WO2020088203A1 - 状态转换方法及装置 - Google Patents

状态转换方法及装置 Download PDF

Info

Publication number
WO2020088203A1
WO2020088203A1 PCT/CN2019/110079 CN2019110079W WO2020088203A1 WO 2020088203 A1 WO2020088203 A1 WO 2020088203A1 CN 2019110079 W CN2019110079 W CN 2019110079W WO 2020088203 A1 WO2020088203 A1 WO 2020088203A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
serving cell
carrier bandwidth
identifier
indication information
Prior art date
Application number
PCT/CN2019/110079
Other languages
English (en)
French (fr)
Inventor
高兴航
徐志昆
Original Assignee
北京展讯高科通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京展讯高科通信技术有限公司 filed Critical 北京展讯高科通信技术有限公司
Publication of WO2020088203A1 publication Critical patent/WO2020088203A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a state transition method and device.
  • multiple serving cells including the primary cell Pcell and the secondary cell Scell
  • the base station can activate / deactivate some Scells, and can notify the terminal device which Scells are activated / deactivated by MAC information indicating the activation / deactivation of the Scell activation.
  • the terminal device no longer monitors the PDCCH (Physical Downlink Control Channel) indicated on the Scell, so as to save the power of the terminal device.
  • PDCCH Physical Downlink Control Channel
  • the SCell dormancy state mechanism to the NR.
  • the terminal device When the SCell is in the dormancy state, the terminal device no longer monitors the PDCCH on the SCell, but CSI (Channel State Information) Channel status information) / RRM (Radio Resource Management, radio resource management) measurement and other operations, so that after the SCell is reactivated, the base station can adjust the resource scheduling strategy according to the CSI / RRM measurement results of the SCell by the terminal device to be able to serve the terminal.
  • the device provides more adaptive resources, which can reduce the waste of terminal device power while increasing the throughput and rate of the terminal device.
  • the present disclosure proposes a state transition method and device.
  • a state transition method which is applied to a terminal device, the method comprising: receiving serving cell state indication information, the serving cell state indication information including an index identifier of a serving cell and a state of the serving cell Transition indication information; determining the first serving cell according to the index identifier; determining the current state of the first serving cell; determining the first serving cell according to the state transition indication information and the current state of the first serving cell status.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell includes: instructing the state in the state transition indication information When the first serving cell is in the activated state, and the current state of the first serving cell is the dormant state, it is determined that the state of the first serving cell is the activated state.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell includes: instructing the state in the state transition indication information When the first serving cell is in the activated state and the current state of the first serving cell is the deactivated state, it is determined that the state of the first serving cell is the activated state.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell includes: instructing the state in the state transition indication information When the first serving cell is in the deactivated state, and the current state of the first serving cell is the dormant state, it is determined that the state of the first serving cell is the deactivated state.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell includes: instructing the state in the state transition indication information When the first serving cell is in the deactivated state, and the current state of the first serving cell is in the activated state, it is determined that the state of the first serving cell is in the deactivated state.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell includes: instructing the state in the state transition indication information When the first serving cell is in a dormant state, and the current state of the first serving cell is an active state, it is determined that the state of the first serving cell is a dormant state.
  • the state transition indication information includes an activation state identifier and a sleep state identifier, where the activation state identifier is used to indicate whether the serving cell is in an activated state or a deactivated state, and the sleep state identifier is used to indicate a service Whether the cell is dormant.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell includes: indicating in the activation state that the first service When the cell is in an active state and the sleep state identifier indicates that the first serving cell is in a sleep state, and the first serving cell is currently in an active state, it is determined that the first serving cell is in a sleep state.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell includes: indicating in the activation state that the first service When the cell is in an activated state and the dormant state identifier indicates that the first serving cell is not in a dormant state, and the first serving cell is currently in a dormant state or a deactivated state, it is determined that the first serving cell is in an activated state.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell includes: indicating in the activation state that the first service When the cell is in the deactivated state and the dormant state identifier indicates that the first serving cell is not in the dormant state and the first serving cell is currently in the activated state or dormant state, it is determined that the first serving cell is in the deactivated state .
  • the method further includes: determining a target partial carrier bandwidth; and determining an operation for the target partial carrier bandwidth according to the state of the first serving cell.
  • the operation of determining the carrier bandwidth for the target part according to the state of the first serving cell includes: stopping the part when the first serving cell is in a dormant state
  • the physical downlink control channel PDCCH monitoring operation is performed on the carrier bandwidth.
  • the operation for determining the target partial carrier bandwidth according to the state of the first serving cell further includes:
  • the determining the carrier bandwidth for the target part according to the state of the first serving cell includes: when the first serving cell is in an activated state, in the target part The physical downlink control channel PDCCH monitoring operation is performed on the carrier bandwidth.
  • the operation of determining the target partial carrier bandwidth according to the state of the first serving cell further includes: performing a measurement operation on the target partial carrier bandwidth.
  • the operation for determining the target partial carrier bandwidth according to the state of the first serving cell includes: deactivating the first serving cell when the first serving cell is in a deactivated state Target partial carrier bandwidth; wherein, the target serving carrier bandwidth is the partial carrier bandwidth currently active in the first serving cell; or, the target serving carrier bandwidth is the part in the dormant state of the first serving cell Carrier bandwidth.
  • the method further includes: determining a part of the carrier bandwidth currently in the activated state or a part of the carrier bandwidth in the dormant state in the first serving cell; a part of the carrier bandwidth in the activated state When the target partial carrier bandwidth is inconsistent, deactivate the active partial carrier bandwidth and activate the target partial carrier bandwidth, or, in the dormant partial carrier bandwidth and the target partial carrier bandwidth When they are not consistent, the partial carrier bandwidth in the dormant state is deactivated, and the target partial carrier bandwidth is activated.
  • the serving cell status indication information further includes a target part carrier bandwidth identifier
  • the determining the target partial carrier bandwidth includes: determining the target partial carrier bandwidth according to the target partial carrier bandwidth identifier.
  • the serving cell state indication information is carried by downlink control DCI information.
  • the serving cell status indication information is carried by the first MAC CE information and / or the second MAC CE information, where the first MAC CE information includes an index identifier and an activation status identifier of the serving cell ,
  • the second MAC CE information includes an index identifier and a sleep state identifier of the serving cell.
  • the first MAC CE information and the second MAC CE information include a target partial carrier bandwidth identifier.
  • the method further includes: receiving radio resource control RRC signaling, the radio resource control RRC signaling indicating a dormant partial carrier bandwidth identifier; and determining the target partial carrier bandwidth includes:
  • the target partial carrier bandwidth is the partial carrier bandwidth identified by the dormant partial carrier bandwidth identifier.
  • the determining the target partial carrier bandwidth includes: determining that the target partial carrier bandwidth is the default partial carrier bandwidth when the first serving cell is in a sleep state.
  • the method further includes: when it is determined that the first serving cell is in a dormant state, a timer mechanism is turned on; during the timing of the timer mechanism, if no indication is received for the first serving cell The indication information of the transition to the activated state or the transition to the deactivated state, then the timer expires to determine that the first serving cell is in the deactivated state.
  • a state transition apparatus which is applied to a terminal device, and the apparatus includes: a first receiving module configured to receive serving cell status indication information, the serving cell status indication information including a serving cell The index identification of the server and the state transition indication information of the serving cell; the first determining module is used to determine the first serving cell according to the index identifier; the second determining module is used to determine the current state of the first serving cell; the third The determining module is configured to determine the state of the first serving cell according to the state transition indication information and the current state of the first serving cell.
  • the third determining module includes: a first determining submodule, configured to indicate in the state transition indication information that the first serving cell is in an activated state, and the first serving When the current state of the cell is the sleep state, it is determined that the state of the first serving cell is the active state.
  • the third determining module includes: a second determining submodule, configured to indicate in the state transition indication information that the first serving cell is in an activated state, and the first serving When the current state of the cell is the deactivated state, it is determined that the state of the first serving cell is the activated state.
  • the third determining module includes: a third determining submodule, configured to indicate in the state transition indication information that the first serving cell is in a deactivated state, and the first When the current state of the serving cell is the sleep state, it is determined that the state of the first serving cell is the deactivated state.
  • the third determining module includes: a fourth determining submodule, configured to indicate in the state transition indication information that the first serving cell is in a deactivated state, and the first When the current state of the serving cell is the activated state, it is determined that the state of the first serving cell is the deactivated state.
  • the third determining module includes: a fifth determining submodule, configured to indicate in the state transition indication information that the first serving cell is in a dormant state, and the first serving When the current state of the cell is the active state, it is determined that the state of the first serving cell is the sleep state.
  • the state transition indication information includes an activation state identifier and a sleep state identifier, where the activation state identifier is used to indicate whether the serving cell is in an activated state or a deactivated state, and the sleep state identifier is used to indicate a service Whether the cell is dormant.
  • the third determining module includes: a sixth determining submodule, configured to indicate that the first serving cell is in an activated state and the dormant state identifier indicates the first When a serving cell is in a dormant state, and the first serving cell is currently in an active state, it is determined that the first serving cell is in a dormant state.
  • the third determining module includes: a seventh determining submodule, configured to indicate that the first serving cell is in an activated state and the dormant state identifier indicates the first When a serving cell is not in a dormant state, and the first serving cell is currently in a dormant state or a deactivated state, it is determined that the first serving cell is in an activated state.
  • the third determining module includes: an eighth determining submodule, configured to indicate in the activation state that the first serving cell is in a deactivated state, and the sleep state identifier indicates the When the first serving cell is not in a dormant state, and the first serving cell is currently in an activated state or a dormant state, it is determined that the first serving cell is in a deactivated state.
  • the apparatus further includes: a fourth determination module for determining the target part carrier bandwidth; a fifth determination module for determining the target part according to the state of the first serving cell Carrier bandwidth operation.
  • the fifth determining module includes: a first processing submodule configured to stop physical downlink control on the part of the carrier bandwidth when the first serving cell is in a dormant state Channel PDCCH monitoring operation.
  • the fifth determining module further includes: a second processing submodule, configured to perform a measurement operation on the target partial carrier bandwidth.
  • the fifth determining module includes: a third processing submodule, configured to perform physical downlink control on the target partial carrier bandwidth when the first serving cell is in an activated state Channel PDCCH monitoring operation.
  • the fifth determining module further includes: a fourth processing submodule, configured to perform a measurement operation on the target partial carrier bandwidth.
  • the fifth determining module includes: a fifth processing submodule, configured to deactivate the target partial carrier bandwidth when the first serving cell is in a deactivated state; wherein, The target serving carrier bandwidth is a part of the carrier bandwidth of the first serving cell that is currently in an activated state; or, the target serving carrier bandwidth is a part of the carrier bandwidth of the first serving cell that is in a dormant state.
  • the apparatus further includes: a sixth determining module, configured to determine a part of the carrier bandwidth currently activated or a part of the carrier bandwidth in the sleep state in the first serving cell; the processing module, Used to deactivate the active partial carrier bandwidth and activate the target partial carrier bandwidth when the active partial carrier bandwidth is inconsistent with the target partial carrier bandwidth, or to activate the target partial carrier bandwidth When the partial carrier bandwidth in the state is inconsistent with the target partial carrier bandwidth, the partial carrier bandwidth in the dormant state is deactivated, and the target partial carrier bandwidth is activated.
  • a sixth determining module configured to determine a part of the carrier bandwidth currently activated or a part of the carrier bandwidth in the sleep state in the first serving cell
  • the processing module Used to deactivate the active partial carrier bandwidth and activate the target partial carrier bandwidth when the active partial carrier bandwidth is inconsistent with the target partial carrier bandwidth, or to activate the target partial carrier bandwidth
  • the partial carrier bandwidth in the dormant state is deactivated, and the target partial carrier bandwidth is activated.
  • the serving cell state indication information further includes a target partial carrier bandwidth identifier
  • the fourth determining module includes: a ninth determining submodule, configured to determine according to the target partial carrier bandwidth identifier Target part carrier bandwidth.
  • the serving cell state indication information is carried by downlink control DCI information.
  • the serving cell status indication information is carried by the first MAC CE information and / or the second MAC CE information, where the first MAC CE information includes an index identifier and an activation status identifier of the serving cell ,
  • the second MAC CE information includes an index identifier and a sleep state identifier of the serving cell.
  • the first MAC CE information and the second MAC CE information include a target partial carrier bandwidth identifier.
  • the device further includes: a second receiving module, configured to receive radio resource control RRC signaling, the radio resource control RRC signaling indicating a dormant partial carrier bandwidth identifier;
  • the fourth determining module includes:
  • the tenth determining submodule is configured to determine that the target partial carrier bandwidth is the partial carrier bandwidth identified by the dormant partial carrier bandwidth identifier when the first serving cell is in the dormant state.
  • the fourth determining module includes: an eleventh determining submodule, configured to determine that the target part of the carrier bandwidth is the default part when the first serving cell is in a dormant state Carrier bandwidth.
  • the apparatus further includes: a seventh determination module, configured to determine that the first serving cell is in a sleep state, and a timer mechanism; and an eighth determination module, configured to perform a timer mechanism During the timing period, if no indication information indicating that the first serving cell transitions to the activated state or the deactivated state is received, the timer times out to determine that the first serving cell is in the deactivated state.
  • a state transition apparatus including: a processor; a memory for storing processor executable instructions; wherein the processor is configured to perform the above method.
  • a non-volatile computer-readable storage medium on which computer program instructions are stored, wherein the computer program instructions implement the above method when executed by a processor.
  • the terminal device can receive the serving cell state indication information, and determine the first serving cell according to the index identifier in the serving cell state indication information, and after determining the current state of the first serving cell, according to the serving cell state indication information
  • the state transition indication information and the current state of the first cell determine the state of the first serving cell.
  • the terminal device can quickly cope with the state transition processing of the first serving cell.
  • FIG. 1 shows a flowchart of a state transition method according to an embodiment of the present disclosure
  • FIG. 2 shows a flowchart of a state transition method according to an embodiment of the present disclosure
  • FIG. 3 shows a flowchart of a state transition method according to an embodiment of the present disclosure
  • FIG. 5 shows a structural block diagram of a state transition device according to an embodiment of the present disclosure
  • FIG. 6 shows a structural block diagram of a state transition device according to an embodiment of the present disclosure
  • Fig. 7 is a block diagram of a device 800 for state transition according to an exemplary embodiment.
  • FIG. 1 shows a flowchart of a state transition method according to an embodiment of the present disclosure, which can be applied to a terminal device. As shown in FIG. 1, the method may include:
  • Step 101 Receive serving cell status indication information, where the serving cell status indication information includes the serving cell's index identification and serving cell's state transition indication information.
  • the base station can convert the state of the serving cell according to the data volume of the terminal device, and send the corresponding serving cell state indication information to the terminal device through the serving cell (the base station can send the serving cell state to the terminal device through the active cell Indication information, but it is not possible to send serving cell state indication information to the terminal device through the serving cell in the sleep state).
  • the serving cell status indication information may include the serving cell index identification and the serving cell state transition indication information, where the serving cell index identification is used to indicate the serving cell to be subjected to state transition, and the serving cell state transition identification may be used to indicate The serving cell identified by the corresponding index identifier has undergone a corresponding state transition, for example: indicating that the serving cell has been switched from the deactivated state to the activated state, or from the dormant state to the activated state, or from the dormant state to the deactivated The state has either changed from the activated state to the sleep state, or has changed from the activated state to the deactivated state.
  • Step 102 Determine the first serving cell according to the index identifier.
  • the terminal device may determine that the service cell identified by the index identifier is the first service cell, and the first service cell is the service cell that has undergone state conversion. For example, if the serving cell status indication information includes an index identifier 002, and the serving cell corresponding to the index identifier 002 is SCell2, the terminal device may determine SCell2 as the first serving cell.
  • Step 103 Determine the current state of the first serving cell.
  • Step 104 Determine the state of the first serving cell according to the state transition indication information and the current state of the first serving cell.
  • the current status of the first serving cell may be obtained locally from the terminal device (for example, the local first serving cell has a status identifier, and the terminal device may determine the first serving cell according to the status identifier of the first serving cell The current state of the first serving cell), and determine the state of the first serving cell according to the state transition indication information for the first serving cell and the current state of the first serving cell.
  • the terminal device can receive the serving cell state indication information, and determine the first serving cell according to the index identifier in the serving cell state indication information, and after determining the current state of the first serving cell, according to the serving cell state indication information
  • the state transition indication information and the current state of the first cell determine the state of the first serving cell.
  • the terminal device can quickly cope with the state transition processing of the first serving cell.
  • the terminal device may determine that the first serving cell has transitioned from the sleep state to the active state according to the activation state indicated by the serving cell state indication information; or the terminal device may determine The indicated deactivation state determines that the first serving cell has transitioned from the dormant state to the deactivated state; or the terminal device may determine that the first serving cell has transitioned from the activated state to the dormant state according to the dormant state indicated by the serving cell state indication information .
  • the terminal device can implement some operations after the activation / deactivation of the serving cell and the transition from the sleep state.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell may include: indicating in the state transition indication information When the first serving cell is in the activated state, and the current state of the first serving cell is the dormant state, it is determined that the state of the first serving cell is the activated state.
  • the terminal device determines that the current state of the first serving cell is the sleep state (when the first serving cell locally in the terminal device has second identification information, and the second identification information is used to indicate that the first serving cell is in a sleep state), the terminal device may determine that the state of the first serving cell is an active state.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell may include: indicating that the state transition indication information indicates When the first serving cell is in an activated state and the current state of the first serving cell is a deactivated state, it is determined that the state of the first serving cell is an activated state.
  • the state transition indication information includes first identification information (the first identification information may be used to indicate that the first serving cell is in an activated state), and the terminal device determines that the current state of the first serving cell is the deactivated state (When the first serving cell in the terminal device has third identification information, and the third identification information is used to indicate that the first serving cell is in the deactivated state), the terminal device may determine that the state of the first serving cell is the activated state.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell may include:
  • the state transition indication information indicates that the first serving cell is in a deactivated state, and the current state of the first serving cell is a dormant state, it is determined that the state of the first serving cell is a deactivated state.
  • the state transition indication information includes third identification information (the third identification information may be used to indicate that the first serving cell is in a deactivated state), and the terminal device determines that the current state of the first serving cell is the sleep state (When the first serving cell in the terminal device locally has second identification information, and the second identification information is used to indicate that the first serving cell is in a dormant state), the terminal device may determine that the state of the first serving cell is the deactivated state.
  • the third identification information may be used to indicate that the first serving cell is in a deactivated state
  • the terminal device may determine that the state of the first serving cell is the deactivated state.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell includes: instructing the state in the state transition indication information When the first serving cell is in the deactivated state, and the current state of the first serving cell is in the activated state, it is determined that the state of the first serving cell is in the deactivated state.
  • the state transition indication information includes third identification information (the third identification information may be used to indicate that the first serving cell is in the deactivated state), and the terminal device determines that the current state of the first serving cell is the activated state (When the first serving cell in the terminal device has the first identification information, which is used to indicate that the first serving cell is in the activated state), the terminal device may determine that the state of the first serving cell is the deactivated state.
  • the third identification information may be used to indicate that the first serving cell is in the deactivated state
  • the terminal device may determine that the state of the first serving cell is the deactivated state.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell may include: indicating in the state transition indication information When the first serving cell is in a dormant state, and the current state of the first serving cell is an active state, it is determined that the state of the first serving cell is a dormant state.
  • the state transition indication information includes second identification information (the second identification information is used to indicate that the first serving cell is in a dormant state), and the terminal device determines that the current state of the first serving cell is the active state (terminal device When the first serving cell in the local area has first identification information, and the first identifying information is used to indicate that the first serving cell is in an activated state), the terminal device may determine that the state of the first serving cell is a dormant state.
  • the terminal device may determine that the serving cell state indication information is invalid information and do not make it response.
  • the terminal device may perform the transition process of the sleep state and the activation / deactivation state in the first serving cell, including: the transition from the sleep state to the activated state, and the sleep state to The transition from the deactivated state and the activated state to the sleep state determines the state of the first serving cell, and performs corresponding operations on the first serving cell.
  • the state transition indication information may include an activation state identifier and a sleep state identifier, where the activation state identifier is used to indicate whether the serving cell is in an activated state or a deactivated state, and the sleep state identifier is used to indicate Whether the serving cell is dormant.
  • the state transition indication information may include 2 bits, where 1 bit is the activation state identifier, which may be used to indicate that the serving cell is in the activated state / deactivated state (for example, when the activated state identifier is 1, it may indicate that the first serving cell is in Active state, when the active state indicator is 0, it can indicate that the first serving cell is in the deactivated state), and the other bit is the sleep state indicator, which can be used to indicate whether the serving cell is in the sleep state (for example: when the sleep state indicator is 1, It may indicate that the first serving cell is in a dormant state, and when the dormant state identifier is 0, it may indicate that the first serving cell is not in a dormant state).
  • 1 bit is the activation state identifier, which may be used to indicate that the serving cell is in the activated state / deactivated state (for example, when the activated state identifier is 1, it may indicate that the first serving cell is in Active state, when the active state indicator is 0, it can indicate that the
  • the state transition indication information is 00, which can identify that the first serving cell is in a deactivated state, and is not in a sleep state; the state transition indication information is 01, which can identify that the first serving cell is in an active state, and is not in a sleep state; state The conversion indication information is 11, which may identify that the first serving cell is in an activated state and is in a dormant state.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell includes:
  • the first service is determined when the active state indicator indicates that the first serving cell is in an active state, the dormant state indicator indicates that the first serving cell is in a dormant state, and the first serving cell is currently in an active state The cell is dormant.
  • the state transition indication information in the service cell state indication information received by the terminal device is 11, that is, the state transition indication information indicates that the first serving cell is in an activated state and in a dormant state.
  • the terminal device may obtain the status identifier of the first serving cell locally, and when the status identifier of the first serving cell is 01 locally, the terminal device determines that the current status of the first serving cell is the active state, and the terminal device may switch according to the determined status
  • the indication information 11 (sleep state) and the current state 01 (active state) determine that the state of the first serving cell is the sleep state, and the terminal device may set the state identifier of the first serving cell to 11. After determining that the first serving cell is in the dormant state, the terminal device no longer monitors the physical downlink control channel PDCCH of the first serving cell, and may perform operations such as CSI / RRM measurement in the first serving cell.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell may include: indicating in the activation state that the first When the serving cell is in an activated state, and the dormant state identifier indicates that the first serving cell is not in a dormant state, and the first serving cell is currently in a dormant state or a deactivated state, it is determined that the first serving cell is in an activated state .
  • the state transition indication information in the service cell state indication information received by the terminal device is 01, that is, the state transition indication information indicates that the first serving cell is in an activated state and is not in a dormant state.
  • the terminal device may obtain the status identifier of the first serving cell locally, and when the status identifier of the first serving cell is 11 (or 00) locally, the terminal device determines that the current status of the first serving cell is the dormant state (or deactivated state) ), The terminal device may determine that the state of the first serving cell is the active state according to the determined state transition indication information 01 and the current state 11 (or 00), and the terminal device may set the state identifier of the first serving cell to 01. After determining that the first serving cell is in the activated state, the terminal device starts to monitor the physical downlink control channel PDCCH of the first serving cell, and may perform operations such as CSI / RRM measurement in the first serving cell.
  • the determining the state of the first serving cell according to the state transition indication information and the current state of the first serving cell may include: indicating in the activation state that the first When the serving cell is in the deactivated state and the dormant state identifier indicates that the first serving cell is not in the dormant state, and the first serving cell is currently in the activated state or the dormant state, it is determined that the first serving cell is in the deactivated state status.
  • the state transition indication information in the service cell state indication information received by the terminal device is 00, that is, the state transition indication information indicates that the first serving cell is in a deactivated state and is not in a sleep state.
  • the terminal device may obtain the status identifier of the first serving cell locally.
  • the terminal device determines that the current status of the first serving cell is the active state (or the dormant state)
  • the terminal device may determine that the state of the first serving cell is the deactivated state according to the determined state transition indication information 00 and the current state 01 (or 11), and may set the state identifier of the first serving cell to 00.
  • the terminal device After determining that the first serving cell is in the deactivated state, the terminal device no longer monitors the physical downlink control channel PDCCH of the first serving cell, and does not perform operations such as CSI / RRM measurement on the first serving cell.
  • the foregoing serving cell status indication information may be carried through downlink control DCI information.
  • the base station may send downlink control DCI information to the terminal device through the serving cell.
  • the downlink control DCI information may include the serving cell index identifier and the serving cell state transition indication information. Since the downlink control DCI information is physical layer information, the present disclosure is implemented For example, the state transition processing can be quickly performed on the serving cell, so that the terminal device can quickly respond to the processing operation after the state transition of the serving cell.
  • the foregoing serving cell status indication information may be carried by the first MAC CE information and / or the second MAC CE information, where the first MAC CE information includes an index identifier and activation of the serving cell State identifier, the second MAC CE information may include an index identifier and a sleep state identifier of the serving cell.
  • the base station can determine the switching status of the serving cell according to the data volume of the terminal device and send the corresponding MAC CE information. For example, the base station can send to the terminal device when it determines that the switching status of the serving cell is activated / deactivated.
  • the first MAC information the base station may send the second MAC information to the terminal device when determining that the transition state of the serving cell is the sleep state.
  • the terminal device may determine whether the terminal device is currently in an activated state, and then determine the state of the first serving cell according to the second MAC information and the current state of the terminal device. For example, in the second MAC CE information, the dormant state identifier of the first serving cell is 1, and the terminal device determines that the first serving cell is currently in the activated state (the current state identifier of the local first serving cell is 01), and the terminal device may determine the first The state identifier of a serving cell is 11, and the state of the first serving cell is determined to be the dormant state; or, the dormant state identifier of the first serving cell in the second MAC information is 0, and the terminal device determines that the first serving cell is currently in In the activated state (the current state identifier is 01), the terminal device may determine the state identifier of the first serving cell as 01, and determine the state of the first serving cell as the activated state; or, the dormancy of the first
  • the terminal device determines that the first serving cell is currently in the deactivated state, the terminal device determines that the second MAC information is invalid information Without any treatment.
  • the terminal device may determine whether the terminal device is currently in a sleep state, and then determine the state of the first serving cell according to the first MAC information and the current state of the terminal device. For example: in the first MAC CE information, the activation state identifier of the first serving cell is 1, and the terminal device determines that the first serving cell is currently in the sleep state (the current state identifier of the local first serving cell is 11), and the terminal device may determine the first The status identifier of a serving cell is 01, and it is determined that the status of the first serving cell is the activated state; or, the activation status identifier of the first serving cell in the first MAC information is 1, and the terminal device determines that the first serving cell is not currently In the dormant state (the current state identifier of the local first serving cell is 00 or 01), the terminal device may determine the state identifier of the first serving cell as 01, and determine the state of the first serving cell as the active state; or, the first MAC When the activation state identifier of the first serving cell is
  • the terminal device may determine that the first serving cell's state identifier is 11, and determine The first serving cell is in a dormant state.
  • the terminal device may determine that the status identity of the first serving cell is 01, and determine that the first serving cell is in the activated state.
  • the terminal device may determine that the status identifier of the first serving cell is 00, and determine that the first serving cell is in a deactivated state.
  • the terminal device determines the current state of the first serving cell When it is in the deactivated state (the current identification state of the local first serving cell is 00), the terminal device may determine that the serving cell state indication information is invalid information, and will not respond to it.
  • FIG. 2 shows a flowchart of a state transition method according to an embodiment of the present disclosure.
  • the above method may further include:
  • Step 105 Determine the target partial carrier bandwidth.
  • BWP partial carrier bandwidth
  • the base station has learned the bandwidth capabilities of the connected terminal.
  • the base station can configure one or more BWPs for different services according to the terminal's bandwidth capabilities. Transmission requirements.
  • the base station may configure a control resource set and search space for each BWP to ensure that the connected terminal monitors the PDCCH on the activated BWP to receive the scheduled resources for data transmission and reception.
  • R15NR only one BWP is activated at a time. Therefore, and on which BWP the terminal should perform the corresponding operation is a problem to be solved.
  • the base station configures no more than 4 BWPs for each SCell for dynamic data scheduling.
  • each SCell only has one BWP in the active state.
  • the BWP in the active state monitors the physical downlink control channel PDCCH and performs measurement operations (for example: CSI / RRS measurement, etc.); when the SCell is in the sleep state, the terminal device can perform measurement operations on the BWP in the active state, but Not monitoring its physical downlink control channel PDCCH, so that after the SCell is reactivated, the base station can perform resource scheduling according to the measurement result of the activated BWP of the terminal device, so that the base station can provide more accurate resource scheduling for the terminal device, Furthermore, the power of the terminal equipment is saved.
  • the terminal device may determine a target BWP from the BWP configured in the first serving cell, where the target BWP is the BWP to be performed by the terminal device for bandwidth quality measurement operation.
  • the serving cell state indication information may further include a target partial carrier bandwidth identifier, and the determining the target partial carrier bandwidth may include:
  • the target partial carrier bandwidth is determined according to the target BWP identifier.
  • the serving cell status indication information may be carried by downlink control DCI information, and the downlink control DCI information may include the serving cell index identification, the serving cell state transition indication information, and the target BWP identification.
  • the terminal device may determine that the BWP indicated by the target BWP identifier is the target BWP.
  • the above serving cell status indication information may be carried by the first MAC CE information and / or the second MAC CE information, where the first MAC CE information and the second MAC CE information include the target partial carrier bandwidth logo.
  • the terminal device may determine that the BWP indicated by the target BWP identifier is the target BWP.
  • the above method may further include: receiving radio resource control RRC signaling, where the radio resource control RRC signaling includes a dormant partial carrier bandwidth identifier;
  • the above determination of the target partial carrier bandwidth may include:
  • the target partial carrier bandwidth is the partial carrier bandwidth identified by the dormant partial carrier bandwidth identifier.
  • the base station may send RRC (Radio Resource Control) (radio resource control) signaling to the terminal device through the serving cell.
  • the RRC signaling may include a dormant BWP identifier, so as to be able to semi-statically indicate the dormant BWP of an SCell through RRC signaling.
  • the terminal device may determine the dormant BWP as the target BWP.
  • the above-mentioned determining the target partial carrier bandwidth may include:
  • the target partial carrier bandwidth is the default partial carrier bandwidth.
  • the terminal device may determine that the target BWP is the default BWP (default BWP).
  • Step 106 Determine an operation for the target partial carrier bandwidth according to the state of the first serving cell.
  • the state of the first serving cell and the processing operation of the target BWP may refer to Table 1 below.
  • the above operation for determining the target partial carrier bandwidth according to the state of the first serving cell may include:
  • the physical downlink control channel PDCCH monitoring operation on the partial carrier bandwidth is stopped.
  • the above method may further include:
  • the terminal device When the first serving cell is in the dormant state, the terminal device no longer monitors the physical downlink control channel PDCCH of the target BWP, and may only perform measurement operations on it, for example, perform CSI / RRS measurement operations.
  • the above operation for determining the target partial carrier bandwidth according to the state of the first serving cell may include:
  • a physical downlink control channel PDCCH monitoring operation is performed on the target partial carrier bandwidth.
  • the above method may further include:
  • the terminal device may perform physical downlink control channel PDCCH monitoring on the target BWP, and may perform measurement operations on it, for example, perform CSI / RRS measurement operations.
  • the above operation for determining the target partial carrier bandwidth according to the state of the first serving cell may include:
  • the target service carrier bandwidth is a part of the carrier bandwidth of the first service cell currently in the activated state; or, the The target serving carrier bandwidth is a part of the carrier bandwidth in the dormant state in the first serving cell.
  • the terminal device When the first serving cell is in the deactivated state, the terminal device does not perform physical downlink control channel PDCCH monitoring and measurement operations on any BWP (including the target BWP and the currently activated BWP) configured in the first serving cell.
  • the target BWP when the first serving cell transitions from the sleep state to the deactivated state, the target BWP is the BWP in the sleep state in the first serving cell, and the terminal device may deactivate the BWP in the first serving cell currently in sleep state;
  • the target BWP When the first serving cell is switched from the activated state to the deactivated state, the target BWP is the BWP currently in the activated state in the first serving cell, and the terminal device may deactivate the BWP in the first served cell currently in the activated state.
  • the BWP in the serving cell in the dormant state can actually be regarded as a BWP in the active state.
  • FIG. 3 shows a flowchart of a state transition method according to an embodiment of the present disclosure.
  • the terminal device may further include:
  • Step 107 Determine the part of the carrier bandwidth currently in the active state or the part of the carrier bandwidth in the dormant state in the first serving cell.
  • Step 108 When the active partial carrier bandwidth is inconsistent with the target partial carrier bandwidth, deactivate the active partial carrier bandwidth and activate the target partial carrier bandwidth,
  • the terminal device can determine whether the currently active BWP is the target BWP, and if so, directly according to the first serving cell's The state performs the corresponding operation on the target BWP (you can sleep the target BWP), otherwise, deactivate the BWP in the activated state, and activate the target BWP (or sleep the target BWP), and then target the target according to the state of the first serving cell BWP performs the corresponding operation.
  • the terminal device may determine whether the currently-sleeping BWP (or may also be the active BWP) is the target BWP, if it is, directly perform the corresponding operation on the target BWP according to the state of the first serving cell (the target BWP can be activated), otherwise, deactivate the BWP in the dormant state and activate the target BWP according to the first service
  • the state of the cell performs the corresponding operation on the target BWP.
  • the base station can adjust the BWP monitored or measured by the terminal device according to the amount of data processed by the terminal device, which can enable the base station to better schedule resources for the terminal device based on the measurement results reported by the terminal device, improve throughput, and reduce Power consumption of terminal equipment.
  • FIG. 4 shows a flowchart of a state transition method according to an embodiment of the present disclosure.
  • the above method may further include:
  • Step 109 When it is determined that the first serving cell is in a sleep state, start a timer mechanism
  • Step 110 During the timing of the timer mechanism, if no indication information indicating that the first serving cell transitions to the activated state or the deactivated state is received, the timer expires to determine that the first serving cell is in the deactivated state .
  • the terminal device may start a timer mechanism. If the terminal device does not receive the indication information indicating that the first serving cell transitions to the activated state or the deactivated state during the timing of the timer mechanism, it can be determined that the first serving cell is in the deactivated state when the timer expires. Even if the base station does not activate / deactivate the first serving cell in time, the terminal device can no longer generate unnecessary power consumption because of monitoring the first serving cell, and can save power.
  • the serving cell state indication information may be carried by downlink control DCI information, where the downlink control DCI information includes the serving cell index identification, the serving cell state transition indication information, and the target BWP identification.
  • the currently activated serving cell includes SCell1 and SCell2, and BWP1 and BWP2 are configured in SCell1, where BWP2 is in an activated state.
  • the base station decides to put SCell1 into the dormant state according to the current data volume of the terminal device, then the base station can send the downlink control DCI information to the terminal device through the serving cell SCell1 or SCell2.
  • Service cell state transition indication information 11.
  • Target BWP identifier 1.
  • the terminal device After receiving the downlink control DCI information, the terminal device determines that the first serving cell is SCell1 according to the index identifier 001, and the terminal device determines that the current state of SCell1 is the active state (the current state identifier of the local SCell1 is 01). The terminal device determines that the state of SCell1 is the sleep state (the state identifier is 11) according to the state transition indication information 11 (sleep state) of the serving cell and the current state (active state) of SCell1.
  • the terminal device determines that the target BWP is BWP1, and the active cell in SCell1 is BWP2, then the terminal device can activate BWP1 (or sleep BWP1), and after deactivating BWP2, perform CSI / RRS measurement on BWP1.
  • the base station decides to switch SCell1 back to the active state according to the current data volume of the terminal device, and then the base station can send downlink control DCI information to the terminal device through SCell2.
  • the downlink control DCI information includes: the index identifier of the serving cell: 001. State transition indication information of the serving cell: 01. Target BWP identifier: 1.
  • the terminal device After receiving the downlink control DCI information, the terminal device determines that the first serving cell is SCell1 according to the index identifier 001, and the terminal device determines that the current state of SCell1 is the sleep state (the current state identifier of the local SCell1 is 11). The terminal device determines that the state of SCell1 is the active state (the state identifier is 11) according to the state transition instruction information 01 (active state) and the current state of SCell1 (sleep state).
  • the terminal device determines that the target BWP is BWP1, and the one in SCell1 that is in the active state (sleep state) is BWP1. Therefore, the terminal device performs PDCCH monitoring on BWP1 and performs CSI / RRS measurement on BWP1.
  • the serving cell state indication information is carried by downlink control DCI information, where the downlink control DCI information includes the serving cell index identifier and the serving cell state transition indication information.
  • the currently activated serving cell includes SCell1 and SCell2, and BWP1 and BWP2 are configured in SCell1, where BWP2 is in an activated state.
  • the base station uses RRC signaling to specify the dormant part carrier bandwidth of SCell1 as BWP1.
  • the base station decides to put SCell1 into the dormant state according to the current data volume of the terminal device, then the base station can send the downlink control DCI information to the terminal device through SCell1 or SCell2.
  • the terminal device After receiving the downlink control DCI information, the terminal device determines that the first serving cell is SCell1 according to the index identifier 001, and the terminal device determines that the current state of SCell1 is the active state (the current state identifier of the local SCell1 is 01). The terminal device determines that the state of SCell1 is the sleep state according to the state transition instruction information 11 (sleep state) and the current state of SCell1 (active state).
  • the terminal device can determine that the target BWP is BWP1 according to RRC signaling, and the SCell1 is in the activated state as BWP2, then the terminal device can activate BWP1, and after deactivating BWP2, perform CSI / RRS measurement on BWP1.
  • the serving cell status indication information is carried by the first MAC CE information and the second MAC CE information, wherein the first MAC CE information includes an index identifier, an activation status identifier, and a target BWP identifier of the serving cell.
  • the second MAC CE information includes the index identifier, the sleep state identifier and the target BWP identifier of the serving cell.
  • the currently activated serving cell includes SCell1 and SCell2.
  • SCell1 is configured with BWP1 and BWP2, where BWP2 is in an activated state
  • SCell2 is configured with BWP1 and BWP2, where BWP2 is in an activated state.
  • the base station decides to put SCell1 into the sleep state according to the current data volume of the terminal device, then the base station can send the first MAC information and the second MAC information to the terminal device through SCell1 or SCell2, and the first MAC information includes: (serving cell The index ID: 001, the activation status ID of the serving cell: 1, the target BWP: 1), (the index ID of the serving cell: 002, the activation status ID of the serving cell: 1, the target BWP: 2), the second MAC
  • the information includes: (Serving cell's index ID: 001, serving cell's sleep state ID: 1, target BWP: 1), (Serving cell's index ID: 002, serving cell's sleep state ID: 0, target BWP: 2 ).
  • the terminal device After receiving the first MAC information and the second MAC information, the terminal device determines that the first serving cell is SCell1 according to the index identifier 001, and the terminal device determines that SCell1 is in an activated state (the current state identifier of the local SCell1 is 01). The terminal device determines that the state of SCell1 is the sleep state according to the sleep state identifier 1, the activation state identifier 1, and the current activation state of SCell1.
  • the terminal device After the terminal device determines that the target BWP in SCell1 is BWP1, and the active cell in SCell1 is BWP2, the terminal device can set the state of BWP1 to the active state and the state of BWP2 to the deactivated state, and then perform CSI / RRS on BWP1 measuring.
  • the terminal device determines that the first serving cell is SCell2 according to the index identifier 002, and the terminal device determines that SCell2 is in the activated state (the activation state identifier of the local SCell1 is 01).
  • the terminal device determines that the state of SCell1 is the active state according to the sleep state identifier 0, the activation state identifier 1, and the current activation state of SCell1.
  • the terminal device When the terminal device determines that the target BWP in SCell2 is BWP2, and the active state in SCell1 is BWP2, the terminal device directly monitors PDCCH on BWP2 and performs CSI / RRS measurement on BWP2.
  • FIG. 5 shows a structural block diagram of a state transition device according to an embodiment of the present disclosure.
  • the device may be applied to a terminal device. As shown in FIG. 5, the device may include:
  • the first receiving module 501 may be used to receive serving cell status indication information, where the serving cell status indication information includes the serving cell index identifier and the serving cell state transition indication information;
  • the first determining module 502 may be used to determine the first serving cell according to the index identifier
  • the second determining module 503 may be used to determine the current state of the first serving cell
  • the third determining module 504 may be used to determine the state of the first serving cell according to the state transition indication information and the current state of the first serving cell.
  • the terminal device can receive the serving cell state indication information, and determine the first serving cell according to the index identifier in the serving cell state indication information, and after determining the current state of the first serving cell, according to the serving cell state indication information
  • the state transition indication information and the current state of the first cell determine the state of the first serving cell.
  • the terminal device can quickly cope with the state transition processing of the first serving cell.
  • FIG. 6 shows a structural block diagram of a state transition device according to an embodiment of the present disclosure.
  • the third determination module 504 may include:
  • the first determining submodule 5041 may be used to determine the first serving cell when the state transition indication information indicates that the first serving cell is in an active state and the current state of the first serving cell is a dormant state Is activated.
  • the third determination module 504 may include:
  • the second determination submodule 5042 may be used to determine the first service when the state transition indication information indicates that the first serving cell is in an activated state and the current state of the first serving cell is in a deactivated state The state of the cell is activated.
  • the third determination module 504 may include:
  • the third determination submodule 5043 may be used to determine the first service when the state transition indication information indicates that the first serving cell is in a deactivated state and the current state of the first serving cell is a sleep state The state of the cell is deactivated.
  • the third determination module 504 may include:
  • the fourth determination submodule 5044 may be used to determine the first service when the state transition indication information indicates that the first serving cell is in a deactivated state and the current state of the first serving cell is an activated state The state of the cell is deactivated.
  • the third determination module 504 may include:
  • the fifth determination submodule 5045 may be used to determine the first serving cell when the state transition indication information indicates that the first serving cell is in a dormant state and the current state of the first serving cell is an active state Is in the sleep state.
  • the state transition indication information includes an activation state identifier and a sleep state identifier, where the activation state identifier is used to indicate whether the serving cell is in an activated state or a deactivated state, and the sleep state identifier is used to indicate a service Whether the cell is dormant.
  • the third determination module 504 may include:
  • the sixth determining submodule 5046 may be used when the activation state identifier indicates that the first serving cell is in an activated state, the sleep state identifier indicates that the first serving cell is in a sleep state, and the first serving cell is currently in In the activated state, it is determined that the first serving cell is in a dormant state.
  • the third determination module 504 may include:
  • the seventh determination submodule 5047 may be used when the active state identifier indicates that the first serving cell is in the active state, the sleep state identifier indicates that the first serving cell is not in the sleep state, and the first serving cell is currently When in the dormant state or the deactivated state, it is determined that the first serving cell is in the activated state.
  • the third determination module 504 may include:
  • the eighth determination submodule 5048 may be used to indicate in the activation state that the first serving cell is in a deactivated state, the sleep state identifier indicates that the first serving cell is not in a sleep state, and the first serving cell When it is currently in an activated state or a dormant state, it is determined that the first serving cell is in a deactivated state.
  • the above device may include:
  • the fourth determining module 505 may be used to determine the target partial carrier bandwidth
  • the fifth determining module 506 may be used to determine the operation for the target partial carrier bandwidth according to the state of the first serving cell.
  • the above-mentioned fifth determining module 506 may include:
  • the first processing submodule 5061 may be used to stop the physical downlink control channel PDCCH monitoring operation on the partial carrier bandwidth when the first serving cell is in a dormant state.
  • the above-mentioned fifth determining module 506 may further include:
  • the second processing submodule 5062 may be used to perform a measurement operation on the target partial carrier bandwidth.
  • the above-mentioned fifth determining module 506 may further include:
  • the third processing submodule 5063 may be used to perform a physical downlink control channel PDCCH monitoring operation on the target partial carrier bandwidth when the first serving cell is in an activated state.
  • the above-mentioned fifth determining module 506 may further include:
  • the fourth processing submodule 5064 may be used to perform a measurement operation on the target partial carrier bandwidth.
  • the above-mentioned fifth determining module 506 may further include:
  • the fifth processing submodule 5065 may be used to deactivate the target partial carrier bandwidth when the first serving cell is in the deactivated state
  • the target serving carrier bandwidth is a part of the carrier bandwidth of the first serving cell that is currently in an activated state; or, the target serving carrier bandwidth is a part of the carrier bandwidth of the first serving cell that is in a dormant state.
  • the above apparatus may further include:
  • the sixth determining module 507 may be used to determine a part of the carrier bandwidth currently in the active state or a part of the carrier bandwidth in the dormant state in the first serving cell;
  • the processing module 508 may be used to deactivate the active partial carrier bandwidth and activate the target partial carrier bandwidth when the active partial carrier bandwidth is inconsistent with the target partial carrier bandwidth,
  • the serving cell status indication information further includes a target partial carrier bandwidth identifier
  • the fourth determining module 505 may include:
  • the ninth determination submodule 5051 may be used to determine the target partial carrier bandwidth according to the target partial carrier bandwidth identifier.
  • the serving cell state indication information is carried through downlink control DCI information.
  • the serving cell status indication information is carried by the first MAC CE information and / or the second MAC CE information, wherein the first MAC CE information includes an index identifier and an activation status identifier of the serving cell , The second MAC CE information includes an index identifier and a sleep state identifier of the serving cell.
  • the first MAC CE information and the second MAC CE information include a target partial carrier bandwidth identifier.
  • the above apparatus may further include:
  • the second receiving module 509 may be used to receive radio resource control RRC signaling, the radio resource control RRC signaling indicating a dormant partial carrier bandwidth identifier;
  • the fourth determining module 505 may include:
  • the tenth determining submodule 5052 may be used to determine that the target partial carrier bandwidth is the partial carrier bandwidth identified by the dormant partial carrier bandwidth identifier when the first serving cell is in the dormant state.
  • the fourth determining module 505 may include:
  • the eleventh determination submodule 5053 may be used to determine that the target partial carrier bandwidth is the default partial carrier bandwidth when the first serving cell is in a dormant state.
  • the device may further include:
  • the seventh determining module 510 may be used to determine that the first serving cell is in a sleep state and start a timer mechanism
  • the eighth determination module 511 may be used to determine the first timeout when the timer does not receive indication information indicating that the first serving cell transitions to the activated state or to the deactivated state.
  • the serving cell is in a deactivated state.
  • Fig. 7 is a block diagram of a device 800 for state transition according to an exemplary embodiment.
  • the device 800 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and so on.
  • the device 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input / output (I / O) interface 812, a sensor component 814, ⁇ ⁇ ⁇ 816.
  • the processing component 802 generally controls the overall operations of the device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps in the above method.
  • the processing component 802 may include one or more modules to facilitate interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operation at the device 800. Examples of these data include instructions for any application or method operating on the device 800, contact data, phone book data, messages, pictures, videos, and so on.
  • the memory 804 may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable and removable Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable and removable Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 806 provides power to various components of the device 800.
  • the power supply component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 800.
  • the multimedia component 808 includes a screen that provides an output interface between the device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundary of the touch or sliding action, but also detect the duration and pressure related to the touch or sliding operation.
  • the multimedia component 808 includes a front camera and / or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera may receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and / or input audio signals.
  • the audio component 810 includes a microphone (MIC).
  • the microphone When the device 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I / O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, or a button. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing the device 800 with status assessment in various aspects.
  • the sensor component 814 can detect the on / off state of the device 800, and the relative positioning of the components, for example, the component is the display and keypad of the device 800, and the sensor component 814 can also detect the position change of the device 800 or a component of the device 800 The presence or absence of user contact with the device 800, the orientation or acceleration / deceleration of the device 800, and the temperature change of the device 800.
  • the sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may further include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the device 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 800 may be one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic components are implemented to perform the above method.
  • a non-volatile computer-readable storage medium is also provided, for example, a memory 804 including computer program instructions, which can be executed by the processor 820 of the device 800 to complete the above method.
  • the present disclosure may be a system, method, and / or computer program product.
  • the computer program product may include a computer-readable storage medium loaded with computer-readable program instructions for causing the processor to implement various aspects of the present disclosure.
  • the computer-readable storage medium may be a tangible device that can hold and store instructions used by the instruction execution device.
  • the computer-readable storage medium may be, but is not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), and erasable programmable read only memory (EPROM (Or flash memory), static random access memory (SRAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical coding device, such as a computer on which instructions are stored
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable programmable read only memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanical coding device such as a computer on which instructions are stored
  • the convex structure in the hole card or the groove and any suitable combination of the above.
  • the computer-readable storage medium used herein is not to be interpreted as a transient signal itself, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (for example, optical pulses through fiber optic cables), or through wires The transmitted electrical signal.
  • the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to various computing / processing devices, or to an external computer or external storage device through a network, such as the Internet, a local area network, a wide area network, and / or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and / or edge servers.
  • the network adapter card or network interface in each computing / processing device receives computer-readable program instructions from the network and forwards the computer-readable program instructions for storage in the computer-readable storage medium in each computing / processing device .
  • Computer program instructions for performing the operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or in one or more programming languages Source code or object code written in any combination.
  • the programming languages include object-oriented programming languages such as Smalltalk, C ++, etc., and conventional procedural programming languages such as "C" language or similar programming languages.
  • Computer readable program instructions can be executed entirely on the user's computer, partly on the user's computer, as an independent software package, partly on the user's computer and partly on a remote computer, or completely on the remote computer or server carried out.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider to pass the Internet connection).
  • electronic circuits such as programmable logic circuits, field programmable gate arrays (FPGAs) or programmable logic arrays (PLA), can be personalized by utilizing the status information of computer-readable program instructions, which can be Computer-readable program instructions are executed to implement various aspects of the present disclosure.
  • These computer-readable program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, or other programmable data processing device, thereby producing a machine that causes these instructions to be executed by the processor of a computer or other programmable data processing device A device that implements the functions / actions specified in one or more blocks in the flowchart and / or block diagram is generated.
  • the computer-readable program instructions may also be stored in a computer-readable storage medium. These instructions enable the computer, programmable data processing apparatus, and / or other devices to work in a specific manner. Therefore, the computer-readable medium storing the instructions includes An article of manufacture that includes instructions to implement various aspects of the functions / acts specified in one or more blocks in the flowchart and / or block diagram.
  • the computer-readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other equipment, so that a series of operating steps are performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , So that the instructions executed on the computer, other programmable data processing device, or other equipment implement the functions / acts specified in one or more blocks in the flowchart and / or block diagram.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of an instruction, and the module, program segment, or part of an instruction contains one or more Executable instructions.
  • the functions marked in the blocks may also occur in an order different from that marked in the drawings. For example, two consecutive blocks can actually be executed substantially in parallel, and sometimes they can also be executed in reverse order, depending on the functions involved.
  • each block in the block diagrams and / or flowcharts, and combinations of blocks in the block diagrams and / or flowcharts can be implemented with dedicated hardware-based systems that perform specified functions or actions Or, it can be realized by a combination of dedicated hardware and computer instructions.

Abstract

本公开涉及一种状态转换方法及装置,包括:接收服务小区状态指示信息,所述服务小区状态指示信息包括服务小区的索引标识和服务小区的状态转换指示信息;根据所述索引标识确定第一服务小区;确定所述第一服务小区的当前状态;根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态。根据本公开实施例提供的状态转换方法及装置,终端设备可以快速的应对第一服务小区状态转换后的处理。

Description

状态转换方法及装置 技术领域
本公开涉及通信领域,尤其涉及一种状态转换方法及装置。
背景技术
2018年6月,3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)第80次全会通过了5G NR(New Radio,新空口)的研究项目,该项目需要研究面向未来的终端设备的省电机制,以提高用户体验。
在NR实现CA(Carrier Aggregation,载波聚合)的过程中,可以部署多个服务小区(包括主小区Pcell和辅小区Scell)为同一终端设备服务,以提高终端设备的吞吐量和速率。当终端设备的数据量较小时,Pcell的资源足够处理数据时,基站可以将部分Scell激活/去激活,并可以通过用于指示Scell激活/去激活的MAC CE信息通知终端设备哪些Scell激活/去激活。对于去激活的Scell,终端设备不再监听该Scell上指示的PDCCH(Physical Downlink Control Channel,物理下行控制信道),以节约终端设备的电量。
但实际上,相关技术中存在当终端设备的数据变化,基站并没有及时去激活某些Scell,导致终端设备仍然需要监听这些Scell上的PDCCH,进而造成了功率浪费的问题。
为了解决上述问题,提出了将SCell dormancy state(辅小区休眠状态)机制应用到NR中,在SCell处于dormancy状态时,终端设备不再监听该SCell上的PDCCH,但是可以进行CSI(Channel State Information,信道状态信息)/RRM(Radio Resource Management,无线资源管理)测量等操作,以使得该SCell重新被激活后,基站可以根据终端设备对SCell的CSI/RRM测量结果调整资源调度策略,以能够为终端设备提供更适配的资源,进而在提升终端设备的吞吐量和速率的同时,可以减少终端设备功率的浪费。
因此,如果NR中引入SCell dormancy state后,如何进行SCell的激活/去激活与休眠状态的转换,是厄待解决的问题。
发明内容
有鉴于此,本公开提出了一种状态转换方法及装置。
根据本公开的一方面,提供了一种状态转换方法,应用于终端设备,所述方法包括:接收服务小区状态指示信息,所述服务小区状态指示信息包括服务小区的索引标识和服务小区的状态转换指示信息;根据所述索引标识确定第一服务小区;确定所述第一服务小区的当前状态;根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态。
在一种可能的实现方式中,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:在所述状态转换指示信息指示所述第一服务小区处于激活状态,且所述第一服务小区的当前状态为休眠状态时,确定所述第一服务小区的状态为激活状态。
在一种可能的实现方式中,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:在所述状态转换指示信息指示所述第一服务小区处于激活状态,且所述第一服务小区的当前状态为去激活状态时,确定所述第一服务小区的状态为激活状态。
在一种可能的实现方式中,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:在所述状态转换指示信息指示所述第一服务小区处于去激活状态,且所述第一服务小区的当前状态为休眠状态时,确定所述第一服务小区的状态为去激活状态。
在一种可能的实现方式中,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:在所述状态转换指示信息指示所述第一服务小区处于去激活状态,且所述第一服务小区的当前状态为激活状态时,确定所述第一服务小区的状态为去激活状态。
在一种可能的实现方式中,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:在所述状态转换指示信息指示所述第一服务小区处于休眠状态,且所述第一服务小区的当前状态为激活状态时,确定所述第一服务小区的状态为休眠状态。
在一种可能的实现方式中,所述状态转换指示信息包括激活状态标识和休眠状态标识,其中,激活状态标识用于表示服务小区是处于激活状态或去激活状态,休眠状态标识用于表示服务小区是否处于休眠状态。
在一种可能的实现方式中,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:在所述激活状态标识表示第一服务小区处于激活状态、所述休眠状态标识表示所述第一服务小区处于休眠状态,且所述第一服务小区当前处于激活状态时,确定所述第一服务小区处于休眠状态。
在一种可能的实现方式中,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:在所述激活状态标识表示第一服务小区处于激活状态、所述休眠状态标识表示所述第一服务小区不处于休眠状态,且所述第一服务小区当前处于休眠状态或者去激活状态时,确定所述第一服务小区处于激活状态。
在一种可能的实现方式中,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:在所述激活状态标识表示第一服务小区处于去激活状态、所述休眠状态标识表示所述第一服务小区不处于休眠状态,且所述第一服务小区当前处于激活状态或者休眠状态时,确定所述第一服务小区处于去激活状态。
在一种可能的实现方式中,所述方法还包括:确定目标部分载波带宽;根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作。
在一种可能的实现方式中,所述根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作,包括:在所述第一服务小区处于休眠状态时,停止在所述部分载波带宽上进行物理下行控制信道PDCCH的监听操作。
在一种可能的实现方式中,所述根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作,还包括:
对所述目标部分载波带宽执行测量操作。
在一种可能的实现方式中,所述根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作,包括:在所述第一服务小区处于激活状态时,在所述目标部分载波带宽上进行物理下行控制信道PDCCH的监听操作。
在一种可能的实现方式中,所述根据所述第一服务小区的状态确定针对所述目标部分载波带宽的 操作,还包括:对所述目标部分载波带宽执行测量操作。
在一种可能的实现方式中,所述根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作,包括:在所述第一服务小区处于去激活状态时,去激活所述目标部分载波带宽;其中,所述目标服务载波带宽为所述第一服务小区当前处于激活状态的部分载波带宽;或者,所述目标服务载波带宽为所述第一服务小区中处于休眠状态的部分载波带宽。
在一种可能的实现方式中,所述方法还包括:确定所述第一服务小区中当前处于激活状态的部分载波带宽或者处于休眠状态的部分载波带宽;在所述处于激活状态的部分载波带宽与所述目标部分载波带宽不一致时,去激活所述处于激活状态的部分载波带宽,并激活所述目标部分载波带宽,或者,在所述处于休眠状态的部分载波带宽与所述目标部分载波带宽不一致时,去激活所述处于休眠状态的部分载波带宽,并激活所述目标部分载波带宽。
在一种可能的实现方式中,所述服务小区状态指示信息还包括目标部分载波带宽标识,
所述确定目标部分载波带宽,包括:根据所述目标部分载波带宽标识确定目标部分载波带宽。
在一种可能的实现方式中,所述服务小区状态指示信息通过下行控制DCI信息承载。
在一种可能的实现方式中,所述服务小区状态指示信息通过第一MAC CE信息和/或第二MAC CE信息承载,其中所述第一MAC CE信息包括服务小区的索引标识和激活状态标识,所述第二MAC CE信息包括所述服务小区的索引标识和休眠状态标识。
在一种可能的实现方式中,所述第一MAC CE信息及第二MAC CE信息包括目标部分载波带宽标识。
在一种可能的实现方式中,所述方法还包括:接收无线资源控制RRC信令,所述无线资源控制RRC信令指示休眠部分载波带宽标识;所述确定目标部分载波带宽,包括:
在所述第一服务小区处于休眠状态时,确定所述目标部分载波带宽为所述休眠部分载波带宽标识所标识的部分载波带宽。
在一种可能的实现方式中,所述确定目标部分载波带宽,包括:在所述第一服务小区处于休眠状态时,确定所述目标部分载波带宽为缺省部分载波带宽。
在一种可能的实现方式中,所述方法还包括:确定所述第一服务小区处于休眠状态时,开启定时器机制;在定时器机制计时期间,若没有收到指示所述第一服务小区转换到激活状态或转换到去激活状态的指示信息,则定时器超时确定所述第一服务小区处于去激活状态。
根据本公开的另一方面,提供了一种状态转换装置,应用于终端设备,所述装置包括:第一接收模块,用于接收服务小区状态指示信息,所述服务小区状态指示信息包括服务小区的索引标识和服务小区的状态转换指示信息;第一确定模块,用于根据所述索引标识确定第一服务小区;第二确定模块,用于确定所述第一服务小区的当前状态;第三确定模块,用于根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态。
在一种可能的实现方式中,所述第三确定模块,包括:第一确定子模块,用于在所述状态转换指示信息指示所述第一服务小区处于激活状态,且所述第一服务小区的当前状态为休眠状态时,确定所述第一服务小区的状态为激活状态。
在一种可能的实现方式中,所述第三确定模块,包括:第二确定子模块,用于在所述状态转换指 示信息指示所述第一服务小区处于激活状态,且所述第一服务小区的当前状态为去激活状态时,确定所述第一服务小区的状态为激活状态。
在一种可能的实现方式中,所述第三确定模块,包括:第三确定子模块,用于在所述状态转换指示信息指示所述第一服务小区处于去激活状态,且所述第一服务小区的当前状态为休眠状态时,确定所述第一服务小区的状态为去激活状态。
在一种可能的实现方式中,所述第三确定模块,包括:第四确定子模块,用于在所述状态转换指示信息指示所述第一服务小区处于去激活状态,且所述第一服务小区的当前状态为激活状态时,确定所述第一服务小区的状态为去激活状态。
在一种可能的实现方式中,所述第三确定模块,包括:第五确定子模块,用于在所述状态转换指示信息指示所述第一服务小区处于休眠状态,且所述第一服务小区的当前状态为激活状态时,确定所述第一服务小区的状态为休眠状态。
在一种可能的实现方式中,所述状态转换指示信息包括激活状态标识和休眠状态标识,其中,激活状态标识用于表示服务小区是处于激活状态或去激活状态,休眠状态标识用于表示服务小区是否处于休眠状态。
在一种可能的实现方式中,所述第三确定模块,包括:第六确定子模块,用于在所述激活状态标识表示第一服务小区处于激活状态、所述休眠状态标识表示所述第一服务小区处于休眠状态,且所述第一服务小区当前处于激活状态时,确定所述第一服务小区处于休眠状态。
在一种可能的实现方式中,所述第三确定模块,包括:第七确定子模块,用于在所述激活状态标识表示第一服务小区处于激活状态、所述休眠状态标识表示所述第一服务小区不处于休眠状态,且所述第一服务小区当前处于休眠状态或者去激活状态时,确定所述第一服务小区处于激活状态。
在一种可能的实现方式中,所述第三确定模块,包括:第八确定子模块,用于在所述激活状态标识表示第一服务小区处于去激活状态、所述休眠状态标识表示所述第一服务小区不处于休眠状态,且所述第一服务小区当前处于激活状态或者休眠状态时,确定所述第一服务小区处于去激活状态。
在一种可能的实现方式中,所述装置还包括:第四确定模块,用于确定目标部分载波带宽;第五确定模块,用于根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作。
在一种可能的实现方式中,所述第五确定模块,包括:第一处理子模块,用于在所述第一服务小区处于休眠状态时,停止在所述部分载波带宽上进行物理下行控制信道PDCCH的监听操作。
在一种可能的实现方式中,所述第五确定模块,还包括:第二处理子模块,用于对所述目标部分载波带宽执行测量操作。
在一种可能的实现方式中,所述第五确定模块,包括:第三处理子模块,用于在所述第一服务小区处于激活状态时,在所述目标部分载波带宽上进行物理下行控制信道PDCCH的监听操作。
在一种可能的实现方式中,所述第五确定模块,还包括:第四处理子模块,用于对所述目标部分载波带宽执行测量操作。
在一种可能的实现方式中,所述第五确定模块,包括:第五处理子模块,用于在所述第一服务小区处于去激活状态时,去激活所述目标部分载波带宽;其中,所述目标服务载波带宽为所述第一服务小区当前处于激活状态的部分载波带宽;或者,所述目标服务载波带宽为所述第一服务小区中处于休 眠状态的部分载波带宽。
在一种可能的实现方式中,所述装置还包括:第六确定模块,用于确定所述第一服务小区中当前处于激活状态的部分载波带宽或者处于休眠状态的部分载波带宽;处理模块,用于在所述处于激活状态的部分载波带宽与所述目标部分载波带宽不一致时,去激活所述处于激活状态的部分载波带宽,并激活所述目标部分载波带宽,或者,在所述处于休眠状态的部分载波带宽与所述目标部分载波带宽不一致时,去激活所述处于休眠状态的部分载波带宽,并激活所述目标部分载波带宽。
在一种可能的实现方式中,所述服务小区状态指示信息还包括目标部分载波带宽标识,所述第四确定模块,包括:第九确定子模块,用于根据所述目标部分载波带宽标识确定目标部分载波带宽。
在一种可能的实现方式中,所述服务小区状态指示信息通过下行控制DCI信息承载。
在一种可能的实现方式中,所述服务小区状态指示信息通过第一MAC CE信息和/或第二MAC CE信息承载,其中所述第一MAC CE信息包括服务小区的索引标识和激活状态标识,所述第二MAC CE信息包括所述服务小区的索引标识和休眠状态标识。
在一种可能的实现方式中,所述第一MAC CE信息及第二MAC CE信息包括目标部分载波带宽标识。
在一种可能的实现方式中,所述装置还包括:第二接收模块,用于接收无线资源控制RRC信令,所述无线资源控制RRC信令指示休眠部分载波带宽标识;
所述第四确定模块,包括:
第十确定子模块,用于在所述第一服务小区处于休眠状态时,确定所述目标部分载波带宽为所述休眠部分载波带宽标识所标识的部分载波带宽。
在一种可能的实现方式中,所述第四确定模块,包括:第十一确定子模块,用于在所述第一服务小区处于休眠状态时,确定所述目标部分载波带宽为缺省部分载波带宽。
在一种可能的实现方式中,所述装置还包括:第七确定模块,用于确定所述第一服务小区处于休眠状态时,开启定时器机制;第八确定模块,用于在定时器机制计时期间,若没有收到指示所述第一服务小区转换到激活状态或转换到去激活状态的指示信息,则定时器超时确定所述第一服务小区处于去激活状态。
根据本公开的另一方面,提供了一种状态转化装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行上述方法。根据本公开的另一方面,提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其中,所述计算机程序指令被处理器执行时实现上述方法。
这样一来,终端设备可以接收服务小区状态指示信息,并根据服务小区状态指示信息中的索引标识确定第一服务小区,并在确定第一服务小区的当前状态后,根据服务小区状态指示信息中的状态转换指示信息及第一小区的当前状态确定所述第一服务小区的状态。根据本公开实施例提供的状态转化方法及装置,终端设备可以快速的应对第一服务小区状态转换后的处理。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特 征和方面,并且用于解释本公开的原理。
图1示出根据本公开一实施例的状态转换方法的流程图;
图2示出根据本公开一实施例的状态转换方法的流程图;
图3示出根据本公开一实施例的状态转换方法的流程图;
图4示出根据本公开一实施例的状态转换方法的流程图;
图5示出根据本公开一实施例的状态转换装置的结构框图;
图6示出根据本公开一实施例的状态转换装置的结构框图;
图7是根据一示例性实施例示出的一种用于状态转换的装置800的框图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
图1示出根据本公开一实施例的状态转换方法的流程图,该方法可以应用于终端设备。如图1所示,该方法可以包括:
步骤101、接收服务小区状态指示信息,所述服务小区状态指示信息包括服务小区的索引标识和服务小区的状态转换指示信息。
举例来说,基站可以根据终端设备的数据量转换服务小区的状态,并通过服务小区向终端设备发送对应的服务小区状态指示信息(基站可以通过处于激活状态的服务小区向终端设备发送服务小区状态指示信息,但不能够通过处于休眠状态的服务小区向终端设备发送服务小区状态指示信息)。服务小区状态指示信息中可以包括服务小区的索引标识和服务小区的状态转换指示信息,其中,服务小区的索引标识用于指示待进行状态转换的服务小区,服务小区的状态转换标识可以用于指示对应索引标识所标识的服务小区已进行相应的状态转换,例如:指示将服务小区已从去激活状态转换为激活状态、或者已从休眠状态转换为激活状态、或者已从休眠状态转换为去激活状态、或者已从激活状态转换为休眠状态、或者已从激活状态转换为去激活状态。
步骤102、根据所述索引标识确定第一服务小区。
终端设备接收服务小区状态指示信息后,可以确定索引标识所标识的服务小区为第一服务小区,该第一服务小区为进行了状态转化的服务小区。例如:服务小区状态指示信息中包括索引标识002,索引标识002对应的服务小区是SCell2,则终端设备可以确定SCell2为第一服务小区。
步骤103、确定所述第一服务小区的当前状态。
步骤104、根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态。
终端设备确定第一服务小区后,可以从终端设备本地获取第一服务小区的当前状态(例如:本地第一服务小区具有状态标识,终端设备可以根据第一服务小区的状态标识确定第一服务小区的当前状态),并根据针对该第一服务小区的状态转换指示信息及第一服务小区的当前状态确定第一服务小区的状态。
这样一来,终端设备可以接收服务小区状态指示信息,并根据服务小区状态指示信息中的索引标识确定第一服务小区,并在确定第一服务小区的当前状态后,根据服务小区状态指示信息中的状态转换指示信息及第一小区的当前状态确定所述第一服务小区的状态。根据本公开实施例提供的状态转化方法,终端设备可以快速的应对第一服务小区状态转换后的处理。
例如:在NR实现CA的场景下,终端设备可以根据服务小区状态指示信息所指示的激活状态,确定第一服务小区已由休眠状态转换为激活状态;或者终端设备可以根据服务小区状态指示信息所指示的去激活状态,确定第一服务小区已由休眠状态转换为去激活状态;或者终端设备可以根据服务小区状态指示信息所指示的休眠状态,确定第一服务小区已由激活状态转换为休眠状态,终端设备能够实现服务小区的激活/去激活与休眠状态的转换后的一些操作。
在一种可能的实现方式中,上述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,可以包括:在所述状态转换指示信息指示所述第一服务小区处于激活状态,且所述第一服务小区的当前状态为休眠状态时,确定所述第一服务小区的状态为激活状态。
举例来说,在状态转换指示信息中包括第一标识信息(该第一标识信息可以用于表示第一服务小区处于激活状态)时,且终端设备确定第一服务小区的当前状态为休眠状态(终端设备本地中第一服务小区具有第二标识信息,该第二标识信息用于表示第一服务小区处于休眠状态)时,终端设备可以确定第一服务小区的状态为激活状态。
在一种可能的实现方式中,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,可以包括:在所述状态转换指示信息指示所述第一服务小区处于激活状态,且所述第一服务小区的当前状态为去激活状态时,确定所述第一服务小区的状态为激活状态。
举例来说,在状态转换指示信息中包括第一标识信息(该第一标识信息可以用于表示第一服务小区处于激活状态)时,且终端设备确定第一服务小区的当前状态为去激活状态(终端设备本地中第一服务小区具有第三标识信息,该第三标识信息用于表示第一服务小区处于去激活状态)时,终端设备可以确定第一服务小区的状态为激活状态。
在一种可能的实现方式中,上述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,可以包括:
在所述状态转换指示信息指示所述第一服务小区处于去激活状态,且所述第一服务小区的当前状态为休眠状态时,确定所述第一服务小区的状态为去激活状态。
举例来说,在状态转换指示信息中包括第三标识信息(该第三标识信息可以用于表示第一服务小区处于去激活状态)时,且终端设备确定第一服务小区的当前状态为休眠状态(终端设备本地中第一服务小区具有第二标识信息,该第二标识信息用于表示第一服务小区处于休眠状态)时,终端设备可以确定第一服务小区的状态为去激活状态。
在一种可能的实现方式中,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定 所述第一服务小区的状态,包括:在所述状态转换指示信息指示所述第一服务小区处于去激活状态,且所述第一服务小区的当前状态为激活状态时,确定所述第一服务小区的状态为去激活状态。
举例来说,在状态转换指示信息中包括第三标识信息(该第三标识信息可以用于表示第一服务小区处于去激活状态)时,且终端设备确定第一服务小区的当前状态为激活状态(终端设备本地中第一服务小区具有第一标识信息,该第一标识信息用于表示第一服务小区处于激活状态)时,终端设备可以确定第一服务小区的状态为去激活状态。
在一种可能的实现方式中,上述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,可以包括:在所述状态转换指示信息指示所述第一服务小区处于休眠状态,且所述第一服务小区的当前状态为激活状态时,确定所述第一服务小区的状态为休眠状态。
举例来说,在状态转换指示信息中包括第二标识信息(该第二标识信息用于表示第一服务小区处于休眠状态),且终端设备确定第一服务小区的当前状态为激活状态(终端设备本地中第一服务小区具有第一标识信息,该第一标识信息用于表示第一服务小区处于激活状态)时,终端设备可以确定第一服务小区的状态为休眠状态。
需要说明的是,当状态转换指示信息指示第一服务小区处于休眠状态,且第一服务小区的当前状态为去激活状态时,终端设备可以确定该服务小区状态指示信息为无效信息,不对其作出响应。
这样一来,根据本公开实施例提供的状态转化方法,终端设备可以在第一服务小区进行休眠状态与激活/去激活状态的转换处理后,包括:休眠状态至激活状态的转换、休眠状态至去激活状态的转换、激活状态至休眠状态的转换,确定第一服务小区的状态,并对第一服务小区执行对应的操作。
在一种可能的实现方式中,所述状态转换指示信息可以包括激活状态标识和休眠状态标识,其中,激活状态标识用于表示服务小区是处于激活状态或去激活状态,休眠状态标识用于表示服务小区是否处于休眠状态。
举例来说,状态转换指示信息可以包括2bit,其中1bit为激活状态标识,可以用于表示服务小区是处于激活状态/去激活状态(例如:激活状态标识为1时,可以表示第一服务小区处于激活状态,激活状态标识为0时,可以表示第一服务小区处于去激活状态),另一bit为休眠状态标识,可以用于表示服务小区是否处于休眠状态(例如:休眠状态标识为1时,可以表示第一服务小区处于休眠状态,休眠状态标识为0时,可以表示第一服务小区不处于休眠状态)。
例如:状态转换指示信息为00,可以标识第一服务小区处于去激活状态,且不处于休眠状态;状态转换指示信息为01,可以标识第一服务小区处于激活状态,且不处于休眠状态;状态转换指示信息为11,可以标识第一服务小区处于激活状态,且处于休眠状态。
在一种可能的实现方式中,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:
在所述激活状态标识表示第一服务小区处于激活状态、所述休眠状态标识表示所述第一服务小区处于休眠状态,且所述第一服务小区当前处于激活状态时,确定所述第一服务小区处于休眠状态。
举例来说,终端设备接收的服务小区状态指示信息中的状态转换指示信息为11,即该状态转换指示信息指示第一服务小区处于激活状态、及处于休眠状态。终端设备可以从本地获取第一服务小区的状态标识,在本地中第一服务小区的状态标识为01时,终端设备确定第一服务小区的当前状态为激活 状态,则终端设备可以根据确定状态转换指示信息11(休眠状态)及当前状态01(激活状态)确定第一服务小区的状态为休眠状态,终端设备可以将第一服务小区的状态标识设置为11。确定第一服务小区处于休眠状态后,终端设备不再监听第一服务小区的物理下行控制信道PDCCH,可以在第一服务小区执行CSI/RRM测量等操作。
在一种可能的实现方式中,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,可以包括:在所述激活状态标识表示第一服务小区处于激活状态、所述休眠状态标识表示所述第一服务小区不处于休眠状态,且所述第一服务小区当前处于休眠状态或者去激活状态时,确定所述第一服务小区处于激活状态。
举例来说,终端设备接收的服务小区状态指示信息中的状态转换指示信息为01,即该状态转换指示信息指示第一服务小区处于激活状态、及不处于休眠状态。终端设备可以从本地获取第一服务小区的状态标识,在本地中第一服务小区的状态标识为11(或者00)时,终端设备确定第一服务小区的当前状态为休眠状态(或者去激活状态),则终端设备可以根据确定状态转换指示信息01及当前状态11(或者00)确定第一服务小区的状态为激活状态,终端设备可以将第一服务小区的状态标识设置为01。确定第一服务小区处于激活状态后,终端设备开始监听第一服务小区的物理下行控制信道PDCCH,并可以在第一服务小区执行CSI/RRM测量等操作。
在一种可能的实现方式中,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,可以包括:在所述激活状态标识表示第一服务小区处于去激活状态、所述休眠状态标识表示所述第一服务小区不处于休眠状态,且所述第一服务小区当前处于激活状态或者休眠状态时,确定所述第一服务小区处于去激活状态。
举例来说,终端设备接收的服务小区状态指示信息中的状态转换指示信息为00,即该状态转换指示信息指示第一服务小区处于去激活状态、及不处于休眠状态。终端设备可以从本地获取第一服务小区的状态标识,在本地中第一服务小区的状态标识为01(或者11)时,终端设备确定第一服务小区的当前状态为激活状态(或者休眠状态),则终端设备可以根据确定状态转换指示信息00及当前状态01(或者11)确定第一服务小区的状态为去激活状态,并可以将第一服务小区的状态标识设置为00。确定第一服务小区处于去激活状态后,终端设备不再监听第一服务小区的物理下行控制信道PDCCH,且不对第一服务小区执行CSI/RRM测量等操作。
在一种可能的实现方式中,上述服务小区状态指示信息可以通过下行控制DCI信息承载。
基站可以通过服务小区向终端设备发送下行控制DCI信息,该下行控制DCI信息中可以包括服务小区的索引标识和服务小区的状态转换指示信息,由于下行控制DCI信息为物理层信息,因此本公开实施例可以快速的对服务小区进行状态转换处理,能够使得终端设备快速的应对于服务小区的状态转换后的处理操作。
在一种可能的实现方式中,上述所述服务小区状态指示信息可以通过第一MAC CE信息和/或第二MAC CE信息承载,其中所述第一MAC CE信息包括服务小区的索引标识和激活状态标识,所述第二MAC CE信息可以包括所述服务小区的索引标识和休眠状态标识。
举例来说,基站可以根据终端设备的数据量确定服务小区的转换状态,并发送对应的MAC CE信息,例如:基站可以在确定服务小区的转换状态为激活/去激活状态时,向终端设备发送第一MAC CE 信息;基站可以在确定服务小区的转换状态为休眠状态时,向终端设备发送第二MAC CE信息。
示例性的,若终端设备接收到第二MAC CE信息,终端设备可以确定终端设备当前是否处于激活状态,进而根据第二MAC CE信息及终端设备的当前状态确定第一服务小区的状态。例如:第二MAC CE信息中第一服务小区的休眠状态标识为1,且终端设备确定第一服务小区当前处于激活状态(本地第一服务小区的当前状态标识为01),终端设备可以确定第一服务小区的状态标识为11,确定该第一服务小区的状态为休眠状态;或者,第二MAC CE信息中第一服务小区的休眠状态标识为0,且终端设备确定第一服务小区当前处于激活状态(当前状态标识为01),终端设备可以确定第一服务小区的状态标识为01,确定该第一服务小区的状态为激活状态;或者,第二MAC CE信息中第一服务小区的休眠状态标识为0,且终端设备确定第一服务小区当前处于去激活状态(本地第一服务小区的当前状态标识为00),终端设备可以确定第一服务小区的状态标识为00,确定该第一服务小区的状态为去激活状态。
需要说明的是,当第二MAC CE信息中第一服务小区的休眠状态标识为1,且终端设备确定第一服务小区当前处于去激活状态时,终端设备确定该第二MAC CE信息为无效信息,不作任何处理。
若终端设备接收到第一MAC CE信息,终端设备可以确定终端设备当前是否处于休眠状态,进而根据第一MAC CE信息及终端设备的当前状态确定第一服务小区的状态。例如:第一MAC CE信息中第一服务小区的激活状态标识为1,且终端设备确定第一服务小区当前处于休眠状态(本地第一服务小区的当前状态标识为11),终端设备可以确定第一服务小区的状态标识为01,确定该第一服务小区的状态为激活状态;或者,第一MAC CE信息中第一服务小区的激活状态标识为1,且终端设备确定第一服务小区当前不处于休眠状态(本地第一服务小区的当前状态标识为00或者01),终端设备可以确定第一服务小区的状态标识为01,确定该第一服务小区的状态为激活状态;或者,第一MAC CE信息中第一服务小区的激活状态标识为0时,终端设备设备确定第一服务小区当前处于休眠状态或者未休眠状态(本地第一服务小区的当前状态标识为00或者01),终端设备可以确定第一服务小区的状态标识为00,为确定该第一服务小区的状态为去激活状态。
再示例性的,若终端设备接收到第一MAC CE信息和第二MAC CE信息,其中第一MAC CE中第一服务小区的激活状态标识为1,第二MAC CE信息中第一服务小区的休眠状态标识为1,且终端设备确定第一服务小区的当前状态为激活状态(本地第一服务小区的当前标识状态为01),则终端设备可以确定第一服务小区的状态标识为11,确定第一服务小区处于休眠状态。或者,若第一MAC CE中第一服务小区的激活状态标识为1,第二MAC CE信息中第一服务小区的休眠状态标识为0,且终端设备确定第一服务小区的当前状态为休眠状态(本地第一服务小区的当前标识状态为11),则终端设备可以确定第一服务小区的状态标识为01,确定第一服务小区处于激活状态。或者,若第一MAC CE中第一服务小区的激活状态标识为0,第二MAC CE信息中第一服务小区的休眠状态标识为0,且终端设备确定第一服务小区的当前状态为休眠状态(本地第一服务小区的当前标识状态为11),则终端设备可以确定第一服务小区的状态标识为00,确定第一服务小区处于去激活状态。
需要说明的是,当第一MAC CE中第一服务小区的激活状态标识为1,第二MAC CE信息中第一服务小区的休眠状态标识为1,且终端设备确定第一服务小区的当前状态为去激活状态(本地第一服务小区的当前标识状态为00)时,终端设备可以确定该服务小区状态指示信息为无效信息,不对其进 行响应。
图2示出根据本公开一实施例的状态转换方法的流程图。
在一种可能的实现方式中,参照图2,上述方法还可以包括:
步骤105、确定目标部分载波带宽。
NR引入部分载波带宽(BWP,Band width part)的概念,对连接态终端,基站已经获知连接态终端的带宽能力,基站可以根据终端的带宽能力为终端配置一个或多个BWP用于不同业务的传输需求。基站可以为每个BWP配置控制资源集和搜索空间,以保证连接态终端在激活的BWP上监听PDCCH来接收调度资源用于数据的收发。在R15NR,仅支持一个时间只有一个激活的BWP。因此以及终端应该在哪个BWP上进行相应的操作,是厄待解决的问题。
在NR中,基站为每一个SCell配置不超过4个的BWP用于动态的数据调度,同一时刻,每一SCell仅存在一个处于激活状态的BWP,在SCell处于激活状态时,终端设备可以在该处于激活状态的BWP上监听物理下行控制信道PDCCH,并执行测量操作(例如:CSI/RRS测量等);在SCell处于休眠状态时,终端设备可以对该处于激活状态的BWP,进行测量操作,但不监听其物理下行控制信道PDCCH,以使得该SCell重新激活后,基站可以根据终端设备对该处于激活状态的BWP的测量结果进行资源调度,使得基站能够为终端设备提供更为精准的资源调度,进而节约终端设备的功率。
终端设备接收服务小区状态指示信息后,可以从第一服务小区配置的BWP中确定目标BWP,该目标BWP为终端设备待进行带宽质量测量操作的BWP。
在一种可能的实现方式中,所述服务小区状态指示信息还可以包括目标部分载波带宽标识,所述确定目标部分载波带宽,可以包括:
根据所述目标BWP标识确定目标部分载波带宽。
在一种可能的实现方式中,上述服务小区状态指示信息可以通过下行控制DCI信息承载,该下行控制DCI信息可以包括服务小区的索引标识、服务小区的状态转换指示信息、及目标BWP标识。终端设备设备可以确定目标BWP标识所表示的BWP为目标BWP。
在一种可能的实现方式中,上述服务小区状态指示信息可以通过第一MAC CE信息和/或第二MAC CE信息承载,所述第一MAC CE信息及第二MAC CE信息包括目标部分载波带宽标识。
终端设备设备可以确定目标BWP标识所表示的BWP为目标BWP。
在一种可能的实现方式中,上述方法还可以包括:接收无线资源控制RRC信令,所述无线资源控制RRC信令包括休眠部分载波带宽标识;
在该实施例中,上述确定目标部分载波带宽,可以包括:
在所述第一服务小区处于休眠状态时,确定目标部分载波带宽为所述休眠部分载波带宽标识所标识的部分载波带宽。
基站可以通过服务小区向终端设备发送RRC(Radio Resource Control,无线资源控制)信令,该RRC信令中可以包括休眠BWP标识,以能够通过RRC信令半静态指示一个SCell的休眠BWP。在第一服务小区处于休眠状态时,终端设备可以确定该休眠BWP为目标BWP。
在一种可能的实现方式中,上述所述确定目标部分载波带宽,可以包括:
在所述第一服务小区处于休眠状态时,确定所述目标部分载波带宽为缺省部分载波带宽。
在第一服务小区处于休眠状态时,终端设备可以确定目标BWP为缺省BWP(default BWP)。
步骤106、根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作。
示例性的,第一服务小区的状态与目标BWP的处理操作可以参照下表1。
表1
Figure PCTCN2019110079-appb-000001
在一种可能的实现方式中,上述根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作,可以包括:
在所述第一服务小区处于休眠状态时,停止在所述部分载波带宽上进行物理下行控制信道PDCCH的监听操作。
在一种可能的实现方式中,上述方法还可以包括:
对所述目标部分载波带宽执行测量操作。
在第一服务小区处于休眠状态时,终端设备不再对目标BWP进行物理下行控制信道PDCCH监听,可以仅对其执行测量操作,例如:执行CSI/RRS测量操作。
在一种可能的实现方式中,上述根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作,可以包括:
在所述第一服务小区处于激活状态时,在所述目标部分载波带宽上进行物理下行控制信道PDCCH的监听操作。
在一种可能的实现方式中,上述方法还可以包括:
对所述目标部分载波带宽执行测量操作。
在第一服务小区处于休眠状态时,终端设备可以对目标BWP进行物理下行控制信道PDCCH监听,并可以对其执行测量操作,例如:执行CSI/RRS测量操作。
在一种可能的实现方式中,上述根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作,可以包括:
在所述第一服务小区处于去激活状态时,去激活所述目标服务载波带宽;其中,所述目标服务载波带宽为所述第一服务小区当前处于激活状态的部分载波带宽;或者,所述目标服务载波带宽为所述第一服务小区中处于休眠状态的部分载波带宽。
在第一服务小区处于去激活状态时,终端设备不对第一服务小区所配置的任一BWP(包括目标BWP及当前激活的BWP)进行物理下行控制信道PDCCH监听及测量操作。其中,在第一服务小区由休眠状态转换为去激活状态时,所述目标BWP为第一服务小区中处于休眠状态的BWP,终端设备可以去激活第一服务小区中当前处于休眠状态的BWP;在第一服务小区由激活状态转换为去激活状态时,所述目标BWP为第一服务小区中当前处于激活状态的BWP,终端设备可以去激活第一服务小区中当前处于激活状态的BWP。
需要说明的是,在服务小区处于休眠状态时,该服务小区中处于休眠状态的BWP实际上也可以认为是处于激活状态下的BWP。
图3示出根据本公开一实施例的状态转换方法的流程图。
在一种可能的实现方式中,参照图3,终端设备在确定目标部分载波带宽后,还可以包括:
步骤107、确定所述第一服务小区中当前处于激活状态的部分载波带宽或者处于休眠状态的部分载波带宽。
步骤108、在所述处于激活状态的部分载波带宽与所述目标部分载波带宽不一致时,去激活所述处于激活状态的部分载波带宽,并激活所述目标部分载波带宽,
或者,在所述处于休眠状态的部分载波带宽与所述目标部分载波带宽不一致时,去激活所述处于休眠状态的部分载波带宽,并激活所述目标部分载波带宽。
在第一服务小区由激活状态转换为休眠状态后,终端设备确定第一服务小区的目标BWP后,可以确定当前处于激活状态的BWP是否为该目标BWP,若是,则直接根据第一服务小区的状态对目标BWP执行对应操作(可以休眠该目标BWP),否则,将处于激活状态的BWP去激活,并激活所述目标BWP(或者休眠该目标BWP)后,根据第一服务小区的状态对目标BWP执行对应操作。
或者,在第一服务小区由休眠状态转换为激活状态后,终端设备确定第一服务小区的目标BWP后,可以确定当前处于休眠状态的BWP(或者也可以为激活状态的BWP)是否为该目标BWP,若是,则直接根据第一服务小区的状态对目标BWP执行对应操作(可以激活该目标BWP),否则,将处于休眠状态的BWP去激活,并激活所述目标BWP后,根据第一服务小区的状态对目标BWP执行对应操作。
这样一来,基站可以根据终端设备处理的数据量调整终端设备所监听或者测量的BWP,能够使得基站更好的根据终端设备上报测量结果为终端设备调度资源,提高吞吐量的同时,更能够降低终端设备的功耗。
图4示出根据本公开一实施例的状态转换方法的流程图。
在一种可能的实现方式中,参照图4,上述方法还可以包括:
步骤109、确定所述第一服务小区处于休眠状态时,开启定时器机制;
步骤110、在定时器机制计时期间,若没有收到指示所述第一服务小区转换到激活状态或转换到去激活状态的指示信息,则定时器超时确定所述第一服务小区处于去激活状态。
终端设备在确定第一服务小区处于休眠状态后,可以开启定时器机制。若在定时器机制计时期间,终端设备没有收到指示第一服务小区转换到激活状态或者去激活状态的指示信息,则在定时器超时时可以确定第一服务小区处于去激活状态,这样一来,即使基站没有及时对第一服务小区进行激活/去激活处理,终端设备也可以不再因为监听第一服务小区而产生不必要的功率消耗,可以节约电量。
为使本领域技术人员更好的理解本公开实施例,以下通过具体示例对本公开实施例加以说明。
示例一
在一示例中,服务小区状态指示信息可以通过下行控制DCI信息承载,该下行控制DCI信息中包括服务小区的索引标识、服务小区的状态转换指示信息及目标BWP标识。
当前激活的服务小区包括SCell1和SCell2,SCell1中配置有BWP1和BWP2,其中BWP2处于激活状态。基站根据终端设备当前的数据量决定将SCell1转入休眠状态,则基站可以通过服务小区SCell1或者SCell2向终端设备发送下行控制DCI信息,该下行控制DCI信息中包括:服务小区的索引标识:001、服务小区的状态转换指示信息:11、目标BWP标识:1。
终端设备接收上述下行控制DCI信息后,根据索引标识001确定第一服务小区为SCell1,终端设备确定SCell1的当前状态为激活状态(本地SCell1的当前状态标识为01)。终端设备根据服务小区的状态转换指示信息11(休眠状态)和SCell1的当前状态(激活状态)确定SCell1的状态为休眠状态(状态标识为11)。
终端设备确定目标BWP为BWP1,而SCell1中处于激活状态的为BWP2,则终端设备可以激活BWP1(或者休眠BWP1),去激活BWP2后,对BWP1执行CSI/RRS测量。
在一段时间后,基站根据终端设备当前的数据量决定将SCell1重新转入激活状态,则基站可以通过SCell2向终端设备发送下行控制DCI信息,该下行控制DCI信息中包括:服务小区的索引标识:001、服务小区的状态转换指示信息:01、目标BWP标识:1。
终端设备接收上述下行控制DCI信息后,根据索引标识001确定第一服务小区为SCell1,终端设备确定SCell1的当前状态为休眠状态(本地SCell1的当前状态标识为11)。终端设备根据状态转换指示信息01(激活状态)和SCell1的当前状态(休眠状态)确定SCell1的状态为激活状态(状态标识为11)。
终端设备确定目标BWP为BWP1,而SCell1中处于激活状态(休眠状态)的为BWP1,因此终端设备对BWP1进行PDCCH监听,并对BWP1执行CSI/RRS测量。
示例二
在一示例中,服务小区状态指示信息通过下行控制DCI信息承载,该下行控制DCI信息中包括服务小区的索引标识、服务小区的状态转换指示信息。
当前激活的服务小区包括SCell1和SCell2,SCell1中配置有BWP1和BWP2,其中BWP2处于激活状态。基站通过RRC信令指定SCell1的休眠部分载波带宽为BWP1。
基站根据终端设备当前的数据量决定将SCell1转入休眠状态,则基站可以通过SCell1或者SCell2向终端设备发送下行控制DCI信息,该下行控制DCI信息中包括:服务小区的索引标识:001、服务小区的状态转换指示信息:11。
终端设备接收上述下行控制DCI信息后,根据索引标识001确定第一服务小区为SCell1,终端设备确定SCell1的当前状态为激活状态(本地SCell1的当前状态标识为01)。终端设备根据状态转换指示信息11(休眠状态)和SCell1的当前状态(激活状态)确定SCell1的状态为休眠状态。
在SCell处于休眠状态时,终端设备可以根据RRC信令确定目标BWP为BWP1,而SCell1中处于激活状态的为BWP2,则终端设备可以激活BWP1,去激活BWP2后,对BWP1执行CSI/RRS测量。
示例三
在一示例中,服务小区状态指示信息通过第一MAC CE信息及第二MAC CE信息承载,其中所述第一MAC CE信息包括服务小区的索引标识、激活状态标识和目标BWP标识,所述第二MAC CE信息包括所述服务小区的索引标识、休眠状态标识和目标BWP标识。
当前激活的服务小区包括SCell1和SCell2,SCell1中配置有BWP1和BWP2,其中BWP2处于激活状态,SCell2中配置有BWP1和BWP2,其中BWP2处于激活状态。
基站根据终端设备当前的数据量决定将SCell1转入休眠状态,则基站可以通过SCell1或者SCell2向终端设备发送第一MAC信息和第二MAC CE信息,该第一MAC CE信息中包括:(服务小区的索引标识:001、服务小区的激活状态标识:1,目标BWP:1)、(服务小区的索引标识:002、服务小区的激活状态标识:1,目标BWP:2),该第二MAC CE信息中包括:(服务小区的索引标识:001、服务小区的休眠状态标识:1,目标BWP:1)、(服务小区的索引标识:002、服务小区的休眠状态标识:0,目标BWP:2)。
终端设备接收上述第一MAC CE信息和第二MAC CE信息后,根据索引标识001确定第一服务小区为SCell1,终端设备确定SCell1处于激活状态(本地SCell1的当前状态标识为01)。终端设备根据休眠状态标识1、激活状态标识1和SCell1的当前的激活状态,确定SCell1的状态为休眠状态。
终端设备确定SCell1中目标BWP为BWP1,而SCell1中处于激活状态的为BWP2,则终端设备可以将BWP1的状态设置为激活状态,将BWP2的状态设置为去激活状态后,对BWP1执行CSI/RRS测量。
终端设备根据索引标识002确定第一服务小区为SCell2,终端设备确定SCell2处于激活状态(本地SCell1的激活状态标识为01)。终端设备根据休眠状态标识0、激活状态标识1和SCell1当前的激活状态,确定SCell1的状态为激活状态。
终端设备确定SCell2中目标BWP为BWP2,而SCell1中处于激活状态的为BWP2,则终端设备直接对BWP2进行PDCCH监听,并对BWP2执行CSI/RRS测量。
图5示出根据本公开一实施例的状态转换装置的结构框图,该装置可以应用于终端设备,如图5所示,该装置可以包括:
第一接收模块501,可以用于接收服务小区状态指示信息,所述服务小区状态指示信息包括服务小区的索引标识和服务小区的状态转换指示信息;
第一确定模块502,可以用于根据所述索引标识确定第一服务小区;
第二确定模块503,可以用于确定所述第一服务小区的当前状态;
第三确定模块504,可以用于根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态。
这样一来,终端设备可以接收服务小区状态指示信息,并根据服务小区状态指示信息中的索引标识确定第一服务小区,并在确定第一服务小区的当前状态后,根据服务小区状态指示信息中的状态转换指示信息及第一小区的当前状态确定所述第一服务小区的状态。根据本公开实施例提供的状态转化装置,终端设备可以快速的应对第一服务小区状态转换后的处理。
图6示出根据本公开一实施例的状态转换装置的结构框图。
在一种可能的实现过程中,参照图6,上述第三确定模块504,可以包括:
第一确定子模块5041,可以用于在所述状态转换指示信息指示所述第一服务小区处于激活状态, 且所述第一服务小区的当前状态为休眠状态时,确定所述第一服务小区的状态为激活状态。
在一种可能的实现过程中,参照图6,上述第三确定模块504,可以包括:
第二确定子模块5042,可以用于在所述状态转换指示信息指示所述第一服务小区处于激活状态,且所述第一服务小区的当前状态为去激活状态时,确定所述第一服务小区的状态为激活状态。
在一种可能的实现过程中,参照图6,上述第三确定模块504,可以包括:
第三确定子模块5043,可以用于在所述状态转换指示信息指示所述第一服务小区处于去激活状态,且所述第一服务小区的当前状态为休眠状态时,确定所述第一服务小区的状态为去激活状态。
在一种可能的实现过程中,参照图6,上述第三确定模块504,可以包括:
第四确定子模块5044,可以用于在所述状态转换指示信息指示所述第一服务小区处于去激活状态,且所述第一服务小区的当前状态为激活状态时,确定所述第一服务小区的状态为去激活状态。
在一种可能的实现过程中,参照图6,上述第三确定模块504,可以包括:
第五确定子模块5045,可以用于在所述状态转换指示信息指示所述第一服务小区处于休眠状态,且所述第一服务小区的当前状态为激活状态时,确定所述第一服务小区的状态为休眠状态。
在一种可能的实现方式中,所述状态转换指示信息包括激活状态标识和休眠状态标识,其中,激活状态标识用于表示服务小区是处于激活状态或去激活状态,休眠状态标识用于表示服务小区是否处于休眠状态。
在一种可能的实现过程中,参照图6,上述第三确定模块504,可以包括:
第六确定子模块5046,可以用于在所述激活状态标识表示第一服务小区处于激活状态、所述休眠状态标识表示所述第一服务小区处于休眠状态,且所述第一服务小区当前处于激活状态时,确定所述第一服务小区处于休眠状态。
在一种可能的实现过程中,参照图6,上述第三确定模块504,可以包括:
第七确定子模块5047,可以用于在所述激活状态标识表示第一服务小区处于激活状态、所述休眠状态标识表示所述第一服务小区不处于休眠状态,且所述第一服务小区当前处于休眠状态或者去激活状态时,确定所述第一服务小区处于激活状态。
在一种可能的实现过程中,参照图6,上述第三确定模块504,可以包括:
第八确定子模块5048,可以用于在所述激活状态标识表示第一服务小区处于去激活状态、所述休眠状态标识表示所述第一服务小区不处于休眠状态,且所述第一服务小区当前处于激活状态或者休眠状态时,确定所述第一服务小区处于去激活状态。
在一种可能的实现过程中,参照图6,上述装置可以包括:
第四确定模块505,可以用于确定目标部分载波带宽;
第五确定模块506,可以用于根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作。
在一种可能的实现过程中,参照图6,上述第五确定模块506,可以包括:
第一处理子模块5061,可以用于在所述第一服务小区处于休眠状态时,停止在所述部分载波带宽上进行物理下行控制信道PDCCH的监听操作。
在一种可能的实现过程中,参照图6,上述第五确定模块506,还可以包括:
第二处理子模块5062,可以用于对所述目标部分载波带宽执行测量操作。
在一种可能的实现过程中,参照图6,上述第五确定模块506,还可以包括:
第三处理子模块5063,可以用于在所述第一服务小区处于激活状态时,在所述目标部分载波带宽上进行物理下行控制信道PDCCH的监听操作。
在一种可能的实现过程中,参照图6,上述第五确定模块506,还可以包括:
第四处理子模块5064,可以用于对所述目标部分载波带宽执行测量操作。
在一种可能的实现过程中,参照图6,上述第五确定模块506,还可以包括:
第五处理子模块5065,可以用于在所述第一服务小区处于去激活状态时,去激活所述目标部分载波带宽;
其中,所述目标服务载波带宽为所述第一服务小区当前处于激活状态的部分载波带宽;或者,所述目标服务载波带宽为所述第一服务小区中处于休眠状态的部分载波带宽。
在一种可能的实现过程中,参照图6,上述装置还可以包括:
第六确定模块507,可以用于确定所述第一服务小区中当前处于激活状态的部分载波带宽或者处于休眠状态的部分载波带宽;
处理模块508,可以用于在所述处于激活状态的部分载波带宽与所述目标部分载波带宽不一致时,去激活所述处于激活状态的部分载波带宽,并激活所述目标部分载波带宽,
或者,在所述处于休眠状态的部分载波带宽与所述目标部分载波带宽不一致时,去激活所述处于休眠状态的部分载波带宽,并激活所述目标部分载波带宽。
在一种可能的实现过程中,参照图6,所述服务小区状态指示信息还包括目标部分载波带宽标识,所述第四确定模块505,可以包括:
第九确定子模块5051,可以用于根据所述目标部分载波带宽标识确定目标部分载波带宽。
在一种可能的实现过程中,所述服务小区状态指示信息通过下行控制DCI信息承载。
在一种可能的实现过程中,所述服务小区状态指示信息通过第一MAC CE信息和/或第二MAC CE信息承载,其中所述第一MAC CE信息包括服务小区的索引标识和激活状态标识,所述第二MAC CE信息包括所述服务小区的索引标识和休眠状态标识。
在一种可能的实现过程中,所述第一MAC CE信息及第二MAC CE信息包括目标部分载波带宽标识。
在一种可能的实现过程中,参照图6,上述装置还可以包括:
第二接收模块509,可以用于接收无线资源控制RRC信令,所述无线资源控制RRC信令指示休眠部分载波带宽标识;
所述第四确定模块505,可以包括:
第十确定子模块5052,可以用于在所述第一服务小区处于休眠状态时,确定所述目标部分载波带宽为所述休眠部分载波带宽标识所标识的部分载波带宽。
在一种可能的实现过程中,参照图6,所述第四确定模块505,可以包括:
第十一确定子模块5053,可以用于在所述第一服务小区处于休眠状态时,确定所述目标部分载波带宽为缺省部分载波带宽。
在一种可能的实现过程中,参照图6,所述装置还可以包括:
第七确定模块510,可以用于确定所述第一服务小区处于休眠状态时,开启定时器机制;
第八确定模块511,可以用于在定时器机制计时期间,若没有收到指示所述第一服务小区转换到激活状态或转换到去激活状态的指示信息,则定时器超时确定所述第一服务小区处于去激活状态。
图7是根据一示例性实施例示出的一种用于状态转换的装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存 在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器804,上述计算机程序指令可由装置800的处理器820执行以完成上述方法。
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通 过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (48)

  1. 一种状态转换方法,其特征在于,应用于终端设备,所述方法包括:
    接收服务小区状态指示信息,所述服务小区状态指示信息包括服务小区的索引标识和服务小区的状态转换指示信息;
    根据所述索引标识确定第一服务小区;
    确定所述第一服务小区的当前状态;
    根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:
    在所述状态转换指示信息指示所述第一服务小区处于激活状态,且所述第一服务小区的当前状态为休眠状态时,确定所述第一服务小区的状态为激活状态。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:
    在所述状态转换指示信息指示所述第一服务小区处于激活状态,且所述第一服务小区的当前状态为去激活状态时,确定所述第一服务小区的状态为激活状态。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:
    在所述状态转换指示信息指示所述第一服务小区处于去激活状态,且所述第一服务小区的当前状态为休眠状态时,确定所述第一服务小区的状态为去激活状态。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:
    在所述状态转换指示信息指示所述第一服务小区处于去激活状态,且所述第一服务小区的当前状态为激活状态时,确定所述第一服务小区的状态为去激活状态。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:
    在所述状态转换指示信息指示所述第一服务小区处于休眠状态,且所述第一服务小区的当前状态为激活状态时,确定所述第一服务小区的状态为休眠状态。
  7. 根据权利要求1所述的方法,其特征在于,所述状态转换指示信息包括激活状态标识和休眠状态标识,其中,激活状态标识用于表示服务小区是处于激活状态或去激活状态,休眠状态标识用于表示服务小区是否处于休眠状态。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:
    在所述激活状态标识表示第一服务小区处于激活状态、所述休眠状态标识表示所述第一服务小区处于休眠状态,且所述第一服务小区当前处于激活状态时,确定所述第一服务小区处于休眠状态。
  9. 根据权利要求7所述的方法,其特征在于,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:
    在所述激活状态标识表示第一服务小区处于激活状态、所述休眠状态标识表示所述第一服务小区 不处于休眠状态,且所述第一服务小区当前处于休眠状态或者去激活状态时,确定所述第一服务小区处于激活状态。
  10. 根据权利要求7所述的方法,其特征在于,所述根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态,包括:
    在所述激活状态标识表示第一服务小区处于去激活状态、所述休眠状态标识表示所述第一服务小区不处于休眠状态,且所述第一服务小区当前处于激活状态或者休眠状态时,确定所述第一服务小区处于去激活状态。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    确定目标部分载波带宽;
    根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作,包括:
    在所述第一服务小区处于休眠状态时,停止在所述部分载波带宽上进行物理下行控制信道PDCCH的监听操作。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作,还包括:
    对所述目标部分载波带宽执行测量操作。
  14. 根据权利要求11至13任一项所述的方法,其特征在于,所述根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作,包括:
    在所述第一服务小区处于激活状态时,在所述目标部分载波带宽上进行物理下行控制信道PDCCH的监听操作。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作,还包括:
    对所述目标部分载波带宽执行测量操作。
  16. 根据权利要求11至15任一项所述的方法,其特征在于,所述根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作,包括:
    在所述第一服务小区处于去激活状态时,去激活所述目标部分载波带宽;
    其中,所述目标服务载波带宽为所述第一服务小区当前处于激活状态的部分载波带宽;或者,所述目标服务载波带宽为所述第一服务小区中处于休眠状态的部分载波带宽。
  17. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    确定所述第一服务小区中当前处于激活状态的部分载波带宽或者处于休眠状态的部分载波带宽;
    在所述处于激活状态的部分载波带宽与所述目标部分载波带宽不一致时,去激活所述处于激活状态的部分载波带宽,并激活所述目标部分载波带宽,
    或者,在所述处于休眠状态的部分载波带宽与所述目标部分载波带宽不一致时,去激活所述处于休眠状态的部分载波带宽,并激活所述目标部分载波带宽。
  18. 根据权利要求11至17任一项所述的方法,其特征在于,所述服务小区状态指示信息还包括目 标部分载波带宽标识,
    所述确定目标部分载波带宽,包括:
    根据所述目标部分载波带宽标识确定目标部分载波带宽。
  19. 根据权利要求1至18任一项所述的方法,其特征在于,所述服务小区状态指示信息通过下行控制DCI信息承载。
  20. 根据权利要求1至18任一项所述的方法,其特征在于,所述服务小区状态指示信息通过第一MAC CE信息和/或第二MAC CE信息承载,其中所述第一MAC CE信息包括服务小区的索引标识和激活状态标识,所述第二MAC CE信息包括所述服务小区的索引标识和休眠状态标识。
  21. 根据权利要求20所述的方法,其特征在于,所述第一MAC CE信息及第二MAC CE信息包括目标部分载波带宽标识。
  22. 根据权利要求11至18任一项所述的方法,其特征在于,所述方法还包括:
    接收无线资源控制RRC信令,所述无线资源控制RRC信令指示休眠部分载波带宽标识;
    所述确定目标部分载波带宽,包括:
    在所述第一服务小区处于休眠状态时,确定所述目标部分载波带宽为所述休眠部分载波带宽标识所标识的部分载波带宽。
  23. 根据权利要求11至18任一项所述的方法,其特征在于,所述确定目标部分载波带宽,包括:
    在所述第一服务小区处于休眠状态时,确定所述目标部分载波带宽为缺省部分载波带宽。
  24. 根据权利要求1或6或8所述的方法,其特征在于,所述方法还包括:
    确定所述第一服务小区处于休眠状态时,开启定时器机制;
    在定时器机制计时期间,若没有收到指示所述第一服务小区转换到激活状态或转换到去激活状态的指示信息,则定时器超时确定所述第一服务小区处于去激活状态。
  25. 一种状态转换装置,其特征在于,应用于终端设备,所述装置包括:
    第一接收模块,用于接收服务小区状态指示信息,所述服务小区状态指示信息包括服务小区的索引标识和服务小区的状态转换指示信息;
    第一确定模块,用于根据所述索引标识确定第一服务小区;
    第二确定模块,用于确定所述第一服务小区的当前状态;
    第三确定模块,用于根据所述状态转换指示信息和所述第一服务小区的当前状态确定所述第一服务小区的状态。
  26. 根据权利要求25所述的装置,其特征在于,所述第三确定模块,包括:
    第一确定子模块,用于在所述状态转换指示信息指示所述第一服务小区处于激活状态,且所述第一服务小区的当前状态为休眠状态时,确定所述第一服务小区的状态为激活状态。
  27. 根据权利要求25所述的装置,其特征在于,所述第三确定模块,包括:
    第二确定子模块,用于在所述状态转换指示信息指示所述第一服务小区处于激活状态,且所述第一服务小区的当前状态为去激活状态时,确定所述第一服务小区的状态为激活状态。
  28. 根据权利要求25所述的装置,其特征在于,所述第三确定模块,包括:
    第三确定子模块,用于在所述状态转换指示信息指示所述第一服务小区处于去激活状态,且所述 第一服务小区的当前状态为休眠状态时,确定所述第一服务小区的状态为去激活状态。
  29. 根据权利要求25所述的装置,其特征在于,所述第三确定模块,包括:
    第四确定子模块,用于在所述状态转换指示信息指示所述第一服务小区处于去激活状态,且所述第一服务小区的当前状态为激活状态时,确定所述第一服务小区的状态为去激活状态。
  30. 根据权利要求25所述的装置,其特征在于,所述第三确定模块,包括:
    第五确定子模块,用于在所述状态转换指示信息指示所述第一服务小区处于休眠状态,且所述第一服务小区的当前状态为激活状态时,确定所述第一服务小区的状态为休眠状态。
  31. 根据权利要求25所述的装置,其特征在于,所述状态转换指示信息包括激活状态标识和休眠状态标识,其中,激活状态标识用于表示服务小区是处于激活状态或去激活状态,休眠状态标识用于表示服务小区是否处于休眠状态。
  32. 根据权利要求31所述的装置,其特征在于,所述第三确定模块,包括:
    第六确定子模块,用于在所述激活状态标识表示第一服务小区处于激活状态、所述休眠状态标识表示所述第一服务小区处于休眠状态,且所述第一服务小区当前处于激活状态时,确定所述第一服务小区处于休眠状态。
  33. 根据权利要求31所述的装置,其特征在于,所述第三确定模块,包括:
    第七确定子模块,用于在所述激活状态标识表示第一服务小区处于激活状态、所述休眠状态标识表示所述第一服务小区不处于休眠状态,且所述第一服务小区当前处于休眠状态或者去激活状态时,确定所述第一服务小区处于激活状态。
  34. 根据权利要求31所述的装置,其特征在于,所述第三确定模块,包括:
    第八确定子模块,用于在所述激活状态标识表示第一服务小区处于去激活状态、所述休眠状态标识表示所述第一服务小区不处于休眠状态,且所述第一服务小区当前处于激活状态或者休眠状态时,确定所述第一服务小区处于去激活状态。
  35. 根据权利要求25至34任一项所述的装置,其特征在于,所述装置还包括:
    第四确定模块,用于确定目标部分载波带宽;
    第五确定模块,用于根据所述第一服务小区的状态确定针对所述目标部分载波带宽的操作。
  36. 根据权利要求35所述的装置,其特征在于,所述第五确定模块,包括:
    第一处理子模块,用于在所述第一服务小区处于休眠状态时,停止在所述部分载波带宽上进行物理下行控制信道PDCCH的监听操作。
  37. 根据权利要求35所述的装置,其特征在于,所述第五确定模块,还包括:
    第二处理子模块,用于对所述目标部分载波带宽执行测量操作。
  38. 根据权利要求35至37任一项所述的装置,其特征在于,所述第五确定模块,包括:
    第三处理子模块,用于在所述第一服务小区处于激活状态时,在所述目标部分载波带宽上进行物理下行控制信道PDCCH的监听操作。
  39. 根据权利要求38所述的装置,其特征在于,所述第五确定模块,还包括:
    第四处理子模块,用于对所述目标部分载波带宽执行测量操作。
  40. 根据权利要求35至39任一项所述的装置,其特征在于,所述第五确定模块,包括:
    第五处理子模块,用于在所述第一服务小区处于去激活状态时,去激活所述目标部分载波带宽;
    其中,所述目标服务载波带宽为所述第一服务小区当前处于激活状态的部分载波带宽;或者,所述目标服务载波带宽为所述第一服务小区中处于休眠状态的部分载波带宽。
  41. 根据权利要求35所述的装置,其特征在于,所述装置还包括:
    第六确定模块,用于确定所述第一服务小区中当前处于激活状态的部分载波带宽或者处于休眠状态的部分载波带宽;
    处理模块,用于在所述处于激活状态的部分载波带宽与所述目标部分载波带宽不一致时,去激活所述处于激活状态的部分载波带宽,并激活所述目标部分载波带宽,
    或者,在所述处于休眠状态的部分载波带宽与所述目标部分载波带宽不一致时,去激活所述处于休眠状态的部分载波带宽,并激活所述目标部分载波带宽。
  42. 根据权利要求35至41任一项所述的装置,其特征在于,所述服务小区状态指示信息还包括目标部分载波带宽标识,所述第四确定模块,包括:
    第九确定子模块,用于根据所述目标部分载波带宽标识确定目标部分载波带宽。
  43. 根据权利要求25至42任一项所述的装置,其特征在于,所述服务小区状态指示信息通过下行控制DCI信息承载。
  44. 根据权利要求25至42任一项所述的装置,其特征在于,所述服务小区状态指示信息通过第一MAC CE信息和/或第二MAC CE信息承载,其中所述第一MAC CE信息包括服务小区的索引标识和激活状态标识,所述第二MAC CE信息包括所述服务小区的索引标识和休眠状态标识。
  45. 根据权利要求44所述的装置,其特征在于,所述第一MAC CE信息及第二MAC CE信息包括目标部分载波带宽标识。
  46. 根据权利要求35至42任一项所述的装置,其特征在于,所述装置还包括:
    第二接收模块,用于接收无线资源控制RRC信令,所述无线资源控制RRC信令指示休眠部分载波带宽标识;
    所述第四确定模块,包括:
    第十确定子模块,用于在所述第一服务小区处于休眠状态时,确定所述目标部分载波带宽为所述休眠部分载波带宽标识所标识的部分载波带宽。
  47. 根据权利要求35至42任一项所述的装置,其特征在于,所述第四确定模块,包括:
    第十一确定子模块,用于在所述第一服务小区处于休眠状态时,确定所述目标部分载波带宽为缺省部分载波带宽。
  48. 根据权利要求25或30或32所述的装置,其特征在于,所述装置还包括:
    第七确定模块,用于确定所述第一服务小区处于休眠状态时,开启定时器机制;
    第八确定模块,用于在定时器机制计时期间,若没有收到指示所述第一服务小区转换到激活状态或转换到去激活状态的指示信息,则定时器超时确定所述第一服务小区处于去激活状态。
PCT/CN2019/110079 2018-11-02 2019-10-09 状态转换方法及装置 WO2020088203A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811303244.1 2018-11-02
CN201811303244.1A CN111147210B (zh) 2018-11-02 2018-11-02 状态转换方法及装置

Publications (1)

Publication Number Publication Date
WO2020088203A1 true WO2020088203A1 (zh) 2020-05-07

Family

ID=70462513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110079 WO2020088203A1 (zh) 2018-11-02 2019-10-09 状态转换方法及装置

Country Status (2)

Country Link
CN (1) CN111147210B (zh)
WO (1) WO2020088203A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115767700A (zh) * 2023-02-13 2023-03-07 深圳市网联天下科技有限公司 一种无线接入点设备节能方法、装置、电子设备及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11388669B2 (en) * 2019-01-29 2022-07-12 Mediatek Singapore Pte. Ltd. Method and apparatus for power consumption reduction with multi-link operation in mobile communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268689A1 (en) * 2007-01-08 2009-10-29 Fu Yusun Forwarding learnt state information to target node at mobility
CN107466446A (zh) * 2015-04-10 2017-12-12 Lg 电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备
CN107534540A (zh) * 2015-04-10 2018-01-02 Lg 电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备
CN108352953A (zh) * 2015-10-19 2018-07-31 Lg 电子株式会社 接收下行链路信号的方法和用户设备以及发送下行链路信号的方法和基站

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10477457B2 (en) * 2016-11-03 2019-11-12 Samsung Electronics Co., Ltd. Apparatus and method to support ultra-wide bandwidth in fifth generation (5G) new radio
US10863380B2 (en) * 2017-03-16 2020-12-08 Ofinno, Llc Buffer status reporting procedure in a wireless device and wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268689A1 (en) * 2007-01-08 2009-10-29 Fu Yusun Forwarding learnt state information to target node at mobility
CN107466446A (zh) * 2015-04-10 2017-12-12 Lg 电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备
CN107534540A (zh) * 2015-04-10 2018-01-02 Lg 电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备
CN108352953A (zh) * 2015-10-19 2018-07-31 Lg 电子株式会社 接收下行链路信号的方法和用户设备以及发送下行链路信号的方法和基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Open Issues on CA", 3GPP DRAFT; R1-1718581, 13 October 2017 (2017-10-13), Prague, Czech Republic, pages 1 - 10, XP051353147 *
QUALCOMM INCORPORATED: "UE Adaptation to the Traffic and UE Power Consumption Characteristics", 3GPP DRAFT; R1-1811282, 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 17, XP051518685 *
SAMSUNG: "Discussion on Triggering Adaptation Mechanism", 3GPP DRAFT; R1-1810893, 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 6, XP051518298 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115767700A (zh) * 2023-02-13 2023-03-07 深圳市网联天下科技有限公司 一种无线接入点设备节能方法、装置、电子设备及介质
CN115767700B (zh) * 2023-02-13 2023-04-18 深圳市网联天下科技有限公司 一种无线接入点设备节能方法、装置、电子设备及介质

Also Published As

Publication number Publication date
CN111147210A (zh) 2020-05-12
CN111147210B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
US11924869B2 (en) Method and device for configuration and adjusting search space parameter
US11937183B2 (en) Method and device for monitoring power-saving signal
US11844136B2 (en) Discontinuous reception (DRX) parameter configuration method and device
US20210243694A1 (en) Channel monitoring method and device
US11877242B2 (en) Bandwidth part switching method and apparatus
CN108370544B (zh) 非连续接收的实现方法、装置、用户设备和基站
WO2019113883A1 (zh) 用户设备省电方法、装置、用户设备和基站
CN109496445B (zh) 非连续接收配置方法及装置
CN108781133B (zh) 下行控制信令检测方法、装置及存储介质
WO2020142905A1 (zh) 带宽部分切换的方法及装置
US11540214B2 (en) Timer adjustment method and device
WO2020088203A1 (zh) 状态转换方法及装置
WO2020042178A1 (zh) 载波激活方法、装置、设备、系统及存储介质
WO2020087198A1 (zh) 定时器控制方法、装置、电子设备和计算机可读存储介质
WO2022151280A1 (zh) 一种通信方法、装置及存储介质
WO2019028856A1 (zh) 寻呼指示方法及装置
US11496281B2 (en) Method and device for indicating transmission direction
US11696276B2 (en) Data scheduling method and apparatus
WO2022094927A1 (zh) 一种通信方法、通信装置及存储介质
US11799582B2 (en) Method and apparatus for detecting downlink control signaling, and system
WO2020133200A1 (zh) 载波配置方法及装置
US20210392520A1 (en) Network parameter configuration method and apparatus, and computer-readable storage medium
WO2019047095A1 (zh) 调度信令的检测方法、装置、用户设备和基站
WO2024011528A1 (zh) 端口切换、端口切换指示方法和装置
WO2022188074A1 (zh) 一种配置、确定下行调度信息的方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878353

Country of ref document: EP

Kind code of ref document: A1