WO2020087285A1 - 电池连接器健康状态的检测系统与方法、无人机 - Google Patents

电池连接器健康状态的检测系统与方法、无人机 Download PDF

Info

Publication number
WO2020087285A1
WO2020087285A1 PCT/CN2018/112729 CN2018112729W WO2020087285A1 WO 2020087285 A1 WO2020087285 A1 WO 2020087285A1 CN 2018112729 W CN2018112729 W CN 2018112729W WO 2020087285 A1 WO2020087285 A1 WO 2020087285A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
power supply
battery
power receiving
detection
Prior art date
Application number
PCT/CN2018/112729
Other languages
English (en)
French (fr)
Inventor
蓝求
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880042463.0A priority Critical patent/CN110832335B/zh
Priority to PCT/CN2018/112729 priority patent/WO2020087285A1/zh
Publication of WO2020087285A1 publication Critical patent/WO2020087285A1/zh
Priority to US17/242,269 priority patent/US20210249868A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations

Definitions

  • the present disclosure relates to the field of unmanned aerial vehicles, in particular to a detection system and method for the health state of a battery connector, and an unmanned aerial vehicle.
  • the drone battery is connected to the drone body through the battery connector to provide electrical energy for the drone body.
  • the battery connector may be degraded due to various factors, resulting in an increased risk of its failure.
  • the current UAV lacks the detection of the health status of the battery connector, so it is impossible to know whether the battery connector is on the verge of failure. If the drone continues to use the battery connector that is on the verge of failure, it is easy to cause power interruption and cause flight accidents.
  • the present disclosure provides a detection system for the health state of a battery connector, including: a control circuit, a control system, and a detection circuit; the input end of the control circuit is used to connect a battery cell, and the output end is connected to the battery connector for To control the on-off of the battery cell; the control system is connected to the battery connector; under the control of the control circuit, the battery cell can supply power to the control system through the battery connector; The detection circuit is connected to the control circuit or the control system for detecting the parameter value of the battery connector; the control circuit or the control system is used to determine the battery connection in real time according to the parameter value The health status of the device.
  • the present disclosure also provides a drone, including: a battery, a body, a battery connector, and the above-mentioned battery connector health state detection system; the battery includes: a battery cell and the control circuit of the detection system; The body includes the control system of the detection system; the battery or the body further includes: the detection circuit of the detection system.
  • the present disclosure also provides a method for detecting the health status of a battery connector, including: detecting a parameter value of the battery connector; and judging the health status of the battery connector in real time according to the parameter value.
  • FIG. 3 is a schematic structural diagram of a battery connector health state detection system according to another embodiment of the present disclosure.
  • FIG. 4 is a circuit connection diagram of the detection system shown in FIG. 3.
  • FIG. 5 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a method for detecting the health status of a battery connector according to an embodiment of the present disclosure.
  • Bat-battery cell P-power supply pin; D-detection pin; Data-data line;
  • the detection system 1a includes a control circuit 10, a control system 20, and a detection circuit 30.
  • the input end of the control circuit 10 is used to connect the battery cell Bat, and the output end is connected to the battery connector 40 to control the on-off of the battery cell Bat.
  • the control system 20 is connected to the battery connector 40; under the control of the control circuit 10, the battery cell Bat can supply power to the control system 20 through the battery connector 40.
  • the detection circuit 30 is connected to the control circuit 10 for detecting the parameter value of the battery connector 40.
  • the control circuit 10 is used to determine the health status of the battery connector 40 in real time according to the parameter value.
  • the battery connector 40 includes: two pairs of connectors: a positive connector 41 and a positive connector 41 ′ of the power supply terminal inserted together, and a negative connector 42 and a receiver of the power supply terminal inserted together.
  • the negative electrode connector 42 'at the power end, the positive connector 41 at the power supply end are connected to the power supply pin P of the positive connector 41' at the power receiving end, the negative connector 42 at the power supply end and the power supply pin at the negative connector 42 'at the power receiving end P phase connection.
  • the parameter values of the battery connector 40 include: the voltage value of the power supply terminal connector, the voltage value of the power receiving terminal connector, and the voltage value flowing through the power supply terminal connector and the power receiving terminal The current value of the terminating connector.
  • the detection circuit 30 collects the voltage VBat + of the positive connector 41 of the power supply terminal and the current IBat + flowing through the positive connector 41 of the power supply terminal and the positive connector 41 'of the power receiving terminal through a group of wires, and collects the power supply terminal through another group of wires
  • both the power supply terminal connector and the power receiving terminal connector also have a detection pin D, and the detection circuit 30 detects the voltage value of the power receiving terminal connector through the detection pin D.
  • the detection terminal D of the power supply terminal positive connector 41 and the power receiving terminal positive connector 41 ' are connected, and the power supply terminal negative connector 42 and The detection pins D of the negative connector 42 'of the power receiving end are connected, and both detection pins D are connected to the detection circuit 30 via wires.
  • the detection circuit 30 collects the voltage VPwr + of the positive connector 41 'of the power receiving terminal and the voltage VPwr- of the negative connector 42' of the power receiving terminal through the detection pin D.
  • the detection circuit 30 detects the collected voltage to obtain the voltage values of the positive connector 41 'of the power receiving terminal and the negative connector 42' of the power receiving terminal.
  • the control circuit 10 calculates the difference between the voltage value of the positive connector 41 of the power supply end and the voltage value of the positive connector 41' of the power receiving end, and then The difference is divided by the current value flowing through the positive connector 41 of the power supply end and the positive connector 41 'of the power receiving end to obtain the impedance value of the positive connector 41 of the power supply end and the positive connector 41' of the power receiving end.
  • the control circuit 10 calculates the difference between the voltage value of the negative connector 42 of the power supply terminal and the voltage value of the negative connector 42' of the power receiving terminal, and then The difference is divided by the current value flowing through the negative connector 42 of the power supply end and the negative connector 42 'of the power receiving end to obtain the impedance value of the negative connector 42 of the power supply end and the negative connector 42' of the power receiving end.
  • the control system 20 of this embodiment determines whether the impedance value exceeds the threshold value. If it does not exceed the threshold value, it indicates that the connector is in good health and there is no risk of failure. If the threshold is exceeded, the health status of the connector is determined to be poor, indicating that the connector has a high risk of failure and can no longer be used.
  • the value of the threshold may be determined according to the properties (eg, type) of the connector. If the impedance value of the positive connector 41 of the power supply terminal and the positive connector 41 'of the power receiving terminal is greater than the threshold value, it means that the pair of positive connectors is in poor health. If the impedance value of the negative electrode connector 42 of the power supply terminal and the negative electrode connector 42 'of the power receiving terminal is greater than the threshold value, it indicates that the pair of negative electrode connectors are in poor health.
  • the detection system 1a can judge the positive connector or the negative connector and infer the overall state of the battery connector 40; it can also judge both the positive connector and the negative connector to comprehensively and accurately detect the battery connector 40 health status.
  • the control circuit 10 samples and calculates N sets of impedance sampling values within a period of time.
  • the N sets of impedance sampling values include the impedance of the positive connector 41 and the positive connector 41 'of the power receiving end Value, the impedance value of the negative connector 42 at the power supply end and the impedance value of the negative connector 42 'at the power receiving end.
  • the impedance values of the positive connector 41 and the positive connector 41 'of the power receiving terminal 41' are the largest and the smallest.
  • control circuit 10 When the control circuit 10 determines that the health status of the battery connector 40 is not good, it may generate a prompt message and send it to the control system 20 to notify the control system 20 that the battery connector 40 is not suitable for further use.
  • the detection system 1a provided in this embodiment judges the health status of the battery connector 40 through the impedance value of the connector, and gives corresponding prompts, thereby improving the reliability and safety of battery power supply. At the same time, there is no need to add additional connectors, and only need to add a detection pin in the connector to detect the voltage value of the power receiving terminal connector, and the circuit area and cost will not increase significantly.
  • the system for detecting the health status of a battery connector is for brief description, and the contents that are the same as or similar to the previous embodiment will not be repeated, and only the contents that are different from the previous embodiment will be described below.
  • the detection circuit 30 collects the voltage VPwr + of the positive connector 41 ′ at the power receiving end and the current IBat + flowing through the positive connector 41 at the power supply end and the positive connector 41 ′ at the power receiving end through a set of wires, through The other set of wires collects the voltage VPwr- of the negative connector 42 'at the power receiving end and the current IBat- flowing through the negative connector 42 at the power supply end and the negative connector 42' at the power receiving end, respectively.
  • the detection circuit 30 detects the collected voltage and current to obtain the voltage values of the positive connector 41 'and the negative connector of the power receiving end, and the current flowing through the positive connector 41 of the power supply end and the positive connector 41' of the power receiving end Value and current value flowing through the negative connector 42 of the power supply end and the negative connector 42 'of the power receiving end.
  • the control system 20 receives the above-mentioned parameter values detected by the detection circuit 30, and obtains the impedance values of the power supply terminal connector and the power receiving terminal connector according to these parameter values, thereby judging the health state of the battery connector 40 in real time.
  • control system 20 determines that the health status of the battery connector 40 is not good, it can generate a prompt message and send it to the control circuit 10 to notify the control circuit 10 that the battery connector 40 is not suitable for further use.
  • the control system 20 can also predict the life of the battery connector 40 based on multiple impedance values. These multiple impedance values are the impedance values obtained at multiple times in the past. Based on these impedance values, the law of the impedance value changing with time can be found, so as to infer the time when the impedance value reaches the threshold value, so as to determine the future time of the battery connector 40 health status.
  • the UAV uses a detection system 1a.
  • the battery 50 is used to supply power to the body 60 of the drone, and includes a battery cell Bat and a battery management system 51.
  • the control circuit 10 and the detection circuit 30 of the detection system are integrated in the battery management system 51.
  • the battery connector 40 includes two pairs of connectors: a power supply terminal positive connector 41 and a power receiving terminal positive connector 41 ′ inserted together, and a power supply terminal negative connector 42 and a power receiving terminal negative connector 42 '.
  • the power supply terminal positive connector 41 and the power supply terminal negative connector 42 are the connectors on the battery, and the power receiving terminal positive connector 41 'and the power receiving terminal negative connector 42' are the connectors on the body 60.
  • the detection circuit 30 detects the voltage value of the positive connector 41 of the power supply terminal, the voltage value of the positive connector 41 'of the power receiving terminal, the voltage value of the negative connector 42 of the power supply terminal, the voltage value of the negative connector 42' of the power receiving terminal, and the positive electrode of the power supply terminal.
  • the control circuit 10 calculates the impedance values of the power supply terminal positive connector 41 and the power receiving terminal positive connector 41 ', and the power supply terminal negative connector 42 and the power receiving terminal negative connector 42'.
  • the control circuit 10 determines the health status of the battery connector 40 accordingly. For specific detection and judgment methods, please refer to the foregoing detection system embodiments.
  • Step S101 Detect the parameter value of the battery connector
  • Step S201 Determine the health status of the battery connector in real time according to the parameter value.
  • the battery connector includes at least one pair of connectors, and each pair of connectors includes: a power supply terminal connector and a power receiving terminal connector.
  • step S101 the parameter values of at least one pair of connectors in the multiple pairs of connectors are detected; in step S201, the health status of at least one pair of connectors in the multiple pairs of connectors is determined according to the parameter values .
  • the multi-pair connectors may be two pairs of connectors: a positive connector at the power supply end and a positive connector at the power receiving end, a negative connector at the power supply end, and a negative connector at the power receiving end.
  • the parameter values of the battery connector of this embodiment include: the voltage value of the power supply terminal connector, the voltage value of the power receiving terminal connector, and the current value flowing through the power supply terminal connector and the power receiving terminal connector.
  • Step S201 specifically includes:
  • the impedance values of the power supply terminal and the power receiving terminal are obtained to judge the health status of the battery connector in real time.
  • the real-time determination of the health status of the battery connector in step S201 includes:
  • step S201 the impedance values of the power supply terminal and the power receiving terminal according to the above parameter values include:
  • Multiple impedance sampling values are obtained according to multiple sets of parameter values, and the multiple impedance sampling values are filtered to obtain the impedance values of the power supply terminal connector and the power receiving terminal connector.
  • the detection method may further include: judging the health state of the battery connector at a future time according to the impedance values at a plurality of past times.
  • the health status of the battery connector is judged by the impedance value of the connector, and a corresponding prompt is given, thereby improving the reliability and safety of battery power supply.
  • the fault type of the connector can be determined according to the long-term collection and monitoring of the resistance value. For example, if the change in resistance value is caused by the oxidation of the connector, the outer surface area of the resistance connector is affected by the oxidation, and then the effect of oxidation gradually becomes smaller; , And the increasing rate starts faster, and then gradually becomes slower. As another example, if the change in resistance value is caused by vibration, the contact area between the connectors will change with vibration, and the measured resistance value will also appear in the form of a reciprocal change. The chemical corrosion will show a sudden change in resistance. The contact problems caused by the aging of the connector device show inconsistencies in the impedance from high to low during many different uses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池连接器健康状态的检测系统,包括:控制电路(10)、控制系统(20)和检测电路(30);所述控制电路(10)的输入端用于连接电池电芯,输出端连接所述电池连接器(40),用于控制所述电池电芯的通断;所述控制系统(20)连接所述电池连接器(40);在所述控制电路(10)的控制下,所述电池电芯可通过所述电池连接器(40)向所述控制系统(20)供电;所述检测电路(30)与所述控制电路(10)或所述控制系统(20)连接,用于检测所述电池连接器(40)的参数值;所述控制电路(10)或所述控制系统(20)用于根据所述参数值实时判断所述电池连接器(40)的健康状态。

Description

电池连接器健康状态的检测系统与方法、无人机 技术领域
本公开涉及无人机领域,尤其涉及一种电池连接器健康状态的检测系统与方法、无人机。
背景技术
无人机电池通过电池连接器连接无人机机体,为无人机机体提供电能。随着使用时间的增加,电池连接器可能因各种因素而功能退化,导致其失效的风险增加。而现有的无人机缺乏对电池连接器健康状态的检测,也就无法知道电池连接器是否已经濒临失效。如果无人机继续使用濒临失效的电池连接器飞行,容易导致供电中断而引发飞行事故。
公开内容
本公开提供了一种电池连接器健康状态的检测系统,包括:控制电路、控制系统和检测电路;所述控制电路的输入端用于连接电池电芯,输出端连接所述电池连接器,用于控制所述电池电芯的通断;所述控制系统连接所述电池连接器;在所述控制电路的控制下,所述电池电芯可通过所述电池连接器向所述控制系统供电;所述检测电路与所述控制电路或所述控制系统连接,用于检测所述电池连接器的参数值;所述控制电路或所述控制系统用于根据所述参数值实时判断所述电池连接器的健康状态。
本公开还提供了一种无人机,包括:电池、机体、电池连接器和上述电池连接器健康状态的检测系统;所述电池包括:电池电芯和所述检测系统的所述控制电路;所述机体包括所述检测系统的所述控制系统;所述电池或机体还包括:所述检测系统的所述检测电路。
本公开还提供了一种电池连接器健康状态的检测方法,包括:检测所述电池连接器的参数值;根据所述参数值实时判断所述电池连接器的健康状态。
从上述技术方案可以看出,本公开至少具有以下有益效果:
通过接插件的阻抗值来判断电池连接器健康状态,并给出相应的提示,提高了无人机飞行的可靠性和安全性。同时,无需增加额外的连接器,只需在接插件中增加检测引脚即可检测受电端接插件的电压值,电路面积和 成本不会显著增加。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本公开一实施例的电池连接器健康状态的检测系统的结构示意图。
图2为图1所示检测系统的线路连接图。
图3为本公开另一实施例的电池连接器健康状态的检测系统的结构示意图。
图4为图3所示检测系统的线路连接图。
图5为本公开实施例的无人机的结构示意图。
图6为本公开实施例的无人机的另一结构示意图。
图7为本公开实施例的电池连接器健康状态的检测方法流程图。
【符号说明】
1a、1b-电池连接器健康状态的检测系统;
10-控制电路;
20-控制系统;
30-检测电路;
40-电池连接器;
41-供电端正极接插件;41’-受电端正极接插件;42-供电端负极接插件;42’-受电端负极接插件;
50-电池;51-电池管理系统;
60-机体;
Bat-电池电芯;P-供电引脚;D-检测引脚;Data-数据线;
VBat+供电端正极接插件的电压;
VBat-供电端负极接插件的电压;
VPwr+受电端正极接插件的电压;
VPwr-受电端负极接插件的电压;
IBat+流经供电端正极接插件和受电端正极接插件的电流;
IBat-流经供电端负极接插件和受电端负极接插件的电流;
Bat+、Bat-、Pwr+、Pwr-电源线。
具体实施方式
下面将结合实施例和实施例中的附图,对本公开技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开一实施例提供了一种电池连接器健康状态的检测系统,如图1所示,检测系统1a包括:控制电路10、控制系统20和检测电路30。控制电路10的输入端用于连接电池电芯Bat,输出端连接电池连接器40,用于控制电池电芯Bat的通断。控制系统20连接电池连接器40;在控制电路10的控制下,电池电芯Bat可通过电池连接器40向控制系统20供电。检测电路30与控制电路10连接,用于检测电池连接器40的参数值。控制电路10用于根据参数值实时判断电池连接器40的健康状态。
控制电路10和控制系统20通过电池连接器40电性连接。如图2所示,电池连接器40包括:两对接插件:插接在一起的供电端正极接插件41和受电端正极接插件41’、以及插接在一起供电端负极接插件42和受电端负极接插件42’,供电端正极接插件41和受电端正极接插件41’的供电引脚P相连接,供电端负极接插件42和受电端负极接插件42’的供电引脚P相连接。供电端正极接插件41经电源线Bat+连接控制电路10的正极端,受电端正极接插件41’经电源线Pwr+连接控制系统20的正极端。供电端负极接插件42经电源线Bat-连接控制电路10的负极端,受电端负极接插件42’经电源线Pwr-连接控制系统20的正极端。检测电路30通过两组导线分别连接供电端正极接插件41和供电端负极接插件42,用于检测电池连接器40的参数值。
当控制电路10连接电池电芯Bat后,在控制电路10的控制下,电池电芯Bat经供电端正极接插件41和受电端正极接插件41’、以及供电端负极接插件42和受电端负极接插件42’向控制系统20供电。
在本实施例中,电池连接器40的参数值包括:所述供电端接插件的电压值、所述受电端接插件的电压值、以及流经所述供电端接插件和所述 受电端接插件的电流值。检测电路30通过一组导线分别采集供电端正极接插件41的电压VBat+、以及流经供电端正极接插件41和受电端正极接插件41’的电流IBat+,通过另一组导线分别采集供电端负极接插件42的电压VBat-、以及流经供电端负极接插件42和受电端负极接插件42’的电流。检测电路30对采集到的上述电压和电流进行检测,得到供电端正极接插件41和负极接插件的电压值、流经供电端正极接插件41和受电端正极接插件41’的电流值、以及流经供电端负极接插件42和受电端负极接插件42’的电流值。
除供电引脚外,供电端接插件和受电端接插件都还具有检测引脚D,检测电路30通过检测引脚D检测受电端接插件的电压值。具体来说,供电端接插件和受电端接插件插接在一起后,供电端正极接插件41和受电端正极接插件41’的检测引脚D相连接,供电端负极接插件42和受电端负极接插件42’的检测引脚D相连接,这两个检测引脚D都经导线连接检测电路30。检测电路30通过检测引脚D采集受电端正极接插件41’的电压VPwr+、和受电端负极接插件42’的电压VPwr-。检测电路30对采集到的上述电压进行检测,得到受电端正极接插件41’和受电端负极接插件42’的电压值。
控制电路10接收检测电路30检测的上述参数值,并根据这些参数值得到供电端接插件和受电端接插件的阻抗值,从而实时判断电池连接器40的健康状态。
具体来说,对于供电端正极接插件41与受电端正极接插件41’,控制电路10计算供电端正极接插件41电压值与受电端正极接插件41’电压值的差值,再将该差值除以流经供电端正极接插件41和受电端正极接插件41’的电流值,得到供电端正极接插件41与受电端正极接插件41’的阻抗值。类似地,对于供电端负极接插件42电压值与受电端负极接插件42’,控制电路10计算供电端负极接插件42电压值与受电端负极接插件42’电压值的差值,再将该差值除以流经供电端负极接插件42和受电端负极接插件42’的电流值,得到供电端负极接插件42与受电端负极接插件42’的阻抗值。基于本发明实施例,可以分别获得供电端正极接插件41与受电端正极接插件41’的阻抗值,以及供电端负极接插件42电压值与受电 端负极接插件42’的阻抗值,进而可以对正极和负极接插件进行单独的监控,对故障位置进行精确定位。
对于电池连接器40来说,其接插件会随着震动、老化、氧化、化学腐蚀等因素而功能退化,导致其阻抗变大。因此,如果接插件的阻抗值达到一定程度,意味着接插件可能会因功能退化而失效、甚至可能由于电流的热效应而造成局部烧毁,从而影响电池供电的可靠性和安全性。因此,本实施例的控制系统20判断阻抗值是否超过阈值,如果没有超过阈值,表示接插件的健康状态良好,不存在失效风险。如果超过了阈值,则认定接插件的健康状态欠佳,表示接插件失效风险大,已经不能再继续使用。
具体地,该阈值的取值可以根据接插件的属性(例如:类型)来确定。如果供电端正极接插件41与受电端正极接插件41’的阻抗值大于该阈值,表示这对正极接插件健康状态欠佳。如果供电端负极接插件42与受电端负极接插件42’的阻抗值大于该阈值,表示这对负极接插件健康状态欠佳。检测系统1a可以对正极接插件或负极接插件进行判断,并推断出电池连接器40的整体状态;也可以对正极接插件和负极接捅件都进行判断,以全面、准确的检测电池连接器40的健康状态。
在检测过程中,可能存在震动等因素而导致检测数值异常,从而影响接插件检测的精度。为了提高检测精度,本实施例的检测电路30检测多组上述的参数值。控制电路10将多组参数值作为多组阻抗采样值,并对多组阻抗采样值进行滤波,以得到精确的供电端正极接插件41、受电端正极接插件41’、供电端负极接插件42和受电端负极接插件42’的阻抗值。本实施例的滤波可以是例如中值滤波的时域滤波,其可以筛选并排除异常的阻抗采样值,从而得到稳定准确的抗值。
下面将通过一个示例说明中值滤波方式,控制电路10采样并计算得到一个时间段内的N组阻抗采样值,N组阻抗采样值包括正极接插件41与受电端正极接插件41’的阻抗值、供电端负极接插件42的阻抗值与受电端负极接插件42’的阻抗值。在中值滤波过程中,正极接插件41与受电端正极接插件41’的阻抗值最大和最小的M1组阻抗采样,供电端负极接插件42的阻抗值与受电端负极接插件42’的阻抗值的M2组阻抗采样,剩余的阻抗采样值为中值滤波后的采样值。中值滤波的优点在于可以排除 由于异常扰动带来的采集数值异常,有利于对阻抗的长期监测。
除阻抗值可以反映接插件的健康状态外,流经接插件的电流会引起接插件发热,如果阻抗值过高,接插件的温度随之升高,因此通过判断接插件的温度也可以判断其健康状态。控制电路10还可以由阻抗值得到接插件温度值。例如,控制电路10可由供电端正极接插件41与受电端正极接插件41’的阻抗值、流经供电端正极接插件41与受电端正极接插件41’的电流值得到供电端正极接插件41与受电端正极接插件41’的温度值,以及由供电端负极接插件42与受电端负极接插件42’的阻抗值、流经供电端负极接插件42与受电端负极接插件42’的电流值得到供电端负极接插件42与受电端负极接插件42’的温度值。控制电路10判断温度值是否超过阈值;如果是,则认定正极接插件和/或负极接插件的健康状态欠佳。
当控制电路10判断电池连接器40的健康状态欠佳时,其可以生成一提示信息,并发送给控制系统20,以通知控制系统20电池连接器40不宜再继续使用。
进一步地,本实施例的控制电路10还可以根据多个阻抗值预测电池连接器40的寿命。这些多个阻抗值是过去多个时刻得到的阻抗值,根据这些阻抗值可以找出阻抗值随时间变化的规律,从而推断出阻抗值达到阈值时的时间,从而判断电池连接器40将来时刻的健康状态。
由此可见,本实施例提供的检测系统1a通过接插件的阻抗值来判断电池连接器40的健康状态,并给出相应的提示,从而提高了电池供电的可靠性和安全性。同时,无需增加额外的连接器,只需在接插件中增加检测引脚即可检测受电端接插件的电压值,电路面积和成本不会显著增加。
以上只是示例性说明,本实施例并不以此为限。电池连接器40包括一对或两对以上接插件,每对接插件的检测方式与上述两对接插件描述的方式相同。当电池连接器40包括两对以上接插件时,可以对其中的部分对接插件或所有对接插件的健康状态进行检测。
本公开另一实施例的电池连接器健康状态的检测系统,为简要描述,与上一实施例相同或相似的内容不再赘述,以下仅描述其不同于上一实施例的内容。
如图3所示,本实施例的检测系统与上一实施例不同之处在于,检测 电路30与控制系统20连接,用于检测电池连接器40的参数值。上一实施例控制电路10的功能由控制系统20取代,控制系统20用于根据参数值实时判断电池连接器40的健康状态。
如图4所示,检测电路30通过一组导线分别采集受电端正极接插件41’的电压VPwr+、以及流经供电端正极接插件41和受电端正极接插件41’的电流IBat+,通过另一组导线分别采集受电端负极接插件42’的电压VPwr-、以及流经供电端负极接插件42和受电端负极接插件42’的电流IBat-。检测电路30对采集到的上述电压和电流进行检测,得到受电端正极接插件41’和负极接插件的电压值、流经供电端正极接插件41和受电端正极接插件41’的电流值、以及流经供电端负极接插件42和受电端负极接插件42’的电流值。
除供电引脚外,供电端接插件和受电端接插件都还具有检测引脚D,检测电路30通过检测引脚D检测供电端接插件的电压值。具体来说,供电端接插件和受电端接插件插接在一起后,供电端正极接插件41和受电端正极接插件41’的检测引脚D相连接,供电端负极接插件42和受电端负极接插件42’的检测引脚D相连接,这两个检测引脚D都经导线连接检测电路30。检测电路30通过检测引脚D采集供电端正极接插件41的电压VBat+、和供电端负极接插件42的电压VBat-。检测电路30对采集到的上述电压进行检测,得到供电端正极接插件41和供电端负极接插件42的电压值。
控制系统20接收检测电路30检测的上述参数值,并根据这些参数值得到供电端接插件和受电端接插件的阻抗值,从而实时判断电池连接器40的健康状态。
控制系统20判断阻抗值是否超过阈值,如果没有超过阈值,表示接插件的健康状态良好,不存在失效风险。如果超过了阈值,则认定接插件的健康状态欠佳,表示接插件失效风险大,已经不能再继续使用。
本实施例的检测电路30检测多组上述的参数值。控制系统20将多组参数值作为多组阻抗采样值,并对多组阻抗采样值进行滤波,以得到精确的供电端正极接插件41、受电端正极接插件41’、供电端负极接插件42和受电端负极接插件42’的阻抗值。
控制系统20还可以由阻抗值得到接插件温度值。控制系统20判断温度值是否超过阈值;如果是,则认定正极接插件和/或负极接插件的健康状态欠佳。
当控制系统20判断电池连接器40的健康状态欠佳时,其可以生成一提示信息,并发送给控制电路10,以通知控制电路10电池连接器40不宜再继续使用。
控制系统20还可以根据多个阻抗值预测电池连接器40的寿命。这些多个阻抗值是过去多个时刻得到的阻抗值,根据这些阻抗值可以找出阻抗值随时间变化的规律,从而推断出阻抗值达到阈值时的时间,从而判断电池连接器40将来时刻的健康状态。
由此可见,本实施例提供的检测系统通过接插件的阻抗值来判断电池连接器40的健康状态,并给出相应的提示,从而提高了电池供电的可靠性和安全性。同时,无需增加额外的连接器,只需在接插件中增加检测引脚即可检测受电端接插件的电压值,电路面积和成本不会显著增加。
本公开一实施例还提供了一种无人机,包括:电池、机体、电池连接器和上述任一实施例的电池连接器健康状态的检测系统。
如图5所示,无人机采用检测系统1a。电池50用于为无人机的机体60供电,包括:电池电芯Bat和电池管理系统51。检测系统的控制电路10和检测电路30集成在电池管理系统51中。
机体60包括检测系统的控制系统20以及动力系统。电池电芯Bat为控制系统20和动力系统供电,控制系统20通过控制动力系统的动作来控制无人机的飞行。机体60的控制系统20与电池管理系统51中的控制电路10之间还可以通过数据线Data通信,控制系统20可以通过该数据线Data获取电池信号、运行状态等信息。
在图5中,电池连接器40包括两对接插件:插接在一起的供电端正极接插件41和受电端正极接插件41’、以及供电端负极接插件42和受电端负极接插件42’。供电端正极接插件41和供电端负极接插件42为电池上的接插件,受电端正极接插件41’和受电端负极接插件42’为机体60上的接插件。
检测电路30经检测供电端正极接插件41电压值、受电端正极接插件 41’电压值、供电端负极接插件42电压值、受电端负极接插件42’电压值、流经供电端正极接插件41与受电端正极接插件41’的电流值、流经供电端负极接插件42与受电端负极接插件42’的电流值。控制电路10计算供电端正极接插件41与受电端正极接插件41’的阻抗值、供电端负极接插件42与受电端负极接插件42’的阻抗值。控制电路10据此判断电池连接器40的健康状态。具体的检测和判断方法可以参见上述检测系统实施例。
当控制电路10判断电池连接器40的健康状态欠佳时,其可以生成一禁止飞行的提示信息,并发送给机体60的控制系统20,以通知控制系统20电池连接器40不宜再继续使用。这样,当无人机在飞行中收到禁止飞行的提示信息时,可以及时让无人机返航,避免了因为电池连机器失效而带来的飞行事故,提高了无人机飞行的可靠性和安全性。当无人机在起飞前收到禁止飞行的提示信息时,可以及时停止飞行,或者更换电池连接器后再进行飞行,可将因电池连接器失效带来的飞行事故杜绝在起飞之前,提高了无人机飞行的可靠性和安全性。通过预测电池连接器的寿命,可以及时提醒用户更换、维护电池连接器,进一步提高了无人机维护的便利性和安全性。
以上结合图5对采用了图1和图2所示检测系统1a的无人机进行描述。当然本实施例的无人机也可以采用图3和图4所示的检测系统1b,如图6所示,检测电路30不是集成在电池的电池管理系统51中,而是设置在机体60中,这对于电池内部空间有限的情况尤为适用。对于检测电路30设置在机体60的无人机,其工作过程与上图5的无人机类似,并同样可以达到上述技术效果。
本公开再一实施例提供了一种电池连接器健康状态的检测方法,该检测方法利用上述实施例的检测系统对电池连接器的健康状态进行检测,参见图7,该检测方法包括:
步骤S101:检测电池连接器的参数值;
步骤S201:根据参数值实时判断电池连接器的健康状态。
其中,电池连接器包括至少一对接插件,每对接插件包括:供电端接插件和受电端接插件。
当电池连接器包括多对接插件时,在步骤S101中,检测多对接插件中的至少一对接插件的参数值;在步骤S201中,根据参数值判断多对接插件中的至少一对接插件的健康状态。
其中,多对接插件可以是两对接插件:供电端正极接插件和受电端正极接插件、供电端负极接插件和受电端负极接插件。
本实施例的电池连接器的参数值包括:供电端接插件的电压值、受电端接插件的电压值、以及流经供电端接插件和受电端接插件的电流值。
步骤S201具体包括:
根据上述参数值得到供电端接插件和受电端接插件的阻抗值,以实时判断电池连接器的健康状态。
步骤S201中的实时判断电池连接器的健康状态包括:
判断阻抗值是否超过阈值;
如果是,则认定供电端接插件和受电端接插件的健康状态欠佳,并发出一禁止飞行的提示信息。
或者,根据阻抗值得到供电端接捅件和受电端接插件的温度值;
判断温度值是否超过阈值;
如果是,则认定供电端接插件和受电端接插件的健康状态欠佳,并发出一禁止飞行提示信息。
步骤S201中的根据上述参数值得到供电端接插件和受电端接插件的阻抗值包括:
根据多组参数值得到多个阻抗采样值,并对多个阻抗采样值进行滤波,以得到供电端接插件和受电端接插件的阻抗值。
该检测方法还可以包括:根据多个过去时刻的阻抗值判断电池连接器将来时刻的健康状态。
由此可见,本实施例通过接插件的阻抗值来判断电池连接器的健康状态,并给出相应的提示,从而提高了电池供电的可靠性和安全性。
在一个可选的实施例中,可以根据对电阻值的长期采集和监测判断接插件的故障类型。例如,如果电阻值的变化是由于接插件受到氧化引起的,由于氧化影响的是电阻接插件的外表面积,而后氧化的影响逐渐变小;那么该类变化引起的电阻变化规律是电阻逐渐增大,且增大的速率开始较快, 然后逐渐变慢。再例如,如果电阻值变化是由于震动导致,那么接插件之间的接触面积会随震动发生改变,测量得到的电阻值也会以往复改变的形式呈现。而化学腐蚀则会呈现电阻的突变。接插件器件老化导致的接触问题,多次不同的使用过程中呈现阻抗忽高忽低的不一致。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;在不冲突的情况下,本公开实施例中的特征可以任意组合;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (21)

  1. 一种电池连接器健康状态的检测系统,其中,包括:控制电路、控制系统和检测电路;
    所述控制电路的输入端用于连接电池电芯,输出端连接所述电池连接器,用于控制所述电池电芯的通断;
    所述控制系统连接所述电池连接器;在所述控制电路的控制下,所述电池电芯可通过所述电池连接器向所述控制系统供电;
    所述检测电路与所述控制电路或所述控制系统连接,用于检测所述电池连接器的参数值;
    所述控制电路或所述控制系统用于根据所述参数值实时判断所述电池连接器的健康状态。
  2. 根据权利要求1所述的检测系统,其中,所述电池连接器包括:至少一对接插件,每对接插件包括:供电端接插件和受电端接插件;所述供电端接插件连接所述控制电路的输出端;所述受电端接插件连接所述控制系统;
    所述检测电路用于检测至少一对接插件的参数值;所述控制电路或所述控制系统用于根据所述参数值判断所述至少一对接插件的健康状态。
  3. 根据权利要求2所述的检测系统,其中,所述电池连接器包括:多对接插件;所述检测电路用于检测所述多对接插件中的至少一对接插件的参数值;所述控制电路或所述控制系统用于根据所述参数值判断所述多对接插件中的至少一对接插件的健康状态。
  4. 根据权利要求3所述的检测系统,其中,所述电池连接器包括:两对接插件:供电端正极接插件和受电端正极接插件、供电端负极接插件和受电端负极接插件。
  5. 根据权利要求2所述的检测系统,其中,
    所述参数值包括:所述供电端接插件的电压值、所述受电端接插件的电压值、以及流经所述供电端接插件和所述受电端接插件的电流值;
    所述控制电路或所述控制系统用于根据所述参数值得到所述供电端接插件和所述受电端接插件的阻抗值,以实时判断所述电池连接器的健康状态。
  6. 根据权利要求5所述的检测系统,其中,
    所述控制电路或所述控制系统用于判断所述阻抗值是否超过阈值;如果是,则认定所述供电端接插件和受电端接插件的健康状态欠佳,并发出一禁止飞行的提示信息。
  7. 根据权利要求5所述的检测系统,其中,
    所述控制电路或所述控制系统还用于根据所述阻抗值得到所述供电端接插件和所述受电端接插件的温度值,并判断所述温度值是否超过阈值;如果是,则认定所述供电端接插件和所述受电端接插件的健康状态欠佳,并发出一禁止飞行提示信息。
  8. 根据权利要求5所述的检测系统,其中,所述参数值为多组,所述控制电路或所述控制系统用于根据多组参数值得到多个阻抗采样值,并对所述多个阻抗采样值进行滤波,以得到所述供电端接插件和受电端接插件的阻抗值。
  9. 根据权利要求5所述的检测系统,其中,所述控制电路或所述控制系统还用于根据多个过去时刻的阻抗值判断所述电池连接器将来时刻的健康状态。
  10. 一种无人机,其中,包括:电池、机体、电池连接器和根据权利要求1至9任一项所述的电池连接器健康状态的检测系统;
    所述电池包括:电池电芯和所述检测系统的所述控制电路;
    所述机体包括所述检测系统的所述控制系统;
    所述电池或机体还包括:所述检测系统的所述检测电路。
  11. 根据权利要求10所述的无人机,其中,
    所述电池连接器包括:至少一对接插件,每对接插件包括:供电端接插件和受电端接插件;
    所述电池包括所述检测电路;所述检测电路经导线连接所述供电端接插件,以检测所述供电端接插件的电压值、流经所述供电端接插件和受电端接插件的电流值;
    所述供电端接插件和所述受电端接插件包括:供电引脚和检测引脚;所述供电管脚连接所述控制电路的输出端和所述控制系统,所述电池电芯通过所述供电管脚向所述控制系统供电;
    所述检测引脚一端连接所述受电端接插件,另一端连接所述检测电路,所述检测电路通过所述检测引脚检测所述受电端接插件的电压值。
  12. 根据权利要求10所述的无人机,其中,
    所述电池连接器包括:至少一对接插件,每对接插件包括:供电端接插件和受电端接插件;
    所述机体包括所述检测电路;所述检测电路经导线连接所述受电端接插件,以检测所述受电端接插件的电压值;
    所述供电端接插件和所述受电端接插件包括:供电引脚和检测引脚;所述供电管脚连接所述控制电路的输出端和所述控制系统,所述电池电芯通过所述供电管脚向所述控制系统供电;
    所述检测引脚一端连接所述供电端接插件,另一端连接所述检测电路,所述检测电路通过所述检测引脚检测所述供电端接插件的电压值、流经所述供电端接插件和受电端接插件的电流值。
  13. 一种电池连接器健康状态的检测方法,其中,包括:
    检测所述电池连接器的参数值;
    根据所述参数值实时判断所述电池连接器的健康状态。
  14. 如权利要求13所述的检测方法,其中,所述电池连接器包括至少一对接插件,每对接插件包括:供电端接插件和受电端接插件。
  15. 如权利要求14所述的检测方法,其中,所述电池连接器包括:多对接插件;
    所述检测所述电池连接器的参数值包括:
    检测所述多对接插件中的至少一对接插件的参数值;
    所述根据所述参数值实时判断所述电池连接器的健康状态包括:
    根据所述参数值判断所述多对接插件中的至少一对接插件的健康状态。
  16. 如权利要求15所述的检测方法,其中,所述电池连接器包括:两对接插件:供电端正极接插件和受电端正极接插件、供电端负极接插件和受电端负极接插件。
  17. 如权利要求14所述的检测方法,其中,
    所述参数值包括:所述供电端接插件的电压值、所述受电端接插件的 电压值、以及流经所述供电端接插件和受电端接插件的电流值;
    所述根据所述参数值实时判断所述电池连接器的健康状态包括:
    根据所述参数值得到所述供电端接插件和受电端接插件的阻抗值,以实时判断所述电池连接器的健康状态。
  18. 如权利要求17所述的检测方法,其中,所述实时判断所述电池连接器的健康状态包括:
    判断所述阻抗值是否超过阈值;
    如果是,则认定所述供电端接插件和受电端接插件的健康状态欠佳,并发出一禁止飞行的提示信息。
  19. 如权利要求17所述的检测方法,其中,所述实时判断所述电池连接器的健康状态包括:
    根据所述阻抗值得到所述供电端接插件和受电端接插件的温度值;
    判断所述温度值是否超过阈值;
    如果是,则认定所述供电端接插件和受电端接插件的健康状态欠佳,并发出一禁止飞行提示信息。
  20. 如权利要求17所述的检测方法,其中,所述根据所述参数值得到所述供电端接插件和受电端接插件的阻抗值包括:
    根据多组参数值得到多个阻抗采样值,并对所述多个阻抗采样值进行滤波,以得到所述供电端接插件和受电端接插件的阻抗值。
  21. 如权利要求17所述的检测方法,其中,还包括:根据多个过去时刻的阻抗值判断所述电池连接器将来时刻的健康状态。
PCT/CN2018/112729 2018-10-30 2018-10-30 电池连接器健康状态的检测系统与方法、无人机 WO2020087285A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880042463.0A CN110832335B (zh) 2018-10-30 2018-10-30 电池连接器健康状态的检测系统与方法、无人机
PCT/CN2018/112729 WO2020087285A1 (zh) 2018-10-30 2018-10-30 电池连接器健康状态的检测系统与方法、无人机
US17/242,269 US20210249868A1 (en) 2018-10-30 2021-04-27 Battery connection device health status detection system and method, and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112729 WO2020087285A1 (zh) 2018-10-30 2018-10-30 电池连接器健康状态的检测系统与方法、无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/242,269 Continuation US20210249868A1 (en) 2018-10-30 2021-04-27 Battery connection device health status detection system and method, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2020087285A1 true WO2020087285A1 (zh) 2020-05-07

Family

ID=69547531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112729 WO2020087285A1 (zh) 2018-10-30 2018-10-30 电池连接器健康状态的检测系统与方法、无人机

Country Status (3)

Country Link
US (1) US20210249868A1 (zh)
CN (1) CN110832335B (zh)
WO (1) WO2020087285A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114559819A (zh) * 2022-01-25 2022-05-31 重庆标能瑞源储能技术研究院有限公司 一种基于信号处理的电动汽车电池安全预警方法
DE102021209246A1 (de) 2021-08-24 2023-03-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Lebensdauerermittlung einer Schaltvorrichtung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115642659A (zh) * 2021-07-20 2023-01-24 中兴通讯股份有限公司 电池连接器状态检测方法、控制器、终端设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101149422A (zh) * 2006-09-22 2008-03-26 欧姆龙株式会社 电池寿命预测系统及方法、通讯终端装置、电池寿命预测装置
US7928738B2 (en) * 2008-12-30 2011-04-19 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Detecting system for detecting connection of connectors and connector assemblies having same
CN102043095A (zh) * 2010-10-22 2011-05-04 上海鼎研智能科技有限公司 一种动力电池包内连接头的阻抗监测方法
US20140132223A1 (en) * 2012-11-13 2014-05-15 Motorola Solutions, Inc. Apparatus and method for discharging a battery and determining a condition of the battery
CN105607007A (zh) * 2015-12-23 2016-05-25 国联汽车动力电池研究院有限责任公司 电池系统电连接可靠性检测方法
CN107005006A (zh) * 2016-11-24 2017-08-01 深圳市大疆创新科技有限公司 电池组件、充电装置、无人飞行器及控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779907B (zh) * 2014-01-28 2016-11-23 广东欧珀移动通信有限公司 终端及其电池充电控制装置与方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101149422A (zh) * 2006-09-22 2008-03-26 欧姆龙株式会社 电池寿命预测系统及方法、通讯终端装置、电池寿命预测装置
US7928738B2 (en) * 2008-12-30 2011-04-19 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Detecting system for detecting connection of connectors and connector assemblies having same
CN102043095A (zh) * 2010-10-22 2011-05-04 上海鼎研智能科技有限公司 一种动力电池包内连接头的阻抗监测方法
US20140132223A1 (en) * 2012-11-13 2014-05-15 Motorola Solutions, Inc. Apparatus and method for discharging a battery and determining a condition of the battery
CN105607007A (zh) * 2015-12-23 2016-05-25 国联汽车动力电池研究院有限责任公司 电池系统电连接可靠性检测方法
CN107005006A (zh) * 2016-11-24 2017-08-01 深圳市大疆创新科技有限公司 电池组件、充电装置、无人飞行器及控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021209246A1 (de) 2021-08-24 2023-03-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Lebensdauerermittlung einer Schaltvorrichtung
CN114559819A (zh) * 2022-01-25 2022-05-31 重庆标能瑞源储能技术研究院有限公司 一种基于信号处理的电动汽车电池安全预警方法
CN114559819B (zh) * 2022-01-25 2023-10-13 重庆标能瑞源储能技术研究院有限公司 一种基于信号处理的电动汽车电池安全预警方法

Also Published As

Publication number Publication date
CN110832335A (zh) 2020-02-21
US20210249868A1 (en) 2021-08-12
CN110832335B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2020220880A1 (zh) 热失控检测电路及方法
US20210249868A1 (en) Battery connection device health status detection system and method, and unmanned aerial vehicle
CN110967643B (zh) 热失控检测电路及方法
JP6941787B2 (ja) 接触不良検出システム
CN105137336B (zh) 检测电动汽车高压继电器故障的诊断方法
CN210442486U (zh) 热失控检测电路
JP5443327B2 (ja) 組電池装置
JP5369833B2 (ja) 電動車両用充電器および地絡検出方法
JP6967731B2 (ja) 検査装置、検査方法、検査プログラム、管理装置、及び蓄電システム
CN104426214A (zh) 蓄电池单池设备以及用于确定蓄电池单池的复阻抗的方法
CN102749562A (zh) 一种电动汽车动力电池的绝缘监测仪及监测方法
CN211151975U (zh) 一种车载以太网测试装置
CN107749444B (zh) 电池组模块和用于监测电池组模块的方法
CN106602649A (zh) 一种电池管理系统的断线检测电路和检测方法
US20180003775A1 (en) Failure detection apparatus
DE102012222721A1 (de) Batteriemanagementsystem und Batteriesystem
CN105606950A (zh) 一种电池管理系统电压采样线故障诊断方法及诊断系统
WO2021001183A1 (de) Temperaturüberwachtes ladesteckverbinderteil
WO2018101005A1 (ja) 電池制御装置
CN105388421A (zh) 电池传感器及电池监控系统
KR20120059943A (ko) 배터리 전압 측정 라인의 단선 검출용 전압 측정 장치
CN107533097B (zh) 用于探测至少一个蓄能器与车载电网的按规定连接的方法
CN109490697A (zh) 一种用于电动车快充插座的检测电路装置
CN113745672A (zh) 电池自加热控制方法、电池自加热装置、系统和车辆
CN210542971U (zh) 耦合bms的新能源大巴电池自动灭火装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938302

Country of ref document: EP

Kind code of ref document: A1