WO2020087286A1 - 一种密钥生成方法、设备及系统 - Google Patents

一种密钥生成方法、设备及系统 Download PDF

Info

Publication number
WO2020087286A1
WO2020087286A1 PCT/CN2018/112730 CN2018112730W WO2020087286A1 WO 2020087286 A1 WO2020087286 A1 WO 2020087286A1 CN 2018112730 W CN2018112730 W CN 2018112730W WO 2020087286 A1 WO2020087286 A1 WO 2020087286A1
Authority
WO
WIPO (PCT)
Prior art keywords
key
network function
user plane
terminal device
update information
Prior art date
Application number
PCT/CN2018/112730
Other languages
English (en)
French (fr)
Inventor
雷中定
王海光
康鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880098520.7A priority Critical patent/CN112806041B/zh
Priority to PCT/CN2018/112730 priority patent/WO2020087286A1/zh
Priority to EP18938506.5A priority patent/EP3843438A4/en
Publication of WO2020087286A1 publication Critical patent/WO2020087286A1/zh
Priority to US17/243,011 priority patent/US11863977B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/06Network architectures or network communication protocols for network security for supporting key management in a packet data network
    • H04L63/061Network architectures or network communication protocols for network security for supporting key management in a packet data network for key exchange, e.g. in peer-to-peer networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/033Protecting confidentiality, e.g. by encryption of the user plane, e.g. user's traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a key generation method, device, and system.
  • user plane data transmitted between the terminal equipment and the telecommunications network can be securely protected, where the security protection anchor point on the network side is the access network equipment (such as a base station), which is The network access device performs security protection on the user plane data (such as confidentiality protection and / or integrity protection).
  • security protection operations such as encryption and / or append integrity verification code
  • the access network device uses the protected data after receiving the protected data.
  • the protection key performs corresponding security operations (such as decryption and / or integrity verification).
  • the access network device For user plane data sent to the terminal, the access network device uses the protection key to perform security protection operations (such as encryption and / or appending an integrity protection verification code), and the terminal uses the protection key after receiving the protected data Perform corresponding security operations (eg decryption and / or integrity verification).
  • security protection operations such as encryption and / or appending an integrity protection verification code
  • the above protection key is usually derived from the core network function (access and mobility management function (AMF) or security anchor function (SEAF), etc.) based on the long-term key K Come.
  • K may be derived in accordance with a long term key Ausf K
  • K is derived according SEAF Ausf K
  • K SEAF can be derived according to the AMF K
  • K protection key derived according to GNB K AMF. If the internal staff of AMF has the authority to obtain the key K AMF of the AMF , he can derive the protection key K gNB of the access network device based on the key K AMF , and use the protection key K gNB to perform eavesdropping on the encrypted data at the air interface. Decrypt it yourself. Similarly, if keys of other network functions (access network equipment, SEAF, etc.) are stolen, data leakage will also result.
  • other network functions access network equipment, SEAF, etc.
  • Embodiments of the present application provide a key generation method, device, and system to reduce the risk of data leakage caused by the theft or leakage of long-term keys or attacks by personnel inside the network.
  • an embodiment of the present application further provides a key generation method.
  • the method includes: a terminal device receives first key update information sent by a user plane network function; the terminal device uses the first key and the first key according to the first key update information. Update the information to generate a second key; where the second key is used to secure the data transmitted between the user plane network function and the terminal device, the first key is the same as the third key obtained by the user plane network function; The one key and the third key are derived from the long-term key.
  • the terminal device may update the key derived from the long-term key to obtain a new protection key, and then use the new protection key to securely protect the user plane data. Because the new protection key is obtained based on the key update information of the terminal device and user plane network function interaction and the key derived from the long-term key, the internal personnel of the access network device or network function such as AMF or SEAF do not have the right to obtain it from the terminal device The new protection key may not be able to derive the new protection key based only on the long-term key, and thus cannot decrypt the eavesdropped encrypted data based on the new protection key; meanwhile, even if the long-term key is stolen, the attacker It is impossible to derive a new protection key based on the long-term key, and it is impossible to decrypt the eavesdropped encrypted data at the air interface or the network. Therefore, if the new protection key generated by the embodiment of the present application is used to perform user plane data Security protection, the user plane data is not easy
  • the first key is generated by the terminal device according to the first set of generation parameters; where the first set of generation parameters includes the long-term key or a sub-key derived from the long-term key, the first A set of generation parameters is sent to the terminal device by the mobility management network function or the security anchor function network function. Based on this possible design, the terminal device can generate the first key by using generation parameters sent by other network functions.
  • the method further includes: the terminal device receives a first indication from the user plane network function; wherein the first indication is used to instruct the terminal device to update the first key. Or, the terminal device sends a second instruction to the user plane network function; where the second instruction is used to instruct the user plane network function to update the third key.
  • the first instruction and the second instruction include one or more of the following information: key update indicator, predefined Internet protocol IP address, predefined port number, predefined virtual protocol identification ID; or, One indication is the Nth message sent by the user plane network function to the terminal device, and the second indication is the Nth message sent by the terminal device to the user plane network function; where N is an integer greater than or equal to 1.
  • the user plane network function can send a key update indicator or predefined information to the terminal device to instruct the terminal device to generate a new protection key by using the key generation method described in this embodiment of the present application.
  • instruct the terminal device to update the key when it receives the Nth message sent by the user plane network function so that when the terminal device receives the Nth message sent by the user plane network function, the terminal device determines to use this Apply the key generation method described in the embodiment to generate a new protection key.
  • the terminal device may also send a key update indicator or predefined information to the user plane network function, instructing the user plane network function to generate a new protection key by using the key generation method described in this embodiment of the present application.
  • the user plane network function instruct the user plane network function to update the key when it receives the Nth message sent by the terminal device in advance, so that when the user plane network function receives the Nth message sent by the terminal device, the user plane network function determines A new protection key is generated using the key generation method described in the embodiment of the present application.
  • the method further includes: the terminal device receives a third indication from the session management network function; wherein the third indication is used to instruct the terminal device to update the first key.
  • the terminal device may execute the key generation method described in the first aspect after receiving the instruction issued by the session management network function.
  • the session management network function determines to perform security protection on the user plane network function before sending the third instruction to the terminal device.
  • the session management network function determines to perform security protection on the user plane network function, including: the session management network function determines to perform security protection on the user plane network function according to the security protection strategy; The information, the security protection strategy is pre-stored on the session management network function, or the security protection strategy is obtained by the session management network function from the unified data management network function. That is, the session management network function can determine whether the user plane network function performs security protection based on locally stored information, or learn whether the user plane network function performs security protection through the unified data management network function.
  • the first key update message is sent by the user plane network function after being protected by the third key, and the terminal device obtains the first key update information sent by the user plane network function, including: the terminal The device receives the protected first key update information; the terminal device uses the first key to process the protected first key update information to obtain the first key update information.
  • the first key update information can be protected in the process of being sent to the terminal device, preventing the first key update information from being stolen or maliciously tampered with by malicious personnel.
  • the method further includes: the terminal device sends second key update information to the user plane network function; wherein, the second key update information is used to update the third key obtained by the user plane network function To obtain a fourth key; the fourth key is used to securely protect the data transmitted between the user plane network function and the terminal device; the fourth key is the same as the second key .
  • the terminal device may send key update information for updating the third key to the user plane network function, so that the user plane network function updates the third key according to the received key update information.
  • the second key update information is included in the first message; the first message is control signaling or a data packet.
  • the first message is the Nth message sent by the terminal device to the user plane network function; or, the first message includes a second indication; where the second indication is as described above.
  • the terminal device can send the second key update information to the user plane network function through the control plane or the data plane, and at the same time, it can include the second indication in the message including the second key update information.
  • the second instruction explicitly instructs the user plane network function to update the third key, or the Nth message sent to the user plane network function by the terminal device may implicitly instruct the user plane network function to update the third key, such as: when the user plane When the functional network function receives the Nth message sent by the terminal device, the user plane functional network function determines to update the third key and generate a new protection key.
  • the first key update information and the second key update information include random numbers, public keys, IP addresses, media access control MAC addresses, port numbers, virtual protocol identification numbers, and key generation functions .
  • the key generation function selects one or more of the information.
  • the terminal device generates the second key according to the first key and the first key update information, including: the terminal device updates part or all of the first key and the first key update information Enter the key generation function to get the second key.
  • the terminal device may update the first key according to the first key update information and other information to obtain a new protection key.
  • the present application provides a communication device, which may be a terminal device or a chip or a system-on-chip in the terminal device, and the communication device may implement the first aspect or the terminal device in each possible design of the first aspect
  • the executed function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device may include: a receiving unit and a generating unit;
  • a receiving unit configured to receive the first key update information sent by the user plane network function
  • a generating unit configured to generate a second key based on the first key and the first key update information; wherein, the second key is used for the transmission between the user plane network function and the terminal device Data is securely protected, and the first key is the same as the third key obtained by the user plane network function; the first key and the third key are derived from long-term keys.
  • the specific implementation of the communication device may refer to the behavior function of the terminal device in the key generation method provided in the first aspect or any possible design of the first aspect, and details are not repeated here. Therefore, the provided communication device can achieve the same beneficial effects as the first aspect or any possible design of the first aspect.
  • a communication device including: a processor and a memory; the memory is used to store computer-executed instructions, and when the communication device is running, the processor executes the computer-executed instructions stored in the memory, so that the The communication device executes the key generation method described in the first aspect or any possible design of the first aspect.
  • a computer-readable storage medium in which instructions are stored in the computer-readable storage medium, which when executed on a computer, enables the computer to execute the first aspect or any of the above aspects Design the key generation method described.
  • a computer program product containing instructions that, when run on a computer, enable the computer to execute the key generation method described in the first aspect or any possible design of the above aspect.
  • a chip system includes a processor and a communication interface for supporting a communication device to implement the functions involved in the above aspects, for example, the processor receives the first sent by the user plane network function through the communication interface Key update information; generate a second key based on the first key and the first key update information; where the second key is used to securely protect the data transmitted between the user plane network function and the terminal device, the first key The key is the same as the third key obtained by the user plane network function; the first key and the third key are derived from the long-term key.
  • the chip system further includes a memory, which is used to store necessary program instructions and data of the communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • an embodiment of the present application provides a key generation method.
  • the method includes: a user plane network function receives second key update information sent by a terminal device; and a user plane network function according to the third key and the second password
  • the key update information generates a fourth key; where the fourth key is used to securely protect the data transmitted between the user plane network function and the terminal device; the third key is the same as the first key generated by the terminal device; the first The key and the third key are derived from the long-term key.
  • the key derived from the long-term key can be updated by the user plane network function to obtain a new protection key, and then the new protection key can be used to securely protect the user plane data. Because the new protection key is obtained based on the key update information of the terminal device and the user plane network function interaction and the key derived from the long-term key, the internal personnel of the access network equipment or network functions such as AMF or SEAF do not have the right to access the user plane network The function obtains the new protection key or cannot derive the new protection key based only on the long-term key, and thus cannot decrypt the eavesdropped encrypted data based on the new protection key; at the same time, even if the long-term key is stolen, attack It is also impossible for a new protection key to be derived based on the long-term key, and it is not possible to decrypt the encrypted data eavesdropped at the air interface or the encrypted data stolen from the network. Therefore, if the new protection key generated by the embodiment of the present application is
  • the third key is sent to the user plane network function by the mobility management network function or the security anchor network function or the session management network function; or, the third key is the user plane network function according to the second Group generation parameters; where the second group generation parameters include long-term keys or subkeys derived from long-term keys, and the second group generation parameters are generated by the mobility management network function or the security anchor function network function or the session management network function Send to the user plane network function.
  • the user plane network function can obtain the first key from other network functions, or can generate the third key by using the generation parameters sent by other network functions, which improves the user plane network function to obtain the third key Flexibility.
  • the method further includes: the user plane network function sends a first instruction to the terminal device; wherein the first instruction is used to instruct the terminal device to update the first key; or, the user plane network function receives the terminal The second instruction sent by the device; wherein, the second instruction is used to instruct the user plane network function to update the third key.
  • the first instruction and the second instruction include one or more of the following information: key update indicator, predefined Internet protocol IP address, predefined port number, predefined virtual protocol identification ID; or, One indication is the Nth message sent by the user plane network function to the terminal device, and the second indication is the Nth message sent by the terminal device to the user plane network function; where N is an integer greater than or equal to 1.
  • the user plane network function can send a key update indicator or predefined information to the terminal device to instruct the terminal device to generate a new protection key by using the key generation method described in this embodiment of the present application.
  • instruct the terminal device to update the key when it receives the Nth message sent by the user plane network function so that when the terminal device receives the Nth message sent by the user plane network function, the terminal device determines to use this Apply the key generation method described in the embodiment to generate a new protection key.
  • the terminal device may also send a key update indicator or predefined information to the user plane network function, instructing the user plane network function to generate a new protection key by using the key generation method described in this embodiment of the present application.
  • the user plane network function instruct the user plane network function to update the key when it receives the Nth message sent by the terminal device in advance, so that when the user plane network function receives the Nth message sent by the terminal device, the user plane network function determines A new protection key is generated using the key generation method described in the embodiment of the present application.
  • the method further includes the user plane network function receiving a fourth instruction for instructing the user plane network function to update the third key from the session management network function, or the user plane network function from the terminal device Receiving a first request for requesting the user plane network function to update the third key.
  • the user plane network function may perform the key generation process described in the embodiments of the present application after receiving the session management network function indication or the request sent by the terminal device.
  • the session management network function determines to perform security protection on the user plane network function before sending the fourth instruction to the user plane network function.
  • the session management network function determines to perform security protection on the user plane network function, including: the session management network function determines to perform security protection on the user plane network function according to the security protection policy; wherein, the security protection policy includes the user plane network function performing security protection
  • the security protection strategy is pre-stored on the session management network function, or the security protection strategy is obtained by the session management network function from the unified data management network function. That is, the session management network function can determine whether the user plane network function performs security protection based on locally stored information, or learn whether the user plane network function performs security protection through the unified data management network function.
  • the user plane network function receives the second key update information sent by the terminal device, including: the user plane network function receives the second key update information from the mobility management network function, where the second key The update information is sent by the terminal device to the mobility management network function through a non-access stratum (NAS) channel.
  • NAS non-access stratum
  • the terminal device can send the second key update information to the mobile direction management network function through the NAS channel, and the mobility management network function sends the user plane network function.
  • the user plane network function receives the second key update information sent by the terminal device, including: the user plane network function receives the second key update information from the access network device, where the second key update The information is sent by the terminal device to the access network device.
  • the second key update information is included in the first message; the first message is control signaling sent through the control plane; or, the first message is a data packet sent through the data plane.
  • the terminal device may send the second key update information to the access network device, and the access network device sends the second key update information to the user plane network function through the control plane or the data plane.
  • the first message is the Nth message sent by the terminal device to the user plane network function; or, the first message includes a second indication; wherein, as described above, the second indication may be used to indicate the user
  • the third key is updated by the network function.
  • a second indication may be included in the message including the second key update information, and the second indication explicitly instructs the user plane network function to update the third key, or may be sent to the user plane through the terminal device
  • the Nth message of the network function implicitly instructs the user plane network function to update the third key, for example, when the user plane function network function receives the Nth message sent by the terminal device, the user plane function network function determines to update the third password Key to generate a new protection key.
  • the second key update message is sent by the terminal device after being protected by the first key
  • the user plane network function receives the second key update information sent by the terminal device, including: user plane network
  • the function receives the second key update information after protection processing, and processes the second key update information after protection processing with a third key to obtain second key update information.
  • the second key update information can be protected during the process of sending to the user plane network function to prevent the second key update information from being eavesdropped or tampered with by malicious persons.
  • the first key update information and the second key update information include: random number, public key, IP address, media access control (media access control (MAC) address, port number, virtual protocol One or more of the identification number, key generation function, and key generation function selection information.
  • MAC media access control
  • the user plane network function generates the third key based on the third key and the second key update information, including: the user plane network function updates the third key and the second key in the update information Part or all of the information is input into the key generation function to obtain the third key.
  • the user plane network function can update the third key according to the third key and other information to obtain a new protection key.
  • the present application provides a communication device, which may be a user plane network function or a chip or a system-on-chip in the user plane network function.
  • the communication device may implement the functions performed by the user plane network function in the above aspects or possible designs, and the functions may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device may include: a receiving unit and a generating unit;
  • a receiving unit configured to receive the second key update information sent by the terminal device
  • the generating unit is used to generate a fourth key based on the third key and the second key update information; wherein the fourth key is used to securely protect the data transmitted between the user plane network function and the terminal device; the third key The key is the same as the first key generated by the terminal device; the first key and the third key are derived from the long-term key.
  • the specific implementation of the communication device may refer to the behavior function of the user plane network function in the key generation method provided in the seventh aspect or any possible design of the seventh aspect, which will not be repeated here. Therefore, the provided communication device can achieve the same beneficial effects as the seventh aspect or any possible design of the seventh aspect.
  • a communication device including: a processor and a memory; the memory is used to store computer-executed instructions; when the communication device is running, the processor executes the computer-executed instructions stored in the memory, so that the The communication device executes the key generation method described in the seventh aspect or any possible design of the seventh aspect.
  • a computer-readable storage medium in which instructions are stored in a computer-readable storage medium, which when executed on a computer, enables the computer to perform the seventh aspect or any of the above aspects Design the key generation method described.
  • a computer program product containing instructions which, when run on a computer, enable the computer to execute the key generation method described in the seventh aspect or any possible design of the above aspect.
  • a chip system includes a processor and a communication interface for supporting a communication device to implement the functions involved in the above aspects, for example, the processor receives the second password sent by the terminal device through the communication interface Key update information; generate a fourth key based on the third key and the second key update information; where the fourth key is used to securely protect the data transmitted between the user plane network function and the terminal device; third The key is the same as the first key generated by the terminal device; the first key and the third key are derived from the long-term key.
  • the chip system further includes a memory, which is used to store necessary program instructions and data of the communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the session management network function and the terminal device can exchange key update information to update the key of the control plane (such as the key of the session management network function).
  • the key of the control plane derives the key used for security protection of the user plane data, and then is issued to the user plane network function.
  • the execution process of the terminal device in this feasible method is as described in the following thirteenth to eighteenth aspects, and the execution process of the session management network function is as described in the nineteenth to twenty-fourth aspects.
  • an embodiment of the present application further provides a key generation method.
  • the method includes: a terminal device receives third key update information sent by a session management network function; the terminal device according to the control plane key and the third The key update information generates a new control plane key, and a new protection key is derived based on the new control plane key; where the new protection key is used for data transmitted between the user plane network function and the terminal device For security protection, the key of the control plane is derived from the long-term key.
  • the terminal device can update the key of the control plane derived from the long-term key to obtain a new key of the control plane, and then adopt the key-derived sub-key of the new control plane
  • the key securely protects user plane data.
  • the key of the new control plane is obtained based on the key update information of the terminal device and the session management network function interaction and the key derived from the long-term key, the internal personnel of the access network device or the network function such as AMF or SEAF do not have the right to access the terminal
  • the device obtains the key of the new control plane and the derived subkey or cannot derive the subkey derived from the new control plane key only from the long-term key, and thus cannot derive from the new control plane key
  • Decryption of the eavesdropped encrypted data at the same time, even if the long-term key is stolen, it is impossible for an attacker to derive a new key-derived subkey from the control plane based on the long-term key.
  • the eavesdropped encrypted data in the network decrypts itself.
  • the new protection key generated by the embodiment of the present application is used to securely protect the user plane data, the user plane data is not easy to leak, and the security of data transmission is improved.
  • the key of the control plane is generated by the terminal device according to the third set of generation parameters; where the third set of generation parameters includes a long-term key or a subkey derived from the long-term key, the third set of generation
  • the parameters are sent to the terminal device by the mobility management network function or the security anchor function network function.
  • the terminal device can generate the control plane key by using the generation parameters sent by other network functions.
  • the method further includes: the terminal device receives instruction information from the session management network function; wherein the instruction information is used to instruct the terminal device to update the key of the control plane.
  • the session management network function can send instruction information to the terminal device, instructing the terminal device to use the key generation method described in the thirteenth aspect to generate a new control plane key.
  • the third key update message is sent by the session management network function after being protected by the control plane key, and the terminal device receives the third key update information sent by the session management network function, including: The terminal device receives the protected third key update information; the terminal device uses the control plane key to process the protected third key update information to obtain the third key update information.
  • the third key update information can be protected in the process of being sent to the terminal device, preventing the third key update information from being stolen or maliciously tampered with by malicious persons.
  • the method further includes: the terminal device sends fourth key update information to the session management network function; wherein the fourth key update information is used to update the secret of the control plane acquired by the session management network function Key to obtain a new control plane key; the new control plane key is used to derive a key that securely protects the data transmitted between the user plane network function and the terminal device.
  • the terminal device may send key update information for updating the key of the control plane to the session management network function, so that the session management network function updates the key of the control plane according to the received key update information.
  • the third key update information and the fourth key update information include random numbers, public keys, IP addresses, MAC addresses, port numbers, virtual protocol identification numbers, key generation functions, key generation The function selects one or more of the information.
  • the terminal device generates a new control plane key according to the control plane key and the third key update information, including: the terminal device updates the control plane key and the third key update information Part or all of the information is entered into the key generation function to obtain a new control plane key.
  • the terminal device can update the first key according to the new control plane key to obtain a new protection key.
  • the present application provides a communication device, which can be a terminal device or a chip or a system-on-chip in a terminal device, and the communication device can implement the thirteenth aspect or each possible design of the thirteenth aspect
  • the functions performed by the terminal device in the medium may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device may include: a receiving unit and a generating unit;
  • a receiving unit configured to receive third key update information sent by the session management network function
  • a generating unit for generating a new control plane key according to the control plane key and the third key update information, and deriving a new protection key based on the new control plane key; wherein, the new protection key The key is used to protect the data transmitted between the user plane network function and the terminal device, and the control plane key is derived from the long-term key.
  • the specific implementation of the communication device can refer to the thirteenth aspect or any possible design of the key generation method provided in the thirteenth aspect.
  • the behavior function of the terminal device is not repeated here. Therefore, the provided communication device can achieve the same beneficial effects as the thirteenth aspect or any possible design of the thirteenth aspect.
  • a communication device including: a processor and a memory; the memory is used to store computer-executed instructions, and when the communication device is running, the processor executes the computer-executed instructions stored in the memory, so that The communication device performs the key generation method described in the thirteenth aspect or any possible design of the thirteenth aspect.
  • a computer-readable storage medium having instructions stored therein, which when run on a computer, enables the computer to perform the thirteenth aspect or any of the above aspects Possible design of the key generation method described.
  • a computer program product containing instructions which, when run on a computer, enable the computer to perform the key generation method described in the thirteenth aspect or any possible design of the above aspect .
  • a chip system includes a processor and a communication interface for supporting a communication device to realize the functions mentioned in the above aspects.
  • the processor receives the first message sent by the session management network function through the communication interface Three-key update information, generate a new control plane key based on the control plane key and the third key update information, and derive a new protection key based on the new control plane key; where, the new protection The key is used to protect the data transmitted between the user plane network function and the terminal device, and the key of the control plane is derived from the long-term key.
  • the chip system further includes a memory, which is used to store necessary program instructions and data of the communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • an embodiment of the present application further provides a key generation method, the method comprising: a session management network function receiving fourth key update information sent by a terminal device; the session management network function according to the control plane key and The fourth key update information generates a new control plane key, derives a new protection key based on the new control plane key, and sends a new protection key to the user plane network function; where the new protection key The key is used to protect the data transmitted between the user plane network function and the terminal device, and the control plane key is derived from the long-term key.
  • the session management network device may update the key of the control plane derived from the long-term key to obtain a new key of the control plane, and then use the key derivation of the new control plane
  • the protection key protects the user plane data and sends a new protection key to the user plane network function.
  • the key of the new control plane is obtained from the key update information exchanged by the session management network device and the session management network function and the key derived from the long-term key, the internal personnel of the access network device or the network function such as AMF or SEAF do not have the right Obtain the key of the new control plane and its derived sub-key from the session management network device or the sub-key derived from the key of the new control plane cannot be derived from only the long-term key, and thus cannot be based on the new control
  • the subkey derived from the above key decrypts the eavesdropped encrypted data; at the same time, even if the long-term key is stolen, it is impossible for an attacker to derive a new key-derived subkey from the control plane based on the long-term key.
  • the encrypted data eavesdropped at the air interface or the network cannot be decrypted by itself. Therefore, if the new protection key generated by the embodiment of the present application is used to securely protect the user plane data, the user plane data is not easy to leak, which improves the data transmission. safety.
  • the key of the control plane is obtained by the session management network function from the mobility management network function or the security anchor network function; or, the session management network function is generated according to the fourth set of generation parameters;
  • Four sets of generation parameters include long-term keys or subkeys derived from long-term keys and other parameters.
  • the long-term keys or subkeys derived from long-term keys in the fourth set of generation parameters are managed by the mobility management network function or security anchor
  • the functional network function is sent to the session management network function.
  • Other parameters can be sent to the session management network function by the mobility management network function or the security anchor point function network function, or some or all of the other parameters are generated by the mobility management function.
  • the session management network function can obtain the control plane key from the mobility management network function or the security anchor network function, or it can generate the control plane key by using the generation parameters sent by other network functions to improve The flexibility of the session management network function to obtain the keys of the control plane.
  • the method further includes: the session management network function sends instruction information to the terminal device; wherein the instruction information is used to instruct the terminal device to update the key of the control plane.
  • the session management network function can send instruction information to the terminal device, instructing the terminal device to use the key generation method described in the thirteenth aspect to generate a new control plane key.
  • the fourth key update message is sent out by the terminal device after being protected by the control plane key
  • the session management network function receives the fourth key update information sent by the terminal device, including: session management The network function receives the fourth key update information after the protection process; and processes the fourth key update information after the protection process using the key of the control plane to obtain the fourth key update information.
  • the fourth key update information can be protected in the process of being sent to the session management network function to prevent the third key update information from being stolen or tampered with by malicious persons.
  • the method further includes: the session management network function sends third key update information to the terminal device; wherein the third key update information is used to update the key of the control plane generated by the terminal device, To obtain a new key for the control plane; the new key for the control plane is used to derive a key for performing security protection on the data transmitted between the user plane network function and the terminal device.
  • the session management network function can send key update information for updating the key of the control plane to the terminal device, so that the terminal device updates the key of the control plane according to the received key update information.
  • the third key update information and the fourth key update information include random numbers, public keys, IP addresses, MAC addresses, port numbers, virtual protocol identification numbers, key generation functions, key generation The function selects one or more of the information.
  • the present application provides a communication device, which can be a session management network function or a chip or a system-on-chip in a session management network function.
  • the communication device can implement the twentieth aspect or the twentieth aspect
  • the functions performed by the session management network function in each possible design may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device may include: a determining unit and a sending unit;
  • a receiving unit configured to receive fourth key update information sent by the terminal device
  • a generating unit configured to generate a new control plane key according to the control plane key and the fourth key update information, and derive a new protection key based on the new control plane key;
  • the sending unit is used to send a new protection key to the user plane network function; wherein, the new protection key is used to securely protect the data transmitted between the user plane network function and the terminal device, and the control plane key is kept secret for a long time Key derivation.
  • the specific implementation of the communication device may refer to the behavior function of the session management network function in the key generation method provided in the twentieth aspect or any possible design of the twentieth aspect, which will not be repeated here. Therefore, the provided communication device can achieve the same beneficial effects as the twentieth aspect or any possible design of the twentieth aspect.
  • a communication device including: a processor and a memory; the memory is used to store computer-executed instructions, and when the communication device is running, the processor executes the computer-executed instructions stored in the memory, to The communication device is caused to perform the key generation method described in the above twentieth aspect or any possible design of the twentieth aspect.
  • a computer-readable storage medium stores instructions which, when run on a computer, enable the computer to perform the twentieth aspect or any of the above aspects A possible design of the key generation method described.
  • a computer program product containing instructions which when run on a computer, enables the computer to perform the key generation described in the twentieth aspect or any possible design of the above aspect method.
  • a chip system in a twenty-fourth aspect, includes a processor and a communication interface for supporting a communication device to implement the functions involved in the above aspects, for example, the processor receives the fourth signal sent by the terminal device through the communication interface. Key update information, generate a new control plane key based on the control plane key and the fourth key update information, derive a new protection key based on the new control plane key, and pass the communication interface to the user plane.
  • the network function sends a new protection key; the new protection key is used to secure the data transmitted between the user plane network function and the terminal device, and the control plane key is derived from the long-term key.
  • the chip system further includes a memory, which is used to store necessary program instructions and data of the communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a key generation system including the terminal device according to any one of the second aspect to the sixth aspect, and the user plane according to any one of the eighth aspect to the twelfth aspect Network function; or,
  • the terminal device according to any one of the thirteenth to eighteenth aspects, the session management network function or the user plane network function according to any one of the nineteenth to twenty-fourth aspects.
  • the present invention provides a user plane technical solution.
  • Transfer the security protection anchor point from the access network device to the user plane network function perform user plane data security protection on the user plane network function, and the protection key used by the user plane network function to perform security protection is generated in the following manner :
  • the user plane network function exchanges key update information with the terminal device, and based on the key update information, the key derived (or generated) from the long-term key (permanent key) is updated to obtain the protection key.
  • the protection key is obtained by the user plane network function updating the key derived from the long-term key
  • the internal personnel of the access network equipment or network functions such as AMF or SEAF have no right to obtain the protection key from the user plane network function or according to
  • the protection key is derived from the long-term key, and the encrypted data cannot be eavesdropped based on the protection key; at the same time, even if the long-term key is stolen, an attacker cannot derive the protection key from the long-term key, and cannot Or eavesdropped encrypted data on the network to decrypt itself.
  • FIG. 1 is a simplified schematic diagram of a system architecture provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of the composition of a communication device provided by an embodiment of the present application.
  • FIG. 3 is a simplified schematic diagram of a 5G system provided by an embodiment of this application.
  • FIG. 6 is a flowchart of still another key generation method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the composition of a communication device 70 provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a composition of a communication device 80 provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the composition of a communication device 90 provided by an embodiment of the present application.
  • the key generation method provided in the embodiment of the present application may be applied to the communication system shown in FIG. 1, and is used to generate a key (or protection key) for security protection of user plane data transmitted between a terminal device and a user plane network function.
  • the communication system may be a long term evolution (LTE), a fifth generation (5G) system, a new radio (NR) system, or other systems.
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • the communication system may include: terminal equipment, access network equipment, mobility management network function, security anchor function, session management network function, user plane network function; and may also include: data network (data network) , DN).
  • Various network functions can be connected through the communication interface or service interface specified by the protocol (such as: Nausf, Namf, Nsmf, Nudm).
  • the session management network function and the user plane network function in FIG. 1 can be deployed in the same network slice (NS), which can be leased by vertical industries.
  • NS network slice
  • FIG. 1 is only an exemplary architecture diagram.
  • the network architecture may also include policy control network functions, authentication server functions, and other network functions. Not limited.
  • the terminal device in FIG. 1 can be connected to an access network device deployed by an operator through a wireless air interface, and can also establish a user plane transmission logical channel with a user plane network function, and through the user plane transmission logical channel network function interface Into DN; and can be connected to the mobility management network function through the next generation (N) interface link 1 (N1 link for short).
  • N next generation
  • the terminal device may be a user equipment (user equipment, UE), such as a mobile phone or a computer, and may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone, and a wireless local loop (wireless local loop, WLL) station, personal digital assistant (personal digital assistant, PDA), computer, laptop computer, handheld communication device, handheld computing device, satellite wireless device, wireless modem card, TV set-top box (set top) box, STB), customer premises equipment (customer premise equipment, CPE) and / or other equipment used to communicate on the wireless system.
  • the terminal device may also be a device that supports wired access.
  • the access network device in FIG. 1 is mainly used to implement functions such as wireless physical layer functions, resource scheduling and wireless resource management, wireless access control, and mobility management.
  • the access network device can be connected to the mobility management network function through the N2 link, and connected to the user plane network function through the N3 link.
  • the access network device may be an access network (AN) / radio access network (RAN), which is composed of multiple 5G-AN / 5G-RAN nodes, 5G-AN / 5G-
  • the RAN node may be: an access node (access point, AP), a next-generation base station (NG nodeB, gNB), a transmission and reception point (TRP), a transmission point (transmission point, TP), or some other access node .
  • the access network device may also be a device that supports wired access.
  • the mobility management network function in FIG. 1 is mainly used to manage the movement of the terminal device.
  • the mobility management network function in FIG. 1 may be the access and mobility management function (AMF) defined in the 3rd Generation Partnership Project (3GPP) standardization .
  • AMF access and mobility management function
  • the security anchor function in FIG. 1 can be connected to the authentication server network function (such as authentication server function (AUSF)), and is mainly used to receive the intermediate key generated during the authentication process.
  • the security anchor function may be deployed in the mobility management network function as shown in FIG. 1, or may be independently deployed in the system shown in FIG. 1 without limitation.
  • the session management network function in FIG. 1 is mainly used to realize the establishment, release, and modification of session management functions such as user plane transmission logical channels (such as: protocol data unit (PDU) session).
  • the session management network function can manage one or more user plane network functions.
  • the session management network function may be a session management function (SMF) defined in 3GPP standardization, and the session management network function may be connected to the user plane network function through an N4 link.
  • SMF session management function
  • the user plane network function in Figure 1 can be the user plane function (UPF) defined in the 3GPP standard.
  • the user plane network function can be used as an anchor point on the user plane transmission logical channel, which is mainly used to complete the user plane data. Route forwarding, generation of protection keys, and security protection of user plane data. It should be pointed out that the embodiment of the present application does not limit the specific physical location of the deployment of the user plane network function.
  • the user plane network function can be deployed on the core network, or can be deployed on the edge of the network or the central processing of the access network equipment (such as: base station) In the central unit (CU).
  • the user plane network function can obtain a third key derived from a long-term key or a sub-key of the long-term key, and the terminal device generates a sub-key derived from the long-term key or the long-term key
  • the first key is the same as the third key; the user plane network function and the terminal device mutually obtain the key update information sent by the other party, and the user plane network function uses the obtained key update information to update the third key
  • the key obtains a new protection key, and the terminal device uses the obtained key update information to update the first key to obtain a new protection key.
  • the user plane data transmitted between the terminal device and the user plane network function is securely protected by using the new protection key or the subkey derived from the new protection key.
  • the session management network function uses the obtained key update information to update the key of the control plane
  • the terminal device uses the obtained key update information to update the key of the control plane.
  • the key of the new control plane is used to derive the key for the security protection of the user plane data transmitted between the terminal device and the user plane network function.
  • the security protection described in the embodiments of the present application may include the following three methods: 1) confidentiality protection; 2) integrity protection; 3) confidentiality protection and integrity protection.
  • confidentiality protection can refer to: encrypting data to achieve the effect of hiding data, and recovering the original data through decryption.
  • Integrity protection can refer to: performing some integrity protection operations on the data, for example, you can verify whether the data has been tampered with according to the message authentication code (MAC).
  • MAC message authentication code
  • the names of the network functions and the names of the interfaces in the above-mentioned architecture of FIG. 1 are only examples, and the names of the network functions and the interfaces in the specific implementation may be other names, which are not specifically limited in this embodiment of the present application.
  • FIG. 2 is a schematic diagram of the composition of a communication device 200 provided by an embodiment of the present application.
  • the communication device 200 includes at least one processor 201, a communication line 202, and at least one communication interface 203; further, it may further include a memory 204.
  • the processor 201, the memory 204 and the communication interface 203 can be connected through a communication line 202.
  • at least one may be one, two, three, or more, and the embodiments of the present application are not limited.
  • the processor 201 can be a central processing unit (CPU), a general-purpose processor network processor (NP), a digital signal processor (DSP), a microprocessor, a microcontroller, a Programmable logic device (programmable logic device, PLD) or any combination thereof.
  • the processor may also be any other device with a processing function, such as a circuit, a device, or a software module.
  • the communication line 202 may include a path for transferring information between components included in the communication device.
  • the communication interface 203 is used to communicate with other devices or communication networks (such as Ethernet, radio access network (RAN), wireless local area network (WLAN), etc.).
  • the communication interface 203 may be a module, a circuit, a transceiver, or any device capable of implementing communication.
  • the memory 204 may be a read-only memory (ROM) or other types of static storage devices that can store static information and / or instructions, or may be random access memory (RAM) or may store information And / or other types of dynamic storage devices of instructions, it can also be electrically erasable programmable read-only memory (electrically erasable programmable-read-only memory (EEPROM), compact disc-read-only memory (CD-ROM) Or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store expectations in the form of instructions or data structures
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc-read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory 204 may exist independently of the processor 201, that is, the memory 204 may be a memory external to the processor 201. At this time, the memory 204 may be connected to the processor 201 through a communication line 202 for storing instructions Or program code.
  • the processor 201 calls and executes the instructions or program codes stored in the memory 204, it can implement the key generation method provided by the following embodiments of the present application.
  • the memory 204 may also be integrated with the processor 201, that is, the memory 204 may be an internal memory of the processor 201, for example, the memory 204 is a cache, which may be used to temporarily store some data and / or Or instruction information, etc.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 2.
  • the communication device 200 may include multiple processors, such as the processor 201 and the processor 207 in FIG. 2.
  • the communication apparatus 200 may further include an output device 205 and an input device 206.
  • the input device 206 may be a device such as a keyboard, mouse, microphone, or joystick
  • the output device 205 may be a device such as a display screen or a speaker.
  • the above-mentioned communication apparatus 200 may be a general-purpose device or a dedicated device.
  • the communication device 200 may be a desktop computer, a portable computer, a web server, a PDA, a mobile phone, a tablet computer, a wireless terminal device, an embedded device, a chip system, or a device with a similar structure in FIG. 2.
  • the embodiment of the present application does not limit the type of the communication device 200.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the communication system shown in FIG. 1 is the 5G system shown in FIG. 3, the user plane network function is UPF, the access network device is RAN, the session management network function is SMF, the mobility management network function is AMF, and the security anchor network The function is SEAF, and the terminal device is the UE as an example.
  • the key generation method provided in the embodiment of the present application will be described.
  • the UE and the network side Before performing the key generation method provided in this embodiment of the present application, the UE and the network side have completed two-way authentication, and the UE and the network side equipment (such as AMF or SEAF or RAN) have been derived from the long-term key or long-term key
  • the subkey generates the same key.
  • both UE and AMF have generated the key K AMF .
  • both UE and SEAF have generated the key K SEAF .
  • the process in which the UE and the network side complete the two-way authentication, and the UE and the network side device generates a key based on the long-term key or the sub-key derived from the long-term key can refer to the prior art, and will not be described in detail.
  • the long-term key may also be called a root key
  • different sub-keys may be derived by inputting the long-term key and other parameters into a key generation function
  • the sub-key may be called a long-term key derivation Subkey of long-term key.
  • the subkey derived from the long-term key can also be derived into a subkey, for example, the subkey derived from the long-term key and other parameters can be input into the key generation function to continue to derive different subkeys, where
  • the subkey derived from the subkey derived from the long-term key may also be referred to as the subkey derived from the long-term key or the subkey of the long-term key.
  • the key K AMF , the key K SEAF , the key K RAN , and the key K SMF may all be called subkeys of the long-term key.
  • the 5G system shown in FIG. 3 is only an exemplary drawing.
  • the 5G system may also include other network functions, such as: unified data management (unified data management (UDM), policy control function (policy control function, PCF )Wait.
  • unified data management unified data management
  • policy control function policy control function
  • PCF policy control function
  • Each network function mentioned in the following embodiments may have the components shown in FIG. 2 and will not be described in detail.
  • the names of the messages between the various network functions or the names of the parameters in the messages in the following embodiments of the present application are only examples, and other names may be used in the specific implementation, which is not specifically limited in the embodiments of the present application.
  • FIG. 4 is a key generation method provided by an embodiment of the present application.
  • the first key and the third key are the original key K UPF and the second key and the fourth key are New protection key K ' UPF .
  • the UPF can exchange key update information with the UE, and use the exchanged key update information to update the original key K UPF to obtain a new protection key K ' UPF .
  • the method may include:
  • Step 401 The UE generates the original key K UPF .
  • the original key K UPF is derived from a long-term key, and the original key K UPF may be generated by the terminal device according to the first set of generation parameters.
  • the UE generating the original key K UPF may include:
  • the UE obtains the first set of generation parameters, and generates the original key K UPF according to the first set of generation parameters; wherein, the first set of generation parameters includes the long-term key or the subkey derived from the long-term key, and the first set of generation parameters
  • the parameters are sent to the UE by AMF or SEAF.
  • UE may acquire the parameters used to generate the key K AMF (or K SEAF) from the AMF (or SEAF), generate the key K AMF (or K SEAF) according to the obtained parameters, and then in accordance with the generated key K AMF (Or K SEAF ) and the parameters obtained from AMF (or SEAF) for generating the key K UPF generate the original key K UPF .
  • the UE generates the original key K UPF according to the generated key K AMF (or K SEAF ) and the parameters obtained from the AMF (or SEAF) for generating the key K UPF .
  • the UE can use The key K AMF (or K SEAF ) and the parameter obtained from the AMF (or SEAF) for generating the key K UPF are input to the KDF to obtain the original key K UPF .
  • Step 402 The UPF obtains the original key K UPF .
  • the original key K UPF is a key derived from a long-term key or a sub-key of the long-term key.
  • the UPF can obtain the original key K UPF in the following ways:
  • the original key K UPF is a key generated by the AMF according to the key K AMF and other parameters (such as: random numbers, etc.), and the UPF obtains the original key K UPF from the AMF.
  • SMF sends a key generation instruction to AMF.
  • This key generation instruction can be used to instruct AMF to generate the original key K UPF and send the generated original key K UPF to UPF; after AMF receives the key generation instruction, Generate the original key K UPF according to the key K AMF and other parameters, and send the original key K UPF to the UPF.
  • the AMF sending the original key K UPF to the UPF may include: AMF sending the original key K UPF to the SMF, the SMF is sent to the UPF through the N4 link, or, AMF sends the original key K UPF to the RAN, by The RAN is sent to the UPF via the N3 link.
  • the process of AMF generating K UPF according to the key K AMF and other parameters can refer to the process of AMF generating the access network key K RAN in the prior art, for example: AMF can enter the key K AMF and other parameters into the key generation
  • the function (key derivation function, KDF) gets K UPF .
  • other parameters may include but are not limited to: key algorithm, key type, and the like.
  • the key algorithm can be an existing commonly used key algorithm, such as the advanced encryption standard (AES) specified by the 3rd generation partnership project (3gpp), or snow3G, or Zu Chongzhi , ZUK) and other algorithms.
  • the key type is mainly used to distinguish whether the key to be generated by the KDF is an "encryption" key or a "security key", a "NAS” key or an "access stratum (AS)” key, and so on.
  • SMF determines to perform security protection on the UPF, it sends a key generation instruction to the AMF, or, by default, all UPFs under SMF management perform security protection, and the SMF sends a key generation instruction to the AMF.
  • the process of SMF determining whether to perform security protection on UPF is as follows.
  • the original key K UPF is a key generated by the SEAF according to the key K SEAF and other parameters, and the UPF obtains the original key K UPF from the SEAF.
  • SMF sends a key generation instruction to SEAF.
  • This key generation instruction can be used to instruct SEAF to generate the original key K UPF and send the generated original key K UPF to UPF; after SEAF receives the key generation instruction, Generate the original key K UPF according to the key K SEAF and other parameters, and send the original key K UPF to the UPF.
  • SEAF sending the original key K UPF to UPF may include: SEAF sending the original key K UPF to SMF, which is sent by SMF to UPF through the N4 link, or, SEAF sends the original key K UPF to RAN, by The RAN is sent to the UPF via the N3 link.
  • SMF can interact with SEAF through AMF, for example: SMF sends a key generation instruction to SEAF can include: SMF sends a key generation instruction to AMF, and AMF forwards the received key generation instruction Give SEAF.
  • the SEAF sending the original key K UPF to the SMF may include: the SEAF sends the original key K UPF to the AMF, and the AMF forwards the received original key K UPF to the SMF.
  • the process of SEAF generating K UPF according to the key K SEAF and other parameters can also refer to the process of generating the access network key K RAN by SEAF in the prior art, for example: SEAF enters the key K SEAF and other parameters into KDF to obtain K UPF .
  • SMF determines to perform security protection on the UPF, it sends a key generation instruction to the SEAF, or, by default, all UPFs under SMF management perform security protection, and the SMF sends a key generation instruction to the SEAF.
  • the process of SMF determining whether to perform security protection on UPF is as follows.
  • the original key K UPF is a key generated by the SMF according to the key K SMF and other parameters.
  • the UPF obtains the original key K UPF from the SMF.
  • SMF can generate the original key K UPF according to the key K SMF and other parameters, and send it to the UPF through the N4 link.
  • the process of SMF generating K UPF according to the key K SMF and other parameters can also refer to the process of generating the access network key K RAN in the prior art AMF, for example: SMF can be obtained by entering the key K SMF and other parameters into KDF K UPF .
  • SMF determines to perform security protection on the UPF , it generates the original key K UPF according to the key K SMF and other parameters, or, by default, all UPFs under SMF management perform security protection, according to the key K SMF and Other parameters generate the original key K UPF .
  • Method 4 The original key K UPF is generated by the user plane network function according to the second set of generation parameters, and the second set of generation parameters is sent to the UPF by AMF or SEAF or SMF.
  • UPF can obtain the second set of generation parameters from SMF, and generate the original key K UPF according to the obtained second set of generation parameters.
  • the second set of generation parameters may include a long-term key or a sub-key derived from the long-term key and other keys.
  • UPF can obtain the key K SMF (or the sub key of the key K SMF ) and other parameters from the SMF , and generate the original according to the obtained key K SMF (or the sub key of the key K SMF ) and other parameters.
  • the key K UPF .
  • the manner in which the UPF obtains the original key K UPF includes but is not limited to the above four methods.
  • the UPF also obtains the original key K UPF from the RAN.
  • RAN can obtain the parameters to generate K UPF from AMF (or SEAF), generate the original key K UPF according to the RAN key K RAN and the obtained parameters, and send the original key K UPF to UPF, etc., no longer here List them one by one.
  • Step 403 The UE receives the first key update information sent by the UPF.
  • the first key update information may include but is not limited to: random numbers, public keys, internet protocol (IP) addresses, media access control (MAC) addresses, port numbers, virtual protocol identification numbers , A key generation function, one or more of the key generation function selection information.
  • the random number included in the first key update information may be a value B generated by the UPF.
  • the public key may be a key known to UE and UPF.
  • the IP address may be the IP address of the UE or / and UPF.
  • the MAC address may be the MAC address of the UE or / and UPF.
  • the port number may be a port number on the UE or / and UPF.
  • the key generation function included in the first key update information may be one or more key generation functions selected by the UE.
  • the key generation function selection information may be used to instruct the UE to select an appropriate key generation function.
  • the UE may select from the pre-agreed key generation function according to the key generation function information, or include Choose one of the multiple key generation functions to generate a new protection key K ' UPF .
  • b is a random and confidential number.
  • b can be generated by UPF in real time, or can be generated in advance by UPF or other network functions and stored on UPF.
  • the mod is "remainder operation". It should be noted that the manner in which the UPF generates the random number B includes but is not limited to the above manner, and other methods may also be used.
  • the UE receiving the first key update information sent by the UPF includes: the UPF sends the first key update information to the RAN, the RAN receives the first key update information, and sends the first key update information to the UE .
  • the first key update information may be included in the first message.
  • the first message may be a data packet. After receiving the data packet, the RAN sends the data packet to the UE through the data.
  • the first message may be control signaling, and after receiving the control signaling, the RAN sends the control signaling to the UE through the control.
  • the data plane may be a transmission channel composed of an N3 link between RAN and UPF and a radio bearer (RB) between RAN and UE.
  • the control plane is a newly added transmission channel for transmitting control signaling between the UPF and the UE.
  • the UE can send control signaling to the UPF or receive control signaling from the UPF through the newly added transmission channel. It should be noted that, in the existing implementation, there is no transmission channel for transmitting control signaling between the UPF and the UE.
  • the first message in addition to carrying the first key update information, may also implicitly instruct the UE to update the original key K UPF .
  • the following information may be indicated or configured to the UPF and the UE in advance: the first key update information is carried in the Nth message sent by the UPF to the UE, and N is an integer greater than or equal to 1.
  • the UE determines to update the original key K UPF and determines that the received first message includes the first key update information.
  • the key generation method described above updates the original key K UPF .
  • the PDCP layer of the message sent by the UPF contains the PDCP count.
  • the PDCP count is increased by one.
  • the UPF determines that the received Nth message includes the first password.
  • the original key K UPF can be updated using the key generation method described in the embodiments of the present application.
  • the first key update information may not be included in the Nth message, but may be included in other messages after the Nth message, such as: the "if the Nth message is received, the The key generation method described in the embodiment of the present application updates the original key K UPF "information or configuration to UPF and UE.
  • the UE determines to update The original key K UPF , and subsequently, the first key update information may be obtained from other messages.
  • the first message may also instruct the UE to update the original key K UPF in an explicit manner.
  • the first message further includes a first indication, and the first indication may include predefined information, such as: may include a predefined IP address, a predefined MAC address, a predefined port number, and a predefined virtual protocol identification One or more information such as number.
  • predefined information such as: may include a predefined IP address, a predefined MAC address, a predefined port number, and a predefined virtual protocol identification One or more information such as number.
  • IP address 2 is a predefined source IP address.
  • the UE determines that the message also includes the first key update information, which may be described in the embodiments of the present application
  • the key generation method updates the original key K UPF .
  • the UPF sends the first key update information to the SMF
  • the SMF sends the first key update information to the AMF
  • the AMF receives the first key update information, and sends the first key update information to the UE through the N1 link or through the RAN Send the first key update information.
  • the first key update information may be included in NAS signaling.
  • the NAS signaling may be specifically defined NAS signaling for carrying the first key update information, or the NAS signaling is an existing NAS signaling and is not limited.
  • the UPF may send the first key update information after protection processing, for example: before the UPF sends the first key update information, the UPF Use the original key K UPF (or subkey derived from the original key K UPF ) to perform protection processing (encryption protection and / or integrity protection) on the first key update information to obtain the processed first key update information , And send the processed first key update information to the UE through any of the above possible designs; accordingly, the UE receives the processed first key update information and uses the original key K UPF (or the original key K UPF- derived subkeys) perform corresponding security operations (decryption and / or integrity verification) to obtain the first key update information.
  • protection processing encryption protection and / or integrity protection
  • the first key update information processed by the UPF may be processed again by other network functions and then sent to the UE.
  • the RAN may use its own key K RAN to update the encrypted first key update information
  • the UE can decrypt the message using the key K RAN and the original key K UPF to obtain the first key update information.
  • the AMF may use its own key K AMF to encrypt the encrypted first key update information again, and the UE may use the secret key after receiving the re-encrypted message.
  • the key K AMF and the original key K UPF decrypt the message to obtain key update information.
  • Step 404 The UPF receives the second key update information sent by the UE.
  • the second key update information can be used to update the original key K UPF obtained by the UPF . Similar to the first key update information, the second key update information may also include but not limited to random numbers, public keys, IP addresses, MAC addresses, port numbers, virtual protocol identification numbers, key generation functions, key generation functions Select one or more messages in the message. The random number included in the second key update information may be a value A generated by the UE.
  • the public key, IP address, MAC address, port number, virtual protocol identification number, key generation function, and key generation function selection information are as described in step 403 and will not be described in detail.
  • g, p are parameters pre-configured for the UE and UPF.
  • a is a random and confidential number. a can be generated by the UE in real time, or can be generated in advance by the UE or other equipment manufacturers or operators and stored on the UE.
  • the mod is "remainder operation". It should be noted that the manner in which the UE generates the random number A includes but is not limited to the above manner, and other methods may also be used.
  • the UPF receiving the second key update information sent by the UE includes: the UE sends the second key update information to the RAN; the RAN receives the second key update information and sends the second key update information to the UPF ; UPF receives the second key update information from the RAN.
  • the second key update information may be included in the second message.
  • the second message may be a data packet, and the UE may send the data packet to the RAN through the data, and after receiving the data packet, the RAN sends the data packet to the UPF through the data.
  • the second message may be control signaling, and the UE may send control signaling including the second key update information to the RAN through the control, and after receiving the control signaling, the RAN sends the control signaling through the control to the UPF.
  • the second message in addition to carrying the second key update information, may also instruct the UPF to update the original key K UPF in an implicit manner.
  • the following information may be indicated or configured to the UPF and the UE in advance: the second key update information is carried in the Nth message sent by the UE to the UPF, and M is an integer greater than or equal to 1.
  • the UPF determines to update the original key K UPF and determines that the received second message includes the second key update information, which may be adopted in the embodiments of the present application
  • the described key generation method updates the original key K UPF .
  • the packet data convergence protocol (PDCP) layer of the UPF and UE interactive message includes a PDCP counter (count), and the UPF or the UE may determine the Nth message according to the value of the PDCP count.
  • the UPF determines that the received Nth message includes the second key update information, and the original key K UPF can be updated using the key generation method described in the embodiment of the present application.
  • the second key update information may not be included in the Nth message, but may be included in other messages after the Nth message, such as: "If the Nth message is received, the The key generation method described in the embodiment of the present application updates the original key K UPF "information or configuration to UPF and UE.
  • UPF determines to update The original key K UPF , and subsequently, the second key update information may be obtained from other messages.
  • the second message may also instruct the UPF to update the original key K UPF in an explicit manner.
  • the second message also includes a second indication, similar to the first indication, the second indication may also include predefined information, such as: may include a predefined IP address, a predefined MAC address, and a predefined port number , Pre-defined virtual protocol identification number and other two or more kinds of information.
  • the UPF determines to update the original key K UPF and determines that the received second message includes the second key update information, which may be described in the embodiments of the present application.
  • the key generation method updates the original key K UPF .
  • IP address 1 is a pre-defined source IP address.
  • the UPF determines that the message also includes second key update information, which may be described in the embodiments of the present application.
  • the key generation method updates the original key K UPF .
  • the above predefined IP address may be the same as or different from the IP address in the second key update information; the predefined MAC address may be the same as or different from the MAC address in the second key update information, The predefined port number may be the same as or different from the port number in the second key update information, and is not limited.
  • the UE sends the second key update information to the AMF through the NAS channel (eg, N1 link). After receiving the second key update information, the AMF sends the second key update information to the SMF. The second key update information is sent by the SMF to the UPF.
  • the NAS channel eg, N1 link
  • the second key update information may be included in NAS signaling.
  • the NAS signaling may be specifically defined NAS signaling for carrying the second key update information, or the NAS signaling is an existing NAS signaling and is not limited.
  • the UE may send the second key update information after protection processing, for example: before the UE sends the second key update information, the UE Use the original key K UPF (or a subkey derived from the original key K UPF ) to perform protection processing (encryption protection and / or integrity protection) on the second key update information to obtain processed second key update information , And send the processed second key update information to the UPF through any of the above possible designs; correspondingly, the UPF receives the processed second key update information and uses the original key K UPF (or the original key K UPF- derived subkeys) perform corresponding security operations (decryption and / or integrity verification) to obtain second key update information.
  • protection processing encryption protection and / or integrity protection
  • the second key update information processed by the UE may be sent to the UPF after being processed again by the UE and other network functions during the process of sending to the UPF.
  • the UE re-encrypts the encrypted second key update information with the key K RAN
  • the RAN receives the re-encrypted second key update information
  • the key K RAN is used to restore the encrypted second key update information (that is, the information encrypted by K UPF ) and sent to the UPF.
  • the UPF decrypts the message using the original key K UPF to obtain the key update information.
  • the UE encrypts the encrypted second key update information again with the key K AMF.
  • the AMF After receiving the encrypted message, the AMF can use its own key K AMF to decrypt the encrypted second key encrypted only by K UPF .
  • the UPF After receiving the encrypted second key update information, the UPF can decrypt the message using the original key K UPF to obtain the key update information. It should be pointed out that if RAN and AMF cannot obtain K UPF , it is impossible to decrypt the original key update information.
  • the second key update information and the second key update information may be the same or different; the key used by the UE and the UPF to encrypt the key update information may also be The same or different, without limitation.
  • Step 406 The UE generates a new protection key K ' UPF according to the original key K UPF and the first key update information.
  • the UE may input the original key K UPF and part or all of the information in the first key update information into the key generation function to obtain a new protection key K ' UPF .
  • the new protection key K ' UPF KDF (K UPF , A) where KDF () is any key generation function;
  • the UE may input the subkey (protection key or complete security key) derived from the original key K UPF and part or all of the information in the first key update information into the key generation function to obtain a new protection key Key or new security key.
  • subkey protection key or complete security key
  • Step 405 The UPF generates a new protection key K ' UPF according to the original key K UPF and the second key update information.
  • the new protection key K 'UPF may be directly used for user plane data transmission between the UE and the UPF is security protected, or a new protection key K' UPF-derived sub key used between the UE and UPF The transmitted user plane data is safely protected.
  • the UPF may input some or all of the original key K UPF and the second key update information into the key generation function to obtain a new protection key K ' UPF .
  • the new protection key K ' UPF KDF (K UPF , A) where KDF () is any key generation function; or,
  • the UPF can input the subkey (protection key or complete security key) derived from the original key K UPF and part or all of the information in the second key update information into the key generation function to obtain a new protection key or The new security key.
  • the new protection key or the new complete security key may be called a subkey of the new protection key K'UPF .
  • the UPF and the UE can exchange key update information, use the interactive key update information to update the key derived from the long-term key to obtain a new protection key, and use the new protection key to the user plane Data protection.
  • the new protection key is obtained based on the information exchanged between the UE and the UPF and the key derived from the long-term key
  • insiders of access network equipment or network functions such as AMF or SEAF do not have the right to obtain the protection key from the user plane network function Key or derive the protection key based on the long-term key, and then cannot decrypt the eavesdropped encrypted data based on the protection key; at the same time, even if the long-term key is stolen, it is impossible for an attacker to derive the new key based on the long-term key
  • the protection key cannot decrypt the encrypted data eavesdropped at the air interface.
  • step 402 may be performed first, then step 401, or both steps 401 and 402 may be performed simultaneously; It is also possible to perform step 401, step 403, and step 405 in sequence, and then perform step 402, step 404, and step 406 in sequence.
  • step 403 and step 404 may not be limited.
  • the execution order of step 405 and step 406 is also not limited.
  • the method before performing step 401, the method further includes:
  • the SMF may send a third indication to the UE, where the third indication is used to instruct the UE to update the original key K UPF ;
  • the UE receives the third instruction sent by the SMF, starts the function of the key generation method described in the embodiment of the present application, and executes steps 401, 403, and 405.
  • the third instruction may be named as a key update trigger instruction.
  • the SMF sending the third indication to the UE may include: the SMF including the third indication in the NAS signaling to the UE, for example, the SMF may include the third indication in the N1 session management container and send it to the UE, or the third indication Including the session establishment response (PDU session establishment acceptance) corresponding to the session establishment request sent by the UE to the UE.
  • the SMF may send a fourth instruction to the UPF, instructing the UPF to update the original key K UPF .
  • a fourth instruction such as:
  • the SMF sends a fourth instruction to the UPF, the fourth instruction is used to instruct the UPF to update the original key K UPF ;
  • the UPF receives the first instruction sent by the SMF, and starts the function of the key generation method described in the embodiment of the present application, step 402, step 404, and step 406.
  • the fourth instruction may be named a key update trigger instruction.
  • the SMF sending the fourth indication to the UPF may include that the SMF includes the fourth indication in the N4 session establishment (or modification) request to the UPF.
  • the SMF includes the fourth indication in other messages, and sends the message to the UPF through the N4 link.
  • the SMF may receive the session establishment request sent by the UE.
  • the session establishment request may include UPF information.
  • the session establishment request may be used to request a PDU session establishment with the UPF. (session); SMF determines whether to perform the security protection described in this application on the UPF according to the information of the UPF, and if it is determined that the security protection is performed on the UPF, it sends a fourth instruction to the UPF.
  • the UPF information can be used to indicate the UPF, for example, it can be the Internet protocol (IP) address of the UPF.
  • IP Internet protocol
  • the SMF determining whether to perform security protection on the UPF may include:
  • the SMF determines whether to perform security protection on the UPF according to the security protection strategy.
  • the security protection strategy can be stored on the SMF in advance or on the UDM, and the SMF can obtain the security protection strategy from the UDM.
  • the security protection strategy may include information of the UPF that performs security protection. If the UPF is included in the security protection strategy, it is determined that security protection is performed on the UPF; otherwise, it is determined that security protection is not performed on the UPF. or,
  • all UPFs associated with the SMF perform security protection. After receiving the session establishment request, the SMF does not need to determine whether to perform security protection on the UPF, and the UE directly sends the third indication Send a fourth instruction to the UPF.
  • the UPF itself determines that security protection is required.
  • the UPF sends an update instruction to the UE, instructing the UE to update the original key K UPF ; after receiving the update instruction sent by the UPF , the UE initiates the encryption described in the embodiment of the present application.
  • the function of the key generation method executes step 401, step 403, and step 405.
  • the update indication sent by the UPF to the UE may be the first indication included in the first message in step 403, or may be a piece of information sent by the UPF to the UE alone, without limitation.
  • the UPF can establish a PDU session with the UE. UPF can determine the need for security protection based on its own capabilities or other information.
  • the UE determines that the user plane data transmitted between it and the UPF needs to be protected, and the UE sends an update instruction to the UPF, instructing the UPF to update the original key K UPF ; after the UPF receives the update instruction sent by the UE, Start the function of the key generation method described in the embodiment of the present application, and perform step 402, step 404, and step 406.
  • the update indication sent by the UE to the UPF may be the second indication included in the second message in step 404, or may be a piece of information sent by the UE to the UPF alone, without limitation.
  • the UE determines that the user plane data transmitted between it and the UPF needs to be protected, and sends a first request to the UPF to request the UPF to perform the security protection; after receiving the first request, the UPF determines to perform the security protection.
  • the UPF sends an update instruction to the UE, instructing the UE to update the original key K UPF ; after receiving the update instruction sent by the UPF , the UE starts the function of the key generation method described in this embodiment of the present application, and performs steps 401, 403, and 405 .
  • the UPF may send an instruction to the UE to instruct the UE to also start the key generation method provided by the embodiment of the present application.
  • the key generation method described in FIG. 4 may be performed when the UE and the network establish a session (such as a PDU session).
  • the key generation method may not be limited to be implemented when the session is established.
  • the key generation method is also applicable to the following scenario: a session has been established between the UE and the network (or UPF), and the UE and the network have generated corresponding , Such as: the UE has generated K UPF , and the UPF has generated K UPF, etc. In this scenario, there is no need to perform steps 401 and 402.
  • FIG. 5 is another key generation method provided by an embodiment of the present application. As shown in FIG. 5, the method includes:
  • Step 501 The UE sends a session establishment request to the SMF, and the SMF receives the session establishment request.
  • the session establishment request can be used to request establishment of a PDU session with the UPF, and the session establishment request can include UPF information.
  • the UPF information is as described above and will not be repeated here.
  • Step 502 The SMF determines to perform security protection on the UPF.
  • Step 503 The SMF sends instructions to the UE and UPF to update the original key K UPF .
  • the instruction sent by the SMF to the UE is the above-mentioned third instruction, and the instruction sent by the SMF to the UPF is the above-mentioned fourth instruction, which will not be repeated here. It should be pointed out that SMF can send instructions to UE and UPF at the same time, or it can send instructions to UE and UPF successively, without limitation.
  • the SMF may send an instruction to the UE through the AMF, and the instruction sent by the SMF to the UE may be included in the session establishment response corresponding to the session establishment request.
  • SMF can directly send instructions to UPF through the N4 link.
  • Step 504 The UE receives the instruction sent by the SMF and generates the original key K UPF .
  • step 401 the method for the UE to generate the original key K UPF can refer to step 401, which will not be repeated here.
  • Step 505 The UPF receives the instruction sent by the SMF, and obtains the original key K UPF .
  • the method for obtaining the original key K UPF by the UPF can refer to the description in step 402, and will not be repeated here.
  • Step 506 The UPF sends the first key update information to the UE.
  • the UPF may send the first key update information to the UE in the manner described in step 403.
  • the UPF can send the first key update information to the RAN, and the RAN sends the first key update information to the UE through the data; or, the UPF sends the first key update information to the RAN, and the RAN sends the first key to the UE through the control Update information; or, the UPF sends the first key update information to the AMF, and the AMF sends the first key update information to the UE through the NAS channel.
  • Step 507 UE receives the first key transmitted UPF update information to generate a new protection key K 'UPF UPF The original key K and a first key update information.
  • step 507 reference may be made to step 405, which is not repeated here.
  • Step 508 The UE sends the second key update information to the UPF.
  • the UE may send the second key update information to the UPF in the manner described in step 404.
  • the UE may send the second key update information to the RAN, and the RAN sends the second key update information to the UPF through the data; or, the UE sends the second key update information to the RAN, and the RAN sends the second key to the UPF through the control Update information; or, the UE sends second key update information to the AMF through the NAS channel, and the AMF sends second key update information to the UPF through SMF.
  • Step 509 UPF receives the second key update information sent by the UE, generates a new protection key K 'UPF The original key K UPF and the second key update information.
  • step 509 reference may be made to step 406, which will not be repeated here.
  • step 504 may be performed first, and step 504 or step 505 may be performed simultaneously during step 505; It is also possible to perform step 504, step 506, and step 507 in sequence, and then perform step 505, step 508, and step 509 in sequence.
  • the key generation method described in FIG. 5 is performed when the UE and the network establish a session (such as a PDU session). It should be noted that this application does not limit the implementation of the key generation method when the session is established.
  • the key generation method is also applicable to the following scenario: a session has been established between the UE and the network (or UPF), and the UE The corresponding key has been generated with the network, such as: UE has generated K UPF , UPF has generated K UPF, etc. In this scenario, there is no need to perform step 501, step 504, and step 505.
  • the SMF instructs the UPF and the UE to update the original key.
  • the UPF and the UE exchange the key update information and use the interactive key update information pair
  • the key derived from the long-term key is updated to obtain a new protection key, and the new protection key is used to securely protect the user plane data.
  • the new protection key is obtained based on the information exchanged between the UE and the UPF and the key derived from the long-term key
  • insiders of access network equipment or network functions such as AMF or SEAF have no right to obtain the protection key from the user plane network function Key or derive the protection key based on the long-term key, and then cannot decrypt the eavesdropped encrypted data based on the protection key; at the same time, even if the long-term key is stolen, an attacker cannot derive the new key based on the long-term key
  • the protection key cannot decrypt the encrypted data eavesdropped at the air interface.
  • the key of the control plane (eg, SMF key K SMF ) can also be updated first, and the updated key of the control plane can be used to secure the user plane data.
  • the protected key is then issued to UPF. Specifically, this method is shown in FIG. 6.
  • FIG. 6 is still another key generation method provided by an embodiment of the present application. As shown in FIG. 6, the method includes:
  • Step 601 The UE sends a session establishment request to the SMF, and the SMF receives the session establishment request.
  • the session establishment request can be used to request the establishment of a PDU session with the UPF.
  • the session establishment request can include UPF information.
  • the UPF information is as described above and will not be repeated here.
  • Step 602 The SMF determines to perform security protection on the UPF.
  • Step 603 The SMF sends an instruction to the UE to update the control plane key K SMF .
  • the key K SMF of the control plane is derived from the long-term key or the sub-key derived from the long-term key.
  • the SMF can send an instruction to the UE through the AMF.
  • Step 604 The SMF obtains the key K SMF of the control plane.
  • the key K SMF of the control plane is generated by AMF or SEAF, and the SMF can obtain the key K SMF of the control plane from AMF or SEAF.
  • the method for generating the key K SMF of the control plane by AMF or SEAF can refer to the method for generating the key K AMF by AMF or SEAF in the prior art, and will not be described in detail.
  • Step 605 The UE receives the instruction sent by the SMF, and generates the control plane key K SMF .
  • the key K SMF of the UE control plane is the same as the method for the UE to generate the original key K UPF , which will not be repeated here.
  • Step 606 The SMF sends the third key update information to the UE.
  • the third key update information can be used to update the control plane key K SMF .
  • the third key update information may include, but is not limited to, one or more of random numbers, public keys, IP addresses, MAC addresses, port numbers, virtual protocol identification numbers, and key generation function selection information.
  • the random number may be a value C generated by the SMF.
  • the public key, IP address, MAC address, port number, virtual protocol identification number, and key generation function selection information are as described in step 403, and will not be described in detail.
  • g, p are parameters pre-configured for the UE and SMF.
  • c is a random, confidential number. c can be generated by SMF in real time, or can be generated by SMF or other network functions in advance and stored on the UE.
  • the mod is "remainder operation". It should be noted that the manner in which the SMF generates the random number C includes but is not limited to the above manner, and other methods may also be used.
  • SMF may send third key update information to AMF, AMF sends third key update information to RAN, and RAN sends third key update information to UE; or, SMF may send third key to AMF To update the information, AMF sends the key update information to the UE.
  • Step 607 The UE receives the third key update information sent by the SMF, and generates a new control plane key K ' SMF according to the control plane key K SMF and the third key update information.
  • the method for the UE to generate a new K SMF according to the key K SMF and third key update information of the control plane can refer to the process of the UE generating a new protection key based on the original key K UPF and the third key update information.
  • the UE can input the key K SMF of the control plane and part or all of the information in the third key update information into the key generation function to obtain the new key K ' SMF of the control plane.
  • the key K ' SMF of the new control plane KDF (K SMF , C), where KDF () is any key generation function;
  • SMF can protect the third key update information and send it out.
  • SMF uses the key K of the control plane
  • the SMF (or the subkey derived from the control plane key K SMF ) performs protection processing (encryption protection and / or integrity protection) on the third key update information, and obtains the processed third key update information and sends it to the UE Send the processed third key update information; correspondingly, the UE receives the processed third key update information and uses the control plane key K SMF (or the control plane key K SMF derived subkey) Perform corresponding security operations (decryption and / or integrity verification) to obtain third key update information.
  • Step 608 The UE generates K ' UPF according to K' SMF .
  • the K ' UPF generated by the UE is used to protect the user plane data transmitted between the UPF and the UE.
  • the UE inputs K ' SMF and other parameters into KDF to obtain K' UPF .
  • UE may K 'generated UPF K' sub-UPF key (the encryption key or secret key End) The.
  • Step 609 The UE sends the fourth key update information to the SMF.
  • the fourth key update information can be used to update the key K SMF of the control plane.
  • the content included in the fourth key update information is the same as the content included in the second key update information in step 404, and details are not described again.
  • the UE may send the fourth key update information to the RAN.
  • the RAN After receiving the fourth key update information, the RAN sends the fourth key update information to the AMF, and the AMF sends the fourth key update information to the SMF; or The UE directly sends the fourth key update information to the AMF, and the AMF sends the fourth key update information to the SMF.
  • Step 610 The SMF receives the fourth key update information sent by the UE, and generates a new control plane key K ' SMF according to the control plane key K SMF and the fourth key update information.
  • the SMF generates a new key K ' SMF of the control plane according to the control plane key K SMF and the fourth key update information.
  • the SMF can input the key K SMF of the control plane and part or all of the information in the fourth key update information into the key generation function to obtain the new key K ' SMF of the control plane.
  • the new control plane key K ' SMF KDF (K SMF , A), where KDF () is any key generation function;
  • the UE may protect the fourth key update information and send it out. For example, before the UE sends the first key update information, the UE uses the key K of the control plane The SMF (or the subkey derived from the control plane key K SMF ) performs protection processing (encryption protection and / or integrity protection) on the fourth key update information, and obtains the processed fourth key update information and submits it to the SMF Send the processed fourth key update information; correspondingly, SMF receives the processed fourth key update information and uses the control plane key K SMF (or the control plane key K SMF derived subkey) Perform corresponding security operations (decryption and / or integrity verification) to obtain fourth key update information.
  • protection processing encryption protection and / or integrity protection
  • Step 611 SMF generates K ' UPF according to K' SMF , and sends K ' UPF to UPF .
  • SMF generating K ' UPF according to K' SMF may include: SMF inputting K ' SMF and other parameters into KDF to obtain K' UPF .
  • SMF can generate K ' UPF sub-keys (such as encryption keys or security keys) according to K' SMF , and send K ' UPF sub-keys to UPF.
  • K ' UPF sub-keys such as encryption keys or security keys
  • the encryption key may be used to encrypt and protect the data
  • the security key may be used to protect the integrity of the data.
  • Step 612 The UPF receives the new protection key K ' UPF sent by the SMF.
  • the UPF may use the new protection key, the new protection key K ' UPF, or the subkey derived from the new protection key K' UPF to securely protect the user plane data.
  • step 604 may be performed first, and then step 603 may be performed, or steps 603 and 604 may be performed simultaneously; It is also possible to perform steps 610 to 612 in sequence first, and then perform steps 606 to 609 in sequence, without limitation.
  • the key generation method described in FIG. 6 is performed when the UE and the network establish a session (such as a PDU session). It should be noted that this application does not limit the implementation of the key generation method when the session is established.
  • the key generation method is also applicable to the following scenario: a session has been established between the UE and the network (or SMF) and Corresponding keys have been generated with SMF, such as: UE has generated K SMF , SMF has generated K SMF, etc. In this scenario, there is no need to perform steps 601, 604, and 605.
  • the embodiments of the present application include, but are not limited to, update the control plane key K SMF .
  • the updated K ' SMF generates a key K' UPF that securely protects user plane data, and can also be used for other control planes.
  • the key such as: update the AMF key K AMF , the updated K ' AMF generates a key K' UPF that securely protects the user plane data, or K is derived from the updated K ' AMF first ' SMF , and then K' SMF generates K ' UPF .
  • the SMF key K SMF can be updated by the SMF first, and then the updated key K SMF can be used to derive the key K UPF used for the security protection of the user plane data, that is, used to The key K UPF that securely protects the user plane data is derived from the updated K SMF and sent by the SMF to the UPF.
  • the key K UPF used for the security protection of user plane data is obtained based on the information exchanged between the UE and SMF and the key derived from the long-term key, insiders of access network equipment or network functions such as AMF or SEAF do not have the right to obtain this
  • the protection key or the protection key cannot be derived from the long-term key, and then the encrypted data after eavesdropping cannot be decrypted based on the protection key; at the same time, if the long-term key is stolen, an attacker cannot be derived from the long-term key After the protection key is issued, the encrypted data eavesdropped at the air interface cannot be decrypted by itself.
  • each node such as a user plane network function, a session management network function, and a terminal device, includes a hardware structure and / or a software module corresponding to each function.
  • the present invention can be implemented in the form of hardware or a combination of hardware and computer software in combination with the algorithm steps of the examples described in the embodiments disclosed herein. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of the present invention.
  • This application can divide user module network functions, session management network functions, and terminal devices into function modules according to the above method examples.
  • each function module can be divided corresponding to each function, or two or more functions can be integrated in In a processing module.
  • the above integrated modules may be implemented in the form of hardware or software function modules. It should be noted that the division of modules in this application is schematic, and is only a division of logical functions, and there may be other divisions in actual implementation.
  • the communication device 70 may be a terminal device or a chip or a system-on-chip in the terminal device. As shown in FIG. 7, the communication device 70 may include: a receiving unit 701 and a generating unit 702;
  • the receiving unit 701 is configured to receive the first key update information sent by the user plane network function.
  • the receiving unit 701 can be used to support the communication device 70 to perform step 403 and step 507;
  • the generating unit 702 is configured to generate a second key according to the first key and the first key update information; wherein the second key is used to transmit data between the user plane network function and the terminal device
  • the first key is the same as the third key acquired by the terminal device; the first key and the third key are derived from long-term keys.
  • the generating unit 702 may be used to support the communication device 70 to perform step 405 and step 507.
  • the communication device 70 may further include a sending unit 703;
  • the sending unit 703 is configured to send the second key update information to the user plane network function; for example, the sending unit 703 supports the communication device 70 to perform steps 404 and 508.
  • the communication device 70 provided by the embodiment of the present application is used to perform the function of the terminal device in the key generation method shown in FIG. 4 to FIG. 6, so the same effect as the above key generation method can be achieved.
  • the communication device 70 shown in FIG. 7 may include: a processing module and a communication module.
  • the processing module may integrate the functions of the generating unit 702, and the communication module may integrate the functions of the receiving unit 701 and the sending unit 703.
  • the processing module is used to control and manage the actions of the communication device 70.
  • the processing module is used to support the communication device 70 to perform step 405, step 507, and other processes that perform the techniques described herein.
  • the communication module is used to support the communication device 70 to perform step 403, step 507, step 404, step 508 and communicate with other network entities.
  • the communication device 70 shown in FIG. 7 may further include a storage module for storing program codes and data of the communication device 70.
  • the processing module may be a processor or a controller. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, DSP and microprocessor combinations, and so on.
  • the communication module may be a transceiver circuit or a communication interface.
  • the storage module may be a memory. When the processing module is a processor, the communication module is a communication interface, and the storage module is a memory, the communication device 70 shown in FIG. 7 may be the communication device shown in FIG. 2.
  • FIG. 8 is a schematic diagram of a composition of a communication device 80 provided by an embodiment of the present application.
  • the communication device 80 may be a user plane network function or a chip or a system-on-chip in the user plane network function. As shown in FIG. 8, the communication device 80 may include: a receiving unit 801 and a generating unit 802;
  • the receiving unit 801 is used to receive the second key update information sent by the terminal device; for example, the receiving unit 801 is used to support the communication device 80 to perform steps 404 and 508.
  • the generating unit 802 is configured to generate a fourth key based on the third key and the second key update information; wherein the fourth key is used to securely protect the data transmitted between the user plane network function and the terminal device; third The key is the same as the first key generated by the terminal device; the first key and the third key are derived from the long-term key.
  • the generating unit 802 is used to support the communication device 80 to perform step 406 and step 509.
  • the communication device 80 may further include a sending unit 803;
  • the sending unit 803 is configured to send the first key update information to the terminal device; for example, the sending unit 803 supports the communication device 80 to perform steps 403 and 506.
  • the communication device 80 provided by the embodiment of the present application is used to perform the function of the user plane network function in the key generation method shown in FIG. 4 to FIG. 6, so the same effect as the above key generation method can be achieved.
  • the communication device 80 shown in FIG. 8 may include: a processing module and a communication module.
  • the processing module may integrate the functions of the generating unit 802, and the communication module may integrate the functions of the receiving unit 801 and the sending unit 803.
  • the processing module is used to control and manage the actions of the communication device 80.
  • the processing module is used to support the communication device 80 to perform step 406, step 509, and other processes that perform the techniques described herein.
  • the communication module is used to support the communication device 80 to perform step 404, step 508, step 403, step 506 and communicate with other network entities.
  • the communication device 80 shown in FIG. 8 may further include a storage module for storing program codes and data of the communication device 80.
  • the processing module may be a processor or a controller. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, DSP and microprocessor combinations, and so on.
  • the communication module may be a transceiver circuit or a communication interface.
  • the storage module may be a memory. When the processing module is a processor, the communication module is a communication interface, and the storage module is a memory, the communication device 80 shown in FIG. 8 may be the communication device shown in FIG. 2.
  • the communication device 90 may be a session management network function or a chip or a system-on-chip in the session management network function. As shown in FIG. 9, the communication device 90 may include: a receiving unit 901, a generating unit 902, and a sending unit 903;
  • the receiving unit 901 is used to receive the fourth key update information sent by the terminal device; for example, the receiving unit 901 is used to support the communication device 90 to perform step 609.
  • the generating unit 902 is used to generate a new control plane key according to the control plane key and the fourth key update information, and derive a new protection key based on the new control plane key; for example, the generating unit 902 uses The supporting communication device 90 executes step 610 and step 611.
  • the sending unit 903 is used to send a new protection key to the user plane network function; wherein, the new protection key is used to securely protect the data transmitted between the user plane network function and the terminal device, and the key of the control plane is long-term Key derivation.
  • the communication device 90 provided by the embodiment of the present application is used to perform the function of the session management network function in the key generation method shown in FIG. 6, so the same effect as the above key generation method can be achieved.
  • the communication device 90 shown in FIG. 9 may include: a processing module and a communication module.
  • the processing module may integrate the functions of the sending unit 902, and the communication module may integrate the functions of the receiving unit 901 and the sending unit 903.
  • the processing module is used to control and manage the actions of the communication device 90.
  • the processing module is used to support the communication device 90 to perform step 610, step 611, and other processes of the technology described herein.
  • the communication module is used to support the communication device 90 to perform step 609 and communicate with other network entities.
  • the communication device 90 shown in FIG. 9 may further include a storage module for storing program codes and data of the communication device 90.
  • the processing module may be a processor or a controller. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, DSP and microprocessor combinations, and so on.
  • the communication module may be a transceiver circuit or a communication interface.
  • the storage module may be a memory. When the processing module is a processor, the communication module is a communication interface, and the storage module is a memory, the communication device 90 shown in FIG. 9 may be the communication device shown in FIG. 2.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a division of logical functions.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed in multiple different places . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solution of the present application may be essentially or part of the contribution to the existing technology or all or part of the technical solution may be embodied in the form of a software product, which is stored in a storage medium
  • Several instructions are included to enable a device (which may be a single-chip microcomputer, chip, etc.) or processor to execute all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请实施例公开了一种密钥生成方法、设备及系统,涉及通信技术领域,以解决保护密钥被窃取或泄露造成的数据泄露的问题。所述方法包括:用户面网络功能与终端设备相互获取对方发送的密钥更新信息,用户面网络功能利用获取到的密钥更新信息更新由长期密钥衍生的子密钥,得到新的保护密钥,终端设备利用获取到的密钥更新信息更新由长期密钥衍生的子密钥,得到新的保护密钥,利用新的保护密钥对终端设备与用户面网络功能之间传输的用户面数据进行安全保护。

Description

一种密钥生成方法、设备及系统 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种密钥生成方法、设备及系统。
背景技术
在现有的移动通信安全架构中,终端设备与电信网络间传输的用户面数据可以被安全保护,其中,网络侧的安全保护锚点为接入网设备(如基站),由终端设备和接入网设备对用户面数据进行安全保护(如:机密性保护和/或完整性保护)。例如,针对发往网络的用户面数据,终端设备利用保护密钥执行安全保护操作(如:加密和/或追加完整性保护验证码),接入网设备在接收到保护后的数据后,利用保护密钥执行相应的安全操作(如:解密和/或完整性验证)。针对发往终端的用户面数据,接入网设备利用保护密钥执行安全保护操作(如:加密和/或追加完整性保护验证码),终端在接收到保护后的数据后,利用保护密钥执行相应的安全操作(如:解密和/或完整性验证)。
目前,上述保护密钥通常由核心网网络功能(接入与移动性管理功能(access and mobility management function,AMF)或者安全锚点功能(security anchor function,SEAF)等)根据长期密钥K衍生而来。例如,可以根据长期密钥K衍生出K AUSF,根据K AUSF衍生出K SEAF,根据K SEAF可以衍生出K AMF,根据K AMF衍生出保护密钥K gNB。如果AMF的内部人员有权限获取AMF的密钥K AMF,他可以根据密钥K AMF推衍出接入网设备的保护密钥K gNB,利用保护密钥K gNB对空口处窃听的加密数据进行自行解密。类似地,如果其他网络功能处(接入网设备或者SEAF等)的密钥被窃取,也会造成数据泄露。
由上可知,现有安全保护在接入网设备上执行时,若保护密钥被窃取或泄露,就会造成数据泄露,降低用户面数据传输的安全性。
发明内容
本申请实施例提供一种密钥生成方法、设备及系统,以降低长期密钥被窃取或泄露或者网络内部人员攻击所造成的数据泄露的风险。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例又提供一种密钥生成方法,所述方法包括:终端设备接收用户面网络功能发送的第一密钥更新信息;终端设备根据第一密钥以及第一密钥更新信息生成第二密钥;其中,第二密钥用于对用户面网络功能与终端设备间传输的数据进行安全保护,第一密钥与用户面网络功能获取的第三密钥相同;第一密钥和第三密钥由长期密钥衍生。
基于第一方面提供的密钥生成方法,可以由终端设备对长期密钥衍生的密钥进行更新得到新的保护密钥,继而采用新的保护密钥对用户面数据进行安全保护。因新的保护密钥根据终端设备和用户面网络功能交互的密钥更新信息以及长期密钥衍生的密钥得到,接入网设备或AMF或SEAF等网络功能的内部人员无权从终端设备获取该新的保护密钥或者无法仅根据长期密钥衍生出该新的保护密钥,进而无法根据该新的保护密钥解密所窃听的加密数据;同时,即使长期密钥被窃取,攻击者也不可能根据长期密钥推衍出新的保护密 钥,无法对空口处或网络中窃听的加密数据进行自行解密,如此,若采用本申请实施例生成的新的保护密钥对用户面数据进行安全保护,则用户面数据不易泄露,提高了数据传输的安全性。
在一种可能的设计中,第一密钥是终端设备根据第一组生成参数生成的;其中,第一组生成参数包括所述长期密钥或者所述长期密钥衍生的子密钥,第一组生成参数由移动性管理网络功能或者安全锚点功能网络功能发送给所述终端设备。基于该可能的设计,终端设备可以借助其他网络功能发送的生成参数,生成第一密钥。
在一种可能的设计中,所述方法还包括:终端设备从用户面网络功能接收第一指示;其中,第一指示用于指示终端设备更新第一密钥。或者,终端设备向用户面网络功能发送第二指示;其中,第二指示用于指示用户面网络功能更新第三密钥。
其中,第一指示、第二指示包括下述一种或多种信息:密钥更新指示符、预定义的因特网协议IP地址、预定义的端口号、预定义的虚拟协议标识ID;或者,第一指示是用户面网络功能向终端设备发送的第N个消息,第二指示是终端设备向用户面网络功能发送的第N个消息;其中,N为大于或者等于1的整数。
基于该可能的设计,用户面网络功能可以向终端设备发送密钥更新指示符或者预定义信息,指示终端设备采用本申请实施例所述的密钥生成方式生成新的保护密钥。或者,预先向终端设备指示当其接收到用户面网络功能发送的第N个消息时更新密钥,如此,当终端设备接收到用户面网络功能发送的第N个消息时,终端设备确定采用本申请实施例所述的密钥生成方式生成新的保护密钥。类似的,终端设备也可以向用户面网络功能发送密钥更新指示符或者预定义信息,指示用户面网络功能采用本申请实施例所述的密钥生成方式生成新的保护密钥。或者,预先向用户面网络功能指示当其接收到终端设备发送的第N个消息时更新密钥,如此,当用户面网络功能接收到终端设备发送的第N个消息时,用户面网络功能确定采用本申请实施例所述的密钥生成方式生成新的保护密钥。
在一种可能的设计中,所述方法还包括:终端设备从会话管理网络功能接收第三指示;其中,第三指示用于指示终端设备更新第一密钥。
基于该可能的设计,终端设备可以在接收到会话管理网络功能下发的指示后,执行第一方面所述的密钥生成方法。其中,会话管理网络功能确定在用户面网络功能上执行安全保护后,才向终端设备发送第三指示。会话管理网络功能确定在用户面网络功能上执行安全保护,包括:会话管理网络功能根据安全保护策略确定在用户面网络功能上执行安全保护;其中,安全保护策略包括执行安全保护的用户面网络功能的信息,安全保护策略预先存储在会话管理网络功能上,或者,安全保护策略由会话管理网络功能从统一数据管理网络功能获取。即会话管理网络功能可以根据本地存储的信息确定用户面网络功能是否执行安全保护,或者,通过统一数据管理网络功能获知用户面网络功能是否执行安全保护。
在一种可能的设计中,第一密钥更新消息被用户面网络功能利用第三密钥进行保护处理后发送出去,终端设备获取用户面网络功能发送的第一密钥更新信息,包括:终端设备接收保护处理后的第一密钥更新信息;终端设备利用第一密钥对保护处理后的第一密钥更新信息进行处理,以得到第一密钥更新信息。
基于该可能的设计,可以使第一密钥更新信息在发送给终端设备的过程中被保护起来,防止第一密钥更新信息被恶意人员窃取或随意篡改。
在一种可能的设计中,所述方法还包括:终端设备向用户面网络功能发送第二密钥更新信息;其中,第二密钥更新信息用于更新用户面网络功能获取的第三密钥,以得到第四密钥;所述第四密钥用于对所述用户面网络功能与所述终端设备间传输的数据进行安全保护;所述第四密钥与所述第二密钥相同。
基于该可能的设计,终端设备可以向用户面网络功能发送用于更新第三密钥的密钥更新信息,以便用户面网络功能根据接收到的密钥更新信息更新第三密钥。
在一种可能的设计中,第二密钥更新信息包括在第一消息中;第一消息为控制信令或者数据包。第一消息为终端设备发送给用户面网络功能的第N个消息;或者,第一消息包括第二指示;其中,第二指示如上所述。
基于该可能的设计,终端设备可以将第二密钥更新信息通过控制面或者数据面发送给用户面网络功能,同时,可以在包括第二密钥更新信息的消息中包括第二指示,通过该第二指示显性指示用户面网络功能更新第三密钥,也可以通过终端设备发送给用户面网络功能的第N个消息隐性指示用户面网络功能更新第三密钥,如:当用户面功能网络功能接收到终端设备发送的第N个消息时,用户面功能网络功能确定更新第三密钥,生成新的保护密钥。
在一种可能的设计中,第一密钥更新信息、第二密钥更新信息包括随机数、公钥、IP地址、媒体接入控制MAC地址、端口号、虚拟协议识别号、密钥生成函数、密钥生成函数选择信息中的一个或多个信息。
在一种可能的设计中,终端设备根据第一密钥以及第一密钥更新信息生成第二密钥,包括:终端设备将第一密钥以及第一密钥更新信息中的部分或者全部信息输入密钥生成函数,以得到第二密钥。
基于该可能的设计,终端设备可以根据第一密钥更新信息以及其他信息对第一密钥进行更新,得到新的保护密钥。
第二方面,本申请提供一种通信装置,该通信装置可以为终端设备或者终端设备中的芯片或者片上系统,该通信装置可以实现上述第一方面或者第一方面的各可能的设计中终端设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该通信装置可以包括:接收单元,生成单元;
接收单元,用于接收用户面网络功能发送的第一密钥更新信息;
生成单元,用于根据第一密钥以及所述第一密钥更新信息生成第二密钥;其中,所述第二密钥用于对所述用户面网络功能与所述终端设备间传输的数据进行安全保护,所述第一密钥与所述用户面网络功能获取的第三密钥相同;所述第一密钥和所述第三密钥由长期密钥衍生。
其中,该通信装置的具体实现方式可以参考第一方面或第一方面的任一种可能的设计提供的密钥生成方法中终端设备的行为功能,在此不再重复赘述。因此,该提供的通信装置可以达到与第一方面或者第一方面的任一种可能的设计相同的有益效果。
第三方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第一方面或者第一方面的任一种可能的设计所述的密钥生成方法。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面或者上述方面的任一种可能的设计所述的密钥生成方法。
第五方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面或者上述方面的任一种可能的设计所述的密钥生成方法。
第六方面,提供了一种芯片系统,该芯片系统包括处理器、通信接口,用于支持通信装置实现上述方面中所涉及的功能,例如处理器通过通信接口接收用户面网络功能发送的第一密钥更新信息;根据第一密钥以及第一密钥更新信息生成第二密钥;其中,第二密钥用于对用户面网络功能与终端设备间传输的数据进行安全保护,第一密钥与用户面网络功能获取的第三密钥相同;第一密钥和第三密钥由长期密钥衍生。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第三方面至第六方面中任一种设计方式所带来的技术效果可参见上述第一方面或者第一方面的任一种可能的设计所带来的技术效果,不再赘述。
第七方面,本申请实施例提供一种密钥生成方法,所述方法包括:用户面网络功能接收终端设备发送的第二密钥更新信息;用户面网络功能根据第三密钥以及第二密钥更新信息生成第四密钥;其中,第四密钥用于对用户面网络功能与终端设备间传输的数据进行安全保护;第三密钥与终端设备生成的第一密钥相同;第一密钥和第三密钥由长期密钥衍生。
基于第七方面提供的密钥生成方法,可以由用户面网络功能对长期密钥衍生的密钥进行更新得到新的保护密钥,继而采用新的保护密钥对用户面数据进行安全保护。因新的保护密钥根据终端设备和用户面网络功能交互的密钥更新信息以及长期密钥衍生的密钥得到,接入网设备或AMF或SEAF等网络功能的内部人员无权从用户面网络功能获取该新的保护密钥或者无法仅根据长期密钥衍生出该新的保护密钥,进而无法根据该新的保护密钥解密所窃听的加密数据;同时,即使长期密钥被窃取,攻击者也不可能根据长期密钥推衍出新的保护密钥,无法对空口处窃听的加密数据或网络中窃取的加密数据进行自行解密,如此,若采用本申请实施例生成的新的保护密钥对用户面数据进行安全保护,则用户面数据不易泄露,提高了数据传输的安全性。
在一种可能的设计中,第三密钥由移动性管理网络功能或者安全锚点网络功能或者会话管理网络功能发送给用户面网络功能;或者,第三密钥是用户面网络功能根据第二组生成参数生成的;其中,第二组生成参数包括长期密钥或者长期密钥衍生的子密钥,第二组生成参数由移动性管理网络功能或者安全锚点功能网络功能或者会话管理网络功能发送给用户面网络功能。
在该可能的设计中,用户面网络功能可以从其他网络功能获取第一密钥,也可以借助其他网络功能发送的生成参数,生成第三密钥,提高了用户面网络功能获取第三密钥的灵活性。
在一种可能的设计中,所述方法还包括:用户面网络功能向终端设备发送第一指示;其中,第一指示用于指示终端设备更新第一密钥;或者,用户面网络功能接收终端设备发送的第二指示;其中,第二指示用于指示用户面网络功能更新第三密钥。
其中,第一指示、第二指示包括下述一种或多种信息:密钥更新指示符、预定义的因 特网协议IP地址、预定义的端口号、预定义的虚拟协议标识ID;或者,第一指示是用户面网络功能向终端设备发送的第N个消息,第二指示是终端设备向用户面网络功能发送的第N个消息;其中,N为大于或者等于1的整数。
基于该可能的设计,用户面网络功能可以向终端设备发送密钥更新指示符或者预定义信息,指示终端设备采用本申请实施例所述的密钥生成方式生成新的保护密钥。或者,预先向终端设备指示当其接收到用户面网络功能发送的第N个消息时更新密钥,如此,当终端设备接收到用户面网络功能发送的第N个消息时,终端设备确定采用本申请实施例所述的密钥生成方式生成新的保护密钥。类似的,终端设备也可以向用户面网络功能发送密钥更新指示符或者预定义信息,指示用户面网络功能采用本申请实施例所述的密钥生成方式生成新的保护密钥。或者,预先向用户面网络功能指示当其接收到终端设备发送的第N个消息时更新密钥,如此,当用户面网络功能接收到终端设备发送的第N个消息时,用户面网络功能确定采用本申请实施例所述的密钥生成方式生成新的保护密钥。
在一种可能的设计中,所述方法还包括:用户面网络功能从会话管理网络功能接收用于指示用户面网络功能更新第三密钥的第四指示,或者,用户面网络功能从终端设备接收用于请求用户面网络功能更新第三密钥的第一请求。
基于该可能的设计,用户面网络功能可以在接收到会话管理网络功能的指示或者终端设备发送的请求后,执行本申请实施例所述的密钥生成过程。其中,会话管理网络功能确定在用户面网络功能上执行安全保护后,才向用户面网络功能发送第四指示。会话管理网络功能确定在用户面网络功能上执行安全保护,包括:会话管理网络功能根据安全保护策略确定在用户面网络功能上执行安全保护;其中,安全保护策略包括执行安全保护的用户面网络功能的信息,安全保护策略预先存储在会话管理网络功能上,或者,安全保护策略由会话管理网络功能从统一数据管理网络功能获取。即会话管理网络功能可以根据本地存储的信息确定用户面网络功能是否执行安全保护,或者,通过统一数据管理网络功能获知用户面网络功能是否执行安全保护。
在一种可能的设计中,用户面网络功能接收终端设备发送的第二密钥更新信息,包括:用户面网络功能从移动性管理网络功能接收第二密钥更新信息,其中,第二密钥更新信息由终端设备通过非接入层(non-access stratum,NAS)信道发送给移动性管理网络功能。
基于该可能的设计,终端设备可以将第二密钥更新信息通过NAS信道发送给移动向管理网络功能,由移动性管理网络功能发送给用户面网络功能。
在一种可能的设计中,用户面网络功能接收终端设备发送的第二密钥更新信息,包括:用户面网络功能从接入网设备接收第二密钥更新信息,其中,第二密钥更新信息由终端设备发送给接入网设备。其中,第二密钥更新信息包括在第一消息中;第一消息为通过控制面发送的控制信令;或者,第一消息为通过数据面发送的数据包。
基于该可能的设计,终端设备可以将第二密钥更新信息发送给接入网设备,由接入网设备通过控制面或者数据面将第二密钥更新信息发送给用户面网络功能。
在一种可能的设计中,第一消息为终端设备发送给用户面网络功能的第N个消息;或者,第一消息包括第二指示;其中,第二指示如上所述,可以用于指示用户面网络功能更新第三密钥。
基于该可能的设计,可以在包括第二密钥更新信息的消息中包括第二指示,通过该第 二指示显性指示用户面网络功能更新第三密钥,也可以通过终端设备发送给用户面网络功能的第N个消息隐性指示用户面网络功能更新第三密钥,如:当用户面功能网络功能接收到终端设备发送的第N个消息时,用户面功能网络功能确定更新第三密钥,生成新的保护密钥。
在一种可能的设计中,第二密钥更新消息被终端设备利用第一密钥进行保护处理后发送出去,用户面网络功能接收终端设备发送的第二密钥更新信息,包括:用户面网络功能接收保护处理后的第二密钥更新信息,利用第三密钥对保护处理后的第二密钥更新信息进行处理,以得到第二密钥更新信息。
基于该可能的设计,可以使第二密钥更新信息在发送给用户面网络功能的过程中被保护起来,防止第二密钥更新信息被恶意人员窃听或者随意篡改。
在一种可能的设计中,第一密钥更新信息、第二密钥更新信息包括:随机数、公钥、IP地址、媒体接入控制(media access control,MAC)地址、端口号、虚拟协议识别号、密钥生成函数、密钥生成函数选择信息中的一个或多个信息。
在一种可能的设计中,用户面网络功能根据第三密钥以及第二密钥更新信息生成第三密钥,包括:用户面网络功能将第三密钥以及第二密钥更新信息中的部分或者全部信息输入密钥生成函数,得到第三密钥。
基于该可能的设计,用户面网络功能可以根据第三密钥以及其他信息对第三密钥进行更新,得到新的保护密钥。
第八方面,本申请提供一种通信装置,该通信装置可以为用户面网络功能或者用户面网络功能中的芯片或者片上系统。该通信装置可以实现上述各方面或者各可能的设计中用户面网络功能所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该通信装置可以包括:接收单元,生成单元;
接收单元,用于接收终端设备发送的第二密钥更新信息;
生成单元,用于根据第三密钥以及第二密钥更新信息生成第四密钥;其中,第四密钥用于对用户面网络功能与终端设备间传输的数据进行安全保护;第三密钥与终端设备生成的第一密钥相同;第一密钥和第三密钥由长期密钥衍生。
其中,该通信装置的具体实现方式可以参考第七方面或第七方面的任一种可能的设计提供的密钥生成方法中用户面网络功能的行为功能,在此不再重复赘述。因此,该提供的通信装置可以达到与第七方面或者第七方面的任一种可能的设计相同的有益效果。
第九方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第七方面或者第七方面的任一种可能的设计所述的密钥生成方法。
第十方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第七方面或者上述方面的任一种可能的设计所述的密钥生成方法。
第十一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第七方面或者上述方面的任一种可能的设计所述的密钥生成方法。
第十二方面,提供了一种芯片系统,该芯片系统包括处理器、通信接口,用于支持通 信装置实现上述方面中所涉及的功能,例如处理器通过通信接口接收终端设备发送的第二密钥更新信息;根据第三密钥以及所述第二密钥更新信息生成第四密钥;其中,第四密钥用于对用户面网络功能与终端设备间传输的数据进行安全保护;第三密钥与终端设备生成的第一密钥相同;第一密钥和第三密钥由长期密钥衍生。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第九方面至第十二方面中任一种设计方式所带来的技术效果可参见上述第七方面或者第七方面的任一种可能的设计所带来的技术效果,不再赘述。
在又一种可行方案中,还可以由会话管理网络功能和终端设备交互密钥更新信息,对控制面的密钥(如:会话管理网络功能的密钥)进行密钥更新,由更新后的控制面的密钥衍生出用于对用户面数据进行安全保护的密钥,再下发给用户面网络功能。具体的,该可行方法中终端设备的执行过程如下述第十三方面至第十八方面所述,会话管理网络功能的执行过程如第十九方面至第二十四方面所述。
第十三方面,本申请实施例又提供一种密钥生成方法,所述方法包括:终端设备接收会话管理网络功能发送的第三密钥更新信息;终端设备根据控制面的密钥以及第三密钥更新信息生成新的控制面的密钥,根据新的控制面的密钥衍生出新的保护密钥;其中,新的保护密钥用于对用户面网络功能与终端设备间传输的数据进行安全保护,控制面的密钥由长期密钥衍生。
基于第十三方面提供的密钥生成方法,可以由终端设备对长期密钥衍生的控制面的密钥进行更新得到新的控制面的密钥,继而采用新的控制面的密钥衍生的子密钥对用户面数据进行安全保护。因新的控制面的密钥根据终端设备和会话管理网络功能交互的密钥更新信息以及长期密钥衍生的密钥得到,接入网设备或AMF或SEAF等网络功能的内部人员无权从终端设备获取该新的控制面的密钥以及衍生的子密钥或者无法仅根据长期密钥衍生出该新的控制面的密钥衍生的子密钥,进而无法根据新的控制面的密钥衍生的子密钥解密所窃听的加密数据;同时,即使长期密钥被窃取,攻击者也不可能根据长期密钥推衍出新的控制面的密钥衍生的子密钥,无法对空口处或网络中窃听的加密数据进行自行解密,如此,若采用本申请实施例生成的新的保护密钥对用户面数据进行安全保护,则用户面数据不易泄露,提高了数据传输的安全性。
在一种可能的设计中,控制面的密钥是终端设备根据第三组生成参数生成的;其中,第三组生成参数包括长期密钥或者长期密钥衍生的子密钥,第三组生成参数由移动性管理网络功能或者安全锚点功能网络功能发送给终端设备。基于该可能的设计,终端设备可以借助其他网络功能发送的生成参数,生成控制面的密钥。
在一种可能的设计中,所述方法还包括:终端设备从会话管理网络功能接收指示信息;其中,指示信息用于指示终端设备更新控制面的密钥。
基于该可能的设计,会话管理网络功能可以向终端设备发送指示信息,指示终端设备采用第十三方面所述的密钥生成方式生成新的控制面的密钥。
在一种可能的设计中,第三密钥更新消息被会话管理网络功能利用控制面的密钥进行保护处理后发送出去,终端设备接收会话管理网络功能发送的第三密钥更新信息,包括:终端设备接收保护处理后的第三密钥更新信息;终端设备利用控制面的密钥对保护处理后 的第三密钥更新信息进行处理,以得到第三密钥更新信息。
基于该可能的设计,可以使第三密钥更新信息在发送给终端设备的过程中被保护起来,防止第三密钥更新信息被恶意人员窃取或随意篡改。
在一种可能的设计中,所述方法还包括:终端设备向会话管理网络功能发送第四密钥更新信息;其中,第四密钥更新信息用于更新会话管理网络功能获取的控制面的密钥,以得到新的控制面的密钥;所述新的控制面的密钥用于衍生出对用户面网络功能与终端设备间传输的数据进行安全保护的密钥。
基于该可能的设计,终端设备可以向会话管理网络功能发送用于更新控制面的密钥的密钥更新信息,以便会话管理网络功能根据接收到的密钥更新信息更新控制面的密钥。
在一种可能的设计中,第三密钥更新信息、第四密钥更新信息包括随机数、公钥、IP地址、MAC地址、端口号、虚拟协议识别号、密钥生成函数、密钥生成函数选择信息中的一个或多个信息。
在一种可能的设计中,终端设备根据控制面的密钥以及第三密钥更新信息生成新的控制面的密钥,包括:终端设备将控制面的密钥以及第三密钥更新信息中的部分或者全部信息输入密钥生成函数,以得到新的控制面的密钥。
基于该可能的设计,终端设备可以根据新的控制面的密钥对第一密钥进行更新,得到新的保护密钥。
第十四方面,本申请提供一种通信装置,该通信装置可以为终端设备或者终端设备中的芯片或者片上系统,该通信装置可以实现上述第十三方面或者第十三方面的各可能的设计中终端设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该通信装置可以包括:接收单元,生成单元;
接收单元,用于接收会话管理网络功能发送的第三密钥更新信息;
生成单元,用于根据控制面的密钥以及第三密钥更新信息生成新的控制面的密钥,并根据新的控制面的密钥衍生出新的保护密钥;其中,新的保护密钥用于对用户面网络功能与终端设备间传输的数据进行安全保护,控制面的密钥由长期密钥衍生。
其中,该通信装置的具体实现方式可以参考第十三方面或第十三方面的任一种可能的设计提供的密钥生成方法中终端设备的行为功能,在此不再重复赘述。因此,该提供的通信装置可以达到与第十三方面或者第十三方面的任一种可能的设计相同的有益效果。
第十五方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第十三方面或者第十三方面的任一种可能的设计所述的密钥生成方法。
第十六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第十三方面或者上述方面的任一种可能的设计所述的密钥生成方法。
第十七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第十三方面或者上述方面的任一种可能的设计所述的密钥生成方法。
第十八方面,提供了一种芯片系统,该芯片系统包括处理器、通信接口,用于支持通 信装置实现上述方面中所涉及的功能,例如处理器通过通信接口接收会话管理网络功能发送的第三密钥更新信息,根据控制面的密钥以及第三密钥更新信息生成新的控制面的密钥,并根据新的控制面的密钥衍生出新的保护密钥;其中,新的保护密钥用于对用户面网络功能与终端设备间传输的数据进行安全保护,控制面的密钥由长期密钥衍生。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第十五方面至第十八方面中任一种设计方式所带来的技术效果可参见上述第十三方面或者第十三方面的任一种可能的设计所带来的技术效果,不再赘述。
第十九方面,本申请实施例又提供一种密钥生成方法,所述方法包括:会话管理网络功能接收终端设备发送的第四密钥更新信息;会话管理网络功能根据控制面的密钥以及第四密钥更新信息生成新的控制面的密钥,根据新的控制面的密钥衍生出新的保护密钥,并向用户面网络功能发送新的保护密钥;其中,新的保护密钥用于对用户面网络功能与终端设备间传输的数据进行安全保护,控制面的密钥由长期密钥衍生。
基于第十九方面提供的密钥生成方法,可以由会话管理网络设备对长期密钥衍生的控制面的密钥进行更新得到新的控制面的密钥,继而采用新的控制面的密钥衍生的保护密钥对用户面数据进行安全保护,并向用户面网络功能发送新的保护密钥。因新的控制面的密钥根据会话管理网络设备和会话管理网络功能交互的密钥更新信息以及长期密钥衍生的密钥得到,接入网设备或AMF或SEAF等网络功能的内部人员无权从会话管理网络设备获取该新的控制面的密钥及其衍生的子密钥或者无法仅根据长期密钥衍生出该新的控制面的密钥衍生的子密钥,进而无法根据新的控制面的密钥衍生的子密钥解密所窃听的加密数据;同时,即使长期密钥被窃取,攻击者也不可能根据长期密钥推衍出新的控制面的密钥衍生的子密钥,无法对空口处或网络中窃听的加密数据进行自行解密,如此,若采用本申请实施例生成的新的保护密钥对用户面数据进行安全保护,则用户面数据不易泄露,提高了数据传输的安全性。
在一种可能的设计中,控制面的密钥由会话管理网络功能从移动性管理网络功能或者安全锚点网络功能获取;或者,由会话管理网络功能根据第四组生成参数生成;其中,第四组生成参数包括长期密钥或者长期密钥衍生的子密钥和其他参数,第四组生成参数中的长期密钥或者长期密钥衍生的子密钥由移动性管理网络功能或者安全锚点功能网络功能发送给会话管理网络功能,其他参数可以由移动性管理网络功能或者安全锚点功能网络功能发送给会话管理网络功能,或者其他参数中的部分或全部是由移动性管理功能生成。
在该可能的设计中,会话管理网络功能可以从移动性管理网络功能或者安全锚点网络功能获取控制面的密钥,也可以借助其他网络功能发送的生成参数,生成控制面的密钥,提高了会话管理网络功能获取控制面的密钥的灵活性。
在一种可能的设计中,所述方法还包括:会话管理网络功能向终端设备发送指示信息;其中,指示信息用于指示终端设备更新控制面的密钥。
基于该可能的设计,会话管理网络功能可以向终端设备发送指示信息,指示终端设备采用第十三方面所述的密钥生成方式生成新的控制面的密钥。
在一种可能的设计中,第四密钥更新消息被终端设备利用控制面的密钥进行保护处理后发送出去,会话管理网络功能接收终端设备发送的第四密钥更新信息,包括:会话管理 网络功能接收保护处理后的第四密钥更新信息;利用控制面的密钥对保护处理后的第四密钥更新信息进行处理,以得到第四密钥更新信息。
基于该可能的设计,可以使第四密钥更新信息在发送给会话管理网络功能的过程中被保护起来,防止第三密钥更新信息被恶意人员窃取或随意篡改。
在一种可能的设计中,所述方法还包括:会话管理网络功能向终端设备发送第三密钥更新信息;其中,第三密钥更新信息用于更新终端设备生成的控制面的密钥,以得到新的控制面的密钥;所述新的控制面的密钥用于衍生出对用户面网络功能与终端设备间传输的数据进行安全保护的密钥。
基于该可能的设计,会话管理网络功能可以向终端设备发送用于更新控制面的密钥的密钥更新信息,以便终端设备根据接收到的密钥更新信息更新控制面的密钥。
在一种可能的设计中,第三密钥更新信息、第四密钥更新信息包括随机数、公钥、IP地址、MAC地址、端口号、虚拟协议识别号、密钥生成函数、密钥生成函数选择信息中的一个或多个信息。
第二十方面,本申请提供一种通信装置,该通信装置可以为会话管理网络功能或会话管理网络功能中的芯片或片上系统,该通信装置可以实现上述第二十方面或者第二十方面的各可能的设计中会话管理网络功能所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该通信装置可以包括:确定单元,发送单元;
接收单元,用于接收终端设备发送的第四密钥更新信息;
生成单元,用于根据控制面的密钥以及第四密钥更新信息生成新的控制面的密钥,根据新的控制面的密钥衍生出新的保护密钥;
发送单元,用于向用户面网络功能发送新的保护密钥;其中,新的保护密钥用于对用户面网络功能与终端设备间传输的数据进行安全保护,控制面的密钥由长期密钥衍生。
其中,该通信装置的具体实现方式可以参考第二十方面或第二十方面的任一种可能的设计提供的密钥生成方法中会话管理网络功能的行为功能,在此不再重复赘述。因此,该提供的通信装置可以达到与第二十方面或者第二十方面的任一种可能的设计相同的有益效果。
第二十一方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第二十方面或者第二十方面的任一种可能的设计所述的密钥生成方法。
第二十二方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第二十方面或者上述方面的任一种可能的设计所述的密钥生成方法。
第二十三方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第二十方面或者上述方面的任一种可能的设计所述的密钥生成方法。
第二十四方面,提供了一种芯片系统,该芯片系统包括处理器、通信接口,用于支持通信装置实现上述方面中所涉及的功能,例如处理器通过通信接口接收终端设备发送的第 四密钥更新信息,根据控制面的密钥以及第四密钥更新信息生成新的控制面的密钥,根据新的控制面的密钥衍生出新的保护密钥,并通过通信接口向用户面网络功能发送新的保护密钥;其中,新的保护密钥用于对用户面网络功能与终端设备间传输的数据进行安全保护,控制面的密钥由长期密钥衍生。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第二十一方面至第二十四方面中任一种设计方式所带来的技术效果可参见上述第二十方面或者第二十方面的任一种可能的设计所带来的技术效果,不再赘述。
第二十五方面,提供一种密钥生成系统,包括如第二方面至第六方面任一方面所述的终端设备、如第八方面至第十二方面中任一方面所述的用户面网络功能;或者,
如第十三方面至第十八方面中任一方面所述的终端设备、如第十九方面至第二十四方面中任一方面所述的会话管理网络功能、用户面网络功能。
从上可知,本发明提供了一种用户面的技术方案。将安全保护锚点从接入网设备转移到用户面网络功能,在用户面网络功能上执行用户面数据的安全保护,且用户面网络功能执行安全保护用到的保护密钥通过下述方式生成:用户面网络功能与终端设备交互密钥更新信息,根据密钥更新信息对由长期密钥(permanent key)衍生(derive)(或生成)的密钥进行更新得到保护密钥。因该保护密钥由用户面网络功能对长期密钥衍生的密钥更新得到,则接入网设备或AMF或SEAF等网络功能的内部人员无权从用户面网络功能获取该保护密钥或者根据长期密钥衍生出该保护密钥,进而无法根据该保护密钥窃听加密数据;同时,即使长期密钥被窃取,攻击者也不可能根据长期密钥推衍出保护密钥,无法对空口处或网络中窃听的加密数据进行自行解密。
附图说明
图1为本申请实施例提供的一种系统架构的简化示意图;
图2为本申请实施例提供的一种通信装置的组成示意图;
图3为本申请实施例提供的一种5G系统的简化示意图;
图4为本申请实施例提供的一种密钥生成方法流程图;
图5为本申请实施例提供的又一种密钥生成方法流程图;
图6为本申请实施例提供的再一种密钥生成方法流程图;
图7为本申请实施例提供的一种通信装置70的组成示意图;
图8为本申请实施例提供的一种通信装置80的组成示意图;
图9为本申请实施例提供的一种通信装置90的组成示意图。
具体实施方式
下面结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例提供的密钥生成方法可以应用于图1所示通信系统,用于生成对终端设备与用户面网络功能间传输的用户面数据进行安全保护的密钥(或保护密钥)。该通信系统可以为长期演进(long term evolution,LTE),还可以为第五代(5th generation,5G)系统,也可以为新无线(new radio,NR)系统或者其他系统。如图1所示,该通信系统可以包括:终端设备、接入网设备、移动性管理网络功能、安全锚点功能、会话管理网络功能、用户面网络功能;还可以包括:数据网络(data network,DN)。各个网络功能之间可以通 过协议规定的通信接口或者服务化接口(如:Nausf、Namf、Nsmf、Nudm)连接起来。图1中的会话管理网络功能和用户面网络功能可以部署在同一网络切片(network slice,NS)中,该NS可以被垂直行业租借。需要说明的是,图1仅为示例性架构图,除图1中所示功能单元之外,该网络架构还可以包括策略控制网络功能、认证服务器功能以及其他网络功能,本申请实施例对此不进行限定。
示例性的,图1中的终端设备可以通过无线空口连接到运营商部署的接入网设备,还可以与用户面网络功能间建立用户面传输逻辑通道,通过该用户面传输逻辑通道网络功能接入DN;又可以通过下一代(next generation,N)接口链路1(简称N1链路)与移动性管理网络功能连接。具体的,终端设备可以为用户设备(user equipment,UE),如:手机、电脑,还可以为蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、智能电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、电脑、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡、电视机顶盒(set top box,STB)、用户驻地设备(customer premise equipment,CPE)和/或用于在无线系统上进行通信的其它设备。另外,终端设备也可以为支持有线接入的设备。
示例性的,图1中的接入网设备主要用于实现无线物理层功能、资源调度和无线资源管理、无线接入控制以及移动性管理等功能。接入网设备可以通过N2链路与移动性管理网络功能连接,通过N3链路与用户面网络功能连接。具体的,接入网设备可以为接入网(access network,AN)/无线接入网(radio access network,RAN),由多个5G-AN/5G-RAN节点组成,5G-AN/5G-RAN节点可以为:接入节点(access point,AP)、下一代基站(NG nodeB,gNB)、收发点(transmission receive point,TRP)、传输点(transmission point,TP)或某种其它接入节点。另外,接入网设备也可以为支持有线接入的设备。
图1中的移动性管理网络功能主要用于对终端设备的移动进行管理。示例性的,图1中的移动性管理网络功能可以为第三代合作伙伴项目(the 3rd generation partnership project,3GPP)标准化中定义的接入和移动性管理功能(access and mobility management function,AMF)。
图1中的安全锚点功能可以与认证服务器网络功能(如:认证服务器功能(authentication server function,AUSF))连接,主要用于接收认证过程中产生的中间密钥。安全锚点功能可以如图1所示部署在移动性管理网络功能中,也可以独立部署在图1所示系统中,不予限制。
图1中的会话管理网络功能主要用于实现用户面传输逻辑通道(如:协议数据单元(protocol data unit,PDU)会话(session))的建立、释放和更改等会话管理功能。会话管理网络功能可以管理一个或者多个用户面网络功能。示例性的,会话管理网络功能可以是3GPP标准化中定义的会话管理功能(session management function,SMF),会话管理网络功能可以通过N4链路与用户面网络功能连接。
图1中的用户面网络功能可以是3GPP标准中定义的用户面功能(user plane function,UPF),用户面网络功能可以作为用户面传输逻辑通道上的锚点,主要用于完成用户面数据的路由转发、生成保护密钥以及对用户面数据进行安全保护等。需要指出的是,本申请实施例不限定用户面网络功能部署的具体物理位置,用户面网络功能可以部署在核心网, 也可以部署在网络边缘或者接入网设备(如:基站)的中央处理单元(central unit,CU)中。
在图1所述通信系统中,用户面网络功能可以获取由长期密钥或者长期密钥的子密钥衍生的第三密钥,终端设备生成由长期密钥或者长期密钥的子密钥衍生的第一密钥,第一密钥与第三密钥相同;用户面网络功能与终端设备相互获取对方发送的密钥更新信息,用户面网络功能利用获取到的密钥更新信息更新第三密钥得到新的保护密钥,终端设备利用获取到的密钥更新信息更新第一密钥得到新的保护密钥。后续,利用新的保护密钥或由新的保护密钥衍生出的子密钥对终端设备与用户面网络功能之间传输的用户面数据进行安全保护。具体的,该实现过程可参考图4~图5对应的实施例中所述。或者,会话管理网络功能利用获取到的密钥更新信息更新控制面的密钥,终端设备利用获取到的密钥更新信息更新控制面的密钥。利用新的控制面的密钥衍生出对终端设备与用户面网络功能之间传输的用户面数据进行安全保护的密钥。具体的,该实现过程可参考图6对应的实施例中所述。
需要指出的是,本申请实施例中所述安全保护可以包括下述三种方式:1)机密性保护;2)完整性保护;3)机密性保护和完整性保护。其中,机密性保护可以指:加密数据,达到隐藏数据的效果,可以通过解密恢复出原来的数据。完整性保护可以指:对数据执行一些完整性保护的操作,例如,可以根据消息认证码(message authentication code,MAC)来校验数据是否被篡改。此外,上述图1架构中的网络功能的名字、各接口名字只是一个示例,具体实现中网络功能的名字、接口名字可能为其他名字,本申请实施例对此不作具体限定。
具体实现中,图1中的终端设备、用户面网络功能、会话管理网络功能等均可称为通信装置或者包括用于实现本申请实施例提供的密钥生成方法的通信装置,该通信装置可以包括图2所示部件。图2为本申请实施例提供的一种通信装置200的组成示意图。如图2所示,该通信装置200包括至少一个处理器201,通信线路202,以及至少一个通信接口203;进一步的,还可以包括存储器204。其中,处理器201,存储器204以及通信接口203三者之间可以通过通信线路202连接。在本申请实施例中,至少一个可以是一个、两个、三个或者更多个,本申请实施例不做限制。
处理器201可以是中央处理器(central processing unit,CPU),通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器还可以是其它任意具有处理功能的装置,例如电路、器件或软件模块。
通信线路202可包括通路,用于在通信装置包括的部件之间传送信息。
通信接口203用于与其他设备或通信网络通信(如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等)。通信接口203可以是模块、电路、收发器或者任何能够实现通信的装置。
存储器204可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或者可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、 数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。一种可能的设计中,存储器204可以独立于处理器201存在,即存储器204可以为处理器201外部的存储器,此时,存储器204可以通过通信线路202与处理器201相连接,用于存储指令或者程序代码。处理器201调用并执行存储器204中存储的指令或程序代码时,能够实现本申请下述实施例提供的密钥生成方法。又一种可能的设计中,存储器204也可以和处理器201集成在一起,即存储器204可以为处理器201的内部存储器,例如,该存储器204为高速缓存,可以用于暂存一些数据和/或指令信息等。
作为一种可实现方式,处理器201可以包括一个或多个CPU,例如图2中的CPU0和CPU1。作为另一种可实现方式,通信装置200可以包括多个处理器,例如图2中的处理器201和处理器207。作为再一种可实现方式,通信装置200还可以包括输出设备205和输入设备206。示例性地,输入设备206可以是键盘、鼠标、麦克风或操作杆等设备,输出设备205可以是显示屏、扬声器(speaker)等设备。
需要说明的是,上述的通信装置200可以是一个通用设备或者是一个专用设备。例如,通信装置200可以是台式机、便携式电脑、网络服务器、PDA、移动手机、平板电脑、无线终端设备、嵌入式设备、芯片系统或有图2中类似结构的设备。本申请实施例不限定通信装置200的类型。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
下面以图1所示通信系统为图3所示的5G系统,用户面网络功能为UPF,接入网设备为RAN,会话管理网络功能为SMF,移动性管理网络功能为AMF,安全锚点网络功能为SEAF,终端设备为UE为例,对本申请实施例提供的密钥生成方法进行阐述。
其中,在执行本申请实施例提供的密钥生成方法之前,UE与网络侧已完成双向认证,并且UE和网络侧设备(如AMF或SEAF或者RAN)均已根据长期密钥或长期密钥衍生的子密钥生成相同的密钥。以UE和AMF为例,UE和AMF均已生成密钥K AMF。以UE和SEAF为例,UE和SEAF均已生成密钥K SEAF。具体的,UE和网络侧完成双向认证、UE和网络侧设备根据长期密钥或长期密钥衍生的子密钥生成密钥的过程可参照现有技术,不再赘述。本申请各实施例中,长期密钥也可称为根密钥,将长期密钥以及其他参数输入密钥生成函数可以衍生出不同的子密钥,该子密钥可以称为长期密钥衍生的子密钥或者长期密钥的子密钥。进一步,还可以将长期密钥衍生的子密钥进行衍生出子密钥,如:可以将长期密钥衍生的子密钥以及其他参数输入密钥生成函数继续衍生出不同的子密钥,其中,由长期密钥衍生的子密钥衍生出的子密钥也可以称为长期密钥衍生的子密钥或者长期密钥的子密钥。如:本申请实施例中,密钥K AMF、密钥K SEAF、密钥K RAN、密钥K SMF都可以称为长期密钥的子密钥。
需要指出的是,图3所示5G系统仅为示例性附图,该5G系统还可以包括其他网络功能,如:统一数据管理(unified data management,UDM)、策略控制功能(policy control function,PCF)等。下述实施例中提及的各个网络功能均可以具有图2所示组成部分,不再赘述。此外,本申请下述实施例中各个网络功能之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
图4为本申请实施例提供的一种密钥生成方法,在图4所示方法中,第一密钥、第三 密钥为原始密钥K UPF,第二密钥、第四密钥为新的保护密钥K' UPF。UPF可以与UE交互密钥更新信息,并利用交互的密钥更新信息更新原始密钥K UPF得到新的保护密钥K' UPF。如图4所示,所述方法可以包括:
步骤401:UE生成原始密钥K UPF
其中,原始密钥K UPF由长期密钥衍生,原始密钥K UPF可以是终端设备根据第一组生成参数生成的。示例性的,UE生成原始密钥K UPF可以包括:
UE获取第一组生成参数,根据第一组生成参数生成原始密钥K UPF;其中,第一组生成参数包括所述长期密钥或者所述长期密钥衍生的子密钥,第一组生成参数由AMF或者SEAF发送给UE。
如:UE可以从AMF(或者SEAF)获取用于生成密钥K AMF(或者K SEAF)的参数,根据获取到的参数生成密钥K AMF(或者K SEAF),再根据生成的密钥K AMF(或者K SEAF)以及从AMF(或者SEAF)获取的用于生成密钥K UPF的参数生成原始密钥K UPF
其中,UE根据生成的密钥K AMF(或者K SEAF)以及从AMF(或者SEAF)获取的用于生成密钥K UPF的参数生成原始密钥K UPF可参照现有技术,如:UE可以将密钥K AMF(或者K SEAF)以及从AMF(或者SEAF)获取的用于生成密钥K UPF的参数输入KDF得到原始密钥K UPF
步骤402:UPF获取原始密钥K UPF
其中,原始密钥K UPF是从长期密钥或者长期密钥的子密钥衍生出来的密钥。
示例性的,UPF可以通过下述几种方式获取原始密钥K UPF
方式一:原始密钥K UPF为AMF根据密钥K AMF以及其他参数(如:随机数等)生成的密钥,UPF从AMF获取原始密钥K UPF
如:SMF向AMF发送密钥生成指示,该密钥生成指示可以用于指示AMF生成原始密钥K UPF,并将生成的原始密钥K UPF发送给UPF;AMF接收到密钥生成指示后,根据密钥K AMF以及其他参数生成原始密钥K UPF,并将原始密钥K UPF发送给UPF。其中,AMF将原始密钥K UPF发送给UPF可以包括:AMF将原始密钥K UPF发送给SMF,由SMF通过N4链路发送给UPF,或者,AMF将原始密钥K UPF发送给RAN,由RAN通过N3链路发送给UPF。
其中,AMF根据密钥K AMF以及其他参数生成K UPF的过程可参照现有技术中AMF生成接入网密钥K RAN的过程,如:AMF可以将密钥K AMF以及其他参数输入密钥生成函数(key derivation function,KDF)得到K UPF。本申请各实施例中,其他参数可以包括但不限于:密钥算法、密钥类别等。密钥算法可以为现有常用的密钥算法,如:第三代伙伴合作计划(3rd generation partnership project,3gpp)规定的高级加密标准(advanced encryption standard,AES),或者snow3G,或者祖冲之(Zu Chongzhi,ZUK)等算法。密钥类别主要用于区分KDF需要生成的密钥为“加密”密钥还是“完保”密钥、“NAS”密钥还是“接入层(access stratum,AS)”密钥等。
需要指出的是,SMF确定在UPF上执行安全保护后,向AMF发送密钥生成指示,或者,默认SMF管理下的所有UPF都执行安全保护,SMF向AMF发送密钥生成指示。其中,SMF确定是否在UPF上执行安全保护的过程如下所述。
方式二:原始密钥K UPF为SEAF根据密钥K SEAF以及其他参数生成的密钥,UPF从SEAF 获取原始密钥K UPF
其中,UPF从SEAF获取原始密钥K UPF的过程可参照方式一中UPF从AMF获取原始密钥K UPF的过程。如:SMF向SEAF发送密钥生成指示,该密钥生成指示可以用于指示SEAF生成原始密钥K UPF,并将生成的原始密钥K UPF发送给UPF;SEAF接收到密钥生成指示后,根据密钥K SEAF以及其他参数生成原始密钥K UPF,并将原始密钥K UPF发送给UPF。其中,SEAF将原始密钥K UPF发送给UPF可以包括:SEAF将原始密钥K UPF发送给SMF,由SMF通过N4链路发送给UPF,或者,SEAF将原始密钥K UPF发送给RAN,由RAN通过N3链路发送给UPF。
在SEAF和AMF分离部署的情况下,SMF可以通过AMF与SEAF交互,如:SMF向SEAF发送密钥生成指示可以包括:SMF向AMF发送密钥生成指示,由AMF将接收到密钥生成指示转发给SEAF。SEAF将原始密钥K UPF发送给SMF可以包括:SEAF向AMF发送原始密钥K UPF,由AMF将接收到原始密钥K UPF转发给SMF。
此外,SEAF根据密钥K SEAF以及其他参数生成K UPF的过程也可参照现有技术中SEAF生成接入网密钥K RAN的过程,如:SEAF将密钥K SEAF以及其他参数输入KDF得到K UPF
需要指出的是,SMF确定在UPF上执行安全保护后,向SEAF发送密钥生成指示,或者,默认SMF管理下的所有UPF都执行安全保护,SMF向SEAF发送密钥生成指示。其中,SMF确定是否在UPF上执行安全保护的过程如下所述。
方式三:原始密钥K UPF为SMF根据密钥K SMF以及其他参数生成的密钥,UPF从SMF获取原始密钥K UPF。如:SMF可以根据密钥K SMF以及其他参数生成原始密钥K UPF,并通过N4链路发送给UPF。
其中,SMF根据密钥K SMF以及其他参数生成K UPF的过程也可参照现有技术中AMF生成接入网密钥K RAN的过程,如:SMF可以将密钥K SMF以及其他参数输入KDF得到K UPF
需要指出的是,SMF确定在UPF上执行安全保护后,根据密钥K SMF以及其他参数生成原始密钥K UPF,或者,默认SMF管理下的所有UPF都执行安全保护,根据密钥K SMF以及其他参数生成原始密钥K UPF
方式四:原始密钥K UPF是用户面网络功能根据第二组生成参数生成的,第二组生成参数由AMF或者SEAF或者SMF发送给UPF。如:UPF可以从SMF获取第二组生成参数,根据获取到的第二组生成参数生成原始密钥K UPF
其中,第二组生成参数可以包括长期密钥或者长期密钥衍生的子密钥以及其他密钥。如:UPF可以从SMF获取密钥K SMF(或者密钥K SMF的子密钥)以及其他参数,根据获取到的密钥K SMF(或者密钥K SMF的子密钥)以及其他参数生成原始密钥K UPF
需要指出的,UPF获取原始密钥K UPF的方式包括但不限于上述四种方式,可选的,UPF还从RAN获取原始密钥K UPF。如:RAN可以从AMF(或者SEAF)获取生成K UPF的参数,根据RAN的密钥K RAN以及获取到的参数生成原始密钥K UPF,并向UPF发送原始密钥K UPF等,这里不再一一列举。
步骤403:UE接收UPF发送的第一密钥更新信息。
其中,第一密钥更新信息可以包括但不限于:随机数、公钥、因特网协议(internet protocol,IP)地址、媒体接入控制(media access control,MAC)地址、端口号、虚拟协议识别号、密钥生成函数、密钥生成函数选择信息中的一个或多个信息。其中,第一密钥 更新信息包括的随机数可以为UPF生成的的一个数值B。公钥可以为UE和UPF公知的密钥。IP地址可以为UE或/和UPF的IP地址。MAC地址可以为UE或/和UPF的MAC地址。端口号可以为UE或/和UPF上的某一端口号。第一密钥更新信息包括的密钥生成函数可以为供UE选择的一个或多个密钥生成函数。密钥生成函数选择信息可以用于指示UE选择合适的密钥生成函数,如:UE可以根据密钥生成函数信息,从预先约定的密钥生成函数中,或者是从第一密钥更新信息包括的多个密钥生成函数中选择一个密钥生成函数来生成新的保护密钥K' UPF
其中,UPF可以根据下述公式生成数值B:B=g bmod p,g,p为UE和UPF预先获知的、定义好的参数。b是一个随机的、保密的数字,b可以由UPF实时生成,也可以由UPF或其他网络功能预先生成并存储在UPF上,mod为“求余运算”。需要指出的是,UPF生成随机数B的方式包括但不限于上述方式,还可以为其他方法。
一种可能的设计中,UE接收UPF发送的第一密钥更新信息包括:UPF向RAN发送第一密钥更新信息,RAN接收第一密钥更新信息,并向UE发送第一密钥更新信息。
其中,第一密钥更新信息可以包括在第一消息中,该第一消息可以是数据包,RAN接收到该数据包后,通过数据面向UE发送该数据包。或者,该第一消息可以是控制信令,RAN接收到该控制信令后,通过控制面向UE发送该控制信令。
其中,数据面可以是RAN与UPF间的N3链路以及RAN与UE间的无线承载(radio barrier,RB)组成的传输通道。控制面为UPF和UE之间新增的、用于传输控制信令的传输通道,UE可以通过该新增的传输通道向UPF发送控制信令或接收来自UPF的控制信令。需要指出的是,在现有实现中,UPF和UE之间没有用于传输控制信令的传输通道。
在本申请实施例中,除携带第一密钥更新信息之外,第一消息还可以通过隐性方式指示UE更新原始密钥K UPF。如:可以预先将下述信息指示或配置给UPF、UE:第一密钥更新信息携带在UPF向UE发送的第N个消息中,N为大于或等于1的整数。当UE接收到的第一消息是UPF发送的第N个消息时,UE确定更新原始密钥K UPF以及确定接收到的第一消息中包括第一密钥更新信息,可以采用本申请实施例所述的密钥生成方式更新原始密钥K UPF。如:UPF发送的消息的PDCP层包含有PDCP count,UE每接收到UPF发送的一个消息,该PDCP count加一,当PDCP count为N时,UPF确定接收到的第N个消息包括第一密钥更新信息,可以采用本申请实施例所述的密钥生成方式更新原始密钥K UPF
可替换的,第一密钥更新信息可以不包括在第N个消息中,而是包括在第N个消息之后的其他消息中,如:可以预先将“若接收到第N个消息,则采用本申请实施例所述的密钥生成方式更新原始密钥K UPF”的信息指示或配置给UPF、UE,当UE接收到的第一消息是为UPF发送的第N个消息时,UE确定更新原始密钥K UPF,后续,可以从其他消息中获取第一密钥更新信息。
除上述方式之外,第一消息还可以通过显性方式指示UE更新原始密钥K UPF。如:第一消息还包括第一指示,该第一指示可以包括预定义的信息,如:可以包括预定义的IP地址、预定义的MAC地址、预定义的端口号、预定义的虚拟协议识别号等一种或多种信息。当UE接收到的第一消息中包括这些预定义的信息时,UE确定接收到的第一消息包括第一密钥更新信息,可以采用本申请实施例所述的密钥生成方式更新原始密钥K UPF
例如,IP地址2为预定义的源IP地址,当UE接收到的消息中包括源IP地址为2时, UE确定该消息中还包括第一密钥更新信息,可以采用本申请实施例所述的密钥生成方式更新原始密钥K UPF
又一种可能的设计中,UPF向SMF发送第一密钥更新信息,由SMF向AMF发送第一密钥更新信息,AMF接收到第一密钥更新信息,通过N1链路或者通过RAN向UE发送第一密钥更新信息。
在又一种可能的设计中,第一密钥更新信息可以包括在NAS信令中。该NAS信令可以为专门定义的、用于承载第一密钥更新信息的NAS信令,或者,该NAS信令为现有NAS信令,不予限制。
为了提高第一密钥更新信息发送的安全性,在上述可能的设计中,UPF可以将第一密钥更新信息进行保护处理后发送出去,如:在UPF发出第一密钥更新信息之前,UPF利用原始密钥K UPF(或原始密钥K UPF衍生的子密钥)对第一密钥更新信息进行保护处理(加密保护和/或完整性保护),得到处理后的第一密钥更新信息,并通过上述任一可能的设计向UE发送处理后的第一密钥更新信息;相应的,UE接收到处理后的第一密钥更新信息,利用原始密钥K UPF(或者原始密钥K UPF衍生的子密钥)执行相应的安全操作(解密和/或完整性验证),得到第一密钥更新信息。
此外,在UPF向UE发送第一密钥更新信息的过程中,UPF处理后的第一密钥更新信息可以被其他网络功能再次处理后发送给UE。以UPF用K UPF对第一密钥更新信息进行加密处理为例,RAN接收到加密后的第一密钥更新信息后,可以利用自身的密钥K RAN对加密后的第一密钥更新信息再次加密,UE接收到再次加密后的消息后,可以利用密钥K RAN以及原始密钥K UPF解密该消息,得到第一密钥更新信息。或者,AMF接收到加密后的第一密钥更新信息后,可以利用自身的密钥K AMF对加密后的第一密钥更新信息再次加密,UE接收到再次加密后的消息后,可以利用密钥K AMF以及原始密钥K UPF解密该消息,得到密钥更新信息。
步骤404:UPF接收UE发送的第二密钥更新信息。
其中,第二密钥更新信息可以用于更新UPF获取的原始密钥K UPF。与第一密钥更新信息类似,第二密钥更新信息也可以包括但不限于随机数、公钥、IP地址、MAC地址、端口号、虚拟协议识别号、密钥生成函数、密钥生成函数选择信息中的一个或多个信息。第二密钥更新信息包括的随机数可以为UE生成的一个数值A。公钥、IP地址、MAC地址、端口号、虚拟协议识别号、密钥生成函数、密钥生成函数选择信息如步骤403中所述,不再赘述。
本申请实施例中,UE可以通过下述方式生成数值A:A=g amod p。其中,g,p为预先配置给UE和UPF的参数。a是一个随机的、保密的数字,a可以由UE实时生成,也可以被UE或其他设备厂商或运营商预先生成并存储在UE上,mod为“求余运算”。需要指出的是,UE生成随机数A的方式包括但不限于上述方式,还可以为其他方法。
一种可能的设计中,UPF接收UE发送的第二密钥更新信息包括:UE向RAN发送第二密钥更新信息;RAN接收第二密钥更新信息,并向UPF发送第二密钥更新信息;UPF从RAN接收第二密钥更新信息。
其中,第二密钥更新信息可以包括在第二消息中。该第二消息可以是数据包,UE可以通过数据面向RAN发送该数据包,RAN接收到该数据包后,通过数据面向UPF发送该 数据包。或者,该第二消息可以是控制信令,UE可以通过控制面向RAN发送包括第二密钥更新信息的控制信令,RAN接收到该控制信令后,通过控制面向UPF发送该控制信令。
其中,数据面、控制面的相关描述如步骤403中所述,不再赘述。
在本申请实施例中,除携带第二密钥更新信息之外,第二消息还可以通过隐性方式指示UPF更新原始密钥K UPF。如:可以预先将下述信息指示或配置给UPF、UE:第二密钥更新信息携带在UE向UPF发送的第N个消息中,M为大于或等于1的整数。当UPF接收到的第二消息是为UE发送的第N个消息时,UPF确定更新原始密钥K UPF以及确定接收到的第二消息中包括第二密钥更新信息,可以采用本申请实施例所述的密钥生成方式更新原始密钥K UPF。示例性的,UPF和UE交互消息的分组数据汇聚协议(packet data convergence protocol,PDCP)层包含有PDCP计数器(count),UPF或UE可以根据PDCP count的数值来确定第N个消息。UPF确定接收到的第N个消息包括第二密钥更新信息,可以采用本申请实施例所述的密钥生成方式更新原始密钥K UPF
可替换的,第二密钥更新信息可以不包括在第N个消息中,而是包括在第N个消息之后的其他消息中,如:可以预先将“若接收到第N个消息,则采用本申请实施例所述的密钥生成方式更新原始密钥K UPF”的信息指示或配置给UPF、UE,当UPF接收到的第二消息是为UE发送的第N个消息时,UPF确定更新原始密钥K UPF,后续,可以从其他消息中获取第二密钥更新信息。
除上述方式之外,第二消息还可以通过显性方式指示UPF更新原始密钥K UPF。如:第二消息还包括第二指示,与第一指示类似,该第二指示也可以包括预定义的信息,如:可以包括预定义的IP地址、预定义的MAC地址、预定义的端口号、预定义的虚拟协议识别号等二种或多种信息。当UPF接收到的第二消息中包括这些预定义的信息时,UPF确定更新原始密钥K UPF以及确定接收到的第二消息包括第二密钥更新信息,可以采用本申请实施例所述的密钥生成方式更新原始密钥K UPF
例如,IP地址1为预定义的源IP地址,当UPF接收到的消息中包括源IP地址1时,UPF确定该消息中还包括第二密钥更新信息,可以采用本申请实施例所述的密钥生成方式更新原始密钥K UPF
需要指出的是,上述预定义的IP地址可以与第二密钥更新信息中的IP地址相同,也可以不同;预定义的MAC地址可以与第二密钥更新信息中的MAC地址相同或者不同,预定义的端口号可以与第二密钥更新信息中的端口号相同或者不同,不予限制。
又一种可能的设计中,UE通过NAS信道(如:N1链路)向AMF发送第二密钥更新信息,AMF接收到第二密钥更新信息后,向SMF发送第二密钥更新信息,由SMF向UPF发送第二密钥更新信息。
在又一种可能的设计中,第二密钥更新信息可以包括在NAS信令中。该NAS信令可以为专门定义的、用于承载第二密钥更新信息的NAS信令,或者,该NAS信令为现有NAS信令,不予限制。
为了提高第二密钥更新信息发送的安全性,在上述可能的设计中,UE可以将第二密钥更新信息进行保护处理后发送出去,如:在UE发出第二密钥更新信息之前,UE利用原始密钥K UPF(或原始密钥K UPF衍生的子密钥)对第二密钥更新信息进行保护处理(加密保护和/或完整性保护),得到处理后的第二密钥更新信息,并通过上述任一可能的设计向 UPF发送处理后的第二密钥更新信息;相应的,UPF接收到处理后的第二密钥更新信息,利用原始密钥K UPF(或者原始密钥K UPF衍生的子密钥)执行相应的安全操作(解密和/或完整性验证),得到第二密钥更新信息。
需要指出的是,UE处理后的第二密钥更新信息在发送至UPF的过程中,可以被UE和其他网络功能再次处理后发送给UPF。比如UE用K UPF对第二密钥更新信息进行加密处理后,UE用密钥K RAN对加密后的第二密钥更新信息再次加密,RAN接收到再次加密后的第二密钥更新信息后,利用密钥K RAN还原为加密后的第二密钥更新信息(即由K UPF加密的信息)并发送给UPF,UPF利用原始密钥K UPF解密该消息,得到密钥更新信息。或者,UE用密钥K AMF对加密后的第二密钥更新信息再次加密,AMF接收到加密消息后,可以利用自身的密钥K AMF解密成仅由K UPF加密的加密后的第二密钥更新信息,UPF接收到加密后的第二密钥更新信息后,可以利用原始密钥K UPF解密该消息,得到密钥更新信息。需要指出的是,如果RAN和AMF无法获得K UPF,就无法解密原始的密钥更新信息。
需要指出的是,在本申请各实施例中,第二密钥更新信息、第二密钥更新信息可以相同,也可以不同;UE、UPF对密钥更新信息进行加密用到的密钥也可以相同,也可以不同,不予限制。
步骤406:UE根据原始密钥K UPF以及第一密钥更新信息生成新的保护密钥K' UPF
示例性的,UE可以将原始密钥K UPF以及第一密钥更新信息中的部分或者全部信息输入密钥生成函数,得到新的保护密钥K' UPF。如:新的保护密钥K' UPF=KDF(K UPF,A)其中KDF()为任一密钥生成函数;又如
Figure PCTCN2018112730-appb-000001
或者,UE可以将原始密钥K UPF衍生的子密钥(保护密钥或者完保性密钥)以及第一密钥更新信息中的部分或者全部信息输入密钥生成函数,得到新的保护密钥或者新的完保性密钥。
步骤405:UPF根据原始密钥K UPF以及第二密钥更新信息生成新的保护密钥K' UPF
其中,新的保护密钥K' UPF可以直接用于对UPF与UE间传输的用户面数据进行安全保护,或者,新的保护密钥K' UPF衍生的子密钥用于对UPF与UE间传输的用户面数据进行安全保护。
示例性的,UPF可以将原始密钥K UPF以及第二密钥更新信息中的部分或者全部信息输入密钥生成函数,得到新的保护密钥K' UPF。如:新的保护密钥K' UPF=KDF(K UPF,A)其中KDF()为任一密钥生成函数;又如
Figure PCTCN2018112730-appb-000002
或者,
UPF可以将原始密钥K UPF衍生的子密钥(保护密钥或者完保性密钥)以及第二密钥更新信息中的部分或者全部信息输入密钥生成函数,得到新的保护密钥或者新的完保性密钥。其中,新的保护密钥或者新的完保性密钥可以称为新的保护密钥K' UPF的子密钥。
基于图4所述方法,UPF和UE可以交互密钥更新信息,利用交互的密钥更新信息对长期密钥衍生的密钥进行更新得到新的保护密钥,采用新的保护密钥对用户面数据进行安全保护。如此,因新的保护密钥根据UE和UPF交互的信息以及长期密钥衍生的密钥得到,接入网设备或AMF或SEAF等网络功能的内部人员无权从用户面网络功能获取该保护密钥或者根据长期密钥衍生出该保护密钥,进而无法根据该保护密钥解密所窃听的加密数据;同时,即使长期密钥被窃取,攻击者也不可能根据长期密钥推衍出该新的保护密钥,无法对空口处窃听的加密数据进行自行解密。此外,即使存在中间人篡改UE和UPF交互的密钥更新信息,仅会使得UE生成的新的保护密钥和UPF生成的新的保护密钥不一致,导致 UE和UPF之间无法正常解密互相发送的信息,中间人的攻击只能破坏UE和UPF之间的交互,而不能窃取UE和UPF之间的传输数据。由于UE和UPF之间的无法正常发送信息,中间人篡改UE和UPF交互的密钥更新信息这种行为可以迅速被发现,执行相应的应对策略。
需要指出的是,本申请实施例不限定步骤401~步骤406的执行顺序,除图4所示执行顺序外,可以先执行步骤402,再执行步骤401,也可以同时执行步骤401、步骤402;还可以先顺序执行步骤401、步骤403、步骤405,再顺序执行步骤402、步骤404以及步骤406。此外,步骤403、步骤404的执行顺序也可以不限定。步骤405、步骤406的执行顺序也不做限定。
在一种可能的设计中,执行步骤401之前,所述方法还包括:
SMF可以向UE发送第三指示,该第三指示用于指示UE更新原始密钥K UPF
UE接收到SMF发送的第三指示,启动本申请实施例所述的密钥生成方法的功能,执行步骤401、步骤403以及步骤405。
其中,第三指示可以命名为密钥更新触发指示。SMF向UE发送第三指示可以包括:SMF将第三指示包括在NAS信令中发送给UE,如:SMF可以将第三指示包括在N1会话管理容器中发送给UE,或者,将第三指示包括与UE发送的会话建立请求对应的会话建立响应(PDU session establishment accept)中发送给UE。
类似的,在UPF执行步骤402之前,SMF可以向UPF发送第四指示,指示UPF更新原始密钥K UPF。如:
SMF向UPF发送第四指示,该第四指示用于指示UPF更新原始密钥K UPF
UPF接收到SMF发送的第一指示,启动本申请实施例所述的密钥生成方法的功能,步骤402、步骤404以及步骤406。
其中,第四指示可以命名为密钥更新触发指示。SMF向UPF发送第四指示可以包括:SMF将第四指示包括在N4会话建立(或者修改)请求中发送给UPF。或者,SMF将第四指示包括在其他消息中,将该消息通过N4链路发送给UPF。
在SMF向UE发送第三指示以及向UPF发送第四指示之前,SMF可以接收UE发送的会话建立请求,该会话建立请求可以包括UPF的信息,该会话建立请求可以用于请求与UPF建立PDU会话(session);SMF根据UPF的信息,确定是否在UPF上执行本申请所述的安全保护,若确定在该UPF上执行安全保护,则向UPF发送第四指示。
其中,UPF的信息可以用于指示该UPF,如:可以为UPF的因特网协议(internet protocol,IP)地址等。SMF确定是否在UPF上执行安全保护可以包括:
SMF根据安全保护策略确定是否在UPF上执行安全保护。安全保护策略可以预先存储在SMF上或者存储在UDM上,SMF可以从UDM获取安全保护策略。安全保护策略可以包括执行安全保护的UPF的信息,若该UPF包括在安全保护策略中,则确定在该UPF上执行安全保护,否则,确定不在该UPF上执行安全保护。或者,
默认通信系统中所有同该SMF相关联的(或该SMF管理的)UPF均执行安全保护,则SMF接收到会话建立请求后,无需判断是否在UPF上执行安全保护,直接UE发送第三指示以及向UPF发送第四指示。
又一种可能的设计,UPF自身确定需要进行安全保护,UPF向UE发送更新指示,指 示UE更新原始密钥K UPF;UE接收到UPF发送的更新指示后,启动本申请实施例所述的密钥生成方法的功能,执行步骤401、步骤403以及步骤405。
其中,UPF向UE发送的更新指示可以为步骤403中包括在第一消息中的第一指示,也可以为UPF单独向UE发送的一条信息,不予限制。此外,该可能的设计中,UPF可以与UE已建立好PDU session。UPF可以根据自身能力或者其他信息确定需要进行安全保护。
再一种可能的设计中,UE确定其与UPF间传输的用户面数据需要进行安全保护,UE向UPF发送更新指示,指示UPF更新原始密钥K UPF;UPF接收到UE发送的更新指示后,启动本申请实施例所述的密钥生成方法的功能,执行步骤402、步骤404以及步骤406。其中,UE向UPF发送的更新指示可以为步骤404中包括在第二消息中的第二指示,也可以为UE单独向UPF发送的一条信息,不予限制。
再一种可能的设计中,UE确定其与UPF间传输的用户面数据需要进行安全保护,向UPF发送第一请求,请求UPF进行安全保护;UPF接收到第一请求后,确定进行安全保护,UPF向UE发送更新指示,指示UE更新原始密钥K UPF;UE接收到UPF发送的更新指示后,启动本申请实施例所述的密钥生成方法的功能,执行步骤401、步骤403以及步骤405。进一步的,UPF启动本申请实施例提供的密钥生成方法后,可以向UE发送指示,指示UE也启动本申请实施例提供的密钥生成方法。
需要指出的,图4所述密钥生成方法可以是在UE和网络进行会话(如PDU session)建立时进行的。也可以不限定在会话建立时实施该密钥生成方法,该密钥生成方法也同样适用于下述场景:UE和网络(或UPF)之间已经建立了会话,并且UE和网络已经生成了相应的密钥,如:UE已经生成K UPF,UPF已经生成K UPF等,在这种场景下,无需执行步骤401、步骤402。
下面以SMF向UPF和UE发送用于指示更新原始密钥K UPF的指示为例,对图4所示方法进行详细介绍:
图5为本申请实施例提供的又一种密钥生成方法,如图5所示,所述方法包括:
步骤501:UE向SMF发送会话建立请求,SMF接收会话建立请求。
其中,会话建立请求可以用于请求建立与UPF间的PDU session,该会话建立请求可以包括UPF的信息。UPF的信息如上所述,不再赘述。
步骤502:SMF确定在UPF上执行安全保护。
其中,SMF确定在UPF上执行安全保护的方式如上所述,不再赘述。
步骤503:SMF向UE、UPF发送指示,指示更新原始密钥K UPF
其中,SMF向UE发送的指示为上述第三指示,SMF向UPF发送的指示为上述第四指示,不再赘述。需要指出的是,SMF可以同时向UE、UPF发送指示,也可以先后向UE、UPF发送指示,不予限制。
其中,SMF可以通过AMF向UE发送指示,SMF向UE发送的指示可以包括在与会话建立请求对应的会话建立响应中。
SMF可以通过N4链路直接向UPF发送指示。
步骤504:UE接收SMF发送的指示,生成原始密钥K UPF
其中,UE生成原始密钥K UPF的方式可参照步骤401所述,不再赘述。
步骤505:UPF接收SMF发送的指示,获取原始密钥K UPF
其中,UPF获取原始密钥K UPF的方式可参照步骤402所述,不再赘述。
步骤506:UPF向UE发送第一密钥更新信息。
其中,UPF可以通过步骤403中所述方式向UE发送第一密钥更新信息。如:UPF可以向RAN发送第一密钥更新信息,RAN通过数据面向UE发送第一密钥更新信息;或者,UPF向RAN发送第一密钥更新信息,RAN通过控制面向UE发送第一密钥更新信息;或者,UPF向AMF发送第一密钥更新信息,AMF通过NAS信道向UE发送第一密钥更新信息。
步骤507:UE接收UPF发送的第一密钥更新信息,根据原始密钥K UPF以及第一密钥更新信息生成新的保护密钥K' UPF
其中,步骤507可参照步骤405所述,不再赘述。
步骤508:UE向UPF发送第二密钥更新信息。
其中,第二密钥更新信息的相关描述如上所述,不再赘述。
其中,UE可以通过步骤404中所述方式向UPF发送第二密钥更新信息。如:UE可以向RAN发送第二密钥更新信息,RAN通过数据面向UPF发送第二密钥更新信息;或者,UE向RAN发送第二密钥更新信息,RAN通过控制面向UPF发送第二密钥更新信息;或者,UE通过NAS信道向AMF发送第二密钥更新信息,AMF通过SMF向UPF发送第二密钥更新信息。
步骤509:UPF接收UE发送的第二密钥更新信息,根据原始密钥K UPF以及第二密钥更新信息生成新的保护密钥K' UPF
其中,步骤509可参照步骤406所述,不再赘述。
需要指出的是,本申请实施例不限定步骤504~步骤509的执行顺序,除图5所示执行顺序外,可以先执行步骤504,在执行步骤505,也可以同时执行步骤504、步骤505;还可以先顺序执行步骤504、步骤506、步骤507,再顺序执行步骤505、步骤508以及步骤509。
此外,图5所述密钥生成方法是在UE和网络进行会话(如PDU session)建立时进行的。需要指出的是,本申请并不限定在会话建立时实施该密钥生成方法,该密钥生成方法也同样适用于下述场景:UE和网络(或UPF)之间已经建立了会话,并且UE和网络已经生成了相应的密钥,如:UE已经生成K UPF,UPF已经生成K UPF等,在这种场景下,无需执行步骤501、步骤504和步骤505。
基于图5所述方法,可以在会话建立过程中,由SMF指示UPF、UE对原始密钥进行更新,UPF、UE在SMF的指示下,交互密钥更新信息,利用交互的密钥更新信息对长期密钥衍生的密钥进行更新得到新的保护密钥,采用新的保护密钥对用户面数据进行安全保护。如此,因新的保护密钥根据UE和UPF交互的信息以及长期密钥衍生的密钥得到,接入网设备或AMF或SEAF等网络功能的内部人员无权从用户面网络功能获取该保护密钥或者根据长期密钥衍生出该保护密钥,进而无法根据该保护密钥解密所窃听的加密数据;同时,即使长期密钥被窃取,攻击者也不可能根据长期密钥推衍出该新的保护密钥,无法对空口处窃听的加密数据进行自行解密。此外,即使存在中间人篡改UE和UPF交互的密钥更新信息,仅会使得UE生成的新的保护密钥和UPF生成的新的保护密钥不一致,导致UE和UPF之间无法正常解密互相发送的信息,中间人的攻击只能破坏UE和UPF之间的 交互,而不能窃取UE和UPF之间的传输数据。由于UE和UPF之间的无法正常发送信息,中间人篡改UE和UPF交互的密钥更新信息这种行为可以迅速被发现,执行相应的应对策略。
在又一可行方法中,还可以先对控制面的密钥(如:SMF的密钥K SMF)进行密钥更新,由更新后的控制面的密钥衍生出用于对用户面数据进行安全保护的密钥,再下发给UPF。具体的,该方法如图6所示。
图6为本申请实施例提供的再一种密钥生成方法,如图6所示,所述方法包括:
步骤601:UE向SMF发送会话建立请求,SMF接收会话建立请求。
其中,会话建立请求可以用于请求建立与UPF间的PDU session,该会话建立请求可以包括UPF的信息,UPF的信息如上所述,不再赘述。
步骤602:SMF确定在UPF上执行安全保护。
其中,SMF确定在UPF上执行安全保护的方式如上所述,不再赘述。
步骤603:SMF向UE发送指示,指示更新控制面的密钥K SMF
其中,控制面的密钥K SMF是从长期密钥或者长期密钥衍生的子密钥衍生而来。
其中,SMF可以通过AMF向UE发送指示。
步骤604:SMF获取控制面的密钥K SMF
其中,控制面的密钥K SMF由AMF或者SEAF生成,SMF可以从AMF或者SEAF获取控制面的密钥K SMF。AMF或者SEAF生成控制面的密钥K SMF的方式可参照现有技术中AMF或者SEAF生成密钥K AMF的方式,不再赘述。
步骤605:UE接收SMF发送的指示,生成控制面的密钥K SMF
其中,UE控制面的密钥K SMF与UE生成原始密钥K UPF的方式相同,不再赘述。
步骤606:SMF向UE发送第三密钥更新信息。
其中,第三密钥更新信息可以用于更新控制面的密钥K SMF。第三密钥更新信息可以包括但不限于:随机数、公钥、IP地址、MAC地址、端口号、虚拟协议识别号、密钥生成函数选择信息中的一个或多个信息。随机数可以为SMF生成的一个数值C,公钥、IP地址、MAC地址、端口号、虚拟协议识别号、密钥生成函数选择信息如步骤403中所述,不再赘述。
SMF可以通过下述方式生成数值C:C=g cmod p。其中,g,p为预先配置给UE和SMF的参数。c是一个随机的、保密的数字,c可以由SMF实时生成,也可以由SMF或其他网络功能预先生成并存储在UE上,mod为“求余运算”。需要指出的是,SMF生成随机数C的方式包括但不限于上述方式,还可以为其他方法。
示例性的,SMF可以向AMF发送第三密钥更新信息,AMF向RAN发送第三密钥更新信息,由RAN向UE发送第三密钥更新信息;或者,SMF可以向AMF发送第三密钥更新信息,AMF向UE发送密钥更新信息。
步骤607:UE接收SMF发送的第三密钥更新信息,根据控制面的密钥K SMF以及第三密钥更新信息生成新的控制面的密钥K' SMF
其中,UE根据控制面的密钥K SMF以及第三密钥更新信息生成新的K SMF的方式可参照上述UE根据原始密钥K UPF以及第三密钥更新信息生成新的保护密钥的过程。如:UE可以将控制面的密钥K SMF以及第三密钥更新信息中的部分或者全部信息输入密钥生成函数,得到新的控制面的密钥K' SMF。如:新的控制面的密钥K' SMF=KDF(K SMF,C),其中, KDF()为任一密钥生成函数;又如
Figure PCTCN2018112730-appb-000003
为了提高第三密钥更新信息发送的安全性,SMF可以将第三密钥更新信息进行保护处理后发送出去,如:在SMF发出第三密钥更新信息之前,SMF利用控制面的密钥K SMF(或控制面的密钥K SMF衍生的子密钥)对第三密钥更新信息进行保护处理(加密保护和/或完整性保护),得到处理后的第三密钥更新信息,向UE发送处理后的第三密钥更新信息;相应的,UE接收到处理后的第三密钥更新信息,利用控制面的密钥K SMF(或者控制面的密钥K SMF衍生的子密钥)执行相应的安全操作(解密和/或完整性验证),得到第三密钥更新信息。
步骤608:UE根据K' SMF生成K' UPF
其中,UE生成的K' UPF用于对UPF与UE间传输的用户面数据进行安全保护。
示例性的,UE将K' SMF以及其他参数输入KDF得到K' UPF
进一步的,UE还可以根据K' UPF生成K' UPF的子密钥(加密密钥或完保密钥)。
步骤609:UE向SMF发送第四密钥更新信息。
其中,第四密钥更新信息可以用于更新控制面的密钥K SMF。第四密钥更新信息包括的内容如步骤404中第二密钥更新信息包括的内容相同,不再赘述。
示例性的,UE可以向RAN发送第四密钥更新信息,RAN接收到第四密钥更新信息后,向AMF发送第四密钥更新信息,由AMF向SMF发送第四密钥更新信息;或者,UE直接向AMF发送第四密钥更新信息,由AMF向SMF发送第四密钥更新信息。
步骤610:SMF接收UE发送的第四密钥更新信息,根据控制面的密钥K SMF以及第四密钥更新信息生成新的控制面的密钥K' SMF
其中,SMF根据控制面的密钥K SMF以及第四密钥更新信息生成新的控制面的密钥K' SMF的方式可参照上述UPF根据原始密钥K UPF以及第四密钥更新信息生成新的保护密钥K' UPF的过程。如:SMF可以将控制面的密钥K SMF以及第四密钥更新信息中的部分或者全部信息输入密钥生成函数,得到新的控制面的密钥K' SMF。如:新的控制面的密钥K' SMF=KDF(K SMF,A),其中,KDF()为任一密钥生成函数;又如
Figure PCTCN2018112730-appb-000004
为了提高第四密钥更新信息发送的安全性,UE可以将第四密钥更新信息进行保护处理后发送出去,如:在UE发出第一密钥更新信息之前,UE利用控制面的密钥K SMF(或控制面的密钥K SMF衍生的子密钥)对第四密钥更新信息进行保护处理(加密保护和/或完整性保护),得到处理后的第四密钥更新信息,向SMF发送处理后的第四密钥更新信息;相应的,SMF接收到处理后的第四密钥更新信息,利用控制面的密钥K SMF(或者控制面的密钥K SMF衍生的子密钥)执行相应的安全操作(解密和/或完整性验证),得到第四密钥更新信息。
步骤611:SMF根据K' SMF生成K' UPF,并向UPF发送K' UPF
其中,SMF向UPF发送的K' UPF用于对UPF与UE间传输的用户面数据进行安全保护。SMF根据K' SMF生成K' UPF可以包括:SMF将K' SMF以及其他参数输入KDF得到K' UPF
需要指出的是,SMF可以根据K' SMF生成K' UPF的子密钥(如:加密密钥或完保密钥),向UPF发送K' UPF的子密钥。本申请各实施例中,加密密钥可以用于对数据进行加密保护,完保密钥可以用于对数据进行完整性保护。
步骤612:UPF接收SMF发送的新的保护密钥K' UPF
后续,UPF可以利用新的保护密钥新的保护密钥K' UPF或者新的保护密钥K' UPF衍生的子 密钥对用户面数据进行安全保护。
需要指出的是,本申请实施例不限定步骤603~步骤612的执行顺序,除图6所示执行顺序外,可以先执行步骤604,再执行步骤603,也可以同时执行步骤603、步骤604;还可以先顺序执行步骤610~步骤612,再顺序执行步骤606~步骤609,不予限制。
更进一步,图6所述密钥生成方法是在UE和网络进行会话(如PDU session)建立时进行的。需要指出的是,本申请并不限定在会话建立时实施该密钥生成方法,该密钥生成方法也同样适用于下述场景:UE和网络(或SMF)之间已经建立了会话,并且UE和SMF已经生成了相应的密钥,如:UE已经生成K SMF,SMF已经生成K SMF等,在这种场景下,无需执行步骤601、步骤604、步骤605。
此外,本申请实施例包括但不限于对控制面的密钥K SMF进行更新,由更新后的K' SMF生成对用户面数据进行安全保护的密钥K' UPF,还可以对其他控制面的密钥,如:对AMF的密钥K AMF进行更新,由更新后的K' AMF生成对用户面数据进行安全保护的密钥K' UPF,或者,由更新后的K' AMF先衍生出K' SMF,再由K' SMF生成K' UPF
基于图6所述方法,可以先由SMF对SMF的密钥K SMF进行更新,然后由更新后的密钥K SMF推演出用于对用户面数据进行安全保护的密钥K UPF,即用于对用户面数据进行安全保护的密钥K UPF由更新后的K SMF推衍生成,并由SMF发送给UPF。因用于对用户面数据进行安全保护的密钥K UPF根据UE和SMF交互的信息以及长期密钥衍生的密钥得到,接入网设备或AMF或SEAF等网络功能的内部人员无权获得该保护密钥或者无法根据长期密钥衍生出该保护密钥,进而无法根据该保护密钥解密窃听后的加密数据;同时,如果长期密钥被窃取,攻击者也不可能根据长期密钥推衍出保护密钥,无法对空口处窃听的加密数据进行自行解密。此外,即使存在中间人篡改UE和SMF交互的密钥更新信息,仅会使得UE根据更新后的K SMF推衍出的密钥和SMF根据更新后的K SMF推衍出的密钥不一致,导致UE和UPF之间无法正常解密互相发送的信息,中间人的攻击只能破坏UE和UPF之间的交互,而不能窃取UE和UPF之间的传输数据。由于UE和UPF之间的无法正常发送信息,中间人篡改UE和SMF交互的密钥更新信息这种破坏行为可以迅速被发现,执行相应的应对策略。
上述主要从各个节点之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,各个节点,例如用户面网络功能、会话管理网络功能以及终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本申请可以根据上述方法示例对用户面网络功能、会话管理网络功能以及终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图7为本申请实施例提供的一种通信装置70的组成示意图,该通信装置70可以为终 端设备或者终端设备中的芯片或者片上系统。如图7所示,该通信装置70可以包括:接收单元701,生成单元702;
其中,接收单元701,用于接收用户面网络功能发送的第一密钥更新信息。如:接收单元701可以用于支持通信装置70执行步骤403、步骤507;
生成单元702,用于根据第一密钥以及所述第一密钥更新信息生成第二密钥;其中,所述第二密钥用于对用户面网络功能与所述终端设备间传输的数据进行安全保护,所述第一密钥与所述终端设备获取的第三密钥相同;所述第一密钥和所述第三密钥由长期密钥衍生。如:生成单元702可以用于支持通信装置70执行步骤405、步骤507。
进一步的,如图7所示,通信装置70还可以包括发送单元703;
发送单元703,用于向用户面网络功能发送第二密钥更新信息;如:发送单元703支持通信装置70执行步骤404、步骤508。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。本申请实施例提供的通信装置70用于执行图4~图6所示密钥生成方法中终端设备的功能,因此可以达到与上述密钥生成方法相同的效果。
作为又一种可实现方式,图7所示通信装置70可以包括:处理模块和通信模块。处理模块可以集成生成单元702的功能,通信模块可以集成接收单元701、发送单元703的功能。处理模块用于对通信装置70的动作进行控制管理,例如,处理模块用于支持该通信装置70执行步骤405、步骤507以及执行本文所描述的技术的其它过程。通信模块用于支持通信装置70执行步骤403、步骤507、步骤404、步骤508以及与其他网络实体的通信。进一步的,图7所示通信装置70还可以包括存储模块,用于存储通信装置70的程序代码和数据。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块可以是收发电路或通信接口等。存储模块可以是存储器。当处理模块为处理器,通信模块为通信接口,存储模块为存储器时,图7所示通信装置70可以为图2所示通信装置。
图8为本申请实施例提供的一种通信装置80的组成示意图,该通信装置80可以为用户面网络功能或者用户面网络功能中的芯片或者片上系统。如图8所示,该通信装置80可以包括:接收单元801、生成单元802;
接收单元801,用于接收终端设备发送的第二密钥更新信息;如:接收单元801用于支持通信装置80执行步骤404、步骤508。
生成单元802,用于根据第三密钥以及第二密钥更新信息生成第四密钥;其中,第四密钥用于对用户面网络功能与终端设备间传输的数据进行安全保护;第三密钥与终端设备生成的第一密钥相同;第一密钥和第三密钥由长期密钥衍生。如:生成单元802用于支持通信装置80执行步骤406、步骤509。
进一步的,如图8所示,通信装置80还可以包括发送单元803;
发送单元803,用于向终端设备发送第一密钥更新信息;如:发送单元803支持通信装置80执行步骤403、步骤506。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能 模块的功能描述,在此不再赘述。本申请实施例提供的通信装置80用于执行图4~图6所示密钥生成方法中用户面网络功能的功能,因此可以达到与上述密钥生成方法相同的效果。
作为又一种可实现方式,图8所示通信装置80可以包括:处理模块和通信模块。处理模块可以集成生成单元802的功能,通信模块可以集成接收单元801、发送单元803的功能。处理模块用于对通信装置80的动作进行控制管理,例如,处理模块用于支持该通信装置80执行步骤406、步骤509以及执行本文所描述的技术的其它过程。通信模块用于支持通信装置80执行步骤404、步骤508、步骤403、步骤506以及与其他网络实体的通信。进一步的,图8所示通信装置80还可以包括存储模块,用于存储通信装置80的程序代码和数据。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块可以是收发电路或通信接口等。存储模块可以是存储器。当处理模块为处理器,通信模块为通信接口,存储模块为存储器时,图8所示通信装置80可以为图2所示通信装置。
图9为本申请实施例提供的一种通信装置90的组成示意图,该通信装置90可以为会话管理网络功能或者会话管理网络功能中的芯片或者片上系统。如图9所示,该通信装置90可以包括:接收单元901,生成单元902,发送单元903;
接收单元901,用于接收终端设备发送的第四密钥更新信息;如:接收单元901用于支持通信装置90执行步骤609。
生成单元902,用于根据控制面的密钥以及第四密钥更新信息生成新的控制面的密钥,根据新的控制面的密钥衍生出新的保护密钥;如:生成单元902用于支持通信装置90执行步骤610、步骤611。
发送单元903,用于向用户面网络功能发送新的保护密钥;其中,新的保护密钥用于对用户面网络功能与终端设备间传输的数据进行安全保护,控制面的密钥由长期密钥衍生。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。本申请实施例提供的通信装置90用于执行图6所示密钥生成方法中会话管理网络功能的功能,因此可以达到与上述密钥生成方法相同的效果。
作为又一种可实现方式,图9所示通信装置90可以包括:处理模块和通信模块。处理模块可以集成发送单元902的功能,通信模块可以集成接收单元901、发送单元903的功能。处理模块用于对通信装置90的动作进行控制管理,例如,处理模块用于支持该通信装置90执行步骤610、步骤611以及本文所描述的技术的其它过程。通信模块用于支持通信装置90执行步骤609以及与其他网络实体的通信。进一步的,图9所示通信装置90还可以包括存储模块,用于存储通信装置90的程序代码和数据。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块可以是收发电路或通信接口等。存储模块可以是存储器。当处理模块为处理器,通信模块为通信接口,存储模块为存储器时,图9所示通信装置90可以为图2所示通信装置。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便 和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何在本发明揭露的技术范围内的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种密钥生成方法,其特征在于,所述方法包括:
    终端设备接收用户面网络功能发送的第一密钥更新信息;
    所述终端设备根据第一密钥以及所述第一密钥更新信息生成第二密钥;其中,所述第二密钥用于对所述用户面网络功能与所述终端设备间传输的数据进行安全保护,所述第一密钥与所述用户面网络功能获取的第三密钥相同;所述第一密钥和所述第三密钥由长期密钥衍生。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一密钥是所述终端设备根据第一组生成参数生成的;其中,所述第一组生成参数包括所述长期密钥或者所述长期密钥衍生的子密钥,所述第一组生成参数由移动性管理网络功能或者安全锚点功能网络功能发送给所述终端设备。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述用户面网络功能接收第一指示;其中,所述第一指示用于指示所述终端设备更新所述第一密钥;或者,
    所述终端设备向所述用户面网络功能发送第二指示;其中,所述第二指示用于指示所述用户面网络功能更新所述第三密钥。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一指示、所述第二指示包括下述一种或多种信息:密钥更新指示符、预定义的因特网协议IP地址、预定义的端口号、预定义的虚拟协议标识ID;或者,
    所述第一指示是所述用户面网络功能向所述终端设备发送的第N个消息;或者,所述第二指示是所述终端设备向用户面网络功能发送的第N个消息;其中,所述N为大于或者等于1的整数。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法包括:
    所述终端设备向所述用户面网络功能发送第二密钥更新信息;
    其中,所述第二密钥更新信息用于更新所述用户面网络功能获取的第三密钥,以得到第四密钥;所述第四密钥用于对所述用户面网络功能与所述终端设备间传输的数据进行安全保护;所述第四密钥与所述第二密钥相同。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一密钥更新信息、所述第二密钥更新信息包括随机数、公钥、IP地址、媒体接入控制MAC地址、端口号、虚拟协议识别号、密钥生成函数、密钥生成函数选择信息中的一个或多个信息。
  7. 一种密钥生成方法,其特征在于,所述方法包括:
    用户面网络功能接收终端设备发送的第二密钥更新信息;
    所述用户面网络功能根据第三密钥以及所述第二密钥更新信息生成第四密钥;其中,所述第四密钥用于对用户面网络功能与所述终端设备间传输的数据进行安全保护;所述第三密钥与所述终端设备生成的第一密钥相同;所述第一密钥和所述第三密钥由长期密钥衍生。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第三密钥由移动性管理网络功能或者安全锚点网络功能或者会话管理网络功能 发送给所述用户面网络功能;或者,
    所述第三密钥是所述用户面网络功能根据第二组生成参数生成的;其中,所述第二组生成参数包括所述长期密钥或者所述长期密钥衍生的子密钥,所述第二组生成参数由移动性管理网络功能或者安全锚点功能网络功能或者会话管理网络功能发送给所述用户面网络功能。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述用户面网络功能向所述终端设备发送第一指示;其中,所述第一指示用于指示所述终端设备更新所述第一密钥;或者,
    所述用户面网络功能接收所述终端设备发送的第二指示;其中,所述第二指示用于指示所述用户面网络功能更新所述第三密钥。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一指示、所述第二指示包括下述一种或多种信息:密钥更新指示符、预定义的因特网协议IP地址、预定义的端口号、预定义的虚拟协议标识ID;或者,
    所述第一指示是所述用户面网络功能向所述终端设备发送的第N个消息;或者,所述第二指示是所述终端设备向用户面网络功能发送的第N个消息;其中,所述N为大于或者等于1的整数。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,所述方法包括:
    所述用户面网络功能向所述终端设备发送密钥更新信息;
    其中,所述密钥更新信息用于更新所述终端设备生成的第一密钥,以得到第二密钥;所述第二密钥用于对所述用户面网络功能与所述终端设备间传输的数据进行安全保护;所述第二密钥与所述第四密钥相同。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第二密钥更新信息、所述第一密钥更新信息包括随机数、公钥、IP地址、媒体接入控制MAC地址、端口号、虚拟协议识别号、密钥生成函数、密钥生成函数选择信息中的一个或多个信息。
  13. 一种通信装置,其特征在于,所述通信装置包括:
    接收单元,用于接收用户面网络功能发送的第一密钥更新信息;
    生成单元,用于根据第一密钥以及所述第一密钥更新信息生成第二密钥;其中,所述第二密钥用于对所述用户面网络功能与所述终端设备间传输的数据进行安全保护,所述第一密钥与所述用户面网络功能获取的第三密钥相同;所述第一密钥和所述第三密钥由长期密钥衍生。
  14. 根据权利要求13所述的通信装置,其特征在于,
    所述第一密钥是所述终端设备根据第一组生成参数生成的;其中,所述第一组生成参数包括所述长期密钥或者所述长期密钥衍生的子密钥,所述第一组生成参数由移动性管理网络功能或者安全锚点功能网络功能发送给所述终端设备。
  15. 根据权利要求13或14所述的通信装置,其特征在于,
    所述接收单元,还用于从所述用户面网络功能接收第一指示;其中,所述第一指示用于指示所述终端设备更新所述第一密钥;或者,
    所述通信装置,还包括:发送单元;所述发送单元用于向所述用户面网络功能发送第 二指示;其中,所述第二指示用于指示所述用户面网络功能更新所述第三密钥。
  16. 根据权利要求15所述的通信装置,其特征在于,
    所述第一指示、所述第二指示包括下述一种或多种信息:密钥更新指示符、预定义的因特网协议IP地址、预定义的端口号、预定义的虚拟协议标识ID;或者,
    所述第一指示是所述用户面网络功能向所述终端设备发送的第N个消息,所述第二指示是所述终端设备向用户面网络功能发送的第N个消息;其中,所述N为大于或者等于1的整数。
  17. 根据权利要求13-16任一项所述的通信装置,其特征在于,所述通信装置包括:
    发送单元,用于向所述用户面网络功能发送第二密钥更新信息;
    其中,所述第二密钥更新信息用于更新所述用户面网络功能获取的第三密钥,以得到第四密钥;所述第四密钥用于对所述用户面网络功能与所述终端设备间传输的数据进行安全保护;所述第四密钥与所述第二密钥相同。
  18. 根据权利要求17所述的通信装置,其特征在于,
    所述第一密钥更新信息、所述第二密钥更新信息包括随机数、公钥、IP地址、媒体接入控制MAC地址、端口号、虚拟协议识别号、密钥生成函数、密钥生成函数选择信息中的一个或多个信息。
  19. 一种通信装置,其特征在于,所述通信装置包括:
    接收单元,用于接收终端设备发送的第二密钥更新信息;
    生成单元,用于根据第三密钥以及所述第二密钥更新信息生成第四密钥;其中,所述第四密钥用于对用户面网络功能与所述终端设备间传输的数据进行安全保护;所述第三密钥与所述终端设备生成的第一密钥相同;所述第一密钥和所述第三密钥由长期密钥衍生。
  20. 根据权利要求19所述的通信装置,其特征在于,
    所述第三密钥由移动性管理网络功能或者安全锚点网络功能或者会话管理网络功能发送给所述用户面网络功能;或者,
    所述第三密钥是所述用户面网络功能根据第二组生成参数生成的;其中,所述第二组生成参数包括所述长期密钥或者所述长期密钥衍生的子密钥,所述第二组生成参数由移动性管理网络功能或者安全锚点功能网络功能或者会话管理网络功能发送给所述用户面网络功能。
  21. 根据权利要求19或20所述的通信装置,其特征在于,所述通信装置还包括:
    发送单元,用于向所述终端设备发送第一指示;其中,所述第一指示用于指示所述终端设备更新所述第一密钥;或者,
    所述接收单元,还用于接收所述终端设备发送的第二指示;其中,所述第二指示用于指示所述用户面网络功能更新所述第三密钥。
  22. 根据权利要求21所述的通信装置,其特征在于,
    所述第一指示、所述第二指示包括下述一种或多种信息:密钥更新指示符、预定义的因特网协议IP地址、预定义的端口号、预定义的虚拟协议标识ID;或者,
    所述第一指示是所述用户面网络功能向所述终端设备发送的第N个消息,所述第二指示是所述终端设备向用户面网络功能发送的第N个消息;其中,所述N为大于或者等于1的整数。
  23. 根据权利要求19-22任一项所述的通信装置,其特征在于,所述通信装置包括:
    发送单元,用于向所述终端设备发送第一密钥更新信息;
    其中,所述第一密钥更新信息用于更新所述终端设备生成的第一密钥,以得到第二密钥;所述第二密钥用于对所述用户面网络功能与所述终端设备间传输的数据进行安全保护;所述第二密钥与所述第四密钥相同。
  24. 根据权利要求23所述的通信装置,其特征在于,
    所述第一密钥更新信息、所述第二密钥更新信息包括随机数、公钥、IP地址、媒体接入控制MAC地址、端口号、虚拟协议识别号、密钥生成函数、密钥生成函数选择信息中的一个或多个信息。
PCT/CN2018/112730 2018-10-30 2018-10-30 一种密钥生成方法、设备及系统 WO2020087286A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880098520.7A CN112806041B (zh) 2018-10-30 2018-10-30 一种密钥生成方法、设备及系统
PCT/CN2018/112730 WO2020087286A1 (zh) 2018-10-30 2018-10-30 一种密钥生成方法、设备及系统
EP18938506.5A EP3843438A4 (en) 2018-10-30 2018-10-30 KEY PRODUCTION PROCESS, DEVICE AND SYSTEM
US17/243,011 US11863977B2 (en) 2018-10-30 2021-04-28 Key generation method, device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112730 WO2020087286A1 (zh) 2018-10-30 2018-10-30 一种密钥生成方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/243,011 Continuation US11863977B2 (en) 2018-10-30 2021-04-28 Key generation method, device, and system

Publications (1)

Publication Number Publication Date
WO2020087286A1 true WO2020087286A1 (zh) 2020-05-07

Family

ID=70463366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112730 WO2020087286A1 (zh) 2018-10-30 2018-10-30 一种密钥生成方法、设备及系统

Country Status (4)

Country Link
US (1) US11863977B2 (zh)
EP (1) EP3843438A4 (zh)
CN (1) CN112806041B (zh)
WO (1) WO2020087286A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11522879B2 (en) * 2020-05-20 2022-12-06 At&T Intellectual Property I, L.P. Scrubber for distributed denial of service attacks targetting mobile networks
CN115188148A (zh) * 2022-07-11 2022-10-14 卡奥斯工业智能研究院(青岛)有限公司 基于5g的安防监控系统、方法、电子设备及存储介质
CN117812584A (zh) * 2022-09-30 2024-04-02 华为技术有限公司 一种通信的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104519486A (zh) * 2013-09-29 2015-04-15 中国电信股份有限公司 用于异构网中无线侧密钥更新的方法和系统
CN106375989A (zh) * 2015-07-20 2017-02-01 中兴通讯股份有限公司 实现接入层安全的方法及用户设备和无线接入小节点
CN108235300A (zh) * 2017-12-22 2018-06-29 中国科学院信息工程研究所 移动通信网络用户数据安全保护方法及系统
WO2018194971A1 (en) * 2017-04-17 2018-10-25 Intel Corporation Group based context and security for massive internet of things devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237444B (zh) * 2007-01-31 2013-04-17 华为技术有限公司 密钥处理方法、系统和设备
CN101257723A (zh) * 2008-04-08 2008-09-03 中兴通讯股份有限公司 密钥生成方法、装置及系统
US8897448B2 (en) * 2008-10-31 2014-11-25 Ciena Corporation Controlling session keys through in-band signaling
CN104936173B (zh) * 2014-03-18 2022-02-25 华为技术有限公司 密钥生成方法、主基站、辅基站及用户设备
US9730072B2 (en) * 2014-05-23 2017-08-08 Apple Inc. Electronic subscriber identity module provisioning
CN107820283B (zh) * 2016-09-13 2021-04-09 华为技术有限公司 一种网络切换保护方法、相关设备及系统
CN108347420B (zh) * 2017-01-25 2021-02-23 华为技术有限公司 一种网络密钥处理的方法、相关设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104519486A (zh) * 2013-09-29 2015-04-15 中国电信股份有限公司 用于异构网中无线侧密钥更新的方法和系统
CN106375989A (zh) * 2015-07-20 2017-02-01 中兴通讯股份有限公司 实现接入层安全的方法及用户设备和无线接入小节点
WO2018194971A1 (en) * 2017-04-17 2018-10-25 Intel Corporation Group based context and security for massive internet of things devices
CN108235300A (zh) * 2017-12-22 2018-06-29 中国科学院信息工程研究所 移动通信网络用户数据安全保护方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3843438A4 *

Also Published As

Publication number Publication date
US20210250762A1 (en) 2021-08-12
US11863977B2 (en) 2024-01-02
CN112806041A (zh) 2021-05-14
EP3843438A1 (en) 2021-06-30
CN112806041B (zh) 2022-12-13
EP3843438A4 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
US11917054B2 (en) Network key processing method and system and related device
US20190123909A1 (en) End-to-End Service Layer Authentication
US11432150B2 (en) Method and apparatus for authenticating network access of terminal
CN110891269B (zh) 一种数据保护方法、设备及系统
WO2018201946A1 (zh) 锚密钥生成方法、设备以及系统
US11909869B2 (en) Communication method and related product based on key agreement and authentication
US20100246818A1 (en) Methods and apparatuses for generating dynamic pairwise master keys
US11863977B2 (en) Key generation method, device, and system
JP2011139457A (ja) 無線通信装置とサーバとの間でデータを安全にトランザクション処理する方法及びシステム
CN102625995A (zh) 无线网络中的伽罗瓦/计数器模式加密
EP4021048A1 (en) Identity authentication method and apparatus
US11082843B2 (en) Communication method and communications apparatus
WO2022111187A1 (zh) 终端认证方法、装置、计算机设备及存储介质
WO2018076740A1 (zh) 数据传输方法及相关设备
CN109104273B (zh) 报文处理方法以及接收端服务器
US20180013832A1 (en) Health device, gateway device and method for securing protocol using the same
Noh et al. Secure authentication and four-way handshake scheme for protected individual communication in public wi-fi networks
JP2000115161A (ja) 移動体匿名性を保護する方法
CN113872755A (zh) 一种密钥交换方法及装置
US20190149326A1 (en) Key obtaining method and apparatus
CN112866988A (zh) 终端的隐私保护方法和装置、终端
WO2022237561A1 (zh) 一种通信方法及装置
KR20120117731A (ko) 서비스 플로우의 암호화 처리 방법 및 시스템
WO2021082558A1 (zh) 网络切片的访问控制方法、装置及存储介质
WO2020147602A1 (zh) 一种认证方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018938506

Country of ref document: EP

Effective date: 20210325

NENP Non-entry into the national phase

Ref country code: DE