WO2020087764A1 - Dispositif et procédé de génération de réseau dynamique de brillouin aléatoire - Google Patents

Dispositif et procédé de génération de réseau dynamique de brillouin aléatoire Download PDF

Info

Publication number
WO2020087764A1
WO2020087764A1 PCT/CN2019/000088 CN2019000088W WO2020087764A1 WO 2020087764 A1 WO2020087764 A1 WO 2020087764A1 CN 2019000088 W CN2019000088 W CN 2019000088W WO 2020087764 A1 WO2020087764 A1 WO 2020087764A1
Authority
WO
WIPO (PCT)
Prior art keywords
random
fiber
polarization
optical
electro
Prior art date
Application number
PCT/CN2019/000088
Other languages
English (en)
Chinese (zh)
Inventor
张建忠
宋盈盈
李石川
张明江
乔丽君
王涛
Original Assignee
太原理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原理工大学 filed Critical 太原理工大学
Publication of WO2020087764A1 publication Critical patent/WO2020087764A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06712Polarising fibre; Polariser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06783Amplifying coupler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control

Definitions

  • the invention relates to the technical field of Brillouin dynamic gratings, in particular to a random Brillouin dynamic grating generating device and method.
  • Brillouin dynamic grating has been used in the fields of optical fiber sensing, variable optical delay, all-optical signal processing, and high-precision spectrum analyzer due to its advantages of all-optical generation and flexible and controllable parameters.
  • the concept of the Brillouin dynamic grating was first proposed in 2008.
  • the Brillouin dynamic grating is produced by injecting two beams of pump light with the same polarization direction and the frequency difference of the Brillouin frequency shift into the two ends of the fiber. Interference occurs during the encounter, and the interference signal modulates the refractive index of the fiber to form a Brillouin dynamic grating (Optics Letters, 2008, 33 (9): 926-928.).
  • the generation of Brillouin dynamic gratings can be divided into two types according to the signal format of the pump light: time-domain systems and coherent-domain systems.
  • the pulsed optical signal is usually used as the pump light to generate the Brillouin dynamic grating;
  • the coherent domain system the two synchronized continuous optical signals whose frequencies are sinusoidally modulated or the two synchronized pseudorandom code signals are usually used Used as pump light to generate Brillouin dynamic grating.
  • chaotic Brillouin dynamic gratings Optics Communications, 2017, 396: 210-215.
  • a random Brillouin dynamic grating generating device including: laser source, 1 ⁇ 2 fiber coupler, first electro-optic modulator, first random optical pulse generator, first optical isolator, first erbium-doped fiber amplifier , Single sideband modulator, microwave source, first polarization controller, second electro-optic modulator, second random light pulse generator, second optical isolator, delay fiber, second erbium-doped fiber amplifier, second polarization control Device, polarization beam combiner, polarization maintaining fiber.
  • the exit end of the laser source is connected to the entrance end of the 1 ⁇ 2 fiber coupler through a single-mode fiber jumper.
  • the first output end of the 1 ⁇ 2 optical fiber coupler is connected to the incident end of the first electro-optical modulator through a single-mode optical fiber jumper; the signal output end of the first random optical pulse generator is connected to the The signal input end is connected; the output end of the first electro-optic modulator is connected to the entrance end of the first optical isolator through a single-mode fiber jumper; the output end of the first optical isolator is connected to the first erbium dopant through a single-mode fiber jumper
  • the input end of the fiber amplifier is connected; the output end of the first erbium-doped fiber amplifier is connected to the entrance end of the single sideband modulator through a single-mode fiber jumper; the signal output end of the microwave source is connected to the end of the single sideband modulator
  • the signal input end is connected; the exit end of the single sideband modulator is connected to the incident end of the first polarization controller through a single-mode fiber jumper.
  • the second output end of the 1 ⁇ 2 optical fiber coupler is connected to the incident end of the second electro-optical modulator through a single-mode optical fiber jumper; the signal output end of the second random optical pulse generator is connected to the The signal input end is connected; the exit end of the second electro-optic modulator is connected to the entrance end of the second optical isolator through a single-mode fiber jumper; the exit end of the second optical isolator is connected to the end of the delay fiber through a single-mode fiber jumper , The other end of the delay fiber is connected to the incident end of the second erbium-doped fiber amplifier through a single-mode fiber jumper; the exit end of the second erbium-doped fiber amplifier is connected to the second polarization controller through a single-mode fiber jumper The entrance end is connected; the exit end of the second polarization controller is connected to the entrance end of the polarization beam combiner through a single-mode fiber jumper.
  • Both ends of the polarization-maintaining fiber are respectively connected to the output end of the first polarization controller and the output end of the polarization beam combiner.
  • a method for generating a random Brillouin dynamic grating (this method is implemented in the above random Brillouin dynamic grating generating device). The method is implemented by the following steps:
  • the laser output from the laser source is divided into two pump light sources through a 1 ⁇ 2 fiber coupler.
  • the first pump light passes through the first electro-optic modulator, it is modulated by the first random light pulse generator into random light pulses with randomly varying repetition frequencies.
  • the random light pulses with randomly varying repetition frequencies pass through the first optical isolator,
  • the first erbium-doped fiber amplifier is amplified, and the amplified random light pulse with randomly varying repetition frequency is subjected to a frequency shift by the action of a single sideband modulator controlled by a microwave source.
  • the frequency shift is the Brillouin frequency shift of the polarization-maintaining fiber
  • the random light pulse whose repetition frequency changes randomly after the frequency shift passes through the first polarization controller and enters an optical main axis of the polarization-maintaining fiber.
  • the second pump light passes through the second electro-optic modulator, it is modulated by the second random light pulse generator into another random light pulse with randomly varying repetition frequency, and the random light pulse with randomly varying repetition frequency passes through the second optical isolation in turn
  • the optical fiber, the delay fiber, the second erbium-doped fiber amplifier, the second polarization controller, and the polarization beam combiner enter the same optical main axis of the polarization-maintaining fiber.
  • the two random light pulse pump light meets in the polarization-maintaining fiber and interferes.
  • the signal light generated after the interference modulates the refractive index of the polarization-maintaining fiber to form a random Brillouin dynamic grating.
  • the invention uses two random light pulses with different repetition frequencies randomly changing as two pumping lights, which are injected from both ends of the polarization-maintaining fiber respectively, the polarization direction is the same, and the frequency difference is the Brillouin frequency shift of the fiber.
  • a new Brillouin dynamic grating is produced at the meeting point of the optical fibers, which is called a random Brillouin dynamic grating.
  • the grating period of the random Brillouin dynamic grating is not uniform, and the generated grating is randomly distributed.
  • Stochastic Brillouin dynamic gratings can be used to provide random feedback and realize photon localization due to this unique characteristic, so as to construct random fiber lasers.
  • the generation of a random Brillouin dynamic grating is formed by two random light pulses with different repetition frequencies randomly changing as two pump lights, and interference occurs in the polarization-maintaining fiber, and the interference field modulates the refractive index of the fiber.
  • the grating period of random Brillouin dynamic gratings is non-uniform, and the resulting gratings are randomly distributed, which can be used to provide random feedback and achieve photon localization, thereby constructing random fiber-optic laser.
  • FIG. 1 shows a schematic diagram of a random Brillouin dynamic grating generating device according to the present invention.
  • Figure 2 shows the results of the numerical simulation of the random Brillouin dynamic grating.
  • a random Brillouin dynamic grating generating device includes a laser source 1, a 1 ⁇ 2 fiber coupler 2, a first electro-optic modulator 3, a first random light pulse generator 4, and a first light Isolator 5, first erbium-doped fiber amplifier 6, single sideband modulator 7, microwave source 8, first polarization controller 9, second electro-optic modulator 10, second random light pulse generator 11, second optical isolation 12, a delay fiber 13, a second erbium-doped fiber amplifier 14, a second polarization controller 15, a polarization beam combiner 16, and a polarization maintaining fiber 17.
  • the output end of the laser source 1 is connected to the incident end of the 1 ⁇ 2 fiber coupler 2 through a single-mode fiber jumper, and the output of the laser source 1 is divided into two channels of pump light through the 1 ⁇ 2 fiber coupler 2; 1 ⁇ 2 fiber coupling
  • the first output end of the modulator 2 is connected to the incident end of the first electro-optical modulator 3 through a single-mode fiber jumper;
  • the signal output end of the first random optical pulse generator 4 is connected to the signal input end of the first electro-optical modulator 3;
  • the output end of the first electro-optic modulator 3 is connected to the entrance end of the first optical isolator 5 through a single-mode fiber jumper;
  • the output end of the first optical isolator 5 is connected to the entrance end of the first erbium-doped fiber amplifier 6 through a single-mode fiber jumper Connection;
  • the output end of the first erbium-doped fiber amplifier 6 is connected to the incident end of the single sideband modulator
  • the second exit end of the 1 ⁇ 2 fiber coupler 2 is connected to the entrance end of the second electro-optical modulator 10 through a single-mode fiber jumper; the signal output end of the second random optical pulse generator 11 is connected to the second electro-optical modulator 12 ’s
  • the signal input end is connected; the output end of the second electro-optical modulator 12 is connected to the incident end of the second optical isolator 12 through a single-mode fiber jumper; the output end of the second optical isolator 12 is connected to one end of the delay fiber 13 through a single-mode fiber jumper ,
  • the other end of the delay fiber 13 is connected to the incident end of the second erbium-doped fiber amplifier 14 through a single-mode fiber jumper; the output end of the second erbium-doped fiber amplifier 14 is connected to the second polarization controller 15 through the single-mode fiber jumper
  • the entrance end is connected; the exit end of the second polarization controller 15 is connected to the entrance end of the polarization beam combine
  • Random Brillouin dynamic grating generation method Random Brillouin dynamic grating generation method
  • the laser output from the laser source is divided into two pump light sources through a 1 ⁇ 2 fiber coupler.
  • the first pump light passes through the first electro-optic modulator, it is modulated by the first random light pulse generator into random light pulses with randomly varying repetition frequencies.
  • the random light pulses with randomly varying repetition frequencies pass through the first optical isolator,
  • the first erbium-doped fiber amplifier is amplified, and the amplified random light pulse with randomly varying repetition frequency is subjected to a frequency shift by the action of a single sideband modulator controlled by a microwave source.
  • the frequency shift is the Brillouin frequency shift of the polarization-maintaining fiber
  • the random light pulse whose repetition frequency changes randomly after the frequency shift passes through the first polarization controller and enters an optical main axis of the polarization-maintaining fiber.
  • the second pump light passes through the second electro-optic modulator, it is modulated by the second random light pulse generator into another random light pulse with randomly varying repetition frequency, and the random light pulse with randomly varying repetition frequency passes through the second optical isolation in turn
  • the optical fiber, the delay fiber, the second erbium-doped fiber amplifier, the second polarization controller, and the polarization beam combiner enter the same optical main axis of the polarization-maintaining fiber.
  • the two random light pulse pump light meets in the polarization-maintaining fiber and interferes.
  • the signal light generated after the interference modulates the refractive index of the polarization-maintaining fiber to form a random Brillouin dynamic grating.
  • the pulse width of random light pulses with randomly varying repetition frequencies is 0.08 ns
  • the coupling ratio of the 1 ⁇ 2 fiber coupler is 50:50
  • the polarization maintaining fiber 17 is a panda type polarization maintaining fiber.
  • a random Brillouin dynamic grating is generated through numerical simulation experiments; two random light pulses with randomly varying repetition frequencies are used as two pump light sources, namely Pump1 and Pump2, and the pulse width is 0.08ns, and the two beams of pump light are The polarization direction is the same, and the frequency difference is different by a Brillouin frequency shift.
  • interference occurs to form a random Brillouin dynamic grating.
  • the theoretical model of the stochastic Brillouin dynamic grating is established using the coupled wave equation system consisting of two pump lights and an acoustic wave field:
  • a p1 and A p2 represent the slowly varying electric field amplitudes of Pump1 and Pump2 respectively;
  • Q is the amplitude of the acoustic wave field generated by electrostriction after Pump1 and Pump2 interfere in the polarization-maintaining fiber;
  • ⁇ 1s is the polarization-maintaining fiber The group delay of the unit length of the axis;
  • v pump1 -v pump2 -v B , which is the frequency detuning of Pump1 and Pump2;
  • ⁇ B is the phonon lifetime.
  • the acoustic wave field distribution of the random Brillouin dynamic grating obtained by the numerical simulation of the above coupled equation system, that is, the random Brillouin dynamic grating, is shown in FIG. 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

L'invention concerne un dispositif de génération de réseau dynamique de Brillouin aléatoire, comprenant une source laser, des coupleurs de fibres optiques 1 × 2, un premier modulateur électro-optique, un premier générateur d'impulsions optiques aléatoires, un premier isolateur optique, un premier amplificateur à fibres optiques dopé à l'erbium, un modulateur à bande latérale unique, une source hyperfréquence, un premier contrôleur de polarisation, un deuxième modulateur électro-optique, un deuxième générateur d'impulsions optiques aléatoires, un deuxième isolateur optique, une fibre optique de retard, un deuxième amplificateur à fibres optiques dopé à l'erbium, un deuxième contrôleur de polarisation, un combinateur de faisceau de polarisation, et une fibre optique de maintien de polarisation. Selon la présente invention, deux impulsions optiques aléatoires qui changent aléatoirement et dont les fréquences de répétition sont différentes sont utilisées comme deux lumières de pompage, et les deux lumières de pompage sont respectivement injectées depuis deux extrémités de la fibre optique de maintien de polarisation, des directions de polarisation des deux lumières de pompage sont identiques, et la différence de fréquence est un décalage de fréquence de Brillouin de la fibre optique, de sorte qu'un nouveau réseau dynamique de Brillouin est généré à une position de la fibre optique de maintien de polarisation où les deux lumières de pompage se rencontrent. Une période de réseau du réseau dynamique de Brillouin aléatoire est non uniforme, et le réseau généré est réparti aléatoirement. Le réseau dynamique de Brillouin aléatoire peut servir à produire une rétroaction aléatoire et à localiser des photons, parvenant ainsi à la construction d'un laser à fibres optiques aléatoire.
PCT/CN2019/000088 2018-11-02 2019-05-05 Dispositif et procédé de génération de réseau dynamique de brillouin aléatoire WO2020087764A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811298576.5A CN109449745B (zh) 2018-11-02 2018-11-02 随机布里渊动态光栅的产生装置及方法
CN201811298576.5 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020087764A1 true WO2020087764A1 (fr) 2020-05-07

Family

ID=65550296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/000088 WO2020087764A1 (fr) 2018-11-02 2019-05-05 Dispositif et procédé de génération de réseau dynamique de brillouin aléatoire

Country Status (2)

Country Link
CN (1) CN109449745B (fr)
WO (1) WO2020087764A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449745B (zh) * 2018-11-02 2019-11-22 太原理工大学 随机布里渊动态光栅的产生装置及方法
CN110231058B (zh) * 2019-05-28 2021-05-11 太原理工大学 一种基底噪声抑制的混沌布里渊动态光栅产生装置及方法
CN112582866B (zh) * 2020-11-27 2022-07-26 北京航天测控技术有限公司 随机光纤激光器及随机光纤激光产生方法
CN113258421B (zh) * 2021-05-06 2022-03-18 太原理工大学 基于混沌光注入提高混沌光纤激光器稳定性的装置和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292903A (zh) * 2013-06-09 2013-09-11 哈尔滨工业大学 基于布里渊动态光栅的光谱分析装置及其分析方法
WO2014034638A1 (fr) * 2012-08-27 2014-03-06 国立大学法人東京大学 Dispositif de mesure de propriété de fibre optique et procédé de mesure de propriété de fibre optique
CN107764461A (zh) * 2017-11-28 2018-03-06 南方科技大学 基于布里渊动态光栅的分布式液压传感器系统
CN109449745A (zh) * 2018-11-02 2019-03-08 太原理工大学 随机布里渊动态光栅的产生装置及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305223B (zh) * 2015-11-24 2018-03-27 电子科技大学 一种布里渊动态光栅产生装置及方法
CN106441447B (zh) * 2016-11-15 2018-12-11 太原理工大学 基于混沌布里渊动态光栅的分布式光纤传感系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034638A1 (fr) * 2012-08-27 2014-03-06 国立大学法人東京大学 Dispositif de mesure de propriété de fibre optique et procédé de mesure de propriété de fibre optique
CN103292903A (zh) * 2013-06-09 2013-09-11 哈尔滨工业大学 基于布里渊动态光栅的光谱分析装置及其分析方法
CN107764461A (zh) * 2017-11-28 2018-03-06 南方科技大学 基于布里渊动态光栅的分布式液压传感器系统
CN109449745A (zh) * 2018-11-02 2019-03-08 太原理工大学 随机布里渊动态光栅的产生装置及方法

Also Published As

Publication number Publication date
CN109449745A (zh) 2019-03-08
CN109449745B (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2020087764A1 (fr) Dispositif et procédé de génération de réseau dynamique de brillouin aléatoire
KR20140006027A (ko) 피크 전력이 증가한 광 펄스 소스
CN109713562B (zh) 基于随机布里渊动态光栅的随机光纤激光器
Petersen et al. Stimulated Brillouin scattering suppression with a chirped laser seed: comparison of dynamical model to experimental data
Tehranchi et al. Power fluctuations and random lasing in multiwavelength brillouin erbium-doped fiber lasers
CN207021505U (zh) 一种窄线宽线偏振掺铥光纤激光器
CN102594544B (zh) 一种混沌激光信号频谱展宽装置及其方法
WO2013047368A1 (fr) Source de lumière à bande large
Schneider et al. Distortion reduction in cascaded slow light delays
WO2014141973A1 (fr) Dispositif laser à impulsion
CN113451869B (zh) 一种单腔产生双光梳及多光梳的方法
Munster et al. Φ-OTDR signal amplification
Oermann et al. Coherent beam combination of four holmium amplifiers with phase control via a direct digital synthesizer chip
Tehranchi et al. Dynamics of Stokes waves and pulses generated by stimulated Brillouin scattering in a resonator including highly nonlinear fiber
US20220416498A1 (en) Optical frequency comb control
JP2010139604A (ja) 電磁波発生・伝送装置
JP2012204372A (ja) 短パルス光源およびレーザ走査顕微鏡システム
CN105470792A (zh) 高功率两芯共腔光纤激光器
Shirazi et al. New Brillouin fiber laser configuration with high output power
CN205752961U (zh) 宽谱平坦的中红外超连续谱光源
CN110994349A (zh) 基于高阶Akhmediev呼吸子提取高质量脉冲串的装置和方法
Zhang et al. SLD seeded all fiber cascaded nanosecond pulsed amplifier
KR101601422B1 (ko) 펄스 압축 장치 및 그 장치를 구비한 펄스 압축 시스템
Angulo-Vinuesa et al. Hot spot detection over 100 km with 2 meter resolution in a Raman-assisted Brillouin distributed sensor
Lu et al. Adaptive mode control in a few-mode fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878835

Country of ref document: EP

Kind code of ref document: A1