WO2020090175A1 - Nickel-metal hydride battery - Google Patents

Nickel-metal hydride battery Download PDF

Info

Publication number
WO2020090175A1
WO2020090175A1 PCT/JP2019/030319 JP2019030319W WO2020090175A1 WO 2020090175 A1 WO2020090175 A1 WO 2020090175A1 JP 2019030319 W JP2019030319 W JP 2019030319W WO 2020090175 A1 WO2020090175 A1 WO 2020090175A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
positive electrode
negative electrode
hydrogen storage
Prior art date
Application number
PCT/JP2019/030319
Other languages
French (fr)
Japanese (ja)
Inventor
岳太 岡西
佐々木 博之
邦吉 野村
聡 河野
厚志 南形
正人 穂積
素宜 奥村
Original Assignee
株式会社豊田自動織機
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, トヨタ自動車株式会社 filed Critical 株式会社豊田自動織機
Publication of WO2020090175A1 publication Critical patent/WO2020090175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nickel metal hydride battery.
  • a nickel metal hydride battery is a secondary battery including a positive electrode having a nickel oxide compound such as nickel hydroxide as a positive electrode active material, a negative electrode having a hydrogen storage alloy as a negative electrode active material, and an electrolytic solution containing an alkali metal aqueous solution. Is.
  • Patent Document 1 After a hydrogen storage alloy having a CaCu 5 type crystal structure and made of an alloy containing a rare earth element and Ni, Co, Mn, and Al is immersed in an aqueous sodium hydroxide solution, Techniques for washing with water are described. Then, the same document describes that the hydrogen storage alloy is in a state as if it was coated with nickel by immersing the hydrogen storage alloy in an aqueous solution of sodium hydroxide.
  • a high-concentration potassium hydroxide aqueous solution which has excellent ionic conductivity, is generally used as the alkali metal aqueous solution used as the electrolytic solution of the nickel metal hydride battery.
  • Example 1 of Patent Document 2 specifically describes a nickel metal hydride battery using an aqueous solution of 1 to 8 mol / L potassium hydroxide as an electrolytic solution.
  • Example 2 of Patent Document 2 specifically describes a nickel metal hydride battery using an aqueous solution in which potassium hydroxide and lithium hydroxide are dissolved as an electrolytic solution.
  • the example of Patent Document 3 specifically describes a nickel metal hydride battery using an aqueous solution in which potassium hydroxide, sodium hydroxide and lithium hydroxide are dissolved as an electrolytic solution.
  • an aqueous solution obtained by mixing a 5.5 mol / L potassium hydroxide aqueous solution, a 0.5 mol / L sodium hydroxide aqueous solution, and a 0.4 to 1.8 mol / L lithium hydroxide aqueous solution.
  • a nickel metal hydride battery using is used as an electrolytic solution is specifically described.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a new nickel metal hydride battery that exhibits excellent battery characteristics.
  • the present inventor studied a negative electrode, and surprisingly found that a nickel metal hydride battery using a hydrogen storage alloy having a high oxygen content as a negative electrode active material is effective in reducing battery resistance.
  • the present inventor also examined the electrolytic solution at the same time as the negative electrode. Then, as a result of diligent study by the present inventors, a nickel metal hydride battery employing an electrolytic solution in which sodium tungstate is dissolved, and a hydrogen storage alloy having a high oxygen content as a negative electrode active material, has battery characteristics. It was found to be excellent.
  • the nickel metal hydride battery of the present invention A negative electrode active material having an oxygen concentration of 1000 ppm or more before charge and discharge, And an electrolytic solution comprising an aqueous solution containing tungstic acid or a salt thereof and an alkali metal hydroxide.
  • the nickel metal hydride battery of the present invention has excellent battery characteristics.
  • FIG. 9 is a schematic cross-sectional view of a bipolar nickel metal hydride battery of Application Example 1.
  • FIG. 9 is a schematic cross-sectional view of a bipolar nickel metal hydride battery of Application Example 1.
  • the numerical range “ab” described in the present specification includes the lower limit a and the upper limit b in the range.
  • the upper limit value and the lower limit value, and the numerical values listed in the examples can be arbitrarily combined to form the numerical value range. Further, a numerical value arbitrarily selected from these numerical ranges can be set as a new upper and lower numerical value.
  • the nickel metal hydride battery of the present invention A negative electrode active material having an oxygen concentration of 1000 ppm or more before charge / discharge (hereinafter, sometimes referred to as negative electrode active material of the present invention);
  • An electrolytic solution comprising an aqueous solution containing tungstic acid or a salt thereof and an alkali metal hydroxide (hereinafter, may be referred to as an electrolytic solution of the present invention).
  • the negative electrode active material of the present invention is a material in which the surface of the hydrogen storage alloy is substantially oxidized.
  • the negative electrode active material of the present invention has an oxygen concentration of 1000 ppm or more before charge / discharge.
  • the oxygen concentration range is preferably in the range of 1,000 to 90,000 ppm, more preferably in the range of 5,000 to 80,000 ppm, further preferably in the range of 10,000 to 60,000 ppm, particularly preferably in the range of 15,000 to 50,000 ppm, particularly preferably in the range of 18,000 to 45,000 ppm. The range is most preferable.
  • the oxygen concentration of the negative electrode active material may be such that the oxygen concentration before charging / discharging the nickel metal hydride battery including the negative electrode active material is within the above range.
  • the oxygen concentration of the negative electrode active material may change during charge / discharge of the nickel metal hydride battery.
  • the oxygen concentration of the negative electrode active material of the present invention may be interpreted as a value "before battery production” or “at battery production”, or "before electrode production” or “at electrode production”.
  • the average particle diameter of the negative electrode active material of the present invention is preferably in the range of 1 to 40 ⁇ m, more preferably in the range of 3 to 30 ⁇ m, further preferably in the range of 4 to 20 ⁇ m, particularly preferably in the range of 5 to 15 ⁇ m. Most preferably, it is within the range of 5 to 12 ⁇ m.
  • the BET specific surface area of the negative electrode active material of the present invention preferably 0.2 ⁇ 10.0m 2 / g, more preferably 0.5 ⁇ 8.0m 2 / g, 1.0 ⁇ 6.0m 2 / g Is more preferable.
  • the saturation magnetization of the negative electrode active material of the present invention containing Ni is preferably 0.2 to 10 emu / g, more preferably 0.5 to 9 emu / g, still more preferably 1 to 8 emu / g. , 1.5 to 7 emu / g are particularly preferable.
  • the hydrogen storage alloy in the negative electrode active material is not limited as long as it is used as the negative electrode active material of a nickel metal hydride battery.
  • a hydrogen storage alloy is basically an alloy of a metal A that easily reacts with hydrogen but has a poor hydrogen releasing ability, and a metal B that does not easily react with hydrogen but has a good hydrogen releasing ability.
  • A a misch containing a Group 2 element such as Mg, a Group 3 element such as Sc or lanthanoid, a Group 4 element such as Ti or Zr, a Group 5 element such as V or Ta, or a plurality of rare earth elements Examples thereof include metal (hereinafter sometimes abbreviated as Mm) and Pd.
  • Mm metal
  • B include Fe, Co, Ni, Cr, Pt, Cu, Ag, Mn, Zn and Al.
  • Specific hydrogen-absorbing alloy AB 5 type showing a hexagonal CaCu 5 type crystal structure, hexagonal MgZn 2 type or AB 2 type showing a cubic MgCu 2 type crystal structure, AB type indicating the cubic CsCl-type crystal structure , A 2 B type showing a hexagonal Mg 2 Ni type crystal structure, a solid solution type showing a body-centered cubic crystal structure, and AB 3 type and A 2 B 7 in which AB 5 type and AB 2 type crystal structures are combined. It can be exemplified of a type and a 5 B 19 type.
  • the hydrogen storage alloy may have one kind of the above crystal structures, or may have a plurality of the above crystal structures.
  • Examples of the AB 5 type hydrogen storage alloy include LaNi 5 , CaCu 5 , and MmNi 5 .
  • Examples of the AB 2 type hydrogen storage alloy include MgZn 2 , ZrNi 2 , and ZrCr 2 .
  • Examples of AB type hydrogen storage alloys include TiFe and TiCo.
  • Examples of the A 2 B type hydrogen storage alloy include Mg 2 Ni and Mg 2 Cu.
  • Examples of the solid solution type hydrogen storage alloy include Ti-V, V-Nb, and Ti-Cr.
  • CeNi 3 can be exemplified as the AB 3 type hydrogen storage alloy.
  • Ce 2 Ni 7 can be exemplified as the A 2 B 7 type hydrogen storage alloy.
  • Examples of the A 5 B 19 type hydrogen storage alloy include Ce 5 Co 19 and Pr 5 Co 19 . In each of the above crystal structures, some of the metals may be replaced with one or more other metals or elements.
  • an A 2 B 7 type hydrogen storage alloy containing a rare earth element, Mg and Ni is preferable.
  • the negative electrode active material of the present invention having a high oxygen concentration, it is preferable to positively oxidize the surface of the hydrogen storage alloy.
  • the hydrogen storage alloy is treated by a suitable method (hereinafter referred to as a hydrogen storage alloy treatment method), The procedure for producing the negative electrode active material of the present invention will be described.
  • the treatment method of hydrogen storage alloy is N-1) a step of treating the hydrogen storage alloy with an alkaline aqueous solution, N-2) a step of oxidizing the surface of the hydrogen storage alloy after the step N-1), Have.
  • Step N-1) is not an essential step for oxidizing the hydrogen storage alloy, but as will be described later, a more suitable negative electrode active material of the present invention can be obtained due to the steps.
  • the step N-1) preferably includes the following steps a) and b). a) a step of treating an A 2 B 7 type hydrogen storage alloy containing a rare earth element, Mg and Ni with a first alkaline aqueous solution in which a hydroxide of an alkali metal is dissolved b) a), and then a first alkaline aqueous solution Process of separating the hydrogen storage alloy from the solution and treating with a second alkaline aqueous solution in which hydroxide of alkali metal is dissolved
  • a step of treating an A 2 B 7 type hydrogen storage alloy containing a rare earth element, Mg and Ni with a first alkaline aqueous solution in which a hydroxide of an alkali metal is dissolved (hereinafter, simply “a step”) That. ) Will be described.
  • the hydrogen storage alloy used in the step a) is an A 2 B 7 type hydrogen storage alloy containing a rare earth element, Mg and Ni. It is considered that the rare earth element and Mg belong to the metal A and Ni belongs to the metal B. Examples of rare earth elements include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Other metal elements may be present in the hydrogen storage alloy used in the step a), and Mn, Fe, Co, Cu, Zn, Al, Cr, Pt, Cu, Ag, and Ti may be used as the other metal elements. , Zr, V, and Ta can be exemplified.
  • the hydrogen storage alloy used in step a) is preferably a hydrogen storage alloy containing 60 to 70% by mass of Ni.
  • the hydrogen storage alloy be in the form of powder that has been crushed and adjusted to have a certain particle size.
  • the average particle diameter of the hydrogen storage alloy is preferably in the range of 1 to 40 ⁇ m, more preferably in the range of 3 to 30 ⁇ m, further preferably in the range of 4 to 20 ⁇ m, particularly preferably in the range of 5 to 15 ⁇ m, and preferably 5 to The range of 12 ⁇ m is most preferable.
  • the rare earth element having high solubility in the alkaline aqueous solution is eluted from the surface of the hydrogen storage alloy.
  • the Ni concentration on the surface of the hydrogen storage alloy becomes higher as compared with the inside of the hydrogen storage alloy.
  • the portion where the Ni concentration is higher than the inside is referred to as the Ni concentrated layer. It is considered that the performance of the negative electrode active material is improved due to the presence of the Ni concentrated layer.
  • alkali metal hydroxides examples include lithium hydroxide, sodium hydroxide, and potassium hydroxide, with sodium hydroxide being preferred.
  • sodium hydroxide being preferred.
  • the battery characteristics of the nickel metal hydride battery of the present invention are optimized as compared with the case where lithium hydroxide or potassium hydroxide is used as the first alkaline aqueous solution. There is.
  • a strong base is preferred as the first alkaline aqueous solution.
  • concentration of the alkali metal hydroxide in the first alkaline aqueous solution include 10 to 60% by mass, 20 to 55% by mass, 30 to 50% by mass, and 40 to 50% by mass.
  • the step a) is preferably performed by a method of immersing the hydrogen storage alloy in the first alkaline aqueous solution.
  • the heating temperature range include 50 to 150 ° C., 70 to 140 ° C., and 90 to 130 ° C.
  • the heating time may be appropriately determined depending on the concentration of the first alkaline aqueous solution and the heating temperature, and examples thereof include 0.1 to 10 hours, 0.2 to 5 hours, and 0.5 to 3 hours.
  • the mass ratio is preferably 1: 0.5 to 1:10, more preferably 1: 0.7 to 1: 5, and 1: 0.9 to 1: 3 is more preferable. If the amount of the first alkaline aqueous solution is too small, the Ni concentrated layer may not be sufficiently formed on the surface of the hydrogen storage alloy. On the other hand, if the amount of the first alkaline aqueous solution is too large, it is disadvantageous in terms of cost. ..
  • step b) a the step of separating the hydrogen storage alloy from the first alkaline aqueous solution and treating with the second alkaline aqueous solution in which the hydroxide of the alkali metal is dissolved (hereinafter simply referred to as the “b) step”. ) Will be described.
  • the rare earth element eluted from the hydrogen storage alloy is present in the first alkaline aqueous solution at the time when the step a) is completed. Then, the rare earth element can adhere to the surface of the hydrogen storage alloy as a hydroxide of the rare earth element when the first alkaline aqueous solution and the hydrogen storage alloy are separated.
  • the step b) is a step of removing the hydroxide of the rare earth element attached to the surface of the hydrogen storage alloy separated from the first alkaline aqueous solution with the second alkaline aqueous solution.
  • Rare earth element hydroxides are deposited under neutral conditions, but are easily dissolved in a basic aqueous solution. The step b) utilizes this property.
  • filtration or centrifugation is preferable, and suction filtration is particularly preferable.
  • the method of treating the hydrogen storage alloy with the second aqueous alkali solution include a method of immersing the hydrogen storage alloy in the second aqueous alkali solution and a method of exposing the second alkaline solution to the hydrogen storage alloy. It is rational to select a method in which the second alkaline aqueous solution is exposed to the hydrogen storage alloy subsequent to or while performing the above-described filtration.
  • alkali metal hydroxide dissolved in the second alkaline aqueous solution examples include lithium hydroxide, sodium hydroxide and potassium hydroxide, and of these, sodium hydroxide is preferable.
  • the concentration C 1 of the alkali metal hydroxide of the first alkaline aqueous solution and the concentration C 2 of the alkali metal hydroxide of the second alkaline aqueous solution satisfies C 1 > C 2 b. It is preferred to perform the steps. Since the alkaline aqueous solution having a low concentration has a low viscosity, the work of step b) proceeds smoothly under the condition that C 1 > C 2 is satisfied.
  • Examples of the alkali metal hydroxide concentration in the second alkaline aqueous solution are 0.01 to 10% by mass, 0.03 to 5% by mass, 0.05 to 1% by mass, and 0.1 to 0.5% by mass. it can.
  • step b) it is preferable to carry out step b) under lower temperature conditions than step a).
  • the temperature range of step b) include 0 to 100 ° C., 10 to 70 ° C., and 20 to 50 ° C.
  • the temperature of step b) may be defined as the temperature of the environment in which the hydrogen storage alloy is present, or as the temperature of the second alkaline aqueous solution.
  • the mass ratio is preferably 1: 0.5 to 1:50, more preferably 1: 1 to 1:30, and 1: 1.5 to 1:10. More preferable. If the amount of the second alkaline aqueous solution is too small, the hydroxide of the rare earth element may be insufficiently removed. On the other hand, if the amount of the second alkaline aqueous solution is too large, the cost is disadvantageous.
  • the hydrogen storage alloy may be washed with water subsequently to the treatment with the second alkaline aqueous solution.
  • the second alkaline aqueous solution adhering to the surface of the hydrogen storage alloy can be removed by washing with water.
  • the mass ratio is preferably 1: 1 to 1:50, more preferably 1: 2 to 1:30, and further preferably 1: 3 to 1:10. preferable.
  • N-2) the step of oxidizing the surface of the hydrogen storage alloy after the step N-1) (hereinafter simply referred to as “N-2) step”. ) Will be described.
  • the N-2) step may be a method of exposing the hydrogen storage alloy to the air and oxidizing it with oxygen in the air, or a method of contacting the hydrogen storage alloy with an oxide such as hydrogen peroxide to oxidize it. ..
  • the hydrogen storage alloy may be exposed to water while cooling the hydrogen storage alloy, or the hydrogen storage alloy may be placed in water or stored in an aqueous solution of an oxide such as hydrogen peroxide. It is preferable to carry out after the alloy is arranged.
  • the hydrogen-absorbing alloy which may be carried out after the treatment with the second alkaline aqueous solution in the step b), may be washed in water under the atmosphere to be the step N-2).
  • the preferred negative electrode active material of the present invention produced through the steps N-1) and N-2) contains a hydrogen storage alloy in which the surface Ni concentration is increased as compared with the internal Ni concentration.
  • the internal Ni concentration has the same meaning as the Ni concentration in the hydrogen storage alloy before the treatment used in step N-1). It can also be said that the preferable negative electrode active material of the present invention has a Ni concentrated layer on the surface.
  • the thickness of the Ni concentrated layer may be, for example, 5 to 200 nm, 10 to 150 nm, or 30 to 100 nm.
  • the thickness of the Ni concentrated layer can be confirmed by observing the cross section of the particles of the negative electrode active material of the present invention with various electron microscopes.
  • step a) of the step N-1 a rare earth element which is easily dissolved in an alkaline aqueous solution is eluted, so that the surface of the hydrogen storage alloy after the step a) is Ni. A concentrated layer is formed.
  • step b) since the hydroxide of the rare earth element attached to the surface of the hydrogen storage alloy is removed with the second alkaline aqueous solution, the Ni concentration on the surface of the hydrogen storage alloy after step b) is further increased. It can be said that.
  • the present inventor measured the surface of the hydrogen storage alloy after the step b) by X-ray photoelectron spectroscopy, the Ni ratio was significantly higher than that of the hydrogen storage alloy before the treatment used in the step a). It was confirmed that it was getting higher. Therefore, the following can be grasped as one preferable embodiment of the negative electrode active material of the present invention.
  • One embodiment of the negative electrode active material of the present invention contains La, Mg and Ni, contains an A 2 B 7 type hydrogen storage alloy containing 60 to 70% by mass of Ni, and has an internal Ni / La element ratio.
  • the value of the Ni / La element ratio on the surface is 1.3 or more.
  • the internal Ni / La element ratio means the Ni / La element ratio inside the hydrogen storage alloy, for example, in the center of the particles of the negative electrode active material of the present invention, and also the internal Ni / La element ratio Is synonymous with the Ni / La element ratio in the hydrogen storage alloy before the treatment used in step a).
  • the values of the surface Ni / La element ratio with respect to the internal Ni / La element ratio can be in the range of 1.3 to 2, 1.31 to 1.5, 1.34 to 1.4.
  • the electrolytic solution of the present invention is an aqueous solution containing tungstic acid or its salt and an alkali metal hydroxide.
  • tungstic acid is a hydrate of tungsten trioxide.
  • alkali metal salts such as lithium salt and sodium salt are preferable.
  • the electrolytic solution one type of tungstic acid and its salt may be used, or a plurality of types may be used in combination.
  • the concentration of tungstic acid and its salt in the electrolytic solution is preferably 0.001 to 0.5 mol / L, more preferably 0.005 to 0.4 mol / L, and further preferably 0.01 to 0.3 mol / L. 0.015 to 0.2 mol / L is particularly preferable.
  • Examples of the alkali metal hydroxide contained in the electrolytic solution of the present invention include lithium hydroxide, sodium hydroxide and potassium hydroxide.
  • the electrolytic solution may contain one kind of alkali metal hydroxide or a plurality of kinds of alkali metal hydroxide. Particularly, those containing hydroxides of three kinds of alkali metals such as lithium hydroxide, sodium hydroxide and potassium hydroxide are preferable.
  • the concentration of the alkali metal hydroxide in the electrolytic solution is preferably 2 to 10 mol / L, more preferably 3 to 9 mol / L, and further preferably 4 to 8 mol / L.
  • the well-known additive used for the nickel metal hydride battery electrolyte may be added to the electrolyte.
  • the nickel metal hydride battery of the present invention specifically comprises a negative electrode active material layer containing the negative electrode active material of the present invention, an electrolytic solution of the present invention, a positive electrode active material layer containing a positive electrode active material, and a separator. To do.
  • the nickel metal hydride battery of the present invention may be a normal nickel metal hydride battery including a positive electrode having the positive electrode active material layer and a negative electrode having the negative electrode active material layer, or It may be a bipolar nickel metal hydride battery in which the positive electrode active material layer is provided on one surface of the current collector foil and the bipolar electrode having the negative electrode active material layer is provided on the other surface.
  • the positive electrode includes a current collector and a positive electrode active material layer formed on the surface of the current collector.
  • the positive electrode active material layer contains a positive electrode active material and, if necessary, a positive electrode additive, a binder and a conductive auxiliary agent.
  • the positive electrode active material a material known as a positive electrode active material for nickel metal hydride batteries may be appropriately adopted, but it is preferable to form a layer of cobalt oxyhydroxide around the positive electrode active material in advance. Furthermore, it is preferable that a layer of cobalt oxyhydroxide is formed in advance around the positive electrode active material and that the layer of cobalt oxyhydroxide is doped with an alkali metal, particularly lithium.
  • the positive electrode active material of the present invention includes a cobalt oxyhydroxide layer containing lithium and cobalt oxyhydroxide, and a positive electrode active material body coated with the cobalt oxyhydroxide layer (herein, simply referred to as “positive electrode active material”). That is.) Is included.
  • the positive electrode active material coated with the cobalt oxyhydroxide layer is not limited as long as it is used as a positive electrode active material of a nickel metal hydride battery.
  • Specific examples of the positive electrode active material include nickel hydroxide and nickel hydroxide doped with a metal.
  • Examples of the metal with which nickel hydroxide is doped include Group 2 elements such as magnesium and calcium, Group 9 elements such as cobalt, rhodium and iridium, and Group 12 elements such as zinc and cadmium.
  • the method of forming a cobalt oxyhydroxide layer containing lithium and cobalt oxyhydroxide on the positive electrode active material body is the following steps P-1) and P-2).
  • a step of forming a cobalt hydroxide layer on the surface of the positive electrode active material P-2) The positive electrode active material on which the cobalt hydroxide layer is formed is heated to change the cobalt hydroxide layer to a cobalt oxyhydroxide layer.
  • Examples of P-1) include the following P-1-1) or P-1-2).
  • P-1-1) A step of producing a dispersion liquid in which the positive electrode active material is dispersed in an aqueous cobalt salt solution, and then making the pH of the dispersion liquid alkaline and precipitating cobalt hydroxide on the surface of the positive electrode active material P- 1-2)
  • cobalt salts examples include cobalt sulfate, cobalt nitrate, and cobalt chloride.
  • Examples of the heating temperature in the step P-2) include 70 to 230 ° C and 80 to 200 ° C.
  • the atmosphere in step P-2) is an oxygen-containing atmosphere. From the viewpoint of cost, it is preferable to carry out the step P-2) in the presence of air.
  • lithium may be doped in the cobalt hydroxide layer before heating, or in the cobalt hydroxide layer or cobalt oxyhydroxide layer during heating.
  • a method of spraying a lithium salt aqueous solution on the positive electrode active material is preferable.
  • the cobalt oxyhydroxide layer on the surface of the positive electrode active material or, Lithium is doped with respect to the cobalt hydroxide layer before conversion into the cobalt oxyhydroxide layer.
  • the heating temperature in the method of doping lithium it is rational to carry out at the same temperature as the heating temperature at the time of converting the cobalt hydroxide layer into the cobalt oxyhydroxide layer in the step P-2).
  • lithium salt examples include lithium hydroxide, lithium sulfate, lithium nitrate, lithium chloride, lithium acetate, lithium trifluoromethanesulfonate, and lithium bis (trifluoromethanesulfonyl) imide.
  • step P-2 not only lithium but also another alkali metal may be doped.
  • alkali metals include sodium and potassium.
  • a method of spraying an alkali metal aqueous solution is preferable as in the method of doping lithium.
  • the reason why the positive electrode active material of the present invention exhibits excellent conductivity is considered as follows.
  • the cobalt oxyhydroxide layer contains ⁇ -CoOOH, which is less conductive than CoOOH, and has conductivity. It is considered that Co 3 O 4 having poor properties is formed. In Co 3 O 4 , cobalt exists in both divalent and trivalent states.
  • the cobalt oxyhydroxide layer when a cobalt oxyhydroxide layer is formed on the positive electrode active material by using a method of doping an alkali metal other than lithium, the cobalt oxyhydroxide layer contains ⁇ -CoOOH having excellent conductivity among CoOOH. However, it is considered that Co 3 O 4 having poor conductivity is also formed.
  • the cobalt oxyhydroxide layer is formed on the positive electrode active material by using the method of doping lithium, even if Co 3 O 4 having poor conductivity is formed, it is at least Co due to the presence of lithium. It is considered that a part of 3 O 4 is converted into LiCoO 2 having excellent conductivity. Then, when a cobalt oxyhydroxide layer is formed on the positive electrode active material by using the method of doping lithium, the cobalt oxyhydroxide layer contains a large amount of ⁇ -CoOOH having excellent conductivity among CoOOH, Although LiCoO 2 having relatively high conductivity also exists, the proportion of Co 3 O 4 having poor conductivity is considered to be extremely low.
  • the resistivity of ⁇ -CoOOH is approximately 2 ⁇ ⁇ cm
  • the resistivity of LiCoO 2 is approximately 1 ⁇ 10 2 ⁇ ⁇ cm
  • the resistivity of Co 3 O 4 is approximately 1 ⁇ 10 6 ⁇ ⁇ cm
  • is The resistivity of —CoOOH is approximately 1 ⁇ 10 8 ⁇ ⁇ cm.
  • Cobalt of ⁇ -CoOOH and LiCoO 2 which are excellent in conductivity are both trivalent.
  • cobalt of cobalt hydroxide as a raw material is divalent, and that Co 3 O 4 has both divalent and trivalent cobalt
  • the oxyhydroxide of the positive electrode active material of the present invention is considered. It can be said that the higher the valence of cobalt in the cobalt layer, the better.
  • the valence of cobalt in the cobalt oxyhydroxide layer of the positive electrode active material of the present invention is preferably 2.9 to 3.2, more preferably 2.95 to 3.1, and even more preferably 2.98 to 3.07. preferable.
  • the valence of cobalt here is a value obtained by measuring the valence of cobalt in the cobalt oxyhydroxide layer existing on the surface of the positive electrode active material of the present invention by an iodometry method.
  • the content of cobalt in the positive electrode active material of the present invention is preferably 1 to 10% by mass, more preferably 2 to 7% by mass, and further preferably 3 to 7% by mass.
  • the content of lithium in the positive electrode active material of the present invention is preferably 0.01 to 0.3% by mass, more preferably 0.04 to 0.2% by mass, and further preferably 0.07 to 0.1% by mass. ..
  • the content of the alkali metal other than lithium in the positive electrode active material of the present invention is preferably 0.01 to 1% by mass, more preferably 0.1 to 0.6% by mass, and 0.2 to 0.5% by mass. More preferable.
  • the positive electrode active material of the present invention is preferably in a powder state, and its average particle size is preferably in the range of 3 to 40 ⁇ m, more preferably in the range of 5 to 30 ⁇ m, and further preferably in the range of 7 to 20 ⁇ m.
  • the average particle diameter means a value of D 50 in the measurement using a conventional laser diffraction particle size distribution analyzer.
  • the BET specific surface area of the positive electrode active material of the present invention preferably 5 ⁇ 30m 2 / g, more preferably from 10 ⁇ 20m 2 / g, more preferably 12 ⁇ 18m 2 / g.
  • the resistivity of the positive electrode active material of the present invention is preferably 0.1 to 7 ⁇ ⁇ cm, more preferably 0.1 to 5 ⁇ ⁇ cm, and even more preferably 0.1 to 4 ⁇ ⁇ cm.
  • Current collector refers to a chemically inert electronic conductor that keeps current flowing through the electrodes during discharging or charging of a nickel metal hydride battery.
  • the material of the current collector is not particularly limited as long as it is a metal capable of withstanding a voltage suitable for the active material used.
  • the material for the current collector is at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel.
  • Metal materials such as The current collector may be covered with a known protective layer. You may use what collected the surface of the collector by a well-known method as a collector.
  • As the material of the current collector nickel or a metal material plated with nickel is preferable.
  • the current collector can be in the form of foil, sheet, film, wire, rod, mesh, sponge, etc.
  • its thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the positive electrode active material of the present invention has excellent conductivity, it may be rational to employ a foil-shaped current collector. For the same reason, it can be said that the positive electrode active material of the present invention is suitable for a bipolar electrode using a collector foil.
  • the positive electrode active material layer contains a positive electrode active material, and if necessary, a positive electrode additive, a binder, and a conductive additive.
  • the amount of one positive electrode active material layer present on the current collector of the positive electrode is preferably 20 mg / cm 2 or more, more preferably 25 to 50 mg / cm 2 , and even more preferably 27 to 40 mg / cm 2 .
  • the density of the positive electrode active material layer 2.5 g / cm 3 or more, more preferably 2.6 ⁇ 3.2g / cm 3, more preferably 2.7 ⁇ 3.1g / cm 3, 2.8 It is particularly preferably from 3.0 g / cm 3 .
  • the positive electrode active material layer preferably contains the positive electrode active material in an amount of 75 to 99% by mass, more preferably 80 to 97% by mass, and further preferably 85 to 95%, based on the total mass of the positive electrode active material layer. More preferably, it is contained by mass%.
  • the positive electrode additive is added to the positive electrode in order to improve the battery characteristics of the nickel metal hydride battery.
  • the positive electrode additive is not limited as long as it is used as a positive electrode additive for nickel metal hydride batteries.
  • Specific positive electrode additives include niobium compounds such as Nb 2 O 5 , tungsten compounds such as WO 2 , WO 3 , Li 2 WO 4 , Na 2 WO 4 and K 2 WO 4 , ytterbium compounds such as Yb 2 O 3 . , Titanium compounds such as TiO 2 , yttrium compounds such as Y 2 O 3 , zinc compounds such as ZnO, calcium compounds such as CaO, Ca (OH) 2 and CaF 2 , and other rare earth oxides.
  • the positive electrode active material layer preferably contains the positive electrode additive in an amount of 0.1 to 10% by mass, and more preferably 0.5 to 5% by mass, based on the total mass of the positive electrode active material layer. ..
  • the binding agent plays a role in binding active materials and the like to the surface of the current collector.
  • the binder is not limited as long as it is used as a binder for electrodes of nickel metal hydride batteries.
  • Specific binders include polyvinylidene fluoride, fluoro resins such as polytetrafluoroethylene and fluororubber, polyolefin resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, carboxymethyl cellulose, methyl cellulose and hydroxypropyl.
  • Cellulose derivatives such as cellulose, copolymers such as styrene-butadiene rubber, and polyacrylic acid, polyacrylic acid ester, polymethacrylic acid and polymethacrylic acid ester containing a (meth) acrylic acid derivative as a monomer unit ( An example is a (meth) acrylic resin.
  • the active material layer preferably contains the binder in an amount of 0.1 to 15% by mass, and more preferably 0.3 to 10% by mass, based on the total mass of the active material layer. It is more preferable that the content is 0.5 to 7% by mass. This is because if the amount of the binder is too small, the moldability of the electrode is lowered, and if the amount of the binder is too large, the energy density of the electrode becomes low.
  • Conductivity aid is added to enhance the conductivity of the electrode. Therefore, the conductive additive may be optionally added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent.
  • Specific examples of the conductive aid include metals such as cobalt, nickel and copper, metal oxides such as cobalt oxide, metal hydroxides such as cobalt hydroxide, carbon materials such as carbon black, graphite and carbon fiber. Is exemplified.
  • the active material layer preferably contains the conductive additive in an amount of 0.1 to 20 mass% with respect to the total mass of the active material layer.
  • the positive electrode active material layer preferably contains the conductive additive in an amount of 1 to 15% by mass, more preferably 3 to 12% by mass, and more preferably 5 to 10% by mass based on the total mass of the positive electrode active material layer. More preferably, it is contained by mass%.
  • the negative electrode active material layer preferably contains the conductive additive in an amount of 0.1 to 5% by mass, and more preferably 0.2 to 3% by mass, based on the total mass of the negative electrode active material layer. , 0.3 to 1 mass% is more preferable. This is because if the amount of the conductive additive is too small, an efficient conductive path cannot be formed, and if the amount of the conductive additive is too large, the moldability of the active material layer deteriorates and the energy density of the electrode decreases.
  • the negative electrode of the present invention comprises the negative electrode active material of the present invention.
  • the negative electrode of the present invention includes a current collector and a negative electrode active material layer formed on the surface of the current collector.
  • the negative electrode active material layer contains the negative electrode active material of the present invention and, if necessary, a negative electrode additive, a binder and a conductive auxiliary agent.
  • the binder and the conductive aid are as described above.
  • the negative electrode active material layer preferably contains the negative electrode active material in an amount of 85 to 99% by mass, more preferably 90 to 98% by mass, based on the total mass of the negative electrode active material layer.
  • the negative electrode additive is added to the negative electrode in order to improve the battery characteristics of the nickel metal hydride battery.
  • the negative electrode additive is not limited as long as it is used as a negative electrode additive of a nickel metal hydride battery.
  • Specific negative electrode additives include rare earth element fluorides such as CeF 3 and YF 3 , bismuth compounds such as Bi 2 O 3 and BiF 3 , indium compounds such as In 2 O 3 and InF 3 , and positive electrode additives. The compounds exemplified as can be mentioned.
  • the negative electrode active material layer preferably contains the negative electrode additive in an amount of 0.1 to 10% by mass, and more preferably 0.5 to 5% by mass, based on the total mass of the negative electrode active material layer. ..
  • an active material layer on the surface of the current collector a conventionally known method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method or a curtain coating method is used.
  • the active material may be applied to the surface of the body.
  • an active material, a solvent, and, if necessary, a binder, a conductive auxiliary agent, and an additive are mixed to form a slurry, and the slurry is applied to the surface of the current collector and then dried.
  • the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water.
  • the dried product may be compressed to increase the electrode density.
  • the separator separates the positive electrode from the negative electrode to prevent a short circuit due to contact between both electrodes, while providing a storage space and passage for the electrolytic solution.
  • Any known separator may be used as the separator, such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polyamide), polyester, synthetic resin such as polyacrylonitrile, polysaccharides such as cellulose and amylose, and fibroin. Examples include natural polymers such as keratin, lignin, and suberin, and porous bodies, nonwoven fabrics, and woven fabrics using one or more electrically insulating materials such as ceramics. Further, the separator may have a multi-layer structure.
  • the surface of the separator is preferably hydrophilized.
  • hydrophilic treatment include sulfonation treatment, corona treatment, fluorine gas treatment, and plasma treatment.
  • the separator is sandwiched between the positive electrode and the negative electrode to form an electrode body.
  • the electrolytic solution of the present invention is added to the electrode body to form a nickel metal hydride. Use batteries.
  • the shape of the nickel metal hydride battery of the present invention is not particularly limited, and various shapes such as a prismatic type, a cylindrical type, a coin type and a laminated type can be adopted.
  • the nickel metal hydride battery of the present invention may be mounted on a vehicle.
  • the vehicle may be any vehicle that uses electric energy from a nickel metal hydride battery for all or part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle.
  • a nickel metal hydride battery is mounted on a vehicle, a plurality of nickel metal hydride batteries may be connected in series to form an assembled battery.
  • devices equipped with nickel metal hydride batteries include personal computers, portable communication devices, and other battery-powered home appliances, office equipment, and industrial equipment.
  • the nickel metal hydride battery of the present invention is a power storage device and power smoothing device for wind power generation, solar power generation, hydroelectric power generation and other power systems, power supply for ships and / or power supply for auxiliary machinery, aircraft, Power supply source for spacecraft and / or auxiliary machinery, auxiliary power source for vehicles that do not use electricity as power source, mobile home robot power source, system backup power source, uninterruptible power source power source, It may be used for a power storage device that temporarily stores electric power required for charging in an electric vehicle charging station or the like.
  • Coarse powder of hydrogen storage alloy and polyvinyl alcohol were mixed in distilled water so that the concentration of hydrogen storage alloy was 10% by mass, and mixed by a mixer to obtain a mixture.
  • the content of polyvinyl alcohol was 0.5% by mass based on the hydrogen storage alloy.
  • This mixture was transferred to a bead mill in the atmosphere, mixed in the bead mill, and then discharged from the bead mill.
  • beads for the bead mill those made of zirconia were used.
  • the mixture discharged from the bead mill was transported to the mixer via the circulation pipe and then returned to the bead mill again.
  • the crushed product obtained through the above steps was filtered to obtain a crushed filtered product of Production Example 1 containing the hydrogen storage alloy powder and a small amount of water.
  • the crushed and filtered product of Production Example 1 was subjected to the following alkali treatment step.
  • the average particle diameter (D 50 ) of the hydrogen storage alloy powder in the pulverized and filtered product of Production Example 1 was 7 ⁇ m.
  • step a As the first alkaline aqueous solution, an aqueous sodium hydroxide solution containing 40% by mass of sodium hydroxide was prepared. Under stirring conditions, 50 parts by mass of the crushed and filtered product of Production Example 1 was added to 50 parts by mass of the first alkaline aqueous solution to form a suspension. The suspension was heated to 90 ° C. and held for 1 hour, then cooled to room temperature.
  • Step b) As the second alkaline aqueous solution, an aqueous sodium hydroxide solution containing 0.4% by mass of sodium hydroxide was prepared.
  • the suspension after step a) was suction-filtered to separate the hydrogen storage alloy from the first alkaline aqueous solution. While continuing the suction filtration, 50 parts by mass of the second alkaline aqueous solution was poured over the hydrogen storage alloy to wash the hydrogen storage alloy.
  • step b) Step With the suction filtration of step b) being continued, 300 parts by mass of water was poured over the hydrogen storage alloy to wash the hydrogen storage alloy with water.
  • Production Example 2 A negative electrode active material of Production Example 2 was produced in substantially the same manner as in Production Example 1 except that N-1) step and N-2) step were not performed. Although the negative electrode active material of Production Example 2 was not oxidized with hydrogen peroxide in step N-2), it was oxidized to a certain extent because it was exposed to the atmosphere.
  • Production Example 3 A negative electrode active material of Production Example 3 was produced in substantially the same manner as in Production Example 1 except that the pulverization conditions were relaxed and that the oxidation with hydrogen peroxide in the N-2) step was not performed.
  • the average particle diameter (D 50 ) of the hydrogen storage alloy powder of Production Example 3 was 15 ⁇ m.
  • the negative electrode active material of Production Example 3 was not oxidized with hydrogen peroxide in the step N-2), it was oxidized to a certain extent because it was exposed to the atmosphere in the step b) in the step N-1). ing.
  • Production Example 4 A negative electrode active material of Production Example 4 was produced in substantially the same manner as in Production Example 1 except that in step a) of step N-1), the suspension was heated to 90 ° C. and held for 3 hours.
  • the hydrogen storage alloy powder of Production Example 4 had an average particle size (D 50 ) of 9 ⁇ m.
  • Comparative Production Example 1 A negative electrode active material of Comparative Production Example 1 was produced in substantially the same manner as in Production Example 1 except that the pulverization conditions were relaxed and that N-1) step and N-2) step were not performed.
  • the average particle diameter (D 50 ) of the hydrogen storage alloy powder of Comparative Production Example 1 was 15 ⁇ m.
  • Example 1 (Production of positive electrode active material)
  • Nickel sulfate, cobalt sulfate and zinc sulfate were weighed so that the molar ratio of nickel, cobalt and zinc was 94.5: 4.5: 1.1, and these were added to an aqueous sodium hydroxide solution containing ammonium ions.
  • a mixed aqueous solution was prepared.
  • a sodium hydroxide aqueous solution was gradually added to the mixed aqueous solution with stirring to adjust the pH of the mixed aqueous solution to 13-14. Thereby, precursor particles containing nickel hydroxide as a main component and cobalt and zinc as a solid solution were produced.
  • the obtained precursor particles (main body of the positive electrode active material) were washed with water and then dried.
  • Step P-1) The obtained precursor particles were put into an aqueous ammonia solution to form a suspension.
  • Aqueous cobalt sulfate solution was added to the suspension while maintaining the pH of the suspension at 9-10.
  • cobalt hydroxide was deposited on the surface of the precursor particles, and thus particles having a layer of cobalt hydroxide were obtained.
  • the nickel metal hydride battery of Example 1 was manufactured as follows.
  • the nickel foil coated with the slurry was dried to remove water, and then the nickel foil was pressed to manufacture a positive electrode having a positive electrode active material layer formed on a current collector.
  • the amount of the positive electrode active material layer present on the current collector of the positive electrode was 28 mg / cm 2 , and the density of the positive electrode active material layer was 2.9 g / cm 3 .
  • the concentration of potassium hydroxide was 5.4 mol / L
  • the concentration of sodium hydroxide was 0.8 mol / L
  • the concentration of lithium hydroxide was 0.5 mol / L
  • Na 2 WO 4 was used.
  • An aqueous solution having a concentration of 0.16 mol / L was prepared. This was used as the electrolytic solution of Example 1.
  • a sulfonation-treated nonwoven fabric made of polyolefin fiber having a thickness of 104 ⁇ m was prepared.
  • a separator was sandwiched between the positive and negative electrodes to form an electrode plate group.
  • a nickel metal hydride battery of Example 1 was manufactured by disposing the electrode plate group in a resin casing, further injecting the electrolytic solution, and sealing the casing.
  • Example 2 As the electrolytic solution, the concentration of potassium hydroxide was 5.4 mol / L, the concentration of sodium hydroxide was 0.8 mol / L, the concentration of lithium hydroxide was 0.5 mol / L, and Na 2 WO 4 was used. An aqueous solution having a concentration of 0.02 mol / L was prepared. This was used as the electrolytic solution of Example 2. A nickel metal hydride battery of Example 2 was manufactured in the same manner as in Example 1 except that the electrolytic solution of Example 2 was used.
  • Example 3 Generally performed except that the molar ratio of nickel, cobalt and zinc was slightly changed in the production of the positive electrode active material main body, and that the sodium hydroxide aqueous solution and the lithium hydroxide aqueous solution were not sprayed in the step P-2).
  • the positive electrode active material of Example 3 was manufactured in the same manner as in Example 1.
  • a nickel metal hydride battery of Example 3 was manufactured in the same manner as in Example 1 except that the positive electrode active material of Example 3 was used and the electrolytic solution of Example 2 was used.
  • Example 4 As the electrolytic solution, the concentration of potassium hydroxide was 5.4 mol / L, the concentration of sodium hydroxide was 0.8 mol / L, the concentration of lithium hydroxide was 0.5 mol / L, and Na 2 WO 4 was used. An aqueous solution having a concentration of 0.01 mol / L was prepared. This was used as the electrolytic solution of Example 4. A nickel metal hydride battery of Example 4 was produced in the same manner as in Example 1 except that the negative electrode active material of Production Example 4 and the electrolytic solution of Example 4 were used.
  • Example 5 A nickel metal hydride battery of Example 5 was manufactured in the same manner as in Example 4 except that the electrolytic solution of Example 2 was used.
  • Example 6 In the production of the electrolytic solution, the electrolytic solution of Example 6 was produced in the same manner as in Example 4 except that the concentration of Na 2 WO 4 was 0.03 mol / L. A nickel metal hydride battery of Example 6 was manufactured in the same manner as in Example 4 except that the electrolytic solution of Example 6 was used.
  • Example 7 In the production of the electrolytic solution, the electrolytic solution of Example 7 was produced in the same manner as in Example 4 except that the concentration of Na 2 WO 4 was 0.04 mol / L. A nickel metal hydride battery of Example 7 was manufactured in the same manner as in Example 4 except that the electrolytic solution of Example 7 was used.
  • Example 8 In the production of the electrolytic solution, the electrolytic solution of Example 8 was produced in the same manner as in Example 4, except that the concentration of Na 2 WO 4 was 0.05 mol / L. A nickel metal hydride battery of Example 8 was produced in the same manner as in Example 4 except that the electrolytic solution of Example 8 was used.
  • Example 9 In the production of the electrolytic solution, the electrolytic solution of Example 9 was produced in the same manner as in Example 4 except that the concentration of Na 2 WO 4 was 0.06 mol / L. A nickel metal hydride battery of Example 9 was manufactured in the same manner as in Example 4 except that the electrolytic solution of Example 9 was used.
  • Example 10 As the electrolytic solution, the concentration of potassium hydroxide is 5.4 mol / L, the concentration of sodium hydroxide is 0.8 mol / L, the concentration of lithium hydroxide is 0.5 mol / L, and the concentration of WO 3 is Was prepared to be 0.01 mol / L. This was used as the electrolytic solution of Example 10. A nickel metal hydride battery of Example 10 was manufactured in the same manner as in Example 4 except that the electrolytic solution of Example 10 was used.
  • Example 11 A positive electrode active material of Example 11 was manufactured in substantially the same manner as in Example 1 except that the lithium hydroxide aqueous solution was not sprayed in the step P-2) in the manufacture of the positive electrode active material main body.
  • a nickel metal hydride battery of Example 11 was manufactured in the same manner as in Example 4 except that the positive electrode active material of Example 11 was used.
  • Comparative Example 1 A nickel metal hydride battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the negative electrode active material of Comparative Production Example 1 and the electrolytic solution of Example 2 were used.
  • Comparative example 2 As an electrolytic solution, an aqueous solution having a potassium hydroxide concentration of 5.4 mol / L, a sodium hydroxide concentration of 0.8 mol / L, and a lithium hydroxide concentration of 0.5 mol / L was prepared. This was used as the electrolytic solution of Comparative Example 2.
  • a nickel metal hydride battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the negative electrode active material of Comparative Production Example 1 and the electrolytic solution of Comparative Example 2 were used.
  • Comparative example 3 A nickel metal hydride battery of Comparative Example 3 was manufactured in the same manner as in Example 4 except that the electrolytic solution of Comparative Example 2 was used.
  • the lithium content in the positive electrode active material of Example 1 was about 0.1 mass%, The sodium content was about 0.3% by mass. No lithium was detected from the positive electrode active materials of Example 3 and Example 11. A small amount of sodium was detected in the positive electrode active material of Example 3. Moreover, the sodium content in the positive electrode active material of Example 11 was about the same as that of the positive electrode active material of Example 1.
  • the average particle diameter (D 50 ) was measured using a general laser diffraction particle size distribution analyzer.
  • the BET specific surface area was measured using a general BET specific surface area measuring device.
  • the valence of cobalt was measured by the iodometry method.
  • the resistivity was measured using a powder resistivity measuring system (Mitsubishi Analytech Co., Ltd.) at 20 kN under conditions of 25 ° C. and relative humidity of 40 to 50% with respect to 2.0 g of the powder of the positive electrode active material. It was measured after applying a load. The above results are shown in Table 2.
  • the nickel metal hydride batteries of Examples 1 to 3 and Comparative Examples 1 and 2 adjusted to SOC (State of Charge) 60% were discharged at a 1C rate for 5 seconds under a condition of 25 ° C. ..
  • the discharge resistance was calculated based on Ohm's law from the amount of voltage change before and after discharge and the current value during discharge.
  • the nickel metal hydride battery of Example 2 employs the positive electrode active material of Example 1 in which the layer of cobalt oxyhydroxide coating the positive electrode active material body is doped with lithium, and the nickel metal hydride battery of Example 3 is used.
  • the hydride battery employs the positive electrode active material of Example 3 in which the layer of cobalt oxyhydroxide covering the body of the positive electrode active material is not doped with lithium.
  • the nickel metal hydride batteries of Examples are excellent in terms of charge / discharge efficiency and discharge resistance.
  • the charge / discharge efficiency and discharge resistance are optimized when the oxygen concentration of the negative electrode active material before charge / discharge is increased.
  • the results of Comparative Example 1 and Comparative Example 2 show that the presence of sodium tungstate in the electrolytic solution optimizes the charge / discharge efficiency. It can be said that the nickel metal hydride battery of the present invention including both the negative electrode active material of the present invention and the electrolytic solution of the present invention has been proved to have excellent battery characteristics.
  • the nickel metal hydride batteries of Examples 4 to 9 and Comparative Example 3 adjusted to SOC (State of Charge) 60% were discharged at a 1C rate for 5 seconds under a condition of 25 ° C.
  • the discharge resistance was calculated based on Ohm's law from the amount of voltage change before and after discharge and the current value during discharge. ..
  • the nickel metal hydride batteries of Example 4 and Example 10 adjusted to SOC (State of Charge) 60% were discharged at a 1C rate for 5 seconds under a condition of 25 ° C.
  • the discharge resistance was calculated based on Ohm's law from the amount of voltage change before and after discharge and the current value during discharge. ..
  • the nickel metal hydride battery of Example 11 adjusted to SOC (State of Charge) 60% was discharged at a 1C rate for 5 seconds at 25 ° C.
  • the discharge resistance was calculated based on Ohm's law from the amount of voltage change before and after discharge and the current value during discharge. As a result, the discharge resistance of the nickel metal hydride battery of Example 11 was 0.14 ⁇ .
  • FIG. 1 shows a schematic cross-sectional view of the bipolar nickel metal hydride battery of Application Example 1 observed from the thickness side of the electrode.
  • the bipolar nickel metal hydride battery 1 of application example 1 is A positive electrode 2 having a positive electrode active material layer 21 formed on one surface of a collector foil 20; A negative electrode 3 having a negative electrode active material layer 31 formed on one surface of a collector foil 30, A bipolar electrode 4 having a positive electrode active material layer 41 formed on one surface of the current collector foil 40 and a negative electrode active material layer 42 formed on the other surface; And a separator 5 made of polyolefin that has been subjected to a hydrophilic treatment.
  • the collector foil 20 of the positive electrode 2 is made of nickel and is a rectangular foil having a thickness of 20 ⁇ m.
  • a positive electrode active material layer 21 containing a positive electrode active material, a conductive auxiliary agent, a binder, and an additive is formed on the upper surface of the current collector foil 20.
  • the periphery of the current collector foil 20 is fixed by an outer frame 7 made of synthetic resin, and a seal portion 6 made of fluorine-containing resin is arranged inside the outer frame 7. The seal portion 6 is bonded to the upper surface and the lower surface of the current collector foil 20.
  • the separator 5 is arranged on the upper surface of the positive electrode active material layer 21 of the positive electrode 2.
  • the separator 5 is impregnated with the electrolytic solution of the present invention.
  • the area of the surface of the separator 5 is larger than the area of the surface of the positive electrode active material layer 21 in contact therewith.
  • the bipolar electrode 4 is arranged in the direction in which the negative electrode active material layer 42 faces.
  • the positive electrode active material layer 41 is formed on the upper surface of the current collector foil 40 and the negative electrode active material layer 42 is formed on the lower surface.
  • the current collector foil 40 is the same as the current collector foil 20 of the positive electrode 2
  • the positive electrode active material layer 41 is also the same as the positive electrode active material layer 21 of the positive electrode 2.
  • the negative electrode active material layer 42 of the bipolar electrode 4 contains the negative electrode active material and the binder of the present invention.
  • the periphery of the current collector foil 40 is fixed by an outer frame 7 made of synthetic resin, and a seal portion 6 made of fluorine-containing resin is arranged inside the outer frame 7.
  • the seal portion 6 is bonded to the upper surface and the lower surface of the collector foil 40, and the seal portion 6 on the upper surface of the collector foil 40 is further bonded to the lower surface of the collector foil 40 of the other bipolar electrode 4 on the upper side.
  • the seal portion 6 on the lower surface of the collector foil 40 is also bonded to the upper surface of the collector foil 20 of the positive electrode 2. That is, the positive electrode active material layer 21, the separator 5, the electrolytic solution, and the negative electrode active material layer 42 are sealed by the seal portion 6.
  • a plurality of bipolar electrodes 4 are laminated via the separator 5.
  • the separator 5 is arranged on the upper surface of the positive electrode active material layer 41 of the uppermost bipolar electrode 4, and the negative electrode 3 is arranged on the upper surface of the separator 5 in a direction facing the negative electrode active material layer 31.
  • the negative electrode 3 has a negative electrode active material layer 31 formed on the lower surface of the current collector foil 30.
  • the collector foil 30 is similar to the collector foil 20 of the positive electrode 2 and the collector foil 40 of the bipolar electrode 4, and the negative electrode active material layer 31 is also similar to the negative electrode active material layer 42 of the bipolar electrode 4. is there.
  • the periphery of the current collector foil 30 is fixed by an outer frame 7 made of synthetic resin, and a seal portion 6 made of fluorine-containing resin is arranged inside the outer frame 7.
  • the seal portion 6 is bonded to the upper surface and the lower surface of the collector foil 30, and the seal portion 6 on the lower surface of the collector foil 30 is also bonded to the upper surface of the collector foil 40 of the bipolar electrode 4.
  • a cooling unit 8 is arranged above and below the battery module composed of the positive electrode 2, the bipolar electrode 4, the negative electrode 3 and the separator 5 in the thickness direction.
  • the cooling unit 8 is a rectangular plate made of aluminum and has a plurality of through holes 80 capable of air cooling.
  • a module positive electrode 22 and a module negative electrode 32 which conduct electricity with the outside, are arranged respectively.
  • the module positive electrode 22 and the module negative electrode 32 are rectangular plates made of metal.
  • the restraints 9 are arranged outside the module positive electrode 22 and the module negative electrode 32, respectively.
  • the restraint 9 is a rectangular plate made of synthetic resin.
  • the two restraints 9 are fastened with a plurality of bolts and nuts (not shown), and pressurize and restrain the battery module in the thickness direction of the electrodes.
  • the separator 5 is compressed by the pressure applied by the two restraints 9.

Abstract

Provided is a novel nickel-metal hydride battery demonstrating excellent battery properties. This nickel-metal hydride battery is characterized in comprising: a negative electrode active substance having an oxygen concentration before charging/discharging of 1,000 ppm or greater, and an electrolyte solution constituted of an aqueous solution containing a tungstic acid or a salt thereof and an alkali metal hydroxide.

Description

ニッケル金属水素化物電池Nickel metal hydride battery
 本発明は、ニッケル金属水素化物電池に関するものである。 The present invention relates to a nickel metal hydride battery.
 ニッケル金属水素化物電池は、正極活物質として水酸化ニッケルなどのニッケル酸化化合物を有する正極と、負極活物質として水素吸蔵合金を有する負極と、アルカリ金属水溶液からなる電解液とを具備する二次電池である。 A nickel metal hydride battery is a secondary battery including a positive electrode having a nickel oxide compound such as nickel hydroxide as a positive electrode active material, a negative electrode having a hydrogen storage alloy as a negative electrode active material, and an electrolytic solution containing an alkali metal aqueous solution. Is.
 負極に関して、水素吸蔵合金の負極活物質としての性能を向上させるため、様々な技術が提案されている。例えば、特許文献1には、CaCu型の結晶構造を有し、かつ、希土類元素並びにNi、Co、Mn及びAlを含む合金からなる水素吸蔵合金を、水酸化ナトリウム水溶液に浸漬処理した後に、水洗する技術が記載されている。そして、同文献には、上述の水素吸蔵合金を水酸化ナトリウム水溶液に浸漬処理することで、水素吸蔵合金はニッケルで被覆されたような状態になることが記載されている。 Regarding the negative electrode, various techniques have been proposed in order to improve the performance of the hydrogen storage alloy as the negative electrode active material. For example, in Patent Document 1, after a hydrogen storage alloy having a CaCu 5 type crystal structure and made of an alloy containing a rare earth element and Ni, Co, Mn, and Al is immersed in an aqueous sodium hydroxide solution, Techniques for washing with water are described. Then, the same document describes that the hydrogen storage alloy is in a state as if it was coated with nickel by immersing the hydrogen storage alloy in an aqueous solution of sodium hydroxide.
 ニッケル金属水素化物電池の電解液として用いられるアルカリ金属水溶液としては、イオン伝導性に優れる、高濃度の水酸化カリウム水溶液が一般的である。例えば、特許文献2の実施例1には、1~8mol/Lの水酸化カリウム水溶液を電解液として用いたニッケル金属水素化物電池が具体的に記載されている。 A high-concentration potassium hydroxide aqueous solution, which has excellent ionic conductivity, is generally used as the alkali metal aqueous solution used as the electrolytic solution of the nickel metal hydride battery. For example, Example 1 of Patent Document 2 specifically describes a nickel metal hydride battery using an aqueous solution of 1 to 8 mol / L potassium hydroxide as an electrolytic solution.
 また、水酸化カリウム及び水酸化リチウムを溶解した水溶液をニッケル金属水素化物電池の電解液として用いることも知られており、さらに、水酸化カリウム、水酸化ナトリウム及び水酸化リチウムを溶解した水溶液をニッケル金属水素化物電池の電解液として用いることも知られている。 It is also known to use an aqueous solution in which potassium hydroxide and lithium hydroxide are dissolved as an electrolytic solution for a nickel metal hydride battery, and further, an aqueous solution in which potassium hydroxide, sodium hydroxide and lithium hydroxide are dissolved is used as a nickel solution. It is also known to be used as an electrolytic solution for metal hydride batteries.
 特許文献2の実施例2には、水酸化カリウム及び水酸化リチウムを溶解した水溶液を電解液として用いたニッケル金属水素化物電池が具体的に記載されている。特許文献3の実施例には、水酸化カリウム、水酸化ナトリウム及び水酸化リチウムを溶解した水溶液を電解液として用いたニッケル金属水素化物電池が具体的に記載されている。特許文献4の実施例には、5.5mol/Lの水酸化カリウム水溶液、0.5mol/Lの水酸化ナトリウム水溶液、及び0.4~1.8mol/Lの水酸化リチウム水溶液を混合した水溶液を電解液として用いたニッケル金属水素化物電池が具体的に記載されている。 Example 2 of Patent Document 2 specifically describes a nickel metal hydride battery using an aqueous solution in which potassium hydroxide and lithium hydroxide are dissolved as an electrolytic solution. The example of Patent Document 3 specifically describes a nickel metal hydride battery using an aqueous solution in which potassium hydroxide, sodium hydroxide and lithium hydroxide are dissolved as an electrolytic solution. In the example of Patent Document 4, an aqueous solution obtained by mixing a 5.5 mol / L potassium hydroxide aqueous solution, a 0.5 mol / L sodium hydroxide aqueous solution, and a 0.4 to 1.8 mol / L lithium hydroxide aqueous solution. A nickel metal hydride battery using is used as an electrolytic solution is specifically described.
 また、高濃度の水酸化ナトリウム水溶液をニッケル金属水素化物電池の電解液として用いることも知られており、さらに、水酸化ナトリウム及び水酸化リチウムを溶解した水溶液をニッケル金属水素化物電池の電解液として用いることも知られている。例えば、特許文献5の実施例には、6~9mol/Lの水酸化ナトリウム水溶液、又は、水酸化ナトリウムを4.8~8.5mol/Lの濃度で含み、かつ水酸化リチウムを0.5~1.2mol/Lの濃度で含む水溶液を、電解液として用いたニッケル金属水素化物電池が具体的に記載されている。 It is also known to use a high-concentration sodium hydroxide aqueous solution as an electrolytic solution of a nickel metal hydride battery, and further, an aqueous solution in which sodium hydroxide and lithium hydroxide are dissolved is used as an electrolytic solution of a nickel metal hydride battery. It is also known to be used. For example, in the example of Patent Document 5, an aqueous sodium hydroxide solution of 6 to 9 mol / L or sodium hydroxide at a concentration of 4.8 to 8.5 mol / L and lithium hydroxide of 0.5 A nickel metal hydride battery using an aqueous solution containing a concentration of up to 1.2 mol / L as an electrolyte is specifically described.
特開2002-256301号公報JP, 2002-256301, A 特開昭61-214370号公報JP-A-61-214370 特開平11-162460号公報JP-A-11-162460 特開2004-31292号公報JP, 2004-31292, A 特開2007-250250号公報JP, 2007-250250, A
 さて、産業界は、優れた特性を示すニッケル金属水素化物電池を切望している。
 本発明はかかる事情に鑑みて為されたものであり、優れた電池特性を示す新たなニッケル金属水素化物電池を提供することを目的とする。
Now, the industry is eager for a nickel metal hydride battery that exhibits excellent characteristics.
The present invention has been made in view of such circumstances, and an object thereof is to provide a new nickel metal hydride battery that exhibits excellent battery characteristics.
 本発明者は負極の検討を行い、意外にも、酸素含有量が高い水素吸蔵合金を負極活物質として採用したニッケル金属水素化物電池が、電池抵抗の低減に効果があることを見出した。 The present inventor studied a negative electrode, and surprisingly found that a nickel metal hydride battery using a hydrogen storage alloy having a high oxygen content as a negative electrode active material is effective in reducing battery resistance.
 また、本発明者は、負極の検討と同時に電解液の検討も行った。そして、本発明者の鋭意検討の結果、タングステン酸ナトリウムを溶解した電解液を採用し、かつ、酸素含有量が高い水素吸蔵合金を負極活物質として採用したニッケル金属水素化物電池が、電池特性に優れることを知見した。 The present inventor also examined the electrolytic solution at the same time as the negative electrode. Then, as a result of diligent study by the present inventors, a nickel metal hydride battery employing an electrolytic solution in which sodium tungstate is dissolved, and a hydrogen storage alloy having a high oxygen content as a negative electrode active material, has battery characteristics. It was found to be excellent.
 これらの知見に基づき、本発明者は本発明を完成させた。 Based on these findings, the present inventor has completed the present invention.
 本発明のニッケル金属水素化物電池は、
 充放電前における酸素濃度が1000ppm以上の負極活物質と、
 タングステン酸又はその塩とアルカリ金属水酸化物とを含む水溶液からなる電解液と、を備えることを特徴とする。
The nickel metal hydride battery of the present invention,
A negative electrode active material having an oxygen concentration of 1000 ppm or more before charge and discharge,
And an electrolytic solution comprising an aqueous solution containing tungstic acid or a salt thereof and an alkali metal hydroxide.
 本発明のニッケル金属水素化物電池は、電池特性に優れる。 The nickel metal hydride battery of the present invention has excellent battery characteristics.
応用例1の双極型ニッケル金属水素化物電池の模式断面図である。9 is a schematic cross-sectional view of a bipolar nickel metal hydride battery of Application Example 1. FIG.
 以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a~b」は、下限a及び上限bをその範囲に含む。そして、これらの上限値及び下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに、これらの数値範囲内から任意に選択した数値を、新たな上限や下限の数値とすることができる。 A mode for carrying out the present invention will be described below. Unless otherwise specified, the numerical range “ab” described in the present specification includes the lower limit a and the upper limit b in the range. The upper limit value and the lower limit value, and the numerical values listed in the examples can be arbitrarily combined to form the numerical value range. Further, a numerical value arbitrarily selected from these numerical ranges can be set as a new upper and lower numerical value.
 本発明のニッケル金属水素化物電池は、
 充放電前における酸素濃度が1000ppm以上の負極活物質(以下、本発明の負極活物質ということがある。)と、
 タングステン酸又はその塩とアルカリ金属水酸化物とを含む水溶液からなる電解液(以下、本発明の電解液ということがある。)と、を備えることを特徴とする。
The nickel metal hydride battery of the present invention,
A negative electrode active material having an oxygen concentration of 1000 ppm or more before charge / discharge (hereinafter, sometimes referred to as negative electrode active material of the present invention);
An electrolytic solution comprising an aqueous solution containing tungstic acid or a salt thereof and an alkali metal hydroxide (hereinafter, may be referred to as an electrolytic solution of the present invention).
 まず、本発明の負極活物質について説明する。本発明の負極活物質とは、実質的に、水素吸蔵合金の表面が酸化されたものである。 First, the negative electrode active material of the present invention will be described. The negative electrode active material of the present invention is a material in which the surface of the hydrogen storage alloy is substantially oxidized.
 本発明の負極活物質は、充放電前における酸素濃度が1000ppm以上である。酸素濃度の範囲としては、1000~90000ppmの範囲内が好ましく、5000~80000ppmの範囲内がより好ましく、10000~60000ppmの範囲内がさらに好ましく、15000~50000ppmの範囲内が特に好ましく、18000~45000ppmの範囲内が最も好ましい。 The negative electrode active material of the present invention has an oxygen concentration of 1000 ppm or more before charge / discharge. The oxygen concentration range is preferably in the range of 1,000 to 90,000 ppm, more preferably in the range of 5,000 to 80,000 ppm, further preferably in the range of 10,000 to 60,000 ppm, particularly preferably in the range of 15,000 to 50,000 ppm, particularly preferably in the range of 18,000 to 45,000 ppm. The range is most preferable.
 負極活物質の酸素濃度は、当該負極活物質を備えるニッケル金属水素化物電池を充放電する前における酸素濃度が上記範囲内であればよい。なお、ニッケル金属水素化物電池の充放電時には、負極活物質の酸素濃度が変動し得る。
 本発明の負極活物質の酸素濃度を、「電池製造前」若しくは「電池製造時」、又は、「電極製造前」若しくは「電極製造時」の値であると解釈してもよい。
The oxygen concentration of the negative electrode active material may be such that the oxygen concentration before charging / discharging the nickel metal hydride battery including the negative electrode active material is within the above range. The oxygen concentration of the negative electrode active material may change during charge / discharge of the nickel metal hydride battery.
The oxygen concentration of the negative electrode active material of the present invention may be interpreted as a value "before battery production" or "at battery production", or "before electrode production" or "at electrode production".
 本発明の負極活物質の平均粒子径としては1~40μmの範囲内が好ましく、3~30μmの範囲内がより好ましく、4~20μmの範囲内がさらに好ましく、5~15μmの範囲内が特に好ましく、5~12μmの範囲内が最も好ましい。 The average particle diameter of the negative electrode active material of the present invention is preferably in the range of 1 to 40 μm, more preferably in the range of 3 to 30 μm, further preferably in the range of 4 to 20 μm, particularly preferably in the range of 5 to 15 μm. Most preferably, it is within the range of 5 to 12 μm.
 本発明の負極活物質のBET比表面積としては、0.2~10.0m/gが好ましく、0.5~8.0m/gがより好ましく、1.0~6.0m/gがさらに好ましい。 The BET specific surface area of the negative electrode active material of the present invention, preferably 0.2 ~ 10.0m 2 / g, more preferably 0.5 ~ 8.0m 2 / g, 1.0 ~ 6.0m 2 / g Is more preferable.
 本発明の負極活物質のうち、Niを含有するものについての飽和磁化としては、0.2~10emu/gが好ましく、0.5~9emu/gがより好ましく、1~8emu/gがさらに好ましく、1.5~7emu/gが特に好ましい。 The saturation magnetization of the negative electrode active material of the present invention containing Ni is preferably 0.2 to 10 emu / g, more preferably 0.5 to 9 emu / g, still more preferably 1 to 8 emu / g. , 1.5 to 7 emu / g are particularly preferable.
 負極活物質における水素吸蔵合金としては、ニッケル金属水素化物電池の負極活物質として用いられるものであれば限定されない。水素吸蔵合金とは、基本的に、容易に水素と反応するものの、水素の放出能力に劣る金属Aと、水素と反応しにくいものの、水素の放出能力に優れる金属Bとの合金である。Aとしては、Mgなどの第2族元素、Sc、ランタノイドなどの第3族元素、Ti、Zrなどの第4族元素、V、Taなどの第5族元素、複数の希土類元素を含有するミッシュメタル(以下、Mmと略すことがある。)、Pdなどを例示できる。また、Bとしては、Fe、Co、Ni、Cr、Pt、Cu、Ag、Mn、Zn、Alなどを例示できる。 The hydrogen storage alloy in the negative electrode active material is not limited as long as it is used as the negative electrode active material of a nickel metal hydride battery. A hydrogen storage alloy is basically an alloy of a metal A that easily reacts with hydrogen but has a poor hydrogen releasing ability, and a metal B that does not easily react with hydrogen but has a good hydrogen releasing ability. As A, a misch containing a Group 2 element such as Mg, a Group 3 element such as Sc or lanthanoid, a Group 4 element such as Ti or Zr, a Group 5 element such as V or Ta, or a plurality of rare earth elements Examples thereof include metal (hereinafter sometimes abbreviated as Mm) and Pd. Examples of B include Fe, Co, Ni, Cr, Pt, Cu, Ag, Mn, Zn and Al.
 具体的な水素吸蔵合金として、六方晶CaCu5型結晶構造を示すAB5型、六方晶MgZn2型若しくは立方晶MgCu2型結晶構造を示すAB2型、立方晶CsCl型結晶構造を示すAB型、六方晶Mg2Ni型結晶構造を示すA2B型、体心立方晶構造を示す固溶体型、並びに、AB5型及びAB2型の結晶構造が組み合わされたAB3型、A27型及びA519型のものを例示できる。水素吸蔵合金は、以上の結晶構造のうち、1種類を有するものでもよいし、また、以上の結晶構造の複数を有するものでもよい。 Specific hydrogen-absorbing alloy, AB 5 type showing a hexagonal CaCu 5 type crystal structure, hexagonal MgZn 2 type or AB 2 type showing a cubic MgCu 2 type crystal structure, AB type indicating the cubic CsCl-type crystal structure , A 2 B type showing a hexagonal Mg 2 Ni type crystal structure, a solid solution type showing a body-centered cubic crystal structure, and AB 3 type and A 2 B 7 in which AB 5 type and AB 2 type crystal structures are combined. It can be exemplified of a type and a 5 B 19 type. The hydrogen storage alloy may have one kind of the above crystal structures, or may have a plurality of the above crystal structures.
 AB5型水素吸蔵合金として、LaNi5、CaCu5、MmNi5を例示できる。AB2型水素吸蔵合金として、MgZn2、ZrNi2、ZrCr2を例示できる。AB型水素吸蔵合金として、TiFe、TiCoを例示できる。A2B型水素吸蔵合金として、Mg2Ni、Mg2Cuを例示できる。固溶体型水素吸蔵合金として、Ti-V、V-Nb、Ti-Crを例示できる。AB3型水素吸蔵合金として、CeNi3を例示できる。A27型水素吸蔵合金として、Ce2Ni7を例示できる。A519型水素吸蔵合金として、Ce5Co19、Pr5Co19を例示できる。上記の各結晶構造において、一部の金属を、他の1種類若しくは複数種類の金属又は元素で置換してもよい。 Examples of the AB 5 type hydrogen storage alloy include LaNi 5 , CaCu 5 , and MmNi 5 . Examples of the AB 2 type hydrogen storage alloy include MgZn 2 , ZrNi 2 , and ZrCr 2 . Examples of AB type hydrogen storage alloys include TiFe and TiCo. Examples of the A 2 B type hydrogen storage alloy include Mg 2 Ni and Mg 2 Cu. Examples of the solid solution type hydrogen storage alloy include Ti-V, V-Nb, and Ti-Cr. CeNi 3 can be exemplified as the AB 3 type hydrogen storage alloy. Ce 2 Ni 7 can be exemplified as the A 2 B 7 type hydrogen storage alloy. Examples of the A 5 B 19 type hydrogen storage alloy include Ce 5 Co 19 and Pr 5 Co 19 . In each of the above crystal structures, some of the metals may be replaced with one or more other metals or elements.
 水素吸蔵合金としては、希土類元素、Mg及びNiを含有するA型の水素吸蔵合金が好ましい。 As the hydrogen storage alloy, an A 2 B 7 type hydrogen storage alloy containing a rare earth element, Mg and Ni is preferable.
 酸素濃度が高い本発明の負極活物質を得るには、積極的に、水素吸蔵合金の表面を酸化させるのがよい。以下、希土類元素、Mg及びNiを含有するA型の水素吸蔵合金を例として、水素吸蔵合金に対して好適な方法で処理(以下、水素吸蔵合金の処理方法という。)を行い、本発明の負極活物質を製造する手順を説明する。 In order to obtain the negative electrode active material of the present invention having a high oxygen concentration, it is preferable to positively oxidize the surface of the hydrogen storage alloy. Hereinafter, using an A 2 B 7 type hydrogen storage alloy containing a rare earth element, Mg and Ni as an example, the hydrogen storage alloy is treated by a suitable method (hereinafter referred to as a hydrogen storage alloy treatment method), The procedure for producing the negative electrode active material of the present invention will be described.
 水素吸蔵合金の処理方法は、
 N-1)水素吸蔵合金をアルカリ水溶液で処理する工程、
 N-2)前記N-1)工程後の水素吸蔵合金の表面を酸化する工程、
 を有する。
 N-1)工程は、水素吸蔵合金を酸化させるための必須の工程ではないが、後述するとおり、かかる工程を経ることに因り、より好適な本発明の負極活物質を得ることができる。
The treatment method of hydrogen storage alloy is
N-1) a step of treating the hydrogen storage alloy with an alkaline aqueous solution,
N-2) a step of oxidizing the surface of the hydrogen storage alloy after the step N-1),
Have.
Step N-1) is not an essential step for oxidizing the hydrogen storage alloy, but as will be described later, a more suitable negative electrode active material of the present invention can be obtained due to the steps.
 N-1)工程としては、以下のa)工程及びb)工程を有するのが好ましい。
 a)希土類元素、Mg及びNiを含有するA型の水素吸蔵合金を、アルカリ金属の水酸化物を溶解した第1アルカリ水溶液で処理する工程
 b)a)工程後、第1アルカリ水溶液から水素吸蔵合金を分離し、アルカリ金属の水酸化物を溶解した第2アルカリ水溶液で処理する工程
The step N-1) preferably includes the following steps a) and b).
a) a step of treating an A 2 B 7 type hydrogen storage alloy containing a rare earth element, Mg and Ni with a first alkaline aqueous solution in which a hydroxide of an alkali metal is dissolved b) a), and then a first alkaline aqueous solution Process of separating the hydrogen storage alloy from the solution and treating with a second alkaline aqueous solution in which hydroxide of alkali metal is dissolved
 まず、a)希土類元素、Mg及びNiを含有するA型の水素吸蔵合金を、アルカリ金属の水酸化物を溶解した第1アルカリ水溶液で処理する工程(以下、単に「a)工程」という。)について、説明する。 First, a) a step of treating an A 2 B 7 type hydrogen storage alloy containing a rare earth element, Mg and Ni with a first alkaline aqueous solution in which a hydroxide of an alkali metal is dissolved (hereinafter, simply “a step”) That. ) Will be described.
 a)工程に用いられる水素吸蔵合金は、希土類元素、Mg及びNiを含有するA型の水素吸蔵合金である。希土類元素及びMgは金属Aに属し、Niは金属Bに属すると考えられる。希土類元素としては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luを例示できる。a)工程に用いられる水素吸蔵合金には、その他の金属元素が存在してもよく、その他の金属元素として、Mn、Fe、Co、Cu、Zn、Al、Cr、Pt、Cu、Ag、Ti、Zr、V、Taを例示できる。a)工程に用いられる水素吸蔵合金としては、Niを60~70質量%で含有する水素吸蔵合金が好ましい。 The hydrogen storage alloy used in the step a) is an A 2 B 7 type hydrogen storage alloy containing a rare earth element, Mg and Ni. It is considered that the rare earth element and Mg belong to the metal A and Ni belongs to the metal B. Examples of rare earth elements include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Other metal elements may be present in the hydrogen storage alloy used in the step a), and Mn, Fe, Co, Cu, Zn, Al, Cr, Pt, Cu, Ag, and Ti may be used as the other metal elements. , Zr, V, and Ta can be exemplified. The hydrogen storage alloy used in step a) is preferably a hydrogen storage alloy containing 60 to 70% by mass of Ni.
 水素吸蔵合金は、粉砕されて、一定程度の粒子径に調製された粉末状のものが好ましい。水素吸蔵合金の平均粒子径としては1~40μmの範囲内が好ましく、3~30μmの範囲内がより好ましく、4~20μmの範囲内がさらに好ましく、5~15μmの範囲内が特に好ましく、5~12μmの範囲内が最も好ましい。 It is preferable that the hydrogen storage alloy be in the form of powder that has been crushed and adjusted to have a certain particle size. The average particle diameter of the hydrogen storage alloy is preferably in the range of 1 to 40 μm, more preferably in the range of 3 to 30 μm, further preferably in the range of 4 to 20 μm, particularly preferably in the range of 5 to 15 μm, and preferably 5 to The range of 12 μm is most preferable.
 a)工程で水素吸蔵合金をアルカリ金属の水酸化物を溶解した第1アルカリ水溶液で処理すると、アルカリ水溶液に対して溶解性の高い希土類元素が水素吸蔵合金の表面から溶出することになる。ここで、Niはアルカリ水溶液に対して溶解性が低いため、結果的に、水素吸蔵合金の表面のNi濃度は、水素吸蔵合金の内部と比較して高くなる。以下、水素吸蔵合金において、Ni濃度が内部と比較して高い部分を、Ni濃縮層という。Ni濃縮層の存在に因り、負極活物質の性能が向上すると考えられる。 When the hydrogen storage alloy is treated with the first alkaline aqueous solution in which the hydroxide of the alkali metal is dissolved in the step a), the rare earth element having high solubility in the alkaline aqueous solution is eluted from the surface of the hydrogen storage alloy. Here, since Ni has a low solubility in an alkaline aqueous solution, the Ni concentration on the surface of the hydrogen storage alloy becomes higher as compared with the inside of the hydrogen storage alloy. Hereinafter, in the hydrogen storage alloy, the portion where the Ni concentration is higher than the inside is referred to as the Ni concentrated layer. It is considered that the performance of the negative electrode active material is improved due to the presence of the Ni concentrated layer.
 アルカリ金属の水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムを例示でき、中でも、水酸化ナトリウムが好ましい。第1アルカリ水溶液として水酸化ナトリウム水溶液を用いることで、第1アルカリ水溶液として水酸化リチウムや水酸化カリウムを用いる場合と比較して、本発明のニッケル金属水素化物電池の電池特性が好適化する場合がある。 Examples of alkali metal hydroxides include lithium hydroxide, sodium hydroxide, and potassium hydroxide, with sodium hydroxide being preferred. When the sodium hydroxide aqueous solution is used as the first alkaline aqueous solution, the battery characteristics of the nickel metal hydride battery of the present invention are optimized as compared with the case where lithium hydroxide or potassium hydroxide is used as the first alkaline aqueous solution. There is.
 第1アルカリ水溶液としては強塩基のものが好ましい。第1アルカリ水溶液におけるアルカリ金属の水酸化物の濃度として、10~60質量%、20~55質量%、30~50質量%、40~50質量%を例示できる。 A strong base is preferred as the first alkaline aqueous solution. Examples of the concentration of the alkali metal hydroxide in the first alkaline aqueous solution include 10 to 60% by mass, 20 to 55% by mass, 30 to 50% by mass, and 40 to 50% by mass.
 a)工程は、水素吸蔵合金を第1アルカリ水溶液に浸ける方法で行うのが好ましい。その際には、撹拌条件下で行うのが好ましく、また、加熱条件下で行うのが好ましい。加熱温度の範囲としては、50~150℃、70~140℃、90~130℃を例示できる。加熱時間は、第1アルカリ水溶液の濃度や加熱温度に応じて適宜決定すればよいが、0.1~10時間、0.2~5時間、0.5~3時間を例示できる。 The step a) is preferably performed by a method of immersing the hydrogen storage alloy in the first alkaline aqueous solution. In that case, it is preferable to carry out under stirring conditions and preferably under heating conditions. Examples of the heating temperature range include 50 to 150 ° C., 70 to 140 ° C., and 90 to 130 ° C. The heating time may be appropriately determined depending on the concentration of the first alkaline aqueous solution and the heating temperature, and examples thereof include 0.1 to 10 hours, 0.2 to 5 hours, and 0.5 to 3 hours.
 水素吸蔵合金と第1アルカリ水溶液の量の関係は、質量比で1:0.5~1:10が好ましく、1:0.7~1:5がより好ましく、1:0.9~1:3がさらに好ましい。第1アルカリ水溶液の量が過少であれば、水素吸蔵合金の表面にNi濃縮層が十分に形成されない場合があり、他方、第1アルカリ水溶液の量が過多であれば、コスト面で不利になる。 Regarding the relationship between the amount of the hydrogen storage alloy and the amount of the first alkaline aqueous solution, the mass ratio is preferably 1: 0.5 to 1:10, more preferably 1: 0.7 to 1: 5, and 1: 0.9 to 1: 3 is more preferable. If the amount of the first alkaline aqueous solution is too small, the Ni concentrated layer may not be sufficiently formed on the surface of the hydrogen storage alloy. On the other hand, if the amount of the first alkaline aqueous solution is too large, it is disadvantageous in terms of cost. ..
 次に、b)a)工程後、第1アルカリ水溶液から水素吸蔵合金を分離し、アルカリ金属の水酸化物を溶解した第2アルカリ水溶液で処理する工程(以下、単に「b)工程」という。)について、説明する。 Next, after the step b) a), the step of separating the hydrogen storage alloy from the first alkaline aqueous solution and treating with the second alkaline aqueous solution in which the hydroxide of the alkali metal is dissolved (hereinafter simply referred to as the “b) step”. ) Will be described.
 a)工程が終了した時点における第1アルカリ水溶液には、水素吸蔵合金から溶出した希土類元素が存在する。そして、当該希土類元素は、第1アルカリ水溶液と水素吸蔵合金の分離時に、水素吸蔵合金の表面に、希土類元素の水酸化物として付着し得る。
 b)工程は、第1アルカリ水溶液から分離した水素吸蔵合金の表面に付着した、希土類元素の水酸化物を、第2アルカリ水溶液で除去する工程であるといえる。希土類元素の水酸化物は中性条件下においては析出するものの、塩基性水溶液には溶解しやすいとの性質を示す。b)工程は、この性質を利用したものである。
The rare earth element eluted from the hydrogen storage alloy is present in the first alkaline aqueous solution at the time when the step a) is completed. Then, the rare earth element can adhere to the surface of the hydrogen storage alloy as a hydroxide of the rare earth element when the first alkaline aqueous solution and the hydrogen storage alloy are separated.
It can be said that the step b) is a step of removing the hydroxide of the rare earth element attached to the surface of the hydrogen storage alloy separated from the first alkaline aqueous solution with the second alkaline aqueous solution. Rare earth element hydroxides are deposited under neutral conditions, but are easily dissolved in a basic aqueous solution. The step b) utilizes this property.
 第1アルカリ水溶液から水素吸蔵合金を分離する方法としては、濾過や遠心分離が好ましく、特に吸引濾過が好ましい。水素吸蔵合金を第2アルカリ水溶液で処理する方法としては、水素吸蔵合金を第2アルカリ水溶液に浸ける方法、第2アルカリ水溶液を水素吸蔵合金に浴びせる方法を例示できる。上述した濾過に引き続き又は濾過を行いつつ、第2アルカリ水溶液を水素吸蔵合金に浴びせる方法を選択するのが合理的である。 As a method for separating the hydrogen storage alloy from the first alkaline aqueous solution, filtration or centrifugation is preferable, and suction filtration is particularly preferable. Examples of the method of treating the hydrogen storage alloy with the second aqueous alkali solution include a method of immersing the hydrogen storage alloy in the second aqueous alkali solution and a method of exposing the second alkaline solution to the hydrogen storage alloy. It is rational to select a method in which the second alkaline aqueous solution is exposed to the hydrogen storage alloy subsequent to or while performing the above-described filtration.
 第2アルカリ水溶液に溶解したアルカリ金属の水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムを例示でき、中でも、水酸化ナトリウムが好ましい。 Examples of the alkali metal hydroxide dissolved in the second alkaline aqueous solution include lithium hydroxide, sodium hydroxide and potassium hydroxide, and of these, sodium hydroxide is preferable.
 また、第1アルカリ水溶液のアルカリ金属の水酸化物の濃度Cと、第2アルカリ水溶液のアルカリ金属の水酸化物の濃度Cの関係が、C>Cを満足する条件でb)工程を行うのが好ましい。濃度が低いアルカリ水溶液は粘度が低いため、C>Cを満足する条件においては、b)工程の作業が円滑に進行する。第2アルカリ水溶液におけるアルカリ金属の水酸化物の濃度として、0.01~10質量%、0.03~5質量%、0.05~1質量%、0.1~0.5質量%を例示できる。 Further, under the condition that the relationship between the concentration C 1 of the alkali metal hydroxide of the first alkaline aqueous solution and the concentration C 2 of the alkali metal hydroxide of the second alkaline aqueous solution satisfies C 1 > C 2 b). It is preferred to perform the steps. Since the alkaline aqueous solution having a low concentration has a low viscosity, the work of step b) proceeds smoothly under the condition that C 1 > C 2 is satisfied. Examples of the alkali metal hydroxide concentration in the second alkaline aqueous solution are 0.01 to 10% by mass, 0.03 to 5% by mass, 0.05 to 1% by mass, and 0.1 to 0.5% by mass. it can.
 製造コストなどの観点から、b)工程はa)工程よりも低温条件下で行うのが好ましい。b)工程の温度範囲としては、0~100℃、10~70℃、20~50℃を例示できる。b)工程の温度は、水素吸蔵合金が存在する環境の温度で規定してもよいし、第2アルカリ水溶液の温度で規定してもよい。 From the viewpoint of manufacturing cost, etc., it is preferable to carry out step b) under lower temperature conditions than step a). Examples of the temperature range of step b) include 0 to 100 ° C., 10 to 70 ° C., and 20 to 50 ° C. The temperature of step b) may be defined as the temperature of the environment in which the hydrogen storage alloy is present, or as the temperature of the second alkaline aqueous solution.
 水素吸蔵合金と第2アルカリ水溶液の量の関係は、質量比で1:0.5~1:50が好ましく、1:1~1:30がより好ましく、1:1.5~1:10がさらに好ましい。第2アルカリ水溶液の量が過少であれば、希土類元素の水酸化物の除去が不十分となる場合があり、他方、第2アルカリ水溶液の量が過多であれば、コスト面で不利になる。 Regarding the relationship between the amount of the hydrogen storage alloy and the amount of the second alkaline aqueous solution, the mass ratio is preferably 1: 0.5 to 1:50, more preferably 1: 1 to 1:30, and 1: 1.5 to 1:10. More preferable. If the amount of the second alkaline aqueous solution is too small, the hydroxide of the rare earth element may be insufficiently removed. On the other hand, if the amount of the second alkaline aqueous solution is too large, the cost is disadvantageous.
 b)工程においては、第2アルカリ水溶液での処理に引き続き、水素吸蔵合金に対する水での洗浄を行ってもよい。水での洗浄を行うことで水素吸蔵合金の表面に付着する第2アルカリ水溶液を除去できる。水での洗浄時における水素吸蔵合金と水の量の関係は、質量比で1:1~1:50が好ましく、1:2~1:30がより好ましく、1:3~1:10がさらに好ましい。 In the step b), the hydrogen storage alloy may be washed with water subsequently to the treatment with the second alkaline aqueous solution. The second alkaline aqueous solution adhering to the surface of the hydrogen storage alloy can be removed by washing with water. Regarding the relationship between the hydrogen storage alloy and the amount of water at the time of washing with water, the mass ratio is preferably 1: 1 to 1:50, more preferably 1: 2 to 1:30, and further preferably 1: 3 to 1:10. preferable.
 次に、N-2)前記N-1)工程後の水素吸蔵合金の表面を酸化する工程(以下、単に「N-2)工程」という。)について説明する。 Next, N-2) the step of oxidizing the surface of the hydrogen storage alloy after the step N-1) (hereinafter simply referred to as “N-2) step”. ) Will be described.
 N-2)工程としては、空気中に水素吸蔵合金を曝して、空気中の酸素で酸化させる方法でもよいし、水素吸蔵合金を過酸化水素などの酸化物と接触させて酸化させる方法でもよい。ただし、いずれの方法においても、水素吸蔵合金の過剰な発熱を抑制するために、水素吸蔵合金を冷却しながら実施するのが好ましい。具体的には、水素吸蔵合金に水を浴びせて水素吸蔵合金を冷却しながら実施するか、水中に水素吸蔵合金を配置した上で、又は、過酸化水素などの酸化物の水溶液中に水素吸蔵合金を配置した上で実施するのが好ましい。上述したb)工程における第2アルカリ水溶液での処理後に実施され得る水素吸蔵合金に対する水での洗浄を、大気下で実施することで、N-2)工程としてもよい。 The N-2) step may be a method of exposing the hydrogen storage alloy to the air and oxidizing it with oxygen in the air, or a method of contacting the hydrogen storage alloy with an oxide such as hydrogen peroxide to oxidize it. .. However, in any method, in order to suppress excessive heat generation of the hydrogen storage alloy, it is preferable to carry out the cooling operation of the hydrogen storage alloy. Specifically, the hydrogen storage alloy may be exposed to water while cooling the hydrogen storage alloy, or the hydrogen storage alloy may be placed in water or stored in an aqueous solution of an oxide such as hydrogen peroxide. It is preferable to carry out after the alloy is arranged. The hydrogen-absorbing alloy, which may be carried out after the treatment with the second alkaline aqueous solution in the step b), may be washed in water under the atmosphere to be the step N-2).
 N-1)及びN-2)工程を経て製造される、好適な本発明の負極活物質は、表面のNi濃度が、内部のNi濃度と比較して増加された水素吸蔵合金を含有する。内部のNi濃度とは、N-1)工程で用いる処理前の水素吸蔵合金におけるNi濃度と同義である。また、好適な本発明の負極活物質は、表面にNi濃縮層を具備すると表現することもできる。 The preferred negative electrode active material of the present invention produced through the steps N-1) and N-2) contains a hydrogen storage alloy in which the surface Ni concentration is increased as compared with the internal Ni concentration. The internal Ni concentration has the same meaning as the Ni concentration in the hydrogen storage alloy before the treatment used in step N-1). It can also be said that the preferable negative electrode active material of the present invention has a Ni concentrated layer on the surface.
 Ni濃縮層の厚みとしては、5~200nm、10~150nm、30~100nmを例示できる。Ni濃縮層の厚みは、本発明の負極活物質の粒子の断面を各種の電子顕微鏡で観察して確認できる。 The thickness of the Ni concentrated layer may be, for example, 5 to 200 nm, 10 to 150 nm, or 30 to 100 nm. The thickness of the Ni concentrated layer can be confirmed by observing the cross section of the particles of the negative electrode active material of the present invention with various electron microscopes.
 水素吸蔵合金の処理方法においては、まず、N-1)工程のうちのa)工程で、アルカリ水溶液に溶解しやすい希土類元素が溶出するため、a)工程後の水素吸蔵合金の表面にはNi濃縮層が形成される。次に、b)工程で、水素吸蔵合金の表面に付着した、希土類元素の水酸化物を、第2アルカリ水溶液で除去するため、b)工程後の水素吸蔵合金の表面のNi濃度はさらに増加するといえる。 In the method for treating a hydrogen storage alloy, first, in the step a) of the step N-1), a rare earth element which is easily dissolved in an alkaline aqueous solution is eluted, so that the surface of the hydrogen storage alloy after the step a) is Ni. A concentrated layer is formed. Next, in step b), since the hydroxide of the rare earth element attached to the surface of the hydrogen storage alloy is removed with the second alkaline aqueous solution, the Ni concentration on the surface of the hydrogen storage alloy after step b) is further increased. It can be said that.
 実際に、本発明者がb)工程後の水素吸蔵合金の表面をX線光電子分光法で測定したところ、a)工程で用いた処理前の水素吸蔵合金の組成よりも、大幅にNi比率が高くなっていることが確認された。そこで、好適な本発明の負極活物質の一態様として、以下のものを把握できる。 Actually, when the present inventor measured the surface of the hydrogen storage alloy after the step b) by X-ray photoelectron spectroscopy, the Ni ratio was significantly higher than that of the hydrogen storage alloy before the treatment used in the step a). It was confirmed that it was getting higher. Therefore, the following can be grasped as one preferable embodiment of the negative electrode active material of the present invention.
 本発明の負極活物質の一態様は、La、Mg及びNiを含有し、Niを60~70質量%で含有するA型の水素吸蔵合金を含有し、内部のNi/La元素比に対する表面のNi/La元素比の値が1.3以上であることを特徴とする。
 ここで、内部のNi/La元素比とは、水素吸蔵合金の内部、例えば本発明の負極活物質の粒子の中心におけるNi/La元素比を意味し、また、内部のNi/La元素比とは、a)工程で用いる処理前の水素吸蔵合金におけるNi/La元素比と同義である。
One embodiment of the negative electrode active material of the present invention contains La, Mg and Ni, contains an A 2 B 7 type hydrogen storage alloy containing 60 to 70% by mass of Ni, and has an internal Ni / La element ratio. The value of the Ni / La element ratio on the surface is 1.3 or more.
Here, the internal Ni / La element ratio means the Ni / La element ratio inside the hydrogen storage alloy, for example, in the center of the particles of the negative electrode active material of the present invention, and also the internal Ni / La element ratio Is synonymous with the Ni / La element ratio in the hydrogen storage alloy before the treatment used in step a).
 内部のNi/La元素比に対する表面のNi/La元素比の値としては、1.3~2、1.31~1.5、1.34~1.4の範囲を例示できる。内部のNi/La元素比に対する表面のNi/La元素比の値が大きいほど、表面からの希土類元素の除去が好適に行われたことを意味する。 The values of the surface Ni / La element ratio with respect to the internal Ni / La element ratio can be in the range of 1.3 to 2, 1.31 to 1.5, 1.34 to 1.4. The larger the value of the surface Ni / La element ratio with respect to the internal Ni / La element ratio, the better the removal of the rare earth element from the surface.
 次に、本発明の電解液について説明する。本発明の電解液は、タングステン酸又はその塩とアルカリ金属水酸化物とを含む水溶液である。ここで、タングステン酸とは、三酸化タングステンの水和物である。 Next, the electrolytic solution of the present invention will be described. The electrolytic solution of the present invention is an aqueous solution containing tungstic acid or its salt and an alkali metal hydroxide. Here, tungstic acid is a hydrate of tungsten trioxide.
 タングステン酸の塩としては、リチウム塩、ナトリウム塩などのアルカリ金属塩が好ましい。 As the tungstic acid salt, alkali metal salts such as lithium salt and sodium salt are preferable.
 電解液には、タングステン酸及びその塩のうち1種類を用いてもよいし、複数種類を併用してもよい。電解液における、タングステン酸及びその塩の濃度としては、0.001~0.5mol/Lが好ましく、0.005~0.4mol/Lがより好ましく、0.01~0.3mol/Lがさらに好ましく、0.015~0.2mol/Lが特に好ましい。 As the electrolytic solution, one type of tungstic acid and its salt may be used, or a plurality of types may be used in combination. The concentration of tungstic acid and its salt in the electrolytic solution is preferably 0.001 to 0.5 mol / L, more preferably 0.005 to 0.4 mol / L, and further preferably 0.01 to 0.3 mol / L. 0.015 to 0.2 mol / L is particularly preferable.
 本発明の電解液に含まれるアルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムを例示できる。電解液には、1種類のアルカリ金属の水酸化物を含んでいてもよいし、複数種類のアルカリ金属の水酸化物を含んでいてもよい。特に、水酸化リチウム、水酸化ナトリウム及び水酸化カリウムの3種類のアルカリ金属の水酸化物を含んでいるものが好ましい。
 電解液における、アルカリ金属の水酸化物の濃度としては、2~10mol/Lが好ましく、3~9mol/Lがより好ましく、4~8mol/Lがさらに好ましい。
Examples of the alkali metal hydroxide contained in the electrolytic solution of the present invention include lithium hydroxide, sodium hydroxide and potassium hydroxide. The electrolytic solution may contain one kind of alkali metal hydroxide or a plurality of kinds of alkali metal hydroxide. Particularly, those containing hydroxides of three kinds of alkali metals such as lithium hydroxide, sodium hydroxide and potassium hydroxide are preferable.
The concentration of the alkali metal hydroxide in the electrolytic solution is preferably 2 to 10 mol / L, more preferably 3 to 9 mol / L, and further preferably 4 to 8 mol / L.
 電解液には、ニッケル金属水素化物電池用電解液に採用される公知の添加剤が添加されていてもよい。 The well-known additive used for the nickel metal hydride battery electrolyte may be added to the electrolyte.
 次に、本発明のニッケル金属水素化物電池の具体的な構成について説明する。本発明のニッケル金属水素化物電池は、具体的には、本発明の負極活物質を含む負極活物質層と、本発明の電解液と、正極活物質を含む正極活物質層と、セパレータを具備する。 Next, a specific configuration of the nickel metal hydride battery of the present invention will be described. The nickel metal hydride battery of the present invention specifically comprises a negative electrode active material layer containing the negative electrode active material of the present invention, an electrolytic solution of the present invention, a positive electrode active material layer containing a positive electrode active material, and a separator. To do.
 ここで、本発明のニッケル金属水素化物電池は、上記正極活物質層を備える正極及び上記負極活物質層を備える負極を具備する、通常のニッケル金属水素化物電池であってもよいし、または、集電箔の一面に上記正極活物質層を備え、かつ、他面に上記負極活物質層を備える双極型の電極を具備する、双極型のニッケル金属水素化物電池であってもよい。 Here, the nickel metal hydride battery of the present invention may be a normal nickel metal hydride battery including a positive electrode having the positive electrode active material layer and a negative electrode having the negative electrode active material layer, or It may be a bipolar nickel metal hydride battery in which the positive electrode active material layer is provided on one surface of the current collector foil and the bipolar electrode having the negative electrode active material layer is provided on the other surface.
 以下、正極及び負極についての説明を行うが、双極型の電極の説明については、正極及び負極についての説明を適宜適切に援用することとする。 The following will describe the positive electrode and the negative electrode, but the description of the positive electrode and the negative electrode will be appropriately incorporated with respect to the description of the bipolar electrode.
 正極について説明する。なお、負極の構成と重複するものについては、正極との限定を付さずに説明する。 Explain the positive electrode. It should be noted that those having the same structure as the negative electrode will be described without being limited to the positive electrode.
 正極は、集電体と集電体の表面に形成された正極活物質層とを含む。
 正極活物質層は、正極活物質を含み、必要に応じて正極添加剤、結着剤及び導電助剤を含む。
The positive electrode includes a current collector and a positive electrode active material layer formed on the surface of the current collector.
The positive electrode active material layer contains a positive electrode active material and, if necessary, a positive electrode additive, a binder and a conductive auxiliary agent.
 正極活物質としては、ニッケル金属水素化物電池の正極活物質として知られるものを適宜採用すればよいが、あらかじめ、正極活物質の周りにオキシ水酸化コバルトの層を形成させたものが好ましい。さらには、あらかじめ、正極活物質の周りにオキシ水酸化コバルトの層を形成させ、かつ、オキシ水酸化コバルトの層にアルカリ金属、特にリチウムをドープしたものが好ましい。 As the positive electrode active material, a material known as a positive electrode active material for nickel metal hydride batteries may be appropriately adopted, but it is preferable to form a layer of cobalt oxyhydroxide around the positive electrode active material in advance. Furthermore, it is preferable that a layer of cobalt oxyhydroxide is formed in advance around the positive electrode active material and that the layer of cobalt oxyhydroxide is doped with an alkali metal, particularly lithium.
 以下、特に好適な正極活物質(以下、本発明の正極活物質という。)について説明する。本発明の正極活物質は、リチウム及びオキシ水酸化コバルトを含有するオキシ水酸化コバルト層と、オキシ水酸化コバルト層で被覆された正極活物質本体(本明細書中では、単に「正極活物質」ということがある。)を含む。 Hereinafter, a particularly preferable positive electrode active material (hereinafter referred to as the positive electrode active material of the present invention) will be described. The positive electrode active material of the present invention includes a cobalt oxyhydroxide layer containing lithium and cobalt oxyhydroxide, and a positive electrode active material body coated with the cobalt oxyhydroxide layer (herein, simply referred to as “positive electrode active material”). That is.) Is included.
 オキシ水酸化コバルト層で被覆される正極活物質としては、ニッケル金属水素化物電池の正極活物質として用いられるものであれば限定されない。具体的な正極活物質として、水酸化ニッケル、金属をドープした水酸化ニッケルを例示できる。水酸化ニッケルにドープする金属として、マグネシウム、カルシウムなどの第2族元素、コバルト、ロジウム、イリジウムなどの第9族元素、亜鉛、カドミウムなどの第12族元素を例示できる。 The positive electrode active material coated with the cobalt oxyhydroxide layer is not limited as long as it is used as a positive electrode active material of a nickel metal hydride battery. Specific examples of the positive electrode active material include nickel hydroxide and nickel hydroxide doped with a metal. Examples of the metal with which nickel hydroxide is doped include Group 2 elements such as magnesium and calcium, Group 9 elements such as cobalt, rhodium and iridium, and Group 12 elements such as zinc and cadmium.
 正極活物質本体に、リチウム及びオキシ水酸化コバルトを含有するオキシ水酸化コバルト層を形成する方法は、以下のP-1)工程及びP-2)工程である。 The method of forming a cobalt oxyhydroxide layer containing lithium and cobalt oxyhydroxide on the positive electrode active material body is the following steps P-1) and P-2).
 P-1)正極活物質の表面に水酸化コバルト層を形成させる工程
 P-2)前記水酸化コバルト層が形成された正極活物質を加熱して、前記水酸化コバルト層をオキシ水酸化コバルト層に変換する工程であって、さらに、前記水酸化コバルト層又は前記オキシ水酸化コバルト層にリチウムをドープする工程
P-1) A step of forming a cobalt hydroxide layer on the surface of the positive electrode active material P-2) The positive electrode active material on which the cobalt hydroxide layer is formed is heated to change the cobalt hydroxide layer to a cobalt oxyhydroxide layer. A step of further converting the cobalt hydroxide layer or the cobalt oxyhydroxide layer with lithium.
 P-1)工程としては、以下のP-1-1)工程、又は、P-1-2)工程を例示できる。
 P-1-1)コバルト塩水溶液中に正極活物質を分散させた分散液を製造した上で、分散液のpHをアルカリ性にして、正極活物質の表面に水酸化コバルトを析出させる工程
 P-1-2)正極活物質をアルカリ性水溶液に分散させた分散液を製造した上で、分散液にコバルト塩水溶液を添加して、正極活物質の表面に水酸化コバルトを析出させる工程
Examples of P-1) include the following P-1-1) or P-1-2).
P-1-1) A step of producing a dispersion liquid in which the positive electrode active material is dispersed in an aqueous cobalt salt solution, and then making the pH of the dispersion liquid alkaline and precipitating cobalt hydroxide on the surface of the positive electrode active material P- 1-2) A step of producing a dispersion liquid in which the positive electrode active material is dispersed in an alkaline aqueous solution, and then adding a cobalt salt aqueous solution to the dispersion liquid to deposit cobalt hydroxide on the surface of the positive electrode active material.
 コバルト塩としては、硫酸コバルト、硝酸コバルト、塩化コバルトを例示できる。 Examples of cobalt salts include cobalt sulfate, cobalt nitrate, and cobalt chloride.
 P-2)工程における加熱温度としては、70~230℃、80~200℃を例示できる。P-2)工程における雰囲気は酸素含有雰囲気である。P-2)工程は、費用の点から、空気存在下で行うのが好ましい。 Examples of the heating temperature in the step P-2) include 70 to 230 ° C and 80 to 200 ° C. The atmosphere in step P-2) is an oxygen-containing atmosphere. From the viewpoint of cost, it is preferable to carry out the step P-2) in the presence of air.
 P-2)工程において、リチウムをドープする時期は、加熱前の水酸化コバルト層に対してでも良いし、加熱中の水酸化コバルト層又はオキシ水酸化コバルト層に対してでも良い。 In the step P-2), lithium may be doped in the cobalt hydroxide layer before heating, or in the cobalt hydroxide layer or cobalt oxyhydroxide layer during heating.
 P-2)工程において、リチウムをドープする方法としては、正極活物質に対して、リチウム塩水溶液を噴霧する方法が好ましい。正極活物質に対してリチウム塩水溶液を噴霧しつつ加熱すること、又は、正極活物質に対してリチウム塩水溶液を噴霧した後に加熱することで、正極活物質表面のオキシ水酸化コバルト層(又は、オキシ水酸化コバルト層に変換前の水酸化コバルト層)に対して、リチウムがドープされる。
 リチウムをドープする方法における加熱温度としては、P-2)工程において、水酸化コバルト層をオキシ水酸化コバルト層に変換する際の加熱温度と同様の温度で行うのが合理的である。
In the step P-2), as a method of doping lithium, a method of spraying a lithium salt aqueous solution on the positive electrode active material is preferable. By heating while spraying the lithium salt aqueous solution on the positive electrode active material, or by heating after spraying the lithium salt aqueous solution on the positive electrode active material, the cobalt oxyhydroxide layer on the surface of the positive electrode active material (or, Lithium is doped with respect to the cobalt hydroxide layer before conversion into the cobalt oxyhydroxide layer).
As the heating temperature in the method of doping lithium, it is rational to carry out at the same temperature as the heating temperature at the time of converting the cobalt hydroxide layer into the cobalt oxyhydroxide layer in the step P-2).
 リチウム塩としては、水酸化リチウム、硫酸リチウム、硝酸リチウム、塩化リチウム、酢酸リチウム、トリフルオロメタンスルホン酸リチウム、リチウムビス(トリフルオロメタンスルホニル)イミドを例示できる。 Examples of the lithium salt include lithium hydroxide, lithium sulfate, lithium nitrate, lithium chloride, lithium acetate, lithium trifluoromethanesulfonate, and lithium bis (trifluoromethanesulfonyl) imide.
 P-2)工程においては、リチウムのみではなく、他のアルカリ金属をドープしてもよい。他のアルカリ金属として、ナトリウム、カリウムを例示できる。
 他のアルカリ金属のドープ方法としては、リチウムをドープする方法と同様に、アルカリ金属水溶液を噴霧する方法が好ましい。
In step P-2), not only lithium but also another alkali metal may be doped. Examples of other alkali metals include sodium and potassium.
As another alkali metal doping method, a method of spraying an alkali metal aqueous solution is preferable as in the method of doping lithium.
 本発明の正極活物質が優れた導電性を示す理由は、以下のとおりと考えられる。 The reason why the positive electrode active material of the present invention exhibits excellent conductivity is considered as follows.
 まず、リチウムなどのアルカリ金属をドープせずに、オキシ水酸化コバルト層を正極活物質に形成させる場合には、オキシ水酸化コバルト層には、CoOOHのうち導電性に劣るβ-CoOOHとともに、導電性に劣るCoが形成されると考えられる。なお、Coにおいては、コバルトは2価と3価の両者で存在する。 First, in the case where a cobalt oxyhydroxide layer is formed on the positive electrode active material without being doped with an alkali metal such as lithium, the cobalt oxyhydroxide layer contains β-CoOOH, which is less conductive than CoOOH, and has conductivity. It is considered that Co 3 O 4 having poor properties is formed. In Co 3 O 4 , cobalt exists in both divalent and trivalent states.
 次に、リチウム以外のアルカリ金属をドープする方法を用いて、オキシ水酸化コバルト層を正極活物質に形成させる場合には、オキシ水酸化コバルト層には、CoOOHのうち導電性に優れるγ-CoOOHが多く形成されるものの、導電性に劣るCoも形成されると考えられる。 Next, when a cobalt oxyhydroxide layer is formed on the positive electrode active material by using a method of doping an alkali metal other than lithium, the cobalt oxyhydroxide layer contains γ-CoOOH having excellent conductivity among CoOOH. However, it is considered that Co 3 O 4 having poor conductivity is also formed.
 しかしながら、リチウムをドープする方法を用いて、オキシ水酸化コバルト層を正極活物質に形成させる場合には、導電性に劣るCoが形成されたとしても、リチウムの存在に因り、少なくともCoの一部が導電性に優れるLiCoOに変換されると考えられる。そうすると、リチウムをドープする方法を用いて、オキシ水酸化コバルト層を正極活物質に形成させる場合には、オキシ水酸化コバルト層には、CoOOHのうち導電性に優れるγ-CoOOHが多く存在し、比較的導電性に優れるLiCoOも存在するものの、導電性に劣るCoの存在する割合は著しく低いと考えられる。 However, when the cobalt oxyhydroxide layer is formed on the positive electrode active material by using the method of doping lithium, even if Co 3 O 4 having poor conductivity is formed, it is at least Co due to the presence of lithium. It is considered that a part of 3 O 4 is converted into LiCoO 2 having excellent conductivity. Then, when a cobalt oxyhydroxide layer is formed on the positive electrode active material by using the method of doping lithium, the cobalt oxyhydroxide layer contains a large amount of γ-CoOOH having excellent conductivity among CoOOH, Although LiCoO 2 having relatively high conductivity also exists, the proportion of Co 3 O 4 having poor conductivity is considered to be extremely low.
 なお、γ-CoOOHの抵抗率は概ね2Ω・cm程度、LiCoOの抵抗率は概ね1×10Ω・cm程度、Coの抵抗率は概ね1×10Ω・cm程度、β-CoOOHの抵抗率は概ね1×10Ω・cm程度である。 The resistivity of γ-CoOOH is approximately 2 Ω · cm, the resistivity of LiCoO 2 is approximately 1 × 10 2 Ω · cm, the resistivity of Co 3 O 4 is approximately 1 × 10 6 Ω · cm, and β is The resistivity of —CoOOH is approximately 1 × 10 8 Ω · cm.
 導電性に優れるγ-CoOOH及びLiCoOのコバルトは、いずれも3価である。原料の水酸化コバルトのコバルトは2価であること、及び、Coにおいては、コバルトは2価と3価の両者で存在することを考慮すると、本発明の正極活物質のオキシ水酸化コバルト層におけるコバルトの価数は、高い方が好ましいといえる。 Cobalt of γ-CoOOH and LiCoO 2 which are excellent in conductivity are both trivalent. Considering that cobalt of cobalt hydroxide as a raw material is divalent, and that Co 3 O 4 has both divalent and trivalent cobalt, the oxyhydroxide of the positive electrode active material of the present invention is considered. It can be said that the higher the valence of cobalt in the cobalt layer, the better.
 本発明の正極活物質のオキシ水酸化コバルト層におけるコバルトの価数としては、2.9~3.2が好ましく、2.95~3.1がより好ましく、2.98~3.07がさらに好ましい。
 ここでのコバルトの価数は、本発明の正極活物質の表面に存在するオキシ水酸化コバルト層におけるコバルトの価数を、ヨードメトリー法で測定した値である。
The valence of cobalt in the cobalt oxyhydroxide layer of the positive electrode active material of the present invention is preferably 2.9 to 3.2, more preferably 2.95 to 3.1, and even more preferably 2.98 to 3.07. preferable.
The valence of cobalt here is a value obtained by measuring the valence of cobalt in the cobalt oxyhydroxide layer existing on the surface of the positive electrode active material of the present invention by an iodometry method.
 本発明の正極活物質におけるコバルトの含有量は、1~10質量%が好ましく、2~7質量%がより好ましく、3~7質量%がさらに好ましい。
 本発明の正極活物質におけるリチウムの含有量は、0.01~0.3質量%が好ましく、0.04~0.2質量%がより好ましく、0.07~0.1質量%がさらに好ましい。
 本発明の正極活物質におけるリチウム以外のアルカリ金属の含有量は、0.01~1質量%が好ましく、0.1~0.6質量%がより好ましく、0.2~0.5質量%がさらに好ましい。
The content of cobalt in the positive electrode active material of the present invention is preferably 1 to 10% by mass, more preferably 2 to 7% by mass, and further preferably 3 to 7% by mass.
The content of lithium in the positive electrode active material of the present invention is preferably 0.01 to 0.3% by mass, more preferably 0.04 to 0.2% by mass, and further preferably 0.07 to 0.1% by mass. ..
The content of the alkali metal other than lithium in the positive electrode active material of the present invention is preferably 0.01 to 1% by mass, more preferably 0.1 to 0.6% by mass, and 0.2 to 0.5% by mass. More preferable.
 本発明の正極活物質は粉末状態が好ましく、また、その平均粒子径としては3~40μmの範囲内が好ましく、5~30μmの範囲内がより好ましく、7~20μmの範囲内がさらに好ましい。なお、本明細書において、平均粒子径とは、一般的なレーザー回折式粒度分布測定装置を用いた測定におけるD50の値を意味する。 The positive electrode active material of the present invention is preferably in a powder state, and its average particle size is preferably in the range of 3 to 40 μm, more preferably in the range of 5 to 30 μm, and further preferably in the range of 7 to 20 μm. In the present specification, the average particle diameter means a value of D 50 in the measurement using a conventional laser diffraction particle size distribution analyzer.
 本発明の正極活物質のBET比表面積としては、5~30m/gが好ましく、10~20m/gがより好ましく、12~18m/gがさらに好ましい。 The BET specific surface area of the positive electrode active material of the present invention, preferably 5 ~ 30m 2 / g, more preferably from 10 ~ 20m 2 / g, more preferably 12 ~ 18m 2 / g.
 本発明の正極活物質の抵抗率は、0.1~7Ω・cmが好ましく、0.1~5Ω・cmがより好ましく、0.1~4Ω・cmがさらに好ましい。 The resistivity of the positive electrode active material of the present invention is preferably 0.1 to 7 Ω · cm, more preferably 0.1 to 5 Ω · cm, and even more preferably 0.1 to 4 Ω · cm.
 集電体は、ニッケル金属水素化物電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体の材料は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はない。集電体の材料としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。集電体の材料としては、ニッケル、又は、ニッケルめっきを施した金属材料が好ましい。 Current collector refers to a chemically inert electronic conductor that keeps current flowing through the electrodes during discharging or charging of a nickel metal hydride battery. The material of the current collector is not particularly limited as long as it is a metal capable of withstanding a voltage suitable for the active material used. The material for the current collector is at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel. Metal materials such as The current collector may be covered with a known protective layer. You may use what collected the surface of the collector by a well-known method as a collector. As the material of the current collector, nickel or a metal material plated with nickel is preferable.
 集電体は箔、シート、フィルム、線状、棒状、メッシュ、スポンジ状などの形態をとることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。 The current collector can be in the form of foil, sheet, film, wire, rod, mesh, sponge, etc. When the current collector is in the form of foil, sheet or film, its thickness is preferably in the range of 1 μm to 100 μm.
 本発明の正極活物質は導電性に優れるため、箔状の集電体を採用するのが合理的といえる。同じ理由で、本発明の正極活物質は、集電箔を用いる双極型の電極に適しているといえる。 Since the positive electrode active material of the present invention has excellent conductivity, it may be rational to employ a foil-shaped current collector. For the same reason, it can be said that the positive electrode active material of the present invention is suitable for a bipolar electrode using a collector foil.
 正極活物質層は正極活物質を含み、必要に応じて正極添加剤、結着剤及び導電助剤を含む。
 正極の集電体上に存在する一の正極活物質層の量としては、20mg/cm以上が好ましく、25~50mg/cmがより好ましく、27~40mg/cmがさらに好ましい。
 正極活物質層の密度としては、2.5g/cm以上が好ましく、2.6~3.2g/cmがより好ましく、2.7~3.1g/cmがさらに好ましく、2.8~3.0g/cmが特に好ましい。
The positive electrode active material layer contains a positive electrode active material, and if necessary, a positive electrode additive, a binder, and a conductive additive.
The amount of one positive electrode active material layer present on the current collector of the positive electrode is preferably 20 mg / cm 2 or more, more preferably 25 to 50 mg / cm 2 , and even more preferably 27 to 40 mg / cm 2 .
The density of the positive electrode active material layer, 2.5 g / cm 3 or more, more preferably 2.6 ~ 3.2g / cm 3, more preferably 2.7 ~ 3.1g / cm 3, 2.8 It is particularly preferably from 3.0 g / cm 3 .
 正極活物質層には、正極活物質が正極活物質層全体の質量に対して、75~99質量%で含まれるのが好ましく、80~97質量%で含まれるのがより好ましく、85~95質量%で含まれるのがさらに好ましい。 The positive electrode active material layer preferably contains the positive electrode active material in an amount of 75 to 99% by mass, more preferably 80 to 97% by mass, and further preferably 85 to 95%, based on the total mass of the positive electrode active material layer. More preferably, it is contained by mass%.
 正極添加剤は、ニッケル金属水素化物電池の電池特性を向上させるために正極に添加されるものである。正極添加剤としては、ニッケル金属水素化物電池の正極添加剤として用いられるものであれば限定されない。具体的な正極添加剤として、Nbなどのニオブ化合物、WO、WO、LiWO、NaWO及びKWOなどのタングステン化合物、Ybなどのイッテルビウム化合物、TiOなどのチタン化合物、Yなどのイットリウム化合物、ZnOなどの亜鉛化合物、CaO、Ca(OH)及びCaFなどのカルシウム化合物、並びに、その他の希土類酸化物を例示できる。 The positive electrode additive is added to the positive electrode in order to improve the battery characteristics of the nickel metal hydride battery. The positive electrode additive is not limited as long as it is used as a positive electrode additive for nickel metal hydride batteries. Specific positive electrode additives include niobium compounds such as Nb 2 O 5 , tungsten compounds such as WO 2 , WO 3 , Li 2 WO 4 , Na 2 WO 4 and K 2 WO 4 , ytterbium compounds such as Yb 2 O 3 . , Titanium compounds such as TiO 2 , yttrium compounds such as Y 2 O 3 , zinc compounds such as ZnO, calcium compounds such as CaO, Ca (OH) 2 and CaF 2 , and other rare earth oxides.
 正極活物質層には、正極添加剤が正極活物質層全体の質量に対して、0.1~10質量%で含まれるのが好ましく、0.5~5質量%で含まれるのがより好ましい。 The positive electrode active material layer preferably contains the positive electrode additive in an amount of 0.1 to 10% by mass, and more preferably 0.5 to 5% by mass, based on the total mass of the positive electrode active material layer. ..
 結着剤は活物質などを集電体の表面に繋ぎ止める役割を果たすものである。結着剤としては、ニッケル金属水素化物電池の電極用結着剤として用いられるものであれば限定されない。具体的な結着剤として、ポリフッ化ビニリデン、ポリテトラフルオロエチレン及びフッ素ゴムなどの含フッ素樹脂、ポリプロピレン及びポリエチレンなどのポリオレフィン樹脂、ポリイミド及びポリアミドイミドなどのイミド系樹脂、カルボキシメチルセルロース、メチルセルロース及びヒドロキシプロピルセルロースなどのセルロース誘導体、スチレンブタジエンゴムなどの共重合体、並びに、(メタ)アクリル酸誘導体をモノマー単位として含有する、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸及びポリメタクリル酸エステルなどの(メタ)アクリル系樹脂を例示できる。 The binding agent plays a role in binding active materials and the like to the surface of the current collector. The binder is not limited as long as it is used as a binder for electrodes of nickel metal hydride batteries. Specific binders include polyvinylidene fluoride, fluoro resins such as polytetrafluoroethylene and fluororubber, polyolefin resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, carboxymethyl cellulose, methyl cellulose and hydroxypropyl. Cellulose derivatives such as cellulose, copolymers such as styrene-butadiene rubber, and polyacrylic acid, polyacrylic acid ester, polymethacrylic acid and polymethacrylic acid ester containing a (meth) acrylic acid derivative as a monomer unit ( An example is a (meth) acrylic resin.
 活物質層には、結着剤が活物質層全体の質量に対して、0.1~15質量%で含まれるのが好ましく、0.3~10質量%で含まれるのがより好ましく、0.5~7質量%で含まれるのがさらに好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。 The active material layer preferably contains the binder in an amount of 0.1 to 15% by mass, and more preferably 0.3 to 10% by mass, based on the total mass of the active material layer. It is more preferable that the content is 0.5 to 7% by mass. This is because if the amount of the binder is too small, the moldability of the electrode is lowered, and if the amount of the binder is too large, the energy density of the electrode becomes low.
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。具体的な導電助剤としては、コバルト、ニッケル、銅などの金属、コバルト酸化物などの金属酸化物、及びコバルト水酸化物などの金属水酸化物、カーボンブラック、黒鉛、炭素繊維などの炭素材料が例示される。 Conductivity aid is added to enhance the conductivity of the electrode. Therefore, the conductive additive may be optionally added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent. Specific examples of the conductive aid include metals such as cobalt, nickel and copper, metal oxides such as cobalt oxide, metal hydroxides such as cobalt hydroxide, carbon materials such as carbon black, graphite and carbon fiber. Is exemplified.
 活物質層には、導電助剤が活物質層全体の質量に対して、0.1~20質量%で含まれるのが好ましい。正極活物質層には、導電助剤が正極活物質層全体の質量に対して、1~15質量%で含まれるのが好ましく、3~12質量%で含まれるのがより好ましく、5~10質量%で含まれるのがさらに好ましい。負極活物質層には、導電助剤が負極活物質層全体の質量に対して、0.1~5質量%で含まれるのが好ましく、0.2~3質量%で含まれるのがより好ましく、0.3~1質量%で含まれるのがさらに好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。 The active material layer preferably contains the conductive additive in an amount of 0.1 to 20 mass% with respect to the total mass of the active material layer. The positive electrode active material layer preferably contains the conductive additive in an amount of 1 to 15% by mass, more preferably 3 to 12% by mass, and more preferably 5 to 10% by mass based on the total mass of the positive electrode active material layer. More preferably, it is contained by mass%. The negative electrode active material layer preferably contains the conductive additive in an amount of 0.1 to 5% by mass, and more preferably 0.2 to 3% by mass, based on the total mass of the negative electrode active material layer. , 0.3 to 1 mass% is more preferable. This is because if the amount of the conductive additive is too small, an efficient conductive path cannot be formed, and if the amount of the conductive additive is too large, the moldability of the active material layer deteriorates and the energy density of the electrode decreases.
 本発明の負極は、本発明の負極活物質を具備する。本発明の負極は、集電体と集電体の表面に形成された負極活物質層とを含む。
 負極活物質層は、本発明の負極活物質を含み、必要に応じて負極添加剤、結着剤及び導電助剤を含む。結着剤及び導電助剤については上述したとおりである。
The negative electrode of the present invention comprises the negative electrode active material of the present invention. The negative electrode of the present invention includes a current collector and a negative electrode active material layer formed on the surface of the current collector.
The negative electrode active material layer contains the negative electrode active material of the present invention and, if necessary, a negative electrode additive, a binder and a conductive auxiliary agent. The binder and the conductive aid are as described above.
 負極活物質層には、負極活物質が負極活物質層全体の質量に対して、85~99質量%で含まれるのが好ましく、90~98質量%で含まれるのがより好ましい。 The negative electrode active material layer preferably contains the negative electrode active material in an amount of 85 to 99% by mass, more preferably 90 to 98% by mass, based on the total mass of the negative electrode active material layer.
 負極添加剤は、ニッケル金属水素化物電池の電池特性を向上させるために負極に添加されるものである。負極添加剤としては、ニッケル金属水素化物電池の負極添加剤として用いられるものであれば限定されない。具体的な負極添加剤として、CeF及びYFなどの希土類元素のフッ化物、Bi及びBiFなどのビスマス化合物、In及びInFなどのインジウム化合物、並びに、正極添加剤として例示した化合物を挙げることができる。 The negative electrode additive is added to the negative electrode in order to improve the battery characteristics of the nickel metal hydride battery. The negative electrode additive is not limited as long as it is used as a negative electrode additive of a nickel metal hydride battery. Specific negative electrode additives include rare earth element fluorides such as CeF 3 and YF 3 , bismuth compounds such as Bi 2 O 3 and BiF 3 , indium compounds such as In 2 O 3 and InF 3 , and positive electrode additives. The compounds exemplified as can be mentioned.
 負極活物質層には、負極添加剤が負極活物質層全体の質量に対して、0.1~10質量%で含まれるのが好ましく、0.5~5質量%で含まれるのがより好ましい。 The negative electrode active material layer preferably contains the negative electrode additive in an amount of 0.1 to 10% by mass, and more preferably 0.5 to 5% by mass, based on the total mass of the negative electrode active material layer. ..
 集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、溶剤、並びに必要に応じて結着剤、導電助剤及び添加剤を混合してスラリーにしてから、当該スラリーを集電体の表面に塗布後、乾燥する。溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。 To form an active material layer on the surface of the current collector, a conventionally known method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method or a curtain coating method is used. The active material may be applied to the surface of the body. Specifically, an active material, a solvent, and, if necessary, a binder, a conductive auxiliary agent, and an additive are mixed to form a slurry, and the slurry is applied to the surface of the current collector and then dried. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water. The dried product may be compressed to increase the electrode density.
 セパレータは、正極と負極とを隔離して、両極の接触による短絡を防止しつつ、電解液の貯留空間及び通路を提供するものである。セパレータとしては、公知のものを採用すればよく、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。 The separator separates the positive electrode from the negative electrode to prevent a short circuit due to contact between both electrodes, while providing a storage space and passage for the electrolytic solution. Any known separator may be used as the separator, such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polyamide), polyester, synthetic resin such as polyacrylonitrile, polysaccharides such as cellulose and amylose, and fibroin. Examples include natural polymers such as keratin, lignin, and suberin, and porous bodies, nonwoven fabrics, and woven fabrics using one or more electrically insulating materials such as ceramics. Further, the separator may have a multi-layer structure.
 セパレータは、表面に親水化処理が施されていることが好ましい。親水化処理としては、スルホン化処理、コロナ処理、フッ素ガス処理、プラズマ処理を例示できる。 The surface of the separator is preferably hydrophilized. Examples of the hydrophilic treatment include sulfonation treatment, corona treatment, fluorine gas treatment, and plasma treatment.
 本発明のニッケル金属水素化物電池の具体的な製造方法の一態様について述べる。
 正極と負極とでセパレータを挟持して電極体とする。正極の集電体及び負極の集電体から外部に通ずる正極端子及び負極端子までを、集電用リード等を用いて接続した後に、電極体に本発明の電解液を加えてニッケル金属水素化物電池とする。
One aspect of a specific method for producing the nickel metal hydride battery of the present invention will be described.
The separator is sandwiched between the positive electrode and the negative electrode to form an electrode body. After connecting the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal that communicate with the outside by using a current collecting lead or the like, the electrolytic solution of the present invention is added to the electrode body to form a nickel metal hydride. Use batteries.
 本発明のニッケル金属水素化物電池の形状は特に限定されるものでなく、角型、円筒型、コイン型、ラミネート型等、種々の形状を採用することができる。 The shape of the nickel metal hydride battery of the present invention is not particularly limited, and various shapes such as a prismatic type, a cylindrical type, a coin type and a laminated type can be adopted.
 本発明のニッケル金属水素化物電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にニッケル金属水素化物電池による電気エネルギーを使用している車両であればよく、例えば、電気車両、ハイブリッド車両などであるとよい。車両にニッケル金属水素化物電池を搭載する場合には、ニッケル金属水素化物電池を複数直列に接続して組電池とするとよい。ニッケル金属水素化物電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のニッケル金属水素化物電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。 The nickel metal hydride battery of the present invention may be mounted on a vehicle. The vehicle may be any vehicle that uses electric energy from a nickel metal hydride battery for all or part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle. When a nickel metal hydride battery is mounted on a vehicle, a plurality of nickel metal hydride batteries may be connected in series to form an assembled battery. In addition to vehicles, examples of devices equipped with nickel metal hydride batteries include personal computers, portable communication devices, and other battery-powered home appliances, office equipment, and industrial equipment. Further, the nickel metal hydride battery of the present invention is a power storage device and power smoothing device for wind power generation, solar power generation, hydroelectric power generation and other power systems, power supply for ships and / or power supply for auxiliary machinery, aircraft, Power supply source for spacecraft and / or auxiliary machinery, auxiliary power source for vehicles that do not use electricity as power source, mobile home robot power source, system backup power source, uninterruptible power source power source, It may be used for a power storage device that temporarily stores electric power required for charging in an electric vehicle charging station or the like.
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 The embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments. Without departing from the scope of the present invention, various modifications and improvements that can be made by those skilled in the art can be implemented.
 以下に、実施例及び比較例などを示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。 [Examples] Hereinafter, the present invention will be described more specifically by showing Examples and Comparative Examples. The present invention is not limited to these examples.
 (製造例1:負極活物質の製造)
 希土類-Mg-Ni系の水素吸蔵合金として、(La,Sm,Mg,Zr)1.0(Ni,Al)3.6で表されるA型水素吸蔵合金を準備した。当該A型水素吸蔵合金において、Ni含量は62質量%であった。
(Production Example 1: Production of negative electrode active material)
As a rare earth-Mg-Ni system hydrogen storage alloy, an A 2 B 7 type hydrogen storage alloy represented by (La, Sm, Mg, Zr) 1.0 (Ni, Al) 3.6 was prepared. In the A 2 B 7 type hydrogen storage alloy, the Ni content was 62 mass%.
 (負極活物質の細粉砕工程)
 蒸留水に、水素吸蔵合金の粗粉末、及び、ポリビニルアルコールを、水素吸蔵合金の濃度が10質量%となるように配合して、混合機で混合して混合物とした。なお、ポリビニルアルコールの含有量は、水素吸蔵合金に対して0.5質量%であった。この混合物を大気中でビーズミルに移し、当該ビーズミル中で混合した後に、ビーズミルから排出した。ビーズミルのビーズとしてはジルコニア製のものを用いた。
 ビーズミルから排出された混合物は、循環用配管を経由して混合機に輸送された後に、再度ビーズミルに戻された。つまり、水素吸蔵合金及び水はビーズミルと混合機との間を循環し、水素吸蔵合金はビーズミルで繰り返し粉砕された。
 以上の工程により得られた粉砕生成物を濾取して、水素吸蔵合金粉末と少量の水とを含む製造例1の粉砕濾過生成物を得た。製造例1の粉砕濾過生成物を以下のアルカリ処理工程に供した。
 なお、製造例1の粉砕濾過生成物における水素吸蔵合金粉末の平均粒子径(D50)は、7μmであった。
(Fine crushing process of negative electrode active material)
Coarse powder of hydrogen storage alloy and polyvinyl alcohol were mixed in distilled water so that the concentration of hydrogen storage alloy was 10% by mass, and mixed by a mixer to obtain a mixture. The content of polyvinyl alcohol was 0.5% by mass based on the hydrogen storage alloy. This mixture was transferred to a bead mill in the atmosphere, mixed in the bead mill, and then discharged from the bead mill. As beads for the bead mill, those made of zirconia were used.
The mixture discharged from the bead mill was transported to the mixer via the circulation pipe and then returned to the bead mill again. That is, the hydrogen storage alloy and water were circulated between the bead mill and the mixer, and the hydrogen storage alloy was repeatedly crushed by the bead mill.
The crushed product obtained through the above steps was filtered to obtain a crushed filtered product of Production Example 1 containing the hydrogen storage alloy powder and a small amount of water. The crushed and filtered product of Production Example 1 was subjected to the following alkali treatment step.
The average particle diameter (D 50 ) of the hydrogen storage alloy powder in the pulverized and filtered product of Production Example 1 was 7 μm.
 (負極活物質のアルカリ処理工程:N-1)工程
 a)工程
 第1アルカリ水溶液として、水酸化ナトリウムを40質量%で含有する水酸化ナトリウム水溶液を準備した。撹拌条件下、第1アルカリ水溶液50質量部に、製造例1の粉砕濾過生成物50質量部を加えて懸濁液とした。この懸濁液を90℃に加熱して1時間保持し、その後、室温に冷却した。
(Negative electrode active material alkaline treatment step: N-1) step a) step As the first alkaline aqueous solution, an aqueous sodium hydroxide solution containing 40% by mass of sodium hydroxide was prepared. Under stirring conditions, 50 parts by mass of the crushed and filtered product of Production Example 1 was added to 50 parts by mass of the first alkaline aqueous solution to form a suspension. The suspension was heated to 90 ° C. and held for 1 hour, then cooled to room temperature.
 b)工程
 第2アルカリ水溶液として、水酸化ナトリウムを0.4質量%で含有する水酸化ナトリウム水溶液を準備した。a)工程終了後の懸濁液を吸引濾過して、第1アルカリ水溶液から水素吸蔵合金を分離した。吸引濾過を継続した状態で、水素吸蔵合金の上から第2アルカリ水溶液50質量部を注ぎ、水素吸蔵合金を洗浄した 。
Step b) As the second alkaline aqueous solution, an aqueous sodium hydroxide solution containing 0.4% by mass of sodium hydroxide was prepared. The suspension after step a) was suction-filtered to separate the hydrogen storage alloy from the first alkaline aqueous solution. While continuing the suction filtration, 50 parts by mass of the second alkaline aqueous solution was poured over the hydrogen storage alloy to wash the hydrogen storage alloy.
 N-2)工程
 b)工程の吸引濾過を継続した状態で、水素吸蔵合金の上から水300質量部を注ぎ、水素吸蔵合金を水洗した。
N-2) Step With the suction filtration of step b) being continued, 300 parts by mass of water was poured over the hydrogen storage alloy to wash the hydrogen storage alloy with water.
 前段落で得た濾過物全量に、5質量%の過酸化水素水を50質量部加えて20分間撹拌した。その後に吸引濾過を行い、水素吸蔵合金の上から水300質量部を注ぎ、水素吸蔵合金を水洗した。この濾過後の水素吸蔵合金を製造例1の負極活物質とした。 50 parts by mass of 5% by mass hydrogen peroxide solution was added to the total amount of the filtered material obtained in the preceding paragraph, and the mixture was stirred for 20 minutes. After that, suction filtration was performed, 300 parts by mass of water was poured over the hydrogen storage alloy, and the hydrogen storage alloy was washed with water. This filtered hydrogen storage alloy was used as the negative electrode active material of Production Example 1.
 (製造例2)
 N-1)工程及びN-2)工程を行わなかったこと以外は、概ね製造例1と同様の方法で、製造例2の負極活物質を製造した。
 なお、製造例2の負極活物質は、N-2)工程における過酸化水素での酸化が実施されていないものの、大気に接触したため、一定程度酸化されている。
(Production Example 2)
A negative electrode active material of Production Example 2 was produced in substantially the same manner as in Production Example 1 except that N-1) step and N-2) step were not performed.
Although the negative electrode active material of Production Example 2 was not oxidized with hydrogen peroxide in step N-2), it was oxidized to a certain extent because it was exposed to the atmosphere.
 (製造例3)
 粉砕条件を緩和したこと、及び、N-2)工程における過酸化水素での酸化を行わなかったこと以外は、概ね製造例1と同様の方法で、製造例3の負極活物質を製造した。
 製造例3の水素吸蔵合金粉末の平均粒子径(D50)は、15μmであった。
 また、製造例3の負極活物質は、N-2)工程における過酸化水素での酸化が実施されていないものの、N-1)工程におけるb)工程などで大気に接触したため、一定程度酸化されている。
(Production Example 3)
A negative electrode active material of Production Example 3 was produced in substantially the same manner as in Production Example 1 except that the pulverization conditions were relaxed and that the oxidation with hydrogen peroxide in the N-2) step was not performed.
The average particle diameter (D 50 ) of the hydrogen storage alloy powder of Production Example 3 was 15 μm.
Although the negative electrode active material of Production Example 3 was not oxidized with hydrogen peroxide in the step N-2), it was oxidized to a certain extent because it was exposed to the atmosphere in the step b) in the step N-1). ing.
 (製造例4)
 N-1)工程のa)工程において、懸濁液を90℃に加熱して3時間保持したこと以外は、概ね製造例1と同様の方法で、製造例4の負極活物質を製造した。
 製造例4の水素吸蔵合金粉末の水素吸蔵合金粉末の平均粒子径(D50)は、9μmであった。
(Production Example 4)
A negative electrode active material of Production Example 4 was produced in substantially the same manner as in Production Example 1 except that in step a) of step N-1), the suspension was heated to 90 ° C. and held for 3 hours.
The hydrogen storage alloy powder of Production Example 4 had an average particle size (D 50 ) of 9 μm.
 (比較製造例1)
 粉砕条件を緩和したこと、並びに、N-1)工程及びN-2)工程を行わなかったこと以外は、概ね製造例1と同様の方法で、比較製造例1の負極活物質を製造した。
 比較製造例1の水素吸蔵合金粉末の平均粒子径(D50)は、15μmであった。
(Comparative Production Example 1)
A negative electrode active material of Comparative Production Example 1 was produced in substantially the same manner as in Production Example 1 except that the pulverization conditions were relaxed and that N-1) step and N-2) step were not performed.
The average particle diameter (D 50 ) of the hydrogen storage alloy powder of Comparative Production Example 1 was 15 μm.
 (評価例1:負極活物質の物性)
 製造例1、製造例2、製造例3、製造例4及び比較製造例1の負極活物質につき、酸素濃度の測定、BET比表面積の測定、及び、飽和磁化の測定を行った。
 酸素濃度の測定は、酸素・窒素・水素分析装置(不活性ガス溶融法)を用いて行った。BET比表面積の測定は、一般的なBET比表面積測定装置を用いて行った。飽和磁化の測定は、振動試料型磁力計(Vibrating Sample Magnetometer)を用いて行った。
 以上の結果を表1に示す。
(Evaluation example 1: Physical properties of negative electrode active material)
With respect to the negative electrode active materials of Production Example 1, Production Example 2, Production Example 3, Production Example 4 and Comparative Production Example 1, measurement of oxygen concentration, measurement of BET specific surface area, and measurement of saturation magnetization were performed.
The oxygen concentration was measured using an oxygen / nitrogen / hydrogen analyzer (inert gas melting method). The BET specific surface area was measured using a general BET specific surface area measuring device. The measurement of the saturation magnetization was performed using a vibrating sample magnetometer.
The above results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例1)
 (正極活物質の製造)
 ニッケル、コバルト及び亜鉛のモル比が94.5:4.5:1.1になるように硫酸ニッケル、硫酸コバルト及び硫酸亜鉛を秤量し、これらを、アンモニウムイオンを含む水酸化ナトリウム水溶液に加えて、混合水溶液を調製した。撹拌下の混合水溶液に、水酸化ナトリウム水溶液を徐々に添加して、混合水溶液のpHを13~14とした。それにより、水酸化ニッケルを主体とし、コバルト及び亜鉛を固溶した前駆体粒子を製造した。得られた前駆体粒子(正極活物質本体)を水で洗浄した後、乾燥した。
(Example 1)
(Production of positive electrode active material)
Nickel sulfate, cobalt sulfate and zinc sulfate were weighed so that the molar ratio of nickel, cobalt and zinc was 94.5: 4.5: 1.1, and these were added to an aqueous sodium hydroxide solution containing ammonium ions. , A mixed aqueous solution was prepared. A sodium hydroxide aqueous solution was gradually added to the mixed aqueous solution with stirring to adjust the pH of the mixed aqueous solution to 13-14. Thereby, precursor particles containing nickel hydroxide as a main component and cobalt and zinc as a solid solution were produced. The obtained precursor particles (main body of the positive electrode active material) were washed with water and then dried.
 P-1)工程
 得られた前駆体粒子をアンモニア水溶液中に投入して懸濁液とした。懸濁液のpHを9~10に維持しながら、硫酸コバルト水溶液を懸濁液に添加した。それにより、前駆体粒子の表面に水酸化コバルトが析出することで、水酸化コバルトの層を備えた粒子を得た。
Step P-1) The obtained precursor particles were put into an aqueous ammonia solution to form a suspension. Aqueous cobalt sulfate solution was added to the suspension while maintaining the pH of the suspension at 9-10. As a result, cobalt hydroxide was deposited on the surface of the precursor particles, and thus particles having a layer of cobalt hydroxide were obtained.
 P-2)工程
 前段落で得られた水酸化コバルトの層を備えた粒子を、酸素を含む高温空気中に対流させつつ、水酸化ナトリウム水溶液及び水酸化リチウム水溶液を噴霧して、加熱処理を施した。これにより、前記粒子の表面の水酸化コバルトが、導電性の高いオキシ水酸化コバルトとなるとともに、オキシ水酸化コバルトの層中にナトリウム及びリチウムが取り込まれ、ナトリウム及びリチウムを含有したオキシ水酸化コバルト層が形成される。
 その後、オキシ水酸化コバルト層を備えた粒子を濾取し、水洗いしたのち、60℃で乾燥させた。このようにして、ナトリウム及びリチウムを含有するオキシ水酸化コバルト層で被覆された、実施例1の正極活物質を製造した。
P-2) Step The particles provided with the layer of cobalt hydroxide obtained in the preceding paragraph are sprayed with an aqueous solution of sodium hydroxide and an aqueous solution of lithium hydroxide while convection is carried out in high temperature air containing oxygen to perform heat treatment. gave. As a result, the cobalt hydroxide on the surface of the particles becomes highly conductive cobalt oxyhydroxide, and sodium and lithium are incorporated into the cobalt oxyhydroxide layer to form a cobalt oxyhydroxide containing sodium and lithium. A layer is formed.
Then, the particles having the cobalt oxyhydroxide layer were collected by filtration, washed with water, and then dried at 60 ° C. Thus, the positive electrode active material of Example 1 coated with the cobalt oxyhydroxide layer containing sodium and lithium was produced.
 (電池製造工程)
 以下のとおり、実施例1のニッケル金属水素化物電池を製造した。
(Battery manufacturing process)
The nickel metal hydride battery of Example 1 was manufactured as follows.
 実施例1の正極活物質を94.3質量部、導電助剤としてコバルト粉末を1質量部、結着剤としてアクリル系樹脂エマルションを固形分として3.5質量部、結着剤としてカルボキシメチルセルロースを0.7質量部、正極添加剤としてYを0.5質量部、及び、適量のイオン交換水を混合して、スラリーを製造した。正極用集電体として厚み20μmのニッケル箔を準備した。このニッケル箔の表面に、上記スラリーを膜状に塗布した。スラリーが塗布されたニッケル箔を乾燥して水を除去し、その後、ニッケル箔をプレスして、集電体上に正極活物質層が形成された正極を製造した。
 当該正極の集電体上に存在する正極活物質層の量は28mg/cmであり、正極活物質層の密度は、2.9g/cmであった。
94.3 parts by mass of the positive electrode active material of Example 1, 1 part by mass of cobalt powder as a conduction aid, 3.5 parts by mass of an acrylic resin emulsion as a solid component as a binder, and carboxymethylcellulose as a binder. 0.7 parts by mass, 0.5 parts by mass of Y 2 O 3 as a positive electrode additive, and an appropriate amount of ion-exchanged water were mixed to prepare a slurry. A nickel foil having a thickness of 20 μm was prepared as a current collector for the positive electrode. The above-mentioned slurry was applied in a film form on the surface of this nickel foil. The nickel foil coated with the slurry was dried to remove water, and then the nickel foil was pressed to manufacture a positive electrode having a positive electrode active material layer formed on a current collector.
The amount of the positive electrode active material layer present on the current collector of the positive electrode was 28 mg / cm 2 , and the density of the positive electrode active material layer was 2.9 g / cm 3 .
 製造例1の負極活物質を97.8質量部、結着剤としてアクリル系樹脂エマルションを固形分として1.5質量部、結着剤としてカルボキシメチルセルロースを0.7質量部、及び、適量のイオン交換水を混合して、スラリーを製造した。負極用集電体として厚み20μmのニッケル箔を準備した。このニッケル箔の表面に、上記スラリーを膜状に塗布した。スラリーが塗布されたニッケル箔を乾燥して水を除去し、その後、ニッケル箔をプレスして、集電体上に負極活物質層が形成された負極を製造した。 97.8 parts by mass of the negative electrode active material of Production Example 1, 1.5 parts by mass of an acrylic resin emulsion as a solid component as a binder, 0.7 parts by mass of carboxymethyl cellulose as a binder, and an appropriate amount of ions. Exchanged water was mixed to produce a slurry. A nickel foil with a thickness of 20 μm was prepared as a negative electrode current collector. The above-mentioned slurry was applied in a film form on the surface of this nickel foil. The nickel foil coated with the slurry was dried to remove water, and then the nickel foil was pressed to manufacture a negative electrode having a negative electrode active material layer formed on a current collector.
 電解液として、水酸化カリウムの濃度が5.4mol/Lであり、水酸化ナトリウムの濃度が0.8mol/Lであり、水酸化リチウムの濃度が0.5mol/Lであり、NaWOの濃度が0.16mol/Lである水溶液を準備した。これを実施例1の電解液とした。 As the electrolytic solution, the concentration of potassium hydroxide was 5.4 mol / L, the concentration of sodium hydroxide was 0.8 mol / L, the concentration of lithium hydroxide was 0.5 mol / L, and Na 2 WO 4 was used. An aqueous solution having a concentration of 0.16 mol / L was prepared. This was used as the electrolytic solution of Example 1.
 セパレータとして、スルホン化処理が施された厚さ104μmのポリオレフィン繊維製不織布を準備した。 As a separator, a sulfonation-treated nonwoven fabric made of polyolefin fiber having a thickness of 104 μm was prepared.
 正極と負極とでセパレータを挟持し、極板群とした。樹脂製の筐体に、極板群を配置して、さらに上記電解液を注入し、筐体を密閉することで、実施例1のニッケル金属水素化物電池を製造した。 ▽ A separator was sandwiched between the positive and negative electrodes to form an electrode plate group. A nickel metal hydride battery of Example 1 was manufactured by disposing the electrode plate group in a resin casing, further injecting the electrolytic solution, and sealing the casing.
 (実施例2)
 電解液として、水酸化カリウムの濃度が5.4mol/Lであり、水酸化ナトリウムの濃度が0.8mol/Lであり、水酸化リチウムの濃度が0.5mol/Lであり、NaWOの濃度が0.02mol/Lである水溶液を準備した。これを実施例2の電解液とした。
 実施例2の電解液を用いたこと以外は、実施例1と同様の方法で、実施例2のニッケル金属水素化物電池を製造した。
(Example 2)
As the electrolytic solution, the concentration of potassium hydroxide was 5.4 mol / L, the concentration of sodium hydroxide was 0.8 mol / L, the concentration of lithium hydroxide was 0.5 mol / L, and Na 2 WO 4 was used. An aqueous solution having a concentration of 0.02 mol / L was prepared. This was used as the electrolytic solution of Example 2.
A nickel metal hydride battery of Example 2 was manufactured in the same manner as in Example 1 except that the electrolytic solution of Example 2 was used.
 (実施例3)
 正極活物質本体の製造においてニッケル、コバルト及び亜鉛のモル比を若干変化させ、かつ、P-2)工程において、水酸化ナトリウム水溶液及び水酸化リチウム水溶液の噴霧を行わなかったこと以外は、概ね実施例1と同様の方法で、実施例3の正極活物質を製造した。
 実施例3の正極活物質を用いたこと及び実施例2の電解液を用いたこと以外は、実施例1と同様の方法で、実施例3のニッケル金属水素化物電池を製造した。
(Example 3)
Generally performed except that the molar ratio of nickel, cobalt and zinc was slightly changed in the production of the positive electrode active material main body, and that the sodium hydroxide aqueous solution and the lithium hydroxide aqueous solution were not sprayed in the step P-2). The positive electrode active material of Example 3 was manufactured in the same manner as in Example 1.
A nickel metal hydride battery of Example 3 was manufactured in the same manner as in Example 1 except that the positive electrode active material of Example 3 was used and the electrolytic solution of Example 2 was used.
 (実施例4)
 電解液として、水酸化カリウムの濃度が5.4mol/Lであり、水酸化ナトリウムの濃度が0.8mol/Lであり、水酸化リチウムの濃度が0.5mol/Lであり、NaWOの濃度が0.01mol/Lである水溶液を準備した。これを実施例4の電解液とした。
 製造例4の負極活物質を用いたこと及び実施例4の電解液を用いたこと以外は、実施例1と同様の方法で、実施例4のニッケル金属水素化物電池を製造した。
(Example 4)
As the electrolytic solution, the concentration of potassium hydroxide was 5.4 mol / L, the concentration of sodium hydroxide was 0.8 mol / L, the concentration of lithium hydroxide was 0.5 mol / L, and Na 2 WO 4 was used. An aqueous solution having a concentration of 0.01 mol / L was prepared. This was used as the electrolytic solution of Example 4.
A nickel metal hydride battery of Example 4 was produced in the same manner as in Example 1 except that the negative electrode active material of Production Example 4 and the electrolytic solution of Example 4 were used.
 (実施例5)
 実施例2の電解液を用いたこと以外は、実施例4と同様の方法で、実施例5のニッケル金属水素化物電池を製造した。
(Example 5)
A nickel metal hydride battery of Example 5 was manufactured in the same manner as in Example 4 except that the electrolytic solution of Example 2 was used.
 (実施例6)
 電解液の製造において、NaWOの濃度を0.03mol/Lとしたこと以外は、実施例4と同様の方法で実施例6の電解液を製造した。
 実施例6の電解液を用いたこと以外は、実施例4と同様の方法で、実施例6のニッケル金属水素化物電池を製造した。
(Example 6)
In the production of the electrolytic solution, the electrolytic solution of Example 6 was produced in the same manner as in Example 4 except that the concentration of Na 2 WO 4 was 0.03 mol / L.
A nickel metal hydride battery of Example 6 was manufactured in the same manner as in Example 4 except that the electrolytic solution of Example 6 was used.
 (実施例7)
 電解液の製造において、NaWOの濃度を0.04mol/Lとしたこと以外は、実施例4と同様の方法で実施例7の電解液を製造した。
 実施例7の電解液を用いたこと以外は、実施例4と同様の方法で、実施例7のニッケル金属水素化物電池を製造した。
(Example 7)
In the production of the electrolytic solution, the electrolytic solution of Example 7 was produced in the same manner as in Example 4 except that the concentration of Na 2 WO 4 was 0.04 mol / L.
A nickel metal hydride battery of Example 7 was manufactured in the same manner as in Example 4 except that the electrolytic solution of Example 7 was used.
 (実施例8)
 電解液の製造において、NaWOの濃度を0.05mol/Lとしたこと以外は、実施例4と同様の方法で実施例8の電解液を製造した。
 実施例8の電解液を用いたこと以外は、実施例4と同様の方法で、実施例8のニッケル金属水素化物電池を製造した。
(Example 8)
In the production of the electrolytic solution, the electrolytic solution of Example 8 was produced in the same manner as in Example 4, except that the concentration of Na 2 WO 4 was 0.05 mol / L.
A nickel metal hydride battery of Example 8 was produced in the same manner as in Example 4 except that the electrolytic solution of Example 8 was used.
 (実施例9)
 電解液の製造において、NaWOの濃度を0.06mol/Lとしたこと以外は、実施例4と同様の方法で実施例9の電解液を製造した。
 実施例9の電解液を用いたこと以外は、実施例4と同様の方法で、実施例9のニッケル金属水素化物電池を製造した。
(Example 9)
In the production of the electrolytic solution, the electrolytic solution of Example 9 was produced in the same manner as in Example 4 except that the concentration of Na 2 WO 4 was 0.06 mol / L.
A nickel metal hydride battery of Example 9 was manufactured in the same manner as in Example 4 except that the electrolytic solution of Example 9 was used.
 (実施例10)
 電解液として、水酸化カリウムの濃度が5.4mol/Lであり、水酸化ナトリウムの濃度が0.8mol/Lであり、水酸化リチウムの濃度が0.5mol/Lであり、WOの濃度が0.01mol/Lである水溶液を準備した。これを実施例10の電解液とした。
 実施例10の電解液を用いたこと以外は、実施例4と同様の方法で、実施例10のニッケル金属水素化物電池を製造した。
(Example 10)
As the electrolytic solution, the concentration of potassium hydroxide is 5.4 mol / L, the concentration of sodium hydroxide is 0.8 mol / L, the concentration of lithium hydroxide is 0.5 mol / L, and the concentration of WO 3 is Was prepared to be 0.01 mol / L. This was used as the electrolytic solution of Example 10.
A nickel metal hydride battery of Example 10 was manufactured in the same manner as in Example 4 except that the electrolytic solution of Example 10 was used.
 (実施例11)
 正極活物質本体の製造におけるP-2)工程において、水酸化リチウム水溶液の噴霧を行わなかったこと以外は、概ね実施例1と同様の方法で、実施例11の正極活物質を製造した。
 実施例11の正極活物質を用いたこと以外は、実施例4と同様の方法で、実施例11のニッケル金属水素化物電池を製造した。
(Example 11)
A positive electrode active material of Example 11 was manufactured in substantially the same manner as in Example 1 except that the lithium hydroxide aqueous solution was not sprayed in the step P-2) in the manufacture of the positive electrode active material main body.
A nickel metal hydride battery of Example 11 was manufactured in the same manner as in Example 4 except that the positive electrode active material of Example 11 was used.
 (比較例1)
 比較製造例1の負極活物質を用いたこと及び実施例2の電解液を用いたこと以外は、実施例1と同様の方法で、比較例1のニッケル金属水素化物電池を製造した。
(Comparative Example 1)
A nickel metal hydride battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the negative electrode active material of Comparative Production Example 1 and the electrolytic solution of Example 2 were used.
 (比較例2)
 電解液として、水酸化カリウムの濃度が5.4mol/Lであり、水酸化ナトリウムの濃度が0.8mol/Lであり、水酸化リチウムの濃度が0.5mol/Lである水溶液を準備した。これを比較例2の電解液とした。
 比較製造例1の負極活物質及び比較例2の電解液を用いたこと以外は、実施例1と同様の方法で、比較例2のニッケル金属水素化物電池を製造した。
(Comparative example 2)
As an electrolytic solution, an aqueous solution having a potassium hydroxide concentration of 5.4 mol / L, a sodium hydroxide concentration of 0.8 mol / L, and a lithium hydroxide concentration of 0.5 mol / L was prepared. This was used as the electrolytic solution of Comparative Example 2.
A nickel metal hydride battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the negative electrode active material of Comparative Production Example 1 and the electrolytic solution of Comparative Example 2 were used.
 (比較例3)
 比較例2の電解液を用いたこと以外は、実施例4と同様の方法で、比較例3のニッケル金属水素化物電池を製造した。
(Comparative example 3)
A nickel metal hydride battery of Comparative Example 3 was manufactured in the same manner as in Example 4 except that the electrolytic solution of Comparative Example 2 was used.
 (評価例2:正極活物質の物性)
 実施例1、実施例3及び実施例11の正極活物質につき、リチウム及びナトリウム含有量の分析、平均粒子径の測定、BET比表面積の測定、コバルトの価数の測定、及び、抵抗率の測定を行った。
(Evaluation example 2: Physical properties of positive electrode active material)
For the positive electrode active materials of Example 1, Example 3 and Example 11, analysis of lithium and sodium contents, measurement of average particle size, measurement of BET specific surface area, measurement of valence of cobalt, and measurement of resistivity. I went.
 リチウム及びナトリウム含有量の分析を、各正極活物質を溶解した溶液を用いた原子吸光法で行ったところ、実施例1の正極活物質におけるリチウム含有量は概ね0.1質量%程度であり、ナトリウム含有量は概ね0.3質量%程度であった。
 実施例3及び実施例11の正極活物質からはリチウムが検出されなかった。実施例3の正極活物質からは若干量のナトリウムが検出された。また、実施例11の正極活物質におけるナトリウム含有量は、実施例1の正極活物質と同程度であった。
When the analysis of the lithium and sodium contents was performed by the atomic absorption method using the solution in which each positive electrode active material was dissolved, the lithium content in the positive electrode active material of Example 1 was about 0.1 mass%, The sodium content was about 0.3% by mass.
No lithium was detected from the positive electrode active materials of Example 3 and Example 11. A small amount of sodium was detected in the positive electrode active material of Example 3. Moreover, the sodium content in the positive electrode active material of Example 11 was about the same as that of the positive electrode active material of Example 1.
 平均粒子径(D50)の測定は、一般的なレーザー回折式粒度分布測定装置を用いて行った。BET比表面積の測定は、一般的なBET比表面積測定装置を用いて行った。コバルトの価数の測定は、ヨードメトリー法で行った。抵抗率の測定は、粉体抵抗率測定システム(株式会社三菱アナリテック)を用いて、正極活物質の粉末2.0gに対して、25℃、相対湿度40~50%の条件下、20kNの荷重をかけた上で測定した。
 以上の結果を表2に示す。 
The average particle diameter (D 50 ) was measured using a general laser diffraction particle size distribution analyzer. The BET specific surface area was measured using a general BET specific surface area measuring device. The valence of cobalt was measured by the iodometry method. The resistivity was measured using a powder resistivity measuring system (Mitsubishi Analytech Co., Ltd.) at 20 kN under conditions of 25 ° C. and relative humidity of 40 to 50% with respect to 2.0 g of the powder of the positive electrode active material. It was measured after applying a load.
The above results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、リチウムの存在に因り、正極活物質のコバルトの価数が高くなり、かつ、正極活物質の抵抗率が低くなることがわかる。 It can be seen from Table 2 that the valence of cobalt in the positive electrode active material is high and the resistivity of the positive electrode active material is low due to the presence of lithium.
 (評価例3)
 実施例1~実施例3及び比較例1~比較例2のニッケル金属水素化物電池に対して、温度25℃の条件下、0.1Cレートで1.5Vまで充電を行った後に、0.1Cレートで0.8Vまで放電を行った。そして、以下の式を用いて、各ニッケル金属水素化物電池の充放電効率を算出した。
 充放電効率(%)=100×(放電容量)/(充電容量)
(Evaluation example 3)
The nickel metal hydride batteries of Examples 1 to 3 and Comparative Examples 1 to 2 were charged to 1.5 V at a 0.1 C rate at a temperature of 25 ° C., and then charged to 0.1 C. The discharge was performed to 0.8 V at a rate. Then, the charge / discharge efficiency of each nickel metal hydride battery was calculated using the following formula.
Charge / discharge efficiency (%) = 100 × (discharge capacity) / (charge capacity)
 また、SOC(State of Charge)60%に調整した実施例1~実施例3及び比較例1~比較例2のニッケル金属水素化物電池について、25℃の条件下、1Cレートで5秒間放電させた。放電前後の電圧変化量及び放電時の電流値から、オームの法則に基づき、放電抵抗を算出した。 Further, the nickel metal hydride batteries of Examples 1 to 3 and Comparative Examples 1 and 2 adjusted to SOC (State of Charge) 60% were discharged at a 1C rate for 5 seconds under a condition of 25 ° C. .. The discharge resistance was calculated based on Ohm's law from the amount of voltage change before and after discharge and the current value during discharge.
 以上の充放電効率及び放電抵抗の結果を、表3に示す。
 なお、実施例2のニッケル金属水素化物電池は、正極活物質本体を被覆するオキシ水酸化コバルトの層にリチウムをドープした実施例1の正極活物質を採用しており、 実施例3のニッケル金属水素化物電池は、正極活物質本体を被覆するオキシ水酸化コバルトの層にリチウムをドープしていない実施例3の正極活物質を採用している。
Table 3 shows the results of the above charge / discharge efficiency and discharge resistance.
The nickel metal hydride battery of Example 2 employs the positive electrode active material of Example 1 in which the layer of cobalt oxyhydroxide coating the positive electrode active material body is doped with lithium, and the nickel metal hydride battery of Example 3 is used. The hydride battery employs the positive electrode active material of Example 3 in which the layer of cobalt oxyhydroxide covering the body of the positive electrode active material is not doped with lithium.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、充放電効率の点でみても、放電抵抗の点でみても、実施例のニッケル金属水素化物電池が優れているといえる。実施例2と比較例1の結果から、充放電前における負極活物質の酸素濃度が増加すると、充放電効率及び放電抵抗が好適化することがわかる。また、比較例1及び比較例2の結果から、電解液にタングステン酸ナトリウムが存在すると、充放電効率が好適化することがわかる。
 本発明の負極活物質と本発明の電解液を共に備える本発明のニッケル金属水素化物電池が、電池特性に優れることが裏付けられたといえる。
From the results of Table 3, it can be said that the nickel metal hydride batteries of Examples are excellent in terms of charge / discharge efficiency and discharge resistance. From the results of Example 2 and Comparative Example 1, it can be seen that the charge / discharge efficiency and discharge resistance are optimized when the oxygen concentration of the negative electrode active material before charge / discharge is increased. Further, the results of Comparative Example 1 and Comparative Example 2 show that the presence of sodium tungstate in the electrolytic solution optimizes the charge / discharge efficiency.
It can be said that the nickel metal hydride battery of the present invention including both the negative electrode active material of the present invention and the electrolytic solution of the present invention has been proved to have excellent battery characteristics.
 (評価例4)
 実施例4~実施例9及び比較例3のニッケル金属水素化物電池に対して、温度65℃の条件下、1/3CレートでSOC 0%からSOC 100%まで充電を行った後に、1/3CレートでSOC 100%からSOC 0%まで放電を行った。そして、以下の式を用いて、各ニッケル金属水素化物電池の充放電効率を算出した。
 充放電効率(%)=100×(放電容量)/(充電容量)
(Evaluation example 4)
The nickel metal hydride batteries of Examples 4 to 9 and Comparative Example 3 were charged from SOC 0% to SOC 100% at a rate of 1 / 3C at a temperature of 65 ° C., and then 1 / 3C. The discharge was performed at a rate of 100% SOC to 0% SOC. Then, the charge / discharge efficiency of each nickel metal hydride battery was calculated using the following formula.
Charge / discharge efficiency (%) = 100 × (discharge capacity) / (charge capacity)
 また、SOC(State of Charge)60%に調整した実施例4~実施例9及び比較例3のニッケル金属水素化物電池について、25℃の条件下、1Cレートで5秒間放電させた。放電前後の電圧変化量及び放電時の電流値から、オームの法則に基づき、放電抵抗を算出した。  Further, the nickel metal hydride batteries of Examples 4 to 9 and Comparative Example 3 adjusted to SOC (State of Charge) 60% were discharged at a 1C rate for 5 seconds under a condition of 25 ° C. The discharge resistance was calculated based on Ohm's law from the amount of voltage change before and after discharge and the current value during discharge. ‥
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3の実施例1と実施例2、表4の実施例4~実施例9及び比較例3の結果から、タングステン酸ナトリウムの含有量が増加すると、充放電効率が好適化することがわかる。 From the results of Example 1 and Example 2 in Table 3, Examples 4 to 9 and Comparative Example 3 in Table 4, it can be seen that the charge / discharge efficiency is optimized when the content of sodium tungstate is increased.
 (評価例5)
 実施例4及び実施例10のニッケル金属水素化物電池に対して、温度60℃の条件下、1/3CレートでSOC 0%からSOC 100%まで充電を行った後に、1/3CレートでSOC 100%からSOC 0%まで放電を行った。そして、以下の式を用いて、各ニッケル金属水素化物電池の充放電効率を算出した。
 充放電効率(%)=100×(放電容量)/(充電容量)
(Evaluation example 5)
The nickel metal hydride batteries of Example 4 and Example 10 were charged at a temperature of 60 ° C. from SOC 0% to SOC 100% and then at a rate of 1 / 3C SOC 100. The discharge was performed from 0% to SOC 0%. Then, the charge / discharge efficiency of each nickel metal hydride battery was calculated using the following formula.
Charge / discharge efficiency (%) = 100 × (discharge capacity) / (charge capacity)
 また、SOC(State of Charge)60%に調整した実施例4及び実施例10のニッケル金属水素化物電池について、25℃の条件下、1Cレートで5秒間放電させた。放電前後の電圧変化量及び放電時の電流値から、オームの法則に基づき、放電抵抗を算出した。  Further, the nickel metal hydride batteries of Example 4 and Example 10 adjusted to SOC (State of Charge) 60% were discharged at a 1C rate for 5 seconds under a condition of 25 ° C. The discharge resistance was calculated based on Ohm's law from the amount of voltage change before and after discharge and the current value during discharge. ‥
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5から、タングステン酸の塩に代えて、タングステン酸を用いた場合にも、同程度の効果が得られることがわかる。 It can be seen from Table 5 that similar effects can be obtained when tungstic acid is used instead of the tungstic acid salt.
 (評価例6)
 SOC(State of Charge)60%に調整した実施例11のニッケル金属水素化物電池について、25℃の条件下、1Cレートで5秒間放電させた。放電前後の電圧変化量及び放電時の電流値から、オームの法則に基づき、放電抵抗を算出した。
 その結果、実施例11のニッケル金属水素化物電池の放電抵抗は、0.14Ωであった。
(Evaluation example 6)
The nickel metal hydride battery of Example 11 adjusted to SOC (State of Charge) 60% was discharged at a 1C rate for 5 seconds at 25 ° C. The discharge resistance was calculated based on Ohm's law from the amount of voltage change before and after discharge and the current value during discharge.
As a result, the discharge resistance of the nickel metal hydride battery of Example 11 was 0.14Ω.
 (応用例1)
 電極の厚み側から観察した、応用例1の双極型ニッケル金属水素化物電池の模式断面図を、図1に示す。
(Application example 1)
FIG. 1 shows a schematic cross-sectional view of the bipolar nickel metal hydride battery of Application Example 1 observed from the thickness side of the electrode.
 応用例1の双極型ニッケル金属水素化物電池1は、
 集電箔20の一面に正極活物質層21が形成された正極2と、
 集電箔30の一面に負極活物質層31が形成された負極3と、
 集電箔40の一面に正極活物質層41が形成され、他面に負極活物質層42が形成された双極型電極4と、
 親水化処理が施されたポリオレフィン製のセパレータ5と、を具備する。
The bipolar nickel metal hydride battery 1 of application example 1 is
A positive electrode 2 having a positive electrode active material layer 21 formed on one surface of a collector foil 20;
A negative electrode 3 having a negative electrode active material layer 31 formed on one surface of a collector foil 30,
A bipolar electrode 4 having a positive electrode active material layer 41 formed on one surface of the current collector foil 40 and a negative electrode active material layer 42 formed on the other surface;
And a separator 5 made of polyolefin that has been subjected to a hydrophilic treatment.
 正極2の集電箔20は、ニッケル製であって、厚み20μmの矩形の箔である。集電箔20の上面には、正極活物質、導電助剤、結着剤及び添加剤を含む正極活物質層21が形成されている。そして、集電箔20の周縁は、合成樹脂製の外枠7で固定されており、そして、外枠7の内側には、フッ素含有樹脂製のシール部6が配置されている。シール部6は、集電箔20の上面と下面に結着されている。 The collector foil 20 of the positive electrode 2 is made of nickel and is a rectangular foil having a thickness of 20 μm. A positive electrode active material layer 21 containing a positive electrode active material, a conductive auxiliary agent, a binder, and an additive is formed on the upper surface of the current collector foil 20. The periphery of the current collector foil 20 is fixed by an outer frame 7 made of synthetic resin, and a seal portion 6 made of fluorine-containing resin is arranged inside the outer frame 7. The seal portion 6 is bonded to the upper surface and the lower surface of the current collector foil 20.
 正極2の正極活物質層21の上面には、セパレータ5が配置されている。セパレータ5には、本発明の電解液が含浸されている。セパレータ5の面は、接する正極活物質層21の面よりも面積が大きい。 The separator 5 is arranged on the upper surface of the positive electrode active material layer 21 of the positive electrode 2. The separator 5 is impregnated with the electrolytic solution of the present invention. The area of the surface of the separator 5 is larger than the area of the surface of the positive electrode active material layer 21 in contact therewith.
 正極2の正極活物質層21の上面に配置されたセパレータ5の上面には、負極活物質層42が対面する方向で双極型電極4が配置されている。 On the upper surface of the separator 5 arranged on the upper surface of the positive electrode active material layer 21 of the positive electrode 2, the bipolar electrode 4 is arranged in the direction in which the negative electrode active material layer 42 faces.
 双極型電極4は、集電箔40の上面に正極活物質層41が形成され、下面に負極活物質層42が形成されている。集電箔40は正極2の集電箔20と同様のものであり、正極活物質層41も正極2の正極活物質層21と同様のものである。双極型電極4の負極活物質層42には、本発明の負極活物質及び結着剤が含有されている。 In the bipolar electrode 4, the positive electrode active material layer 41 is formed on the upper surface of the current collector foil 40 and the negative electrode active material layer 42 is formed on the lower surface. The current collector foil 40 is the same as the current collector foil 20 of the positive electrode 2, and the positive electrode active material layer 41 is also the same as the positive electrode active material layer 21 of the positive electrode 2. The negative electrode active material layer 42 of the bipolar electrode 4 contains the negative electrode active material and the binder of the present invention.
 集電箔40の周縁は、合成樹脂製の外枠7で固定されており、そして、外枠7の内側には、フッ素含有樹脂製のシール部6が配置されている。シール部6は集電箔40の上面と下面に結着されており、集電箔40の上面のシール部6はさらに上側の他の双極型電極4の集電箔40の下面にも結着され、また、集電箔40の下面のシール部6は正極2の集電箔20の上面にも結着されている。すなわち、シール部6により、正極活物質層21、セパレータ5、電解液、及び負極活物質層42は、密閉状態にある。 The periphery of the current collector foil 40 is fixed by an outer frame 7 made of synthetic resin, and a seal portion 6 made of fluorine-containing resin is arranged inside the outer frame 7. The seal portion 6 is bonded to the upper surface and the lower surface of the collector foil 40, and the seal portion 6 on the upper surface of the collector foil 40 is further bonded to the lower surface of the collector foil 40 of the other bipolar electrode 4 on the upper side. The seal portion 6 on the lower surface of the collector foil 40 is also bonded to the upper surface of the collector foil 20 of the positive electrode 2. That is, the positive electrode active material layer 21, the separator 5, the electrolytic solution, and the negative electrode active material layer 42 are sealed by the seal portion 6.
 正極2にセパレータ5を介して積層された双極型電極4の上面には、セパレータ5を介して双極型電極4が複数積層されている。
 最上部の双極型電極4の正極活物質層41の上面には、セパレータ5が配置され、そのセパレータ5の上面には、負極活物質層31が対面する方向で負極3が配置されている。
On the upper surface of the bipolar electrode 4 laminated on the positive electrode 2 via the separator 5, a plurality of bipolar electrodes 4 are laminated via the separator 5.
The separator 5 is arranged on the upper surface of the positive electrode active material layer 41 of the uppermost bipolar electrode 4, and the negative electrode 3 is arranged on the upper surface of the separator 5 in a direction facing the negative electrode active material layer 31.
 負極3は、集電箔30の下面に負極活物質層31が形成されている。集電箔30は正極2の集電箔20及び双極型電極4の集電箔40と同様のものであり、負極活物質層31も双極型電極4の負極活物質層42と同様のものである。そして、集電箔30の周縁は、合成樹脂製の外枠7で固定されており、そして、外枠7の内側には、フッ素含有樹脂製のシール部6が配置されている。シール部6は集電箔30の上面と下面に結着されており、集電箔30の下面のシール部6は双極型電極4の集電箔40の上面にも結着されている。 The negative electrode 3 has a negative electrode active material layer 31 formed on the lower surface of the current collector foil 30. The collector foil 30 is similar to the collector foil 20 of the positive electrode 2 and the collector foil 40 of the bipolar electrode 4, and the negative electrode active material layer 31 is also similar to the negative electrode active material layer 42 of the bipolar electrode 4. is there. The periphery of the current collector foil 30 is fixed by an outer frame 7 made of synthetic resin, and a seal portion 6 made of fluorine-containing resin is arranged inside the outer frame 7. The seal portion 6 is bonded to the upper surface and the lower surface of the collector foil 30, and the seal portion 6 on the lower surface of the collector foil 30 is also bonded to the upper surface of the collector foil 40 of the bipolar electrode 4.
 正極2、双極型電極4、負極3及びセパレータ5で構成される電池モジュールの厚み方向の上下には、冷却部8がそれぞれ配置されている。冷却部8はアルミニウム製の矩形板であって、空冷可能な貫通孔80が複数設けられている。 A cooling unit 8 is arranged above and below the battery module composed of the positive electrode 2, the bipolar electrode 4, the negative electrode 3 and the separator 5 in the thickness direction. The cooling unit 8 is a rectangular plate made of aluminum and has a plurality of through holes 80 capable of air cooling.
 冷却部8の外側には、外部と電気を通電するモジュール正極22及びモジュール負極32がそれぞれ配置されている。モジュール正極22及びモジュール負極32は、金属製の矩形板である。
 そして、モジュール正極22及びモジュール負極32の外側には、拘束具9がそれぞれ配置されている。拘束具9は合成樹脂製の矩形板である。2つの拘束具9は、図示しない複数のボルト及びナットで締結されており、電極の厚み方向に電池モジュールを加圧して拘束している。2つの拘束具9による加圧によって、セパレータ5は圧縮されている。
Outside the cooling unit 8, a module positive electrode 22 and a module negative electrode 32, which conduct electricity with the outside, are arranged respectively. The module positive electrode 22 and the module negative electrode 32 are rectangular plates made of metal.
The restraints 9 are arranged outside the module positive electrode 22 and the module negative electrode 32, respectively. The restraint 9 is a rectangular plate made of synthetic resin. The two restraints 9 are fastened with a plurality of bolts and nuts (not shown), and pressurize and restrain the battery module in the thickness direction of the electrodes. The separator 5 is compressed by the pressure applied by the two restraints 9.
 1 双極型ニッケル金属水素化物電池
 2 正極
 3 負極
 4 双極型電極
 5 セパレータ
 6 シール部
 7 外枠
 8 冷却
 9 拘束具
 20 集電箔(正極集電箔)
 21 正極活物質層
 22 モジュール正極
 30 集電箔(負極集電箔)
 31 負極活物質層
 32 モジュール負極
 40 集電箔(双極型電極集電箔)
 41 正極活物質層
 42 負極活物質層
 80 貫通孔
DESCRIPTION OF SYMBOLS 1 Bipolar nickel metal hydride battery 2 Positive electrode 3 Negative electrode 4 Bipolar electrode 5 Separator 6 Seal part 7 Outer frame 8 Cooling 9 Restraint tool 20 Current collecting foil (positive electrode current collecting foil)
21 positive electrode active material layer 22 module positive electrode 30 current collector foil (negative electrode current collector foil)
31 negative electrode active material layer 32 module negative electrode 40 collector foil (bipolar electrode collector foil)
41 Positive Electrode Active Material Layer 42 Negative Electrode Active Material Layer 80 Through Hole

Claims (4)

  1.  充放電前における酸素濃度が1000ppm以上の負極活物質と、
     タングステン酸又はその塩とアルカリ金属水酸化物とを含む水溶液からなる電解液と、を備えることを特徴とするニッケル金属水素化物電池。
    A negative electrode active material having an oxygen concentration of 1000 ppm or more before charge and discharge,
    A nickel metal hydride battery, comprising: an electrolyte containing an aqueous solution containing tungstic acid or a salt thereof and an alkali metal hydroxide.
  2.  前記負極活物質が、希土類元素、Mg及びNiを含有するA型の水素吸蔵合金を含有する、請求項1に記載のニッケル金属水素化物電池。 The nickel metal hydride battery according to claim 1, wherein the negative electrode active material contains an A 2 B 7 type hydrogen storage alloy containing a rare earth element, Mg and Ni.
  3.  前記電解液において、タングステン酸及びその塩の濃度が、0.001~0.5mol/Lの範囲内である請求項1又は2に記載のニッケル金属水素化物電池。 The nickel metal hydride battery according to claim 1 or 2, wherein the concentration of tungstic acid and its salt in the electrolytic solution is in the range of 0.001 to 0.5 mol / L.
  4.  請求項1~3のいずれか1項に記載のニッケル金属水素化物電池の製造方法であって、
     下記N-1)工程及びN-2)工程を有する、酸素濃度が1000ppm以上の負極活物質の製造工程を有する、製造方法。
     N-1)水素吸蔵合金をアルカリ水溶液で処理する工程
     N-2)前記N-1)工程後の水素吸蔵合金の表面を酸化する工程
    A method for manufacturing a nickel metal hydride battery according to any one of claims 1 to 3,
    A method of manufacturing, comprising the steps of N-1) and N-2) below, which comprises manufacturing a negative electrode active material having an oxygen concentration of 1000 ppm or more.
    N-1) a step of treating the hydrogen storage alloy with an alkaline aqueous solution N-2) a step of oxidizing the surface of the hydrogen storage alloy after the step N-1)
PCT/JP2019/030319 2018-10-30 2019-08-01 Nickel-metal hydride battery WO2020090175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018204537 2018-10-30
JP2018-204537 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020090175A1 true WO2020090175A1 (en) 2020-05-07

Family

ID=70464397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030319 WO2020090175A1 (en) 2018-10-30 2019-08-01 Nickel-metal hydride battery

Country Status (1)

Country Link
WO (1) WO2020090175A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148246A (en) * 1999-07-30 2001-05-29 Shin Etsu Chem Co Ltd Hydrogen occluded alloy powder for negative electrode of alkaline secondary battery and its manufacturing method
JP2001217000A (en) * 1999-02-26 2001-08-10 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery
JP2018104811A (en) * 2016-12-27 2018-07-05 株式会社豊田自動織機 Production method of hydrogen storage alloy powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217000A (en) * 1999-02-26 2001-08-10 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery
JP2001148246A (en) * 1999-07-30 2001-05-29 Shin Etsu Chem Co Ltd Hydrogen occluded alloy powder for negative electrode of alkaline secondary battery and its manufacturing method
JP2018104811A (en) * 2016-12-27 2018-07-05 株式会社豊田自動織機 Production method of hydrogen storage alloy powder

Similar Documents

Publication Publication Date Title
KR100278835B1 (en) Powder materials, electrode structures, methods for their preparation and secondary batteries
US20130213532A1 (en) Hydrogen storage alloy, electrode, nickel-metal hydride rechargeable battery and method for producing hydrogen storage alloy
JP4533216B2 (en) Powder material, electrode structure, manufacturing method thereof, and secondary battery
JP4678130B2 (en) Sealed nickel metal hydride storage battery and its manufacturing method
JP5217826B2 (en) Nickel metal hydride storage battery
JP6094902B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JPH10275631A (en) Powder material, electrode structure, manufacture of them, and secondary battery
JP2012227106A (en) Nickel-metal hydride battery
JP3318141B2 (en) Method for producing hydrogen storage alloy electrode
JP6885189B2 (en) How to activate a nickel metal hydride battery
JP2012188728A (en) Composite hydrogen-storage alloy and nickel-metal hydride storage battery
JP6911494B2 (en) How to activate a nickel metal hydride battery
EP2713426B1 (en) Nickel-metal hydride storage battery
JP6962000B2 (en) Method for manufacturing hydrogen storage alloy with increased Ni concentration on the surface
JP6984298B2 (en) Manufacturing method of nickel metal hydride battery
WO2020090175A1 (en) Nickel-metal hydride battery
JP7093286B2 (en) Nickel metal hydride battery
WO2020012891A1 (en) Nickel-metal hydride battery
JP6848453B2 (en) Electrolyte for nickel metal hydride battery and nickel metal hydride battery
JP7140054B2 (en) nickel metal hydride battery
WO2020012809A1 (en) Nickel metal hydride battery
JP2020009699A (en) Nickel metal hydride battery
JP2020061290A (en) Positive electrode for nickel metal hydride battery, nickel metal hydride battery, and manufacturing method thereof
JP2020009697A (en) Nickel metal hydride battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP