WO2020088016A1 - 手部机械外骨骼力反馈的控制方法及系统 - Google Patents

手部机械外骨骼力反馈的控制方法及系统 Download PDF

Info

Publication number
WO2020088016A1
WO2020088016A1 PCT/CN2019/098810 CN2019098810W WO2020088016A1 WO 2020088016 A1 WO2020088016 A1 WO 2020088016A1 CN 2019098810 W CN2019098810 W CN 2019098810W WO 2020088016 A1 WO2020088016 A1 WO 2020088016A1
Authority
WO
WIPO (PCT)
Prior art keywords
force feedback
target
angular position
current
control
Prior art date
Application number
PCT/CN2019/098810
Other languages
English (en)
French (fr)
Inventor
谷逍驰
Original Assignee
深圳岱仕科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳岱仕科技有限公司 filed Critical 深圳岱仕科技有限公司
Publication of WO2020088016A1 publication Critical patent/WO2020088016A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/014Hand-worn input/output arrangements, e.g. data gloves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user

Definitions

  • the present application relates to a method and system for controlling force feedback of a mechanical exoskeleton of a hand.
  • a hand motion capture device In a virtual reality scene, in order to enhance the user's perception of the virtual world, a hand motion capture device is often used to capture the motion information of the human hand.
  • the hand motion capture device has a five-finger mechanism adapted to the five fingers of the hand. After wearing, when the user's finger moves, the hand motion capture device will capture the operation of the human finger to realize the capture of human hand movement information.
  • hand motion capture devices With the development of virtual reality technology, hand motion capture devices have begun to have a force feedback function at the same time.
  • the force feedback function of the current hand motion capture device is only the difference between nothing and there is no way to accurately control the size of the force feedback at different positions, so that the user cannot have a real grip feeling.
  • a method and system for controlling force feedback of a hand mechanical exoskeleton are provided.
  • a hand mechanical exoskeleton force feedback control method the hand mechanical exoskeleton includes a plurality of finger link structures and one or more force feedback drive devices provided on the finger link structure drive joint, the control The method includes the following steps:
  • a target force feedback output value is obtained to control the force feedback driving device to perform a corresponding force feedback output.
  • control method further includes the following steps:
  • the current angular position of each driving joint includes the current angular position information of each driving joint when the relative rotation between different finger link structures also includes each driving joint when the relative rotation between different driving joints of the same finger link structure The current angular position information.
  • the current working state value includes a current current value or a current voltage value output by the force feedback driving device.
  • the step of mapping the current motion of the virtual hand model according to the current angular position to obtain the physical properties of the target contact in the virtual scene and the target angular position of the drive joint that requires force feedback includes:
  • the target angular position of the drive joint requiring force feedback is calculated and obtained according to the physical properties.
  • the physical properties include stiffness values and object shapes.
  • the step of determining that the force feedback driving device needs to turn on force feedback includes:
  • the target contact position is located on the surface of the target contact object, it is determined that the elastic force feedback or the rigid force feedback needs to be turned on to obtain the direction of the force feedback that needs to be output;
  • the force feedback is damping force feedback.
  • the target contact position is the contact position of the hand model on the target contact object when the hand model collides with the target contact object in the virtual scene.
  • the target force feedback output value is acquired according to the current angular position, the current working state value, the target angular position and the physical property to control the force feedback drive device to perform corresponding
  • the steps of force feedback output include:
  • the force feedback driving device is controlled to perform corresponding force feedback output according to the target force feedback output value.
  • the target force feedback output value includes a target output torque; and the step of controlling the force feedback drive device to perform a corresponding force feedback output according to the target force feedback output value includes:
  • the torque output of the force feedback driving device is controlled according to the pulse width modulation waveform.
  • the hand mechanical exoskeleton includes a plurality of finger link structures and one or more force feedback driving devices provided on the finger link structure drive joints, the control
  • the system includes:
  • the reading module is used to read the current angular position of each driving joint and the current working state value of the stress feedback driving device;
  • An acquiring module configured to map the current motion of the virtual hand model according to the current angular position, and acquire the physical properties of the target contact in the virtual scene and the target angular position of the drive joint that requires force feedback;
  • the determination module is used to determine that the force feedback driving device needs to turn on force feedback if the current angular position is within the preset working range of the force feedback;
  • the control module is configured to obtain a target force feedback output value according to the current angular position, the current working state value, the target angular position and the physical property to control the force feedback driving device to perform corresponding force feedback output.
  • control system further includes:
  • the protection module is used to collect the working state value of the force feedback driving device in real time, and if the working state value exceeds a preset threshold, control the force feedback driving device to start overload protection.
  • the determination module includes:
  • a first determining unit configured to determine the target contact position of the target contact in the virtual scene if the current angular position is within the preset working range of force feedback
  • a second determining unit configured to determine that the elastic force feedback or the rigid force feedback needs to be turned on to obtain the direction of the force feedback that needs to be output if the target contact position is on the surface of the target contact;
  • the third determining unit is configured to determine that the force feedback is damping force feedback if the target contact position is located inside the target contact.
  • control module includes:
  • a first acquiring unit configured to acquire a target working state value of the force feedback driving device according to the current angular position, the target angular position, and the physical property
  • a second obtaining unit configured to obtain a target force feedback output value according to the current working state value and the target working state value
  • the control unit is configured to control the force feedback drive device to perform corresponding force feedback output according to the target force feedback output value.
  • the target force feedback output value includes a target output torque
  • the control unit includes:
  • Waveform acquisition circuit for acquiring the pulse width modulation waveform corresponding to the target output torque
  • the torque control circuit is used to control the torque output of the force feedback driving device according to the pulse width modulation waveform.
  • the acquisition module includes:
  • the judging unit is used to map the current movement of the virtual hand model according to the current angular position and determine whether the virtual hand model collides with the target contact object;
  • a third acquisition unit used to acquire the physical properties of the target contact if a collision occurs.
  • the fourth acquiring unit is configured to calculate and acquire the target angular position of the drive joint that requires force feedback according to physical properties.
  • FIG. 1 is a method flow chart of a method for controlling a force feedback of a mechanical exoskeleton of a hand in an embodiment
  • FIG. 2 is a flowchart of a method for controlling a force feedback of a mechanical exoskeleton of a hand in another embodiment
  • FIG. 3 is a system structural diagram of a control system of hand mechanical exoskeleton force feedback in an embodiment
  • FIG. 4 is a system structure diagram of a control system of hand mechanical exoskeleton force feedback in another embodiment.
  • FIG. 1 is a method flow chart of a method for controlling a force feedback of a mechanical exoskeleton of a hand in an embodiment.
  • the mechanical exoskeleton of the hand has a force feedback function, including a plurality of finger link structures and one or more force feedback drive devices provided on the finger link structure drive joints, which can be provided in the user's hand Adjustable continuous force feedback to simulate the shape and stiffness of virtual objects, which can be used for robot control, mechanical control, games, etc.
  • the control method of the present application is used to control the force feedback output of the force feedback drive device of the hand mechanical exoskeleton. Specifically, the control method includes steps S101, S102, S103, and S104. The details are as follows:
  • step S101 the current angular position of each driving joint and the current working state value of the stress feedback driving device are read.
  • the current angular position of each driving joint includes the current angular position information of each driving joint when the finger extremity of the hand mechanical exoskeleton rotates relative to each other, and the relative rotation between different driving joints of the same finger link structure
  • the current angular position information of each driving joint includes the current working state value of the stress feedback driving device of each driving joint.
  • the current working state value of the stress feedback driving device of each driving joint includes the current working state value of the force feedback driving device set between the joints of different link structures of the mechanical exoskeleton of the hand, and the different link joints set on the same link structure
  • the current working state value of one or more force feedback drive devices includes the current current value or current voltage value output by the force feedback driving device.
  • S101 can realize the current angular position and current work through an angle sensor, a microprocessor provided on each link structure on the hand mechanical exoskeleton, and a main processor provided on the palm base of the hand mechanical exoskeleton Read the status value.
  • S101 collects angle information through an angle sensor to obtain the current angular position of each driving joint, and then reads the current angular position of each driving joint through a microprocessor, and at the same time reads the current working state value of the stress feedback driving device and feeds it back to the main processing Therefore, the main processor summarizes the current angular position on the drive joint of each link structure from each link structure and the current working state value of the stress feedback drive device.
  • the microprocessor and the main processor can be connected by signal lines to achieve two-way communication (serial port or I2C communication or any other form of communication).
  • step S102 the current motion of the virtual hand model is mapped according to the current angular position to obtain the physical properties of the target contact in the virtual scene and the target angular position of the drive joint that requires force feedback.
  • S102 can obtain the current virtual hand model according to the current angular position information of the lateral rotation of the fingers between the joints of different link structures acquired in S101 and the current angular position information of the rotation of the different link joints of the same link structure
  • the coordinate position maps the current movement of the virtual hand model, and then determines whether the virtual hand model is currently in collision contact with the target contact in the virtual scene.
  • the target angle refers to the critical angle position at which the drive joint starts to perform force feedback when force feedback is required.
  • S102 includes: S1021, S1022, and S1023.
  • the current motion of the virtual hand model is mapped according to the current angular position to determine whether the virtual hand model collides with the target contact. Specifically, when the coordinates of the virtual hand model partially coincide with the coordinates of the target contact, it is determined that a collision has occurred.
  • the target angular position of the driving joint requiring force feedback and the direction of the output force feedback are calculated and obtained according to the physical properties.
  • the physical properties of the target contact include the stiffness value and the shape of the object. According to the different shape and stiffness value of the target contact, each finger link structure needs to open the force feedback drive joint angle range, output force feedback direction and size are also different, and then the user can feel the shape and rigidity of the target contact. When the target contact is completely within the grasping range of the virtual hand model, the user can also feel the size of the target contact.
  • step S103 if the current angular position is within the preset working range of the force feedback, it is determined that the force feedback driving device needs to turn on the force feedback.
  • S103 compares the current angular position with the preset working range requiring force feedback to be turned on, and determines whether the force feedback driving device needs to turn on force feedback according to the comparison result. If the current angular position is within the preset working range of the force feedback, the force feedback needs to be turned on and the force feedback is calculated, otherwise the force feedback does not need to be turned on. According to different actual use scenarios, the preset working range of force feedback is also different.
  • the preset working range of the force feedback may be a preset difference range between the current angular position and the target angular position, if the difference range between the current angular position and the target angular position is within the preset difference range, Determine that force feedback needs to be turned on.
  • the preset working range of the force feedback may also be a preset virtual space distribution position. If the virtual hand model constructed at the current angle position is at the preset virtual space distribution position, it is determined that it needs to be turned on. Force feedback. It should be noted that the preset working range of the force feedback is not limited to this, any factor related to the current angular position can be set as the preset working range of the force feedback, which is selected according to the actual use scenario.
  • S103 includes: S1031, S1032, and S1033.
  • the target contact position refers to the contact position of the hand model on the target contact object when the hand model collides with the target contact object in the virtual scene. There may be one or more target contact positions.
  • the types of force feedback include elastic force feedback, rigid force feedback and damping force feedback.
  • the relevant position of the mechanical exoskeleton of the hand may be in contact with the surface of the elastomer substance or the rigid substance substance, or may also be in contact with the surface of the liquid (including the mixed liquid)
  • the position needs to open the elastic force feedback or rigid force feedback and obtain the direction of the force feedback that needs to be output.
  • Feedback effect when the maximum force feedback is turned on by the hand mechanical exoskeleton, the hand mechanical exoskeleton simulates the effect of directly grabbing a rigid object, so that the user can experience the rigid force feedback effect.
  • the relative position of the hand mechanical exoskeleton can simulate the effect of grabbing or touching the cup.
  • the target contact is not limited to an elastomer substance, a rigid substance substance or a liquid (including a mixed liquid), but is merely an example.
  • the relevant position of the hand mechanical exoskeleton may be immersed in the liquid (including the mixed liquid), and it is determined that the damping force feedback needs to be turned on.
  • the direction of the damping force feedback is not limited. It can be judged according to the physical properties of the target contact, the area of the target contact position, the collision speed, or the movement direction of the hand mechanical exoskeleton. The direction is the same, it may be the opposite.
  • the force feedback driving device is configured to include a damping driving mechanism and an output link connected to the damping driving mechanism. When the direction of the damping force feedback is opposite to the directions of the elastic force feedback and the rigid force feedback, the output link When rotating, the damping drive mechanism will start, continuously output the force in the opposite direction of the output link movement, and simulate the damping effect.
  • S102 and S103 can be implemented by a host computer that is communicatively connected to the hand exoskeleton.
  • the processor inside the hand mechanical exoskeleton establishes wireless communication with the host computer to send and receive information, and the host computer determines when the current angular position is within the preset working range of force feedback Force feedback needs to be turned on to obtain the physical properties of the target contact, the target angular position and the direction of the force feedback, and feed back to the processor of the hand mechanical exoskeleton.
  • step S104 according to the current angular position, the current working state value, the target angular position and the physical properties, a target force feedback output value is acquired to control the force feedback drive device to perform the corresponding force feedback output.
  • S104 may specifically calculate the current angular position, current working state value, target angular position and physical properties through a force feedback control algorithm to obtain a target force feedback output value to control the force feedback drive device to perform corresponding force feedback Output.
  • the corresponding force feedback output refers to outputting the target force feedback output value in the corresponding force feedback direction;
  • the target force feedback output value is the output value of the force feedback driving device, and the form of the output value is different depending on the form of force feedback.
  • the form of force feedback includes but is not limited to driving force feedback, vibration force feedback, and a combination of driving force feedback or vibration force feedback and temperature feedback.
  • the target force feedback output value is the torque output value for stress feedback.
  • the target force feedback output value is the output value of the amplitude of the vibration, the waveform of the vibration, the frequency of vibration, etc. for the stress feedback.
  • the current angular position, current working state value, and target angular position at different drive joints may all be the same or different, that is, the target force feedback output values of the different force feedback drive devices obtained may be the same or different, so different can be achieved through S104
  • the size of position force feedback is precisely controlled, and through the output of force feedback, different force feedback effects are achieved, allowing users to experience the shape and hardness of the corresponding area of virtual objects in virtual contact with fingers, fingertips and palms through force feedback, and even experience The size of the virtual object.
  • S104 may be executed by a processor provided on the mechanical exoskeleton of the hand.
  • S104 includes: S1041, S1042, and S1043.
  • the target working state value of the force feedback drive device is obtained.
  • the current working state value specifically refers to the current working current value
  • the physical property refers to the stiffness value
  • the target working state value refers to the target working current
  • the target working current value is calculated according to the current angular position, the target angular position and the stiffness value .
  • the target operating current value is proportional to the difference between the current angular position and the target angular position. The greater the difference between the current angular position and the target angular position, the greater the target operating current value.
  • the target working current value is also proportional to the stiffness value. The larger the stiffness value, the larger the target working current value.
  • the target force feedback output value is obtained according to the current working state value and the target working state value.
  • the current working state value specifically refers to the current working current value
  • the target working state value refers to the target working current
  • the target force feedback output value refers to the target output torque
  • each force is obtained according to the current working current value and the target working current value Feedback the target output torque of the drive.
  • the target output torque is obtained by performing proportional (P), integral (I), and derivative (D) operations on the current operating current value and the target operating current value.
  • the force feedback drive device is controlled to perform the corresponding force feedback output according to the target force feedback output value.
  • the force feedback driving device includes a force feedback driving mechanism
  • the target force feedback output value includes a target output torque.
  • S1043 includes acquiring a pulse width modulation waveform corresponding to the target output torque, and controlling the torque output of each force feedback driving device according to the pulse width modulation waveform. That is, the target force feedback output value is converted into a duty cycle of the PWM (Pulse-Width Modulation, Pulse Width Modulation) waveform of the force feedback drive motor after proportional conversion, and the PWM wave is generated and output to the force feedback drive motor. The greater the duty cycle of the PWM wave, the greater the output torque of the force feedback drive motor, and vice versa, so the torque of the force feedback drive motor can be controlled by changing the PWM wave duty cycle.
  • PWM Pulse-Width Modulation, Pulse Width Modulation
  • the control method provided by the embodiments of the present application captures the angle information of the drive joints in real time according to the current angular position of each drive joint, and uses the angle information of the drive joints to build a hand model to obtain the physical properties and needs of the target contact in the virtual scene
  • the target angular position of the drive joint of force feedback when it is determined that the force feedback needs to be turned on, the target force feedback output value is obtained according to the current angle position, current working state value, target angle position and physical properties to control the force feedback drive device to perform corresponding force feedback Output. Therefore, the control method can achieve detailed capture of finger movements and hand movements, and accurately control the size of force feedback at different positions, while achieving richer dimensions and more refined force feedback to simulate the shape of virtual objects, The size and rigidity provide users with a more realistic touch experience.
  • FIG. 2 is a flowchart of a method for controlling a force feedback of a mechanical exoskeleton of a hand in another embodiment.
  • control method includes steps S201, S202, S203, S204, and S205.
  • steps S201, S202, S203, S204, and S205 are as follows:
  • step S201 the current angular position of each driving joint and the current working state value of the stress feedback driving device are read.
  • step S202 the current motion of the virtual hand model is mapped according to the current angular position to obtain the physical properties of the target contact in the virtual scene, the target angular position of the drive joint that requires force feedback, and the direction of the output force feedback.
  • step S203 if the current angular position is within the preset working range of the force feedback, it is determined that the force feedback driving device needs to turn on the force feedback.
  • step S204 the current angular position, current working state value, target angular position and physical properties are calculated to obtain a target force feedback output value to control the force feedback drive device to perform corresponding force feedback output.
  • step S205 the working state value of the force feedback driving device is collected in real time, and if the working state value exceeds a preset threshold, the force feedback driving device is controlled to start overload protection.
  • S201, S202, S203, and S204 refer to the related descriptions of S101, S102, S103, and S104 in the previous embodiment, and details are not described herein again.
  • S201, S202, S203, S204 and S205 do not limit the order.
  • step S205 may be before any step or after any step.
  • S205 collects the working state value of the force feedback drive device in real time. If the working state value exceeds the preset threshold, the force feedback drive device is controlled to stop outputting force feedback or reset the preset threshold according to actual conditions to reduce the maximum force Feedback upper limit, to protect the force feedback drive device and user.
  • the control method captures the angle information of the drive joints in real time according to the current angular position of each drive joint, and uses the angle information of the drive joints to build a hand model to obtain the physical properties and needs of the target contact in the virtual scene
  • the target angular position of the force feedback driving joint is obtained, and the target force feedback output value is obtained to control the force feedback drive device to perform the corresponding force feedback output. Therefore, the control method can achieve detailed capture of finger movements and hand movements, and accurately control the size of force feedback at different positions, while achieving richer dimensions and more refined force feedback to simulate the shape of virtual objects,
  • the size and rigidity provide users with a more realistic touch experience.
  • the working state value of the force feedback drive device exceeds a preset threshold, the force feedback drive device and the user are protected to improve the safety and stability of the force feedback.
  • steps in the flowcharts of FIG. 1 and FIG. 2 are displayed in order according to the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless clearly stated in this article, the execution of these steps is not strictly limited in order, and these steps can be executed in other orders. Moreover, at least some of the steps in FIGS. 1 and 2 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times. These sub-steps or The execution order of the stages is not necessarily sequential, but may be executed in turn or alternately with other steps or sub-steps of the other steps or at least a part of the stages.
  • FIG. 3 is a system structural diagram of a control system for hand mechanical exoskeleton force feedback provided by an embodiment.
  • the control system of this embodiment includes: a reading module 101, an acquiring module 102, a determination module 103, and a control module 104. specifically:
  • the reading module 101 is used to read the current angular position of each driving joint and the current working state value of the stress feedback driving device.
  • the acquiring module 102 is configured to map the current motion of the virtual hand model according to the current angular position, and acquire the physical properties of the target contact in the virtual scene, the target angular position of the driving joint requiring force feedback, and the direction of the output force feedback.
  • the determining module 103 is configured to determine that the force feedback driving device needs to turn on force feedback if the current angular position is within the preset working range of the force feedback.
  • the control module 104 is configured to calculate the current angular position, the current working state value, the target angular position, and the physical properties to obtain the target force feedback output value to control the force feedback drive device to perform the corresponding force feedback output.
  • the determination module 103 includes a first determination unit, a second determination unit, and a third determination unit.
  • the first determining unit is used to determine the target contact position of the target contact in the virtual scene if the current angular position is within the preset working range of force feedback.
  • the second determination unit is configured to determine that the elastic force feedback or the rigid force feedback needs to be turned on to obtain the direction of the force feedback that needs to be output if the target contact position is located on the surface of the target contact.
  • the third determination unit is used for determining that the force feedback is damping force feedback if the target contact position is inside the target contact.
  • control module 104 includes a first arithmetic unit, a second arithmetic unit, and a control unit.
  • the first acquiring unit is configured to acquire the target working state value of the force feedback driving device according to the current angular position, the target angular position and the physical properties.
  • the second obtaining unit is configured to obtain the target force feedback output value according to the current working state value and the target working state value.
  • the control unit is used for controlling the force feedback driving device to perform corresponding force feedback output according to the target force feedback output value.
  • the target force feedback output value includes the target output torque;
  • the control unit includes a waveform acquisition circuit and a torque control circuit.
  • the waveform acquisition circuit is connected to a torque control circuit.
  • the waveform acquisition circuit is used to acquire a pulse width modulation waveform corresponding to the target output torque;
  • the torque control circuit is used to control the torque output of the force feedback drive device according to the pulse width modulation waveform.
  • the acquisition module 102 includes a judgment unit, a third acquisition unit, and a fourth acquisition unit.
  • the judging unit is configured to map the current movement of the virtual hand model according to the current angular position, and determine whether the virtual hand model collides with the target contact.
  • the third acquiring unit is used to acquire the physical properties of the target contact if a collision occurs.
  • the fourth acquiring unit is configured to calculate and acquire the target angular position of the drive joint that requires force feedback according to physical properties.
  • the control system includes a reading module 101, an obtaining module 102, a determining module 103, and a control module 104.
  • the system captures the angle information of the driving joints in real time according to the current angular position of each driving joint, and uses the angle of the driving joint Information to build a hand model, obtain the physical properties of the target contact in the virtual scene and the target angular position of the drive joint that requires force feedback.
  • the physical property obtains the target force feedback output value to control the force feedback driving device to perform the corresponding force feedback output.
  • the control system can achieve detailed capture of finger movements and hand movements, and accurately control the size of force feedback at different positions, while achieving richer dimensions and more refined force feedback to simulate the shape of virtual objects and Stiffness provides users with a more realistic touch experience.
  • FIG. 4 is a system structural diagram of a force feedback control system for hand mechanical exoskeleton provided by another embodiment.
  • the control system in this embodiment includes: a reading module 201, an acquiring module 202, a determination module 203, a control module 204, and a protection module 205.
  • the reading module 201 is used to read the current angular position of each driving joint and the current working state value of the stress feedback driving device.
  • the acquiring module 202 is configured to map the current motion of the virtual hand model according to the current angular position, and acquire the physical properties of the target contact in the virtual scene and the target angular position of the drive joint that requires force feedback.
  • the determining module 203 is configured to determine that the force feedback driving device needs to turn on force feedback if the current angular position is within the preset working range of the force feedback.
  • the control module 204 is configured to obtain a target force feedback output value according to the current angular position, current working state value, target angular position and physical properties to control the force feedback drive device to perform corresponding force feedback output.
  • the protection module 205 is configured to collect the working state value of the force feedback driving device in real time, and if the working state value exceeds a preset threshold, control the force feedback driving device to start overload protection.
  • the control system includes a reading module 201, an acquiring module 202, a determination module 203, a control module 204, and a protection module 205.
  • the system captures the angle information of the driving joints in real time according to the current angular position of each driving joint, and uses The angle information of the driving joint is used to construct a hand model, to obtain the physical properties of the target contact in the virtual scene, the target angular position of the driving joint that requires force feedback, and the direction of the output force feedback, and to calculate when it is necessary to turn on force feedback Obtain the target force feedback output value to control the force feedback drive device to perform the corresponding force feedback output.
  • the control system can achieve detailed capture of finger movements and hand movements, and accurately control the size of force feedback at different positions, while achieving richer dimensions and more refined force feedback to simulate the shape of virtual objects,
  • the size and rigidity provide users with a more realistic touch experience.
  • the force feedback drive device and the user are protected to improve the safety and stability of the force feedback.
  • Each module in the above-mentioned control system may be implemented in whole or in part by software, hardware, or a combination thereof.
  • the above-mentioned modules may be embedded in the hardware or independent of the processor in the computer device, or may be stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • the embodiments of the present application also provide a computer-readable storage medium.
  • One or more non-volatile computer-readable storage media containing computer-executable instructions when the computer-executable instructions are executed by one or more processors, cause the processor to perform the steps of the control method in any of the above embodiments .
  • An embodiment of the present application further provides a terminal device.
  • the terminal device includes a processor, and the processor is configured to execute a computer program stored in a memory to implement the steps of the control method provided in the foregoing embodiments.
  • the program can be stored in a non-volatile computer-readable storage medium When the program is executed, it may include the processes of the foregoing method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), etc.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM), which acts as external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR) SDRAM, enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous Link (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Geometry (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Manipulator (AREA)
  • Rehabilitation Tools (AREA)
  • Prostheses (AREA)

Abstract

本申请涉及一种部机械外骨骼力反馈的控制方法及系统。该控制方法根据各驱动关节的当前角度位置,实时捕捉驱动关节的角度信息,利用驱动关节的角度信息构建手部模型,获取虚拟场景中目标接触物的物理性质和需要进行力反馈的驱动关节的目标角度位置,在判定需要开启力反馈时,进行运算获取目标力反馈输出值以控制力反馈驱动装置进行相应力反馈输出。由此,该控制方法能够实现手指动作和手部动作的细致捕捉,并精准控制在不同位置力反馈的大小,同时实现维度更丰富、体验更精细的力反馈,用以模拟虚拟物体的形状及刚度,为用户提供更加真实的触感体验。

Description

手部机械外骨骼力反馈的控制方法及系统
本申请要求于2018-11-01提交中国专利局,申请号为2018112969480,申请名称为“手部机械外骨骼力反馈的控制方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种手部机械外骨骼力反馈的控制方法及系统。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
在虚拟现实的场景中,为了增强用户对虚拟世界的感知,常常会用到手部动作捕获装置来捕捉人手的运动信息,手部动作捕获装置具有与人手的五指相适配的五指机构。穿戴后,当用户的手指运动时,手部动作捕获装置便会捕捉人手指的运作情况,实现对人手运动信息的捕捉。随着虚拟现实技术的发展,手部动作捕获装置也开始同时具备力反馈功能。
然而,目前的手部动作捕获装置的力反馈功能仅是从无和有的区别,无法精准控制在不同位置的力反馈的大小,从而无法使用户产生真实的握持感。
发明内容
根据本申请公开的各种实施例,提供一种手部机械外骨骼力反馈的控制方法及系统。
一种手部机械外骨骼力反馈的控制方法,所述手部机械外骨骼包括多个手指连杆结构以及设置在手指连杆结构驱动关节上的一个或多个力反馈驱动装置,所述控制方法包括如下步骤:
读取各驱动关节的当前角度位置和对应力反馈驱动装置的当前工作状态值;
根据所述当前角度位置映射虚拟手部模型当前动作,获取虚拟场景中目标接触物的物理性质和需要进行力反馈的驱动关节的目标角度位置;
若所述当前角度位置在力反馈的预设工作范围内,则判定力反馈驱动装置需要开启力 反馈;
根据所述当前角度位置、所述当前工作状态值、所述目标角度位置以及所述物理性质,获取目标力反馈输出值以控制所述力反馈驱动装置进行相应力反馈输出。
在其中一个实施例中,所述控制方法还包括如下步骤:
实时采集所述力反馈驱动装置的工作状态值,若所述工作状态值超出预设阈值,则控制所述力反馈驱动装置启动过载保护。
在其中一个实施例中,各驱动关节的当前角度位置包括不同手指连杆结构间相对旋转时各驱动关节的当前角度位置信息,还包括同一手指连杆结构不同驱动关节间相对旋转时各驱动关节的当前角度位置信息。
在其中一个实施例中,所述当前工作状态值包括力反馈驱动装置输出的当前电流值或者当前电压值。
在其中一个实施例中,所述根据所述当前角度位置映射虚拟手部模型当前动作,获取虚拟场景中目标接触物的物理性质和需要进行力反馈的驱动关节的目标角度位置的步骤,包括:
根据所述当前角度位置映射虚拟手部模型当前动作,判断所述虚拟手部模型和所述目标接触物是否发生碰撞;
若发生碰撞则获取所述目标接触物的物理性质;
根据所述物理性质计算获取需要进行力反馈的驱动关节的目标角度位置。
在其中一个实施例中,所述物理性质包括刚度值和物体形状。
在其中一个实施例中,所述若所述当前角度位置在力反馈的预设工作范围内,则判定力反馈驱动装置需要开启力反馈的步骤,包括:
若所述当前角度位置在力反馈的预设工作范围内,判断虚拟场景中目标接触物的目标接触位置;
若所述目标接触位置位于所述目标接触物的表面,则判定需要开启弹性力反馈或刚性力反馈,获取需要输出的力反馈的方向;
若所述目标接触位置位于所述目标接触物的内部,则判定所述力反馈为阻尼力反馈。
在其中一个实施例中,所述目标接触位置为虚拟场景中手部模型与目标接触物发生碰 撞时,手部模型在所述目标接触物上的接触位置。
在其中一个实施例中,所述根据所述当前角度位置、所述当前工作状态值、所述目标角度位置以及所述物理性质,获取目标力反馈输出值以控制所述力反馈驱动装置进行相应力反馈输出的步骤,包括:
根据所述当前角度位置、所述目标角度位置以及所述物理性质,获取所述力反馈驱动装置的目标工作状态值;
根据将所述当前工作状态值和所述目标工作状态值,获取目标力反馈输出值;
根据目标力反馈输出值控制所述力反馈驱动装置进行相应力反馈输出。
在其中一个实施例中,所述目标力反馈输出值包括目标输出扭矩;所述根据目标力反馈输出值控制所述力反馈驱动装置进行相应力反馈输出的步骤,包括:
获取目标输出扭矩对应的脉冲宽度调制波形;
根据所述脉冲宽度调制波形控制所述力反馈驱动装置的扭矩输出。
一种手部机械外骨骼力反馈的控制系统,所述手部机械外骨骼包括多个手指连杆结构以及设置在手指连杆结构驱动关节上的一个或多个力反馈驱动装置,所述控制系统包括:
读取模块,用于读取各驱动关节的当前角度位置和对应力反馈驱动装置的当前工作状态值;
获取模块,用于根据所述当前角度位置映射虚拟手部模型当前动作,获取虚拟场景中目标接触物的物理性质和需要进行力反馈的驱动关节的目标角度位置;
判定模块,用于若所述当前角度位置在力反馈的预设工作范围内,则判定力反馈驱动装置需要开启力反馈;及
控制模块,用于根据所述当前角度位置、所述当前工作状态值、所述目标角度位置以及所述物理性质,获取目标力反馈输出值以控制所述力反馈驱动装置进行相应力反馈输出。
在其中一个实施例中,所述控制系统还包括:
保护模块,用于实时采集所述力反馈驱动装置的工作状态值,若所述工作状态值超出预设阈值,则控制所述力反馈驱动装置启动过载保护。
在其中一个实施例中,所述判定模块包括:
第一判定单元,用于若所述当前角度位置在力反馈的预设工作范围内,判断虚拟场景中目标接触物的目标接触位置;
第二判定单元,用于若所述目标接触位置位于所述目标接触物的表面,则判定需要开启弹性力反馈或刚性力反馈,获取需要输出的力反馈的方向;及
第三判定单元,用于若所述目标接触位置位于所述目标接触物的内部,则判定所述力反馈为阻尼力反馈。
在其中一个实施例中,所述控制模块包括:
第一获取单元,用于根据所述当前角度位置、所述目标角度位置以及所述物理性质,获取所述力反馈驱动装置的目标工作状态值;
第二获取单元,用于根据所述当前工作状态值和所述目标工作状态值,获取目标力反馈输出值;及
控制单元,用于根据目标力反馈输出值控制所述力反馈驱动装置进行相应力反馈输出。
在其中一个实施例中,所述目标力反馈输出值包括目标输出扭矩;所述控制单元包括:
波形获取电路,用于获取目标输出扭矩对应的脉冲宽度调制波形;及
扭矩控制电路,用于根据所述脉冲宽度调制波形控制所述力反馈驱动装置的扭矩输出。
在其中一个实施例中,所述获取模块包括:
判断单元,用于根据当前角度位置映射虚拟手部模型当前动作,判断虚拟手部模型和目标接触物是否发生碰撞;
第三获取单元,用于若发生碰撞则获取目标接触物的物理性质;及
第四获取单元,用于根据物理性质计算获取需要进行力反馈的驱动关节的目标角度位置。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为一实施例中手部机械外骨骼力反馈的控制方法的方法流程图;
图2为另一实施例中手部机械外骨骼力反馈的控制方法的方法流程图;
图3为一实施例中手部机械外骨骼力反馈的控制系统的系统结构图;
图4为另一实施例中手部机械外骨骼力反馈的控制系统的系统结构图。
具体实施方式
为了使本申请的技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参见图1,图1为一实施例中手部机械外骨骼力反馈的控制方法的方法流程图。
在本实施例中,该手部机械外骨骼具有力反馈功能,包括多个手指连杆结构以及设置在手指连杆结构驱动关节上的一个或多个力反馈驱动装置,可在用户手部提供可调节的连续力反馈,用以模拟虚拟物体的形状及刚度,这可被用于机器人控制、机械控制以及游戏等等。本申请的控制方法则用于控制该手部机械外骨骼的力反馈驱动装置的力反馈输出,具体地,该控制方法包括步骤S101、S102、S103以及S104。详述如下:
在步骤S101中,读取各驱动关节的当前角度位置和对应力反馈驱动装置的当前工作状态值。
在本实施例中,各驱动关节的当前角度位置包括手部机械外骨骼不同手指连杆结构间相对横向旋转时各驱动关节的当前角度位置信息以及同一手指连杆结构不同驱动关节间相对旋转时各驱动关节的当前角度位置信息。各驱动关节对应力反馈驱动装置的当前工作状态值包括设置在手部机械外骨骼不同连杆结构关节间力反馈驱动装置的当前工作状态值,以及设置在同一连杆结构上不同连杆关节间的一个或多个力反馈驱动装置的当前工作状态值。其中,当前工作状态值包括力反馈驱动装置输出的当前电流值或者当前电压值。
在一个实施例中,S101可以通过手部机械外骨骼上设置在各连杆结构上的角度传感 器、微处理器以及设置在手部机械外骨骼手掌底座的主处理器实现当前角度位置和当前工作状态值的读取。S101通过角度传感器采集角度信息,获取各驱动关节的当前角度位置,继而通过微处理器读取各驱动关节的当前角度位置,同时读取对应力反馈驱动装置的当前工作状态值并反馈至主处理器,由此,主处理器汇总来自各连杆结构上各连杆结构驱动关节上的当前角度位置和对应力反馈驱动装置的当前工作状态值。其中,微处理器与主处理器可以通过信号线连接实现双向通讯(串口或I2C通讯或其他任何通讯形式)。
在步骤S102中,根据当前角度位置映射虚拟手部模型当前动作,获取虚拟场景中目标接触物的物理性质和需要进行力反馈的驱动关节的目标角度位置。
在本实施例中,S102根据S101获取的不同连杆结构关节间手指横向旋转的当前角度位置信息以及同一连杆结构不同连杆关节间旋转的当前角度位置信息,可以获取虚拟手部模型的当前坐标位置,映射虚拟手部模型当前动作,进而判断虚拟手部模型当前是否与虚拟场景中目标接触物进行碰撞接触。在判断与目标接触物有碰撞接触时,则获取目标接触物的物理性质,并根据该物理性质计算获得需要进行力反馈的驱动关节的目标角度位置。其中,目标角度是指在需要进行力反馈时,驱动关节开始进行力反馈的临界角度位置。
在一个实施例中,S102包括:S1021、S1022以及S1023。
在S1021中,根据当前角度位置映射虚拟手部模型当前动作,判断虚拟手部模型和目标接触物是否发生碰撞。具体地,当虚拟手部模型的坐标与目标接触物的坐标有部分重合时,判定为发生碰撞。
在S1022中,若发生碰撞则获取目标接触物的物理性质。
在S1023中,根据物理性质计算获取需要进行力反馈的驱动关节的目标角度位置以及输出的力反馈的方向。
其中,目标接触物的物理性质包括刚度值和物体形状。根据目标接触物形状和刚度值的不同,每个手指连杆结构需要开启力反馈的驱动关节角度范围、输出力反馈的方向和大小也是不同的,进而用户可以感受目标接触物的形状和刚度。当目标接触物完全在虚拟手部模型的抓取范围内时,用户还可以感受出目标接触物的大小。
在步骤S103中,若当前角度位置在力反馈的预设工作范围内,则判定力反馈驱动装置需要开启力反馈。
在本实施例中,S103对当前角度位置和需要开启力反馈的预设工作范围进行比较,根据比较结果判定力反馈驱动装置是否需要开启力反馈。若当前角度位置在力反馈的预设工作范围内,则需要开启力反馈,并进行力反馈的计算,否则不需开启力反馈。根据实际使用场景的不同,力反馈的预设工作范围也有不同。在一个实施例中,力反馈的预设工作范围可以是当前角度位置与目标角度位置的预设差值范围,若当前角度位置与目标角度位置的差值范围在预设差值范围内时,判定需要开启力反馈。在另一个实施例中,力反馈的预设工作范围还可以是预设的虚拟空间分布位置,若当前角度位置构建的虚拟手部模型处在预设的虚拟空间分布位置时,判定为需要开启力反馈。需要说明的是,力反馈的预设工作范围并不仅仅局限于此,任何与当前角度位置相关的因素都可以被设置为力反馈的预设工作范围,具体根据实际使用场景进行选择。
在一个实施例中,S103包括:S1031、S1032以及S1033。
在S1031中,若当前角度位置在力反馈的预设工作范围内,判断虚拟场景中目标接触物的目标接触位置。
在S1032中,若目标接触位置位于目标接触物的表面,则判定需要开启弹性力反馈或刚性力反馈,获取需要输出的力反馈的方向。
在S1033中,若目标接触位置位于目标接触物的内部,则判定力反馈为阻尼力反馈。
其中,目标接触位置是指虚拟场景中手部模型与目标接触物发生碰撞时,手部模型在目标接触物上的接触位置。目标接触位置可以是一个或多个。
力反馈的类型包括弹性力反馈、刚性力反馈以及阻尼力反馈。当目标接触位置处于目标接触物的表面时,手部机械外骨骼的相关位置可能与弹性体物质或刚性体物质的表面接触,或者也可能与液体(包括混合液)的表面接触,则判定该位置需要开启弹性力反馈或刚性力反馈同时获取需要输出的力反馈的方向,此时,手部机械外骨骼的相关位置即可模拟抓取或触碰到弹性物体的效果,使用户体验弹性力反馈效果;当手部机械外骨骼开启最大力反馈时,则手部机械外骨骼模拟直接抓取到刚性物体的效果,使用户体验刚性力反馈效果。例如,手部机械外骨骼的相关位置与虚拟场景中杯子的表面发生碰撞,则手部机械外骨骼的相关位置可以模拟抓取或触碰杯子的效果。需要说明的是,目标接触物不局限于弹性体物质、刚性体物质或者液体(包括混合液),仅仅是举例说明。
当目标接触位置位于目标接触物的内部时,手部机械外骨骼的相关位置可能沉浸于液体(包括混合液)中,则判定需要开启阻尼力反馈。阻尼力反馈的方向不受限制,具体根据目标接触物的物理性质、目标接触位置的面积大小、碰撞速度或者手部机械外骨骼的运动方向等进行判断,有可能与弹性力反馈、刚性力反馈的方向相同,也有可能相反。在一个实施例中,力反馈驱动装置被配置为包括阻尼驱动机构和与阻尼驱动机构连接的输出连杆,当阻尼力反馈的方向与弹性力反馈、刚性力反馈的方向相反时,输出连杆旋转时,阻尼驱动机构则会启动,持续输出与输出连杆运动方向相反的力,模拟阻尼效果。
在一个实施例中,S102和S103可以通过与手部机械外骨骼通信连接的上位机实现。当手部机械外骨骼电源开启后,手部机械外骨骼内部的处理器与上位机建立无线通讯,进行信息的发送和接收,上位机在当前角度位置处于力反馈的预设工作范围内时判定需要开启力反馈,获取目标接触物的物理性质、目标角度位置以及力反馈的方向,并反馈回手部机械外骨骼的处理器。
在步骤S104中,根据当前角度位置、当前工作状态值、目标角度位置以及物理性质,获取目标力反馈输出值以控制力反馈驱动装置进行相应力反馈输出。
在本实施例中,S104具体可以通过力反馈控制算法,将当前角度位置、当前工作状态值、目标角度位置以及物理性质进行运算,获取目标力反馈输出值以控制力反馈驱动装置进行相应力反馈输出。其中,相应力反馈输出是指在相应的力反馈方向上输出目标力反馈输出值;目标力反馈输出值为力反馈驱动装置的输出值,根据力反馈形式的不同,输出值的形式也不同。力反馈形式包括但不限于驱动力反馈、振动力反馈以及驱动力反馈或振动力反馈与温度反馈的结合。在一个实施例中,当力反馈驱动装置以电机驱动的形式进行力反馈时,则目标力反馈输出值为对应力反馈的扭矩输出值。在另一个实施例中,当力反馈驱动装置以电机振动的形式进行力反馈时,则目标力反馈输出值为对应力反馈的振动幅度大小、振动波形以及振动频率等的输出值。不同驱动关节处的当前角度位置、当前工作状态值、目标角度位置均有可能相同或者不同,即获取的不同力反馈驱动装置的目标力反馈输出值有可能相同或者不同,因而可以通过S104实现不同位置力反馈的大小精准控制,并且通过力反馈的输出,实现不同的力反馈效果,使用户通过力反馈体验虚拟物体中与手指、指尖以及手掌虚拟接触的对应区域的形状和硬度,甚至体验虚拟物体的大小。在一个 实施例中,S104可以由手部机械外骨骼上设置的处理器执行动作。
在一个实施例中,S104包括:S1041、S1042以及S1043。
在S1041中,根据当前角度位置、目标角度位置以及物理性质,获取力反馈驱动装置的目标工作状态值。在一个实施例中,当前工作状态值具体指当前工作电流值,物理性质指刚度值,目标工作状态值指目标工作电流,根据当前角度位置、目标角度位置以及刚度值进行运算获取目标工作电流值。具体地,目标工作电流值正比于当前角度位置和目标角度位置的差值,当前角度位置和目标角度位置的差值越大,目标工作电流值越大。具体地,目标工作电流值还正比于刚度值,刚度值越大,目标工作电流值越大。
在S1042中,根据当前工作状态值和目标工作状态值,获取目标力反馈输出值。在一个实施例中,当前工作状态值具体指当前工作电流值,目标工作状态值指目标工作电流,目标力反馈输出值指目标输出扭矩,根据当前工作电流值和目标工作电流值,获取各力反馈驱动装置的目标输出扭矩。具体地,将当前工作电流值和目标工作电流值进行比例(P)、积分(I)和微分(D)运算后获取目标输出扭矩。
在S1043中,根据目标力反馈输出值控制力反馈驱动装置进行相应力反馈输出。在一个实施例中,力反馈驱动装置包括力反馈驱动机构,目标力反馈输出值包括目标输出扭矩。在一个实施例中,S1043包括获取目标输出扭矩对应的脉冲宽度调制波形,根据脉冲宽度调制波形控制各力反馈驱动装置的扭矩输出。即将目标力反馈输出值经过比例换算后成为力反馈驱动电机的PWM(Pulse-Width Modulation,脉冲宽度调制波形)波形的占空比,并据此生成PWM波输出到力反馈驱动电机。PWM波的占空比越大力反馈驱动电机输出扭矩越大,反之亦然,所以可以通过改变PWM波占空比的形式控制力反馈驱动电机扭矩。
本申请实施例提供的控制方法,根据各驱动关节的当前角度位置,实时捕捉驱动关节的角度信息,利用驱动关节的角度信息构建手部模型,获取虚拟场景中目标接触物的物理性质和需要进行力反馈的驱动关节的目标角度位置,在判定需要开启力反馈时,根据当前角度位置、当前工作状态值、目标角度位置以及物理性质获取目标力反馈输出值以控制力反馈驱动装置进行相应力反馈输出。由此,该控制方法能够实现手指动作和手部动作的细致捕捉,并精准控制在不同位置力反馈的大小,同时实现维度更丰富、体验更精细的力反馈,用以模拟虚拟物体的形状、大小及刚度,为用户提供更加真实的触感体验。
参见图2,图2为另一实施例中手部机械外骨骼力反馈的控制方法的方法流程图。
在本实施例中,该控制方法包括步骤S201、S202、S203、S204以及S205。详述如下:
在步骤S201中,读取各驱动关节的当前角度位置和对应力反馈驱动装置的当前工作状态值。
在步骤S202中,根据当前角度位置映射虚拟手部模型当前动作,获取虚拟场景中目标接触物的物理性质、需要进行力反馈的驱动关节的目标角度位置以及输出的力反馈的方向。
在步骤S203中,若当前角度位置在力反馈的预设工作范围内,则判定力反馈驱动装置需要开启力反馈。
在步骤S204中,将当前角度位置、当前工作状态值、目标角度位置以及物理性质进行运算,获取目标力反馈输出值以控制所述力反馈驱动装置进行相应力反馈输出。
在步骤S205中,实时采集力反馈驱动装置的工作状态值,若工作状态值超出预设阈值,则控制力反馈驱动装置启动过载保护。
在本实施例中,S201、S202、S203以及S204参见上一实施例中S101、S102、S103以及S104的相关描述,在此不再赘述。且S201、S202、S203、S204以及S205并不限定先后顺序。例如,步骤S205可以在任意步骤之前,也可以在任意步骤之后。
在本实施例中,S205实时采集力反馈驱动装置的工作状态值,若工作状态值超出预设阈值,则控制力反馈驱动装置停止输出力反馈或者根据实际情况重新设置预设阈值,降低最大力反馈上限,以保护力反馈驱动装置和使用者。
本申请实施例提供的控制方法,根据各驱动关节的当前角度位置,实时捕捉驱动关节的角度信息,利用驱动关节的角度信息构建手部模型,获取虚拟场景中目标接触物的物理性质和需要进行力反馈的驱动关节的目标角度位置,在判定需要开启力反馈时,获取目标力反馈输出值以控制力反馈驱动装置进行相应力反馈输出。由此,该控制方法能够实现手指动作和手部动作的细致捕捉,并精准控制在不同位置力反馈的大小,同时实现维度更丰富、体验更精细的力反馈,用以模拟虚拟物体的形状、大小以及刚度,为用户提供更加真实的触感体验。同时,在力反馈驱动装置的工作状态值超出预设阈值时,对力反馈驱动装置和使用者进行保护,以提高力反馈的安全性和稳定性。
应该理解的是,虽然图1和图2的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1和图2中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
参见图3,图3为一实施例提供的一种手部机械外骨骼力反馈的控制系统的系统结构图。
本实施例的控制系统包括的各模块用于执行图1对应的实施例中的各步骤,具体请参阅图1以及图1对应的实施例中的相关描述,此处不赘述。本实施例的控制系统包括:读取模块101、获取模块102、判定模块103以及控制模块104。具体地:
读取模块101,用于读取各驱动关节的当前角度位置和对应力反馈驱动装置的当前工作状态值。
获取模块102,用于根据当前角度位置映射虚拟手部模型当前动作,获取虚拟场景中目标接触物的物理性质、需要进行力反馈的驱动关节的目标角度位置以及输出的力反馈的方向。
判定模块103,用于若当前角度位置在力反馈的预设工作范围内,则判定力反馈驱动装置需要开启力反馈。
控制模块104,用于将当前角度位置、当前工作状态值、目标角度位置以及物理性质进行运算,获取目标力反馈输出值以控制力反馈驱动装置进行相应力反馈输出。
在一个实施例中,判定模块103包括第一判定单元、第二判定单元以及第三判定单元。
第一判定单元,用于若当前角度位置在力反馈的预设工作范围内,判断虚拟场景中目标接触物的目标接触位置。
第二判定单元,用于若目标接触位置位于目标接触物的表面,则判定需要开启弹性力反馈或刚性力反馈,获取需要输出的力反馈的方向。
第三判定单元,用于若目标接触位置位于目标接触物的内部,则判定力反馈为阻尼力 反馈。
在一个实施例中,控制模块104包括第一运算单元、第二运算单元以及控制单元。
第一获取单元,用于根据当前角度位置、目标角度位置以及物理性质,获取力反馈驱动装置的目标工作状态值。
第二获取单元,用于根据当前工作状态值和目标工作状态值,获取目标力反馈输出值。
控制单元,用于根据目标力反馈输出值控制力反馈驱动装置进行相应力反馈输出。在其中一种实施例中,目标力反馈输出值包括目标输出扭矩;控制单元包括波形获取电路和扭矩控制电路。波形获取电路连接扭矩控制电路,波形获取电路用于获取目标输出扭矩对应的脉冲宽度调制波形;扭矩控制电路用于根据脉冲宽度调制波形控制力反馈驱动装置的扭矩输出。
在一个实施例中,获取模块102包括判断单元、第三获取单元以及第四获取单元。
判断单元,用于根据当前角度位置映射虚拟手部模型当前动作,判断虚拟手部模型和目标接触物是否发生碰撞。
第三获取单元,用于若发生碰撞则获取目标接触物的物理性质。
第四获取单元,用于根据物理性质计算获取需要进行力反馈的驱动关节的目标角度位置。
本申请实施例提供的控制系统,包括读取模块101、获取模块102、判定模块103以及控制模块104,系统根据各驱动关节的当前角度位置,实时捕捉驱动关节的角度信息,利用驱动关节的角度信息构建手部模型,获取虚拟场景中目标接触物的物理性质和需要进行力反馈的驱动关节的目标角度位置,在判定需要开启力反馈时,根据当前角度位置、当前工作状态值、目标角度位置以及物理性质获取目标力反馈输出值以控制力反馈驱动装置进行相应力反馈输出。由此,该控制系统能够实现手指动作和手部动作的细致捕捉,并精准控制在不同位置力反馈的大小,同时实现维度更丰富、体验更精细的力反馈,用以模拟虚拟物体的形状及刚度,为用户提供更加真实的触感体验。
参见图4,图4为另一实施例提供的一种手部机械外骨骼力反馈的控制系统的系统结构图。
本实施例的控制系统包括的各模块用于执行图2对应的实施例中的各步骤,具体请参 阅图2以及图2对应的实施例中的相关描述,此处不赘述。在本实施例的控制系统包括:读取模块201、获取模块202、判定模块203、控制模块204以及保护模块205。
读取模块201,用于读取各驱动关节的当前角度位置和对应力反馈驱动装置的当前工作状态值。
获取模块202,用于根据当前角度位置映射虚拟手部模型当前动作,获取虚拟场景中目标接触物的物理性质和需要进行力反馈的驱动关节的目标角度位置。
判定模块203,用于若当前角度位置在力反馈的预设工作范围内,则判定力反馈驱动装置需要开启力反馈。
控制模块204,用于根据当前角度位置、当前工作状态值、目标角度位置以及物理性质,获取目标力反馈输出值以控制力反馈驱动装置进行相应力反馈输出。
保护模块205,用于实时采集所述力反馈驱动装置的工作状态值,若工作状态值超出预设阈值,则控制力反馈驱动装置启动过载保护。
本申请实施例提供的控制系统,包括读取模块201、获取模块202、判定模块203、控制模块204以及保护模块205,系统根据各驱动关节的当前角度位置,实时捕捉驱动关节的角度信息,利用驱动关节的角度信息构建手部模型,获取虚拟场景中目标接触物的物理性质、需要进行力反馈的驱动关节的目标角度位置以及输出的力反馈的方向,在判定需要开启力反馈时,进行运算获取目标力反馈输出值以控制力反馈驱动装置进行相应力反馈输出。由此,该控制系统能够实现手指动作和手部动作的细致捕捉,并精准控制在不同位置力反馈的大小,同时实现维度更丰富、体验更精细的力反馈,用以模拟虚拟物体的形状、大小及刚度,为用户提供更加真实的触感体验。同时,在力反馈驱动装置的工作状态值超出预设阈值时,对力反馈驱动装置和使用者进行保护,以提高力反馈的安全性和稳定性。
上述控制系统中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行上述任一实施例中的控制方法的步骤。
本申请实施例还提供一种终端设备,该终端设备包括处理器,处理器用于执行存储器中存储的计算机程序以实现上述各个实施例提供的控制方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种手部机械外骨骼力反馈的控制方法,所述手部机械外骨骼包括多个手指连杆结构以及设置在手指连杆结构驱动关节上的一个或多个力反馈驱动装置,所述控制方法包括如下步骤:
    读取各驱动关节的当前角度位置和对应力反馈驱动装置的当前工作状态值;
    根据所述当前角度位置映射虚拟手部模型当前动作,获取虚拟场景中目标接触物的物理性质和需要进行力反馈的驱动关节的目标角度位置;
    若所述当前角度位置在力反馈的预设工作范围内,则判定力反馈驱动装置需要开启力反馈;
    根据所述当前角度位置、所述当前工作状态值、所述目标角度位置以及所述物理性质,获取目标力反馈输出值以控制所述力反馈驱动装置进行相应力反馈输出。
  2. 根据权利要求1所述的控制方法,其中所述控制方法还包括如下步骤:
    实时采集所述力反馈驱动装置的工作状态值,若所述工作状态值超出预设阈值,则控制所述力反馈驱动装置启动过载保护。
  3. 根据权利要求1或2所述的控制方法,其中各驱动关节的当前角度位置包括不同手指连杆结构间相对旋转时各驱动关节的当前角度位置信息,还包括同一手指连杆结构不同驱动关节间相对旋转时各驱动关节的当前角度位置信息。
  4. 根据权利要求1或2所述的控制方法,其中所述当前工作状态值包括力反馈驱动装置输出的当前电流值或者当前电压值。
  5. 根据权利要求1或2所述的控制方法,其中所述根据所述当前角度位置映射虚拟手部模型当前动作,获取虚拟场景中目标接触物的物理性质和需要进行力反馈的驱动关节的目标角度位置的步骤,包括:
    根据所述当前角度位置映射虚拟手部模型当前动作,判断所述虚拟手部模型和所述目标接触物是否发生碰撞;
    若发生碰撞则获取所述目标接触物的物理性质;
    根据所述物理性质计算获取需要进行力反馈的驱动关节的目标角度位置。
  6. 根据权利要求5所述的控制方法,其中所述物理性质包括刚度值和物体形状。
  7. 根据权利要求1或2所述的控制方法,其中所述若所述当前角度位置在力反馈的预设工作范围内,则判定力反馈驱动装置需要开启力反馈的步骤,包括:
    若所述当前角度位置在力反馈的预设工作范围内,判断虚拟场景中目标接触物的目标接触位置;
    若所述目标接触位置位于所述目标接触物的表面,则判定需要开启弹性力反馈或刚性力反馈,获取需要输出的力反馈的方向;
    若所述目标接触位置位于所述目标接触物的内部,则判定所述力反馈为阻尼力反馈。
  8. 根据权利要求7所述的控制方法,其中所述目标接触位置为虚拟场景中手部模型与目标接触物发生碰撞时,手部模型在所述目标接触物上的接触位置。
  9. 根据权利要求1或2所述的控制方法,其中所述根据所述当前角度位置、所述当前工作状态值、所述目标角度位置以及所述物理性质,获取目标力反馈输出值以控制所述力反馈驱动装置进行相应力反馈输出的步骤,包括:
    根据所述当前角度位置、所述目标角度位置以及所述物理性质,获取所述力反馈驱动装置的目标工作状态值;
    根据将所述当前工作状态值和所述目标工作状态值,获取目标力反馈输出值;
    根据目标力反馈输出值控制所述力反馈驱动装置进行相应力反馈输出。
  10. 根据权利要求9所述的控制方法,其中所述目标力反馈输出值包括目标输出扭矩;所述根据目标力反馈输出值控制所述力反馈驱动装置进行相应力反馈输出的步骤,包括:
    获取目标输出扭矩对应的脉冲宽度调制波形;
    根据所述脉冲宽度调制波形控制所述力反馈驱动装置的扭矩输出。
  11. 一种手部机械外骨骼力反馈的控制系统,所述手部机械外骨骼包括多个手指连杆结构以及设置在手指连杆结构驱动关节上的一个或多个力反馈驱动装置,所述控制系统包括:
    读取模块,用于读取各驱动关节的当前角度位置和对应力反馈驱动装置的当前工作状态值;
    获取模块,用于根据所述当前角度位置映射虚拟手部模型当前动作,获取虚拟场景中目标接触物的物理性质和需要进行力反馈的驱动关节的目标角度位置;
    判定模块,用于若所述当前角度位置在力反馈的预设工作范围内,则判定力反馈驱动装置需要开启力反馈;及
    控制模块,用于根据所述当前角度位置、所述当前工作状态值、所述目标角度位置以及所述物理性质,获取目标力反馈输出值以控制所述力反馈驱动装置进行相应力反馈输出。
  12. 根据权利要求11所述的控制系统,其中所述控制系统还包括:
    保护模块,用于实时采集所述力反馈驱动装置的工作状态值,若所述工作状态值超出预设阈值,则控制所述力反馈驱动装置启动过载保护。
  13. 根据权利要求11或12所述的控制系统,其中所述判定模块包括:
    第一判定单元,用于若所述当前角度位置在力反馈的预设工作范围内,判断虚拟场景中目标接触物的目标接触位置;
    第二判定单元,用于若所述目标接触位置位于所述目标接触物的表面,则判定需要开启弹性力反馈或刚性力反馈,获取需要输出的力反馈的方向;及
    第三判定单元,用于若所述目标接触位置位于所述目标接触物的内部,则判定所述力反馈为阻尼力反馈。
  14. 根据权利要求11或12所述的控制系统,其中所述控制模块包括:
    第一获取单元,用于根据所述当前角度位置、所述目标角度位置以及所述物理性质,获取所述力反馈驱动装置的目标工作状态值;
    第二获取单元,用于根据所述当前工作状态值和所述目标工作状态值,获取目标力反馈输出值;及
    控制单元,用于根据目标力反馈输出值控制所述力反馈驱动装置进行相应力反馈输出。
  15. 根据权利要求14所述的控制系统,其中所述目标力反馈输出值包括目标输出扭矩;所述控制单元包括:
    波形获取电路,用于获取目标输出扭矩对应的脉冲宽度调制波形;及
    扭矩控制电路,用于根据所述脉冲宽度调制波形控制所述力反馈驱动装置的扭矩输出。
  16. 根据权利要求11或12所述的控制系统,其中所述获取模块包括:
    判断单元,用于根据当前角度位置映射虚拟手部模型当前动作,判断虚拟手部模型和目标接触物是否发生碰撞;
    第三获取单元,用于若发生碰撞则获取目标接触物的物理性质;及
    第四获取单元,用于根据物理性质计算获取需要进行力反馈的驱动关节的目标角度位置。
PCT/CN2019/098810 2018-11-01 2019-08-01 手部机械外骨骼力反馈的控制方法及系统 WO2020088016A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811296948.0A CN109669532B (zh) 2018-11-01 2018-11-01 手部机械外骨骼力反馈的控制方法及系统
CN201811296948.0 2018-11-01

Publications (1)

Publication Number Publication Date
WO2020088016A1 true WO2020088016A1 (zh) 2020-05-07

Family

ID=66142445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098810 WO2020088016A1 (zh) 2018-11-01 2019-08-01 手部机械外骨骼力反馈的控制方法及系统

Country Status (2)

Country Link
CN (1) CN109669532B (zh)
WO (1) WO2020088016A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109669532B (zh) * 2018-11-01 2020-06-16 深圳岱仕科技有限公司 手部机械外骨骼力反馈的控制方法及系统
CN110162180A (zh) * 2019-05-28 2019-08-23 欣旺达电子股份有限公司 力反馈控制方法和控制系统
CN110253622B (zh) * 2019-06-21 2021-01-22 深圳岱仕科技有限公司 旋转关节及旋转关节的防碰撞方法
CN110850962B (zh) * 2019-09-30 2024-05-14 深圳岱仕科技有限公司 控制方法及装置、手部外骨骼设备、计算机可读存储介质
CN110720982B (zh) * 2019-10-29 2021-08-06 京东方科技集团股份有限公司 增强现实系统、基于增强现实的控制方法以及装置
CN111103973A (zh) * 2019-11-11 2020-05-05 深圳岱仕科技有限公司 模型处理方法、装置、计算机设备和存储介质
CN112904994B (zh) * 2019-11-19 2023-09-22 深圳岱仕科技有限公司 手势识别方法、装置、计算机设备和存储介质
CN117251058B (zh) * 2023-11-14 2024-01-30 中国海洋大学 一种多信息体感交互系统的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101593021A (zh) * 2009-07-03 2009-12-02 南京航空航天大学 基于桌面的手指触感装置
CN101943946A (zh) * 2010-09-03 2011-01-12 东南大学 基于三维力传感器的二维图像力触觉再现控制方法及系统
US20160259417A1 (en) * 2014-07-21 2016-09-08 Dexta Robotics Hand exoskeleton force feedback system
CN206431575U (zh) * 2016-12-23 2017-08-22 上海氪达智能科技有限公司 一种力反馈全身动作捕捉器
CN108121450A (zh) * 2018-01-15 2018-06-05 合肥工业大学 一种基于线管钢丝绳传动的磁流变力反馈数据手套
CN109669532A (zh) * 2018-11-01 2019-04-23 深圳岱仕科技有限公司 手部机械外骨骼力反馈的控制方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051451A2 (en) * 1997-05-12 1998-11-19 Virtual Technologies, Inc. Force-feedback interface device for the hand
CN202771366U (zh) * 2011-12-19 2013-03-06 苏茂 外构架式双向力反馈数据手套
CN104076929B (zh) * 2014-07-21 2017-04-12 谷逍驰 带有力反馈的利用机械结构实现的手部动作捕获装置
US10055022B2 (en) * 2017-01-11 2018-08-21 International Business Machines Corporation Simulating obstruction in a virtual environment
CN207087856U (zh) * 2017-04-08 2018-03-13 金子楗 一种基于触觉反馈的外骨骼
CN108578173B (zh) * 2018-04-25 2020-04-24 北京工业大学 一种柔性上肢助力外骨骼
CN108614639A (zh) * 2018-06-07 2018-10-02 广东省智能制造研究所 用于虚拟现实的反馈手套

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101593021A (zh) * 2009-07-03 2009-12-02 南京航空航天大学 基于桌面的手指触感装置
CN101943946A (zh) * 2010-09-03 2011-01-12 东南大学 基于三维力传感器的二维图像力触觉再现控制方法及系统
US20160259417A1 (en) * 2014-07-21 2016-09-08 Dexta Robotics Hand exoskeleton force feedback system
CN206431575U (zh) * 2016-12-23 2017-08-22 上海氪达智能科技有限公司 一种力反馈全身动作捕捉器
CN108121450A (zh) * 2018-01-15 2018-06-05 合肥工业大学 一种基于线管钢丝绳传动的磁流变力反馈数据手套
CN109669532A (zh) * 2018-11-01 2019-04-23 深圳岱仕科技有限公司 手部机械外骨骼力反馈的控制方法及系统

Also Published As

Publication number Publication date
CN109669532A (zh) 2019-04-23
CN109669532B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2020088016A1 (zh) 手部机械外骨骼力反馈的控制方法及系统
CN110096131B (zh) 触感交互方法、装置、以及触感可穿戴设备
WO2020088427A1 (zh) 手部机械外骨骼及其反馈控制方法
CN110977974B (zh) 一种机器人规避奇异位型的导纳控制方法、装置及系统
CN103955295A (zh) 一种基于数据手套和物理引擎的虚拟手的实时抓取方法
RU2017118159A (ru) Мир массового одновременного удаленного цифрового присутствия
EP3598273A1 (en) Adaptive haptic effect rendering based on dynamic system identification
JP6563596B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP2019192237A (ja) 拡張又は仮想現実環境に対して動的触覚プレイバックを提供するためのシステム及び方法
CN109732593B (zh) 一种机器人的远端控制方法、装置及终端设备
US10162737B2 (en) Emulating a user performing spatial gestures
CN113771043B (zh) 使机器人跟随虚拟对象的控制方法、装置和康复机器人
JP2019121388A (ja) 仮想現実の長距離相互作用のためのシステム及び方法
Flores et al. User-oriented finger-gesture glove controller with hand movement virtualization using flex sensors and a digital accelerometer
CN109311155B (zh) 一种工业机器人的工具坐标系原点的标定方法及装置
CN104252330A (zh) 一种信息处理方法及电子设备
WO2019059938A1 (en) ENHANCED REALITY SYSTEM HAPTICALLY RECIBLING
CN114833826B (zh) 实现机器人碰撞触觉的控制方法、装置以及康复机器人
Garre et al. Haptic rendering of complex deformations through handle-space force linearization
EP3559780B1 (en) A method and arrangement for handling haptic feedback
Sarakoglou et al. Integration of a tactile display in teleoperation of a soft robotic finger using model based tactile feedback
CN111103973A (zh) 模型处理方法、装置、计算机设备和存储介质
EP3557385A1 (en) Cross-platform dynamic haptic effect design tool for augmented or virtual reality environments
CN117251058B (zh) 一种多信息体感交互系统的控制方法
CN107050848B (zh) 基于体域网的体感游戏实现方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879394

Country of ref document: EP

Kind code of ref document: A1