WO2020090374A1 - エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラム - Google Patents

エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラム Download PDF

Info

Publication number
WO2020090374A1
WO2020090374A1 PCT/JP2019/039601 JP2019039601W WO2020090374A1 WO 2020090374 A1 WO2020090374 A1 WO 2020090374A1 JP 2019039601 W JP2019039601 W JP 2019039601W WO 2020090374 A1 WO2020090374 A1 WO 2020090374A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
state
unit
supply unit
control unit
Prior art date
Application number
PCT/JP2019/039601
Other languages
English (en)
French (fr)
Inventor
剛志 赤尾
山田 学
寛 手塚
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018203938A external-priority patent/JP6522220B1/ja
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to EP19880189.6A priority Critical patent/EP3874982A4/en
Publication of WO2020090374A1 publication Critical patent/WO2020090374A1/ja
Priority to US17/236,457 priority patent/US20210235767A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/60Devices with integrated user interfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/042Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3375Acoustical, e.g. ultrasonic, measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8237Charging means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply unit of an aerosol generation device, a control method of the power supply unit of the aerosol generation device, and a program for a power supply unit of the aerosol generation device.
  • An aerosol generation device in which an aerosol source is atomized by an electric load such as a heater, and a user can taste the generated aerosol.
  • Patent Document 1 discloses a technique of supplying electric power to a heater when a suction operation by a user is detected based on the output of a sensor that measures the amount of air flowing in the device.
  • Patent Document 2 discloses a technique of adjusting the electric power value supplied to the heater based on the output of a sensor that measures the velocity of the air flowing in the device.
  • the above-mentioned aerosol generator has a built-in power source such as a battery as a power source.
  • Patent Document 3 discloses a technique of activating an indicator for notifying that the power supply needs to be replaced when the power supply voltage becomes lower than the threshold voltage.
  • Patent Document 4 discloses a technique for adjusting the luminous intensity of illumination according to the power source level.
  • Patent Document 5 discloses a technique of causing a light emitting element to emit light when a smoking act is performed using an electronic cigarette.
  • Patent Document 6 discloses a technique of causing LEDs to emit light in different colors depending on the remaining amount of power.
  • the sensor that detects the user's suction action may have problems due to deterioration over time.
  • the aerosol source may be atomized by the aerosol generation device and the aerosol source may be wasted. .. Therefore, when a sensor malfunctions, it is desired to detect the occurrence of the malfunction.
  • Patent Documents 1 and 2 are techniques that control the supply of electric power to the heater according to the output value of the sensor, and do not consider detecting a malfunction of the sensor.
  • the present invention has been made in view of the above circumstances, and is a power supply unit of an aerosol generation device capable of detecting the occurrence of a defect in a sensor, a control method of the power supply unit of the aerosol generation device, and a power supply unit of the aerosol generation device.
  • the first purpose is to provide an application program.
  • the power supply may have problems due to deterioration over time.
  • the present invention has been made in view of the above circumstances, and a power supply unit of an aerosol generation device, a control method of an aerosol generation device, a program, and an inhaler capable of easily grasping the content or the cause of a defect in a power supply.
  • a second object is to provide a power supply unit of
  • the power supply unit of the aerosol generation apparatus is a first sensor that detects an aerosol generation request and a second sensor, and that responds to an electrical change of the first sensor. Control that detects whether the state of the first sensor is a normal state or an abnormal state, based on the second sensor that outputs a value that changes in the second sensor And a section.
  • the value when the control unit detects the normal state may be different from the value when the control unit detects the abnormal state.
  • the abnormal state may be a state in which the aerosol source is not atomized by the atomization unit that receives power supply from the power supply unit due to a malfunction that has occurred in the first sensor.
  • the normal state may be a state in which the aerosol source can be atomized by the atomization unit that receives power supply from the power supply unit.
  • the value output from the second sensor is the value of the voltage applied to the second sensor that changes according to the change in the voltage applied to the first sensor
  • the control unit is It is also possible to detect whether the state of the first sensor is the normal state or the abnormal state based on the value of the voltage.
  • the second sensor may be a PTC thermistor.
  • the value output from the second sensor is the value of the current flowing through the second sensor that changes according to the change in the current flowing through the first sensor, and the control unit Based on the value, it may be detected whether the state of the first sensor is the normal state or the abnormal state.
  • the power supply unit may further include a notification unit, and when the control unit detects the abnormal state, the control unit may notify the notification unit to that effect.
  • the control unit may transition the power supply unit from the active state to the hibernate state when the abnormal state is detected.
  • the power supply unit may further include a storage unit, and the storage unit may store information indicating the number of times the control unit has detected the abnormal state.
  • the storage unit may further store information indicating the content of the abnormal state detected by the control unit.
  • the control unit When the controller detects the instruction to transition the power supply unit to the active state, the control unit does not transition the power supply unit to the active state when the number of times is equal to or more than a predetermined threshold, and the number of times is the predetermined threshold. If less, the power supply unit may be transitioned to the active state.
  • the control unit may detect whether the state of the first sensor is the normal state or the abnormal state when the power supply unit is in the active state.
  • a method for controlling a power supply unit of an aerosol generation device obtains a value in a second sensor that changes according to an electrical change in a first sensor that detects an aerosol generation request. And a step of detecting whether the state of the first sensor is a normal state or an abnormal state based on the value.
  • the program for the power supply unit of the aerosol generating apparatus causes the computer to set the value in the second sensor that changes according to the electrical change of the first sensor that detects the aerosol generating request.
  • a process of acquiring and a process of detecting whether the state of the first sensor is a normal state or an abnormal state are executed based on the value.
  • the power supply unit of the aerosol generating apparatus is in a normal state or in a defective state, based on a power supply, a notification unit, and an operation value related to the operation of the power supply.
  • the notification unit is caused to perform notification according to the type of the defective state at the first timing, and the timing at which the suction operation by the user is detected or the aerosol generation apparatus.
  • a control unit configured to cause the notification unit to make a notification according to the type of the defect state at a second timing that is a timing at which the state transitions to the active state.
  • the failure status may include multiple failure statuses.
  • the control unit may generate a plurality of types of error signals according to the plurality of defect states.
  • the control unit may cause the notification unit to notify in a manner according to the type of the error signal.
  • the control unit may cause the notification unit to generate light in a mode according to the type of the error signal.
  • the control unit may cause the notification unit to generate a vibration in a mode according to the type of the error signal.
  • the control unit may cause the notification unit to generate a sound in a mode according to the type of the error signal.
  • the control unit may cause the notification unit to notify the failure state at a plurality of timings when the failure state is detected.
  • the first timing may be at the time of detecting the defective state.
  • the second timing may be after the detection of the defective state.
  • the number of elements in the power supply unit to which power is supplied from the power supply at the first timing may be larger than the number of elements in the power supply unit to which power is supplied from the power supply at the second timing.
  • the second timing may be a timing at which an instruction to transition the aerosol generation device to a power-on state is detected.
  • the second timing may be a timing at which the suction operation is detected by the sensor unit.
  • the control unit may control power consumption required for notification of the defective state at the second timing to be smaller than power consumption required for notification of the defective state at the first timing.
  • the failure status may include a plurality of failure statuses, and an importance level may be set for each of the plurality of failure statuses.
  • the control unit may cause the notification unit to notify the defective state only at the first timing of the defective state in which the importance is lower than a predetermined level.
  • the failure status may include a plurality of failure statuses, and an importance level may be set for each of the plurality of failure statuses.
  • the power consumption may be higher as the notification of the failure state that is set to have higher importance.
  • the failure status may include a plurality of failure statuses, and an importance level may be set for each of the plurality of failure statuses.
  • the control unit may change the mode of the notification according to the degree of importance set in the defective state.
  • the operation value may include the voltage value of the power supply.
  • the control unit detects that the amount of decrease in the voltage value of the power source per predetermined time is equal to or more than a first threshold value during charging of the power source based on the operation value, the state of the power source is the It may be determined that there is a defect.
  • the operation value may include the voltage value of the power supply. Based on the operation value, the control unit detects that the time required for the voltage value of the power supply to reach from the lower limit to the upper limit of the first voltage range is less than or equal to the second threshold value during charging of the power supply. In this case, it may be determined that the state of the power source is the defective state.
  • the first voltage range may be included in a voltage range equal to or higher than a discharge cutoff voltage of the power supply.
  • the operation value may include the voltage value of the power supply.
  • the control unit Based on the operation value, the control unit detects that the time required for the voltage value of the power supply to reach from the lower limit to the upper limit of the second voltage range is equal to or greater than the third threshold value during charging of the power supply. In this case, it may be determined that the state of the power source is the defective state.
  • the second voltage range may be included in a voltage range that is less than the discharge cutoff voltage of the power supply.
  • the operation value may include the total charging time of the power supply.
  • the control unit may determine that the state of the power source is the defective state when detecting that the total charging time of the power source is equal to or greater than a fourth threshold value based on the operation value.
  • the operating value may include the temperature of the power supply.
  • the control unit may determine that the state of the power supply is the defective state based on the operation value when the temperature of the power supply is equal to or higher than a fifth threshold value.
  • the notification unit When the control unit detects that the reduction amount of the voltage value of the power supply per the predetermined time is equal to or more than the first threshold value during charging of the power supply, the notification unit is notified of an internal short circuit in the power supply.
  • the notification unit When it is detected that the time required for the voltage value of the power supply to reach from the lower limit to the upper limit of the first voltage range is less than or equal to the second threshold value during the charging of the power supply, , The notification unit is notified that the capacity of the power source has deteriorated, and the time required for the voltage value of the power source to reach from the lower limit to the upper limit of the second voltage range during charging of the power source.
  • the notification unit detects that the power supply is deteriorated due to over-discharging, and detects that the total charging time of the power supply is the fourth threshold or more.
  • the power supply to the There is notified that reached the end of its life, when the temperature of the power supply is not less than the fifth threshold value, it
  • the control unit may prohibit charging and discharging of the power supply when it is determined that the power supply is in the defective state.
  • the failure state may include a state in which the power source has deteriorated and / or a state in which the power source has failed.
  • a control method of an aerosol generating apparatus is to determine whether the state of the power source is a normal state or a defective state based on an operation value related to the operation of the power source, When a state is detected, a notification according to the type of the defective state is performed at the first timing, and the timing at which the suction operation by the user is detected or the timing at which the aerosol generation device transits to the active state is determined. The notification according to the type of the defective state at the timing of.
  • the program according to the second embodiment of the present invention causes a computer to perform processing for determining whether the power supply state is a normal state or a defective state based on an operation value related to the operation of a power source, If detected, the first timing is notified according to the type of the defective state, and the second timing is the timing at which the suction operation by the user is detected or the timing at which the aerosol generation device transits to the active state. Then, a process of giving a notification according to the type of the defect state is executed.
  • the power supply unit of the suction device determines whether the power supply is in a normal state or a defective state based on the power supply, the notification unit, and the operation value related to the operation of the power supply.
  • the notification unit is caused to perform notification according to the type of the defective state at the first timing, and the timing when the suction operation by the user is detected or the suction device is activated.
  • a control unit configured to cause the notification unit to make a notification according to the type of the defective state at a second timing that is a timing at which the state is changed.
  • the control method of the power supply unit of the aerosol generation device, and the program for the power supply unit of the aerosol generation device according to the first embodiment of the present invention it is possible to detect the occurrence of a defect in the sensor. it can.
  • the content or cause of the failure in the power supply can be easily grasped. be able to.
  • the block diagram which shows an example of a schematic structure of the aerosol production
  • the figure which shows an example of the circuit structure of the sensor part which concerns on the 1st Embodiment of this invention.
  • the figure which shows an example of the resistance temperature characteristic of the PTC thermistor which concerns on the 1st Embodiment of this invention.
  • the flowchart which shows an example explaining the state detection process which concerns on the 1st Embodiment of this invention.
  • the flowchart which shows another example explaining the state detection process which concerns on the 1st Embodiment of this invention.
  • the block diagram which shows an example of a schematic structure of the aerosol production
  • the block diagram which shows an example of a structure of the aerosol production
  • FIG. 6 is a graph for explaining a third example of the defect detection processing by the control unit according to the second embodiment of the present invention.
  • the flowchart which shows the example of the 2nd example of a defect state detection process, and the defect notification process regarding the said process.
  • the aerosol generation device 1 according to the present embodiment is, for example, a heating type cigarette or an electronic cigarette.
  • the aerosol generation device 1 according to the present embodiment may be an aerosol generation device of another type or application such as a nebulizer.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of an aerosol generating apparatus 1 according to this embodiment.
  • the aerosol generation device 1 includes a cartridge unit 100, a capsule unit 200, and a power supply unit 300.
  • the aerosol generation device 1 is configured, for example, in a substantially cylindrical shape, and a user can easily hold the aerosol generation device 1.
  • the cartridge unit 100, the capsule unit 200, and the power supply unit 300 may be configured to be non-detachable or removable.
  • the cartridge unit 100 includes a storage section 110, a supply section 120, and an atomization section 140 including a load 130.
  • the storage unit 110 is a container that stores a liquid aerosol source that is atomized by heating.
  • the aerosol source is, for example, a polyol-based material such as glycerin or propylene glycol. Further, the aerosol source may be a mixed liquid containing nicotine liquid, water, a fragrance and the like. Alternatively, the aerosol source may be a solid that does not require reservoir 110.
  • the supply unit 120 is a wick formed by twisting a fiber material such as glass fiber. One end of the supply unit 120 is connected to the storage unit 110. Further, the other end of the supply unit 120 is connected to the load 130 or arranged near the load 130. With such a configuration, the supply unit 120 can guide the aerosol source sucked from the storage unit 110 to the load 130 or the vicinity thereof. A wick made of porous ceramic may be used for the supply unit 120.
  • the load 130 provided in the atomizing unit 140 is, for example, a coil heater, and generates heat when electric power is supplied.
  • the load 130 may be wound around the supply unit 120 or may be covered by the supply unit 120.
  • Electric power is supplied to the load 130 from the power supply unit 320, which will be described later, under the control of the control unit 340, which will be described later, included in the power supply unit 300.
  • the aerosol source guided by the supply unit 120 is heated by the load 130 to generate an aerosol.
  • the capsule unit 200 includes a flavor source 210, as shown in FIG.
  • the flavor source 210 is composed of a raw material piece of a plant material that imparts a flavor component to an aerosol.
  • a raw material piece constituting the flavor source for example, a molded body obtained by molding a material such as chopped tobacco or a tobacco raw material into a granular or sheet shape is used.
  • plants other than tobacco for example, mint, herbs, etc.
  • the flavor source 210 may be provided with a flavor such as menthol.
  • Arrows in FIG. 1 indicate the flow of air in the cartridge unit 100 and the capsule unit 200.
  • the air taken in from the outside through an air intake (not shown) is mixed with the aerosol in the process of passing through the inside of the aerosol generation apparatus 1 (the cartridge unit 100 and the capsule unit 200), and a flavor component is added. , Sucked by the user.
  • the air taken in from the outside passes through the atomizing unit 140 in the cartridge unit 100.
  • the air passes through the atomizing unit 140, the air is mixed with the aerosol generated by the load 130 included in the atomizing unit 140.
  • the flavor component derived from the flavor source 210 contained in the capsule unit 200 is added to the air mixed with the aerosol.
  • the air mixed with the aerosol and added with the flavor component is sucked by the user from the end portion of the capsule unit 200. That is, the aerosol to which the flavor component is added is inhaled by the user.
  • the power supply unit 300 includes a power button 310, a power supply unit 320, a sensor unit 330, a control unit 340, a storage unit 350, and a notification unit 360.
  • the power button 310 is a button for changing the operating state of the aerosol generation device 1.
  • the state of the aerosol generation apparatus 1 becomes the active state described later.
  • the power button 310 is pressed and the power is turned off while the aerosol generation apparatus 1 is in the active state, the state of the aerosol generation apparatus 1 transits from the active state to a sleep state described later.
  • the state of the aerosol generation apparatus 1 is active and the state of the battery unit 300 is active. Moreover, the state of the aerosol generation apparatus 1 being in a rest state is synonymous with the state of the battery unit 300 being in a rest state.
  • the power supply unit 320 is, for example, a rechargeable battery such as a lithium ion secondary battery, and its type is not limited.
  • the power supply unit 320 supplies electric power to each unit of the aerosol generation apparatus 1 under the control of the control unit 340.
  • the sensor unit 330 has at least a function of detecting a suction operation by the user (an operation of requesting the aerosol generation apparatus 1 to generate aerosol), and a function of detecting a defect such as the detection function.
  • the sensor unit 330 includes a microphone capacitor 331 that is a first sensor and a PTC (Positive Temperature Coefficient) thermistor 332 that is a second sensor.
  • the microphone condenser 331 detects the suction operation by the user.
  • the PTC thermistor 332 has a function (hereinafter, referred to as “overcurrent protection function”) of preventing an excessive current from flowing when an excessive current is attempted to flow to each element or the like that configures the sensor unit 330. ..
  • the details of the sensor unit 330 will be described later.
  • the control unit 340 causes the aerosol generation device 1 to transit to one of two operation states when the power button 310 is pressed.
  • the two operating states are an active state in which power can be supplied from the power supply unit 320 to each part of the aerosol generation apparatus 1 and no power or only a minimum amount of power can be supplied from the power supply unit 320 to each part of the aerosol generation apparatus 1. With no hibernation.
  • the control unit 340 causes the power supply unit 320 to supply electric power to the load 130 and atomizes the aerosol source when the sensor unit 330 detects the suction operation by the user.
  • the control unit 340 does not cause the power supply unit 320 to supply power to the load 130 even if the user performs the suction operation. Therefore, the aerosol source is not atomized.
  • the power supply from the power supply unit 320 to the load 130 under the control of the control unit 340 is performed when the sensor unit 330 detects the suction operation by the user.
  • the control unit 340 also detects whether the state of the microphone capacitor 331 is a normal state or an abnormal state, based on the voltage value applied to the PTC thermistor 332.
  • the normal state is a state in which there is no problem in the microphone condenser 331 and the microphone condenser 331 can normally detect the suction operation of the user.
  • the normal state is a state in which when the user performs the suction operation, the microphone capacitor 331 detects the suction operation, the power is supplied to the load 130, and the aerosol is generated.
  • the abnormal state is a state in which a problem occurs in the microphone condenser 331 and the microphone condenser 331 cannot normally detect the suction operation of the user.
  • the abnormal state is a state in which the microphone capacitor 331 does not detect the suction operation even when the user performs the suction operation, and the aerosol is not generated.
  • the abnormal state is a state in which the microphone capacitor 331 detects the user's suction operation even though the user does not perform the suction operation, and electric power is supplied to the load 130 to generate an aerosol.
  • the control unit 340 After the power button 310 is pressed and the aerosol generation apparatus 1 transits from the idle state to the active state, the control unit 340 always determines whether the state of the microphone capacitor 331 is the normal state or the abnormal state. The process of detecting (hereinafter, referred to as “state detection process”) is executed. In addition, the control unit 340 does not perform the state detection process when the power button 310 is pressed and the power supply unit 300 transitions from the active state to the hibernate state. Details of the state detection process will be described later.
  • the storage unit 350 is, for example, a non-volatile memory.
  • the storage unit 350 stores various data and programs for operating the aerosol generation apparatus 1.
  • the storage unit 350 stores, for example, a program (or firmware) for executing the state detection process.
  • the storage unit 350 stores information regarding the abnormal state. Specifically, the storage unit 350 stores the details of the malfunction that has occurred in the sensor unit 330.
  • the number of times the control unit 340 detects that the state of the microphone condenser 331 is an abnormal state (hereinafter, referred to as “detection number”) and the number of times the aerosol generation apparatus 1 is in the idle state to the active state are stored.
  • detection number the number of times the control unit 340 detects that the state of the microphone condenser 331 is an abnormal state
  • a limit threshold value that is a value that limits the transition is stored. Details of the number of detections and the limit threshold will be described later.
  • the notification unit 360 is, for example, a light emitting diode.
  • the notification unit 360 emits light under the control of the control unit 340.
  • the control unit 340 detects that the microphone capacitor 331 is in an abnormal state
  • the notification unit 360 emits light under the control of the control unit 340.
  • the color of light emitted from the notification unit 360 may be a cold (blue) system color, a warm (red) system color, or the like, and is not particularly limited.
  • the notification unit 360 may be provided, for example, along the circumferential direction of the upstream end of the power supply unit 300 so that the entire end emits light. Further, for example, the notification unit 360 may be provided along the circumferential direction of the power button 310 and installed so that the periphery of the power button 310 emits light.
  • FIG. 2 is a diagram showing an example of a circuit configuration of the sensor unit 330.
  • the circuit includes a microphone capacitor 331, a PTC thermistor 332, and a P-type MOSFET 333.
  • the power button 310 When the power button 310 is pressed and the aerosol generation apparatus 1 transits from the idle state to the active state, the base voltage is applied and the drain current flows in the P-type MOSFET 333. Then, a current flows through the PTC thermistor 332 and the microphone capacitor 331, and the PTC thermistor 332 and the microphone capacitor 331 are brought into a state in which they can perform the functions respectively provided.
  • FIG. 3 is a diagram showing an example of the configuration of the microphone capacitor 331.
  • the microphone condenser 331 includes a diaphragm 331A that is a metal plate that vibrates due to a change in sound or pressure caused by a user's suction operation, and a back plate 331B that is a fixed metal plate.
  • a diaphragm 331A that is a metal plate that vibrates due to a change in sound or pressure caused by a user's suction operation
  • a back plate 331B that is a fixed metal plate.
  • 4 and 5 are diagrams for explaining the characteristics of the PTC thermistor 332.
  • FIG. 4 shows an example of resistance-temperature characteristics of the PTC thermistor 332, in which the vertical axis represents resistance value and the horizontal axis represents temperature.
  • the resistance value of the PTC thermistor 332 is a substantially constant value when the temperature of the PTC thermistor 332 is low (for example, about room temperature), but a certain constant temperature (hereinafter, referred to as “A When the value exceeds the “point”, the resistance value rises sharply. Therefore, when the temperature of the PTC thermistor 332 becomes equal to or higher than the temperature at the point A, the PTC thermistor 332 functions so that an excessive current does not flow. That is, the PTC thermistor 332 operates the overcurrent protection function.
  • FIG. 5 shows an example of the voltage-current characteristics of the PTC thermistor 332, where the vertical axis shows the current value and the horizontal axis shows the voltage value.
  • the current value also increases according to Ohm's law up to a certain voltage value, but when it exceeds a certain voltage value (hereinafter referred to as “B point”), the resistance value suddenly increases. , The current value drops.
  • B point a certain voltage value
  • the PTC thermistor 332 functions so that an excessive current does not flow. That is, the PTC thermistor 332 operates the overcurrent protection function.
  • the voltage value applied to the PTC thermistor 332 is affected by the electrical change in the microphone capacitor 331. Therefore, when the voltage value of the PTC thermistor 332 exceeds the value of the point B, it means that the microphone capacitor 331 has a problem of trying to pass an excessive current. The defect is, for example, a short circuit in the microphone capacitor 331.
  • the influence of electrical changes in the microphone capacitor 331 includes changes in the voltage value applied to the microphone capacitor 331 and changes in the current value flowing in the microphone capacitor 331.
  • control unit 340 acquires the voltage value applied to the PTC thermistor 332, for example, by the output from the PTC thermistor 332. Then, control unit 340 detects whether the state of microphone capacitor 331 is a normal state or an abnormal state by comparing the voltage value with a preset voltage threshold value of point B or higher. Specifically, when the voltage value applied to PTC thermistor 332 is equal to or higher than the voltage threshold value described above, control unit 340 detects that microphone capacitor 331 is in an abnormal state. That is, the control unit 340 detects that a malfunction (short circuit) has occurred in the microphone capacitor 331.
  • FIG. 6 is a flowchart illustrating an example of a state detection process executed by the control unit 340.
  • the control unit 340 determines whether or not the power button 310 has been pressed when the aerosol generation device 1 is in the idle state (ST101). When it is determined that the power button 310 is not pressed (ST101: NO), the process of step ST101 is executed again. That is, the state of the aerosol suction device 1 is in the rest state until the power button 310 is pressed.
  • control unit 340 changes the state of the aerosol generation apparatus 1 from the dormant state to the active state (ST102).
  • control unit 340 detects whether the state of microphone capacitor 331 is in an abnormal state (ST103). As described above, the control unit 340 detects whether the state of the microphone capacitor 331 is the normal state or the abnormal state based on the comparison between the voltage value applied to the PTC thermistor 332 and the voltage threshold value. To do. Therefore, the voltage value applied to the PTC thermistor 332 detected by the control unit 340 as the normal state and the voltage value applied to the PTC thermistor 332 detected as the abnormal state by the control unit 340 are different values.
  • step ST103 When the control unit 340 detects that the microphone capacitor 331 is in the normal state (ST103: NO), the process of step ST103 is executed again. That is, when the state of the aerosol inhaler 1 is active, the process of detecting the abnormal state of the microphone condenser 331 is always executed. With such a configuration, it is possible to detect defects that have occurred in the microphone capacitor 331 without omission.
  • control unit 340 detects that the state of the microphone capacitor 331 is an abnormal state (ST103: YES)
  • the storage unit 350 stores information on the abnormal state (ST104). Specifically, control unit 340 causes storage unit 350 to store the details of the malfunction that occurred in microphone capacitor 331 (occurrence of a short circuit). In this way, by storing the content of the failure in the storage unit 350, the content of the failure can be easily grasped at a later time when the aerosol generation apparatus 1 is repaired without performing a special inspection. Therefore, the number of steps required for repair can be significantly reduced.
  • the control unit 340 operates the notification unit 360 (ST105). Specifically, the control unit 340 causes the notification unit 360 to emit light. As a result, the user who is using the aerosol generation apparatus 1 can be notified that the microphone condenser 331 is defective.
  • control unit 340 causes the aerosol generation apparatus 1 to transition from the active state to the dormant state (ST106).
  • ST106 dormant state
  • the state of the aerosol suction device 1 is transited to the rest state in which the aerosol is not generated, so that the aerosol generation is possible even though the aerosol cannot be normally generated. It is possible to prevent power from being supplied to each unit of the device 1. That is, waste of power can be prevented.
  • the control unit 340 compares the voltage value applied to the microphone capacitor 331 with the preset voltage threshold value at the point B or higher, and the microphone capacitor 331. It detects whether the state of is a normal state or an abnormal state. Specifically, the control unit 340 detects that the microphone capacitor 331 is in an abnormal state when the voltage value applied to the PTC thermistor 332 is equal to or higher than the voltage threshold value. Therefore, in the aerosol generation apparatus 1 according to the present embodiment, it is possible to detect the occurrence of a malfunction in the sensor that detects the suction operation of the user.
  • a PTC thermistor 332 having an overcurrent protection function is adopted as a configuration for detecting a malfunction of the microphone capacitor 331.
  • a PTC thermistor 332 having an overcurrent protection function is adopted as a configuration for detecting a malfunction of the microphone capacitor 331.
  • the aerosol generation device when a malfunction occurs in the sensor, the malfunction can be detected. Therefore, for example, when the user is not performing the suction operation, the aerosol source is atomized by the aerosol generation device. Therefore, it is possible to prevent the situation where the aerosol source is wasted. That is, the aerosol generation device according to the present embodiment has the effects of resource saving and energy saving.
  • the state detection process executed by the control unit 340 has been described in the example shown in FIG. 6, but the state detection process is not limited to this.
  • the state detection process executed by the control unit 340 may be the example shown in FIG. 7.
  • the flow chart shown in FIG. 7 is different from the flow chart shown in FIG. 6 in that ST201 to ST203 are added and that the process of ST101 is executed again after the process of ST106.
  • ST203 is a process in which the control unit 340 stores, in the storage unit 350, the number of times (the number of times of detection) that the state of the microphone capacitor 331 is detected to be the abnormal state.
  • the control unit 340 reads the information stored in the storage unit 350 when the power button 310 is pressed again in ST101 (ST101: YES) (ST201). Specifically, the control unit 340 reads the number of detections and a limit threshold value that is a threshold value that limits the transition of the aerosol generation apparatus 1 from the idle state to the active state.
  • control section 340 determines whether or not the number of times of detection is less than the limit threshold value (ST202). If the number of detections is less than the limit threshold value (ST202: YES), the process after ST102 is executed. For example, when the number of times of detection is 2 and the limit threshold value is 3, the processing of ST102 and thereafter is executed.
  • the process ends. For example, if the number of detections is 3 and the limit threshold is 3, the process ends. That is, the state of the aerosol generation apparatus 1 will not transit from the rest state to the active state even if the power button 310 is pressed in the future.
  • the reason for controlling the state transition of the aerosol generation apparatus 1 based on the comparison between the number of detections and the limit threshold value is as follows.
  • the microphone condenser 331 may temporarily malfunction due to being wet with the aerosol source leaking from the storage unit 110. Specifically, the diaphragm 331A of the microphone condenser 331 may not normally vibrate due to being wet with the aerosol source, and the microphone condenser 331 may malfunction. Then, control unit 340 may detect that the state of microphone capacitor 331 is an abnormal state, based on the malfunction. The diaphragm 331A often returns to a normal vibrating state when the wetting by the aerosol source is eliminated by drying or the like. That is, malfunctions due to wetting of the aerosol source are often eliminated when the wetting is dry.
  • the aerosol generation device 1 is configured to transition to the active state again when the power button 310 is pressed.
  • the abnormal state of the microphone capacitor 331 is considered to be due to a permanent malfunction such as a short circuit. In this case, the aerosol generator 1 does not transition from the rest state to the active state again.
  • the abnormal state of the microphone capacitor 331 whether the abnormal state is a temporary one caused by the leakage of the aerosol source or a permanent one such as a short circuit. It is determined whether or not there is, and the state transition of the aerosol generation device 1 is controlled based on the determination. Therefore, even though the aerosol generating apparatus 1 does not have a permanent defect, the aerosol generating apparatus 1 is not brought into a state in which it cannot be used, so that convenience in using the aerosol generating apparatus 1 can be improved. it can.
  • FIG. 8 is a block diagram showing an example of a schematic configuration of the aerosol generation apparatus 1 when the current measurement sensor 334 is adopted instead of the PTC thermistor 332.
  • the same components as those in FIG. 1 are designated by the same reference numerals.
  • the value output from the current measurement sensor 334 to the control unit 340 is supplied to the current measurement sensor 334 that changes according to the electrical change in the microphone capacitor 331. It becomes the value of the flowing current.
  • control unit 340 detects whether the state of microphone capacitor 331 is a normal state or an abnormal state, based on the value of the current. Specifically, the control unit 340 compares the value of the current with a predetermined current threshold value, and when the value of the current is equal to or more than the current threshold value, the microphone capacitor 331 has a defect (short circuit) such as a short circuit. Detect.
  • the aerosol generation device 1 has been described as generating aerosol according to the suction operation of the user, but the configuration of the aerosol generation device 1 is not limited to this.
  • the aerosol generation device 1 may be configured to generate invisible vapor according to the suction operation of the user. Even with this configuration, the same effects as those of the above-described embodiment can be obtained.
  • the notification unit 360 has been described as emitting light under the control of the control unit 340, but the configuration of the notification unit 360 is not limited to this.
  • the notification unit 360 may be configured to vibrate in a predetermined vibration pattern or may be configured to output a predetermined sound when the control unit 340 detects an abnormal state of the microphone capacitor 331. May be.
  • the notification unit 360 may make a notification by combining them.
  • the notification unit 360 may make a notification that combines light and vibration, or may make a notification that combines light, vibration, and sound.
  • the aerosol generation device is, for example, an inhaler for a user to inhale the generated aerosol.
  • the inhaler may be a heating type cigarette or an electronic cigarette, but is not limited to this, and may be, for example, a device for inhaling a drug. Note that the inhaler may generate invisible vapor instead of generating aerosol.
  • FIG. 9 is a block diagram showing an example of the configuration of the aerosol generation apparatus 1000 according to this embodiment.
  • the aerosol generation device 1000 includes a cartridge unit 1100, a capsule unit 1200, and a power supply unit 1300.
  • the aerosol generation device 1000 may have, for example, a substantially cylindrical shape, and has a shape that allows a user to easily hold the aerosol generation device 1000.
  • the cartridge unit 1100, the capsule unit 1200, and the power supply unit 1300 may be configured to be non-detachable or removable.
  • the configuration of the cartridge unit 1100 is the same as the configuration of the cartridge unit 100 shown in FIG. 1, so description thereof will be omitted here.
  • the structure of the capsule unit 1200 is the same as the structure of the capsule unit 200 shown in FIG. 1, and therefore the description thereof is omitted here.
  • the power supply unit 1300 includes a power button 1310, a power supply unit 1320, a sensor unit 1330, a storage unit 1340, a notification unit 1350, a control unit 1360, and a time measurement unit 1370. ..
  • the malfunction of the power supply unit 1320 includes, for example, deterioration of the power supply unit 1320 and / or failure of the power supply.
  • the power button 1310 is a button for changing the operation state of the aerosol generation apparatus 1000.
  • the power button 1310 is pressed and the power is turned on, the state of the aerosol generating apparatus 1000 becomes the active state described later.
  • the power button 1310 is pressed to turn off the power when the aerosol generation apparatus 1000 is in the active state, the state of the aerosol generation apparatus 1000 transits from the active state to a sleep state described later.
  • the power supply unit 1320 is, for example, a rechargeable battery such as a lithium ion secondary battery, and its type is not limited.
  • the power supply unit 1320 supplies power to each unit of the aerosol generation apparatus 1000 based on the control of the control unit 1360.
  • the power supply unit 1320 also includes a temperature sensor 1321 such as a thermistor.
  • the temperature sensor 1321 is provided, for example, in the battery pack of the power supply unit 1320.
  • Information indicating the temperature of the power supply unit 1320 measured by the temperature sensor 1321 is stored in the storage unit 1340 by the control unit 1360.
  • the state of the power supply unit 1320 may be a normal state without any trouble or a trouble state in which a trouble has occurred.
  • the sensor unit 1330 is, for example, a sensor that outputs a predetermined output value (for example, a voltage value or a current value) to the control unit 1360 according to the flow rate and / or the flow rate of gas passing through the installation position of the sensor unit 1330. ..
  • a sensor unit 1330 is used to detect a suction operation by the user (an operation of requesting the aerosol generation apparatus 1000 to generate aerosol).
  • Various types of sensors can be used as the sensor unit 1330. For example, a microphone condenser, a pressure sensor, or a fluid sensor is used.
  • the storage unit 1340 is, for example, a non-volatile memory.
  • the storage unit 1340 stores data D1 including various types of information acquired by the control unit 1360.
  • the storage unit 1340 also stores data D2 including various types of information used for the control of the control unit 1360.
  • the storage unit 1340 stores data D3 including various information generated by the control unit 1360.
  • the data D1 stores, for example, information including an operation value regarding the operation of the power supply unit 1320.
  • the data D1 includes information indicating the voltage value of the power supply unit 1320, the total charging time of the power supply unit 1320, and the temperature of the power supply unit 1320.
  • the data D2 includes, for example, various predetermined threshold values, various predetermined voltage ranges, and information indicating the relationship between the content of the malfunction that has occurred in the power supply unit 1320 and the error signal corresponding to the content. Be done.
  • the data D3 includes, for example, defect information indicating the content or cause of the defect that has occurred in the power supply unit 1320.
  • the notification unit 1350 When the notification unit 1350 receives an error signal generated by the control unit 1360 based on the data D2 in accordance with the malfunction that has occurred in the power supply unit 1320, the notification unit 1350 outputs, for example, light and / or sound according to the error signal. Note that notification unit 1350 may vibrate, for example, according to the error signal received from control unit 1360.
  • the notification unit 1350 may be, for example, a light emitting device such as an LED, a sound output device such as a speaker, or a vibration generating device.
  • the notification unit 1350 performs notification in different modes for each type of error signal received from the control unit 1360.
  • the user or the like of the aerosol generation device 1000 can be notified of the content or cause of the malfunction that has occurred in the power supply unit 1320.
  • the mode of notification by the notification unit 1350 described below according to a defect that has occurred in the power supply unit 1320 is an example, and for example, light, sound, vibration, etc. can be freely combined to provide a notification according to the content of the defect. Good.
  • the control unit 1360 transitions the aerosol generation apparatus 1000 to one of two operation states when the power button 1310 receives a notification that the power button 1310 is pressed.
  • the two operating states are an active state (corresponding to a power-on state) in which power can be supplied from the power supply unit 1320 to each unit of the aerosol generation apparatus 1000, and no power is supplied from the power supply unit 1320 to each unit of the aerosol generation apparatus 1000, or The hibernation state (corresponding to the power-off state) in which only a very small amount of power can be supplied.
  • the control unit 1360 causes the power supply unit 1320 to supply power to the load 1130 and atomize the aerosol source when the sensor unit 1330 detects the suction operation by the user. Let When the power supply unit 1300 is in the rest state, the control unit 1360 does not cause the power supply unit 1320 to supply the power to the load 1130 even if the user performs the suction operation. Therefore, the aerosol source is not atomized.
  • the control unit 1360 acquires the operation value related to the operation of the power supply unit 1320
  • the control unit 1360 stores the data D1 including the operation value in the storage unit 1340.
  • the operating value includes, for example, the voltage value of the power supply unit 1320, the total charging time of the power supply unit 1320, and information indicating the temperature of the power supply unit 1320.
  • the control unit 1360 reads the data D1 and D2 from the storage unit 1340, for example, when the power supply unit 1320 is being charged and discharged, and the operation values included in the data D1 and various types included in D2. It is determined whether the power supply unit 1320 is in the normal state or in the defective state based on the predetermined threshold value and / or various predetermined voltage ranges. When the control unit 1360 determines that the power supply unit 1320 is in a defective state, the control unit 1360 identifies the content or cause of the defect that has occurred in the power supply unit 1320, and outputs defect information indicating the content or cause of the defect.
  • the storage unit 1340 stores the included data D3.
  • the failure state of the power supply unit 1320 is subdivided according to the content or cause of the failure that has occurred in the power supply unit 1320. Then, when any one of the plurality of states included in the defective state is detected, control unit 1360 generates an error signal of a type corresponding to the detected state. Then, the control unit 1360 transmits the generated error signal to the notification unit 1350 and causes the notification unit 1350 to notify the aspect based on the error signal. In other words, the control unit 1360 causes the notification unit 1350 to notify in different modes for each type of error signal.
  • control unit 1360 detects a malfunction (for example, when an error signal is generated) and when the aerosol generation device 1000 is moved to an active state (for example, the power button 1310 is pressed to turn on the power source).
  • a malfunction for example, when an error signal is generated
  • the aerosol generation device 1000 is moved to an active state (for example, the power button 1310 is pressed to turn on the power source).
  • the notification unit 1350 It may be executed a notification based on the form signals.
  • the control unit 1360 causes the notification unit 1350 to generate a different mode of light for each type of error signal.
  • the notification unit 1350 may alternately emit cold-colored light and warm-colored light when receiving an error signal.
  • control unit 1360 causes the notification unit 1350 to generate vibrations of different modes for each type of error signal, for example.
  • control unit 1360 causes the notification unit 1350 to generate a different mode of sound for each type of error signal.
  • the control unit 1360 may prohibit charging and discharging of the power supply unit 1320 when it is determined that the power supply unit 1320 is in a defective state.
  • the control unit 1360 may stop heating the load 1130 when it is determined that the power supply unit 1320 is in a defective state. With such a configuration, it is possible to prevent the progress of a defect that has occurred in the power supply unit 1320.
  • defect detection process a specific example of the process by the control unit 1360 for determining whether or not the state of the power supply unit 1320 is a defect state (hereinafter, referred to as “defect detection process”) will be described. It should be noted that the present embodiment will be described on the assumption that the defective state of the power supply unit 1320 can include the first to fifth defective states.
  • FIG. 10 is a graph for explaining the first example of the defect detection processing by the control unit 1360.
  • the horizontal axis of the graph shown in FIG. 10 represents time, and the vertical axis represents the voltage of the power supply unit 1320.
  • the control unit 1360 detects an internal short circuit, which is one of the defects in the power supply unit 1320.
  • the voltage range of the power supply unit 1320 is divided into three areas, a normal use area, an overdischarge area, and a deep discharge area, based on the voltage value of the power supply section 1320.
  • the normal use range is a voltage range from the discharge end voltage (for example, 3.0 V) to the full charge voltage (for example, 4.0 V).
  • the overdischarge region is a voltage range from the discharge end voltage to the MCU (Micro Controller Unit: equivalent to the control unit 1360) operation guarantee voltage.
  • the deep discharge area is a voltage range from the MCU operation guarantee voltage to the zero voltage (state where the voltage value of the power supply unit 1320 is 0V).
  • SOC State Of Charge
  • FIG. 10 represents the charging rate of the power supply unit 1320, and is 0% at the discharge end voltage and 100% at the full charge voltage.
  • the control unit 1360 performs precharging, constant current charging, or constant voltage charging of the power supply unit 1320 based on the voltage value of the power supply unit 1320 and the like.
  • the preliminary charging means for example, charging performed when the voltage region of the power supply unit 1320 is the over-discharge region or the deep-discharge region.
  • the constant current charging means for example, charging performed at a constant current value in a section (normal range) between the discharge end voltage and the full charge voltage.
  • the constant voltage charging is charging for maintaining the voltage value of the power supply unit 1320 at a predetermined voltage value, for example, for maintaining the voltage value of the power supply unit 1320 at the full charge voltage.
  • control unit 1360 detects a malfunction of the power supply unit based on the change in the voltage value during charging of power supply unit 1320. More specifically, control unit 1360 detects that reduction amount ⁇ V of the voltage value of power supply unit 1320 per predetermined time T1 is equal to or greater than first threshold value TH1, that is, despite charging. When the voltage drop occurs, it is determined that the power supply unit 1320 is in the first defective state. Then, when the control unit 1360 determines that the power supply unit 1320 is in the first defective state, the storage unit 1340 stores the first defective information indicating the first defective state as the data D3.
  • the control unit 1360 calculates or confirms the above-described decrease amount ⁇ V per predetermined time T1 and the threshold value TH1 based on the data D1 and data D2 stored in the storage unit 1340 and the output from the time measuring unit 1370.
  • the time measuring unit 1370 is a member such as a stopwatch or a clock that can measure time.
  • the time measuring unit 1370 may be incorporated in the control unit 1360, for example.
  • FIG. 11 is a graph for explaining the second example of the defect detection processing by the control unit 1360. Regarding the graph shown in FIG. 11, description of the portions common to the graph shown in FIG. 10 will be omitted. In the example illustrated in FIG. 11, the control unit 1360 detects deterioration of capacity, which is one of the defects of the power supply unit 1320.
  • the first voltage range VR1 included in the normal range is defined. That is, the first voltage range VR1 is set by the voltage value from the lower limit (discharge end voltage) to the upper limit (full charge voltage) of the normal range.
  • the control unit 1360 detects a defect in the power supply unit 1320 based on the time taken for the voltage value of the power supply unit 1320 to reach from the lower limit to the upper limit of the first voltage range VR1. Specifically, when charging power supply unit 1320, control unit 1360 determines that time T2 required for the voltage value of power supply unit 1320 to reach the upper limit from the lower limit of first voltage range VR1 is equal to or less than second threshold value TH2. When it is detected that the power supply unit 1320 is in the second defective state. When the control unit 1360 determines that the power supply unit 1320 is in the second defective state, the control unit 1360 causes the storage unit 1340 to store the second defective information indicating the second defective state as the data D3.
  • the control unit 1360 based on the data D1 and data D2 stored in the storage unit 1340 and the output from the time measuring unit 1370, the voltage value of the power supply unit 1320, the first voltage range VR1, and the time T2 described above. Also, the threshold TH2 is calculated and confirmed.
  • FIG. 12 is a graph for explaining the third example of the defect detection processing by the control unit 1360. Regarding the graph shown in FIG. 12, description of the parts common to the graph shown in FIG. 10 will be omitted. In the example shown in FIG. 12, the control unit 1360 detects deterioration due to over-discharge, which is one of the defects of the power supply unit 1320.
  • the second voltage range VR2 included in the deep discharge region and / or the over discharge region is defined.
  • the control unit 1360 detects a defect in the power supply unit 1320 based on the time taken for the voltage value of the power supply unit 1320 to reach the upper limit of the second voltage range VR2. Specifically, when charging power supply unit 1320 by precharging, control unit 1360 determines that the time T3 required for the voltage value of power supply unit 1320 to reach from the lower limit to the upper limit of second voltage range VR2 is the third. When it is detected that the threshold value is TH3 or more, it is determined that the power supply unit 320 is in the third defective state. Then, when it is determined that the power supply unit 1320 is in the third defective state, the control unit 1360 causes the storage unit 1340 to store the third defective information indicating the third defective state as the data D3.
  • the control unit 1360 based on the data D1 and the data D2 stored in the storage unit 1340 and the output from the time measuring unit 1370, the voltage value of the power supply unit 1320, the second voltage range VR2, and the time T3 described above. Also, the threshold TH3 is calculated and confirmed.
  • FIG. 13 is a graph for explaining the fourth example of the defect detection processing by the control unit 1360.
  • the vertical axis of the graph shown in FIG. 13 represents the total charging time T4 of the power supply unit 1320.
  • the control unit 1360 detects the life of the power supply unit 1320, which is one of the defects in the power supply unit 1320.
  • the control unit 1360 measures the total charging time T4 of the power supply unit 1320 as the operation value of the power supply unit 1320, and stores the measured total charging time T4 in the storage unit 1340 as data D1.
  • the control unit 1360 detects that the total charging time T4 of the power supply unit 1320 indicated by the data D1 is equal to or greater than the fourth threshold value TH4 indicated by the data D2
  • the power supply unit 1320 determines the fourth It is determined to be a defective state of. Then, when the control unit 1360 determines that the state of the power supply unit 1320 is the fourth defective state, the control unit 1360 causes the storage unit 1340 to store the fourth defective information indicating the fourth defective state.
  • FIG. 14 is a graph for explaining the fifth example of the defect detection processing by the control unit 1360.
  • the vertical axis of the graph shown in FIG. 14 represents the temperature of the power supply unit 1320.
  • the control unit 1360 detects a temperature abnormality in the power supply unit 1320, which is one of the defects in the power supply unit 1320.
  • the control unit 1360 acquires, as an operation value of the power supply unit 1320, information indicating the temperature T5 of the power supply unit 1320 measured by the temperature sensor 1321 from the temperature sensor 1321 or the data D1 stored in the storage unit 1340. Then, control unit 1360 determines that power supply unit 1320 is in the fifth defective state when temperature T5 of power supply unit 1320 is equal to or higher than fifth threshold value TH5 shown in data D2. Then, when the control unit 1360 determines that the power supply unit 1320 is in the fifth defective state, the storage unit 1340 stores the fifth defective information indicating the fifth defective state.
  • control unit 1360 may acquire the temperature T5 of the power supply unit 1320 when the aerosol generation apparatus 1000 transitions from the hibernation state to the active state, for example, and the power supply unit 1320 may perform the suction operation by the user.
  • the temperature T5 of the power supply unit 1320 may be acquired, the temperature T5 of the power supply unit 1320 may be acquired when the charging of the power supply unit 1320 is started, and the temperature T5 of the power supply unit 1320 may be acquired while the power supply unit 1320 is being charged. May be acquired, and the timing is not particularly limited.
  • control unit 1360 notifies the notification unit 1350 of the content or cause of the defect that has occurred in the power supply unit 1320.
  • FIG. 15 is an example of a flowchart showing the first example of the above-described defect detection process and the defect notification process related to the process.
  • control unit 1360 reads data D1 stored in storage unit 1320 and acquires the voltage value of power supply unit 1320 when power supply unit 1320 is charged in the normal range.
  • control unit 1360 determines whether reduction amount ⁇ V of the voltage value of power supply unit 1320 per predetermined time T1 is equal to or larger than first threshold value TH1 when power supply unit 1320 is charged in the normal range. judge.
  • step S1502 If the reduction amount ⁇ V is less than the first threshold TH1 (step S1502: No), the process returns to step S1501.
  • step S1503 the control unit 1360 causes the storage unit 1340 to display the first defect information indicating that an internal short circuit has occurred in the power supply unit 1320. Is stored as data D3.
  • control unit 1360 sends an error signal indicating the first defect state to notification unit 1350, and causes notification unit 1350 to blink blue and red alternately six times. That is, control unit 1360 causes notification unit 1350 to notify that an internal short circuit has occurred in power supply unit 1320. Then, the process ends. At the end of the process, the state of the aerosol generation apparatus 1000 has transitioned to the rest state.
  • FIG. 16 is an example of a flowchart showing the second example of the above-described defect detection process and the defect notification process related to the process.
  • control unit 1360 acquires the voltage value of power supply unit 1320 when power supply unit 1320 is charged in the normal range.
  • step S1602 when the power supply unit 1320 is charged in the normal range, the control unit 1360 determines that the time T2 required for the voltage value of the power supply unit 1320 to reach the upper limit from the lower limit of the first voltage range VR1 is It is determined whether or not it is equal to or less than the threshold value TH2 of 2.
  • step S1602 No If the time T2 exceeds the second threshold TH2 (step S1602: No), the process returns to step S1601.
  • step S1603 the control unit 1360 stores, in the storage unit 1340, second failure information indicating that the capacity of the power supply unit 1320 has deteriorated. It is stored as D3.
  • step S1604 the control unit 1360 sends an error signal indicating the second defect state to the notification unit 1350, and controls the notification unit 1350 to blink blue and red alternately eight times. That is, control unit 1360 causes notification unit 1350 to notify that the capacity of power supply unit 1320 has deteriorated. Then, the process ends. At the end of the process, the state of the aerosol generation apparatus 1000 has transitioned to the rest state.
  • FIG. 17 is an example of a flowchart showing the third example of the above-described defect detection process and the defect notification process related to the process.
  • control unit 1360 acquires the voltage value of power supply unit 1320 when power supply unit 1320 is precharged in the deep discharge region and / or the overdischarge region.
  • control unit 1360 controls the voltage value of power supply unit 1320 from the lower limit to the upper limit of second voltage range VR2 when power supply unit 1320 is precharged in the deep discharge region and / or the overdischarge region. It is determined whether or not the time T3 required until is equal to or greater than the third threshold value TH3.
  • step S1702 No If the time T3 is less than the third threshold TH3 (step S1702: No), the process returns to step S1701.
  • step S1703 the control unit 1360 indicates in the storage unit 1340 that the power supply unit 1320 has deteriorated due to overdischarge.
  • the defect information is stored as data D3.
  • step S1704 the control unit 1360 sends an error signal indicating the third malfunction state to the notification unit 1350, and controls the notification unit 1350 to blink blue and red alternately 10 times. That is, control unit 1360 causes notification unit 1350 to notify power supply unit 1320 that deterioration due to over-discharge has occurred. Then, the process ends. At the end of the process, the state of the aerosol generation apparatus 1000 has transitioned to the rest state.
  • FIG. 18 is an example of a flowchart showing the fourth example of the above-described defect detection process and the defect notification process related to the process.
  • control unit 1360 acquires total charging time T4 of power supply unit 1320.
  • the control unit 1360 reads the data D1 stored in the storage unit 1340 and acquires the total charging time T4.
  • control unit 1360 determines whether total charging time T4 of power supply unit 1320 is equal to or greater than fourth threshold value TH4.
  • step S1802 No If the total charging time T4 is less than the fourth threshold value TH4 (step S1802: No), the process returns to step S1801.
  • step S1803 the control unit 1360 causes the storage unit 1340 to display fourth malfunction information indicating that the power supply unit 1320 has reached the end of its life. Is stored as data D3.
  • step S1804 the control unit 1360 sends an error signal indicating the fourth malfunction state to the notification unit 1350, and controls the notification unit 1350 to blink blue and red alternately 12 times. That is, control unit 1360 causes notification unit 1350 to notify that power supply unit 1320 has reached the end of its life. Then, the process ends. At the end of the process, the state of the aerosol generation apparatus 1000 has transitioned to the rest state.
  • FIG. 19 is an example of a flowchart showing the fifth example of the above-described defect detection process and the defect notification process related to the process.
  • step S1901 the control unit 1360 acquires the temperature T5 of the power supply unit 1320 from the data D1 stored in the temperature sensor 1321 or the storage unit 1340.
  • control unit 1360 determines whether temperature T5 is equal to or higher than fifth threshold value TH5.
  • step S1902 No If the temperature T5 is less than the fifth threshold value TH5 (step S1902: No), the process returns to step S1901.
  • step S1903 the control unit 1360 stores in the storage unit 1340 the fifth defect information indicating that the temperature abnormality has occurred in the power supply unit 1320. It is stored as data D3.
  • step S1904 the control unit 1360 sends an error signal indicating the fifth failure state to the notification unit 1350, and controls the notification unit 1350 to blink blue and red 14 times. That is, control unit 1360 causes notification unit 1350 to notify power supply unit 1320 that a temperature abnormality has occurred. Then, the process ends. At the end of the process, the state of the aerosol generation apparatus 1000 has transitioned to the rest state.
  • FIG. 20 is a flowchart showing an example of notification processing of the first to fifth defective states when the suction operation is performed by the user. Note that the processing illustrated in FIG. 20 is described assuming that the processing illustrated in FIG. 15 to FIG. 19 is performed, but the processing is not limited thereto.
  • step S2001 the control unit 1360 determines whether or not the power button 1310 has been pressed and the aerosol generation apparatus 1000 has transitioned from the hibernate state to the active state.
  • step S2001: No If the power button 1310 is not pressed (step S2001: No), that is, if the aerosol generation apparatus 1000 has not transitioned from the idle state to the active state, the process returns to step S2001 and the notification process does not proceed.
  • step S2001: Yes that is, when the aerosol generation apparatus 1000 transits from the hibernate state to the active state
  • step S2002 the control unit 1360 stores the data D3 in the storage unit 1340. It is determined whether or not the defect information (specifically, at least one of the first to fifth defect information) is stored.
  • step S2002 If the malfunction information is not stored in the storage unit 1340 (step S2002: No), the notification process ends, and the control unit 1360 performs control for normal aerosol generation.
  • step S2003 the control unit 1360 determines whether or not the suction operation is detected (for example, started) by the sensor unit 1330.
  • step S2003 No If suction is not detected (step S2003: No), the process returns to step S2003.
  • step S2004 the control unit 1360 determines whether or not the storage unit 1340 stores the first defect information as the data D3.
  • step S2005 the control unit 1360 sends an error signal indicating the first defect state to the notification unit 1350, and the notification unit 1350. Alternately flash 1350 blue and red 6 times. That is, control unit 1360 causes notification unit 1350 to notify power supply unit 1320 that an internal short circuit has occurred. Then, the process ends.
  • step S2006 the control unit 1360 stores the second defect information as data D3 in the storage unit 1340. It is determined whether or not there is.
  • step S2007 the control unit 1360 sends an error signal indicating the second defect state to the notification unit 1350, and the notification unit 1350. Flash 1350 alternately in blue and red eight times. That is, the control unit 1360 causes the notification unit 1350 to notify the power supply unit 1320 that a capacity deterioration problem has occurred. Then, the process ends.
  • step S2008 the control unit 1360 stores the third defect information as the data D3 in the storage unit 1340. It is determined whether or not there is.
  • step S2009 the control unit 1360 sends an error signal indicating the third defect state to the notification unit 1350, and the notification unit 1350. Alternately flash 1350 blue and red 10 times. That is, the control unit 1360 causes the notification unit 1350 to notify that the power supply unit 1320 has a deterioration problem due to overdischarge. Then, the process ends.
  • step S2010 the control unit 1360 stores the fourth defect information as the data D3 in the storage unit 1340. It is determined whether or not there is.
  • step S2011 the control unit 1360 sends an error signal indicating the fourth defect state to the notification unit 1350, and the notification unit 1350. Alternately flash 1350 blue and red 12 times. That is, the control unit 1360 causes the notification unit 1350 to notify the power supply unit 1320 that a malfunction of reaching the end of life has occurred. Then, the notification process ends.
  • step S2010: No the control unit 1360 determines in step S2012 that the fifth defect state is stored in the storage unit 1340. Then, an error signal indicating the fifth malfunction state is sent to the notification unit 1350, and the notification unit 1350 blinks red and blue alternately 14 times. That is, control unit 1360 causes notification unit 1350 to notify power supply unit 1320 that a temperature abnormality has occurred. Then, the process ends.
  • the control unit 1360 includes, for example, a defect determination of the power supply unit 1320 based on the voltage drop during charging, a defect determination of the power supply unit 1320 based on the charging speed, and a power supply unit based on the total charging time.
  • the defect determination of 1320 and the defect determination based on the temperature of the power supply unit 1320 are performed.
  • the control unit 1360 detects a defect in the power supply unit 1320 based on such a determination
  • the control unit 1360 generates an error signal that differs depending on the content or cause of the defect.
  • the control unit 1360 causes the notification unit 1350 to notify the mode based on the error signal.
  • the user and / or the repair person can easily understand the content or the cause of the malfunction that has occurred in the power supply unit 1320 based on the mode of the notification by the notification unit 1350, and the malfunction that has occurred in the power supply unit 1320. You can take appropriate action after understanding the cause.
  • the user and / or the repairer of the aerosol generation apparatus 1000 can easily understand the content or cause of the malfunction regarding the power supply unit 1320. Therefore, it is not necessary to separately perform an electrical inspection on the aerosol generation apparatus 1000 according to the present embodiment to identify what kind of trouble has occurred. Therefore, in the present embodiment, it is possible to prevent waste of electric power and obtain an energy saving effect.
  • the control unit 1360 when the control unit 1360 detects a defective state of the power supply unit 1320, the control unit 1360 causes the notification unit 1350 to notify the defective state at a plurality of timings.
  • the first timing may be at the time of detecting the defective state
  • the second timing may be after detection of the defective state.
  • the second timing may be a timing at which an instruction to transition the aerosol generation apparatus 1000 to a power-on state is detected, and the second timing may be a timing at which an aerosol generation request is detected.
  • the control unit 1360 detects the timing of detecting the occurrence of a defect when the power supply unit 1320 has a defect and the timing of detecting the suction operation by the user by the sensor unit 1330 after detecting the occurrence of the defect.
  • the notification unit 1350 is caused to make a notification according to the type of defect.
  • the timing of notifying the defect is not limited to these.
  • the control unit 1360 may cause the notification unit 1350 to notify the timing of detecting the occurrence of the defect and the timing of detecting that the power button 1310 is pressed after the detection, in accordance with the type of the defect. ..
  • control unit 1360 does not supply power to each part of the aerosol generating apparatus 1000 such as the sensor unit 1330 (without causing the aerosol generating apparatus 1000 to transit from the hibernation state to the active state), and performs notification according to the type of failure. Good.
  • the control unit 1360 notifies the notification unit 1350. Even when it is difficult to make the second notification (corresponding to the second timing) according to the type of failure, the user or the like can be notified for the second time according to the type of failure.
  • control unit 1360 makes the power consumption required for the second notification according to the type of failure smaller than the power consumption required for the first notification (corresponding to the first timing) (power supply unit 1300).
  • the number of elements to be fed can be reduced).
  • the number of elements of the aerosol generation apparatus 1000 that is supplied with power at the timing when the occurrence of the above-described malfunction is detected is determined by the number of elements of the aerosol generation apparatus that is supplied with power at the timing when it is detected that the power button 1310 is pressed after the detection. Since the number of elements is more than 1000, the same effect can be obtained even when the timing of notifying such a defect is adopted.
  • the notification of the failure may be sent at various timings such as the timing at which the failure is detected, the timing at which the suction operation by the user is detected, or the timing at which the aerosol generation apparatus 1000 transits to the active state. May be done.
  • the user is notified of the malfunction at the time when the suction operation by the user is detected or when the aerosol generation device 1000 transits to the active state, so that the user malfunctions the power supply unit 1320 when the aerosol generation device 1000 is used or when the use is started. Can be easily recognized.
  • the notification mode according to the type of failure state illustrated in (4) can be freely changed.
  • the degree of importance may be set for each of a plurality of states included in the fault state.
  • the control unit 1360 causes the notifying unit 1350 to notify the defective state only at the first timing and does not cause the notifying unit 1350 to notify the defective state at the second timing regarding the state in which the importance level is lower than the predetermined level. May be.
  • the control unit 1360 may execute control on the notification unit 350 such that the power consumption increases as the notification of the defective state regarding the state in which the importance is set high.
  • the control unit 1360 can change the notification mode according to, for example, the degree of importance of the failure that has occurred in the power supply unit 1320. Specifically, for example, when a power supply unit 1320 has a defect of which importance is higher than a predetermined level, the control unit 1360 notifies the defect by combining light, vibration, and sound, and the importance is When a defect of a predetermined level or less occurs, the notification may be performed by only light, only vibration, or only sound.
  • the control unit 1360 may notify a defect of high importance by a method that consumes more power than a defect of low importance. This allows the user or the like to more easily recognize the occurrence of a defect in the power supply unit 1320 and the content or cause of the defect.
  • the user can easily recognize the degree of importance of the malfunction that has occurred in the power supply unit 1320.
  • the information regarding the importance of the defect may be stored in the storage unit 1340.
  • the presence or absence of the second notification depending on the content or cause of the defect may be controlled based on the importance of the defect. For example, when the defect corresponding to the fourth defect information is set to high importance and the defect corresponding to the fifth defect information is set to low importance, the control unit 1360 causes the fourth defect information to be set. It is also possible to perform the second notification regarding the defect corresponding to the above and not perform the second notification regarding the defect corresponding to the fifth defect information. As a result, it is possible to realize the notification in consideration of the problem that is strongly desired not to proceed. Further, by omitting the notification of the insignificant defect, it is possible to suppress the power consumption stored in the power supply unit 1320.
  • the present invention is not limited to the above-described embodiments as they are, and constituent elements can be modified and embodied at the stage of implementation without departing from the scope of the invention. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some constituent elements may be deleted from all the constituent elements shown in the above-described embodiment. Furthermore, the configurations of different embodiments may be combined.
  • SYMBOLS 1 Aerosol generator, 100 ... Cartridge unit, 110 ... Storage part, 120 ... Supply part, 130 ... Load, 140 ... Atomization part, 200 ... Capsule unit, 210 ... Flavor source, 300 ... Power supply unit, 310 ... Power button , 320 ... Power supply section, 330 ... Sensor section, 331 ... Microphone capacitor, 331A ... Diaphragm, 331B ... Back plate, 332 ... PTC thermistor, 333 ... P-type MOSFET, 334 ... Current measurement sensor, 340 ... Control section, 350 ... Memory Part, 360 ... Notification part, AR ... Air flow path, 1000 ...
  • Aerosol generating device 1100 ... Cartridge unit, 1110 ... Reserving part, 1120 ... Supplying part, 1130 ... Load, 1140 ... Atomizing part, 1200 ... Capsule unit, 1210 ... flavor source, 1300 ... power supply unit, 13 0 ... power button 1320 ... power supply unit, 1321 ... temperature sensor, 1330 ... sensor unit, 1340 ... storage unit, D1 ⁇ D3 ... data, 1350 ... notification unit, 1360 ... control unit, 1370 ... time measuring portion.

Abstract

センサにおける不具合の発生を検知すること。 電源ユニット300は、エアロゾル生成要求を検知するマイクロフォンコンデンサ331と、マイクロフォンコンデンサ331の電気的な変化に応じて変化する値を出力するPTCサーミスタ332と、PTCサーミスタ332が出力する値に基づき、マイクロフォンコンデンサ331の状態が通常状態および非通常状態のいずれの状態であるかを検知する制御部340と、を備える。

Description

エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラム
 本発明は、エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラムに関する。
 エアロゾル源をヒータのような電気的負荷で霧化し、生じたエアロゾルをユーザが味わうことができるエアロゾル生成装置が知られている。
 特許文献1には、装置内を流れる空気量を測定するセンサの出力に基づき、ユーザによる吸引動作が検知された場合に、ヒータに電力を供給する技術が開示されている。
 特許文献2には、装置内を流れる空気の速度を測定するセンサの出力に基づき、ヒータに供給する電力値を調整する技術が開示されている。
 また、上述のようなエアロゾル生成装置には、動力源として電池などの電源が内蔵されている場合が多い。
 そして、当該エアロゾル生成装置に関連した技術として、電源の残量が減ったとき等に、その旨を発光ダイオード(LED:Light Emitting Diode)等を用いて通知する技術が知られている。
 特許文献3には、電源電圧が閾値電圧未満になった場合に、電源の交換を要する旨を通知するインジケータを起動させる技術が開示されている。
 特許文献4には、電力源レベルに応じて、照明の光度等を調整する技術が開示されている。
 特許文献5には、電子シガレットを用いて喫煙行為が行われる場合に、発光素子を発光させる技術が開示されている。
 特許文献6には、電源の残量に応じて、LEDを異なる色で発光させる技術が開示されている。
特表2017-535265号公報 特表2017-512480号公報 特表2017-514463号公報 特表2017-511690号公報 米国特許出願公開第2013/0019887号明細書 中国実用新案登録第204682523号明細書
 エアロゾル生成装置を継続して使用していると、経年劣化等を原因とする不具合が、ユーザの吸引動作を検知するセンサに生じる場合がある。センサに不具合が生じた場合、ユーザが意図していないとき、例えば、ユーザが吸引動作をしていないときに、エアロゾル生成装置でエアロゾル源が霧化され、エアロゾル源が浪費される事態が生じ得る。したがって、センサに不具合が生じた場合に、当該不具合の発生が検知されることが望まれる。
 しかしながら、特許文献1および2に記載の技術は、センサの出力値に応じてヒータへの電力の供給を制御する技術であり、センサの不具合を検知することを考慮していない。
 本発明は、上記事情に鑑みてなされたものであり、センサにおける不具合の発生を検知することができるエアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラムを提供することを第1の目的とする。
 また、エアロゾル生成装置を継続して使用すると、経年劣化等を原因とする不具合が電源に生じる場合がある。当該不具合を解消するために修理を行う場合に、当該不具合の内容または原因を把握する必要がある。そして、当該不具合の内容または原因を把握するために、種々の検査を行う等といった大きな手間を要する場合がある。したがって、電源に生じた不具合の内容または原因を容易に把握できる技術が望まれる。
 本発明は、上記事情に鑑みてなされたものであり、電源に生じた不具合の内容または原因を容易に把握可能なエアロゾル生成装置の電源ユニット、エアロゾル生成装置の制御方法、プログラム、および、吸引器の電源ユニットを提供することを第2の目的とする。
 本発明の第1の実施形態に係るエアロゾル生成装置の電源ユニットは、エアロゾル生成要求を検知する第1のセンサと、第2のセンサであって、前記第1のセンサの電気的な変化に応じて変化する前記第2のセンサにおける値を出力する、第2のセンサと、前記値に基づき、前記第1のセンサの状態が通常状態および非通常状態のいずれの状態であるかを検知する制御部と、を備える。
 前記制御部が前記通常状態を検知するときの前記値と、前記制御部が前記非通常状態を検知するときの前記値とは異なる値としてもよい。
 さらに、前記非通常状態は、前記第1のセンサに生じた不具合により、前記電源ユニットから電力の供給を受ける霧化部によってエアロゾル源が霧化されない状態としてもよい。
 前記通常状態は、前記電源ユニットから電力の供給を受ける霧化部によってエアロゾル源が霧化され得る状態としてもよい。
 さらに、前記第2のセンサから出力される値は、前記第1のセンサに印加される電圧の変化に応じて変化する前記第2のセンサに印加される電圧の値であり、前記制御部は、当該電圧の値に基づき、前記第1のセンサの状態が前記通常状態および前記非通常状態のいずれの状態であるかを検知するようにしてもよい。
 前記第2のセンサは、PTCサーミスタとしてもよい。
 さらに、前記第2のセンサから出力される値は、前記第1のセンサを流れる電流の変化に応じて変化する前記第2のセンサを流れる電流の値であり、前記制御部は、当該電流の値に基づき、前記第1のセンサの状態が前記通常状態および前記非通常状態のいずれの状態であるかを検知するようにしてもよい。
 前記電源ユニットは、通知部をさらに備え、前記制御部は、前記非通常状態を検知した場合に、前記通知部にその旨を通知させるようにしてもよい。
 前記制御部は、前記非通常状態を検知した場合に、前記電源ユニットを活動状態から休止状態に遷移させるようにしてもよい。
 前記電源ユニットは、記憶部をさらに備え、前記記憶部には、前記制御部が前記非通常状態を検知した回数を示す情報が記憶されるようにしてもよい。
 前記記憶部には、さらに、前記制御部が検知した前記非通常状態の内容を示す情報が記憶されるようにしてもよい。
 前記制御部は、前記電源ユニットを活動状態に遷移させる指示を検知したときに、前記回数が所定の閾値以上である場合には前記電源ユニットを活動状態に遷移させず、前記回数が所定の閾値未満である場合には前記電源ユニットを活動状態に遷移させるようにしてもよい。
 前記制御部は、前記電源ユニットが活動状態のときに、前記第1のセンサの状態が前記通常状態および前記非通常状態のいずれの状態であるかを検知するようにしてもよい。
 本発明の第1の実施形態に係るエアロゾル生成装置の電源ユニットの制御方法は、エアロゾル生成要求を検知する第1のセンサの電気的な変化に応じて変化する第2のセンサにおける値を取得するステップと、前記値に基づき、前記第1のセンサの状態が通常状態および非通常状態のいずれの状態であるかを検知するステップと、を備える。
 本発明の第1の実施形態に係るエアロゾル生成装置の電源ユニット用プログラムは、コンピュータに、エアロゾル生成要求を検知する第1のセンサの電気的な変化に応じて変化する第2のセンサにおける値を取得する処理と、前記値に基づき、前記第1のセンサの状態が通常状態および非通常状態のいずれの状態であるかを検知する処理とを実行させる。
 本発明の第2の実施形態に係るエアロゾル生成装置の電源ユニットは、電源と、通知部と、前記電源の動作に関する動作値に基づき、前記電源の状態が通常状態であるか不具合状態であるかを判定し、前記不具合状態が検知された場合に、第1のタイミングで、前記通知部に前記不具合状態の種類に応じた通知を行わせ、ユーザによる吸引動作が検知されたタイミングまたはエアロゾル生成装置が活動状態に遷移したタイミングである第2のタイミングで、前記通知部に前記不具合状態の種類に応じた通知を行わせるように構成される制御部と、を具備する。
 前記不具合状態は複数の不具合状態を含んでもよい。前記制御部は、前記複数の不具合状態に応じた複数の種類のエラー信号を生成してもよい。
 前記制御部は、前記通知部に、前記エラー信号の種類に応じた態様の通知をさせてもよい。
 前記制御部は、前記通知部に、前記エラー信号の種類に応じた態様の光を発生させてもよい。
 前記制御部は、前記通知部に、前記エラー信号の種類に応じた態様の振動を発生させてもよい。
 前記制御部は、前記通知部に、前記エラー信号の種類に応じた態様の音を発生させてもよい。
 前記制御部は、前記不具合状態が検知された場合に、複数のタイミングで、前記通知部に前記不具合状態を通知させてもよい。
 前記第1のタイミングは前記不具合状態の検知時であってもよい。前記第2のタイミングは前記不具合状態の検知後であってもよい。
 前記第1のタイミングにおいて前記電源から電力が供給される前記電源ユニットにおける要素数は、前記第2のタイミングにおいて前記電源から電力が供給される前記電源ユニットにおける要素数よりも多くてもよい。
 前記第2のタイミングは、前記エアロゾル生成装置を電源オンの状態に遷移させる指示が検知されたタイミングであってもよい。
 前記第2のタイミングは、センサ部によって前記吸引動作が検知されたタイミングであってもよい。
 前記制御部は、前記第2のタイミングにおける前記不具合状態の通知に要する消費電力を、前記第1のタイミングにおける前記不具合状態の通知に要する消費電力よりも小さくなるように制御してもよい。
 前記不具合状態は複数の不具合状態を含んでもよく、前記複数の不具合状態のそれぞれに重要度が設定されてもよい。前記制御部は、前記重要度が所定のレベルより低い不具合状態に関して、前記第1のタイミングでのみ前記通知部に前記不具合状態を通知させてもよい。
 前記不具合状態は複数の不具合状態を含んでもよく、前記複数の不具合状態のそれぞれに重要度が設定されてもよい。前記重要度が高く設定された不具合状態の通知ほど、消費電力が大きくてもよい。
 前記不具合状態は複数の不具合状態を含んでもよく、前記複数の不具合状態のそれぞれに重要度が設定されてもよい。前記制御部は、前記不具合状態に設定された重要度に応じて、前記通知の態様を変更してもよい。
 前記動作値は、前記電源の電圧値を含んでもよい。前記制御部は、前記動作値に基づき、前記電源の充電中に前記電源の電圧値の所定時間あたりの減少量が第1の閾値以上であることを検知した場合に、前記電源の状態が前記不具合状態であると判定してもよい。
 前記動作値は、前記電源の電圧値を含んでもよい。前記制御部は、前記動作値に基づき、前記電源の充電中に前記電源の電圧値が第1の電圧範囲の下限から上限に至るまでに要する時間が第2の閾値以下であることを検知した場合に、前記電源の状態が前記不具合状態であると判定してもよい。前記第1の電圧範囲は、前記電源の放電終止電圧以上の電圧範囲に含まれてもよい。
 前記動作値は、前記電源の電圧値を含んでもよい。前記制御部は、前記動作値に基づき、前記電源の充電中に前記電源の電圧値が第2の電圧範囲の下限から上限に至るまでに要する時間が第3の閾値以上であることを検知した場合に、前記電源の状態が前記不具合状態であると判定してもよい。前記第2の電圧範囲は、前記電源の放電終止電圧未満の電圧範囲に含まれてもよい。
 前記動作値は、前記電源の通算充電時間を含んでもよい。前記制御部は、前記動作値に基づき、前記電源の通算充電時間が第4の閾値以上であることを検知した場合に、前記電源の状態が前記不具合状態であると判定してもよい。
 前記動作値は、前記電源の温度を含んでもよい。前記制御部は、前記動作値に基づき、前記電源の温度が第5の閾値以上の場合に、前記電源の状態が前記不具合状態であると判定してもよい。
 前記制御部は、前記電源の充電中に前記電源の電圧値の前記所定時間あたりの減少量が前記第1の閾値以上であることを検知した場合に、前記通知部に前記電源において内部短絡が生じたことを通知させ、前記電源の充電中に前記電源の電圧値が前記第1の電圧範囲の下限から上限に至るまでに要する時間が前記第2の閾値以下であることを検知した場合に、前記通知部に前記電源の容量が劣化したことを通知させ、前記電源の充電中に前記電源の電圧値が前記第2の電圧範囲の下限から上限に至るまでに要する時間が前記第3の閾値以上であることを検知した場合に、前記通知部に前記電源に過放電に基づく劣化が生じたことを通知させ、前記電源の通算充電時間が前記第4の閾値以上であることを検知した場合に、前記電源部に前記電源が寿命に達したことを通知させ、前記電源の温度が前記第5の閾値以上の場合に、前記通知部に前記電源に温度異常が生じたことを通知させてもよい。
 前記制御部は、前記電源の状態が前記不具合状態であると判定した場合に、前記電源の充電および放電を禁止してもよい。
 前記不具合状態は、前記電源が劣化した状態および/または前記電源が故障した状態を含んでもよい。
 本発明の第2の実施形態に係るエアロゾル生成装置の制御方法は、電源の動作に関する動作値に基づき、前記電源の状態が通常状態であるか不具合状態であるかを判定することと、前記不具合状態が検知された場合に、第1のタイミングで、前記不具合状態の種類に応じた通知を行い、ユーザによる吸引動作が検知されたタイミングまたはエアロゾル生成装置が活動状態に遷移したタイミングである第2のタイミングで、前記不具合状態の種類に応じた通知を行うことと、を含む。
 本発明の第2の実施形態に係るプログラムは、コンピュータに、電源の動作に関する動作値に基づき、前記電源の状態が通常状態であるか不具合状態であるかを判定する処理と、前記不具合状態が検知された場合に、第1のタイミングで、前記不具合状態の種類に応じた通知を行い、ユーザによる吸引動作が検知されたタイミングまたはエアロゾル生成装置が活動状態に遷移したタイミングである第2のタイミングで、前記不具合状態の種類に応じた通知を行う処理と、を実行させる。
 本発明の第2の実施形態に係る吸引器の電源ユニットは、電源と、通知部と、前記電源の動作に関する動作値に基づき、前記電源の状態が通常状態であるか不具合状態であるかを判定し、前記不具合状態が検知された場合に、第1のタイミングで、前記通知部に前記不具合状態の種類に応じた通知を行わせ、ユーザによる吸引動作が検知されたタイミングまたは吸引器が活動状態に遷移したタイミングである第2のタイミングで、前記通知部に前記不具合状態の種類に応じた通知を行わせるように構成される制御部と、を具備する。
 本発明の第1の実施形態に係るエアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラムによれば、センサにおける不具合の発生を検知することができる。
 本発明の第2の実施形態に係るエアロゾル生成装置の電源ユニット、エアロゾル生成装置の制御方法、プログラム、および吸引器の電源ユニットによれば、電源に生じた不具合の内容または原因を容易に把握することができる。
本発明の第1の実施形態に係るエアロゾル生成装置の概略的な構成の一例を示すブロック図。 本発明の第1の実施形態に係るセンサ部の回路構成の一例を示す図。 本発明の第1の実施形態に係るマイクロフォンコンデンサの構成の一例を示す図。 本発明の第1の実施形態に係るPTCサーミスタの抵抗温度特性の一例を示す図。 本発明の第1の実施形態に係るPTCサーミスタの電圧電流特性の一例を示す図。 本発明の第1の実施形態に係る状態検知処理を説明する一例を示すフローチャート。 本発明の第1の実施形態に係る状態検知処理を説明する他の一例を示すフローチャート。 本発明の第1の実施形態の変形例に係るエアロゾル生成装置の概略的な構成の一例を示すブロック図。 本発明の第2の実施形態に係るエアロゾル生成装置の構成の一例を示すブロック図。 本発明の第2の実施形態に係る制御部による不具合検知処理の第1の例を説明するためのグラフ。 本発明の第2の実施形態に係る制御部による不具合検知処理の第2の例を説明するためのグラフ。 本発明の第2の実施形態に係る制御部による不具合検知処理の第3の例を説明するためのグラフ。 本発明の第2の実施形態に係る制御部による不具合検知処理の第4の例を説明するためのグラフ。 本発明の第2の実施形態に係る制御部による不具合検知処理の第5の例を説明するためのグラフ。 不具合状態の検知処理の第1の例と、当該処理に関わる不具合通知処理との例を示すフローチャート。 不具合状態の検知処理の第2の例と、当該処理に関わる不具合通知処理との例を示すフローチャート。 不具合状態の検知処理の第3の例と、当該処理に関わる不具合通知処理との例を示すフローチャート。 不具合状態の検知処理の第4の例と、当該処理に関わる不具合通知処理との例を示すフローチャート。 不具合状態の検知処理の第5の例と、当該処理に関わる不具合通知処理との例を示すフローチャート。 ユーザによる吸引時における第1乃至第5の不具合状態の通知処理の例を示すフローチャート。
 以下、本発明の実施形態を、図面を参照して説明する。なお、以下の説明において、略又は実質的に同一の機能および構成要素については、同一符号を付し、必要な場合にのみ説明を行う。
<第1の実施形態>
 以下の説明では、本実施形態に係るエアロゾル生成装置1が、例えば、加熱式たばこや電子たばこであることを想定している。しかし、本実施形態に係るエアロゾル生成装置1は、ネブライザ等の他の種類又は用途のエアロゾル生成装置であってもよい。
 図1は、本実施形態に係るエアロゾル生成装置1の概略的な構成の一例を示すブロック図である。
 エアロゾル生成装置1は、図1に示されるように、カートリッジユニット100と、カプセルユニット200と、電源ユニット300とを含む。エアロゾル生成装置1は、例えば、略円筒形状に構成され、ユーザがエアロゾル生成装置1を保持しやすくなっている。なお、カートリッジユニット100と、カプセルユニット200と、電源ユニット300とは、それぞれ着脱不可に構成されていてもよいし、それぞれ着脱可能に構成されていてもよい。
 図1に示されるように、カートリッジユニット100は、貯留部110と、供給部120と、負荷130を備える霧化部140とを含む。
 貯留部110は、加熱により霧化される液体状のエアロゾル源を貯留する容器である。エアロゾル源は、例えば、グリセリンやプロピレングリコールのようなポリオール系の材料である。また、エアロゾル源は、ニコチン液、水、香料等を含む混合液であってもよい。あるいは、エアロゾル源は、貯留部110を必要としない固体であってもよい。
 供給部120は、例えば、ガラス繊維のような繊維材料を撚って形成されるウィックである。供給部120の一端は、貯留部110に接続される。また、供給部120の他の一端は、負荷130に接続されるか、または負荷130の近傍に配置される。そのような構成により、供給部120は、負荷130またはその近傍に、貯留部110から吸い上げたエアロゾル源を導くことができる。なお、供給部120には、多孔質状のセラミックで形成されたウィックが用いられてもよい。
 霧化部140に備えられる負荷130は、例えばコイル状のヒータであり、電力が供給されると発熱する。負荷130は、供給部120の周囲に巻かれていてもよいし、供給部120に覆われていてもよい。電源ユニット300に含まれる後述する制御部340による制御に基づき、後述する電源部320から負荷130に電力が供給される。負荷130に電力が供給されると、供給部120によって導かれたエアロゾル源が負荷130によって加熱され、エアロゾルが生成される。
 カプセルユニット200は、図1に示されるように、香味源210を含む。
 香味源210は、エアロゾルに香味成分を付与する植物材料の原料片によって構成される。香味源を構成する原料片には、例えば、刻みたばこやたばこ原料のような材料を、粒状やシート状に成形した成形体が用いられる。また、香味源210を構成する原料片には、たばこ以外の植物(例えば、ミント、ハーブ等)が用いられてもよい。そして、香味源210には、メントールなどの香料が付与されていてもよい。
 図1における矢印は、カートリッジユニット100およびカプセルユニット200における空気の流れを示している。空気取込口(図示省略)を介して外部から取り込まれた空気は、エアロゾル生成装置1(カートリッジユニット100、およびカプセルユニット200)内を通過する過程で、エアロゾルと混合され、香味成分を付加され、ユーザによって吸引される。具体的には、外部から取り込まれた空気は、カートリッジユニット100内の霧化部140を通過する。当該空気は、霧化部140を通過するときに、霧化部140に備えられる負荷130によって生成されたエアロゾルと混合される。そして、エアロゾルと混合された空気がカプセルユニット200を通過するときに、エアロゾルと混合された空気に、カプセルユニット200に含まれる香味源210由来の香味成分が付加される。そして、エアロゾルと混合され香味成分が付加された空気が、カプセルユニット200の端部からユーザによって吸引される。すなわち、香味成分が付加されたエアロゾルが、ユーザによって吸引される。
 図1に示されるように、電源ユニット300は、電源ボタン310と、電源部320と、センサ部330と、制御部340と、記憶部350と、通知部360とを含む。
 電源ボタン310は、エアロゾル生成装置1の動作状態を遷移させるボタンである。電源ボタン310が押下されて電源がONにされると、エアロゾル生成装置1の状態は、後述する活動状態になる。また、エアロゾル生成装置1の状態が活動状態のときに、電源ボタン310が押下されて電源がOFFにされると、エアロゾル生成装置1の状態は、活動状態から後述する休止状態に遷移する。
 なお、エアロゾル生成装置1の状態が活動状態であることと、バッテリユニット300の状態が活動状態であることは同義である。また、エアロゾル生成装置1の状態が休止状態であることと、バッテリユニット300の状態が休止状態であることは同義である。
 電源部320は、例えば、リチウムイオン二次電池のような再充電可能な電池であり、その種類は限定されない。電源部320は、制御部340の制御に基づき、エアロゾル生成装置1の各部に、電力を供給する。
 センサ部330は、少なくとも、ユーザによる吸引動作(エアロゾル生成装置1に、エアロゾルの生成を要求する動作)を検知する機能と、当該検知機能等の不具合を検知する機能とを備える。センサ部330は、図1に示されるように、第1のセンサであるマイクロフォンコンデンサ331と、第2のセンサであるPTC(Positive Temperature Coefficient)サーミスタ332とを含む。マイクロフォンコンデンサ331は、ユーザによる吸引動作を検知する。
 PTCサーミスタ332は、センサ部330を構成する各要素等に過剰な電流が流れようとした場合に、当該過剰な電流を流さないようにする機能(以下、「過電流保護機能」という)を働かせる。
 なお、センサ部330についての詳細は後述する。
 制御部340は、電源ボタン310が押下された場合に、エアロゾル生成装置1を2つの動作状態のいずれかに遷移させる。2つの動作状態とは、電源部320からエアロゾル生成装置1の各部に電力が供給され得る活動状態と、電源部320からエアロゾル生成装置1の各部に電力が供給されない又は極小の電力しか供給され得ない休止状態とである。エアロゾル生成装置1の状態が活動状態の場合には、センサ部330がユーザによる吸引動作を検知したときに、制御部340は、電源部320に負荷130へ電力を供給させ、エアロゾル源を霧化させる。また、電源ユニット300の状態が休止状態の場合には、ユーザが吸引動作をしても、制御部340は、電源部320に負荷130へ電力を供給させない。したがって、エアロゾル源は霧化されない。なお、制御部340の制御による電源部320から負荷130への電力の供給は、センサ部330がユーザによる吸引動作を検知しているときに行われる。
 また、制御部340は、PTCサーミスタ332に印加される電圧値に基づき、マイクロフォンコンデンサ331の状態が、通常状態および非通常状態のいずれの状態であるかを検知する。
 ここで、通常状態とは、マイクロフォンコンデンサ331に不具合が生じておらず、マイクロフォンコンデンサ331がユーザの吸引動作を正常に検知できる状態をいう。言い換えれば、通常状態とは、ユーザが吸引動作を行うと、マイクロフォンコンデンサ331が当該吸引動作を検知し、負荷130に電力が供給されエアロゾルが生成される状態をいう。
 非通常状態とは、マイクロフォンコンデンサ331に不具合が生じ、マイクロフォンコンデンサ331がユーザの吸引動作を正常に検知できない状態をいう。言い換えれば、非通常状態とは、ユーザが吸引動作をしても、マイクロフォンコンデンサ331が当該吸引動作を検知せず、エアロゾルが生成されない状態をいう。また、非通常状態とは、ユーザが吸引動作をしていないのにもかかわらず、マイクロフォンコンデンサ331がユーザの吸引動作を検知し、負荷130に電力が供給されエアロゾルが生成される状態をいう。
 なお、制御部340は、電源ボタン310が押下され、エアロゾル生成装置1が休止状態から活動状態に遷移した後に、常時、マイクロフォンコンデンサ331の状態が通常状態および非通常状態のいずれの状態であるかを検知する処理(以下、「状態検知処理」という)を実行する。また、制御部340は、電源ボタン310が押下され、電源ユニット300が活動状態から休止状態に遷移した場合に、状態検知処理を行わない。状態検知処理の詳細については後述する。
 記憶部350は、例えば、不揮発性のメモリである。記憶部350には、エアロゾル生成装置1を動作させるための各種データやプログラムが記憶されている。記憶部350には、例えば、状態検知処理を実行するためのプログラム(又はファームウェア)が記憶されている。
 また、記憶部350には、制御部340がセンサ部330(特に、マイクロフォンコンデンサ331)の状態が非通常状態であると検知した場合に、当該非通常状態に関する情報が記憶される。具体的には、記憶部350には、センサ部330に生じた不具合の内容が記憶される。
 さらに、記憶部350には、制御部340がマイクロフォンコンデンサ331の状態が非通常状態であると検知した回数(以下、「検知回数」という)と、エアロゾル生成装置1の休止状態から活動状態への遷移を制限する値である制限閾値とが記憶される。検知回数および制限閾値の詳細は、後述する。
 通知部360は、例えば、発光ダイオードである。通知部360は、制御部340の制御に基づいて発光する。例えば、制御部340がマイクロフォンコンデンサ331の状態が非通常状態であると検知した場合に、通知部360は、制御部340の制御に基づき発光する。なお、通知部360の発光色は、寒色(青色)系統の色、暖色(赤色)系統の色などが考えられ、特に限定されない。
 なお、通知部360は、例えば、電源ユニット300の上流端部の周方向に沿って設けられ、当該端部全体が発光するように設置されてもよい。また、例えば、通知部360は、電源ボタン310の周方向に沿って設けられ、電源ボタン310の周囲が発光するように設置されてもよい。
 次に、センサ部330について詳細に説明する。
 図2は、センサ部330の回路構成の一例を示す図である。図2に示すように、当該回路は、マイクロフォンコンデンサ331と、PTCサーミスタ332と、P型MOSFET333とを含む。電源ボタン310が押下され、エアロゾル生成装置1が休止状態から活動状態に遷移すると、P型MOSFET333において、ベース電圧が印加され、ドレイン電流が流れる。そして、PTCサーミスタ332およびマイクロフォンコンデンサ331に電流が流れ、PTCサーミスタ332およびマイクロフォンコンデンサ331は、それぞれが備える機能を発揮できる状態になる。
 図3は、マイクロフォンコンデンサ331の構成の一例を示す図である。
 マイクロフォンコンデンサ331は、ユーザの吸引動作に起因する音や圧力の変化等により振動する金属板であるダイヤフラム331Aと、固定された金属板であるバックプレート331Bとを含む。ユーザの吸引動作に起因する音や圧力の変化等が存在しない場合に、ダイヤフラム331Aとバックプレート331Bとにより規定される静電容量は変化しない。一方で、ユーザの吸引動作に起因する音や圧力の変化等が生じた場合に、当該音や圧力の変化に基づきダイヤフラム331Aが振動し、ダイヤフラム331Aとバックプレート331Bとにより規定される静電容量が変化する。当該静電容量の変化に基づいて、ユーザによる吸引動作が検知される。
 図4および図5は、PTCサーミスタ332の特性を説明するための図である。
 図4は、PTCサーミスタ332の抵抗温度特性の一例を示しており、縦軸が抵抗値を示し、横軸が温度を示している。図4に示すように、PTCサーミスタ332の抵抗値は、PTCサーミスタ332の温度が低いとき(例えば、室温程度のとき)には略一定の値であるが、ある一定の温度(以下、「A点」という)を超えると当該抵抗値が急上昇する。このため、PTCサーミスタ332の温度がA点の温度以上になった場合に、PTCサーミスタ332は、過剰な電流が流れないように機能する。すなわち、PTCサーミスタ332は、過電流保護機能を働かせる。
 図5は、PTCサーミスタ332の電圧電流特性の一例を示しており、縦軸が電流値を示し、横軸が電圧値を示している。図5に示すように、PTCサーミスタ332では、ある電圧値まではオームの法則にしたがって電流値も上昇するが、ある一定の電圧値(以下「B点」という)を超えると、抵抗値が急激に増加するので、電流値が下降する。言い換えると、PTCサーミスタ332に印加される電圧値がB点を超える値になった場合に、PTCサーミスタ332は、過剰な電流が流れないように機能する。すなわち、PTCサーミスタ332は、過電流保護機能を働かせる。
 図3に示されるように、PTCサーミスタ332はマイクロフォンコンデンサ331に電気的に接続されるので、PTCサーミスタ332に印加される電圧値は、マイクロフォンコンデンサ331における電気的変化の影響を受ける。したがって、PTCサーミスタ332の電圧値がB点を超える値になった場合に、過剰な電流を流そうとする不具合が、マイクロフォンコンデンサ331に生じたことを意味する。なお、当該不具合は、例えば、マイクロフォンコンデンサ331における短絡である。また、マイクロフォンコンデンサ331における電気的変化の影響は、マイクロフォンコンデンサ331に印加される電圧値の変化や、マイクロフォンコンデンサ331に流れる電流値の変化などを含む。
 本実施形態では、制御部340は、PTCサーミスタ332に印加される電圧値を、例えば、PTCサーミスタ332からの出力によって取得する。そして、制御部340は、当該電圧値と、予め設定されるB点以上の電圧閾値とを比較して、マイクロフォンコンデンサ331の状態が通常状態および非通常状態のいずれであるかを検知する。具体的には、制御部340は、PTCサーミスタ332に印加される電圧値が、前述した電圧閾値以上である場合に、マイクロフォンコンデンサ331の状態が非通常状態であると検知する。すなわち、制御部340は、マイクロフォンコンデンサ331において不具合(短絡)が生じたことを検知する。
 次に、制御部340が実行する状態検知処理について詳細に説明する。図6は、制御部340が実行する状態検知処理の一例を説明するフローチャートである。
 制御部340は、エアロゾル生成装置1の状態が休止状態の場合に、電源ボタン310が押下されたか否かを判定する(ST101)。電源ボタン310が押下されていないと判定した場合(ST101:NO)に、再びステップST101の処理が実行される。つまり、電源ボタン310が押下されるまで、エアロゾル吸引装置1の状態は休止状態である。
 電源ボタン310が押下されたと判定した場合(ST101:YES)に、制御部340は、エアロゾル生成装置1の状態を休止状態から活動状態に遷移させる(ST102)。
 そして、制御部340は、マイクロフォンコンデンサ331の状態が非通常状態であるかを検知する(ST103)。前述したように、制御部340は、PTCサーミスタ332に印加される電圧値と電圧閾値との比較に基づいて、マイクロフォンコンデンサ331の状態が通常状態および非通常状態のいずれの状態であるかを検知する。したがって、制御部340によって通常状態と検知されるPTCサーミスタ332に印加される電圧値と、制御部340によって非通常状態と検知されるPTCサーミスタ332に印加される電圧値とは異なる値である。
 制御部340がマイクロフォンコンデンサ331の状態が通常状態であると検知した場合(ST103:NO)、再びステップST103の処理が実行される。つまり、エアロゾル吸引器1の状態が活動状態の場合に、常時、マイクロフォンコンデンサ331の非通常状態を検知する処理が実行される。このような構成により、マイクロフォンコンデンサ331に生じた不具合を漏れなく検知できる。
 制御部340は、マイクロフォンコンデンサ331の状態が非通常状態であると検知した場合(ST103:YES)に、記憶部350に、非通常状態に関する情報を記憶させる(ST104)。具体的には、制御部340は、記憶部350に、マイクロフォンコンデンサ331に生じた不具合の内容(短絡の発生)を記憶させる。このように、記憶部350に不具合の内容を記憶させることで、後日、エアロゾル生成装置1の修理をするときに、特殊な検査をせずとも不具合の内容を容易に把握することができる。したがって、修理に要する工数を大幅に削減することができる。
 制御部340は、通知部360を動作させる(ST105)。具体的には、制御部340は、通知部360を発光させる。これにより、エアロゾル生成装置1を使用しているユーザに、マイクロフォンコンデンサ331に不具合が生じたことを通知できる。
 そして、制御部340は、エアロゾル生成装置1を活動状態から休止状態に遷移させる(ST106)。このように、マイクロフォンセンサ331に不具合が生じた場合に、エアロゾル吸引装置1の状態をエアロゾルが生成されない休止状態に遷移させることで、エアロゾルが正常に生成され得ないのにもかかわらず、エアロゾル生成装置1の各部に電力が供給されることを防ぐことができる。すなわち、電力の浪費を防ぐことができる。
 以上のように、本実施形態におけるエアロゾル生成装置1では、制御部340は、マイクロフォンコンデンサ331に印加される電圧値と、予め設定されるB点以上の電圧閾値とを比較して、マイクロフォンコンデンサ331の状態が通常状態および非通常状態のいずれであるかを検知する。具体的には、制御部340は、PTCサーミスタ332に印加される電圧値が、電圧閾値以上である場合に、マイクロフォンコンデンサ331の状態が非通常状態であると検知する。したがって、本実施形態におけるエアロゾル生成装置1においては、ユーザの吸引動作を検知するセンサにおける不具合の発生を検知することができる。
 また、本実施形態におけるエアロゾル生成装置1では、マイクロフォンコンデンサ331の不具合を検知する構成として、過電流保護機能を備えるPTCサーミスタ332が採用されている。そのような構成により、マイクロフォンコンデンサ331の不具合に起因する過電流がエアロゾル生成装置1内に流れ、エアロゾル生成装置1のセンサ部330以外の構成に不具合が生じるという二次的被害を防ぐことができる。すなわち、そのような構成により、センサの不具合を検知すると共に、センサの不具合に起因する他の構成における不具合の発生を防ぐという課題を解決することができる。
 また、本実施形態によれば、センサに不具合が発生した場合に、当該不具合を検知することができるので、例えば、ユーザが吸引動作をしていないときに、エアロゾル生成装置でエアロゾル源が霧化され、エアロゾル源が浪費される事態を防ぐことができる。すなわち、本実施形態におけるエアロゾル生成装置は、省資源および省エネルギー効果を奏する。
 上記実施形態では、制御部340が実行する状態検知処理は、図6に示される例で説明されたが、これに限定されない。例えば、制御部340が実行する状態検知処理は、図7に示される例であっても良い。
 図7に示されるフローチャートは、図6に示されるフローチャートと比較して、ST201~ST203が追加される点と、ST106の処理の後に、再度ST101の処理が実行される点とにおいて相違する。なお、ST203は、制御部340が、記憶部350に、マイクロフォンコンデンサ331の状態が非通常状態であると検知した回数(検知回数)を記憶させる処理である。
 以下、ST203の処理が、既に複数回行われているものと仮定して、すなわち、制御部340が、マイクロフォンコンデンサ331の状態が非通常状態であると複数回検知しているものと仮定して、前述した相違点を中心に図7に示されるフローチャートを説明する。
 図7に示されるフローチャートでは、制御部340がマイクロフォンコンデンサ331の状態が非通常状態であると検知した場合(ST103:YES)に、ST104と、ST203と、ST105と、ST106との処理を経て、再度ST101の処理が実行される。したがって、図7に示されるフローチャートでは、ST203の処理が複数回実行され得る。よって、記憶部340に記憶されるマイクロフォンコンデンサ331の状態が非通常状態であると検知された検知回数が、更新され得る。
 制御部340は、ST101において再び電源ボタン310が押下された場合(ST101:YES)に、記憶部350に記憶されている情報を読み込む(ST201)。具体的には、制御部340は、検知回数と、エアロゾル生成装置1の休止状態から活動状態への遷移を制限する閾値である制限閾値とを読み込む。
 そして、制御部340は、検知回数が、制限閾値未満であるか否かを判定する(ST202)。検知回数が制限閾値未満であれば(ST202:YES)、ST102以降の処理が実行される。例えば、検知回数が2で、制限閾値が3であった場合に、ST102以降の処理が実行される。
 その一方で、検知回数が制限閾値以上であれば(ST202:NO)、処理は終了する。例えば、検知回数が3で制限閾値が3であった場合に、処理は終了する。すなわち、エアロゾル生成装置1の状態は、今後、電源ボタン310が押下されても、休止状態から活動状態に遷移しない。このように、検知回数と制限閾値との比較に基づき、エアロゾル生成装置1の状態の遷移を制御する理由は、次の通りである。
 貯留部110から漏れだしたエアロゾル源に濡れることで、マイクロフォンコンデンサ331が一時的に誤作動してしまう場合がある。具体的には、マイクロフォンコンデンサ331におけるダイヤフラム331Aが、エアロゾル源に濡れることにより正常に振動しなくなってしまい、マイクロフォンコンデンサ331が誤動作してしまうことがある。そして、制御部340が、当該誤作動に基づいて、マイクロフォンコンデンサ331の状態が非通常状態だと検知する場合がある。ダイヤフラム331Aは、エアロゾル源による濡れが乾燥等により解消されると、正常に振動する状態に戻ることが多い。すなわち、エアロゾル源に濡れることによる誤作動は、当該濡れが乾燥すれば解消されることが多い。
 そのようなことを踏まえ、検知回数が制限閾値未満である場合には、マイクロフォンコンデンサ331の非通常状態は、エアロゾル源の濡れによる一時的な誤作動に起因するとみなされる。この場合、エアロゾル生成装置1は、電源ボタン310が押下されると、再び活動状態に遷移するよう構成される。
 その一方で、検知回数が制限閾値以上に達した場合には、マイクロフォンコンデンサ331の非通常状態は、短絡等の恒久的な不具合に起因すると見なされる。この場合、エアロゾル生成装置1が休止状態から活動状態に再び遷移することはない。
 したがって、図7に示される検知処理のフローチャートでは、マイクロフォンコンデンサ331の非通常状態について、その非通常状態がエアロゾル源の漏れに起因する一時的なものであるのか、短絡等の恒久的なものであるのかが判別され、エアロゾル生成装置1の状態遷移が当該判別に基づいて制御されている。したがって、エアロゾル生成装置1に恒久的な不具合が生じていないのにも関わらず、エアロゾル生成装置1を使用できない状態にすることがないので、エアロゾル生成装置1の使用に関する利便性を向上させることができる。
 なお、上記実施形態では、第2のセンサとしてPTCサーミスタ332を用いる例が説明されたが、第2のセンサはPTCサーミスタ332に限定されない。例えば、第2のセンサとして、電流を計測する電流計測センサ334が用いられてもよい。図8は、PTCサーミスタ332の代わりに電流計測センサ334が採用された場合のエアロゾル生成装置1の概略的な構成の一例を示すブロック図である。なお、図1と同一の構成には同一の符号を付している。
 図8に示されるエアロゾル生成装置1の電源ユニット300を構成した場合、電流計測センサ334から制御部340に出力される値は、マイクロフォンコンデンサ331における電気的変化に応じて変化する電流計測センサ334に流れる電流の値になる。そして、制御部340は、当該電流の値に基づき、マイクロフォンコンデンサ331の状態が通常状態および非通常状態のいずれの状態であるかを検知する。具体的には、制御部340は、当該電流の値と所定の電流閾値とを比較し、当該電流の値が電流閾値以上の場合に、マイクロフォンコンデンサ331に短絡等の不具合(短絡)が生じたと検知する。
 また、本実施形態では、エアロゾル生成装置1は、ユーザの吸引動作に応じてエアロゾルを生成するものとして説明されたが、エアロゾル生成装置1の構成はこれに限定されない。例えば、エアロゾル生成装置1は、ユーザの吸引動作に応じて不可視の蒸気を生成するように構成されてもよい。このように構成しても、上記実施形態と同様な効果を奏することができる。
 また、本実施形態では、通知部360は、制御部340の制御に従い発光するものとして説明されたが、通知部360の構成はこれに限定されない。例えば、通知部360は、制御部340がマイクロフォンコンデンサ331の非通常状態を検知した場合に、所定の振動パターンで振動するように構成されてもよいし、所定の音を出力するように構成されてもよい。また、通知部360は、それらを組み合わせた通知をしてもよい。具体的には、例えば、通知部360は、光と振動とを組み合わせた通知をしても良いし、光と振動と音とを組み合わせた通知をしても良い。
<第2の実施形態>
 以下、本実施形態に係るエアロゾル生成装置に関して説明を行う。本実施形態に係るエアロゾル生成装置は、例えば、生成されたエアロゾルをユーザが吸引するための吸引器である。吸引器は、加熱式たばこまたは電子たばこでもよいが、これに限定されるものではなく、例えば薬剤吸引用の装置などでもよい。なお、吸引器は、エアロゾルの生成に代えて不可視の蒸気を生成してもよい。
 図9は、本実施形態に係るエアロゾル生成装置1000の構成の一例を示すブロック図である。エアロゾル生成装置1000は、図1に示されるように、カートリッジユニット1100と、カプセルユニット1200と、電源ユニット1300とを含む。エアロゾル生成装置1000は、例えば、略円筒形状としてもよく、ユーザがエアロゾル生成装置1000を保持しやすい形状となっている。なお、カートリッジユニット1100と、カプセルユニット1200と、電源ユニット1300とは、それぞれ着脱不可に構成されていてもよいし、それぞれ着脱可能に構成されていてもよい。
 カートリッジユニット1100の構成は、図1に示されるカートリッジユニット100の構成と同様であるので、ここでは説明を省略する。
 カプセルユニット1200の構成は、図1に示されるカプセルユニット200の構成と同様であるので、ここでは説明を省略する。
 図9に示されるように、電源ユニット1300は、電源ボタン1310と、電源部1320と、センサ部1330と、記憶部1340と、通知部1350と、制御部1360と、時刻計測部1370とを含む。
 電源ユニット1300では、電源部1320に生じた不具合の種類ごとに異なるエラー信号が生成される。電源部1320の不具合は、例えば、電源部1320の劣化および/または電源の故障などを含む。
 電源ボタン1310は、エアロゾル生成装置1000の動作状態を遷移させるためのボタンである。電源ボタン1310が押下されて電源がONにされると、エアロゾル生成装置1000の状態は、後述する活動状態になる。また、エアロゾル生成装置1000の状態が活動状態のときに、電源ボタン1310が押下されて電源がOFFにされると、エアロゾル生成装置1000の状態は、活動状態から後述する休止状態に遷移する。
 電源部1320は、例えば、リチウムイオン二次電池のような再充電可能な電池であり、その種類は限定されない。電源部1320は、制御部1360の制御に基づき、エアロゾル生成装置1000の各部に、電力を供給する。また、電源部1320は、例えば、サーミスタなどのような温度センサ1321を備える。温度センサ1321は、例えば、電源部1320のバッテリパック内に備えられる。温度センサ1321によって測定された電源部1320の温度を示す情報は、制御部1360によって記憶部1340に記憶される。なお、電源部1320の状態は、不具合のない通常状態、または、不具合が生じた不具合状態となり得る。
 センサ部1330は、例えば、センサ部1330の設置位置を通過する気体の流量および/または流速に応じて、制御部1360に、所定の出力値(例えば電圧値または電流値)を出力するセンサである。このようなセンサ部1330は、ユーザによる吸引動作(エアロゾル生成装置1000に、エアロゾルの生成を要求する動作)を検知するために利用される。センサ部1330としては、種々のものを利用可能であるが、例えば、マイクロフォンコンデンサ、圧力センサ、流体センサが用いられる。
 記憶部1340は、例えば不揮発性メモリである。記憶部1340には、制御部1360によって取得された各種の情報を含むデータD1が記憶されている。また、記憶部1340には、制御部1360の制御に用いられる各種の情報を含むデータD2が記憶されている。さらに、記憶部1340には、制御部1360によって生成された各種の情報を含むデータD3が記憶される。
 ここで、データD1には、例えば、電源部1320の動作に関する動作値を含む情報が記憶される。具体的には、例えば、データD1には、電源部1320の電圧値、電源部1320の通算充電時間、電源部1320の温度を示す情報が含まれる。また、データD2には、例えば、各種の所定の閾値、各種の所定の電圧範囲、および、電源部1320に生じた不具合の内容と当該内容に応じたエラー信号との関係を示す情報などが含まれる。さらに、データD3には、例えば、電源部1320に生じた不具合の内容または原因を示す不具合情報などが含まれる。
 通知部1350は、電源部1320に生じた不具合に応じてデータD2に基づき制御部1360によって生成されたエラー信号を受けた場合に、当該エラー信号にしたがって例えば光および/または音を出力する。なお、通知部1350は、制御部1360から受けたエラー信号にしたがって例えば振動してもよい。具体的には、通知部1350は、例えば、LEDなどの発光装置でもよく、スピーカなどの音出力装置でもよく、振動発生装置でもよい。
 このように、通知部1350は、制御部1360から受けたエラー信号の種類ごとに異なる態様の通知を行う。そのような構成により、エアロゾル生成装置1000のユーザ等に、電源部1320で生じた不具合の内容または原因を通知することができる。以下で説明する通知部1350による電源部1320に生じた不具合に応じた通知の態様は例であり、例えば、光、音、振動などを自由に組み合わせて、不具合の内容に応じた通知をしてもよい。
 制御部1360は、電源ボタン1310が押下された通知を電源ボタン1310から受けた場合に、エアロゾル生成装置1000を2つの動作状態のいずれかに遷移させる。2つの動作状態とは、電源部1320からエアロゾル生成装置1000の各部に電力が供給され得る活動状態(電源オン状態に相当)と、電源部1320からエアロゾル生成装置1000の各部に電力が供給されないまたは極小の電力しか供給され得ない休止状態(電源オフ状態に相当)とである。エアロゾル生成装置1000の状態が活動状態の場合には、センサ部1330がユーザによる吸引動作を検知したときに、制御部1360は、電源部1320に負荷1130へ電力を供給させ、エアロゾル源を霧化させる。また、電源ユニット1300の状態が休止状態の場合には、ユーザが吸引動作をしても、制御部1360は、電源部1320に負荷1130へ電力を供給させない。したがって、エアロゾル源は霧化されない。
 また、制御部1360は、電源部1320の動作に関する動作値を取得すると、当該動作値を含むデータD1を記憶部1340に記憶させる。ここで、動作値は、例えば、電源部1320の電圧値、電源部1320の通算充電時間、電源部1320の温度を示す情報を含む。
 そして、制御部1360は、例えば、電源部1320が充放電しているときなどに、記憶部1340からデータD1およびD2を読み出し、データD1に含まれている動作値、およびD2含まれている各種の所定の閾値および/または各種の所定の電圧範囲に基づき、電源部1320の状態が通常状態または不具合状態のいずれの状態であるかを判定する。なお、制御部1360は、電源部1320の状態が不具合状態であると判定した場合には、電源部1320に生じた不具合の内容または原因を特定し、当該不具合の内容または原因を示す不具合情報を含むデータD3を記憶部1340に記憶させる。
 本実施形態においては、電源部1320の不具合状態が、電源部1320に生じた不具合の内容または原因毎に細分化される。そして、制御部1360は、不具合状態に含まれる複数の状態のうちのいずれかの状態を検知した場合に、検知した状態に応じた種類のエラー信号を生成する。そして、制御部1360は、通知部1350に生成したエラー信号を送信し、通知部1350に当該エラー信号に基づく態様の通知をさせる。言い換えれば、制御部1360は、通知部1350に、エラー信号の種類毎に異なる態様の通知をさせる。
 本実施形態において、制御部1360は、例えば、不具合を検知したとき(例えば、エラー信号を生成したとき)、エアロゾル生成装置1000を活動状態に移行させるとき(例えば、電源ボタン1310が押下されて電源ONを指示する信号を受けたとき)、エアロゾルの吸引開始を検知したとき(例えば、センサ部1330から生成要求信号を受けたとき)、エアロゾルの吸引がなされているとき(例えば、センサ部1330の出力に基づき吸引動作が継続されていると判断しうるとき)、電源部1320の充電開始時(例えば、電源ユニット1300に充電コネクタが接続されたことを検知したとき)、または、電源部1320を充電しているとき(例えば、電源部1320の電源電圧が増加しているとき)に、通知部1350に、生成した信号に基づく通知を実行させてもよい。
 制御部1360は、第1の通知態様として、例えば、通知部1350に、エラー信号の種類毎に異なる態様の光を発生させる。通知部1350は、例えば、エラー信号を受けた場合に、寒色系の光と暖色系の光とを交互に発光させてもよい。
 制御部1360は、第2の通知態様として、例えば、通知部1350に、エラー信号の種類毎に異なる態様の振動を発生させる。
 制御部1360は、第3の通知態様として、例えば、通知部1350に、エラー信号の種類毎に異なる態様の音を発生させる。
 制御部1360は、電源部1320が不具合状態であると判定した場合に、電源部1320の充電および放電を禁止してもよい。また、制御部1360は、電源部1320が不具合状態であると判定した場合に、負荷1130の加熱を停止してもよい。そのような構成により、電源部1320に生じた不具合の進行を防ぐことができる。
 以下で、制御部1360による、電源部1320の状態が不具合状態であるか否かを判定する処理(以下、「不具合検知処理」という)の具体例を説明する。なお、本実施形態では、電源部1320の不具合状態が、第1~第5の不具合状態を含み得ると仮定して説明される。
 (不具合検知処理の第1の例)
 図10は、制御部1360による不具合検知処理の第1の例を説明するためのグラフである。図10に示されるグラフの横軸は時間を表し、縦軸は電源部1320の電圧を表す。図10に示す例では、制御部1360は、電源部1320における不具合の一つである内部短絡を検出する。
 図10に示されるように、電源部1320の電圧域は、電源部1320の電圧値に基づき、常用域、過放電域、深放電域の3つに区分けされる。ここで、常用域とは、放電終止電圧(例えば、3.0V)から満充電電圧(例えば、4.0V)までの間の電圧範囲である。また、過放電域とは、放電終止電圧からMCU(Micro Controller Unit:制御部1360に相当)動作保障電圧までの電圧範囲である。そして、深放電域とは、MCU動作保証電圧からゼロ電圧(電源部1320の電圧値が0Vの状態)までの電圧範囲である。ここで、図10に示されるSOC(State Of Charge)とは、電源部1320の充電率を表し、放電終止電圧で0%、満充電電圧で100%となる。
 図10に示されるように、制御部1360は、電源部1320の電圧値などに基づいて、電源部1320の充電を予備充電、定電流充電、または定電圧充電のいずれかで行う。ここで、予備充電とは、例えば、電源部1320の電圧域が過放電域または深放電域のときに行われる充電のことをいう。また、定電流充電とは、例えば、放電終了電圧から満充電電圧の間の区間(常用域)で一定の電流値で行われる充電のことをいう。そして、定電圧充電とは、電源部1320の電圧値を所定の電圧値に維持させるために行われる充電であり、例えば、電源部1320の電圧値を満充電電圧で維持させるために行われる。
 ここで、電源部1320に不具合が生じていない場合に常用域において定電流充電を行うと、電源部1320の電圧値は、充電時間の経過にともなって上昇する。
 不具合検知処理の第1の例では、そのような特性を利用して、電源部1320の不具合を検知する。具体的には、制御部1360は、電源部1320の充電中の電圧値の変化に基づき、電源部の不具合を検知する。より具体的には、制御部1360は、電源部1320の電圧値の所定時間T1あたりの減少量ΔVが第1の閾値TH1以上であることを検知した場合に、すなわち、充電中にも関わらず電圧降下が生じた場合に、電源部1320が第1の不具合状態であると判定する。そして、制御部1360は、電源部1320の状態が第1の不具合状態であると判定した場合に、記憶部1340に、データD3として第1の不具合状態を示す第1の不具合情報を記憶させる。
 なお、制御部1360は、記憶部1340に記憶されているデータD1およびデータD2と時刻計測部1370からの出力とに基づき、前述した所定時間T1あたりの減少量ΔVおよび閾値TH1を算出したり確認したりする。なお、時刻計測部1370は、例えば、ストップウォッチまたは時計等の時刻を計測できる部材である。時刻計測部1370は、例えば、制御部1360に組み込まれていてもよい。
 (不具合検知処理の第2の例)
 図11は、制御部1360による不具合検知処理の第2の例を説明するためのグラフである。図11に示すグラフについて、図10に示すグラフと共通する部分については、説明を省略する。図11に示す例では、制御部1360は、電源部1320の不具合の一つである容量の劣化を検出する。
 図11に示される例では、常用域に含まれる第1の電圧範囲VR1が定義される。すなわち、第1の電圧範囲VR1は、常用域の下限(放電終了電圧)から上限(満充電電圧)までの間の電圧値により、その範囲が設定される。
 不具合検知処理の第2の例では、制御部1360は、電源部1320の電圧値が第1の電圧範囲VR1の下限から上限に至るまでの時間に基づき、電源部1320の不具合を検知する。具体的には、制御部1360は、電源部1320を充電する場合に、電源部1320の電圧値が第1の電圧範囲VR1の下限から上限に至るまでに要する時間T2が第2の閾値TH2以下であることを検知したときに、電源部1320が第2の不具合状態であると判定する。そして、制御部1360は、電源部1320の状態が第2の不具合状態であると判定した場合に、記憶部1340に、データD3として第2の不具合状態を示す第2の不具合情報を記憶させる。
 なお、制御部1360は、記憶部1340に記憶されているデータD1およびデータD2と時刻計測部1370からの出力とに基づき、前述した電源部1320の電圧値、第1の電圧範囲VR1、時間T2および閾値TH2を算出したり確認したりする。
 (不具合検知処理の第3の例)
 図12は、制御部1360による不具合検知処理の第3の例を説明するためのグラフである。図12に示すグラフについて、図10に示すグラフと共通する部分については、説明を省略する。図12に示す例では、制御部1360は、電源部1320の不具合の一つである過放電に基づく劣化を検出する。
 図12に示される例では、深放電域および/または過放電域に含まれる第2の電圧範囲VR2が定義される。
 不具合検知処理の第3の例では、制御部1360は、電源部1320の電圧値が第2の電圧範囲VR2の下限から上限に至るまでの時間に基づき、電源部1320の不具合を検知する。具体的には、制御部1360は、電源部1320を予備充電で充電する場合に、電源部1320の電圧値が第2の電圧範囲VR2の下限から上限に至るまでに要する時間T3が第3の閾値TH3以上であることを検知したときに、電源部320が第3の不具合状態であると判定する。そして、制御部1360は、電源部1320の状態が第3の不具合状態であると判定した場合に、記憶部1340に、データD3として第3の不具合状態を示す第3の不具合情報を記憶させる。
 なお、制御部1360は、記憶部1340に記憶されているデータD1およびデータD2と時刻計測部1370からの出力とに基づき、前述した電源部1320の電圧値、第2の電圧範囲VR2、時間T3および閾値TH3を算出したり確認したりする。
 (不具合検知処理の第4の例)
 図13は、制御部1360による不具合検知処理の第4の例を説明するためのグラフである。図13に示されるグラフの縦軸は電源部1320の通算充電時間T4を表す。図13に示す例では、制御部1360は、電源部1320における不具合の一つである電源部1320の寿命を検出する。
 制御部1360は、電源部1320の動作値として電源部1320の通算充電時間T4を計時し、記憶部1340に、計時した通算充電時間T4をデータD1として記憶させる。制御部1360は、データD1に示されている電源部1320の通算充電時間T4が、データD2に示されている第4の閾値TH4以上であることを検知した場合に、電源部1320が第4の不具合状態であると判定する。そして、制御部1360は、電源部1320の状態が第4の不具合状態であると判定した場合に、記憶部1340に、第4の不具合状態を示す第4の不具合情報を記憶させる。
 (不具合検知処理の第5の例)
 図14は、制御部1360による不具合検知処理の第5の例を説明するためのグラフである。図14に示されるグラフの縦軸は電源部1320の温度を表す。図14に示す例では、制御部1360は、電源部1320における不具合の一つである電源部1320における温度異常を検出する。
 制御部1360は、電源部1320の動作値として、温度センサ1321によって測定された電源部1320の温度T5を示す情報を、温度センサ1321または記憶部1340に記憶されているデータD1から取得する。そして、制御部1360は、電源部1320の温度T5が、データD2に示されている第5の閾値TH5以上の場合に、電源部1320が第5の不具合状態であると判定する。そして、制御部1360は、電源部1320の状態が第5の不具合状態であると判定した場合に、記憶部1340に、第5の不具合状態を示す第5の不具合情報を記憶させる。
 なお、制御部1360は、例えば、エアロゾル生成装置1000が休止状態から活動状態に遷移するときに電源部1320の温度T5を取得してもよく、ユーザによる吸引動作が行われているときに電源部1320の温度T5を取得してもよく、電源部1320の充電を開始するときに電源部1320の温度T5を取得してもよく、電源部1320を充電しているときに電源部1320の温度T5を取得してもよく、そのタイミングは特に限定されない。
 以下で、制御部1360が通知部1350に電源部1320に生じた不具合の内容または原因を通知させる不具合通知処理の具体例を説明する。
 図15は、前述した不具合検知処理の第1の例と、当該処理に関わる不具合通知処理とを示すフローチャートの例である。
 ステップS1501において、制御部1360は、電源部1320が常用域で充電されている場合に、記憶部1320に記憶されているデータD1を読み込み、電源部1320の電圧値を取得する。
 ステップS1502において、制御部1360は、電源部1320が常用域で充電されている場合に、電源部1320の電圧値の所定時間T1あたりの減少量ΔVが第1の閾値TH1以上であるか否か判定する。
 減少量ΔVが第1の閾値TH1未満の場合(ステップS1502:No)、処理はステップS1501へ戻る。
 減少量ΔVが第1の閾値TH1以上の場合(ステップS1502:Yes)、ステップS1503において、制御部1360は、記憶部1340に、電源部1320において内部短絡が生じたことを示す第1の不具合情報をデータD3として記憶させる。
 そして、ステップS1504において、制御部1360は、第1の不具合状態を示すエラー信号を通知部1350に送り、通知部1350を青色と赤色とに交互に6回点滅させる。すなわち、制御部1360は、通知部1350に、電源部1320において内部短絡が生じたことを通知させる。そして、処理は終了する。なお、当該処理の終了時点で、エアロゾル生成装置1000の状態は、休止状態に遷移している。
 図16は、前述した不具合検知処理の第2の例と、当該処理に関わる不具合通知処理とを示すフローチャートの例である。
 ステップS1601において、制御部1360は、電源部1320が常用域で充電されている場合に、電源部1320の電圧値を取得する。
 ステップS1602において、制御部1360は、電源部1320が常用域で充電されている場合に、電源部1320の電圧値が第1の電圧範囲VR1の下限から上限に至るまでに要する時間T2が、第2の閾値TH2以下であるか否か判定する。
 時間T2が第2の閾値TH2を超える場合(ステップS1602:No)、処理はステップS1601へ戻る。
 時間T2が第2の閾値TH2以下の場合(ステップS1602:Yes)、ステップS1603において、制御部1360は、記憶部1340に、電源部1320の容量が劣化したことを示す第2の不具合情報をデータD3として記憶させる。
 ステップS1604において、制御部1360は、第2の不具合状態を示すエラー信号を通知部1350に送り、通知部1350を青色と赤色とに交互に8回点滅させる制御を行う。すなわち、制御部1360は、通知部1350に、電源部1320の容量が劣化したことを通知させる。そして、処理は終了する。なお、当該処理の終了時点で、エアロゾル生成装置1000の状態は、休止状態に遷移している。
 図17は、前述した不具合検知処理の第3の例と、当該処理に関わる不具合通知処理とを示すフローチャートの例である。
 ステップS1701において、制御部1360は、電源部1320が深放電域および/または過放電域で予備充電されている場合に、電源部1320の電圧値を取得する。
 ステップS1702において、制御部1360は、電源部1320が深放電域および/または過放電域で予備充電されている場合に、電源部1320の電圧値が第2の電圧範囲VR2の下限から上限に至るまでに要する時間T3が、第3の閾値TH3以上であるか否か判定する。
 時間T3が第3の閾値TH3未満の場合(ステップS1702:No)、処理はステップS1701へ戻る。
 時間T3が第3の閾値TH3以上の場合(ステップS1702:Yes)、ステップS1703において、制御部1360は、記憶部1340に、電源部1320に過放電に基づく劣化が生じたことを示す第3の不具合情報をデータD3として記憶させる。
 ステップS1704において、制御部1360は、第3の不具合状態を示すエラー信号を通知部1350に送り、通知部1350を青色と赤色とに交互に10回点滅させる制御を行う。すなわち、制御部1360は、通知部1350に、電源部1320に過放電に基づく劣化が生じたことを通知させる。そして、処理は終了する。なお、当該処理の終了時点で、エアロゾル生成装置1000の状態は、休止状態に遷移している。
 図18は、前述した不具合検知処理の第4の例と、当該処理に関わる不具合通知処理とを示すフローチャートの例である。
 ステップS1801において、制御部1360は、電源部1320の通算充電時間T4を取得する。例えば、制御部1360は、記憶部1340に記憶されているデータD1を読み込み、通算充電時間T4を取得する。
 ステップS1802において、制御部1360は、電源部1320の通算充電時間T4が第4の閾値TH4以上であるか否か判定する。
 通算充電時間T4が第4の閾値TH4未満の場合(ステップS1802:No)、処理はステップS1801へ戻る。
 通算充電時間T4が第4の閾値TH4以上の場合(ステップS1802:Yes)、ステップS1803において、制御部1360は、記憶部1340に、電源部1320が寿命に達したことを示す第4の不具合情報をデータD3として記憶させる。
 ステップS1804において、制御部1360は、第4の不具合状態を示すエラー信号を通知部1350に送り、通知部1350を青色と赤色とに交互に12回点滅させる制御を行う。すなわち、制御部1360は、通知部1350に、電源部1320が寿命に達したことを通知させる。そして、処理は終了する。なお、当該処理の終了時点で、エアロゾル生成装置1000の状態は、休止状態に遷移している。
 図19は、前述した不具合検知処理の第5の例と、当該処理に関わる不具合通知処理とを示すフローチャートの例である。
 ステップS1901において、制御部1360は、温度センサ1321または記憶部1340に記憶されているデータD1から電源部1320の温度T5を取得する。
 ステップS1902において、制御部1360は、温度T5が第5の閾値TH5以上であるか否か判定する。
 温度T5が第5の閾値TH5未満の場合(ステップS1902:No)、処理はステップS1901へ戻る。
 温度T5が第5の閾値TH5以上の場合(ステップS1902:Yes)、ステップS1903において、制御部1360は、記憶部1340に、電源部1320に温度異常が生じたことを示す第5の不具合情報をデータD3として記憶させる。
 ステップS1904において、制御部1360は、第5の不具合状態を示すエラー信号を通知部1350に送り、通知部1350の青色と赤色とに14回点滅させる制御を行う。すなわち、制御部1360は、通知部1350に、電源部1320に温度異常が生じたことを通知させる。そして、処理は終了する。なお、当該処理の終了時点で、エアロゾル生成装置1000の状態は、休止状態に遷移している。
 図20は、ユーザによる吸引動作が行われた場合の第1乃至第5の不具合状態の通知処理の例を示すフローチャートである。なお、図20に示される処理は、図15乃至図19の処理が行われた後に行われることを想定して説明されるが、それに限定されない。
 ステップS2001において、制御部1360は、電源ボタン1310が押下され、エアロゾル生成装置1000が休止状態から活動状態に遷移したか否かを判定する。
 電源ボタン1310が押下されていない場合に(ステップS2001:No)、すなわち、エアロゾル生成装置1000が休止状態から活動状態に遷移していない場合に、処理はステップS2001に戻り、通知処理は進行しない。
 電源ボタン1310が押下された場合に(ステップS2001:Yes)、すなわち、エアロゾル生成装置1000が休止状態から活動状態に遷移した場合に、ステップS2002において、制御部1360は、記憶部1340に、データD3として不具合情報(具体的には、第1乃至第5の不具合情報のうちの少なくとも1つ)が記憶されているか否か判定する。
 不具合情報が記憶部1340に記憶されていない場合に(ステップS2002:No)、通知処理は終了し、制御部1360は通常のエアロゾル生成のための制御を行う。
 不具合情報が記憶部1340に記憶されている場合に(ステップS2002:Yes)、ステップS2003において、制御部1360は、センサ部1330によって吸引動作が検知(例えば開始)されたか否か判定する。
 吸引が検知されていない場合に(ステップS2003:No)、処理は、ステップS2003に戻る。
 吸引が検知された場合に(ステップS2003:Yes)、ステップS2004において、制御部1360は、記憶部1340に、データD3として第1の不具合情報が記憶されているか否か判定する。
 第1の不具合情報が記憶部1340に記憶されていた場合に(ステップS2004:Yes)、ステップS2005において、制御部1360は、第1の不具合状態を示すエラー信号を通知部1350に送り、通知部1350を青色と赤色とに交互に6回点滅させる。すなわち、制御部1360は、通知部1350に、電源部1320に内部短絡の不具合が生じたことを通知させる。そして、処理は終了する。
 第1の不具合情報が記憶部1340に記憶されていなかった場合に(ステップS2004:No)、ステップS2006において、制御部1360は、記憶部1340に、データD3として第2の不具合情報が記憶されているか否か判定する。
 第2の不具合情報が記憶部1340に記憶されていた場合に(ステップS2006:Yes)、ステップS2007において、制御部1360は、第2の不具合状態を示すエラー信号を通知部1350に送り、通知部1350を青色と赤色とに交互に8回点滅させる。すなわち、制御部1360は、通知部1350に、電源部1320に容量劣化の不具合が生じたことを通知させる。そして、処理は終了する。
 第2の不具合情報が記憶部1340に記憶されていなかった場合に(ステップS2006:No)、ステップS2008において、制御部1360は、記憶部1340に、データD3として第3の不具合情報が記憶されているか否か判定する。
 第3の不具合情報が記憶部1340に記憶されていた場合に(ステップS2008:Yes)、ステップS2009において、制御部1360は、第3の不具合状態を示すエラー信号を通知部1350に送り、通知部1350を青色と赤色とに交互に10回点滅させる。すなわち、制御部1360は、通知部1350に、電源部1320に過放電に基づく劣化の不具合が生じたことを通知させる。そして、処理は終了する。
 第3の不具合情報が記憶部1340に記憶されていなかった場合に(ステップS2008:No)、ステップS2010において、制御部1360は、記憶部1340に、データD3として第4の不具合情報が記憶されているか否か判定する。
 第4の不具合情報が記憶部1340に記憶されていた場合に(ステップS2010:Yes)、ステップS2011において、制御部1360は、第4の不具合状態を示すエラー信号を通知部1350に送り、通知部1350を青色と赤色とに交互に12回点滅させる。すなわち、制御部1360は、通知部1350に、電源部1320に寿命到達という不具合が生じたことを通知させる。そして、通知処理は終了する。
 第4の不具合情報が記憶部1340に記憶されていなかった場合に(ステップS2010:No)、ステップS2012において、制御部1360は、第5の不具合状態が記憶部1340に記憶されていると判断して、第5の不具合状態を示すエラー信号を通知部1350に送り、通知部1350の赤色と青色とに交互に14回点滅させる。すなわち、制御部1360は、通知部1350に、電源部1320に温度異常の不具合が生じたことを通知させる。そして、処理は終了する。
 以上説明したように、本実施形態に係る制御部1360は、例えば、充電中の電圧降下に基づく電源部1320の不具合判定、充電速度に基づく電源部1320の不具合判定、通算充電時間に基づく電源部1320の不具合判定、電源部1320の温度に基づく不具合判定を行う。そして、制御部1360は、そのような判定に基づき、電源部1320に不具合が生じたことを検知した場合に、不具合の内容または原因毎に異なるエラー信号を生成する。そして、制御部1360は、通知部1350に、当該エラー信号に基づく態様の通知をさせる。これにより、ユーザおよび/または修理者等は、通知部1350による通知の態様に基づいて、電源部1320で生じた不具合の内容または原因を容易に理解することができ、電源部1320に生じた不具合の原因を理解した上で適切に対処することができる。
 また、本実施形態においては、エアロゾル生成装置1000のユーザおよび/または修理者等は、電源部1320に関する不具合の内容または原因を容易に把握することができる。したがって、本実施形態に関わるエアロゾル生成装置1000に対して、どの様な不具合が生じたのか特定するための電気的な検査を別途行う必要はない。したがって、本実施形態においては、電力の浪費を防ぎ、省エネルギー効果を得ることができる。
 本実施形態において、制御部1360は、電源部1320の不具合状態を検知した場合に、複数のタイミングで、通知部1350に不具合状態を通知させる。複数のタイミングのうち、第1のタイミングは、不具合状態の検知時とし、第2のタイミングは、不具合状態の検知後としてもよい。ここで、第1のタイミングにおいて電源部1320から電力が供給される電源ユニット1300における要素数は、第2のタイミングにおいて電源部1320から電力が供給される電源ユニット1300における要素数よりも多いとしてもよい。また、第2のタイミングは、エアロゾル生成装置1000を電源オンの状態に遷移させる指示を検知したタイミングでもよく、第2のタイミングは、エアロゾル生成要求が検知されたタイミングでもよい。
 不具合状態を通知するタイミングについてより具体的に説明する。本実施形態に関する制御部1360は、電源部1320に不具合が生じた場合に、不具合の発生を検知したタイミングと、当該不具合の発生を検知した後にセンサ部1330がユーザによる吸引動作を検知したタイミングとに、通知部1350に不具合の種類に応じた通知をさせている。しかしながら、不具合を通知するタイミングは、これらに限定されない。例えば、制御部1360は、不具合の発生を検知したタイミングと、当該検知後に電源ボタン1310が押下されたことを検知したタイミングとに、通知部1350に不具合の種類に応じた通知をさせてもよい。また、制御部1360は、センサ部1330等のエアロゾル生成装置1000の各部に給電することなく(エアロゾル生成装置1000を休止状態から活動状態に遷移させず)、不具合の種類に応じた通知を行うとしてもよい。この場合、例えば、生じた不具合により電源部1320がセンサ1330等に十分な電力を供給できない場合であっても、すなわち、電源部1320が各部に電力を供給しながら制御部1360が通知部1350に不具合の種類に応じた2回目(第2のタイミングに相当)の通知をさせることが難しい場合であっても、ユーザ等に、不具合の種類に応じた2回目の通知を行うことができる。言い換えれば、制御部1360は、不具合の種類に応じた2回目の通知に要する消費電力の方が、1回目(第1のタイミングに相当)の通知に要する消費電力よりも小さくする(電源ユニット1300における給電する要素数を減らす)ことができる。これにより、ユーザ等に、電源部1320に不具合が生じたこと、および当該不具合の内容または種類を知らせる機会を増やすことができる。さらに、不具合が生じた電源部1320に加わる負荷を軽減することができる。なお、前述した不具合の発生を検知したタイミングにおける給電を受けているエアロゾル生成装置1000の要素数は、当該検知後に電源ボタン1310が押下されたことを検知したタイミングにおける給電を受けているエアロゾル生成装置1000の要素数よりも多いので、このような不具合を通知するタイミングを採用した場合にも、同様の効果を奏することができる。
 また、本実施形態において、不具合の通知は、例えば、不具合が検知されたタイミング、ユーザによる吸引動作が検知されたタイミング、または、エアロゾル生成装置1000が活動状態に遷移したタイミングなど、様々なタイミングで行われてもよい。ユーザによる吸引動作が検知されたタイミング、または、エアロゾル生成装置1000が活動状態に遷移したタイミングで不具合が通知されることにより、ユーザはエアロゾル生成装置1000の使用時または使用開始時に電源部1320に不具合が生じていることを容易に認識することができる。
 また、本実施形態において、図15のステップS1504、図16のステップS1604、図17のステップS1704、図18のステップS1804、図19のステップS1904、図20のステップS2005,S2007,S2009,S2011、S2012に例示する不具合状態の種類に応じた通知態様は、自由に変更可能である。
 本実施形態において、不具合状態に含まれる複数の状態のそれぞれに、重要度が設定されてもよい。この場合、制御部1360は、重要度が所定のレベルより低い状態に関して、第1のタイミングでのみ通知部1350に不具合状態を通知させ、第2のタイミングでは通知部1350に不具合状態を通知させなくてもよい。また、制御部1360は、重要度が高く設定された状態に関する不具合状態の通知ほど、消費電力が大きくなるように通知部350に対する制御を実行してよい。
 重要度についてより具体的に説明する。制御部1360は、例えば、電源部1320に生じた不具合の重要度に応じて、通知態様を変更可能である。具体的には、制御部1360は、例えば、重要度が所定のレベルより高い不具合が電源部1320に生じた場合、当該不具合を光、振動、および音などを複合させて通知し、重要度が所定のレベル以下の不具合が生じた場合には、光のみ、振動のみ、音のみで通知を行うとしてもよい。制御部1360は、重要度の高い不具合については、重要度の低い不具合よりも、消費電力の大きい方法で不具合を通知してもよい。これにより、ユーザ等に、電源部1320で不具合が生じたこと、生じた不具合の内容または原因をより容易に認識させることができる。さらに、ユーザに電源部1320に生じた不具合の重要度を容易に認識させることができる。また、ユーザが、重要度の高い不具合が電源部1320に生じたことを見落とすことを防ぐことができる。なお、不具合の重要度に関する情報は、記憶部1340に記憶されていてもよい。
 また、本実施形態において、不具合の内容または原因に応じた2回目の通知の有無を、当該不具合の重要度に基づいて制御してもよい。例えば、第4の不具合情報に対応する不具合が高い重要度に設定され、第5の不具合情報に対応する不具合が低い重要度に設定されている場合に、制御部1360は、第4の不具合情報に対応する不具合に関わる2回目の通知を行い、第5の不具合情報に対応する不具合に関わる2回目の通知を行わないとしてもよい。これにより、進行させないことが強く望まれる不具合に配慮した通知を、実現することができる。また、重要度の低い不具合の通知を省略することにより、電源部1320に蓄えられている電力の消費を抑制することができる。
 本発明は、上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、上述した実施の形態に示される全構成要素から幾つかの構成要素を削除しても良い。さらに、異なる実施形態の構成を組み合わせてもよい。
1…エアロゾル生成装置、100…カートリッジユニット、110…貯留部、120…供給部、130…負荷、140…霧化部、200…カプセルユニット、210…香味源、300…電源ユニット、310…電源ボタン、320…電源部、330…センサ部、331…マイクロフォンコンデンサ、331A…ダイヤフラム、331B…バックプレート、332…PTCサーミスタ、333…P型MOSFET、334…電流計測センサ、340…制御部、350…記憶部、360…通知部、AR…空気の流路、1000…エアロゾル生成装置、1100…カートリッジユニット、1110…貯留部、1120…供給部、1130…負荷、1140…霧化部、1200…カプセルユニット、1210…香味源、1300…電源ユニット、1310…電源ボタン、1320…電源部、1321…温度センサ、1330…センサ部、1340…記憶部、D1~D3…データ、1350…通知部、1360…制御部、1370…時刻計測部。
 

Claims (41)

  1.  エアロゾル生成要求を検知する第1のセンサと、
     第2のセンサであって、前記第1のセンサの電気的な変化に応じて変化する前記第2のセンサにおける値を出力する、第2のセンサと、
     前記値に基づき、前記第1のセンサの状態が通常状態および非通常状態のいずれの状態であるかを検知する制御部と、
    を備えることを特徴としたエアロゾル生成装置の電源ユニット。
  2.  前記制御部が前記通常状態を検知するときの前記値と、前記制御部が前記非通常状態を検知するときの前記値とは異なる
    請求項1に記載されたエアロゾル生成装置の電源ユニット。
  3.  前記非通常状態は、前記第1のセンサに生じた不具合により、前記電源ユニットから電力の供給を受ける霧化部によってエアロゾル源が霧化されない状態である
    請求項1または2に記載されたエアロゾル生成装置の電源ユニット。
  4.  前記通常状態は、前記電源ユニットから電力の供給を受ける霧化部によってエアロゾル源が霧化され得る状態である
    請求項1乃至3のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  5.  前記第2のセンサから出力される値は、前記第1のセンサに印加される電圧の変化に応じて変化する前記第2のセンサに印加される電圧の値であり、
     前記制御部は、当該電圧の値に基づき、前記第1のセンサの状態が前記通常状態および前記非通常状態のいずれの状態であるかを検知する
    請求項1乃至4のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  6.  前記第2のセンサは、PTCサーミスタである
    請求項1乃至5のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  7.  前記第2のセンサから出力される値は、前記第1のセンサを流れる電流の変化に応じて変化する前記第2のセンサを流れる電流の値であり、
     前記制御部は、当該電流の値に基づき、前記第1のセンサの状態が前記通常状態および前記非通常状態のいずれの状態であるかを検知する
    請求項1乃至4のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  8.  通知部をさらに備え、
     前記制御部は、前記非通常状態を検知した場合に、前記通知部にその旨を通知させる
    請求項1乃至7のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  9.  前記制御部は、前記非通常状態を検知した場合に、前記電源ユニットを活動状態から休止状態に遷移させる
    請求項1乃至8のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  10.  記憶部をさらに備え、
     前記記憶部には、前記制御部が前記非通常状態を検知した回数を示す情報が記憶される
    請求項1乃至9のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  11.  前記記憶部には、さらに、前記制御部が検知した前記非通常状態の内容を示す情報が記憶される
    請求項10に記載されたエアロゾル生成装置の電源ユニット。
  12.  前記制御部は、前記電源ユニットを活動状態に遷移させる指示を検知したときに、前記回数が所定の閾値以上である場合には前記電源ユニットを活動状態に遷移させず、前記回数が所定の閾値未満である場合には前記電源ユニットを活動状態に遷移させる
    請求項10または11に記載されたエアロゾル生成装置の電源ユニット。
  13.  前記制御部は、前記電源ユニットが活動状態のときに、前記第1のセンサの状態が前記通常状態および前記非通常状態のいずれの状態であるかを検知する
    請求項1乃至12のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  14.  エアロゾル生成要求を検知する第1のセンサの電気的な変化に応じて変化する第2のセンサにおける値を取得するステップと、
     前記値に基づき、前記第1のセンサの状態が通常状態および非通常状態のいずれの状態であるかを検知するステップと、
    を備えることを特徴としたエアロゾル生成装置の電源ユニットの制御方法。
  15.  コンピュータに、
     エアロゾル生成要求を検知する第1のセンサの電気的な変化に応じて変化する第2のセンサにおける値を取得する処理と、
     前記値に基づき、前記第1のセンサの状態が通常状態および非通常状態のいずれの状態であるかを検知する処理と
    を実行させるためのエアロゾル生成装置の電源ユニット用プログラム。
  16.  電源と、
     通知部と、
      前記電源の動作に関する動作値に基づき、前記電源の状態が通常状態であるか不具合状態であるかを判定し、
      前記不具合状態が検知された場合に、
       第1のタイミングで、前記通知部に前記不具合状態の種類に応じた通知を行わせ、
       ユーザによる吸引動作が検知されたタイミングまたはエアロゾル生成装置が活動状態に遷移したタイミングである第2のタイミングで、前記通知部に前記不具合状態の種類に応じた通知を行わせる
     ように構成される制御部と、
    を具備する、エアロゾル生成装置の電源ユニット。
  17.  前記不具合状態は複数の不具合状態を含み、
     前記制御部は、前記複数の不具合状態に応じた複数の種類のエラー信号を生成する、
    請求項16に記載されたエアロゾル生成装置の電源ユニット。
  18.  前記制御部は、前記通知部に、前記エラー信号の種類に応じた態様の通知をさせる、
    請求項16または17に記載されたエアロゾル生成装置の電源ユニット。
  19.  前記制御部は、前記通知部に、前記エラー信号の種類に応じた態様の光を発生させる、
    請求項17または18に記載されたエアロゾル生成装置の電源ユニット。
  20.  前記制御部は、前記通知部に、前記エラー信号の種類に応じた態様の振動を発生させる、
    請求項17または18に記載されたエアロゾル生成装置の電源ユニット。
  21.  前記制御部は、前記通知部に、前記エラー信号の種類に応じた態様の音を発生させる、
    請求項17または18に記載されたエアロゾル生成装置の電源ユニット。
  22.  前記制御部は、前記不具合状態が検知された場合に、複数のタイミングで、前記通知部に前記不具合状態を通知させる、
    請求項16乃至21のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  23.  前記第1のタイミングは前記不具合状態の検知時であり、前記第2のタイミングは前記不具合状態の検知後である、
    請求項16乃至22のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  24.  前記第1のタイミングにおいて前記電源から電力が供給される前記電源ユニットにおける要素数は、前記第2のタイミングにおいて前記電源から電力が供給される前記電源ユニットにおける要素数よりも多い、
    請求項16乃至23のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  25.  前記第2のタイミングは、前記エアロゾル生成装置を電源オンの状態に遷移させる指示が検知されたタイミングである、
    請求項16乃至24のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  26.  前記第2のタイミングは、センサ部によって前記吸引動作が検知されたタイミングである、
    請求項16乃至25のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  27.  前記制御部は、前記第2のタイミングにおける前記不具合状態の通知に要する消費電力を、前記第1のタイミングにおける前記不具合状態の通知に要する消費電力よりも小さくなるように制御する、
    請求項16乃至26のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  28.  前記不具合状態は複数の不具合状態を含み、
     前記複数の不具合状態のそれぞれに重要度が設定されており、
     前記制御部は、前記重要度が所定のレベルより低い不具合状態に関して、前記第1のタイミングでのみ前記通知部に前記不具合状態を通知させる、
    請求項16乃至27に記載されたエアロゾル生成装置の電源ユニット。
  29.  前記不具合状態は複数の不具合状態を含み、
     前記複数の不具合状態のそれぞれに重要度が設定されており、
     前記重要度が高く設定された不具合状態の通知ほど、消費電力が大きい、
    請求項16乃至27のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  30.  前記不具合状態は複数の不具合状態を含み、
     前記複数の不具合状態のそれぞれに重要度が設定されており、
     前記制御部は、前記不具合状態に設定された重要度に応じて、前記通知の態様を変更する、
    請求項16乃至27のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  31.  前記動作値は、前記電源の電圧値を含み、
     前記制御部は、前記動作値に基づき、前記電源の充電中に前記電源の電圧値の所定時間あたりの減少量が第1の閾値以上であることを検知した場合に、前記電源の状態が前記不具合状態であると判定する、
    請求項16乃至30のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  32.  前記動作値は、前記電源の電圧値を含み、
     前記制御部は、前記動作値に基づき、前記電源の充電中に前記電源の電圧値が第1の電圧範囲の下限から上限に至るまでに要する時間が第2の閾値以下であることを検知した場合に、前記電源の状態が前記不具合状態であると判定し、
     前記第1の電圧範囲は、前記電源の放電終止電圧以上の電圧範囲に含まれる、
    請求項16乃至31のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  33.  前記動作値は、前記電源の電圧値を含み、
     前記制御部は、前記動作値に基づき、前記電源の充電中に前記電源の電圧値が第2の電圧範囲の下限から上限に至るまでに要する時間が第3の閾値以上であることを検知した場合に、前記電源の状態が前記不具合状態であると判定し、
     前記第2の電圧範囲は、前記電源の放電終止電圧未満の電圧範囲に含まれる、
    請求項16乃至32のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  34.  前記動作値は、前記電源の通算充電時間を含み、
     前記制御部は、前記動作値に基づき、前記電源の通算充電時間が第4の閾値以上であることを検知した場合に、前記電源の状態が前記不具合状態であると判定する、
    請求項16乃至33のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  35.  前記動作値は、前記電源の温度を含み、
     前記制御部は、前記動作値に基づき、前記電源の温度が第5の閾値以上の場合に、前記電源の状態が前記不具合状態であると判定する、
    請求項16乃至34のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  36.  前記制御部は、
     前記電源の充電中に前記電源の電圧値の前記所定時間あたりの減少量が前記第1の閾値以上であることを検知した場合に、前記通知部に前記電源において内部短絡が生じたことを通知させ、
     前記電源の充電中に前記電源の電圧値が前記第1の電圧範囲の下限から上限に至るまでに要する時間が前記第2の閾値以下であることを検知した場合に、前記通知部に前記電源の容量が劣化したことを通知させ、
     前記電源の充電中に前記電源の電圧値が前記第2の電圧範囲の下限から上限に至るまでに要する時間が前記第3の閾値以上であることを検知した場合に、前記通知部に前記電源に過放電に基づく劣化が生じたことを通知させ、
     前記電源の通算充電時間が前記第4の閾値以上であることを検知した場合に、前記電源部に前記電源が寿命に達したことを通知させ、
     前記電源の温度が前記第5の閾値以上の場合に、前記通知部に前記電源に温度異常が生じたことを通知させる、
    請求項35に記載されたエアロゾル生成装置の電源ユニット。
  37.  前記制御部は、前記電源の状態が前記不具合状態であると判定した場合に、前記電源の充電および放電を禁止する、
    請求項16乃至36のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  38.  前記不具合状態は、前記電源が劣化した状態および/または前記電源が故障した状態を含む、
    請求項16乃至37のいずれか一項に記載されたエアロゾル生成装置の電源ユニット。
  39.  電源の動作に関する動作値に基づき、前記電源の状態が通常状態であるか不具合状態であるかを判定することと、
     前記不具合状態が検知された場合に、第1のタイミングで、前記不具合状態の種類に応じた通知を行い、ユーザによる吸引動作が検知されたタイミングまたはエアロゾル生成装置が活動状態に遷移したタイミングである第2のタイミングで、前記不具合状態の種類に応じた通知を行うことと、
    を含む、エアロゾル生成装置の制御方法。
  40.  コンピュータに、
     電源の動作に関する動作値に基づき、前記電源の状態が通常状態であるか不具合状態であるかを判定する処理と、
     前記不具合状態が検知された場合に、第1のタイミングで、前記不具合状態の種類に応じた通知を行い、ユーザによる吸引動作が検知されたタイミングまたはエアロゾル生成装置が活動状態に遷移したタイミングである第2のタイミングで、前記不具合状態の種類に応じた通知を行う処理と、
    を実行させるためのプログラム。
  41.  電源と、
     通知部と、
      前記電源の動作に関する動作値に基づき、前記電源の状態が通常状態であるか不具合状態であるかを判定し、
      前記不具合状態が検知された場合に、
       第1のタイミングで、前記通知部に前記不具合状態の種類に応じた通知を行わせ、
       ユーザによる吸引動作が検知されたタイミングまたは吸引器が活動状態に遷移したタイミングである第2のタイミングで、前記通知部に前記不具合状態の種類に応じた通知を行わせる
     ように構成される制御部と、
    を具備する、吸引器の電源ユニット。
PCT/JP2019/039601 2018-10-30 2019-10-08 エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラム WO2020090374A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19880189.6A EP3874982A4 (en) 2018-10-30 2019-10-08 POWER SUPPLY UNIT OF AEROSOL GENERATING DEVICE, METHOD FOR CONTROLLING POWER SUPPLY UNIT OF AEROSOL GENERATING DEVICE, AND PROGRAM FOR POWER SUPPLY UNIT OF AEROSOL GENERATING DEVICE
US17/236,457 US20210235767A1 (en) 2018-10-30 2021-04-21 Power supply unit of aerosol generation device, control method of power supply unit of aerosol generation device, and program for power supply unit of aerosol generation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-203941 2018-10-30
JP2018203941 2018-10-30
JP2018-203938 2018-10-30
JP2018203938A JP6522220B1 (ja) 2018-10-30 2018-10-30 エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/236,457 Continuation US20210235767A1 (en) 2018-10-30 2021-04-21 Power supply unit of aerosol generation device, control method of power supply unit of aerosol generation device, and program for power supply unit of aerosol generation device

Publications (1)

Publication Number Publication Date
WO2020090374A1 true WO2020090374A1 (ja) 2020-05-07

Family

ID=70464070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039601 WO2020090374A1 (ja) 2018-10-30 2019-10-08 エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラム

Country Status (4)

Country Link
US (1) US20210235767A1 (ja)
EP (1) EP3874982A4 (ja)
TW (1) TW202025924A (ja)
WO (1) WO2020090374A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6617189B1 (ja) * 2018-10-31 2019-12-11 日本たばこ産業株式会社 エアロゾル吸引器用の電源ユニット、エアロゾル吸引器、エアロゾル吸引器の電源制御方法、及びエアロゾル吸引器の電源制御プログラム
CN115336817A (zh) * 2022-09-22 2022-11-15 深圳市卓尔悦电子科技有限公司 气溶胶生成装置的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815306A (ja) * 1994-05-31 1996-01-19 Hitachi Ltd 容量式センサ装置
JP2007086002A (ja) * 2005-09-26 2007-04-05 Hitachi Ltd センサおよびセンサモジュール
US20130019887A1 (en) 2010-04-13 2013-01-24 Qiuming Liu Electric-cigarette
CN204682523U (zh) 2012-08-21 2015-10-07 惠州市吉瑞科技有限公司 电子烟装置
JP2016214258A (ja) * 2010-04-30 2016-12-22 ローイック、インク. 電子喫煙装置
WO2018163262A1 (ja) * 2017-03-06 2018-09-13 日本たばこ産業株式会社 バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150296885A1 (en) * 2013-04-07 2015-10-22 Qiuming Liu Atomization temperature controllable electronic cigarette
CA2916242C (en) * 2013-06-19 2022-02-22 Fontem Holdings 4 B.V. Device and method for sensing mass airflow
US20170112194A1 (en) * 2015-10-21 2017-04-27 Rai Strategic Holdings, Inc. Rechargeable lithium-ion capacitor for an aerosol delivery device
US10051891B2 (en) * 2016-01-05 2018-08-21 Rai Strategic Holdings, Inc. Capacitive sensing input device for an aerosol delivery device
US10405582B2 (en) * 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815306A (ja) * 1994-05-31 1996-01-19 Hitachi Ltd 容量式センサ装置
JP2007086002A (ja) * 2005-09-26 2007-04-05 Hitachi Ltd センサおよびセンサモジュール
US20130019887A1 (en) 2010-04-13 2013-01-24 Qiuming Liu Electric-cigarette
JP2016214258A (ja) * 2010-04-30 2016-12-22 ローイック、インク. 電子喫煙装置
CN204682523U (zh) 2012-08-21 2015-10-07 惠州市吉瑞科技有限公司 电子烟装置
WO2018163262A1 (ja) * 2017-03-06 2018-09-13 日本たばこ産業株式会社 バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3874982A4

Also Published As

Publication number Publication date
US20210235767A1 (en) 2021-08-05
TW202025924A (zh) 2020-07-16
EP3874982A4 (en) 2022-07-27
EP3874982A1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
KR102184443B1 (ko) 에어로졸 흡인기용 전원 유닛, 그 제어 방법 및 제어 프로그램
TWI717079B (zh) 霧氣吸嚐器用之電源單元,以及其控制方法及電腦程式產品
JP6636117B1 (ja) エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラム
KR102183437B1 (ko) 흡입 성분 발생 장치, 제어 회로, 및 흡입 성분 발생 장치의 제어 방법
TWI701000B (zh) 霧氣吸嚐器用之電源單元,以及其控制方法和控制程式
TWI732965B (zh) 電池單元、香味吸嚐器、充電器、電源之異常檢測方法及電腦程式產品
JP6522220B1 (ja) エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラム
KR102183436B1 (ko) 흡입 성분 발생 장치, 제어 회로, 및 흡입 성분 발생 장치의 제어 방법
KR102183438B1 (ko) 흡입 성분 발생 장치, 제어 회로, 및 흡입 성분 발생 장치의 제어 방법
RU2742714C1 (ru) Блок питания устройства для вдыхания аэрозоля, способ диагностики источника питания устройства для вдыхания аэрозоля, и компьютерно-читаемый носитель, содержащий программу диагностики источника питания устройства для вдыхания аэрозоля
JP7371295B2 (ja) エアロゾル生成装置の電源ユニット、制御方法、プログラム、および、吸引器の電源ユニット
TWI698189B (zh) 霧氣吸嚐器用之電源單元、霧氣吸嚐器、霧氣吸嚐器之電源控制方法以及霧氣吸嚐器之電源控制程式
WO2020090374A1 (ja) エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラム
JP6550519B1 (ja) エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラム
US20210235768A1 (en) Power supply unit of aerosol generation device, control method of power supply unit of aerosol generation device, and program for power supply unit of aerosol generation device
JP6647441B1 (ja) エアロゾル吸引器用の電源ユニット、その制御方法及び制御プログラム
EA043855B1 (ru) Блок питания для аэрозольного ингалятора, аэрозольный ингалятор, способ управления источником питания аэрозольного ингалятора и программа управления источником питания аэрозольного ингалятора

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019880189

Country of ref document: EP

Effective date: 20210531