, and the like.
  • the hair follicle primordium is a tissue that is a base of hair follicles and is composed of a cell group including the above-mentioned mesenchymal cells and epithelial cells.
  • droplets containing epithelial cells and mesenchymal cells are ejected into the holes perforated in the head 107, and the hair follicle primordium composed of the two cells forms a hair follicle. ..
  • hair having a hair shaft is formed and elongated from the formed hair follicle. That is, the hair follicle primordia form the hair follicle and are the basis for the regenerated hair.
  • the ratio of epithelial cells to mesenchymal cells is preferably 1: 1 from the viewpoint of hair follicle formation, and if the total number of the two cells is about 1000 to 10000, the hair follicle primordium is determined. Can be formed.
  • the ratio of the number of cells and the number of cells are not necessarily the above values.
  • the droplets may also contain a medium for each cell, nutrients necessary for cell survival and growth, and auxiliary substances such as antibiotics and hormones.
  • cell may be a single substance or an aggregate including a plurality of cells such as a cell group.
  • an aggregate including a plurality of cells such as a cell group is referred to as a cell.
  • step S2000 (fix the head with a fixing device)
  • step S2010 in order to detect the position of the head 107, an alignment mark is printed on the scalp of the head 107 outside the treatment area.
  • the alignment mark may be directly marked with a writing instrument such as a pen, or may be marked by the laser of the punching device 103.
  • the shape and size of the alignment mark may be any as long as the resolution of position detection can be performed in units of ⁇ m. That is, the method, shape, and size of marking the alignment mark are not limited to the above.
  • the alignment mark may be marked before the head 107 is fixed by the fixing device 108, or the alignment mark itself may not be marked. If the processing target does not move, this step may be skipped.
  • step S2010 the position detector 104 images the head 107. Then, the position detection unit of the control device 101 converts the captured image into coordinate data, and sets three-dimensional coordinates (x, y, z) on the head 107. At this time, the positions of wrinkles, moles, stains, etc. may be detected from the imaged result, and may be used for position detection supplementarily.
  • the acquired three-dimensional coordinate system is preferably a three-dimensional coordinate system in which the point marked with the alignment mark in step S2010 is the origin (0,0,0).
  • step S2020 (the punches (x m, y m, moved to z m))
  • step S2020 first, the punching device 103 is moved to the initial position (x 1 , y 1 , z 1 ) in order to form a plurality of holes in the head 107.
  • the position adjusting unit of the control device 101 detects the alignment mark marked in step S2000, and when the coordinates are set to (0, 0, 0), the position (x 1 , Y 1 , z 1 ) the perforation device 103 is aligned.
  • the start position of the perforation may be an arbitrary position on the three-dimensional coordinates (x, y, z) acquired in step S2020 as the initial position.
  • the following description will be given on the assumption that the position where the perforation is started is the end point in the treatment area as shown in FIG. That is, aligns to the initial position (x 1, y 1, z 1) First, then, the perforation in the range of (x 1 ⁇ x m ⁇ x n) and (y 1 ⁇ y m ⁇ y n) The procedure is such that a plurality of holes are drilled in the treatment area by moving the device 103 in the XY axis directions.
  • the process is repeated from (x 1 , y 1 ) to (x n , y 1 ), and then the process is repeated from (x 1 , y 2 ) to (x n , y 2 ).
  • the above process is performed until (x 1 , y 1 ) reaches (x n , y n ). That is, the second or subsequent perforation, this step is the step of moving an arbitrary coordinate (x m, y m, z m) to the punching device 103. That is, a plurality of holes are punched in an array.
  • the order in which the plurality of holes are drilled is not limited to the above.
  • the order may be changed such that (x 1 , y 1 ) ⁇ (x 3 , y 1 ) ⁇ (x 2 , y 1 ) ⁇ (x 4 , y 1 ). That is, the processing may be performed while reversing the moving direction in the predetermined axis direction.
  • the array of holes to be perforated does not necessarily have to be an array of equal intervals, and for example, some parts may be perforated to have a high density and some parts may be perforated to have a low density.
  • the processing target portion is damaged, etc., it may be perforated so as to avoid that portion.
  • the punching device 103 is moved to the same XY coordinates as the punching position in step S2030 described later, but in step S2030, the punching target coordinates (x m , y m , z m ) can be punched. If so, the XY coordinates do not necessarily have to be the same.
  • the minimum value and the maximum value in the treatment area are obtained from the Z-axis values detected in step S2010, and a predetermined value is added to the obtained value.
  • the point marked with the alignment mark is outside the treatment area, but if the alignment mark is inside the treatment area, the alignment mark is set to the origin (0, 0, 0). Then, similarly to FIG. 4A, the position (x 1 , y 1 , z 1 ) at which the perforation is to be started in the treatment area with respect to the origin (0, 0, 0) is specified, and the perforation device 103 is located at the coordinates. Align the.
  • the punching device 103 may be moved to a position where light can be collected.
  • the punching device 103 does not have to be moved. That is, the punching device 103 only needs to be in a position capable of punching at desired coordinates.
  • step S2030 the intensity of laser light irradiated from the punching device 103 adjusts the coordinates of performing alignment in the step S2020 (x m, y m, z m) drilling irradiating hole a laser against.
  • the instruction unit instructs the punching device 103 to oscillate the laser light controlled by the current adjusted by the intensity adjusting unit of the control device 101 at a constant oscillation frequency and a desired number of pulses. Is done.
  • the punching device 103 receives the oscillation instruction, and the laser light oscillated from the laser oscillating unit in the punching device 103 is delivered to the condensing scanning unit in the punching device 103 by the delivery fiber or the like and irradiated to the processing point. A hole is drilled.
  • step S2040 (Measure the shape of the hole with the shape detector)
  • the shape detector 105 is used to measure the opening diameter and depth of the hole drilled in step S2030. Then, when the opening diameter and the depth of the hole have not reached the predetermined values, the process is returned to step S2030, and the laser irradiation is performed by the perforation device 103. In the case where the coordinates (x m, y m, z m) are shifted into has occurred, the position adjusting unit to finely adjust the scanned position the driving device 102. Steps S2030 and S2040 are repeated, and when the opening diameter and the depth of the holes satisfy the predetermined values, the process proceeds to step S2050.
  • step S2050 (the discharge device (x m, y m, moved to z m))
  • step S2050 coordinates drilled in step S2040 (x m, y m, z m) to move the ejection device 106.
  • the position of the discharge device 106 is moved, the coordinates drilled in step S2040 (x m, y m, z m) necessarily if droplets are capable of discharging position relative to (x m, y m, z m ) does not have to be above.
  • the ejection device 106 the rotated by controlling the angle (x m, y m, z m) droplets to capable of discharging coordinates pore drilled.
  • step S2060 Cells are discharged by the discharging device
  • the droplet discharged by the discharging device 106 may be one droplet for the hole as long as it is a droplet containing epithelial cells and mesenchymal cells. When the droplet containing the epithelial cells and the droplet containing the mesenchymal cells are different, each droplet is ejected to the hole.
  • the instruction unit issues a discharge instruction to the discharge device 106. ..
  • droplets containing cells are discharged to the holes.
  • a droplet containing epithelial cells and a droplet containing mesenchymal cells are separately ejected into one hole, the droplet containing mesenchymal cells is first discharged. It is desirable to discharge it.
  • step S2070 based on the data acquired from the shape detector 105, the shape detecting unit coordinates (x m, y m, z m) or absence or ejected droplet is in the drilled hole in the To detect.
  • the shape detection unit in the control device 101 performs image processing on the image captured by the shape detector 105 to detect the presence or absence of a droplet. For example, if the range of pixel values that can be assumed when the liquid droplets are inside the hole is specified in advance, and if the pixel values fall within that range as a result of image processing, it is determined that there are liquid droplets. , If the pixel value exceeds the range, it is determined that there is no droplet. Alternatively, it may be determined from the shape of the holes.
  • step S2080 if it is detected that there is a droplet, the process proceeds to step S2080. On the other hand, if it is detected that there is no droplet, the process returns to step S2060.
  • the presence / absence of a droplet is determined not by the binary values of “present” and “absent” but by a multivalued determination in accordance with the amount of droplets such as “sufficiently present”, “somewhat insufficient”, and “absent”, for example, It may be set to return the process to step S2070 when it is determined to be “slightly insufficient” and “not present”.
  • step S2080 judges drilling and coordinates to eject the cell (x m, y m, z m) Whether is the end point coordinates, i.e. whether all the processes in the treatment a preset range has been completed.
  • (x m, y m, z m) of (x m, y m) is a determination on whether or not reached the (x n, y n). When (x n , y n ) is reached, the process ends.
  • the number of times the punching device 103 and / or the discharging device 106 punches or discharges droplets is set in advance, and when the predetermined number of times is completed, the processing of the processing device 100 is ended.
  • the shape detector 105 detects that droplets have been discharged to all the holes, the process ends.
  • the condition for ending the process is not limited to the above.
  • (x n, y n) if not reached, update the value of (x m, y m, z m), the process returns to step S2020.
  • the processing of the processing apparatus 100 is performed as described above.
  • a plurality of holes are perforated at high speed in the skin of the living body with a laser or the like, and droplets containing cells that are the bases of the hair follicles are ejected to the perforated holes, so that efficiency is improved.
  • the processing is performed without contacting the living body, it is possible to reduce the possibility that contamination such as bacteria will occur in the pores.
  • the hair follicle primordia can be cultured in the body, the possibility of cell death can be reduced as compared with the case of culturing the hair follicle primordia outside the body, and efficiency can be improved from this aspect as well.
  • the efficiency of hair follicle formation is improved by repeatedly performing the process in which the perforation device 103 perforates one hole at a specific coordinate and then the ejection device 106 ejects droplets into the hole.
  • a plurality of lasers that the perforation device 103 irradiates and a plurality of ejection units included in the ejection device 106 are respectively provided, so that a plurality of holes are perforated and then a plurality of droplets are ejected to the respective holes.
  • It may be a processing procedure. Further, the procedure may be such that a plurality of holes are punched at the same time and then a plurality of droplets are simultaneously discharged to the respective holes.
  • a procedure of processing may be performed in which all predetermined holes are drilled in the treatment area and then droplets are sequentially discharged to all the holes.
  • the treatment time can be shortened by discharging the droplets containing the cells into the hole at a higher speed, so that the burden on the treatment target can be reduced.
  • the efficiency of hair follicle formation is improved by repeatedly performing the process in which the perforation device 103 perforates one hole at a specific coordinate and then the ejection device 106 ejects droplets into the hole. It was however, in order to make the processing more efficient, the perforation processing by the perforation apparatus 103 and the cell ejection processing by the ejection apparatus 106 may be performed in parallel. Specifically, while the discharging device 106 discharges droplets into the holes punched by the punching device 103 at the coordinates (x 1 , y 1 ), the punching device 103 punches the coordinates (x 2 , y 1 ). To start.
  • the timing of punching by the punching device 103 and the timing of discharging the droplets by the discharging device 106 are not limited to the above. That is, in a series of steps until the treatment is completed, the step of boring a hole and the step of ejecting liquid droplets into the hole may be performed in parallel.
  • the treatment time can be shortened, the burden on the treatment target can be reduced.
  • the skin is collected from the back of the mouse 301 and separated into an epithelial layer and a dermal layer. After that, epithelial stem cells and mesenchymal stem cells are taken out from each layer. After culturing each cell, mix with the basic medium to make a suspension for ejection.
  • the head of the mouse 301 is shaved, the anesthetized mouse 301 is fixed by a fixing device, and an alignment mark is marked by the punching device 103 as shown in FIG.
  • a CO 2 laser (ML-X9650 manufactured by Keyence) is used for the punching device 103.
  • the laser power is 24 W and the working distance is 92 mm.
  • the spot diameter is about 80 ⁇ m.
  • the galvanometer mirror mounted on the CO2 laser is used for laser scanning.
  • the head of the mouse 301 is scanned by the position detector 104 to obtain the shape of the mouse head, and then the perforation position and cell ejection position (xm, ym, zm) are determined and stored in the control device 101. (FIG. 3 (b)).
  • the coordinates with respect to the alignment mark are always checked, and if the indicated values are different, the position is corrected using the driving device 102.
  • the laser is scanned using the galvanomirror so that the opening diameter becomes 0.5 mm (FIG. 3C).
  • the scanning speed of the galvanometer mirror is 500 mm / s.
  • one hole may be formed by changing the laser intensity and irradiating the hole a plurality of times.
  • the shape of the hole is not limited to the example shown in the figure, and may be, for example, a shape whose width increases from the opening toward the inside.
  • the perforated shape of the opening is confirmed by the camera of the shape detector 105 (FIG. 3 (d)). Further, the depth of perforation is confirmed using a laser displacement meter attached to the shape detector 105. At this time, when the shape of the opening is elliptical or the depth of the perforations does not reach the set value, additional laser irradiation is performed. The perforation rate under this condition is 3200 holes / min.
  • the driving device 102 is used to move the ejection device 106 to the ejection position.
  • the cell ejection device 106 Jet Spotter (manufactured by Musashi Engineering) is used. Considering the size of cells, a nozzle having a diameter of 150 ⁇ m is used.
  • the ejection amount 30 nL is ejected as one droplet in consideration of the volume of the perforated portion (FIG. 3 (e)). The concentration of the suspension containing cells is adjusted so that 5000 cells are contained in 30 nL. Further, stirring is performed by bubbling at an appropriate timing so that the cells do not settle in the nozzle.
  • an image of the perforation portion is acquired in advance by the shape detector 105, and the position (x n with respect to the perforation device 103 recorded in the control device 101 is recorded. , Y n , z n ) is confirmed before discharging.
  • the shape detector 105 confirms whether the ejection is properly performed.
  • the ejection speed including alignment is about 3000 holes / min, and it is confirmed that a speed almost equal to the perforation speed can be obtained.
  • Coordinates that are stored in the control unit 101 is the final coordinates (x n, y n, z n) when it reaches the ends of the treatment.
  • the mesenchymal stem cells and the epithelial interstitial cells are cultured within the perforated scalp of the mouse (FIG. 3 (f)).
  • the treated area is observed after 3 weeks, hair growth can be confirmed.
  • the hair cycle can also be confirmed.
  • the punching device 103 is changed to an Er: YAG laser and the same processing as in the first embodiment is performed.
  • the Er: YAG laser has a higher absorption of water and can be expected to improve the drilling speed.
  • the laser irradiation conditions are a laser power of 24 W and a working distance of 92 mm.
  • the scanning speed of the galvanometer mirror is set to 500 mm / s.
  • the perforation speed is 3500 holes / min, which is faster than that of the CO 2 laser, and the damage to the scalp surface and the inside of the perforations can be reduced.
  • the disclosure of the present specification provides a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus provide the program. Can also be realized by a process of reading and executing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC
  • the processing device in each of the above-described embodiments may be realized as a single device, or may be a mode in which a plurality of devices are communicably combined with each other to execute the above-described processing. included.
  • the above-described processing may be executed by a common server device or server group. It suffices that the processing device and the plurality of devices constituting the processing system can communicate at a predetermined communication rate, and they do not have to exist in the same facility or in the same country.
  • a software program that realizes the functions of the above-described embodiments is supplied to a system or apparatus, and the computer of the system or apparatus reads out the code of the supplied program. Including the form of executing.
  • the program code itself installed in the computer to implement the processing according to the embodiment by the computer is also one of the embodiments of the present invention. Further, based on the instructions included in the program read by the computer, the OS or the like running on the computer may perform some or all of the actual processing, and the processing may also realize the functions of the above-described embodiments. ..

Abstract

A discharge device disclosed in the present description is characterized by comprising: a perforation unit that perforates holes in the skin of a biological body by projecting laser light; and a discharge unit that discharges liquid droplets containing cells into the holes.

Description

加工装置、制御方法及びプログラムProcessing device, control method and program
本明細書の開示は、加工装置、制御方法及びプログラムに関する。 The disclosure of the present specification relates to a processing device, a control method, and a program.
近年の世界的な人口増加に伴い、薄毛に悩む人口が男女ともに増えてきている。そこで現在、薄毛に対する治療法の一つとして毛包を再び形成する毛包再生技術が注目されている。 With the worldwide increase in population in recent years, the number of men and women suffering from thinning hair is increasing. Therefore, as a treatment method for thinning hair, a hair follicle regeneration technique for re-forming a hair follicle is currently receiving attention.
毛包再生技術として、皮膚組織片を含む地毛を採取し、そこから得られる上皮系幹細胞と間葉系幹細胞を培養して毛包原基を形成し、毛包原基を手動で生体の真皮内に注入することにより毛包を再生させる方法が知られている(特許文献1)。 As a hair follicle regeneration technique, ground hair containing skin tissue pieces is collected, and epithelial stem cells and mesenchymal stem cells obtained from the hair are cultured to form a hair follicle primordia, and the hair follicle primordia is manually prepared in the living body. A method of regenerating a hair follicle by injecting into the dermis is known (Patent Document 1).
特許第5932671号明細書Japanese Patent No. 5932671
しかしながら、手動での細胞の注入は毛包を形成するにあたって効率的ではなかった。 However, manual injection of cells was not efficient in forming hair follicles.
本明細書の開示は、効率的に毛包の形成を行うことを目的の一つとする。 One of the purposes of the disclosure of the present specification is to efficiently form a hair follicle.
なお、前記目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本明細書の開示の他の目的の一つとして位置付けることができる。 It should be noted that the present invention is not limited to the above-mentioned object, and it is also possible to achieve operational effects that are obtained by the respective configurations shown in the modes for carrying out the invention to be described later and that cannot be obtained by conventional techniques. It can be positioned as one of the other purposes.
本明細書に開示の加工装置は、生体の皮膚に対しレーザ光を照射して孔を穿孔する穿孔部と、前記孔に対し細胞を含む液滴を吐出する吐出部と、を備えることを特徴とする。 The processing device disclosed in the present specification is provided with a perforation unit that irradiates the skin of a living body with laser light to perforate holes, and an ejection unit that ejects droplets containing cells into the holes. And
本明細書の開示によれば、効率的に毛包の形成を行うことができる。 According to the disclosure of the present specification, hair follicles can be efficiently formed.
本実施形態に係る加工装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the processing apparatus which concerns on this embodiment. 本実施形態に係る加工装置のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the processing apparatus which concerns on this embodiment. 本実施形態に係る加工装置の全体の処理手順の一例を示す図である。It is a figure which shows an example of the whole process procedure of the processing apparatus which concerns on this embodiment. 本実施形態に係る座標設定の一例を示す図である。It is a figure which shows an example of the coordinate setting which concerns on this embodiment.
本実施形態に係る加工装置は、生体の皮膚に対してレーザを照射することで複数の孔を形成し、その形成された孔に細胞を含む液滴を吐出することで毛包を形成(再生)する装置である。例えば、ヒトの頭皮に対してレーザを照射することで穿孔された孔に対して、上皮系細胞と間葉系細胞を含む液滴をそれぞれ吐出し、毛包及び毛髪を再生させるなどの用途で用いることができる。 The processing apparatus according to the present embodiment forms a plurality of holes by irradiating the skin of a living body with a laser, and ejects droplets containing cells into the formed holes to form a hair follicle (regeneration). ) Is a device. For example, in applications such as regenerating hair follicles and hair by ejecting droplets containing epithelial cells and mesenchymal cells into the holes pierced by irradiating the human scalp with laser. Can be used.
以下は、いずれも加工装置の処理方法を説明するための一例にすぎず、本明細書の開示は実施形態に限定されるものではない。 The following are merely examples for explaining the processing method of the processing apparatus, and the disclosure of the present specification is not limited to the embodiments.
図面を用いて本明細書に開示の加工装置の実施形態について説明する。 An embodiment of a processing device disclosed in the present specification will be described with reference to the drawings.
図1は加工装置の構成の一例を示す図である。 FIG. 1 is a diagram showing an example of the configuration of a processing apparatus.
加工装置100は、制御装置101と、駆動装置102と、穿孔装置103と、位置検出器104と、形状検出器105と、吐出装置106と、固定装置108とを備えている。 The processing device 100 includes a control device 101, a driving device 102, a punching device 103, a position detector 104, a shape detector 105, a discharge device 106, and a fixing device 108.
制御装置101は、加工装置100の各部の動作を制御するためのコンピュータで、内部には、CPU、ROM、RAM、I/Oポート等を備えている。ROMには、加工装置100の動作プログラムが記憶されている。加工に係る各種処理を実行するためのプログラムは、他の動作プログラムと同様にROMに記憶させておいてもよいが、ネットワークを介して外部からRAMにロードしてもよい。あるいは、プログラムを記録したコンピュータ読み取り可能な記録媒体を介して、RAMにロードしてもよい。I/Oポートは、外部機器やネットワークと接続され、たとえば孔の加工に必要なデータや吐出条件の入出力を、外部コンピュータとの間で行うことができる。孔の加工に必要なデータとは、作製する孔の形状データ、加工対象の情報、レーザの照射条件などを含む。また、吐出条件とは、吐出速度、吐出液滴の量、吐出タイミング等を含む。CPUは、加工装置100の制御全般を行っており、その機能的な構成として、位置検出部と、形状検出部と、位置調整部と、強度調整部と、指示部と、回転制御部とを備える。これらは駆動装置102、穿孔装置103、位置検出器104、形状検出器105、吐出装置106及び固定装置108の各部と有線、もしくは無線で接続されており、相互の電気信号の授受、データ解析、データの保存、命令の入出力を行う装置である。 The control device 101 is a computer for controlling the operation of each part of the processing device 100, and includes a CPU, a ROM, a RAM, an I / O port and the like inside. An operation program of the processing device 100 is stored in the ROM. The program for executing various processing related to the processing may be stored in the ROM like other operation programs, or may be loaded into the RAM from the outside through the network. Alternatively, the program may be loaded into the RAM via a computer-readable recording medium. The I / O port is connected to an external device or a network, and can input / output data and ejection conditions necessary for processing a hole, for example, with an external computer. The data necessary for processing the hole includes shape data of the hole to be manufactured, information on a processing target, laser irradiation conditions, and the like. The ejection conditions include the ejection speed, the amount of ejected droplets, the ejection timing, and the like. The CPU performs overall control of the processing apparatus 100, and has a functional configuration including a position detection unit, a shape detection unit, a position adjustment unit, an intensity adjustment unit, an instruction unit, and a rotation control unit. Prepare These are connected to each part of the driving device 102, the punching device 103, the position detector 104, the shape detector 105, the ejection device 106 and the fixing device 108 by wire or wirelessly, and exchange of electric signals with each other, data analysis, A device that stores data and inputs and outputs commands.
位置検出部は、位置検出器104が撮像した画像に対して画像処理を行い、駆動装置102に接続された各装置の位置及び頭部107に穿孔された孔の位置などを座標データに変換して検出する。形状検出部は、形状検出器105が撮像した画像に対して画像処理を行い、孔の孔径や深さ、孔内に吐出された液滴の有無等を検出する。位置調整部および回転制御部は、駆動装置102に接続された各装置の位置及び姿勢を制御している。指示部は、位置調整部と回転制御部によって位置及び姿勢が制御された吐出装置106が目的の位置に達した時に、吐出装置106に対して吐出指示を行う。また、指示部は吐出する液滴の吐出速度、吐出液滴の量、吐出タイミング等の制御を行う。強度調整部は、位置調整部によって位置が制御された穿孔装置103が目的の位置に達した時に、穿孔装置103内のレーザ発振部の励起エネルギー源の電流値を調整する。なお、電流値を調整するタイミングは上記に限定されない。レーザ発振部から発振されるレーザ光の強度とパルス数は、励起エネルギー源の電流で制御することが出来る。また、パルス幅やパルス周期も制御可能である。 The position detection unit performs image processing on the image captured by the position detector 104, and converts the position of each device connected to the drive device 102 and the position of the hole drilled in the head 107 into coordinate data. To detect. The shape detection unit performs image processing on the image captured by the shape detector 105, and detects the hole diameter and depth of the hole, the presence or absence of droplets ejected into the hole, and the like. The position adjusting unit and the rotation control unit control the position and posture of each device connected to the drive device 102. The instruction unit issues a discharge instruction to the discharge device 106 when the discharge device 106 whose position and orientation is controlled by the position adjustment unit and the rotation control unit reaches a target position. Further, the instruction unit controls the ejection speed of ejected droplets, the amount of ejected droplets, the ejection timing, and the like. The intensity adjusting unit adjusts the current value of the excitation energy source of the laser oscillation unit in the punching device 103 when the punching device 103 whose position is controlled by the position adjusting unit reaches a target position. The timing for adjusting the current value is not limited to the above. The intensity and pulse number of the laser light emitted from the laser oscillator can be controlled by the current of the excitation energy source. Further, the pulse width and the pulse period can be controlled.
駆動装置102には、穿孔装置103、位置検出器104、形状検出器105、および吐出装置106が接続されている。また、駆動装置102は半球状のスキャンステージと接続されており、これによりX方向、Y方向およびZ方向に移動可能となる。すなわち、駆動装置102は穿孔部と吐出部と検出部と接続され、各部を駆動する駆動部の一例に相当する。なお、駆動装置102を駆動可能とするスキャンステージの形状は上記に限定されず、駆動装置102がXYZ方向のそれぞれの方向に駆動可能であればよい。例えば、XスキャンステージとYスキャンステージとZスキャンステージにそれぞれ接続することにより3次元に駆動可能にしてもよい。 A punching device 103, a position detector 104, a shape detector 105, and a discharge device 106 are connected to the driving device 102. Further, the driving device 102 is connected to a hemispherical scan stage, which allows it to move in the X, Y, and Z directions. That is, the driving device 102 is connected to the punching unit, the discharging unit, and the detecting unit, and corresponds to an example of a driving unit that drives each unit. The shape of the scan stage that can drive the driving device 102 is not limited to the above, and it is sufficient that the driving device 102 can be driven in each of the XYZ directions. For example, three-dimensional driving may be possible by connecting to the X scan stage, Y scan stage, and Z scan stage, respectively.
穿孔装置103は、集光走査部とレーザ発振部を含むパルスレーザ装置であり、レーザ発振部がレーザ光を発し、集光走査部が集光位置を変えつつ頭部107にレーザ光を集光することにより頭部107に孔を穿孔していく。すなわち、生体の皮膚に対しレーザ光を照射して孔を穿孔する穿孔部の一例に相当する。なお、頭皮は、角質層、表皮、真皮の3層から構成されており、このうち角質層が数10μm、表皮が約200μm、真皮が1~3mmの厚さであることが知られている。そのため、例えば毛髪を再生させる場合には、毛包の基となる毛包原基は、神経や血管が多く存在する真皮内に注入する必要があることから穿孔装置103は1±0.2mm程度の深さの孔を穿孔可能なことが望ましい。すなわち、穿孔部103は皮膚の表皮および真皮の一部を除去することで一つの孔を形成することが望ましい。なお、孔の深さは上記に限定されない。また、孔の開口形状は、円形でもよいし、方形でもよい。 The punching device 103 is a pulse laser device including a focusing scanning unit and a laser oscillating unit. The laser oscillating unit emits laser light, and the focusing scanning unit changes the focusing position and focuses the laser light on the head 107. By doing so, a hole is drilled in the head 107. That is, it corresponds to an example of a perforation unit that perforates a hole by irradiating the skin of a living body with laser light. The scalp is composed of three layers, the stratum corneum, the epidermis, and the dermis, and it is known that the stratum corneum is several tens of μm, the epidermis is about 200 μm, and the dermis is 1 to 3 mm thick. Therefore, for example, when hair is regenerated, the hair follicle primordium, which is the base of the hair follicle, needs to be injected into the dermis where many nerves and blood vessels are present. It is desirable to be able to drill holes of depth. That is, it is desirable that the perforated portion 103 form one hole by removing a part of the epidermis and the dermis of the skin. The depth of the holes is not limited to the above. The opening shape of the holes may be circular or rectangular.
集光走査部は、レーザ光を微小スポットに集光する光学系とその光学系の位置や姿勢を変えることが出来るロボットやステージ等で構成される。なお、集光走査部は集光機能と走査機能とを果たすfθレンズとガルバノスキャナを組合せた構成でもよいし、ガルバノスキャナとfθレンズをロボットに保持させた構成でもよい。なお、ガルバノスキャナはエネルギービームを反射させながら高速で動作させるため、軽量且つ、線膨張係数の低い材質で作られていることが望ましい。 The condensing scanning unit is composed of an optical system that condenses the laser light into a minute spot and a robot or stage that can change the position and orientation of the optical system. The condensing scanning unit may have a configuration in which an fθ lens having a condensing function and a scanning function is combined with a galvano scanner, or a configuration in which a galvano scanner and an fθ lens are held by a robot. Since the galvano scanner operates at high speed while reflecting the energy beam, it is desirable that the galvano scanner be made of a material that is lightweight and has a low linear expansion coefficient.
また、ガルバノスキャナを用いる場合、レーザ光を目標の穿孔径よりも十分細く絞った上で、穿孔したい形状となるようにレーザ光を走査することが望ましい。その場合のレーザ光のスキャンパターンは、同心円状でも良いし、格子状でも良い。 Further, when using a galvano scanner, it is desirable that the laser beam be narrowed down sufficiently smaller than the target hole diameter and then the laser beam be scanned so as to have a desired shape. In that case, the scan pattern of the laser light may be concentric or grid-like.
一方、ガルバノスキャナを用いない場合は、レーザ光のビーム系を太くし、レーザ光をスキャンせずに穿孔してもよい。しかし、1点でレーザ光を集中すると、局所的に温度が上昇することによりレーザの照射部分に焦げが発生し、毛包の形成効率が低下する場合がある。そのため、この場合にはレーザの照射は隣接する孔を連続的に照射するのではなく、穿孔した位置から遠い位置の皮膚を穿孔することにより頭皮全体での熱ダメージの蓄積を抑えるとよい。 On the other hand, when the galvano scanner is not used, the beam system of the laser beam may be thickened and the laser beam may be perforated without scanning. However, when the laser light is concentrated at one point, the temperature locally rises, so that the laser-irradiated portion is burnt, and the follicle formation efficiency may be reduced. Therefore, in this case, it is preferable that the laser irradiation does not continuously irradiate the adjacent holes, but perforates the skin at a position far from the perforated position to suppress the accumulation of heat damage in the entire scalp.
レーザ発振部は、CO2レーザやEr:YAGレーザ等を用いることができる。駆動方式はパルス式でもよいし、連続照射方式でもよい。なお、前述のレーザのような放射線による穿孔方法は照射する条件(波長、パルス周期、エネルギー、照射時間)と生体の皮膚との相互作用に応じて、様々な効果を期待できる。 A CO2 laser, an Er: YAG laser, or the like can be used for the laser oscillator. The drive system may be a pulse system or a continuous irradiation system. Note that various effects can be expected in the method of perforation using radiation such as the laser described above, depending on the irradiation conditions (wavelength, pulse period, energy, irradiation time) and the interaction with the skin of the living body.
例えば、波長に関しては、水との相互作用を使うことにより効率的な穿孔が可能になる。例えば、10.6μmの波長をもつCO2レーザや2.9μmの波長をもつEr:YAGレーザは、1.06μmの波長をもつNd:YAGレーザよりも水に対する吸収が数1000倍大きいことが知られている。これらの波長のレーザを皮膚に照射すると、皮膚内の細胞中の水分を爆発的に蒸散させることができ、この水分の蒸散により皮膚の細胞を皮膚内から皮膚外に飛ばしてしまうことができる。一方、真皮内には血管や神経が多く存在することが知られており、穿孔の深さが大きくなるにつれ、血液や体液がにじみ出てきてしまう。血液を優先的に蒸散させる場合は、ヘモグロビンに対して吸収の高いArレーザ、Nd:YAGレーザ、KTPレーザ、ダイオードレーザなどを使用しても良い。一方、体液を優先的に飛ばしたい場合は、CO2レーザもしくはEr:YAGレーザを弱く照射することにより穿孔の深さをそれ以上大きくすることなく水分を飛ばして乾燥させることもできる。つまり、皮膚との相互作用に応じて様々な効果があるが、レーザの種類は上記に限定されず頭部107に対して穿孔可能なレーザであればよい。 For example, in terms of wavelength, the use of interaction with water allows for efficient drilling. For example, it is known that a CO 2 laser having a wavelength of 10.6 μm and an Er: YAG laser having a wavelength of 2.9 μm have a water absorption several thousand times larger than that of an Nd: YAG laser having a wavelength of 1.06 μm. ing. When the skin is irradiated with a laser having these wavelengths, the water in the cells in the skin can be explosively evaporated, and the cells in the skin can be ejected from the inside of the skin to the outside of the skin by the evaporation of the water. On the other hand, it is known that there are many blood vessels and nerves in the dermis, and as the depth of perforation increases, blood and body fluid will exude. In the case of preferentially evaporating blood, an Ar laser, an Nd: YAG laser, a KTP laser, a diode laser or the like, which has a high absorption for hemoglobin, may be used. On the other hand, if the body fluid is to be preferentially removed, the CO2 laser or the Er: YAG laser may be weakly applied to remove the water without further increasing the depth of the perforations to dry the body fluid. That is, although various effects are obtained depending on the interaction with the skin, the type of laser is not limited to the above, and any laser capable of piercing the head 107 may be used.
また、パルス周期、エネルギー、照射時間を制御すると、細胞との熱的相互作用を期待できる。例えば、レーザを照射することにより頭部107の照射部分が35~45℃程度の温度になった場合には、皮膚を適度に温め活性化させる効果があることが知られている。一方、80~100℃の温度の範囲においては、水が蒸散しやすくなるため上述のように蒸散を利用した穿孔も可能となる。 Moreover, if the pulse period, energy, and irradiation time are controlled, thermal interaction with cells can be expected. For example, it is known that when the irradiated portion of the head 107 reaches a temperature of about 35 to 45 ° C. by irradiating with laser, it has an effect of appropriately warming and activating the skin. On the other hand, in the temperature range of 80 to 100 ° C., water easily evaporates, so that perforation using evaporation can be performed as described above.
位置検出器104は、駆動装置102に接続される各装置が頭部107に対してどの位置にあるのかを検出する。例えば、デジタルカメラや受光センサを含むレーザ装置等を用いることができる。具体的には、例えば位置検出器104が撮像した画像に対して制御装置101内の位置検出部が画像処理を行い、駆動装置102に接続される各装置の位置を座標データに変換して検出する。または、頭部107をレーザ光等でスキャンし、その反射光を制御装置101の位置検出部が3次元座標に変換して駆動装置102に接続される各装置の位置を検出する。また、駆動装置102に備わる座標を使って各装置の位置をダブルチェックする機構であってもよい。 The position detector 104 detects the position of each device connected to the driving device 102 with respect to the head 107. For example, a laser device including a digital camera or a light receiving sensor can be used. Specifically, for example, the position detection unit in the control device 101 performs image processing on the image captured by the position detector 104, converts the position of each device connected to the drive device 102 into coordinate data, and detects the coordinate data. To do. Alternatively, the head 107 is scanned with a laser beam or the like, and the reflected light is converted into three-dimensional coordinates by the position detection unit of the control device 101 to detect the position of each device connected to the drive device 102. Further, it may be a mechanism that double-checks the position of each device using the coordinates provided in the driving device 102.
形状検出器105は、穿孔装置103により頭部107に穿孔した孔の孔径や深さと、該孔の中に吐出装置106により吐出された液滴が有るか無いかを検出する。例えば、デジタルカメラや受光センサを含むレーザ装置等を用いることができる。 The shape detector 105 detects the hole diameter and depth of the hole drilled in the head 107 by the punching device 103, and whether or not there is a droplet discharged by the discharging device 106 in the hole. For example, a laser device including a digital camera or a light receiving sensor can be used.
孔径を計測する場合は、例えば位置検出器104と同様に、形状検出器105が撮像した画像に対して制御装置101内の形状検出部が画像処理を行い、穿孔の開口径などを座標データに変換された値から検出する。 When measuring the hole diameter, for example, like the position detector 104, the shape detecting unit in the control device 101 performs image processing on the image captured by the shape detector 105, and the opening diameter of the hole is converted into coordinate data. Detect from the converted value.
深さを計測する場合は、レーザの反射光を利用して深度を検出することができる。 When measuring the depth, the reflected light of the laser can be used to detect the depth.
孔の中に吐出装置106により吐出された液滴が有るか無いかを検出する場合は、形状検出器105が撮像した画像に対して制御装置101内の形状検出部が画像処理を行い、液滴の有無を検出する。具体的には、液滴が穿孔内に有る場合に想定されうる画素値の範囲等をあらかじめ指定しておき、画像処理の結果、画素値がその範囲内に収まる場合には、液滴が有ると判断し、画素値がその範囲を超えた場合には液滴が無いと判断する。なお、液滴が無いと判断された場合には、追加の吐出を行うような構成でもよい。その他の方法として、液滴の吐出を行う前後の孔の深度をレーザにより検出し、吐出の有無を判断してもよい。また、液滴の有無の検出方法は上記に限定されない。さらに、液滴の有無を判断する場合は、「有る」,「無い」の2値でなく「十分有る」,「やや足りない」,「無い」などのように穿孔に吐出された液滴の量に合わせて多値で判断されてもよい。この場合、例えば「十分有る」を有ると判断し、「やや足りない」、「無い」を無いと判断する。 When detecting whether or not there is a droplet discharged by the discharge device 106 in the hole, the shape detection unit in the control device 101 performs image processing on the image captured by the shape detector 105, and the liquid is discharged. Detect the presence of drops. Specifically, a range of pixel values that can be assumed when the liquid droplets are inside the perforations is designated in advance, and when the pixel values fall within the range as a result of image processing, there are liquid droplets. When the pixel value exceeds the range, it is determined that there is no droplet. In addition, when it is determined that there is no droplet, additional ejection may be performed. As another method, the presence or absence of the ejection may be determined by detecting the depth of the hole before and after the ejection of the droplet with a laser. Further, the method of detecting the presence / absence of droplets is not limited to the above. Furthermore, when determining the presence or absence of liquid droplets, it is not a binary value of “Yes” and “No”, but a sufficient amount of liquid droplets ejected to the perforation such as “Sufficiently”, “Slightly insufficient”, and “No”. It may be determined by multi-value according to the amount. In this case, for example, it is determined that there is “sufficiently present”, and it is determined that “somewhat insufficient” and “none” are not present.
なお、本実施形態では位置検出器104と形状検出器105とを別の部材としたが、ひとつの検出器に位置検出器104と形状検出器105との両方の機能を持たせてもよい。すなわち、加工装置100は孔の位置および形状と、孔の中に吐出装置106から吐出された液滴が有るか否かを検出する検出器を備えていればよい。 Although the position detector 104 and the shape detector 105 are separate members in the present embodiment, one detector may have both the functions of the position detector 104 and the shape detector 105. That is, the processing apparatus 100 may be provided with a detector that detects the position and shape of the hole and whether or not there is a droplet discharged from the discharging device 106 in the hole.
吐出装置106は、細胞を含む液滴を頭部107に形成された穿孔に対し吐出する。すなわち、孔に対し細胞を含む液滴を吐出する吐出部の一例に相当する。吐出装置106にはサーマル式インクジェットヘッド、圧電式インクジェットヘッド、静電式インクジェットヘッド、圧空式ジェットディスペンサなどを使用できるが、細胞を含む液滴を吐出することができれば何でもよい。また、吐出装置106が吐出する1つの液滴の液滴量は1~500nlの液滴であることが望ましいが、吐出量はこれに限定されない。 The ejection device 106 ejects droplets containing cells into the perforations formed in the head 107. That is, it corresponds to an example of a discharge unit that discharges droplets containing cells to the holes. A thermal inkjet head, a piezoelectric inkjet head, an electrostatic inkjet head, a compressed air jet dispenser, or the like can be used as the ejection device 106, but any device can be used as long as it can eject droplets containing cells. Further, the droplet amount of one droplet discharged by the discharge device 106 is preferably 1 to 500 nl, but the discharge amount is not limited to this.
さらに、吐出装置106を構成する吐出部(開口)の数は、吐出させたい細胞を含む液の種類もしくは吐出させたい細胞を含む液滴の数の少なくとも一方によって数量を変えてもよい。例えば、毛包の形成に必要な間葉系細胞を含む第1の液滴を吐出する第1の吐出部と上皮系細胞を含む第2の液滴を吐出する第2の吐出部との2つの吐出部を含む構成でもよい。なお、吐出する細胞の種類は上記に限定されず、例えば再生した毛の色を変える色素細胞を含む液滴を吐出してもよい。第1の吐出部と第2の吐出部との位置は、穿孔に対して液滴を吐出可能な位置であればよいが、連続して液滴を吐出する場合には、吐出装置106のスキャン方向に並べられている配置が望ましい。 Further, the number of the ejection portions (openings) forming the ejection device 106 may be changed depending on at least one of the type of liquid containing cells to be ejected and the number of droplets containing cells to be ejected. For example, two of a first ejection part that ejects a first droplet containing mesenchymal cells necessary for forming a hair follicle and a second ejection part that ejects a second droplet containing epithelial cells. A configuration including one discharge section may be used. The types of cells to be ejected are not limited to the above, and for example, droplets containing pigment cells that change the color of regenerated hair may be ejected. The positions of the first ejection unit and the second ejection unit may be positions capable of ejecting droplets to the perforations, but when ejecting droplets continuously, scanning of the ejection device 106 is performed. Arrangement arranged in the direction is desirable.
なお、生体に対して液滴を吐出するため、頭部107の移動や形状変化、あるいは体液の滲み出しを考慮すると、吐出装置106は500滴/分以上の速度で複数の液滴を吐出できる構成であることが望ましいが、上記に限定されない。 Since the droplets are ejected to the living body, the ejection device 106 can eject a plurality of droplets at a speed of 500 droplets / minute or more in consideration of the movement and shape change of the head 107 or the exudation of body fluid. Although it is desirable that the configuration is employed, the configuration is not limited to the above.
頭部107は、例えばヒトの頭皮である。なお、頭部107は上記に限定されず、サルなどの哺乳動物の霊長類や、ウマなどの有蹄類や、ウサギやマウスなどの小型哺乳類のげっ歯類など種々の生体の皮膚でもよい。 The head 107 is, for example, a human scalp. The head 107 is not limited to the above, and may be skin of various living organisms such as primates of mammals such as monkeys, ungulates such as horses, and rodents of small mammals such as rabbits and mice.
なお、穿孔装置103からのレーザ照射による周囲の体毛の燃焼を防止するため、施術の周辺部は悌毛されていると良い。また、年齢、性別や外部環境などによっては、生体の皮膚の含水率が異なるため、事前に保湿などの前処理を行ってもよい。上記によれば、年齢、性別や外部環境などに依らず所望の穿孔形状や深さの孔を形成することができる。 In addition, in order to prevent the burning of the surrounding hair due to the laser irradiation from the perforation device 103, it is preferable that the peripheral portion of the treatment is plucked. Further, since the moisture content of the skin of a living body differs depending on age, sex, external environment, etc., pretreatment such as moisturizing may be performed in advance. According to the above, it is possible to form a hole having a desired shape and depth regardless of age, sex, external environment, or the like.
固定装置108は、加工対象部位となる頭部107を固定(保持)する。すなわち、生体を固定する固定部の一例に相当する。例えば、図1に示すように加工対象となる頭部107を固定する。また、固定装置108は、ベッドや固定ベルトで構成される。なお、上記に加えて固定した頭部107の形状を検出するレーザ変位計や接触センサ(不図示)などを組み合わせた構成であってもよい。また、固定装置108の構成は上記に限定されず、例えば額と顎を載せる台などを設けることにより頭部107を固定するような構成でもよい。すなわち、頭部107を固定できる構成であればよい。 The fixing device 108 fixes (holds) the head 107 that is the processing target portion. That is, it corresponds to an example of a fixing unit that fixes a living body. For example, as shown in FIG. 1, the head 107 to be processed is fixed. The fixing device 108 is composed of a bed and a fixing belt. In addition to the above, a configuration in which a laser displacement meter that detects the shape of the fixed head 107, a contact sensor (not shown), and the like are combined may be used. The configuration of the fixing device 108 is not limited to the above, and may be a configuration in which the head 107 is fixed, for example, by providing a table on which the forehead and the chin are placed. That is, it is sufficient that the head 107 can be fixed.
次に、吐出装置106により吐出される細胞を含む液滴について説明する。 Next, a droplet containing cells discharged by the discharging device 106 will be described.
液滴は、間葉系細胞を含む第1の液滴と上皮系細胞を含む第2の液滴とを含み構成される。2つの液滴に含まれる間葉系細胞と上皮系細胞は毛髪再生能を有する毛包原基を形成するために少なくとも必要となる細胞である。 The droplet includes a first droplet containing mesenchymal cells and a second droplet containing epithelial cells. The mesenchymal cells and epithelial cells contained in the two droplets are cells that are at least necessary for forming a hair follicle primordium having a hair regenerating ability.
間葉系細胞は、間葉組織由来の細胞とその細胞を培養して得られる細胞の少なくとも一方を示している。例えば、間葉系細胞は毛乳頭細胞や真皮毛根鞘細胞、各種万能細胞などから得られる。 Mesenchymal cells indicate at least one of cells derived from mesenchymal tissue and cells obtained by culturing the cells. For example, mesenchymal cells are obtained from dermal papilla cells, dermal sheath cells, various pluripotent cells, and the like.
上皮系細胞は、上皮組織由来の細胞とその細胞を培養して得られる細胞の少なくとも一方を示している。例えば、上皮系細胞は外毛根鞘最外層や毛母基部の上皮系細胞、各種万能細胞などから得られる。 The epithelial cell indicates at least one of cells derived from epithelial tissue and cells obtained by culturing the cells. For example, epithelial cells are obtained from the outermost layer of the outer root sheath, epithelial cells of the hair matrix, various pluripotent cells, and the like.
毛包原基は、毛包の基となる組織であり、上記の間葉系細胞と上皮系細胞とを含む細胞群から構成されている。本実施形態においては頭部107に穿孔された孔に対して上皮系細胞及び間葉系細胞を含む液滴が吐出され、その2つの細胞から構成される毛包原基が毛包を形成する。そして形成された毛包から毛幹を有する毛が形成および伸長する。すなわち、毛包原基は、毛包を形成し、且つ再生される毛の基となる。 The hair follicle primordium is a tissue that is a base of hair follicles and is composed of a cell group including the above-mentioned mesenchymal cells and epithelial cells. In the present embodiment, droplets containing epithelial cells and mesenchymal cells are ejected into the holes perforated in the head 107, and the hair follicle primordium composed of the two cells forms a hair follicle. .. Then, hair having a hair shaft is formed and elongated from the formed hair follicle. That is, the hair follicle primordia form the hair follicle and are the basis for the regenerated hair.
上皮系細胞と間葉系細胞の比率は、毛包形成の観点からは1:1であることが望ましく、2つの細胞の合計細胞数は1000個~10000個程度あれば、毛包原基を形成することができる。なお、細胞数の比率や細胞数は必ずしも上記の値でなくてもよい。 The ratio of epithelial cells to mesenchymal cells is preferably 1: 1 from the viewpoint of hair follicle formation, and if the total number of the two cells is about 1000 to 10000, the hair follicle primordium is determined. Can be formed. The ratio of the number of cells and the number of cells are not necessarily the above values.
また、液滴には、各細胞用の培地や細胞の生存および増殖に必要な栄養素、さらには抗生物質やホルモンのような補助物質が含まれてもよい。 The droplets may also contain a medium for each cell, nutrients necessary for cell survival and growth, and auxiliary substances such as antibiotics and hormones.
なお、前述の「細胞」は単体でもよいし、細胞群のような複数の細胞を含む集合体でもよい。本実施形態では、細胞群のように複数の細胞を含む集合体を細胞と称する。 The above-mentioned “cell” may be a single substance or an aggregate including a plurality of cells such as a cell group. In this embodiment, an aggregate including a plurality of cells such as a cell group is referred to as a cell.
次に、図2のフローチャートを用いて、本実施形態における全体の処理の流れを説明する。 Next, the flow of the overall processing in this embodiment will be described using the flowchart in FIG.
(S2000)(固定装置で頭部を固定する)
ステップS2000において、固定装置108により頭部107を固定する。次に、ステップS2010で頭部107の位置検出を行うため、頭部107の施術領域外の頭皮にアライメントマークを印す。アライメントマークは、ペン等の筆記具で直接印してもよいし、穿孔装置103のレーザにより刻印してもよい。また、アライメントマークの形状や大きさは、位置検出の分解能をμm単位で行えるものであればよい。すなわち、アライメントマークを印す方法、形状及び大きさは上記に限定されない。なお、頭部107を固定装置108で固定する前にアライメントマークを印してもよいし、アライメントマーク自体を印さなくてもよい。また、加工対象が動かないのであれば本ステップはスキップしてもよい。
(S2000) (fix the head with a fixing device)
In step S2000, the head 107 is fixed by the fixing device 108. Next, in step S2010, in order to detect the position of the head 107, an alignment mark is printed on the scalp of the head 107 outside the treatment area. The alignment mark may be directly marked with a writing instrument such as a pen, or may be marked by the laser of the punching device 103. The shape and size of the alignment mark may be any as long as the resolution of position detection can be performed in units of μm. That is, the method, shape, and size of marking the alignment mark are not limited to the above. The alignment mark may be marked before the head 107 is fixed by the fixing device 108, or the alignment mark itself may not be marked. If the processing target does not move, this step may be skipped.
(S2010)(3次元座標(x,y,z)を設定する)
ステップS2010において、位置検出器104で頭部107を撮像する。そして撮像した画像を制御装置101の位置検出部が座標データに変換し、頭部107上に3次元座標(x,y,z)を設定する。このとき、撮像結果から、皺、ほくろ、シミなどの位置も検出し、補助的に位置検出に使用しても良い。なお、取得される3次元座標系は、ステップS2010でアライメントマークが印された点を原点(0,0,0)とした3次元座標系であることが望ましい。
(S2010) (Set three-dimensional coordinates (x, y, z))
In step S2010, the position detector 104 images the head 107. Then, the position detection unit of the control device 101 converts the captured image into coordinate data, and sets three-dimensional coordinates (x, y, z) on the head 107. At this time, the positions of wrinkles, moles, stains, etc. may be detected from the imaged result, and may be used for position detection supplementarily. The acquired three-dimensional coordinate system is preferably a three-dimensional coordinate system in which the point marked with the alignment mark in step S2010 is the origin (0,0,0).
(S2020)(穿孔装置を(x,y,z)へと移動する)
ステップS2020において、まず、頭部107に対して複数の孔を形成するために穿孔装置103を初期位置(x,y,z)へと移動させる。具体的には、制御装置101の位置調整部がステップS2000で印したアライメントマークを検出し、その座標を(0,0,0)とした場合に施術領域内における穿孔を開始する位置(x,y,z)に穿孔装置103の位置合わせを行う。なお、穿孔を開始する位置はステップS2020で取得した3次元座標(x,y,z)上の任意の点を初期位置としてもよい。本実施形態では、穿孔を開始する位置は、図4(a)に示すように施術領域内の端点であるとして以下の説明を行う。つまり、始めに初期位置(x,y,z)へと位置合わせを行い、その後、(x≦x≦x)および(y≦y≦y)の範囲で穿孔装置103をXY軸方向に移動することにより施術領域に複数の孔を穿孔していく手順とする。具体的には、(x,y)から(x,y)に向かって処理を繰り返し、次に(x,y)から(x,y)に向かって処理を繰り返しという処理を(x,y)が(x,y)に到達するまで行う。すなわち、2回目の穿孔以降、本ステップは任意の座標(x,y,z)へと穿孔装置103を移動させるステップとなる。つまり、アレイ状に複数の孔を穿孔していく。なお、複数の孔を穿孔する順序は上記に限定されない。例えば、(x,y)→(x,y)→(x,y)→(x,y)のように順序を変えて穿孔してもよい。すなわち、所定軸方向において移動方向を逆転させながら処理を行ってもよい。さらに、穿孔する孔の配列は必ずしも等間隔のアレイ状でなくてもよく、例えばある部分は密度が大きくなるように穿孔し、ある部分は密度が小さくなるように穿孔してもよい。また、加工対象部位に損傷がある場合等は、その部分を避けるように穿孔してもよい。
(S2020) (the punches (x m, y m, moved to z m))
In step S2020, first, the punching device 103 is moved to the initial position (x 1 , y 1 , z 1 ) in order to form a plurality of holes in the head 107. Specifically, the position adjusting unit of the control device 101 detects the alignment mark marked in step S2000, and when the coordinates are set to (0, 0, 0), the position (x 1 , Y 1 , z 1 ) the perforation device 103 is aligned. It should be noted that the start position of the perforation may be an arbitrary position on the three-dimensional coordinates (x, y, z) acquired in step S2020 as the initial position. In the present embodiment, the following description will be given on the assumption that the position where the perforation is started is the end point in the treatment area as shown in FIG. That is, aligns to the initial position (x 1, y 1, z 1) First, then, the perforation in the range of (x 1 ≦ x m ≦ x n) and (y 1 ≦ y m ≦ y n) The procedure is such that a plurality of holes are drilled in the treatment area by moving the device 103 in the XY axis directions. Specifically, the process is repeated from (x 1 , y 1 ) to (x n , y 1 ), and then the process is repeated from (x 1 , y 2 ) to (x n , y 2 ). The above process is performed until (x 1 , y 1 ) reaches (x n , y n ). That is, the second or subsequent perforation, this step is the step of moving an arbitrary coordinate (x m, y m, z m) to the punching device 103. That is, a plurality of holes are punched in an array. The order in which the plurality of holes are drilled is not limited to the above. For example, the order may be changed such that (x 1 , y 1 ) → (x 3 , y 1 ) → (x 2 , y 1 ) → (x 4 , y 1 ). That is, the processing may be performed while reversing the moving direction in the predetermined axis direction. Furthermore, the array of holes to be perforated does not necessarily have to be an array of equal intervals, and for example, some parts may be perforated to have a high density and some parts may be perforated to have a low density. In addition, when the processing target portion is damaged, etc., it may be perforated so as to avoid that portion.
なお、本ステップでは後述のステップS2030で穿孔する位置と同じXY座標に穿孔装置103を移動させたが、ステップS2030で穿孔対象となる座標(x,y,z)に穿孔可能な位置であれば必ずしもXY座標が同じでなくてもよい。 In this step, the punching device 103 is moved to the same XY coordinates as the punching position in step S2030 described later, but in step S2030, the punching target coordinates (x m , y m , z m ) can be punched. If so, the XY coordinates do not necessarily have to be the same.
高さ方向の座標zについては、ステップS2010で検出したZ軸の値の中で、施術領域内での最小値および最大値を求め、その値に対して所定値を足した値の範囲で穿孔装置103を移動させればよい。つまり、穿孔装置103を移動させるZ座標zは頭皮表面のZ座標に対して所定の値を足した値として考える。例えば、予め穿孔装置103のワーキングディスタンスを3mmと設定した場合に、頭皮表面の(x,y)におけるZ座標がz=5mmだとするとz=3+5=8mmとして、穿孔装置103を移動する。 Regarding the coordinate z m in the height direction, the minimum value and the maximum value in the treatment area are obtained from the Z-axis values detected in step S2010, and a predetermined value is added to the obtained value. The punching device 103 may be moved. That is, the Z coordinate z m for moving the punching device 103 is considered as a value obtained by adding a predetermined value to the Z coordinate of the scalp surface. For example, when the working distance of the punching device 103 is set to 3 mm in advance and the Z coordinate at (x 1 , y 1 ) on the scalp surface is z = 5 mm, the punching device 103 is moved with z 1 = 3 + 5 = 8 mm.
また、本実施形態ではアライメントマークが印された点は施術領域外としたがアライメントマークが施術領域内に有る場合には、図4(b)に示すようにアライメントマークを原点(0,0,0)とする。そして、図4(a)と同様に原点(0,0,0)に対して施術領域内における穿孔を開始する位置(x,y,z)を特定し、その座標に穿孔装置103の位置合わせを行う。 Further, in the present embodiment, the point marked with the alignment mark is outside the treatment area, but if the alignment mark is inside the treatment area, the alignment mark is set to the origin (0, 0, 0). Then, similarly to FIG. 4A, the position (x 1 , y 1 , z 1 ) at which the perforation is to be started in the treatment area with respect to the origin (0, 0, 0) is specified, and the perforation device 103 is located at the coordinates. Align the.
なお、上記では穿孔装置103を移動させる位置を(x,y,z)とおいたが、頭皮表面の集光する座標を(x,y,z)として、その座標に対して集光可能な位置に穿孔装置103を移動させる構成でもよい。この構成の場合、例えば施術対象領域の範囲が穿孔装置103内のガルバノスキャナ等による集光走査だけでレーザ照射可能な大きさであるならば穿孔装置103は動かさなくてもよい。すなわち、穿孔装置103は所望の座標に穿孔できる位置にあればよい。 Incidentally, the position to move the perforating device 103 in the above (x m, y m, z m) was placed and the coordinates for condensing the scalp surface (x m, y m, z m) as against the coordinates Alternatively, the punching device 103 may be moved to a position where light can be collected. In the case of this configuration, for example, if the range of the treatment target area is of a size such that the laser irradiation can be performed only by converging scanning by a galvano scanner or the like in the punching device 103, the punching device 103 does not have to be moved. That is, the punching device 103 only needs to be in a position capable of punching at desired coordinates.
(S2030)(穿孔装置で(x,y,z)に穿孔する)
ステップS2030において、穿孔装置103から照射されるレーザ光の強度を調整し、ステップS2020で位置合わせを行った座標(x,y,z)に対してレーザを照射し孔を穿孔する。具体的には例えば、制御装置101の強度調整部により調整された電流によって制御されるレーザ光を一定の発信周波数、所望のパルス数で発振させるための発振指示が指示部により穿孔装置103に対して行われる。そして穿孔装置103が発振指示を受け、穿孔装置103内のレーザ発振部から発振されたレーザ光がデリバリファイバ等で穿孔装置103内の集光走査部に届けられ加工点へと照射されることにより孔が穿孔される。
(S2030) (in perforating apparatus (x m, y m, drilling the z m))
In step S2030, the intensity of laser light irradiated from the punching device 103 adjusts the coordinates of performing alignment in the step S2020 (x m, y m, z m) drilling irradiating hole a laser against. Specifically, for example, the instruction unit instructs the punching device 103 to oscillate the laser light controlled by the current adjusted by the intensity adjusting unit of the control device 101 at a constant oscillation frequency and a desired number of pulses. Is done. Then, the punching device 103 receives the oscillation instruction, and the laser light oscillated from the laser oscillating unit in the punching device 103 is delivered to the condensing scanning unit in the punching device 103 by the delivery fiber or the like and irradiated to the processing point. A hole is drilled.
(S2040)(形状検出器で孔の形状を計測する)
ステップS2040において、形状検出器105を用いてステップS2030で穿孔した孔の開口径と深さを計測する。そして、孔の開口径と深さが所定の値に達していない場合には、ステップS2030へと処理を戻し穿孔装置103によりレーザの照射を行う。なお、座標(x,y,z)にずれが生じている場合は、位置調整部が駆動装置102を走査し位置を微調整する。ステップS2030とステップS2040を繰り返し、孔の開口径と深さが所定の値を満たした場合にステップS2050へと処理を進める。
(S2040) (Measure the shape of the hole with the shape detector)
In step S2040, the shape detector 105 is used to measure the opening diameter and depth of the hole drilled in step S2030. Then, when the opening diameter and the depth of the hole have not reached the predetermined values, the process is returned to step S2030, and the laser irradiation is performed by the perforation device 103. In the case where the coordinates (x m, y m, z m) are shifted into has occurred, the position adjusting unit to finely adjust the scanned position the driving device 102. Steps S2030 and S2040 are repeated, and when the opening diameter and the depth of the holes satisfy the predetermined values, the process proceeds to step S2050.
(S2050)(吐出装置を(x,y,z)へと移動する)
ステップS2050において、ステップS2040で穿孔した座標(x,y,z)に吐出装置106を移動させる。なお、吐出装置106が移動される位置は、ステップS2040で穿孔した座標(x,y,z)に対して液滴が吐出可能な位置であれば必ずしも(x,y,z)上でなくてもよい。例えば、吐出装置106を回転させて角度を制御することにより(x,y,z)に穿孔された孔に液滴を吐出可能な座標に移動する。
(S2050) (the discharge device (x m, y m, moved to z m))
In step S2050, coordinates drilled in step S2040 (x m, y m, z m) to move the ejection device 106. The position of the discharge device 106 is moved, the coordinates drilled in step S2040 (x m, y m, z m) necessarily if droplets are capable of discharging position relative to (x m, y m, z m ) does not have to be above. For example, to move the ejection device 106 the rotated by controlling the angle (x m, y m, z m) droplets to capable of discharging coordinates pore drilled.
(S2060)(吐出装置で細胞を吐出する)
ステップS2060において、座標(x,y,z)に穿孔された孔に対して吐出装置106が液滴の吐出を行う。吐出装置106により吐出される液滴は、上皮系細胞および間葉系細胞を含む液滴であれば孔に対して1滴でよい。上皮系細胞を含む液滴と間葉系細胞を含む液滴が異なる場合には孔に対してそれぞれの液滴を吐出する。
(S2060) (Cells are discharged by the discharging device)
In step S2060, the coordinates (x m, y m, z m) discharge device relative pore drilled in 106 and the ejection of droplets. The droplet discharged by the discharging device 106 may be one droplet for the hole as long as it is a droplet containing epithelial cells and mesenchymal cells. When the droplet containing the epithelial cells and the droplet containing the mesenchymal cells are different, each droplet is ejected to the hole.
具体的には、制御装置101内の位置調整部と回転制御部によって位置及び姿勢が制御された吐出装置106が目的の位置に達した時に、指示部が吐出装置106に対して吐出指示を行う。これにより、細胞を含む液滴が孔に対して吐出される。なお、上皮系細胞を含む液滴と間葉系細胞を含む液滴の2つの液滴を1つの孔に対して別々に吐出する場合には、間葉系細胞を含む液滴を先に孔に対して吐出することが望ましい。 Specifically, when the position adjusting unit and the rotation control unit in the control device 101 control the position and orientation of the discharge device 106 to reach a target position, the instruction unit issues a discharge instruction to the discharge device 106. .. As a result, droplets containing cells are discharged to the holes. When two droplets, a droplet containing epithelial cells and a droplet containing mesenchymal cells, are separately ejected into one hole, the droplet containing mesenchymal cells is first discharged. It is desirable to discharge it.
(S2070)(形状検出器で細胞の有無を確認する)
ステップS2070において、形状検出器105から取得されるデータに基づいて、形状検出部は座標(x,y,z)に穿孔された孔内に吐出された液滴が有るか無いかを検出する。具体的には、形状検出器105が撮像した画像に対して制御装置101内の形状検出部が画像処理を行い、液滴の有無を検出する。例えば、液滴が孔内に有る場合に想定されうる画素値の範囲等をあらかじめ指定しておき、画像処理の結果、画素値がその範囲内に収まる場合には、液滴が有ると判断し、画素値がその範囲を超えた場合には液滴が無いと判断する。また、孔の形状などから判断してもよい。
(S2070) (Confirm presence / absence of cells with shape detector)
In step S2070, based on the data acquired from the shape detector 105, the shape detecting unit coordinates (x m, y m, z m) or absence or ejected droplet is in the drilled hole in the To detect. Specifically, the shape detection unit in the control device 101 performs image processing on the image captured by the shape detector 105 to detect the presence or absence of a droplet. For example, if the range of pixel values that can be assumed when the liquid droplets are inside the hole is specified in advance, and if the pixel values fall within that range as a result of image processing, it is determined that there are liquid droplets. , If the pixel value exceeds the range, it is determined that there is no droplet. Alternatively, it may be determined from the shape of the holes.
検出の結果、液滴が有ると検出された場合には、ステップS2080へと処理を進める。一方、液滴が無いと検出された場合には、ステップS2060へと処理を戻す。 As a result of the detection, if it is detected that there is a droplet, the process proceeds to step S2080. On the other hand, if it is detected that there is no droplet, the process returns to step S2060.
なお、液滴の有無を「有る」,「無い」の2値でなく「十分有る」,「やや足りない」,「無い」などの液滴の量に合わせて多値で判定する場合、例えば「やや足りない」および「無い」と判定された場合にステップS2070へと処理を戻すなどと設定してもよい。 When the presence / absence of a droplet is determined not by the binary values of “present” and “absent” but by a multivalued determination in accordance with the amount of droplets such as “sufficiently present”, “somewhat insufficient”, and “absent”, for example, It may be set to return the process to step S2070 when it is determined to be “slightly insufficient” and “not present”.
(S2080)((x,y,z)は終点座標?)
ステップS2080において、穿孔及び細胞の吐出を行う座標(x,y,z)が終点座標であるかどうか、すなわち予め設定した施術範囲内の全ての処理が完了したかを判定する。本実施形態においては(x,y,z)のうち(x,y)が、(x,y)に到達したか否かで判定を行う。(x,y)に到達した場合、処理を終了する。例えば穿孔装置103および/または吐出装置106が穿孔するもしくは液滴を吐出する回数を予め設定しておいて、その所定回数が終了したら加工装置100の処理を終了する。また、形状検出器105が全ての孔に液滴が吐出されたことを検出した場合に処理を終了する。なお、処理を終了させる条件は上記に限定されない。一方、(x,y)に到達していない場合には、(x,y,z)の値を更新し、ステップS2020に処理を戻す。
(S2080) ((x m, y m, z m) is the end point coordinates?)
In step S2080, judges drilling and coordinates to eject the cell (x m, y m, z m) Whether is the end point coordinates, i.e. whether all the processes in the treatment a preset range has been completed. In this embodiment (x m, y m, z m) of (x m, y m) is a determination on whether or not reached the (x n, y n). When (x n , y n ) is reached, the process ends. For example, the number of times the punching device 103 and / or the discharging device 106 punches or discharges droplets is set in advance, and when the predetermined number of times is completed, the processing of the processing device 100 is ended. In addition, when the shape detector 105 detects that droplets have been discharged to all the holes, the process ends. The condition for ending the process is not limited to the above. On the other hand, (x n, y n) if not reached, update the value of (x m, y m, z m), the process returns to step S2020.
以上によって、加工装置100の処理が実施される。 The processing of the processing apparatus 100 is performed as described above.
上記によれば、生体の皮膚にレーザ等で高速で複数の孔を穿孔し、その穿孔された複数の孔に対して、毛包の基となる細胞を含む液滴を吐出していくため効率的に毛包を形成することができる。また、生体に対して非接触のまま加工を行うため、孔内において菌などのコンタミネーションが起こる可能性を低減することができる。また、体内で毛包原基の培養を行うことができるため、体外で毛包原基を培養するときに比べて細胞が死滅する可能性を低減することができ、このような側面からも効率的に毛包を形成することができる。 According to the above, a plurality of holes are perforated at high speed in the skin of the living body with a laser or the like, and droplets containing cells that are the bases of the hair follicles are ejected to the perforated holes, so that efficiency is improved. To form hair follicles. Further, since the processing is performed without contacting the living body, it is possible to reduce the possibility that contamination such as bacteria will occur in the pores. In addition, since the hair follicle primordia can be cultured in the body, the possibility of cell death can be reduced as compared with the case of culturing the hair follicle primordia outside the body, and efficiency can be improved from this aspect as well. To form hair follicles.
<変形例1>
本実施形態では、特定の座標に穿孔装置103が一つの孔を穿孔した後に、吐出装置106がその孔に対して液滴の吐出をする処理を繰り返し行うことにより毛包形成の効率化を図った。しかしながら、穿孔装置103が照射するレーザと、吐出装置106に含まれる吐出部をそれぞれ複数備えることにより、複数の孔の穿孔を行ってから複数の液滴を夫々の孔に対して吐出するような処理の手順でもよい。さらに、複数の孔の穿孔を同時に行ってから複数の液滴を夫々の孔に対して同時に吐出するような処理の手順でもよい。施術領域内に所定の全ての孔を穿孔してから、その全ての孔に対して順に液滴を吐出していくような処理の手順でもよい。
<Modification 1>
In the present embodiment, the efficiency of hair follicle formation is improved by repeatedly performing the process in which the perforation device 103 perforates one hole at a specific coordinate and then the ejection device 106 ejects droplets into the hole. It was However, a plurality of lasers that the perforation device 103 irradiates and a plurality of ejection units included in the ejection device 106 are respectively provided, so that a plurality of holes are perforated and then a plurality of droplets are ejected to the respective holes. It may be a processing procedure. Further, the procedure may be such that a plurality of holes are punched at the same time and then a plurality of droplets are simultaneously discharged to the respective holes. A procedure of processing may be performed in which all predetermined holes are drilled in the treatment area and then droplets are sequentially discharged to all the holes.
上記によれば、より高速に孔に対して細胞を含む液滴を吐出することにより施術時間がより短く済むため施術対象の負担を軽減することができる。 According to the above, the treatment time can be shortened by discharging the droplets containing the cells into the hole at a higher speed, so that the burden on the treatment target can be reduced.
<変形例2>
本実施形態では、特定の座標に穿孔装置103が一つの孔を穿孔した後に、吐出装置106がその孔に対して液滴の吐出をする処理を繰り返し行うことにより毛包形成の効率化を図った。しかしながら、より処理を効率化させるために穿孔装置103による穿孔処理と吐出装置106による細胞の吐出処理は並行して行ってもよい。具体的には、穿孔装置103が座標(x,y)に穿孔した孔に吐出装置106が液滴を吐出している間に、穿孔装置103が座標(x,y)に穿孔を開始する。なお、穿孔装置103が穿孔するタイミングと吐出装置106が液滴を吐出するタイミングは上記に限定されない。すなわち、施術完了までの一連の工程において、孔を穿孔する工程と孔に液滴を吐出する工程が並行して行われていればよい。
<Modification 2>
In the present embodiment, the efficiency of hair follicle formation is improved by repeatedly performing the process in which the perforation device 103 perforates one hole at a specific coordinate and then the ejection device 106 ejects droplets into the hole. It was However, in order to make the processing more efficient, the perforation processing by the perforation apparatus 103 and the cell ejection processing by the ejection apparatus 106 may be performed in parallel. Specifically, while the discharging device 106 discharges droplets into the holes punched by the punching device 103 at the coordinates (x 1 , y 1 ), the punching device 103 punches the coordinates (x 2 , y 1 ). To start. The timing of punching by the punching device 103 and the timing of discharging the droplets by the discharging device 106 are not limited to the above. That is, in a series of steps until the treatment is completed, the step of boring a hole and the step of ejecting liquid droplets into the hole may be performed in parallel.
上記によれば、施術時間がより短く済むため施術対象の負担を軽減することができる。また、効率的に毛包形成のための処理を行うことができる。 According to the above, since the treatment time can be shortened, the burden on the treatment target can be reduced. In addition, it is possible to efficiently perform a treatment for forming a hair follicle.
以下に図面を参照しつつ、本明細書に開示の吐出装置の好適な実施例について説明する。 Hereinafter, preferred embodiments of the ejection device disclosed in the present specification will be described with reference to the drawings.
ただし、以下に記載されている構成部品の寸法、材質、形状およびそれらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものである。また、実施例に係る具体的な液滴の吐出量や粘度、部材の制御位置や速度に関しても同様である。つまり、本明細書の開示の範囲を以下の記載に限定する趣旨のものではない。 However, the dimensions, materials, shapes, and their relative arrangements of the components described below should be appropriately changed depending on the configuration of the apparatus to which the invention is applied and various conditions. The same applies to the specific droplet discharge amount and viscosity, and the member control position and speed according to the embodiment. That is, the scope of the disclosure of the present specification is not intended to be limited to the following description.
<第1実施例>
以下、図3(a)~図3(f)を用いて本明細書に開示の加工装置の第1実施例について説明する。
<First embodiment>
Hereinafter, a first embodiment of the processing apparatus disclosed in this specification will be described with reference to FIGS. 3 (a) to 3 (f).
まず、マウス301の背中から皮膚を採取し、上皮層と真皮層に分離する。その後、それぞれの層より、上皮系幹細胞と間葉系幹細胞を取り出す。それぞれの細胞を培養した後、基本培地と混ぜ合わせ、吐出用懸濁液とする。 First, the skin is collected from the back of the mouse 301 and separated into an epithelial layer and a dermal layer. After that, epithelial stem cells and mesenchymal stem cells are taken out from each layer. After culturing each cell, mix with the basic medium to make a suspension for ejection.
続いて、マウス301の頭部を剃毛し、麻酔処理を行ったマウス301を固定装置で固定し、図3(a)のように穿孔装置103により、アライメントマークを印す。穿孔装置103にはCO2レーザ(キーエンス製ML-X9650)を使用する。レーザパワーは、24Wで、ワーキングディスタンスは92mmとする。スポット径は約80μmとする。レーザの走査には、CO2レーザに搭載されていたガルバノミラーを使用する。 Subsequently, the head of the mouse 301 is shaved, the anesthetized mouse 301 is fixed by a fixing device, and an alignment mark is marked by the punching device 103 as shown in FIG. A CO 2 laser (ML-X9650 manufactured by Keyence) is used for the punching device 103. The laser power is 24 W and the working distance is 92 mm. The spot diameter is about 80 μm. The galvanometer mirror mounted on the CO2 laser is used for laser scanning.
続いて、マウス301の頭部を位置検出器104でスキャンし、マウス頭部の形状を得た後に、穿孔位置及び細胞の吐出位置(xm,ym,zm)を決定し、制御装置101に保存する(図3(b))。頭皮の穿孔位置及び細胞の吐出位置の確認のため、常時アライメントマークに対する座標を確認し、指示値を異なる場合には、駆動装置102を使って位置を補正する。 Subsequently, the head of the mouse 301 is scanned by the position detector 104 to obtain the shape of the mouse head, and then the perforation position and cell ejection position (xm, ym, zm) are determined and stored in the control device 101. (FIG. 3 (b)). In order to confirm the perforation position of the scalp and the ejection position of cells, the coordinates with respect to the alignment mark are always checked, and if the indicated values are different, the position is corrected using the driving device 102.
その後、駆動装置102により穿孔位置に穿孔装置103を移動した後、開口径が0.5mmとなるようガルバノミラーを使ってレーザを走査する(図3(c))。ガルバノミラーの走査速度は500mm/sとする。なお、このとき一つの孔に対してレーザ強度を変えて複数回照射することにより孔を形成してもよい。また、孔の形状は図示例に限定されず、例えば開口部から内部に行くにしたがって幅が大きくなるような形状でもよい。 After that, after moving the punching device 103 to the punching position by the driving device 102, the laser is scanned using the galvanomirror so that the opening diameter becomes 0.5 mm (FIG. 3C). The scanning speed of the galvanometer mirror is 500 mm / s. At this time, one hole may be formed by changing the laser intensity and irradiating the hole a plurality of times. Further, the shape of the hole is not limited to the example shown in the figure, and may be, for example, a shape whose width increases from the opening toward the inside.
開口部の穿孔形状は、形状検出器105のカメラで確認する(図3(d))。また、穿孔の深さは、形状検出器105に付属したレーザ変位計を用いて確認する。このとき、開口部の形状が楕円であったり、穿孔の深さが設定値に達していなかったりする場合には、追加でレーザ照射を行う。この条件下における穿孔速度は3200孔/minとする。 The perforated shape of the opening is confirmed by the camera of the shape detector 105 (FIG. 3 (d)). Further, the depth of perforation is confirmed using a laser displacement meter attached to the shape detector 105. At this time, when the shape of the opening is elliptical or the depth of the perforations does not reach the set value, additional laser irradiation is performed. The perforation rate under this condition is 3200 holes / min.
その後、駆動装置102を使って吐出装置106を吐出位置に移動する。細胞の吐出装置106としては、Jet Spotter(武蔵エンジニアリング製)を使用する。細胞の大きさを考慮し、ノズル径は150μmのものを使用する。吐出量は、穿孔部の体積を考慮し、30nLを1滴で吐出する(図3(e))。細胞を含む懸濁液の濃度は、30nL中に5000個の細胞を含むよう濃度調整を行う。また、ノズル内で細胞が沈降してしまわないように、適度なタイミングでバブリングによる攪拌を行う。 Then, the driving device 102 is used to move the ejection device 106 to the ejection position. As the cell ejection device 106, Jet Spotter (manufactured by Musashi Engineering) is used. Considering the size of cells, a nozzle having a diameter of 150 μm is used. As for the ejection amount, 30 nL is ejected as one droplet in consideration of the volume of the perforated portion (FIG. 3 (e)). The concentration of the suspension containing cells is adjusted so that 5000 cells are contained in 30 nL. Further, stirring is performed by bubbling at an appropriate timing so that the cells do not settle in the nozzle.
細胞の吐出の際、穿孔装置103とのアライメントを行うため、形状検出器105により事前に穿孔部の映像を取得しておき、制御装置101に記録されている穿孔装置103との位置(x,y,z)を確認してから吐出を行う。吐出が適切に行われたかの確認は、形状検出器105により行う。アライメントも合わせた吐出速度は、約3000孔/minであり、穿孔速度とほぼ同等の速度が得られることを確認する。 In order to perform alignment with the perforation device 103 when ejecting cells, an image of the perforation portion is acquired in advance by the shape detector 105, and the position (x n with respect to the perforation device 103 recorded in the control device 101 is recorded. , Y n , z n ) is confirmed before discharging. The shape detector 105 confirms whether the ejection is properly performed. The ejection speed including alignment is about 3000 holes / min, and it is confirmed that a speed almost equal to the perforation speed can be obtained.
その後、図3(c)~図3(e)に示される、レーザによる穿孔と細胞の吐出を繰り返す。本実施例では、頭皮の穿孔後すぐさま細胞の吐出を行う。なお、両者のインターバルは0.1秒以下にすることにより、体液の浸み出しの影響を最小限に抑えることができる。制御装置101に保存されている座標が最終座標(x,y,z)に到達したら、施術を終了する。 After that, laser perforation and cell ejection shown in FIGS. 3C to 3E are repeated. In this example, cells are immediately discharged after perforation of the scalp. By setting the interval between the two to 0.1 seconds or less, the influence of the exudation of body fluid can be minimized. Coordinates that are stored in the control unit 101 is the final coordinates (x n, y n, z n) when it reaches the ends of the treatment.
細胞注入後、マウスの頭皮穿孔内で間葉系幹細胞及び上皮系間細胞の培養を行う(図3(f))。3週間後に処置部を観察すると、発毛を確認することができる。また、合わせて毛周期も確認することができる。 After the cell injection, the mesenchymal stem cells and the epithelial interstitial cells are cultured within the perforated scalp of the mouse (FIG. 3 (f)). When the treated area is observed after 3 weeks, hair growth can be confirmed. In addition, the hair cycle can also be confirmed.
<第2実施例>
第2実施例では、穿孔装置103をEr:YAGレーザに変更し、第1実施例と同様の処理を行う。CO2レーザと比較してEr:YAGレーザの方が水に対する吸収が高く、穿孔速度の向上が期待できる。レーザの照射条件は、CO2レーザと同じく、レーザパワーは24Wで、ワーキングディスタンスを92mmとする。また、ガルバノミラーの走査速度は500mm/sとする。その結果、穿孔速度は3500孔/minとCO2レーザに比較して早く穿孔することができ、また頭皮表面、穿孔内部へのダメージを低減することもできる。
<Second embodiment>
In the second embodiment, the punching device 103 is changed to an Er: YAG laser and the same processing as in the first embodiment is performed. Compared with the CO2 laser, the Er: YAG laser has a higher absorption of water and can be expected to improve the drilling speed. As with the CO2 laser, the laser irradiation conditions are a laser power of 24 W and a working distance of 92 mm. Further, the scanning speed of the galvanometer mirror is set to 500 mm / s. As a result, the perforation speed is 3500 holes / min, which is faster than that of the CO 2 laser, and the damage to the scalp surface and the inside of the perforations can be reduced.
(その他の実施形態)
本明細書の開示は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
(Other embodiments)
The disclosure of the present specification provides a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus provide the program. Can also be realized by a process of reading and executing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
上述の各実施形態における加工装置は、単体の装置として実現してもよいし、複数の装置を互いに通信可能に組合せて上述の処理を実行する形態としてもよく、いずれも本発明の実施形態に含まれる。共通のサーバ装置あるいはサーバ群で、上述の処理を実行することとしてもよい。加工装置および加工システムを構成する複数の装置は所定の通信レートで通信可能であればよく、また同一の施設内あるいは同一の国に存在することを要しない。 The processing device in each of the above-described embodiments may be realized as a single device, or may be a mode in which a plurality of devices are communicably combined with each other to execute the above-described processing. included. The above-described processing may be executed by a common server device or server group. It suffices that the processing device and the plurality of devices constituting the processing system can communicate at a predetermined communication rate, and they do not have to exist in the same facility or in the same country.
本明細書に開示の実施形態には、前述した実施形態の機能を実現するソフトウェアのプログラムを、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータが該供給されたプログラムのコードを読みだして実行するという形態を含む。 In the embodiments disclosed in the present specification, a software program that realizes the functions of the above-described embodiments is supplied to a system or apparatus, and the computer of the system or apparatus reads out the code of the supplied program. Including the form of executing.
したがって、実施形態に係る処理をコンピュータで実現するために、該コンピュータにインストールされるプログラムコード自体も本発明の実施形態の一つである。また、コンピュータが読みだしたプログラムに含まれる指示に基づき、コンピュータで稼働しているOSなどが、実際の処理の一部又は全部を行い、その処理によっても前述した実施形態の機能が実現され得る。 Therefore, the program code itself installed in the computer to implement the processing according to the embodiment by the computer is also one of the embodiments of the present invention. Further, based on the instructions included in the program read by the computer, the OS or the like running on the computer may perform some or all of the actual processing, and the processing may also realize the functions of the above-described embodiments. ..
また、本明細書の開示は上記実施形態に限定されるものではなく、本明細書の開示の趣旨に基づき種々の変形(各実施例の有機的な組合せを含む)が可能であり、それらを本明細書の開示の範囲から除外するものではない。即ち、上述した各実施例及びその変形例を組み合わせた構成も全て本明細書に開示の実施形態に含まれるものである。 Further, the disclosure of the present specification is not limited to the above-described embodiments, and various modifications (including organic combinations of the examples) are possible based on the gist of the disclosure of the present specification. It is not excluded from the scope of the disclosure herein. That is, all configurations that combine the above-described examples and the modifications thereof are also included in the embodiments disclosed in the present specification.
本願は、2018年10月31日提出の日本国特許出願特願2018-205558を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 The present application claims priority based on Japanese Patent Application No. 2018-205558 filed on Oct. 31, 2018, and the entire content of the description is incorporated herein.

Claims (20)

  1. 生体の皮膚に対しレーザ光を照射して孔を穿孔する穿孔部と、
    前記孔に対し細胞を含む液滴を吐出する吐出部と、
    を備えることを特徴とする加工装置。
    A perforation part that irradiates the skin of a living body with a laser beam to perforate a hole,
    A discharge unit that discharges a droplet containing cells to the hole,
    A processing device comprising:
  2. 前記穿孔部は、前記皮膚の表皮および真皮の一部を除去することで一つの孔を形成することを特徴とする請求項1に記載の加工装置。 The processing device according to claim 1, wherein the perforated portion forms one hole by removing a part of the epidermis and the dermis of the skin.
  3. 前記吐出部は、前記孔に対し間葉系細胞と上皮系細胞とを含む液滴を吐出することを特徴とする請求項1または2に記載の加工装置。 The processing device according to claim 1, wherein the ejection unit ejects droplets containing mesenchymal cells and epithelial cells to the holes.
  4. 前記吐出部は、前記孔に対し前記間葉系細胞を含む液滴と前記上皮系細胞を含む液滴とを吐出することを特徴とする請求項3に記載の加工装置。 The processing device according to claim 3, wherein the ejection unit ejects a droplet containing the mesenchymal cells and a droplet containing the epithelial cells to the hole.
  5. 前記孔の位置および形状を検出する検出部と、
    前記穿孔部と前記吐出部と前記検出部と接続され、各部を駆動する駆動部と、
    をさらに備えることを特徴とする請求項1乃至4のいずれか1項に記載の加工装置。
    A detection unit for detecting the position and shape of the hole,
    A drive unit that is connected to the perforation unit, the discharge unit, and the detection unit, and drives each unit,
    The processing apparatus according to any one of claims 1 to 4, further comprising:
  6. 前記検出部は、前記孔の中に前記吐出部から吐出された前記液滴が有るか否かを検出することを特徴とする請求項5に記載の加工装置。 The processing device according to claim 5, wherein the detection unit detects whether or not the droplet discharged from the discharge unit is present in the hole.
  7. 前記穿孔部は、CO2レーザ、Er:YAGレーザ、Nd:YAGレーザ、Arレーザ、KTPレーザおよびダイオードレーザのうちいずれか1つである請求項1乃至6のいずれか1項に記載の加工装置。 The processing device according to any one of claims 1 to 6, wherein the perforated portion is any one of a CO2 laser, an Er: YAG laser, an Nd: YAG laser, an Ar laser, a KTP laser, and a diode laser.
  8. 前記吐出部は、サーマル式インクジェットヘッド、圧電式インクジェットヘッド、静電式インクジェット、圧空式ジェットディスペンサのうちいずれか1つであることを特徴とする請求項1乃至7のいずれか1項に記載の加工装置。 8. The ejection unit is any one of a thermal inkjet head, a piezoelectric inkjet head, an electrostatic inkjet, and a compressed air jet dispenser, according to any one of claims 1 to 7. Processing equipment.
  9. 前記吐出部は、前記穿孔部により1つの孔が穿孔された後に、前記孔に対して前記液滴を吐出することを特徴とする請求項1乃至8のいずれか1項に記載の加工装置。 9. The processing apparatus according to claim 1, wherein the ejection unit ejects the droplet into the hole after one hole is perforated by the perforation unit.
  10. 前記吐出部は、前記穿孔部により複数の孔を穿孔された後に、前記複数の孔に対して前記液滴を吐出することを特徴とする請求項1乃至8のいずれか1項に記載の加工装置。 9. The processing according to claim 1, wherein the ejection unit ejects the droplets into the plurality of holes after the plurality of holes are perforated by the perforation unit. apparatus.
  11. 前記穿孔部は、前記複数の孔を同時に穿孔することを特徴とする請求項10に記載の加工装置。 The processing device according to claim 10, wherein the punching portion simultaneously punches the plurality of holes.
  12. 前記吐出部は、前記複数の孔に対して前記液滴を同時に吐出することを特徴とする請求項10または11に記載の加工装置。 The processing apparatus according to claim 10, wherein the ejection unit ejects the droplets simultaneously to the plurality of holes.
  13. 前記吐出部は、前記検出部が前記孔の中に前記液滴が無いと検出した場合に前記孔の中に存在する液滴量が増加するように液滴を吐出することを特徴とする請求項12に記載の加工装置。 The ejecting unit ejects the droplet so that the amount of the droplet existing in the hole increases when the detecting unit detects that the droplet does not exist in the hole. Item 12. The processing device according to item 12.
  14. 生体の皮膚に対しレーザ光を照射して孔を穿孔する穿孔部と、
    前記孔に対し細胞を含む液滴を吐出する吐出部と、
    前記孔の位置および形状を検出する検出部と、
    前記穿孔部と前記吐出部と前記検出部と接続され、各部を駆動する駆動部と、
    を備える加工装置と、
    前記穿孔部と前記吐出部と前記検出部と前記駆動部の処理を制御する制御部と、
    前記生体を固定する固定部と、
    を用いる毛包を形成するための加工システム。
    A perforation part that irradiates the skin of a living body with a laser beam to perforate a hole,
    A discharge unit that discharges a droplet containing cells to the hole,
    A detection unit for detecting the position and shape of the hole,
    A drive unit that is connected to the perforation unit, the discharge unit, and the detection unit, and drives each unit,
    A processing device including
    A control unit that controls the processing of the punching unit, the discharge unit, the detection unit, and the drive unit;
    A fixing part for fixing the living body,
    A processing system for forming hair follicles using.
  15. 穿孔部と吐出部とを備えた装置の制御方法であって、
    前記穿孔部により生体の皮膚に対しレーザ光を照射して孔を穿孔する穿孔工程と、
    前記吐出部により前記孔に対し細胞を含む液滴を吐出する吐出工程と、
    を備えることを特徴とする制御方法。
    A method for controlling an apparatus including a perforation unit and a discharge unit,
    A perforation step of perforating a hole by irradiating the skin of the living body with a laser beam by the perforation section,
    A discharging step of discharging a droplet containing cells from the discharging section to the hole;
    A control method comprising:
  16. 前記穿孔工程は、前記皮膚の表皮および一部の真皮を除去することで一つの孔を形成することを特徴とする請求項15に記載の制御方法。 The control method according to claim 15, wherein the perforation step forms one hole by removing the epidermis and a part of the dermis of the skin.
  17. 前記吐出工程は、前記孔に対し間葉系細胞と上皮系細胞とを含む液滴を吐出することを特徴とする請求項15または16に記載の制御方法。 The control method according to claim 15 or 16, wherein in the discharging step, a droplet containing mesenchymal cells and epithelial cells is discharged into the hole.
  18. 一連の処理が完了するまでの時間において、前記穿孔工程と前記吐出工程を並行して行う時間を有することを特徴とする請求項15乃至17のいずれか1項に記載の制御方法。 The control method according to any one of claims 15 to 17, wherein the control method has a time for performing the punching step and the discharging step in parallel in a time until a series of processing is completed.
  19. 穿孔部と吐出部とを備えた装置の制御方法であって、
    前記穿孔部を制御することにより頭皮にレーザ光を照射して孔を穿孔する穿孔工程と、
    前記吐出部を制御することにより前記孔に対し間葉系細胞と上皮系細胞とを含む液滴を吐出する吐出工程と、
    を備える毛包を形成するための制御方法。
    A method for controlling an apparatus including a perforation unit and a discharge unit,
    A piercing step of irradiating a laser beam to the scalp by controlling the piercing portion to pierce the hole,
    A discharging step of discharging droplets containing mesenchymal cells and epithelial cells to the holes by controlling the discharging section,
    A control method for forming a hair follicle comprising:
  20. 請求項1乃至13のいずれか1項に記載の加工装置に含まれる各装置をコンピュータに実行させることを特徴とするプログラム。 A program for causing a computer to execute each device included in the processing device according to any one of claims 1 to 13.
PCT/JP2019/041908 2018-10-31 2019-10-25 Processing device, control method, and program WO2020090654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018205558A JP2020069117A (en) 2018-10-31 2018-10-31 Processing device, control method and program
JP2018-205558 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090654A1 true WO2020090654A1 (en) 2020-05-07

Family

ID=70464440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041908 WO2020090654A1 (en) 2018-10-31 2019-10-25 Processing device, control method, and program

Country Status (2)

Country Link
JP (1) JP2020069117A (en)
WO (1) WO2020090654A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516006A (en) * 2003-01-16 2006-06-15 ベクトン・ディキンソン・アンド・カンパニー Intradermal cell delivery using a fine gauge microcannula
US20110130706A1 (en) * 2009-11-19 2011-06-02 Follica, Inc. Sequential body surface treatment
JP2013523732A (en) * 2010-03-29 2013-06-17 フォリカ、インク. Combination therapy
JP2014500275A (en) * 2010-12-06 2014-01-09 フォリカ,インコーポレイテッド Methods for treating baldness and for promoting hair growth
WO2016042722A1 (en) * 2014-09-17 2016-03-24 パナソニックIpマネジメント株式会社 Inkjet head and inkjet device
WO2017073625A1 (en) * 2015-10-30 2017-05-04 国立大学法人横浜国立大学 Regenerated hair follicle primordium aggregation manufacturing method, hair follicle tissue-containing sheet, and method for manufacturing hair follicle tissue-containing sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516006A (en) * 2003-01-16 2006-06-15 ベクトン・ディキンソン・アンド・カンパニー Intradermal cell delivery using a fine gauge microcannula
US20110130706A1 (en) * 2009-11-19 2011-06-02 Follica, Inc. Sequential body surface treatment
JP2013523732A (en) * 2010-03-29 2013-06-17 フォリカ、インク. Combination therapy
JP2014500275A (en) * 2010-12-06 2014-01-09 フォリカ,インコーポレイテッド Methods for treating baldness and for promoting hair growth
WO2016042722A1 (en) * 2014-09-17 2016-03-24 パナソニックIpマネジメント株式会社 Inkjet head and inkjet device
WO2017073625A1 (en) * 2015-10-30 2017-05-04 国立大学法人横浜国立大学 Regenerated hair follicle primordium aggregation manufacturing method, hair follicle tissue-containing sheet, and method for manufacturing hair follicle tissue-containing sheet

Also Published As

Publication number Publication date
JP2020069117A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP5063586B2 (en) Laser drilling device
US6533774B1 (en) Laser depilation apparatus
EP2219547B1 (en) Laser device for ablating biological tissue
JP4117846B2 (en) Hair removal equipment
US10569098B2 (en) Therapy system for transcutaneous in-vivo tissue engineering
EP1090600B1 (en) Electromagnetically induced cutting with atomized fluid particles for dermatological applications
US20230104221A1 (en) Rejuvenating laser drilling apparatus
WO2020090654A1 (en) Processing device, control method, and program
WO2007103890A2 (en) Device and method of minimally invasive tattooing and tattoo removal
KR100818124B1 (en) A laser apparatus for hair-growing prmotion
WO2020090637A1 (en) Processing device and processing method
WO2020170814A1 (en) Treatment device, treatment method, and program
JP2022041134A (en) Processing apparatus, control method therefor and program
JP2021078640A (en) Pulse irradiation method and pulse irradiation apparatus
KR102539314B1 (en) System and method for laser treatment based on skin lesion shape
WO2020090226A1 (en) Discharge control device, discharge device, discharge method, and program
KR102183161B1 (en) Laser Beam Device
CN114192507A (en) Bird&#39;s nest rapid unhairing system based on photothermal decomposition technology and implementation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880195

Country of ref document: EP

Kind code of ref document: A1