WO2020088682A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020088682A1
WO2020088682A1 PCT/CN2019/115167 CN2019115167W WO2020088682A1 WO 2020088682 A1 WO2020088682 A1 WO 2020088682A1 CN 2019115167 W CN2019115167 W CN 2019115167W WO 2020088682 A1 WO2020088682 A1 WO 2020088682A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
reporting
configuration
measurement
measurement object
Prior art date
Application number
PCT/CN2019/115167
Other languages
English (en)
French (fr)
Inventor
王雪松
韩静
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980005496.2A priority Critical patent/CN111316687B/zh
Priority to EP19879693.0A priority patent/EP3855792A4/en
Priority to CA3116520A priority patent/CA3116520A1/en
Priority to BR112021008119-4A priority patent/BR112021008119A2/pt
Publication of WO2020088682A1 publication Critical patent/WO2020088682A1/zh
Priority to US17/226,981 priority patent/US20210227419A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • This application relates to the field of communication technology, and in particular, to a communication method and device.
  • the terminal equipment needs to monitor the cell at all times.
  • the carrier unit may be divided into a full-capacity carrier unit and a non-full-capacity carrier unit according to different ways of monitoring the cell by the terminal device.
  • a carrier unit how to determine a full-capacity carrier unit and a non-full-capacity carrier unit is currently a research hotspot.
  • the present application provides a communication method and device for providing a method for determining a full-capability carrier unit or a non-full-force carrier unit.
  • the present application provides a communication method applicable to a terminal device.
  • the communication method may include: the terminal device determines a first measurement object corresponding to a carrier unit; the first measurement object and the first reporting configuration exist Association relationship, and the reporting type of the first reporting configuration is the first type, then the terminal device determines that the secondary carrier unit is a full-capacity carrier unit; or, the first measurement object is associated with the first reporting configuration Relationship, and the reporting type of the first reporting configuration is the second type, the terminal device determines that the secondary carrier unit is a non-full-capability carrier unit; wherein the first type is different from the second type.
  • the full-capability carrier unit or the non-full-capacity carrier unit may be determined according to the type of the associated reporting configuration corresponding to the first measurement object corresponding to the carrier unit, thereby solving the problem of determining the full-capacity frequency range FR2 in the existing 38.133 Vulnerabilities in carrier method. And in the embodiment of the present application, no additional indication signaling overhead is required.
  • the method further includes: the terminal device receives first configuration information sent by the network device, where the first configuration information is used for N slave carrier units that the terminal device needs to measure Each slave carrier unit is configured with a measurement object, N is a positive integer greater than or equal to 1; the terminal device receives second configuration information sent by the network device, the second configuration information is used for The terminal device configures M reporting configurations, where M is a positive integer greater than or equal to 1; the terminal device receives third configuration information sent by the network device, and the third configuration information is at least used to establish the third An association relationship between a measurement object and the first reporting configuration, the first measurement object is a measurement object among N measurement objects, and the first reporting configuration is a reporting configuration among the M reporting configurations, And in the association relationship, in a frequency band of a frequency range FR2, only one measurement object is associated with the reporting configuration whose reporting type is the first type.
  • the network device may associate the first measurement object corresponding to the first slave carrier unit with the first type of reporting configuration And, in the FR2 frequency band, only the first measurement object is set to be associated with the first type of reporting configuration.
  • the terminal device may implicitly determine that the first slave carrier unit is a full capability carrier unit. For the setting of the full-capacity carrier unit, the network equipment and the terminal equipment are clear, and the network equipment can better schedule and manage the terminal equipment.
  • the present application also provides a communication method, which can be applied to a terminal device, including: the terminal device determines a first measurement object corresponding to a slave carrier unit; the first measurement object does not have an association relationship with the first reporting configuration , The terminal device determines that the secondary carrier unit is a non-full-capability carrier unit.
  • the method further includes: the terminal device receives first configuration information sent by the network device, where the first configuration information is used for N slave carrier units that the terminal device needs to measure Each slave carrier unit is configured with a measurement object, N is a positive integer greater than or equal to 1; the terminal device receives second configuration information sent by the network device, the second configuration information is used for The terminal device configures M reporting configurations, where M is a positive integer greater than or equal to 1; the terminal device receives third configuration information sent by the network device, and the third configuration information does not establish the first The association relationship between the measurement object and any one of the M report configurations, and the first measurement object is one of the N measurement objects.
  • the present application also provides a communication method, which can be applied to a terminal device, including: the terminal device determines N measurement objects corresponding to N slave carrier units to be measured, and the N slave carrier units and the N measurement objects are in one-to-one correspondence, where N is a positive integer greater than 1; the terminal device determines that there is an association relationship with the reporting configuration in a frequency band of FR2 among the N measurement objects, and the The reporting type of the report configuration is at least two measurement objects of the first type; the terminal device determines the first measurement object among the at least two measurement objects; the terminal device compares the first measurement object From the carrier unit, as a full-capacity carrier unit.
  • the network device may associate the first measurement object corresponding to the first slave carrier unit with the first type of reporting configuration in the FR2 band configuration And, in the FR2 frequency band, only the first measurement object is set to be associated with the first type of reporting configuration.
  • the terminal device may implicitly determine that the first slave carrier unit is a full capability carrier unit. For the setting of the full-capacity carrier unit, the network equipment and the terminal equipment are clear, and the network equipment can better schedule and manage the terminal equipment.
  • the terminal device can select a carrier unit as the full-capacity carrier unit within the above range, and the terminal device side can freely select the full-capacity carrier unit
  • the carrier unit is better compatible with existing protocols.
  • the method further includes: receiving, by the terminal device, first configuration information sent by the network device, where the first configuration information is used for the N secondary carrier units that the terminal device needs to measure Each slave carrier unit is configured with a measurement object, and N is a positive integer greater than 1; the terminal device receives second configuration information sent by the network device, and the second configuration information is used for the terminal device Configure M reporting configurations, where M is a positive integer greater than or equal to 1; the terminal device receives third configuration information sent by the network device, and the third configuration information is used to establish a frequency band in a frequency range FR2 An association relationship between at least two measurement objects in the report type and the first type of report configuration, and the at least two measurement objects are included in the N measurement objects.
  • the present application also provides a communication method, which can be applied to a network device, including: the network device sends first configuration information to a terminal device, where the first configuration information is used for N pieces of the terminal device that need to be measured Each slave carrier unit in the slave carrier unit is configured with a measurement object, and the N is a positive integer greater than or equal to 1; the network device sends second configuration information to the terminal device, and the second configuration information is used To configure M reporting configurations for the terminal device, where M is a positive integer greater than or equal to 1; the network device sends third configuration information to the terminal device, and the third configuration information is used to establish the first An association relationship between a measurement object and a first reporting configuration, the first measurement object is any one of N measurement objects, and the first reporting configuration is any one of the M reporting configurations, and In the association relationship, in a frequency band of a frequency range FR2, only one measurement object is associated with the report configuration whose report type is the first type, or there are at least two measurement objects Object and the
  • the present application provides a communication device for a terminal device or a chip of a terminal device, including: a unit or means for performing the steps of the first aspect, the second aspect, or the third aspect above.
  • the present application provides a communication device for a network device or a chip of a network device, including: a unit or means for performing the steps of the fourth aspect.
  • the present application provides a communication device for a terminal device or a chip of a terminal device, including at least one processing element and at least one storage element, wherein the at least one storage element is used to store programs and data, the at least One processing element is used to execute the method provided in the first aspect, the second aspect, or the third aspect of the present application.
  • the present application provides a communication device for a network device or a chip of a network device, including at least one processing element and at least one storage element, wherein the at least one storage element is used to store programs and data, the at least One processing element is used to execute the method provided in the fourth aspect of the present application.
  • the present application provides a communication device for a terminal device including at least one processing element (or chip) for performing the method of the above first aspect, second aspect, or third aspect.
  • the present application provides a communication device for a network device, including at least one processing element (or chip) for performing the method of the fourth aspect above.
  • the present application provides a computer program product, the computer program product includes computer instructions, and when the computer instructions are executed by a computer, the computer is caused to perform the method of any of the above aspects.
  • the present application provides a computer-readable storage medium that stores computer instructions, and when the computer instructions are executed by a computer, causes the computer to perform the method of any of the above aspects.
  • FIG. 1 is a schematic diagram of the measurement object and the reporting configuration associated with the embodiment of the present application
  • FIG. 2 is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of a bit mapping table provided by an embodiment of this application.
  • 5a is a flowchart of a communication method provided by an embodiment of this application.
  • 5b is a flowchart of a communication method provided by an embodiment of this application.
  • 5c is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of the association between the measurement object and the reporting configuration provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the association between the measurement object and the reporting configuration provided by the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • Network equipment is an entity on the network side for transmitting or receiving signals, such as a new generation base station (generation Node B, gNodeB).
  • the network device may be a device for communicating with mobile devices.
  • the network device may be an AP in a wireless local area network (WLAN), a global system for mobile (GSM), or a base station (base transceiver) in code division multiple access (CDMA) station (BTS), it can also be a base station (NodeB, NB) in wideband code division multiple access (WCDMA), or an evolutionary base station (evolutional) in long term evolution (LTE) Node B, eNB or eNodeB), or relay station or access point, or in-vehicle equipment, wearable devices, and future 5G network network equipment or future evolution of public land mobile network (PLMN) network Equipment, or gNodeB in the NR system, etc.
  • WLAN wireless local area network
  • GSM global system for mobile
  • base transceiver in code division multiple access (
  • the network device provides services for the cell
  • the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network device (For example, a base station)
  • the corresponding cell, the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (small cell), where the small cell may include: a metro cell, a micro cell, and a pico cell (Pico), Femtocell, etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the network device may be another device that provides a wireless communication function for the terminal device.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • an apparatus that provides a wireless communication function for a terminal device is called a network device.
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure splits the protocol layer of the eNB in the long term evolution (LTE) system, part of the protocol layer functions are centralized in the CU, and the remaining part or all of the protocol layer functions are distributed in the DU. Centralized control of DU.
  • LTE long term evolution
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water; it can also be deployed on aircraft, balloons and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • Communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be through licensed spectrum (licensed spectrum), unlicensed spectrum (unlicensed spectrum), or both through licensed spectrum and unlicensed spectrum. Communication.
  • the embodiments of the present application do not limit the spectrum resources used between the network device and the terminal device.
  • the terminal device may be a wireless terminal device capable of receiving scheduling and instruction information of the network device.
  • the wireless terminal device may be a device that provides voice and / or data connectivity to the user, or a handheld device with a wireless connection function, or a connection To other processing equipment for wireless modems.
  • the wireless terminal device can communicate with one or more core networks or the Internet via a wireless access network (eg, radio access network, RAN), and the wireless terminal device can be a mobile terminal device, such as a mobile phone (or "cellular" phone) , Mobile (phone), computer and data card, for example, can be portable, pocket-sized, handheld, computer built-in or vehicle-mounted mobile devices, they exchange language and / or data with the wireless access network.
  • PCS personal communications
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Tablet Tablet
  • the wireless terminal equipment can also be called a system, a subscriber unit (subscriber unit), a subscriber station (subscriber station), a mobile station (mobile station), a mobile station (mobile station (MS), a remote station (remote) station, access point ( access (AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), user station (subscriber station, SS), user terminal device (customer presets, equipment, CPE), terminal, user equipment (UE), mobile terminal (MT), etc.
  • the wireless terminal device may also be a wearable device and a next-generation communication system, for example, a terminal device in a 5G network or a terminal device in a public land mobile network (PLMN) network that evolves in the future, and an Terminal equipment, etc.
  • PLMN public land mobile network
  • RAT wireless access technology
  • code division multiple access code division multiple access
  • time division multiple access time division multiple access
  • FDMA frequency division multiple Frequency
  • OFDMA orthogonal frequency-division multiple access
  • single carrier frequency division multiple access single carrier FDMA, SC-FDMA
  • the RAT used is not limited.
  • system may be interchanged with "network”.
  • the network can be divided into 2G (generation) network, 3G network, 4G network, or future evolution network, such as 5G network, according to factors such as capacity, rate, and delay of different networks.
  • a typical 2G network includes a global mobile communication system (global system for communication / general packet radio service, GSM) network or a general packet radio service (general packet radio service, GPRS) network
  • a typical 3G network includes a universal mobile communication system (universal Mobile telecommunications systems (UMTS) networks.
  • Typical 4G networks include long-term evolution (LTE) networks.
  • Typical 5G networks include new radio access technology (NR) networks.
  • UMTS network can sometimes be called universal terrestrial radio access network (universal terrestrial radio access network, UTRAN), LTE network can also sometimes be called evolved universal terrestrial radio access network (evolved universal terrestrial radio access network, E- UTRAN).
  • a full-capacity carrier unit means that the terminal equipment needs to monitor at least 6 cells and 24 synchronization signal blocks (SSBs) in the CC.
  • the 24 SSBs may have different At least one of a physical cell identifier (PCI) or a time domain number (time index), the PCI is used to identify different physical cells, and the time domain number is used to identify different SSBs.
  • PCI physical cell identifier
  • time index time index
  • Non-full-capacity CC means that the terminal device only needs to monitor at least two SSBs with different SSB time domain numbers for the serving cell in the CC.
  • Measurement objects including various configurations related to the reference signal used for measurement, such as the time-frequency position of the reference signal and the indication of the subcarrier spacing.
  • Reporting configuration including the specific parameters of the terminal device performing the measurement
  • the RC may include a reporting criterion, a reference signal type used for measurement, a reporting format, a type of measurement amount, and a reported cell The number of level measurements and the number of beam level measurements reported, etc.
  • the reporting criterion may specifically be an event trigger or a periodic trigger.
  • the type of reference signal used for the measurement may be SSB or channel state information reference signal (channel-state information reference (CSI-RS).
  • the reporting format may be specific only Report cell-level measurements, or only beam-level measurements, or report both cell-level measurements and beam-level measurements.
  • Measurement ID (measure ID, MI)
  • the measurement object is associated with the reporting configuration through the measurement identification
  • the measurement object may notify the terminal device of the configuration of the measurement reference signal
  • the reporting configuration informs the terminal device of what to do based on the reference signal measuring.
  • the terminal device can obtain a complete description of a measurement.
  • one measurement object MO can be associated with one or more reporting configuration RCs
  • one reporting configuration RC can also be associated with one or more measuring objects MO.
  • the measurement object MO1 may be associated with the reporting configuration RC1 through the measurement identifier MI1
  • the reporting configuration RC2 may be associated with the measurement object MO2 through the measurement identifier MI3.
  • At least one of a or b may specifically include a, b, a and b, and the a and b may be single or multiple.
  • words such as “exemplary” or “for example” are used as examples, illustrations or explanations. Any embodiments or design solutions described as “exemplary” or “for example” in the embodiments of the present application should not be interpreted as being more preferred or more advantageous than other embodiments or design solutions. Rather, the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner.
  • the communication system 200 may include a network device 201 and a terminal device 202.
  • the terminal device 202 due to the movement of the terminal device 202, the terminal device 202 needs to support mobility processes such as cell selection, cell reselection, and cell handover, so the terminal device 202 needs Monitor the community.
  • NR new radio access technology
  • the downlink frequency band in which the terminal device 202 communicates with the network device 201 may include multiple carrier units (CC).
  • 3GPP defines a frequency range below 6 GHz 1 (frequency range 1 (FR1) for the spectrum) And frequency range 2 (FR2) above 24 GHz, the frequency range of the FR1 is 450 MHz-6000 MHz, and the frequency range of the FR2 is 24250 MHz-52600 MHz.
  • the CC may be located in the frequency range of the aforementioned FR1, or may be located in the frequency range of the aforementioned FR2.
  • SSB synchronization signal blocks
  • the 3GPP stipulates that the terminal device 202 should monitor at least 8 cells and 14 different physical cell identity (PCI) and / or SSB for the CC SSB of the domain number (time index).
  • PCI physical cell identity
  • SSB domain number
  • 3GPP stipulates that the terminal device 202 only needs to monitor at least 6 cells and 24 with different PCI and / or SSB time-frequency on each CC in each FR2 band Numbered SSB.
  • full-capability CC and non-full-capability CC are defined for CCs located in the frequency range of FR2.
  • full-capacity CC please refer to the description in the above concept description 4) full-capacity CC, and for the concept of the non-full-capacity CC, see the description in the above concept description 5) non-capable CC.
  • the terminal device 202 may adopt the following manner to determine a full-capability CC and a non-full-capability CC among multiple CCs included in the downlink frequency band.
  • the first method If there is a primary carrier component (PCC) or a primary component carrier (PSCC) in the CC in the downlink frequency band, then the PCC or PSCC is determined to be a fully capable CC in the downlink frequency band Of the remaining CCs are determined as non-full-capacity CCs.
  • PCC primary carrier component
  • PSCC primary component carrier
  • the second way If only one secondary carrier unit (SCC) is included in the downlink frequency band, the SCC is determined to be a full-capability CC.
  • SCC secondary carrier unit
  • the terminal device 202 decides the full-capacity CC and the non-full-capacity CC by itself.
  • the terminal device Since the terminal device only measures the serving cell on the non-full-capability CC, and does not perform neighbor cell measurement, it cannot support mobility processes such as handover on the non-full-capability CC. If the terminal device decides the full-capacity CC and the non-full-capacity CC by itself, the network device 201 cannot know which CC is set as the full-capacity CC and which CC is set as the non-full-capacity CC by the specific terminal device 202. Further, the network The device 201 also cannot know on which CC the terminal device 202 specifically performed the neighbor cell measurement, and therefore cannot instruct the terminal device to perform cell switching and other operations, which affects network scheduling.
  • the terminal device 202 uses the first activated SCC as a full-capacity CC. That is, when a downlink frequency band of one FR2 includes multiple SCCs, the terminal device 202 regards the first activated SCC as a full-capability SCC.
  • a network device can activate multiple SCCs at once. If the network device activates multiple SCCs at once, that is, multiple SCCs are activated at the same time, how to determine a full-capacity CC among multiple SCCs has no relevant solution Program.
  • the SCC can be activated in the following manner: the network device 201 sends a bit map to the terminal device 202.
  • the bit map the bit with a value of 1 corresponds to the activated SCC with a value of 0
  • the bit mapping table can be seen in FIG. 3. It can be seen from FIG. 3 that the bit mapping table may include 7 bits and 1 reserve (R) bit.
  • the 7 bits are C1 to C7 in sequence, and the values of C1 to C7 may be 1 or 0, 1 It may represent that the corresponding SCC is activated, and 0 may represent that the corresponding SCC is not activated.
  • the terminal device 202 needs to record the activation time of the SCC in order to determine the activation sequence of the SCC, which increases the cost of the terminal device 202.
  • the network device 201 configures the MO only for the full-capable CC, and does not configure the MO for the non-full-capable CC.
  • the terminal device 202 may determine whether the SCC is a full-capability CC or a non-full-capability CC according to whether the SCC is configured with an MO.
  • the network should ensure that when configuring the measurement: as long as the UE has a measurement configuration, the measurement configuration should configure a measurement object for the SpCell and each SCell to be measured. It can be seen that in 3GPP, MO must be configured for each SCC. The above scheme of configuring MO only for full-capable CCs and not configuring MO for non-full-capable CCs conflicts with the above-mentioned 3GPP regulations.
  • the terminal device in the process may be the terminal device 202 in FIG. 2, and the network device may be the network device 201 in FIG. 2. It can be understood that the function of the terminal device can also be realized by the chip applied to the terminal device, and the function of the network device can also be realized by the chip applied to the network device.
  • the process may include:
  • the network device sends the first configuration information to the terminal device.
  • the terminal device may be set that the terminal device needs to measure N SCCs in the downlink frequency band of FR2, where N is a positive integer greater than or equal to 1, and the first configuration information is used for the N SCCs
  • N is a positive integer greater than or equal to 1
  • the first configuration information is used for the N SCCs
  • Each SCC is configured with a MO, and through the above first configuration information, a total of N NOs need to be configured for the terminal device.
  • the terminal device receives the first configuration information, and configures an MO for each SCC to be measured according to the first configuration information.
  • the network device sends second configuration information to the terminal device, where the second configuration information is used to configure M RCs for the terminal device.
  • the second configuration information may also be used to configure the reporting type of M RCs.
  • the network device may configure the reporting type of any RC of the M RCs to be SSB, CSI-RS, or the like.
  • the terminal device receives the second configuration information, and configures M RCs for the terminal device according to the second configuration information.
  • the network device sends third configuration information to the terminal device, where the third configuration information is used to establish an association relationship between the MO and the RC.
  • the terminal device receives the third configuration information, and establishes an association relationship between the MO and the RC according to the third configuration information.
  • the association relationship between MO and RC may be established through the measurement identification list. As shown in FIG. 1, the association relationship between MO1 and RC1 may be established through MI1, and the association relationship between MO3 and RC4 may be established through MI4. Wait.
  • any one of the N MOs for convenience, it may be called a first MO.
  • the first MO may have an association relationship with one or more RCs of the M RCs, and the first MO may also There is no association with RC.
  • MO4 does not have any association with RC.
  • the M RCs for convenience, it may be referred to as a first RC.
  • the first RC may have an association relationship with one or more of the N MOs, and the first RC may also have no association relationship with the MO.
  • RC3 is not associated with any MO.
  • only one MO may be configured to be associated with the RC whose reporting type is the first type, or at least two MOs may be configured to be associated with the reporting type as The first type of RC association.
  • this application provides a flow of a communication method.
  • the flow can be applied to a scenario where only one MO is associated with an RC whose reporting type is the first type.
  • the terminal device in the flow may specifically be the above-mentioned FIG. 2
  • the terminal device 202 in the process may include:
  • the terminal device determines the first MO corresponding to the SCC.
  • the first MO is associated with the first reporting configuration, and the reporting type of the first reporting configuration is the first type, the terminal device determines that the SCC is a full-capability CC.
  • the present application also provides a flow of a communication method, which can also be applied to a scenario where only one MO is associated with an RC whose reporting type is the first type.
  • the terminal device in the flow may be specifically the above
  • the process may include:
  • the terminal device determines the first MO corresponding to the SCC.
  • the first MO is associated with the first reporting configuration, and the reporting type of the first reporting configuration is the second type, then the terminal device determines that the SCC is a non-full-capacity CC, the The first type is different from the second type.
  • the first type may be SSB
  • the second type may be the channel state information reference signal CSI-RS.
  • the present application also provides a flow of a communication method, which can also be applied to a scenario in which only one MO is associated with an RC whose reporting type is the first type.
  • the terminal device in the flow may be specifically the above
  • the process may include:
  • the terminal device determines the first MO corresponding to the SCC.
  • the network device is configured to configure 3 SCCs to be measured for the terminal device in the FR2 frequency band, namely SCC1, SCC2 and SCC3, and there is no PCC or PSCC in the FR2 frequency band, and the network device expects If the terminal device regards SCC1 as a full-capacity CC, then the network device associates MO1 corresponding to SCC1 with the reporting configuration RC1 through the measurement identifier MI1 in the measurement configuration, and the reporting type of the reporting configuration 1 is the first type.
  • the MO2 corresponding to SCC2 is associated with the reporting configuration RC2 through the measurement identifier MI2, and the reporting type of the reporting configuration RC2 is the second type, and the MO3 corresponding to SS3 is not associated with any reporting configuration.
  • the terminal device may traverse the entire measurement identification list (MI) list, it can be found that the MO3 corresponding to SCC3 is not associated with any RC, and it can be determined that SCC3 is not full Capacity CC, MO2 corresponding to SCC2 is associated with RC2, but the reporting type of RC2 is the second type, therefore, it can be determined that SCC2 is a non-full-capacity CC, only MO1 corresponding to SCC1 is associated with RC1, and the RC1 ’s
  • the report type is the first type, therefore, it can be determined that SCC1 is a full-capability CC.
  • this application provides a flow of a communication method, which can be applied to a scenario in which at least two MOs are associated with an RC whose reporting type is the first type.
  • the terminal device of the flow may be specifically the above-mentioned FIG. 2 Terminal device 202, the process may include:
  • the terminal device determines N MOs corresponding to the N SCCs to be measured, where the N MOs correspond to the N SCCs in one-to-one relationship, and the N is a positive integer greater than 1.
  • the terminal device determines that there is an association relationship with the RC among the N MOs, and the reporting type of the RC is at least two MOs of the first type.
  • the terminal device determines the first MO among the at least two MOs.
  • the terminal device may select one MO among the at least two MOs as the first MO based on certain rules, or the terminal device may randomly select one MO among the at least two MOs as the first MO.
  • the terminal device uses the SCC corresponding to the first MO as a full-capacity CC.
  • the terminal device may select an SCC as the full-capacity CC within the above range by itself.
  • FIG. 4 can use the process shown in FIG. 4 to establish MO
  • the terminal device may use the process shown in FIG. 5a, 5b, 5c, or 7 to determine the full-capability CC and the non-full-capability CC.
  • the network device is configured to configure 3 SCCs to be measured for the terminal device in the FR2 frequency band, namely SCC1, SCC2, and SCC3, and there is no PCC or PSCC in the FR2 frequency band, and the network device expects If the terminal device uses SCC1 or SCC2 as the full-capability CC, the network device associates MO1 corresponding to SCC1 with the reporting configuration RC1 through the measurement identifier MI1 in the measurement configuration, and the reporting type of the reporting configuration 1 is the first type.
  • the MO2 corresponding to SCC2 is associated with the reporting configuration RC2 through the measurement identifier MI2, and the reporting type of the reporting configuration 2 is the first type.
  • the MO3 corresponding to SS3 is not associated with any reporting configuration, or the MO3 corresponding to SS3 is associated with RC3 through MI3, and the reporting type of the RC3 is the second type.
  • the MO3 corresponding to SCC3 is not configured with any RC as an example for description.
  • the terminal device receives the measurement configuration, it can traverse the entire measurement identification column. It can be found that the MO3 corresponding to SCC3 is not associated with any RC, and it can be determined that SCC3 is a non-full-capacity CC, and the MO1 corresponding to SCC1 is related to SCC2.
  • the terminal device may select one SCC among SCC1 and SCC2 as the full-capacity CC.
  • the terminal device may use SCC1 as a full-capacity CC, or SCC2 as a full-capacity CC, which is not limited in this application.
  • an indication method for indicating a full-capability CC by associating a measurement object with a reporting configuration is proposed. It makes up for the existing agreement that when there is no PCC or PSCC in a frequency band and there are at least two SCCs, it is impossible to determine which SCC is a full-capability CC. At the same time, it is compatible with existing protocols, with minor changes to existing protocols.
  • the first type may be but not limited to SSB
  • the second type may be but not limited to CSI-RS.
  • FIG. 4, FIG. 5a, FIG. 5b, FIG. 5c, or FIG. 7 may be based on the following principles, specifically:
  • the measurement process has the following provisions:
  • the UE shall perform RSRP and RSRQ measurements on each serving cell configured with the measurement object according to the following procedure.
  • the UE should also perform SINR measurement for each serving cell configured with the measurement object according to the following blue procedure.
  • the UE For each measurement identifier in the measurement configuration, the UE measures each cell (including neighboring cells and serving cells) on the frequency point corresponding to the measurement identifier according to the following procedure.
  • the measurement of the serving cell by the terminal device does not necessarily require the association between MO and RC, and the measurement of the neighboring cell must require the association between MO and RC. Because for the full-capacity CC, the measurement of the serving cell and the neighboring cell is required, and for the non-full-capacity CC, only the measurement of the serving cell is required. Therefore, it can be determined that the SCC is a full-capability CC and a non-full-capability CC based on the association relationship between the MO and the reported configuration. That is to say, the MO corresponding to an SCC is associated with the reported configuration, and the SCC can be determined to be a fully capable CC.
  • the MO corresponding to an SCC is not associated with the reported configuration, and the SCC can be determined to be a non-full capable CC.
  • the terminal device may have different types of cell measurement, for example, SSB type and channel state information reference signal CSI-RS type.
  • the focus in the embodiments of the present application is on the improvement of the SSB reporting. Therefore, in the embodiments of the present application, for example, when there is an association relationship between the MO and the RC, and when the reporting type of the RC is the SSB type, it is determined that The SCC corresponding to the MO is a full-capacity CC.
  • an embodiment of the present application provides a communication device 900 that can be used to implement the terminal device in the process shown in FIG. 4, FIG. 5a, FIG. 5b, FIG. 5c, or FIG. Function.
  • the communication device 900 can be applied to a terminal device or a chip in the terminal device.
  • the communication device 900 may include a processing module 901 and a storage module 904, and may further include a receiving module 902 and a sending module 903.
  • the storage module 904 can be used to store program instructions; the processing module 901 can be used to read the instructions stored in the storage module 904 to perform the following process: determine the first measurement object corresponding to the slave carrier unit, the The first measurement object is associated with the first report configuration, and the report type of the first report configuration is the first type, it is determined that the slave carrier unit is a full-capacity carrier unit; or, the first measurement object is There is an association relationship in the first reporting configuration, and the reporting type of the first reporting configuration is the second type, and it is determined that the slave carrier unit is a non-full capability carrier unit; wherein, the first type is different from the second type .
  • the storage module 904 can be used to store program instructions; the processing module 901 can be used to read instructions stored in the storage module 904 to perform the following process: determine the first measurement object corresponding to the carrier unit, the first If there is no association relationship between the measurement object and the first reporting configuration, it is determined that the secondary carrier unit is a non-full-capability carrier unit.
  • the storage module 904 can be used to store program instructions; the processing module 901 can be used to read the instructions stored in the storage module 904 to perform the following process: determine N corresponding to N slave carrier units that need to be measured Measurement objects, the N slave carrier units correspond to the N measurement objects in one-to-one correspondence, where N is a positive integer greater than 1, and among the N measurement objects, the frequency band is determined within a frequency range of FR2 There is an association relationship in the reporting configuration, and the reporting type of the reporting configuration is at least two measurement objects of the first type. Among the at least two measurement objects, a first measurement object is determined, and the first measurement object corresponds to The secondary carrier unit, as a full-capacity carrier unit.
  • the receiving module 902 may be used to receive the first configuration information, the second configuration information, and the third configuration information sent by the network device.
  • first configuration information, the second configuration information, and the third configuration information refer to the above method implementation Examples.
  • the physical device corresponding to the processing module in the communication device may be a processor, and the physical device corresponding to the receiving module may be a receiver. Further, the physical device corresponding to the sending module is the transmitter and the physical device corresponding to the storage module is Memory.
  • an embodiment of the present application provides a communication device 1000 that can be used to implement the functions of the network device in the process shown in FIG. 4 described above.
  • the communication device 1000 can be applied to a network device or a chip in the network device.
  • the communication device 1000 may include a sending module 1002 and a processing module 1004.
  • the storage module 1001 and the receiving module 1003 may also be included.
  • the processing module 1004 is used to generate first configuration information, second configuration information, and third configuration information.
  • the sending module 1002 may send the first configuration information, the second configuration information, and the third configuration information determined by the processing module 1004.
  • the physical device corresponding to the processing module in the communication device 1000 may be a processor, the physical device corresponding to the receiving module may be a receiver, the physical device corresponding to the sending module is a transmitter, and the physical device corresponding to the storage module is memory.
  • FIG. 11 shows a simplified schematic diagram of a possible design structure of the terminal device involved in the foregoing embodiment.
  • the terminal device 1100 includes a transmitter 1101, a receiver 1102, a controller / processor 1103, a memory 1104, and a modem processor 1105.
  • the transmitter 1101 adjusts (for example, analog conversion, filtering, amplification, up-conversion, etc.) the output samples and generates an uplink signal, which is transmitted to the network device described in the above embodiment via an antenna.
  • the antenna receives the downlink signal transmitted by the network device in the above embodiment.
  • the receiver 1102 adjusts (eg, filters, amplifies, down-converts, digitizes, etc.) the signal received from the antenna and provides input samples.
  • the encoder 1106 receives service data and signaling messages to be sent on the uplink, and processes the service data and signaling messages (eg, formatting, encoding, and interleaving) .
  • the modulator 1107 further processes (eg, symbol mapping and modulation) the encoded service data and signaling messages and provides output samples.
  • the demodulator 1109 processes (eg, demodulates) the input samples and provides symbol estimates.
  • the decoder 1108 processes (e.g., deinterleaves and decodes) the symbol estimates and provides the decoded data and signaling messages sent to the UE.
  • the encoder 1106, the modulator 1107, the demodulator 1109, and the decoder 1108 may be implemented by a synthesized modem processor 1105. These units are processed according to the radio access technology adopted by the radio access network (for example, the access technology of NR and other evolved systems).
  • the controller / processor 1103 controls and manages the actions of the terminal device, and is used to execute the processing performed by the terminal device in the foregoing embodiment. For example, if the first measurement object corresponding to the slave carrier unit is determined, the first measurement object is associated with the first report configuration, and the report type of the first report configuration is the first type, then the slave carrier unit is determined Is a full-capacity carrier unit; or, the first measurement object is associated with the first report configuration, and the report type of the first report configuration is the second type, it is determined that the slave carrier unit is a non-full-capacity carrier Units, and / or other processes of the technology described in the embodiments of the present application.
  • controller / processor 1103 is used to support the terminal device to perform the steps shown in FIG. 4, FIG. 5a, FIG. 5b, FIG. 5c, or FIG.
  • the memory 1104 is used to store program codes and data related to the terminal device 1100.
  • the terminal device 1100 provided by an embodiment of the present application is used to implement the communication method shown in FIG. 4, FIG. 5a, FIG. 5b, FIG. 5c, or FIG. 7, or FIG. 4, FIG. 5a, FIG.
  • FIG. 12 shows a possible structural diagram of the network device involved in the foregoing embodiment.
  • the network device 1200 includes a transmitter / receiver 1201, a controller / processor 1202, and a memory 1203.
  • the transmitter / receiver 1201 is used to support sending and receiving information between the network device and the terminal device described in the foregoing embodiments, and to support radio communication between the network device and other terminal devices.
  • the controller / processor 1202 performs various functions for communicating with terminal devices.
  • On the uplink the uplink signal from the terminal device is received via the antenna, mediated by the receiver 1201, and further processed by the controller / processor 1202 to recover the service data and signal sent by the terminal device ⁇ ⁇ Order information.
  • the service data and signaling messages are processed by the controller / processor 1202 and mediated by the transmitter 1201 to generate a downlink signal, which is transmitted to the terminal device via the antenna.
  • the controller / processor 1202 also executes the processing procedures related to the network device in FIG. 4 and / or other procedures for the technology described in this application.
  • the memory 1203 is used to store program codes and data of network devices.
  • the network device 1200 may further include a communication unit 1204, and the communication unit 1204 is configured to support the network device to communicate with other network entities.
  • the network device 1200 provided in the embodiment of the present application is used to implement the function of the network device in the communication method shown in FIG. 4, and here only the connection relationship between the modules in the network device 1200 is performed.
  • the specific solution of the communication method of the network device 1200 and the specifically executed actions refer to the related description in the above method embodiments, and details are not repeated here.
  • the embodiment of the present application further provides a communication system, which includes the foregoing network device and terminal device.
  • the embodiments of the present application further provide a computer storage medium in which a software program is stored, which can realize any one or more of the above when read and executed by one or more processors The method provided by the embodiment.
  • the computer storage medium may include various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • an embodiment of the present application further provides a chip including a processor for implementing the functions involved in any one or more of the above embodiments, such as acquiring or processing information involved in the above method or News.
  • the chip further includes a memory, which is used to store program instructions and data executed by the processor.
  • the chip may also contain chips and other discrete devices.
  • the processor may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration Circuit (application-specific integrated circuit, ASIC), field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the memory may include read-only memory and random access memory, and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the bus system may also include a power bus, a control bus, and a status signal bus.
  • various buses are marked as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, they will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,该方法包括:网络设备配置测量对象与上报配置的关联关系,终端设备根据测量对象与上报配置的关联关系,确定载波单元为全能力载波单元或非全能力载波单元。比如,终端设备可当测量对象与上报配置存在关联关系,且上报配置的上报类型为第一类型时,确定测量对象对应的载波单元从全能力载波单元,当测量对象与上报配置不存在关联关系,或测量对象与上报配置存在关联关系,但上报配置的类型为第二类型时,确定测量对象对应的载波单元为非全能力载波单元。采用本申请的方法及装置,可利用测量对象与上报配置的关联关联,隐示指示全能力载波单元和非全能力载波单元。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2018年11月02日提交中国专利局、申请号为201811303675.8、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在无线通信系统中,终端设备需要时刻对小区进行监测。其中,根据终端设备对小区监测的方式不同,可将载波单元划分为全能力载波单元和非全能力载波单元。针对一个载波单元,如何确定全能力载波单元和非全能力载波单元,是目前研究的热点。
发明内容
本申请提供一种通信方法及装置,用以提供确定全能力载波单元或非全力载波单元的方式。
第一方面,本申请提供一种通信方法,可应用于终端设备,该通信方法可包括:终端设备确定从载波单元所对应的第一测量对象;所述第一测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为第一类型,则所述终端设备确定所述从载波单元为全能力载波单元;或者,所述第一测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为第二类型,则所述终端设备确定所述从载波单元为非全能力载波单元;其中,所述第一类型与所述第二类型不同。
在本申请实施例,可根据从载波单元所对应的第一测量对象相关联上报配置的类型,确定全能力载波单元或非全能力载波单元,从而解决现有38.133中,确定频率范围FR2全能力载波方法的漏洞。且在本申请实施例中,无需额外的指示信令开销。
在一种可能的实现中,所述方法还包括:所述终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于为所述终端设备需要测量的N个从载波单元中的每个从载波单元均配置一个测量对象,所述N为大于或等于1的正整数;所述终端设备接收所述网络设备发送的第二配置信息,所述第二配置信息用于为所述终端设备配置M个上报配置,所述M为大于或等于1的正整数;所述终端设备接收所述网络设备发送的第三配置信息,所述第三配置信息至少用于建立所述第一测量对象与所述第一上报配置的关联关系,所述第一测量对象为N个测量对象中的一个测量对象,所述第一上报配置为所述M个上报配置中的一个上报配置,且在所述关联关系中,在一个频率范围FR2的频段内,仅有一个测量对象与所述上报类型为第一类型的上报配置关联。
比如,网络设备期望设置第一从载波单元为全能力载波单元,那么网络设备在FR2频 段的配置中,可将第一从载波单元所对应的第一测量对象与第一类型的上报配置相关联,且在FR2频段内,仅设置第一测量对象与第一类型的上报配置相关联。终端设备在接收到所述配置后,可隐示的确定第一从载波单元为全能力载波单元。针对全能力载波单元的设定,网络设备和终端设备都是明确的,网络设备可更好的对终端设备进行调度和管理。
第二方面,本申请还提供一种通信方法,可应用于终端设备,包括:终端设备确定从载波单元所对应的第一测量对象;所述第一测量对象与第一上报配置不存在关联关系,则所述终端设备确定所述从载波单元为非全能力载波单元。
在一种可能的实现中,所述方法还包括:所述终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于为所述终端设备需要测量的N个从载波单元中的每个从载波单元均配置一个测量对象,所述N为大于或等于1的正整数;所述终端设备接收所述网络设备发送的第二配置信息,所述第二配置信息用于为所述终端设备配置M个上报配置,所述M为大于或等于1的正整数;所述终端设备接收所述网络设备发送的第三配置信息,所述第三配置信息并未建立所述第一测量对象与所述M个上报配置中任一上报配置的关联关系,所述第一测量对象为N个测量对象中的一个测量对象。
第三方面,本申请还提供一种通信方法,可应用于终端设备,包括:终端设备确定需要测量的N个从载波单元所对应的N个测量对象,所述N个从载波单元与所述N个测量对象一一对应,所述N为大于1的正整数;所述终端设备在所述N个测量对象中,在一个频率范围FR2的频段内确定与上报配置存在关联关系,且所述上报配置的上报类型为第一类型的至少两个测量对象;所述终端设备在所述至少两个测量对象中,确定第一测量对象;所述终端设备将所述第一测量对象所对应的从载波单元,作为全能力载波单元。
比如,网络设备期望设置第一从载波单元为全能力载波单元,那么网络设备在FR2频段的配置中,可将第一从载波单元所对应的第一测量对象与第一类型的上报配置相关联,且在FR2频段中,仅设置第一测量对象与第一类型的上报配置相关联。终端设备在接收到所述配置后,可隐示的确定第一从载波单元为全能力载波单元。针对全能力载波单元的设置,网络设备和终端设备都是明确的,网络设备可更好的对终端设备进行调度和管理。
在本申请实施例中,如果网络设备可指示给终端设备一个全能力载波单元的范围,终端设备可自行在上述范围内,选择一个载波单元作为全能力载波单元,终端设备侧可自由选择全能力载波单元,更好的与现有协议相兼容。
在一种可能的实现中,所述方法还包括:所述终端设备接收网络设备发送第一配置信息,所述第一配置信息用于为所述终端设备需要测量的N个从载波单元中的每个从载波单元均配置一个测量对象,所述N为大于1的正整数;所述终端设备接收所述网络设备发送的第二配置信息,所述第二配置信息用于为所述终端设备配置M个上报配置,所述M为大于或等于1的正整数;所述终端设备接收所述网络设备发送的第三配置信息,所述第三配置信息用于建立在一个频率范围FR2的频段内的至少两个测量对象与所述上报类型为第一类型的上报配置的关联关系,所述至少两个测量对象包含在所述N个测量对象中。
第四方面,本申请还提供一种通信方法,可应用于网络设备,包括:网络设备向终端设备发送第一配置信息,所述第一配置信息用于为所述终端设备需要测量的N个从载波单元中的每个从载波单元均配置一个测量对象,所述N为大于或等于1的正整数;所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息用于为所述终端设备配置M个上报配置,所述M为大于或等于1的正整数;所述网络设备向所述终端设备发送第三配置 信息,所述第三配置信息用于建立第一测量对象与第一上报配置的关联关系,所述第一测量对象为N个测量对象中的任一个测量对象,所述第一上报配置为所述M个报配置中的任一个上报配置,且在所述关联关系中,在一个频率范围FR2的频段内,仅有一个测量对象与所述上报类型为第一类型的上报配置关联,或者,有至少两个测量对象与所述上报类型为第一类型的上报配置关联。
五方面,本申请提供一种通信装置,用于终端设备或终端设备的芯片,包括:包括用于执行以上第一方面、第二方面或者第三方面各个步骤的单元或手段(means)。
第六方面,本申请提供一种通信装置,用于网络设备或网络设备的芯片,包括:包括用于执行第四方面各个步骤的单元或手段(means)。
第七方面,本申请提供一种通信装置,用于终端设备或终端设备的芯片,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述至少一个处理元件用于执行本申请第一方面、第二方面或者第三方面提供的方法。
第八方面,本申请提供一种通信装置,用于网络设备或网络设备的芯片,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述至少一个处理元件用于执行本申请第四方面提供的方法。
第九方面,本申请提供一种通信装置,用于终端设备包括用于执行以上第一方面、第二方面或第三方面的方法的至少一个处理元件(或芯片)。
第十方面,本申请提供一种通信装置,用于网络设备,包括用于执行以上第四方面的方法的至少一个处理元件(或芯片)。
第十一方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机指令,当该计算机指令被计算机执行时,使得所述计算机执行以上任一方面的方法。
第十二方面,本申请提供了一种计算机可读存储介质,该存储介质存储有计算机指令,当所述计算机指令被计算机执行时,使得所述计算机执行以上任一方面的方法。
附图说明
图1为本申请实施例提供的测量对象与上报配置相关联的一示意图;
图2为本申请实施例提供的通信系统的一示意图;
图3为本申请实施例提供的比特映射表的一意图;
图4为本申请实施例提供的通信方法的一流程图;
图5a为本申请实施例提供的通信方法的一流程图;
图5b为本申请实施例提供的通信方法的一流程图;
图5c为本申请实施例提供的通信方法的一流程图;
图6为本申请实施例提供的测量对象与上报配置相关联的一示意图;
图7为本申请实施例提供的通信方法的一流程图;
图8为本申请实施例提供的测量对象与上报配置相关联的一示意图;
图9为本申请实施例提供的通信装置的一结构示意图;
图10为本申请实施例提供的通信装置的一结构示意图;
图11为本申请实施例提供的终端设备的一结构示意图;
图12为本申请实施例提供的网络设备的一结构示意图。
具体实施方式
为了便于理解,示例性的给出了与本申请相关概念的说明以供参考,如下所示:
1)网络设备,是网络侧中一种用于发射或接收信号的实体,如新一代基站(generation Node B,gNodeB)。网络设备可以是用于与移动设备通信的设备。网络设备可以是无线局域网(wireless local area networks,WLAN)中的AP,全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(long term evolution,LTE)中的演进型基站(evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备,或NR系统中的gNodeB等。另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。此外,在其它可能的情况下,网络设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为网络设备。另外,在一种网络结构中,所述网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
2)终端设备,可以是能够接收网络设备调度和指示信息的无线终端设备,无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端设备可以经无线接入网(如,radio access network,RAN)与一个或多个核心网或者互联网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber  station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。无线终端设备也可以是可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备,NR通信系统中的终端设备等。
3)通信系统,可以采用各种无线接入技术(radio access technology,RAT),例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)等,本申请对通信系统所采用的RAT不做限定。在本申请中,术语“系统”可以和“网络”相互替换。根据不同网络的容量、速率、时延等因素可以将网络分为2G(generation)网络、3G网络、4G网络或者未来演进网络,如5G网络。典型的2G网络包括全球移动通信系统(global system for mobile communications/general packet radio service,GSM)网络或者通用分组无线业务(general packet radio service,GPRS)网络,典型的3G网络包括通用移动通信系统(universal mobile telecommunications system,UMTS)网络,典型的4G网络包括长期演进(long term evolution,LTE)网络,典型的5G网络包括新无线接入技术(new radio access technique,NR)网络。其中,UMTS网络有时也可以称为通用陆地无线接入网(universal terrestrial radio access network,UTRAN),LTE网络有时也可以称为演进型通用陆地无线接入网(evolved universal terrestrial radio access network,E-UTRAN)。
4)全能力载波单元(component carrier,CC),是指终端设备在该CC中需至少监测6个小区和24个同频信号块(synchronization signal block,SSB),所述24个SSB可具有不同的物理小区标识(physical cell identifier,PCI)或时域编号(time index)中的至少一个,所述PCI用于标识不同的物理小区,所述时域编号用于标识不同的SSB。
5)非全能力CC,是指终端设备在该CC中只需对服务小区至少监测两个具有不同SSB时域编号的SSB。
6)测量对象(measure object,MO),包括与测量所用的参考信号相关的各种配置,如参考信号的时频位置和子载波间隔指示等。
7)上报配置(report configuration,RC),包括终端设备执行测量的具体参数,比如,所述RC中可包括上报准则、测量所使用的参考信号类型、上报格式、测量量的类型、上报的小区级测量量个数以及上报的波束(beam)级测量量个数等。所述上报准则可具体为事件触发或周期触发,所述测量所使用的参考信号类型可具体为SSB或信道状态信息参考信号(channel state information reference signal,CSI-RS),上报格式可具体为仅上报小区级测量量,或者,仅上报波束级测量量,或同时上报小区级测量量和波束级测量量。
8)测量标识(measure ID,MI),测量对象与上报配置是通过测量标识相关联,所述测量对象可通知终端设备测量参考信号的配置,所述上报配置通知终端设备基于参考信号做何种测量。通过测量标识将两者关联起来,终端设备就可获取对于一个测量的完整描述。其中,一个测量对象MO可以和一个或多个上报配置RC关联,一个上报配置RC也可以 和一个或多个测量对象MO关联。比如,如图1所示,测量对象MO1可通过测量标识MI1与上报配置RC1相关联,上报配置RC2通过测量标识MI 3与测量对象MO2相关联。
9)a或b中的至少一个,可具体包括a,b,a和b,所述a和b可以是单个,也以是多个。
可以理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
如图2所示,本申请实施例提供一种通信系统200,该通信系统200可包括网络设备201和终端设备202。
其中,在新无线接入技术(new radio access technique,NR)中,由于终端设备202的移动,导致终端设备202需要支持小区选择、小区重选和小区切换等移动性过程,因此终端设备202需要对小区进行监测。
具体的,在终端设备202与网络设备201通信的下行频段中,可包括多个载波单元(component carrier,CC),进一步的,3GPP对频谱定义了6GHz以下频率范围1(frequency range 1,FR1)和24GHz以上频率范围2(frequency range 2,FR2)两部分,所述FR1的频率范围为450MHz-6000MHz,FR2的频率范围为24250MHz-52600MHz。所述CC可位于上述FR1的频率范围内,也可位于上述FR2的频率范围内。
针对每个CC终端设备202需至少监测若干个小区和同步信号块(synchronization signal block,SSB)。具体的,当所述CC位于FR1的频率范围中时,3GPP规定终端设备202针对所述CC应至少监测8个小区和14个具有不同物理小区标识(physical cell identity,PCI)和/或SSB时域编号(time index)的SSB。当所述CC位于FR2的频率范围中时,3GPP规定终端设备202在每个FR2频段(band)中,只需要在一个CC上至少监测6个小区和24个具有不同PCI和/或SSB时频编号的SSB。而在所述FR2频段内的其他CC上只对服务小区至少监测两个具有不同SSB时域编号的SSB。
基于此,对于位于FR2的频率范围的CC定义了全能力CC和非全能力CC的概念。关于全能力CC的概念可参见上述概念说明4)全能力CC中的记载,关于非全能力CC的概念可参见上述概念说明5)非能力CC中的记载。
在3GPP协议中规定,终端设备202可采用以下方式,在下行频段包含的多个CC中,确定全能力CC和非全能力CC。
第一种方式:如果下行频段中的CC中存在主载波单元(primary component carrier,PCC)或主从载波单元(primary secondary component carrier,PSCC),则确定PCC或PSCC为全能力CC,下行频段中的剩余CC确定为非全能力CC。
第二种方式:如果下行频段中仅包括一个从载波单元(secondary component carrier,SCC),则确定该SCC为全能力CC。
如果下行频段中包括多个SCC,如何在多个SCC中,确定全能力CC和非全能力CC,3GPP协议中并没有相关的规定。
第一种方案:终端设备202自行决定全能力CC和非全能力CC。
由于终端设备在非全能力CC上仅对服务小区进行测量,并不进行邻区测量,在非全能力CC上不能支持切换等移动性过程。如果由终端设备自行决定全能力CC和非全能力CC,那么网络设备201将无法知道具体终端设备202将哪一个CC设置为全能力CC,哪一个CC设置为非全能力CC,进一步的,网络设备201也无法知道终端设备202具体在哪一个CC上进行了邻区测量,也就无法指示终端设备进行小区切换等操作,影响网络调度。
第二种方案:终端设备202将首先激活的SCC作为全能力CC。即当一个FR2的下行频段中包括多个SCC时,终端设备202将首先激活的SCC作为全能力SCC。
首先,在NR中,网络设备可一次性激活多个SCC,如果网络设备一次性激活多个SCC,即多个SCC同时激活,如何在多个SCC中,确定全能力CC,并没有相关的解决方案。
比如,在3GPP中规定,可采用以下方式,激活SCC:网络设备201向终端设备202发送比特映射表,所述比特映射表中,取值为1的比特,对应于激活SCC,取值为0的比特,对应于不激活SCC,所述比特映射表可参见图3所示。通过图3可以看出,比特映射表中可包括7比特和1个预留(reserve,R)比特,7比特依次为C1至C7,所述C1至C7的取值可为1或0,1可代表激活对应的SCC,0可代表不激活对应的SCC。
进一步的,即使网络设备201一次性仅激活一个SCC,终端设备202为了确定SCC的激活顺序,也需记录SCC的激活时间,增加了终端设备202的成本。
第三种方案:网络设备201仅为全能力CC配置MO,为非全能CC不配置MO。终端设备202可根据SCC是否配置了MO,确定该SCC为全能力CC或非全能力CC。
由于在3GPP中有如下规定:“网络在配置测量时应保证:只要UE有测量配置,则测量配置中应为SpCell和每一个要测量的SCell配置一个测量对象”。可以看出,在3GPP中规定,必须为每个SCC均配置MO。上述仅为全能力CC配置MO,为非全能力CC不配置MO的方案,与上述3GPP中规定相冲突。
基于以上,如图4所示,提供一种通信方法的流程,该流程中的终端设备可为图2中的终端设备202,网络设备可为图2中的网络设备201。可以理解的是,终端设备的功能也可以通过应用于终端设备的芯片来实现,网络设备的功能也可以通过应用于网络设备的芯片来实现,该流程可包括:
S401.网络设备向终端设备发送第一配置信息。
在本申请实施例中,可设置终端设备在FR2的下行频段中需要测量N个SCC,所述N为大于或等于1的正整数,所述第一配置信息用于为所述N个SCC中的每个SCC均配置一MO,通过上述第一配置信息,共需为终端设备配置N个NO。
S402.该终端设备接收该第一配置信息,且根据该第一配置信息,为每个需要测量的SCC配置MO。
S403.该网络设备向终端设备发送第二配置信息,该第二配置信息用于为该终端设备配置M个RC。
可选的,第二配置信息还可用于配置M个RC的上报类型,比如,网络设备可配置M个RC中的任一个RC的上报类型为SSB,或CSI-RS等。
S404.该终端设备接收该第二配置信息,且根据该第二配置信息,为该终端设备配置M个RC。
S405.该网络设备向终端设备发送第三配置信息,该第三配置信息用于建立MO与RC的关联关系。
S406.该终端设备接收该第三配置信息,且根据该第三配置信息建立MO与RC的关联关系。
比如,在本申请实施例中,可通过测量标识列表建立MO与RC间的关联关系,如图1所示,可通过MI1建立MO1与RC1的关联关系,通过MI4建立MO3与RC4的关联关系等等。
在本申请实施例中,针对N个MO中的任一个MO,为了方便可称为第一MO,第一MO可与M个RC中的一个或多个RC存在关联关系,第一MO也可与RC不存在关联关系,比如图1所示,MO4不与RC存在任何关联关系。针对M个RC中的任一个RC,为了方便可称为第一RC,第一RC可与N个MO中的一个或多个MO存在关联关系,第一RC也可与MO不存在关联关系。比如,如图1所示,RC3不与任何MO存在关联关系。
在本申请实施例中,在一个FR2的频段中,通过上述第三配置信息,可配置仅有一个MO与上报类型为第一类型的RC关联,也可配置有至少两个MO与上报类型为第一类型的RC关联。
如图5a所示,本申请提供一种通信方法的流程,该流程可适用于仅有一个MO与上报类型为第一类型的RC关联的场景,该流程中的终端设备可具体为上述图2中的终端设备202,该流程可包括:
S501a.终端设备确定SCC所对应的第一MO。
S502a.所述第一MO与第一上报配置存在关联关系,且所述第一上报配置的上报类型为第一类型,则所述终端设备确定所述SCC为全能力CC。
如图5b所示,本申请还提供一种通信方法的流程,该流程同样可适用于仅有一个MO与上报类型为第一类型的RC关联的场景,该流程中的终端设备可具体为上述图2中的终端设备202,该流程可包括:
S501b.终端设备确定SCC所对应的第一MO。
S502b.所述第一MO与所述第一上报配置存在关联关系,且所述第一上报配置的上报类型为第二类型,则所述终端设备确定所述SCC为非全能力CC,所述第一类型与第二类型不同,比如,第一类型可为SSB,第二类型可为信道状态信息参考信号CSI-RS。
如图5c所示,本申请还提供一种通信方法的流程,该流程同样可适用于仅有一个MO与上报类型为第一类型的RC关联的场景,该流程中的终端设备可具体为上述图2中的终端设备202,该流程可包括:
S501c.终端设备确定SCC所对应的第一MO。
S502c:所述第一MO与所述第一上报配置不存在关联关系,则终端设备确定所述SCC为非全能力CC。
如图6所示,设定网络设备在FR2的频段内为终端设备配置了3个需要测量的SCC,分别为SCC1、SCC2和SCC3,并且该FR2的频段内没有PCC或PSCC,而网络设备期望终端设备将SCC1作为全能力CC,那么网络设备在测量配置中将SCC1所对应的MO1通过测量标识MI1与上报配置RC1相关联,所述上报配置1的上报类型为第一类型。将SCC2所对应的MO2通过测量标识MI2与上报配置RC2相关联,所述上报配置RC2的上报类型为第二类型,将SS3所对应的MO3不与任何上报配置相关联。在本申请实施例中,当终端设备接收到所述测量配置后,可遍历整个测量标识列(MI list),可以发现,SCC3所对应的MO3不与任何RC相关联,可确定SCC3为非全能力CC,SCC2所对应的MO2与 RC2相关联,但RC2的上报类型为第二类型,因此,可确定SCC2为非全能力CC,只有SCC1所对应的MO1与RC1相关联,且所述RC1的上报类型为第一类型,因此,可确定SCC1为全能力CC。
如图7所示,本申请提供一种通信方法的流程,该流程可适用于至少两个MO与上报类型为第一类型的RC关联的场景,该流程的终端设备可具体为上述图2中的终端设备202,该流程可包括:
S701.终端设备确定需要测量的N个SCC所对应的N个MO,所述N个MO与N个SCC一一对应,所述N为大于1的正整数。
S702.所述终端设备在所述N个MO中,确定与RC存在关联关系,且所述RC的上报类型为第一类型的至少两个MO。
S703.所述终端设备在所述至少两个MO中,确定第一MO。
在本申请实施例中,终端设备可基于一定规则,在至少两个MO中,选择一MO,作为第一MO,或者,终端设备可在至少两个MO中,任意选择一MO,作为第一MO。
S704.所述终端设备将所述第一MO所对应的SCC,作为全能力CC。
在本申请实施例中,如果网络设备可指示给终端设备一个全能力CC的范围,终端设备可自行在上述范围内,选择一个SCC作为全能力CC。
需要说明的是,对图4、图5a、图5b、图5c以及图7所示的流程,可单独使用,也可相互结合使用,比如,终端设备可利用图4所示的流程,建立MO与RC的关联关系,且建立MO与RC的关联关系后,终端设备可利用图5a、图5b、图5c或图7报所示的流程,确定全能力CC和非全能力CC。
如图8所示,设定网络设备在FR2的频段内为终端设备配置了3个需要测量的SCC,分别为SCC1、SCC2和SCC3,并且该FR2的频段内没有PCC或PSCC,而网络设备期望终端设备将SCC1或SCC2作为全能力CC,那么网络设备在测量配置中将SCC1所对应的MO1通过测量标识MI1与上报配置RC1相关联,所述上报配置1的上报类型为第一类型。将SCC2所对应的MO2通过测量标识MI2与上报配置RC2相关联,所述上报配置2的上报类型为第一类型。将SS3所对应的MO3不与任何上报配置相关联,或者,将SS3所对应的MO3通过MI3与RC3相关联,所述RC3的上报类型为第二类型。在图8所示的示例中,是以为SCC3所对应的MO3不配置任何RC为示例进行说明的。当终端设备接收到所述测量配置后,可遍历整个测量标识列,可以发现,SCC3所对应的MO3不与任何RC相关联,可确定SCC3为非全能力CC,SCC1所对应的MO1与SCC2所对应的MO2均为RC相关联,且相关联的RC的上报类型为第一类型,那么在本申请实施例中,终端设备可在SCC1和SCC2中选择一SCC,作为全能力CC。比如,终端设备可将SCC1作为全能力CC,或者,将SCC2作为全能力CC,本申请并不作限定。
在本申请实施例中,提出了一种通过将测量对象和上报配置是否关联用于指示全能力CC的指示方法。弥补了现有协议中当一个频段内不存在PCC或PSCC,且存在至少两个SCC时,无法确定具体哪一个SCC为全能力CC的漏洞。同时,与现有协议相兼容,对现有协议的改动小。
需要说明的是,针对上述图4、图5a、图5b、图5c或图7所示流程中,第一类型可但不限于为SSB,第二类型可但不限于为CSI-RS。
在本申请实施例中,针对上述图4、图5a、图5b、图5c或图7所示的流程,可基于 以下原理,具体为:
在3GPP中对测量过程有如下规定:
“只要网络为UE配置了测量配置,UE就应按照以下流程对每一个配置了测量对象的服务小区进行RSRP和RSRQ测量。
只要网络为UE配置的测量标识中至少有一个以SINR为上报测量量或触发测量量,则UE还应为每一个配置了测量对象的服务小区按照如下标蓝的流程进行SINR测量。
对于测量配置中的每一个测量标识,UE对测量标识对应的频点上的各个小区(包括邻区和服务小区)按照如下过程进行测量。
通过3GPP中的规定:终端设备对服务小区的测量并不一定需要MO与RC的关联,对于邻小区的测量一定要求MO与RC的关联。由于对于全能力CC,需要进行服务小区和邻区的测量,对于非全能力CC,仅需进行服务小区测量。因此,可以根据,MO与上报配置的关联关系,确定SCC为全能力CC和非全能力CC。也就是说,一个SCC所对应的MO与上报配置存在关联关系,可确定该SCC为全能力CC,一个SCC所对应的MO与上报配置不存在关联关系,可确定该SCC为非全能力CC。由于在实际应用中,终端设备对于小区的测量,可存在不同的类型,比如,SSB类型和信道状态信息参考信号CSI-RS类型。而本申请实施例中的关注点是对SSB上报的改进,因此,在本申请实施例中,如当MO与RC存在关联关系时,且当所述RC的上报类型为SSB类型时,确定该MO所对应的SCC为全能力CC。
基于上述构思,如图9所示,本申请实施例提供了一种通信装置900,该通信装置900可用于实现上述图4、图5a、图5b、图5c或图7所示流程中终端设备的功能。通信装置900可应用于终端设备或终端设备内的芯片。通信装置900可包括处理模块901和存储模块904可选的,还可包括接收模块902和发送模块903。
一示例中,存储模块904用于可用于存储程序指令;处理模块901可用于读取存储模块904中存储的指令,以执行下述过程:确定从载波单元所对应的第一测量对象,所述第一测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为第一类型,则确定所述从载波单元为全能力载波单元;或者,所述第一测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为第二类型,确定所述从载波单元为非全能力载波单元;其中,所述第一类型与所述第二类型不同。
一示例中,存储模块904用于可用于存储程序指令;处理模块901可用于读取存储模块904中存储的指令,以执行下述过程:确定从载波单元所对应的第一测量对象,第一测量对象与第一上报配置不存在关联关系,则确定所述从载波单元为非全能力载波单元。
一示例中,存储模块904用于可用于存储程序指令;处理模块901可用于读取存储模块904中存储的指令,以执行下述过程:确定需要测量的N个从载波单元所对应的N个测量对象,所述N个从载波单元与所述N个测量对象一一对应,所述N为大于1的正整数,在所述N个测量对象中,在一个频率范围FR2的频段内确定与上报配置存在关联关系,且所述上报配置的上报类型为第一类型的至少两个测量对象,在所述至少两个测量对象中,确定第一测量对象,将所述第一测量对象所对应的从载波单元,作为全能力载波单元。
可选的,接收模块902,可用于接收网络设备发送的第一配置信息、第二配置信息和第三配置信息,关于第一配置信息、第二配置信息和第三配置信息可参见上述方法实施例的记载。
在本申请实施例中,关于处理模块901和接收模块902的介绍,可具体参见上述图4、图5a、图5b、图5c或图7所示流程的介绍,在此不再详细说明。
需要特别说明的是,本通信装置中处理模块对应的实体装置可以为处理器,接收模块对应的实体设备可以接收器,进一步,发送模块对应的实体装置为发射器以及存储模块对应的实体设备为存储器。
基于上述构思,如图10所示,本申请实施例提供了一种通信装置1000,该通信装置1000可用于实现上述图4所示流程中网络设备的功能。通信装置1000可应用于网络设备或网络设备内的芯片。通信装置1000可包括发送模块1002和处理模块1004。可选的,还可包括存储模块1001和接收模块1003。
在本申请的一示例中,处理模块1004用于生成第一配置信息、第二配置信息和第三配置信息。发送模块1002可发送处理模块1004确定的第一配置信息、第二配置信息以及第三配置信息。
在本申请实施例中,关于发送模块1002和处理模块1004的具体介绍,可参见上述方法实施例的记载。
本申请实施例中,通信装置1000中处理模块对应的实体装置可以为处理器,接收模块对应的实体设备可以接收器,发送模块对应的实体装置为发射器以及存储模块对应的实体设备为存储器。
图11示出了上述实施例中所涉及的终端设备的一种可能的设计结构的简化示意图。终端设备1100包括发射器1101,接收器1102,控制器/处理器1103,存储器1104和调制解调处理器1105。
所述发射器1101调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的网络设备。在下行链路上,天线接收上述实施例中网络设备发射的下行链路信号。所述接收器1102调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在所述调制解调处理器1105中,编码器1106接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1107进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器1109处理(例如,解调)该输入采样并提供符号估计。解码器1108处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信令消息。编码器1106、调制器1107、解调器1109和解码器1108可以由合成的调制解调处理器1105来实现。这些单元根据无线接入网采用的无线接入技术(例如,NR及其他演进系统的接入技术)来进行处理。
所述控制器/处理器1103对终端设备的动作进行控制管理,用于执行上述实施例中由终端设备进行的处理。例如确定从载波单元所对应的第一测量对象,所述第一测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为第一类型,则确定所述从载波单元为全能力载波单元;或者,所述第一测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为第二类型,则确定所述从载波单元为非全能力载波单元,和/或本申请实施例所描述的技术的其他过程。作为示例,所述控制器/处理器1103用于支持终端设备执行图4、图5a、图5b、图5c或图7所示的步骤。所述存储器1104用于存储用于所述终端设备1100涉及的程序代码和数据。
需要说明的是,本申请实施例提供的终端设备1100用于实现图4、图5a、图5b、图5c或图7所示的通信方法,或者图4、图5a、图5b、图5c或图7所示通信方法中终端设备的功能,此处仅对所述终端设备1100中各个模块之间的连接关系进行了描述,所述终端设备1100处理通信方法的具体方案以及具体执行的动作参见上述方法实施例中的相关描述,此处不再赘述。
图12示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。所述网络设备1200包括:发射器/接收器1201,控制器/处理器1202以及存储器1203。
所述发射器/接收器1201用于支持网络设备与上述实施例中所述的终端设备之间收发信息,以及支持所述网络设备与其他终端设备之间进行无线电通信。所述控制器/处理器1202执行各种用于与终端设备通信的功能。在上行链路,来自所述终端设备的上行链路信号经由天线接收,由接收器1201进行调解,并进一步由所述控制器/处理器1202进行处理来恢复终端设备所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由所述控制器/处理器1202进行处理,并由发射器1201进行调解来产生下行链路信号,并经由天线发射给终端设备。所述控制器/处理器1202还执行图4中涉及网络设备的处理过程和/或用于本申请所描述的技术的其他过程。
所述存储器1203用于存储网络设备的程序代码和数据。所述网络设备1200还可以包括通信单元1204,所述通信单元1204用于支持网络设备与其他网络实体进行通信。
需要说明的是,本申请实施例提供的所述网络设备1200用于实现图4所示的通信方法中网络设备的功能,此处仅对所述网络设备1200中各个模块之间的连接关系进行了描述,所述网络设备1200处理通信方法的具体方案以及具体执行的动作参见上述方法实施例中的相关描述,此处不再赘述。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和终端设备。
基于以上实施例,本申请实施例还提供了一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述任意一个或多个实施例提供的方法。该计算机存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种芯片,该芯片包括处理器,用于实现上述任意一个或多个实施例所涉及的功能,例如获取或处理上述方法中所涉及的信息或者消息。可选地,该芯片还包括存储器,该存储器,用于存储处理器所执行的程序指令和数据。该芯片,也可以包含芯片和其他分立器件。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器,也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。 但是为了清楚说明起见,在图中将各种总线都标为总线系统。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。

Claims (40)

  1. 一种通信方法,其特征在于,包括:
    终端设备在第一从成员载波SCC上执行测量,所述终端设备具有在所述第一SCC上测量至少6个小区和24个同步信号块SSB的能力,其中所述24个SSB具有不同的物理小区标识和/或编号,所述物理小区标识用于标识不同的物理小区,所述编号用于标识不同的SSB,其中,所述第一SCC被配置上报基于SSB的测量结果。
  2. 如权利要求1所述的方法,其特征在于,所述终端设备在第一从成员载波SCC上执行的测量对应于第一测量对象,所述方法还包括:
    所述终端设备确定所述第一SCC所对应的第一测量对象,所述第一测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为SSB。
  3. 如权利要求1或2所述的方法,其特征在于,所述SSC位于频率范围2中。
  4. 如权利要求3所述的方法,其特征在于,所述终端设备在所述频率范围2中没有主成员载波PCC和/或主从成员载波PSCC。
  5. 如权利要求2至4任一项权利要求所述的方法,其特征在于,所述终端设备确定从成员载波SCC所对应的第一测量对象,所述第一测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为同步信号块SSB,包括:
    所述终端设备确定需要测量的N个SCC所对应的N个测量对象,所述N个测量对象与N个SCC一一对应,所述N为大于1的正整数;
    所述终端设备在所述N个测量对象中,确定与所述第一上报配置存在关联关系、且所述第一上报配置的上报类型为SSB的至少两个测量对象;
    所述终端设备在所述至少两个测量对象中,选择所述第一测量对象。
  6. 如权利要求2至4任一项权利要求所述的方法,其特征在于,所述终端设备确定从成员载波SCC所对应的第一测量对象,所述第一测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为同步信号块SSB,包括:
    所述终端设备确定需要测量的N个SCC所对应的N个测量对象,所述N个测量对象与N个SCC一一对应,所述N为大于1的正整数;
    所述终端设备在所述N个测量对象中,确定所述N个测量对象中的一个与所述第一上报配置存在关联关系、且所述第一上报配置的上报类型为SSB。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定需要测量的N-1个SCC所对应的N-1个测量对象,所述N-1个测量对象与N-1个SCC一一对应,所述N为大于1的正整数;
    所述终端设备在所述N-1个测量对象中,确定所述N-1个测量对象中的一个与所述第一上报配置存在关联关系、且所述第一上报配置的上报类型为第二类型。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述N-1个SCC上执行测量,所述终端设备具有在所述N-1个SCC上对服务小区监测至少两个具有不同编号的同步信号块SSB的能力。
  9. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述SCC上执行测量,所述终端设备具有在所述SCC上对服务小区监测至少两个具有不同编号的同步信号块SSB的能力,所述SCC被配置上报基于第二类 型的测量结果。
  10. 如权利要求7或9所述方法,其特征在于,所述第二类型为信道状态信息参考信号CSI-RS。
  11. 一种通信方法,其特征在于,包括:
    终端设备在第二从成员载波SCC上执行测量,所述终端设备具有在第二SCC上对服务小区监测至少两个具有不同编号的同步信号块SSB的能力,所述第二SCC被配置上报基于第二类型的测量结果。
  12. 如权利要求11所述的方法,其特征在于,所述终端设备在第二从成员载波SCC上执行的测量对应于第二测量对象,所述方法还包括:
    所述终端设备确定所述第二SCC所对应的第二测量对象,所述第二测量对象与第一上报配置存在关联关系,且所述第二上报配置的上报类型为第二类型。
  13. 如权利要求11或12所述的方法,其特征在于,所述终端设备确定所述第二SCC所对应的第二测量对象,所述第二测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为第二类型,包括:
    所述终端设备确定需要测量的N个第二SCC所对应的N个测量对象,所述N个测量对象与N个第二SCC一一对应,所述N为大于1的正整数;
    所述终端设备在所述N个测量对象中,确定所述N个测量对象中的一个与所述第一上报配置存在关联关系、且所述第一上报配置的上报类型为第二类型。
  14. 如权利要求11至13任一项权利要求所述方法,其特征在于,所述信道状态信息参考信号CSI-RS。
  15. 一种通信方法,其特征在于,包括:
    确定从成员载波SCC所对应的第一测量对象;
    所述第一测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为第一类型,则所述终端设备确定所述SCC为全能力载波单元,所述全能力载波单元是指终端设备具有在所述第一SCC上测量至少6个小区和24个同步信号块SSB的能力,所述24个SSB具有不同的物理小区标识和/或编号,所述物理小区标识用于标识不同的物理小区,所述编号用于标识不同的SSB;或者,
    所述第一测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为第二类型,则所述终端设备确定所述SCC为非全能力载波单元,所述非全能力载波单元是指所述终端设备具有在所述SCC上对服务小区监测至少两个具有不同编号的SSB的能力。
  16. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的第一配置信息,所述第一配置信息用于为需要测量的N个SCC中的每个SCC均配置一个测量对象,所述N为大于或等于1的正整数;
    接收所述网络设备发送的第二配置信息,所述第二配置信息用于配置M个上报配置,所述M为大于或等于1的正整数;
    接收所述网络设备发送的第三配置信息,所述第三配置信息至少用于建立所述第一测量对象与所述第一上报配置的关联关系,所述第一测量对象为N个测量对象中的一个测量对象,所述第一上报配置为所述M个上报配置中的一个上报配置,且在所述关联关系中,在一个频率范围FR2的频段内,仅有一个测量对象与所述上报类型为第一类型的上报配置关联。
  17. 如权利要求15或16所述的方法,其特征在于,所述SSC位于频率范围2中。
  18. 如权利要求17所述的方法,其特征在于,所述终端设备在所述频率范围2中没有主成员载波PCC和/或主从成员载波PSCC。
  19. 如权利要求16至18任一项权利要求所述的方法,其特征在于,所述终端设备确定从成员载波SCC所对应的第一测量对象,包括:
    所述终端设备确定需要测量的N个SCC所对应的N个测量对象,所述N个测量对象与N个SCC一一对应,所述N为大于1的正整数;
    所述终端设备在所述N个测量对象中,确定所述N个测量对象中的一个与所述第一上报配置存在关联关系、且所述第一上报配置的上报类型为SSB。
  20. 如权利要求19所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定需要测量的N-1个SCC所对应的N-1个测量对象,所述N-1个测量对象与N-1个SCC一一对应,所述N为大于1的正整数;
    所述终端设备在所述N-1个测量对象中,确定所述N-1个测量对象中的一个与所述第一上报配置存在关联关系、且所述第一上报配置的上报类型为信道状态信息参考信号CSI-RS。
  21. 一种通信方法,其特征在于,包括:
    确定从成员载波SCC所对应的第一测量对象;
    所述第一测量对象与第一上报配置不存在关联关系,则确定所述SCC为非全能力载波单元,所述非全能力载波单元是指所述终端设备具有在所述SCC上对服务小区监测至少两个具有不同编号的同步信号块SSB的能力。
  22. 如权利要求21所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的第一配置信息,所述第一配置信息用于为需要测量的N个SCC中的每个SCC均配置一个测量对象,所述N为大于或等于1的正整数;
    接收所述网络设备发送的第二配置信息,所述第二配置信息用于配置M个上报配置,所述M为大于或等于1的正整数;
    接收所述网络设备发送的第三配置信息,所述第三配置信息并未建立所述第一测量对象与所述M个上报配置中任一上报配置的关联关系,所述第一测量对象为N个测量对象中的一个测量对象。
  23. 如权利要求21或22所述的方法,其特征在于,所述确定从成员载波SCC所对应的第一测量对象,包括:
    所述终端设备确定需要测量的N个SCC所对应的N个测量对象,所述N个测量对象与N个SCC一一对应,所述N为大于1的正整数;
    所述终端设备在所述N个测量对象中,确定所述N个测量对象中的一个与所述第一上报配置存在关联关系、且所述第一上报配置的上报类型为信道状态信息参考信号CSI-RS。
  24. 如权利要求21或22所述的方法,其特征在于,确定从成员载波SCC所对应的第一测量对象,包括:
    所述终端设备确定需要测量的N个SCC所对应的N个测量对象,所述N个测量对象与N个SCC一一对应,所述N为大于1的正整数;
    所述终端设备在所述N个测量对象中,确定与所述第一上报配置存在关联关系、且所述第一上报配置的上报类型为CSI-RS的至少两个测量对象;
    所述终端设备在所述至少两个测量对象中,选择所述第一测量对象。
  25. 一种通信方法,其特征在于,包括:
    确定需要测量的N个从成员载波SCC所对应的N个测量对象,所述N个SCC与所述N个测量对象一一对应,所述N为大于1的正整数;
    在所述N个测量对象中,在一个频率范围FR2的频段内确定与上报配置存在关联关系,且所述上报配置的上报类型为第一类型的至少两个测量对象;
    在所述至少两个测量对象中,确定第一测量对象;
    将所述第一测量对象所对应的SCC,作为全能力载波单元,所述全能力载波单元是指终端设备具有在所述第一SCC上测量至少6个小区和24个同步信号块SSB的能力,所述24个SSB具有不同的物理小区标识和/或编号,所述物理小区标识用于标识不同的物理小区,所述编号用于标识不同的SSB。
  26. 如权利要求25所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送第一配置信息,所述第一配置信息用于为需要测量的N个SCC中的每个SCC均配置一个测量对象,所述N为大于1的正整数;
    接收所述网络设备发送的第二配置信息,所述第二配置信息用于配置M个上报配置,所述M为大于或等于1的正整数;
    接收所述网络设备发送的第三配置信息,所述第三配置信息用于建立在一个频率范围FR2的频段内的至少两个测量对象与所述上报类型为第一类型的上报配置的关联关系,所述至少两个测量对象包含在所述N个测量对象中。
  27. 一种通信方法,其特征在于,包括:
    向终端设备发送第一配置信息,所述第一配置信息用于为需要测量的N个从成员载波SCC的每个SCC均配置一个测量对象,所述N为大于或等于1的正整数;
    向所述终端设备发送第二配置信息,所述第二配置信息用于配置M个上报配置,所述M为大于或等于1的正整数;
    向所述终端设备发送第三配置信息,所述第三配置信息用于建立第一测量对象与第一上报配置的关联关系,所述第一测量对象为N个测量对象中的任一个测量对象,所述第一上报配置为所述M个报配置中的任一个上报配置,且在所述关联关系中,在一个频率范围FR2的频段内,仅有一个测量对象与所述上报类型为第一类型的上报配置关联,或者,有至少两个测量对象与所述上报类型为第一类型的上报配置关联。
  28. 一种通信装置,其特征在于,包括:
    存储模块,用于存储指令;
    处理模块,用于读取所述存储模块中的指令,以执行确定从成员载波SCC所对应的第一测量对象,所述第一测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为第一类型,确定所述SCC为全能力载波单元,所述全能力载波单元是指终端设备具有在所述第一SCC上测量至少6个小区和24个同步信号块SSB的能力,所述24个SSB具有不同的物理小区标识和/或编号,所述物理小区标识用于标识不同的物理小区,所述编号用于标识不同的SSB;或者,所述第一测量对象与第一上报配置存在关联关系,且所述第一上报配置的上报类型为第二类型,确定所述SCC为非全能力载波单元,所述非全能力载波单元是指所述终端设备具有在所述SCC上对服务小区监测至少两个具有不同编号的SSB的能力,其中,所述第一类型与所述第二类型不同。
  29. 如权利要求28所述的装置,其特征在于,所述装置还包括接收模块,用于:
    接收网络设备发送的第一配置信息,所述第一配置信息用于为需要测量的N个SCC中的每个SCC均配置一个测量对象,所述N为大于或等于1的正整数;接收所述网络设备发送的第二配置信息,所述第二配置信息用于配置M个上报配置,所述M为大于或等于1的正整数;
    接收所述网络设备发送的第三配置信息,所述第三配置信息至少用于建立所述第一测量对象与所述第一上报配置的关联关系,所述第一测量对象为N个测量对象中的一个测量对象,所述第一上报配置为所述M个上报配置中的一个上报配置,且在所述关联关系中,在一个频率范围FR2的频段内,仅有一个测量对象与所述上报类型为第一类型的上报配置关联。
  30. 一种通信装置,其特征在于,包括:
    存储模块,用于存储指令;
    处理模块,用于读取所述存储模块中的指令,以执行确定从成员载波SCC所对应的第一测量对象,在所述第一测量对象与第一上报配置不存在关联关系时,确定所述SCC为非全能力载波单元,所述非全能力载波单元是指所述终端设备具有在所述SCC上对服务小区监测至少两个具有不同编号的同步信号块SSB的能力。
  31. 如权利要求30所述的装置,其特征在于,所述装置还包括接收单元,用于:
    接收网络设备发送的第一配置信息,所述第一配置信息用于为需要测量的N个SCC中的每个SCC均配置一个测量对象,所述N为大于或等于1的正整数;
    接收所述网络设备发送的第二配置信息,所述第二配置信息用于配置M个上报配置,所述M为大于或等于1的正整数;
    接收所述网络设备发送的第三配置信息,所述第三配置信息并未建立所述第一测量对象与所述M个上报配置中任一上报配置的关联关系,所述第一测量对象为N个测量对象中的一个测量对象。
  32. 一种通信装置,其特征在于,包括:
    存储模块,用于存储指令;
    处理模块,用于读取所述存储模块中的指令,以执行确定需要测量的N个SCC所对应的N个测量对象,所述N个SCC与所述N个测量对象一一对应,所述N为大于1的正整数,在所述N个测量对象中,在一个频率范围FR2的频段内确定与上报配置存在关联关系,且所述上报配置的上报类型为第一类型的至少两个测量对象,在所述至少两个测量对象中,确定第一测量对象,将所述第一测量对象所对应的SCC,作为全能力载波单元,所述全能力载波单元是指终端设备具有在所述第一SCC上测量至少6个小区和24个同步信号块SSB的能力,所述24个SSB具有不同的物理小区标识和/或编号,所述物理小区标识用于标识不同的物理小区,所述编号用于标识不同的SSB。
  33. 如权利要求32所述的装置,其特征在于,所述装置还包括接收单元,用于:
    接收网络设备发送第一配置信息,所述第一配置信息用于为需要测量的N个SCC中的每个SCC均配置一个测量对象,所述N为大于1的正整数;
    接收所述网络设备发送的第二配置信息,所述第二配置信息用于配置M个上报配置,所述M为大于或等于1的正整数;
    接收所述网络设备发送的第三配置信息,所述第三配置信息用于建立在一个频率范围 FR2的频段内的至少两个测量对象与所述上报类型为第一类型的上报配置的关联关系,所述至少两个测量对象包含在所述N个测量对象中。
  34. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一配置信息、第二配置信息以及第三配置信息;
    发送模块,用于向终端设备发送所述处理模块确定的所述第一配置信息、所述第二配置信息以及所述第三配置信息;
    其中,所述第一配置信息用于为需要测量的N个SCC中的每个SCC均配置一个测量对象,所述第二配置信息用于备配置M个上报配置,所述M为大于或等于1的正整数,所述第三配置信息用于建立第一测量对象与第一上报配置的关联关系,所述第一测量对象为N个测量对象中的任一个测量对象,所述第一上报配置为所述M个报配置中的任一个上报配置,且在所述关联关系中,在一个频率范围FR2的频段内,仅有一个测量对象与所述上报类型为第一类型的上报配置关联,或者,有至少两个测量对象与所述上报类型为第一类型的上报配置关联。
  35. 如权利要求1至10任一项权利要求所述的方法,或者权利要求11至14任一项权利要求所述的方法,其特征在于,所述第一类型为同步信号块SSB,所述第二类型为信道状态信息参考信号CSI-RS。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1至27任一项权利要求所述的方法。
  37. 一种通信装置,其特征在于,包括用于执行如权利要求1至27的任一项所述方法的模块。
  38. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至27中任一项所述的方法。
  39. 一种芯片系统,所述芯片系统包括处理器,用于实现上述权利要求1至27中任一项所述的方法中终端设备的功能。
  40. 一种通信系统,其特征在于,所述该通信系统包括28至34任一项权利要求所述的通信装置。
PCT/CN2019/115167 2018-11-02 2019-11-01 一种通信方法及装置 WO2020088682A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980005496.2A CN111316687B (zh) 2018-11-02 2019-11-01 一种通信方法及装置
EP19879693.0A EP3855792A4 (en) 2018-11-02 2019-11-01 COMMUNICATION PROCEDURE AND DEVICE
CA3116520A CA3116520A1 (en) 2018-11-02 2019-11-01 Communications method and apparatus
BR112021008119-4A BR112021008119A2 (pt) 2018-11-02 2019-11-01 aparelho e método de comunicações
US17/226,981 US20210227419A1 (en) 2018-11-02 2021-04-09 Communications method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811303675.8A CN111148148A (zh) 2018-11-02 2018-11-02 一种通信方法及装置
CN201811303675.8 2018-11-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/226,981 Continuation US20210227419A1 (en) 2018-11-02 2021-04-09 Communications method and apparatus

Publications (1)

Publication Number Publication Date
WO2020088682A1 true WO2020088682A1 (zh) 2020-05-07

Family

ID=70462432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115167 WO2020088682A1 (zh) 2018-11-02 2019-11-01 一种通信方法及装置

Country Status (6)

Country Link
US (1) US20210227419A1 (zh)
EP (1) EP3855792A4 (zh)
CN (2) CN111148148A (zh)
BR (1) BR112021008119A2 (zh)
CA (1) CA3116520A1 (zh)
WO (1) WO2020088682A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210226751A1 (en) * 2020-01-17 2021-07-22 Qualcomm Incorporated Serving cell with distinct pci index per rrh for dl tci state, spatial relation, and ul tci state
WO2023010480A1 (en) * 2021-08-05 2023-02-09 Apple Inc. Carrier specific scaling factor for deactivated pscell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098507A1 (ko) * 2012-12-20 2014-06-26 주식회사 팬택 Ca 환경에서의 통신 제어 방법 및 그 장치
US20140341192A1 (en) * 2013-05-15 2014-11-20 Blackberry Limited Method and system for the allocation of measurement gaps in a carrier aggregation environment
CN106797536A (zh) * 2014-10-07 2017-05-31 瑞典爱立信有限公司 密集网络中的移动性

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130208601A1 (en) * 2010-11-08 2013-08-15 Tao Cui Measurement requesting and reporting
WO2018203398A1 (ja) * 2017-05-02 2018-11-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
US10278184B2 (en) * 2017-08-10 2019-04-30 At&T Intellectual Property I, L.P. Radio resource management framework for 5G or other next generation network
JP2021529463A (ja) * 2018-06-25 2021-10-28 ノキア テクノロジーズ オサケユイチア 通信測定のための方法、デバイス、およびコンピュータ可読媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098507A1 (ko) * 2012-12-20 2014-06-26 주식회사 팬택 Ca 환경에서의 통신 제어 방법 및 그 장치
US20140341192A1 (en) * 2013-05-15 2014-11-20 Blackberry Limited Method and system for the allocation of measurement gaps in a carrier aggregation environment
CN106797536A (zh) * 2014-10-07 2017-05-31 瑞典爱立信有限公司 密集网络中的移动性

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Measurement Capability for SSB Based Measurements", 3GPP DRAFT; R4-1810982, 10 August 2018 (2018-08-10), XP051579901 *
ERICSSON: "Measurements with Multiple SCells", 3GPP DRAFT; R4-1808710, 6 July 2018 (2018-07-06), XP051468604 *
See also references of EP3855792A4 *

Also Published As

Publication number Publication date
EP3855792A4 (en) 2021-12-15
CN111316687B (zh) 2021-05-18
EP3855792A1 (en) 2021-07-28
CN111148148A (zh) 2020-05-12
CA3116520A1 (en) 2020-05-07
US20210227419A1 (en) 2021-07-22
CN111316687A (zh) 2020-06-19
BR112021008119A2 (pt) 2021-08-03

Similar Documents

Publication Publication Date Title
EP3217701B1 (en) Terminal device, base station device, and method
US10390251B2 (en) Terminal device, base station device, measurement method, and integrated circuit
JP5059062B2 (ja) 通信システム、移動局装置および基地局装置
EP3665936B1 (en) Measurement configuration of user equipment
EP4373013A2 (en) Configuration of cell quality derivation parameters
KR102331796B1 (ko) 멀티캐리어 동작을 위한 뉴머롤로지 조합 세트
US10917917B2 (en) Method for transmitting random access messages on non-anchor carriers
CN110291751B (zh) 用于在无线通信网络中关联载波的方法和装置
AU2016228025B2 (en) Control signaling for flexible duplex in wireless communications
EP3393170B1 (en) Signal measurement method and apparatus
KR20160135231A (ko) 다중 접속 무선 통신들에서 베어러 우선순위화 및 데이터 맵핑을 위한 기술들
EP3100555A1 (en) Methods and nodes relating to system information acquisition during flexible subframe operation
EP3692740B1 (en) Information block (ib) acquisition based on quasi-stationary ib content
EP3890391A1 (en) Method and device for rrm measurement
WO2018028272A1 (zh) 一种上行资源调度方法及相关设备
CN112534763A (zh) Nr峰值速率和传输块大小
EP3306983A1 (en) Frequency-hopping method, terminal, and base station
US20210227419A1 (en) Communications method and apparatus
EP4207864A1 (en) Ssb-based measurement apparatuses
WO2024031404A1 (zh) 测量放松的方法、装置以及通信系统
EP3809747A1 (en) Radio link monitoring method and terminal device
KR20230150871A (ko) 측정 방법 및 장치
WO2019134072A1 (zh) 一种信号传输方法及装置、计算机存储介质
JP5635568B2 (ja) 通信システム、移動局装置、基地局装置、通信方法および集積回路
CN116234038A (zh) 一种状态转换方法及装置、通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3116520

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019879693

Country of ref document: EP

Effective date: 20210421

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021008119

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021008119

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210428