WO2020087279A1 - Power connector - Google Patents

Power connector Download PDF

Info

Publication number
WO2020087279A1
WO2020087279A1 PCT/CN2018/112703 CN2018112703W WO2020087279A1 WO 2020087279 A1 WO2020087279 A1 WO 2020087279A1 CN 2018112703 W CN2018112703 W CN 2018112703W WO 2020087279 A1 WO2020087279 A1 WO 2020087279A1
Authority
WO
WIPO (PCT)
Prior art keywords
power connector
wire
coupled
contact
insulation core
Prior art date
Application number
PCT/CN2018/112703
Other languages
French (fr)
Inventor
Bo Zhao
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2018/112703 priority Critical patent/WO2020087279A1/en
Priority to CN201880098822.4A priority patent/CN112889190B/en
Publication of WO2020087279A1 publication Critical patent/WO2020087279A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/502Bases; Cases composed of different pieces
    • H01R13/512Bases; Cases composed of different pieces assembled by screw or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/58Means for relieving strain on wire connection, e.g. cord grip, for avoiding loosening of connections between wires and terminals within a coupling device terminating a cable
    • H01R13/582Means for relieving strain on wire connection, e.g. cord grip, for avoiding loosening of connections between wires and terminals within a coupling device terminating a cable the cable being clamped between assembled parts of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/58Means for relieving strain on wire connection, e.g. cord grip, for avoiding loosening of connections between wires and terminals within a coupling device terminating a cable
    • H01R13/595Bolts operating in a direction transverse to the cable or wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5202Sealing means between parts of housing or between housing part and a wall, e.g. sealing rings

Definitions

  • Embodiments of the present disclosure generally relate to a connector, and specifically to a power connector.
  • a power connector is an electro-mechanical device used to join electrical terminations and create an electrical circuit.
  • Power connectors typically comprise plugs (male-ended) and jacks (female-ended) .
  • the connection may be temporary, as for portable equipment, require a tool for assembly and removal, or serve as a permanent electrical joint between two wires or devices.
  • Connectors may join two lengths of flexible copper wire or cable, or connect a wire or cable to a load such as electrical equipment.
  • the plugs and jacks of the power connector are electrically connected to each other via their internal conductors.
  • the conductors are electrically connected to the wire of cable.
  • the conductors and the wire are connected to each other via bolts or welding.
  • the conductors and the wire may be connected to each other by one end of the bolt pressing the wire against the conductor.
  • the known power connectors have poor connection performance and are bulky and not prone to field operation.
  • embodiments of the present disclosure provide a power connector.
  • inventions of the present disclosure provide a power connector.
  • the power connector comprises a plurality of conductors, each conductor comprising a contact portion and a coupling portion, the contact portion extending circumferentially and adapted to electrically contact a wire of a cable, the coupling portion adapted to be coupled to a load; an insulation core adapted to receive the plurality of conductors and comprising a first engaging portion and an ring-shaped portion, the contact portion arranged on the ring-shaped portion; and a locking member operable to be coupled to the first engaging portion to axially press the wire against the contact portion, wherein the wire is bent to extend along the ring-shaped portion.
  • the contact portion and the coupling portion are integrally formed.
  • the coupling portion comprises a coupling hole for receiving a terminal arranged on the load; and wherein a diameter of the contacting hole is smaller than a diameter of the terminal to provide a tight fit between the contacting hole and the terminal.
  • the first engaging portion comprises a threaded portion
  • the locking member comprises a locking nut adapted to be engaged with the threaded portion to press the wire against the contact portion
  • the locking nut comprises a knurled surface arranged on an end of the locking nut in contact with the wire.
  • the insulation core comprises a plurality of through holes arranged adjacent to the contact portion and extending axially for the wire to pass through.
  • the power connector further comprises a plurality of protrusions protruding axially from the ring-shaped portion for separating the wires.
  • the power connector further comprises a receiving portion arranged on the load; and a fastening assembly coupled to the insulation core and operable to be fastened to the receiving portion to connect the cable to the load.
  • the fastening assembly further comprises a fastener operable to be coupled to the receiving portion; and a housing coupled to the fastener and operable to move with the fastener during coupling of the fastener to the receiving portion to connect the cable to the load.
  • the power connector further comprises a first O-ring arranged between the receiving portion and the fastening assembly; or a second O-ring arranged between the housing and the insulation core.
  • the power connector further comprises a sealing assembly coupled to an end of the insulation core opposite to the load and adapted for the cable to pass through.
  • the sealing assembly comprises a gland coupled to the insulation core; and a gasket arranged in the gland, the gasket adapted to be deformed by a compression of the gland and the insulation core to provide sealing.
  • an electrical equipment comprises a power unit adapted to power the electrical equipment and operable to be connected to cable via a power connector as mentioned above.
  • FIG. 1 shows a perspective view of a power connector according to embodiments of the present disclosure
  • FIG. 2 shows an exploded view of a power connector according to embodiments of the present disclosure
  • FIG. 3 shows a perspective view of a insulation core with conductors and wires arranged thereon according to embodiments of the present disclosure
  • FIG. 4A shows a perspective view of a insulation core with the locking member arranged thereon according to embodiments of the present disclosure
  • FIG. 4B shows a sectional view of a insulation core with the locking member arranged thereon according to embodiments of the present disclosure
  • FIG. 5 shows a perspective view of a conductor according to embodiments of the present disclosure
  • FIG. 6 shows a perspective view of a locking nut according to embodiments of the present disclosure
  • FIG. 7 shows a perspective view of an insulation core according to embodiments of the present disclosure
  • FIG. 8 shows a perspective view of a sealing assembly with a cable arranged therein according to embodiments of the present disclosure
  • FIG. 9 shows a perspective view of a fastener and a housing according to embodiments of the present disclosure.
  • FIG. 10 shows a perspective view of a power connector according to embodiments of the present disclosure.
  • the term “comprises” and its variants are to be read as open terms that mean “comprises, but is not limited to. ”
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • the terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be comprised below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
  • wires of a cable may be electrically connected to conductors of a power connector by using bolts or clamps or by welding.
  • the bolts may occupy large space, causing the power connector larger.
  • the small end of the bolt presses the wire against the conductor, resulting in a poor connection between the wire and the conductor. This may further lead to the fault of the electrical equipment or a fire accident in severe cases.
  • Using clamps or welding to connect the wire and conductor needs special tools. This makes it inconvenient for field operation and replacement.
  • embodiments of the present disclosure provide a power connector 100. Now some example embodiments will be described with reference to FIGs. 1-10.
  • FIG. 1 shows a perspective view of a power connector 100
  • FIG. 2 shows an exploded view of the power connector 100
  • the power connector 100 for connecting a cable 201 to a load 200 such as and electrical load via electrical equipment comprises a plurality of conductors 101, an insulation core 102 and a locking member 103.
  • Each conductor 101 is electrically connected to a wire 2011 of the cable.
  • the cable may comprise two, three or more wires depending on different situations. For example, for the alternating current (AC) cable, there may be three wires 2011 in the cable 201.
  • AC alternating current
  • the conductor 101 may be cast in or inserted in the insulation core 102 and comprises a contact portion 1011 and a coupling portion 1012.
  • the contact portion 101 is arranged on a ring-shaped portion 1021 of the insulation core 102 and extends circumferentially.
  • the contact portion 101 is adapted to electrically contact the wire 2011 which is bent to extend along the contact portion 101 and the ring-shaped portion 1021.
  • the ring-shaped portion 1021 may be formed with an annular groove (not shown) for receiving the contact portion 1011.
  • a cross section of the annular groove in a plane in a radial direction may have the same shape as that of the contact portion 1011 to facilitate the assembly to improve the strength.
  • the wire 2011 is more easily to bent to an annular shape in the annular groove.
  • the coupling portion 1012 can be coupled to the load 200. It is to be understood that although FIG. 2 shows that the coupling portion 1012 is a bushing (female-ended) for receiving a terminal of a plug (male-ended) arranged on the load 200. That is, in some embodiments, the coupling portion 1012 may comprise a coupling hole for receiving the terminal. A diameter of the terminal may be larger than that of the coupling hole to provide a tight fit between the coupling hole and the terminal.
  • the coupling portion 1012 may also have a terminal to be inserted into a bushing of a jack.
  • the power connector 100 will be specifically described by taking embodiments shown in FIG. 2 as an example, and the case where the coupling portion is a plug is similar to this and will not be described again.
  • the insulation core 102 further comprises a first engaging portion 1022 to be coupled to the locking member 103.
  • the locking member 103 can axially press the wire 2011 against the contact portion 1011, as shown in FIG. 3.
  • the wire 2011 may be in contact with the conductor 101 over a length of the bent wire 2011 along the contact portion 1011. In this way, the contact area between the wire 2011 and the contact portion 101 is increased significantly.
  • the locking member 103 may apply a force (F) in an axial direction to the wire 2011, making the wire 2011 not easy to loosen. In this way, a reliable connection between the load 200 and the cable 201 may be ensured. Furthermore, in some cases no special tool is needed, making it convenient for field operation.
  • the contact portion 1011 may have a shape following a shape of the wire 2011, as shown in FIG. 5.
  • a cross section of the contact portion 1011 in a plane in a radial direction may be semicircular.
  • the cross section of the contact portion 1011 may also be V-shaped and will be deformed to contact the wire 2011 closes when the force F is applied by the locking member 103.
  • the contact portion 1011 and the coupling portion 1012 may be integrally formed by stamping or any other suitable ways.
  • the conductor 101 may be made of metal sheets, such as copper sheets, steel sheets or the like.
  • the coupling portion 1012 may be made by winding the metal sheet and the contacting portion 101 may be formed by stamping on the same metal sheet. This makes the conductor 101 easy to machine and ensures the electrical connection between the contact portion 1011 and the coupling portion 1012.
  • the diameter of the terminal may be larger than that of the coupling hole.
  • the coupling portion 1012 is made by winding the metal sheet with one or more gaps formed axially on the coupling portion 1012.
  • the coupling portion 1012 may be slightly deformed when the terminal is inserted into the coupling portion 1012.
  • the coupling portion 1012 may firmly grasp the terminal to provide the tight fit between the coupling hole and the terminal.
  • the tight fit between the contacting hole and the terminal may guarantee a reliable electrical connection between the terminal and the contacting hole.
  • the contact portion 1011 and the coupling portion 1012 may also be made from different metal sheets and be electrically connected in any suitable ways.
  • the locking member 103 may comprise a locking nut to be engaged with the first engaging portion 1022.
  • the first engaging portion 1022 may comprise a threaded portion to be coupled with the locking nut.
  • the wire 2011 may be pressed against the contact portion 1011 continuously. In this way, the wire and contact portion may be contacted to each other more closely in a simple way.
  • the angle of the thread on the threaded portion may be self-locking to prevent loosening of the locking nut.
  • the locking nut may comprise a knurled surface 1031 arranged on an end of the locking nut in contact with the wire 2011. In this way, the friction between the knurled surface 1031 and the wire 2011 may be increased, preventing the wire 2011 from loosening.
  • the knurled surface 1031 may comprise a plurality of axial projections arranged circumferentially, as shown in FIG. 6.
  • the axial projections may grip the wire 2011 firmly to prevent the wire 2011 from loosening.
  • the locking member 103 may be an insulation element and made of plastic, rubber or the like. In this way, the knurled surface 1031 may be made by molding.
  • the above embodiments of the locking member 103 comprising a locking nut are described merely for illustration, without suggesting any limitations as to the scope of the present disclosure. It is possible to use any other suitable structures or arrangements.
  • the locking member 103 and the first engaging portion 1022 may also be coupled with each other via snap connection, interference fit or the like.
  • the insulation core 102 may comprise a plurality of through holes 1023 for the wire 2011 to pass through, as shown in FIG. 7.
  • the through holes 1023 may be arranged adjacent to the contact portion 1011 and extending axially. After the wire 2011 passes through the through hole 1011, the wire 2011 may be bent to extend along the contact portion 1011. Then the locking nut may be screwed into the threaded portion to press the bent wire 2011 against the contact portion 1011. Furthermore, the through hole 1023 may provide temporary positioning of the wire 2011 before the locking member is coupled to the first engaging portion 1022.
  • the wire 2011 is bent in a direction same as a rotation direction in which the locking nut is tightened. For example, if the locking nut is screwed into the threaded portion in a clockwise direction, the wire 2011 is bent in the clockwise direction as well. In this way, the wire 2011 may be further pulled in the rotation direction while being pressed by the locking nut. As a result, the length of the wire 2011 entering the insulation core 102 is further increased during this process, thereby making the connection more reliable.
  • the number of the through hole 1023 is same as the number of the wires 2011.
  • the wire 2011 may extend along the contact portion 1011 by substantially a haft of the circumferential length of the ring-shaped portion 1021. Accordingly, the length of the contact portion 1011 may be substantially same as that of the bent wire 2011.
  • the lengths of the bent wire 2011 or the contact portion 1011 may be one third (1/3) of the circumferential length of the ring-shaped portion 1021. It can be seen from the above that the wire 2011 and the contact portion 1011 are in contact at least over one third of the circumferential length of the ring-shaped portion 1021. Compared to the case where the wire 2011 is pressed against the contact portion with an end of the bolt, the contact surface is significantly increased, enhancing the connection between the wire 2011 and the contact portion 1011.
  • a plurality of protrusions 1024 protruding axially from the ring-shaped portion 1021 may be provided, as shown in FIG. 3.
  • the protrusions 1024 may isolate the wires 2011 in the same cable 201 to avoid short circuit.
  • a length of the protrusion 1024 extending from the ring-shaped portion 1021 may be less than a diameter of the bent wire 2011.
  • the wire 2011 may be pressed tightly before the knurled surface 1031 of the locking nut contacts the protrusion 1024.
  • the protrusion 1024 may also be used to provide a stop when the locking nut is screwed into the threaded portion, preventing the wire 2011 from being pressed too tightly to break.
  • the power connector 201 may comprise a sealing assembly 106 coupled to an end of the insulation core 102 opposite to the load 200.
  • the sealing assembly 106 may comprise a gland 1061 and a gasket 1062. Both of the gland 1061 and the gasket 1062 may have a hole for the cable 201 to pass through.
  • the gland 1061 may be coupled to the insulation core 102 via a threaded connection or the like.
  • the gland 1061 may be formed with an inner thread and the insulation core 102 may have a portion with a thread to be engaged with the inner thread of the gland 1061. In this way, the gland 1061 may be coupled to the insulation core 102.
  • the gland 1061 may also be coupled to the insulation core 102 via a snap connection or interference fit.
  • the gasket 1062 may be an elastic element and made of suitable materials, such as rubber, silicon or soft plastic.
  • the gasket 1062 is arranged in the gland 1061. When the gland 1061 is coupled to the insulation core 102, the gland 1061 and the insulation core 102 may compress the gasket 1062 to be deformed. In this way, the hole of the gasket 1062 may be deformed accordingly to be in contact with the cable 201 closely, preventing water from entering the power connector to provide water resistance from the cable side.
  • the power connector 100 may comprise a receiving portion 110 arranged on the load 200 to facilitate coupling and a fastening assembly 105 coupled to the insulation core 102.
  • the fastening assembly 105 is operable to be fastened to the receiving portion 110 to connect the cable 201 to the load 200.
  • the fastening assembly 105 may comprise a fastener 1052 and a housing 1051.
  • the fastener 1051 may be coupled to the receiving portion 110 via a threaded connection.
  • the fastener 1051 may comprise an inner threaded portion to be engaged with a threaded portion of the receiving portion 110. This provides a simple and effective way to connect fastener 1051 to the receiving portion 110 arranged on the load.
  • fastener 1051 being coupled to the receiving portion 110 via threaded connection
  • the fastener 1051 and the receiving portion 110 may also be coupled with each other via a snap connection, interference fit or the like.
  • the housing 1051 is coupled to the fastener 1052.
  • the housing 1051 may be coupled to the fastener 1052 in a relatively rotational manner.
  • the fastener 1052 may be preassembled on the housing 1051.
  • the housing 1051 may be coupled to the insulation core 102 in a similar way to the connection manner between the fastener 1051 and the receiving portion 110.
  • the housing 1051 may be coupled to the insulation core 102 via a threaded connection, a snap connection or interference fit. In this way, during the coupling of the fastener 1052 to the receiving portion 104, the housing 1051 may move with the fastener 1052 to move the insulation core 102 toward the load, and finally to connect the coupling portion 1012 to the terminal arranged on the load 200.
  • FIG. 4A there may be a threaded portion 1025 formed on the outer circumference on a portion of the power connection forming the ring-shaped portion 1021.
  • the threaded portion 1025 has a larger diameter than the diameter of the locking member 103.
  • the locking member 103 may be located inside of the housing 1051. This makes it easy to enhance waterproof performance and prevent detachment.
  • the housing 1051 may be coupled to the insulation core 102 via a snap connection or the like.
  • a first O-ring may be arranged between the receiving portion 104 and the fastening assembly 105 and a second O-ring may be arranged between the housing 105 and the insulation core 102.
  • the power connector 100 may have a reliable waterproof performance, allowing the power connector 100 may be used outdoors.
  • the cable 201 and the load 200 can maintain a reliable electrical connection in a simple way. Furthermore, in some cases, no special tool is needed to connect the cable 201 to the load 200 via the power connector 100, suitable for on-site operation. In this way, the assembling time and cost may be reduced.

Landscapes

  • Connector Housings Or Holding Contact Members (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

Embodiments of the present disclosure provide a power connector. The power connector compriscs a plurality of conductors, each conductor comprising a contact portion and a coupling portlon, the contact portion extending circumferentially and adapted to electrically contact a wire of a cable, the coupling portion adapted to be coupled to a load;an insulation core adapted to receive the plurality of conductors and comprising a first engaging portion and an ring-shaped portion, the contact portion arranged on the ring-shaped portion; and a locking member operable to be coupled to the first engaging portion to axially press the wire against the contact portion, wherein the wire is bent to extend along the ring-shaped portion. With this arrangement, the locking member may axially press the wire against the contact portion extending circumferentially,significantly increasing contact area between the wire and the contact ponion. In this way, an reliable connection between the load and the cable may be ensured. Furthermore, in some cases, no special tool is need, making it convenientfor filed operation.

Description

POWER CONNECTOR FIELD
Embodiments of the present disclosure generally relate to a connector, and specifically to a power connector.
BACKGROUND
A power connector is an electro-mechanical device used to join electrical terminations and create an electrical circuit. Power connectors typically comprise plugs (male-ended) and jacks (female-ended) . The connection may be temporary, as for portable equipment, require a tool for assembly and removal, or serve as a permanent electrical joint between two wires or devices. Hundreds of types of power connectors are manufactured for power, signal and control applications. Connectors may join two lengths of flexible copper wire or cable, or connect a wire or cable to a load such as electrical equipment.
The plugs and jacks of the power connector are electrically connected to each other via their internal conductors. The conductors are electrically connected to the wire of cable. In the known solutions, the conductors and the wire are connected to each other via bolts or welding. For example, the conductors and the wire may be connected to each other by one end of the bolt pressing the wire against the conductor.
SUMMARY
The known power connectors have poor connection performance and are bulky and not prone to field operation. In order to at least partially address the above and other potential problems, embodiments of the present disclosure provide a power connector.
In a first aspect, embodiments of the present disclosure provide a power connector. The power connector comprises a plurality of conductors, each conductor comprising a contact portion and a coupling portion, the contact portion extending circumferentially and adapted to electrically contact a wire of a cable, the coupling portion adapted to be coupled to a load; an insulation core adapted to receive the plurality of conductors and comprising a  first engaging portion and an ring-shaped portion, the contact portion arranged on the ring-shaped portion; and a locking member operable to be coupled to the first engaging portion to axially press the wire against the contact portion, wherein the wire is bent to extend along the ring-shaped portion.
In some embodiments, the contact portion and the coupling portion are integrally formed.
In some embodiments, the coupling portion comprises a coupling hole for receiving a terminal arranged on the load; and wherein a diameter of the contacting hole is smaller than a diameter of the terminal to provide a tight fit between the contacting hole and the terminal.
In some embodiments, the first engaging portion comprises a threaded portion, and wherein the locking member comprises a locking nut adapted to be engaged with the threaded portion to press the wire against the contact portion.
In some embodiments, the locking nut comprises a knurled surface arranged on an end of the locking nut in contact with the wire.
In some embodiments, the insulation core comprises a plurality of through holes arranged adjacent to the contact portion and extending axially for the wire to pass through.
In some embodiments, the power connector further comprises a plurality of protrusions protruding axially from the ring-shaped portion for separating the wires.
In some embodiments, the power connector further comprises a receiving portion arranged on the load; and a fastening assembly coupled to the insulation core and operable to be fastened to the receiving portion to connect the cable to the load.
In some embodiments, the fastening assembly further comprises a fastener operable to be coupled to the receiving portion; and a housing coupled to the fastener and operable to move with the fastener during coupling of the fastener to the receiving portion to connect the cable to the load.
In some embodiments, the power connector further comprises a first O-ring arranged between the receiving portion and the fastening assembly; or a second O-ring arranged between the housing and the insulation core.
In some embodiments, the power connector further comprises a sealing assembly  coupled to an end of the insulation core opposite to the load and adapted for the cable to pass through.
In some embodiments, the sealing assembly comprises a gland coupled to the insulation core; and a gasket arranged in the gland, the gasket adapted to be deformed by a compression of the gland and the insulation core to provide sealing.
In second aspect, an electrical equipment is provided. The electrical equipment comprises a power unit adapted to power the electrical equipment and operable to be connected to cable via a power connector as mentioned above.
It is to be understood that the Summary is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the description below.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objectives, features and advantages of the present disclosure will become more apparent through more detailed depiction of example embodiments of the present disclosure in conjunction with the accompanying drawings, wherein in the example embodiments of the present disclosure, same reference numerals usually represent same components.
FIG. 1 shows a perspective view of a power connector according to embodiments of the present disclosure;
FIG. 2 shows an exploded view of a power connector according to embodiments of the present disclosure;
FIG. 3 shows a perspective view of a insulation core with conductors and wires arranged thereon according to embodiments of the present disclosure;
FIG. 4A shows a perspective view of a insulation core with the locking member arranged thereon according to embodiments of the present disclosure;
FIG. 4B shows a sectional view of a insulation core with the locking member arranged thereon according to embodiments of the present disclosure;
FIG. 5 shows a perspective view of a conductor according to embodiments of the  present disclosure;
FIG. 6 shows a perspective view of a locking nut according to embodiments of the present disclosure;
FIG. 7 shows a perspective view of an insulation core according to embodiments of the present disclosure;
FIG. 8 shows a perspective view of a sealing assembly with a cable arranged therein according to embodiments of the present disclosure;
FIG. 9 shows a perspective view of a fastener and a housing according to embodiments of the present disclosure; and
FIG. 10 shows a perspective view of a power connector according to embodiments of the present disclosure.
Throughout the drawings, the same or similar reference symbols are used to indicate the same or similar elements.
DETAILED DESCRIPTION
The present disclosure will now be discussed with reference to several example embodiments. It is to be understood these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the subject matter.
As used herein, the term “comprises” and its variants are to be read as open terms that mean “comprises, but is not limited to. ” The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be comprised below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
In the conventional solutions, wires of a cable may be electrically connected to conductors of a power connector by using bolts or clamps or by welding. However, the  bolts may occupy large space, causing the power connector larger. Furthermore, because only the small end of the bolt presses the wire against the conductor, resulting in a poor connection between the wire and the conductor. This may further lead to the fault of the electrical equipment or a fire accident in severe cases. Using clamps or welding to connect the wire and conductor needs special tools. This makes it inconvenient for field operation and replacement.
In order to at least partially address the above and other potential problems, embodiments of the present disclosure provide a power connector 100. Now some example embodiments will be described with reference to FIGs. 1-10.
FIG. 1 shows a perspective view of a power connector 100 and FIG. 2 shows an exploded view of the power connector 100. As shown, the power connector 100 for connecting a cable 201 to a load 200 such as and electrical load via electrical equipment comprises a plurality of conductors 101, an insulation core 102 and a locking member 103. Each conductor 101 is electrically connected to a wire 2011 of the cable. The cable may comprise two, three or more wires depending on different situations. For example, for the alternating current (AC) cable, there may be three wires 2011 in the cable 201.
The conductor 101 may be cast in or inserted in the insulation core 102 and comprises a contact portion 1011 and a coupling portion 1012. The contact portion 101 is arranged on a ring-shaped portion 1021 of the insulation core 102 and extends circumferentially. The contact portion 101 is adapted to electrically contact the wire 2011 which is bent to extend along the contact portion 101 and the ring-shaped portion 1021.
The ring-shaped portion 1021 may be formed with an annular groove (not shown) for receiving the contact portion 1011. A cross section of the annular groove in a plane in a radial direction may have the same shape as that of the contact portion 1011 to facilitate the assembly to improve the strength. Furthermore, the wire 2011 is more easily to bent to an annular shape in the annular groove.
The coupling portion 1012 can be coupled to the load 200. It is to be understood that although FIG. 2 shows that the coupling portion 1012 is a bushing (female-ended) for receiving a terminal of a plug (male-ended) arranged on the load 200. That is, in some embodiments, the coupling portion 1012 may comprise a coupling hole for receiving the terminal. A diameter of the terminal may be larger than that of the coupling hole to provide a tight fit between the coupling hole and the terminal.
In some alternative embodiments, the coupling portion 1012 may also have a terminal to be inserted into a bushing of a jack. Hereinafter, the power connector 100 will be specifically described by taking embodiments shown in FIG. 2 as an example, and the case where the coupling portion is a plug is similar to this and will not be described again.
The insulation core 102 further comprises a first engaging portion 1022 to be coupled to the locking member 103. By coupling of the first engaging portion 1022 and the locking member 103, the locking member 103 can axially press the wire 2011 against the contact portion 1011, as shown in FIG. 3.
With the power connector 100, the wire 2011 may be in contact with the conductor 101 over a length of the bent wire 2011 along the contact portion 1011. In this way, the contact area between the wire 2011 and the contact portion 101 is increased significantly. In addition, as shown in FIG. 4, the locking member 103 may apply a force (F) in an axial direction to the wire 2011, making the wire 2011 not easy to loosen. In this way, a reliable connection between the load 200 and the cable 201 may be ensured. Furthermore, in some cases no special tool is needed, making it convenient for field operation.
In order to obtain a more reliable contact between the wire 2011 and the contact portion 1011, in some embodiments, the contact portion 1011 may have a shape following a shape of the wire 2011, as shown in FIG. 5. For example, for the cylinder shaped wire 2011, a cross section of the contact portion 1011 in a plane in a radial direction may be semicircular. In some alternative embodiments, the cross section of the contact portion 1011 may also be V-shaped and will be deformed to contact the wire 2011 closes when the force F is applied by the locking member 103.
In some embodiments, the contact portion 1011 and the coupling portion 1012 may be integrally formed by stamping or any other suitable ways. The conductor 101 may be made of metal sheets, such as copper sheets, steel sheets or the like. For example, the coupling portion 1012 may be made by winding the metal sheet and the contacting portion 101 may be formed by stamping on the same metal sheet. This makes the conductor 101 easy to machine and ensures the electrical connection between the contact portion 1011 and the coupling portion 1012.
As mentioned above, the diameter of the terminal may be larger than that of the coupling hole. For the case where the coupling portion 1012 is made by winding the metal sheet with one or more gaps formed axially on the coupling portion 1012. As a  result, the coupling portion 1012 may be slightly deformed when the terminal is inserted into the coupling portion 1012. In this way, the coupling portion 1012 may firmly grasp the terminal to provide the tight fit between the coupling hole and the terminal. The tight fit between the contacting hole and the terminal may guarantee a reliable electrical connection between the terminal and the contacting hole. In some alternative embodiments, the contact portion 1011 and the coupling portion 1012 may also be made from different metal sheets and be electrically connected in any suitable ways.
As shown in FIGs 4A and 4B, in some embodiments, the locking member 103 may comprise a locking nut to be engaged with the first engaging portion 1022. Accordingly, the first engaging portion 1022 may comprise a threaded portion to be coupled with the locking nut. As the locking nut is screwed on the threaded portion, the wire 2011 may be pressed against the contact portion 1011 continuously. In this way, the wire and contact portion may be contacted to each other more closely in a simple way.
The angle of the thread on the threaded portion may be self-locking to prevent loosening of the locking nut. Furthermore, in order to prevent the wire 2011 from loosening on the contact portion 1011, in some embodiments, as shown in FIG. 6, the locking nut may comprise a knurled surface 1031 arranged on an end of the locking nut in contact with the wire 2011. In this way, the friction between the knurled surface 1031 and the wire 2011 may be increased, preventing the wire 2011 from loosening.
The knurled surface 1031 may comprise a plurality of axial projections arranged circumferentially, as shown in FIG. 6. The axial projections may grip the wire 2011 firmly to prevent the wire 2011 from loosening. Furthermore, the locking member 103 may be an insulation element and made of plastic, rubber or the like. In this way, the knurled surface 1031 may be made by molding.
It is to be understood that the above embodiments of the locking member 103 comprising a locking nut are described merely for illustration, without suggesting any limitations as to the scope of the present disclosure. It is possible to use any other suitable structures or arrangements. For example, in some alternative embodiments, the locking member 103 and the first engaging portion 1022 may also be coupled with each other via snap connection, interference fit or the like.
In some embodiments, the insulation core 102 may comprise a plurality of through holes 1023 for the wire 2011 to pass through, as shown in FIG. 7. The through holes 1023  may be arranged adjacent to the contact portion 1011 and extending axially. After the wire 2011 passes through the through hole 1011, the wire 2011 may be bent to extend along the contact portion 1011. Then the locking nut may be screwed into the threaded portion to press the bent wire 2011 against the contact portion 1011. Furthermore, the through hole 1023 may provide temporary positioning of the wire 2011 before the locking member is coupled to the first engaging portion 1022.
It is to be understood that the wire 2011 is bent in a direction same as a rotation direction in which the locking nut is tightened. For example, if the locking nut is screwed into the threaded portion in a clockwise direction, the wire 2011 is bent in the clockwise direction as well. In this way, the wire 2011 may be further pulled in the rotation direction while being pressed by the locking nut. As a result, the length of the wire 2011 entering the insulation core 102 is further increased during this process, thereby making the connection more reliable.
The number of the through hole 1023 is same as the number of the wires 2011. For example, for the case where the cable 201 has two wires 2011 as shown in FIG. 3, there may be two holes 1023. In this case, the wire 2011 may extend along the contact portion 1011 by substantially a haft of the circumferential length of the ring-shaped portion 1021. Accordingly, the length of the contact portion 1011 may be substantially same as that of the bent wire 2011.
For the case where the cable 201 has three wires 2011, there are three through holes 1011 and the lengths of the bent wire 2011 or the contact portion 1011 may be one third (1/3) of the circumferential length of the ring-shaped portion 1021. It can be seen from the above that the wire 2011 and the contact portion 1011 are in contact at least over one third of the circumferential length of the ring-shaped portion 1021. Compared to the case where the wire 2011 is pressed against the contact portion with an end of the bolt, the contact surface is significantly increased, enhancing the connection between the wire 2011 and the contact portion 1011.
In order to prevent the wires 2011 in the same cable 201 from contacting with each other, a plurality of protrusions 1024 protruding axially from the ring-shaped portion 1021 may be provided, as shown in FIG. 3. The protrusions 1024 may isolate the wires 2011 in the same cable 201 to avoid short circuit. A length of the protrusion 1024 extending from the ring-shaped portion 1021 may be less than a diameter of the bent wire 2011.
In this way, the wire 2011 may be pressed tightly before the knurled surface 1031 of the locking nut contacts the protrusion 1024. The protrusion 1024 may also be used to provide a stop when the locking nut is screwed into the threaded portion, preventing the wire 2011 from being pressed too tightly to break.
In some embodiments, as shown in FIG. 8, in order to provide a seal between the cable 201 and the power connector 201, the power connector 201 may comprise a sealing assembly 106 coupled to an end of the insulation core 102 opposite to the load 200. The sealing assembly 106 may comprise a gland 1061 and a gasket 1062. Both of the gland 1061 and the gasket 1062 may have a hole for the cable 201 to pass through.
The gland 1061 may be coupled to the insulation core 102 via a threaded connection or the like. For example, the gland 1061 may be formed with an inner thread and the insulation core 102 may have a portion with a thread to be engaged with the inner thread of the gland 1061. In this way, the gland 1061 may be coupled to the insulation core 102. In some alternative embodiments, the gland 1061 may also be coupled to the insulation core 102 via a snap connection or interference fit.
The gasket 1062 may be an elastic element and made of suitable materials, such as rubber, silicon or soft plastic. The gasket 1062 is arranged in the gland 1061. When the gland 1061 is coupled to the insulation core 102, the gland 1061 and the insulation core 102 may compress the gasket 1062 to be deformed. In this way, the hole of the gasket 1062 may be deformed accordingly to be in contact with the cable 201 closely, preventing water from entering the power connector to provide water resistance from the cable side.
In some embodiments, the power connector 100 may comprise a receiving portion 110 arranged on the load 200 to facilitate coupling and a fastening assembly 105 coupled to the insulation core 102. The fastening assembly 105 is operable to be fastened to the receiving portion 110 to connect the cable 201 to the load 200.
As shown in FIGs. 2 and 9, in some embodiments, the fastening assembly 105 may comprise a fastener 1052 and a housing 1051. The fastener 1051 may be coupled to the receiving portion 110 via a threaded connection. For example, the fastener 1051 may comprise an inner threaded portion to be engaged with a threaded portion of the receiving portion 110. This provides a simple and effective way to connect fastener 1051 to the receiving portion 110 arranged on the load.
It is to be understood that the above embodiments of the fastener 1051 being coupled to the receiving portion 110 via threaded connection are described merely for illustration, without suggesting any limitations as to the scope of the present disclosure. It is possible to use any other suitable structures or arrangements. For example, in some alternative embodiments, the fastener 1051 and the receiving portion 110 may also be coupled with each other via a snap connection, interference fit or the like.
The housing 1051 is coupled to the fastener 1052. For example, for the case where the fastener 1051 is coupled to the receiving portion 110 via a threaded connection, the housing 1051 may be coupled to the fastener 1052 in a relatively rotational manner. In some embodiments, the fastener 1052 may be preassembled on the housing 1051. Furthermore, the housing 1051 may be coupled to the insulation core 102 in a similar way to the connection manner between the fastener 1051 and the receiving portion 110.
That is, the housing 1051 may be coupled to the insulation core 102 via a threaded connection, a snap connection or interference fit. In this way, during the coupling of the fastener 1052 to the receiving portion 104, the housing 1051 may move with the fastener 1052 to move the insulation core 102 toward the load, and finally to connect the coupling portion 1012 to the terminal arranged on the load 200.
For example, in some embodiments, as shown in FIG. 4A, there may be a threaded portion 1025 formed on the outer circumference on a portion of the power connection forming the ring-shaped portion 1021. The threaded portion 1025 has a larger diameter than the diameter of the locking member 103. In this way, when the housing 1051 is coupled to the insulation core 102 via the threaded portion 1025, the locking member 103 may be located inside of the housing 1051. This makes it easy to enhance waterproof performance and prevent detachment.
It is to be understood that the above embodiments of the housing 1051 are described merely for illustration, without suggesting any limitations as to the scope of the present disclosure. It is possible to use any other suitable structures or arrangements. For example, in some alternative embodiments, the housing 1051 may be coupled to the insulation core 102 via a snap connection or the like.
In order to improve the waterproof performance of the power connector 100, in some embodiments, there may be O-rings arranged between the receiving portion 104 and the fastening assembly 105 and between the housing 1051 and the insulation core 102.  For example, as shown in FIGs. 2 and 10, a first O-ring may be arranged between the receiving portion 104 and the fastening assembly 105 and a second O-ring may be arranged between the housing 105 and the insulation core 102. In this way, the power connector 100 may have a reliable waterproof performance, allowing the power connector 100 may be used outdoors.
It can be seen from the above that with the power connector 100 according to embodiments of the present disclosure, the cable 201 and the load 200 can maintain a reliable electrical connection in a simple way. Furthermore, in some cases, no special tool is needed to connect the cable 201 to the load 200 via the power connector 100, suitable for on-site operation. In this way, the assembling time and cost may be reduced.
It should be appreciated that the above detailed embodiments of the present disclosure are only to exemplify or explain principles of the present disclosure and not to limit the present disclosure. Therefore, any modifications, equivalent alternatives and improvement, etc. without departing from the spirit and scope of the present disclosure shall be comprised in the scope of protection of the present disclosure. Meanwhile, appended claims of the present disclosure aim to cover all the variations and modifications falling under the scope and boundary of the claims or equivalents of the scope and boundary.

Claims (13)

  1. A power connector (100) comprising:
    a plurality of conductors (101) , each conductor (101) comprising a contact portion (1011) and a coupling portion (1012) , the contact portion (1011) extending circumferentially and adapted to electrically contact a wire (2011) of a cable (201) , the coupling portion (1012) adapted to be coupled to a load (200) ;
    an insulation core (102) adapted to receive the plurality of conductors (101) and comprising a first engaging portion (1022) and an ring-shaped portion (1021) , the contact portion (1011) arranged on the ring-shaped portion (1021) ; and
    a locking member (103) operable to be coupled to the first engaging portion (1022) to axially press the wire (2011) against the contact portion (1011) , wherein the wire (2011) is bent to extend along the ring-shaped portion (1021) .
  2. The power connector (100) of claim 1, wherein the contact portion (1011) and the coupling portion (1012) are integrally formed.
  3. The power connector (100) of claim 1, wherein the coupling portion (1012) comprises a coupling hole for receiving a terminal arranged on the load (200) ; and
    wherein a diameter of the coupling hole is smaller than a diameter of the terminal (202) to provide a tight fit between the coupling hole and the terminal (202) .
  4. The power connector (100) of claim 1, wherein the first engaging portion (1022) comprises a threaded portion, and wherein the locking member (103) comprises a locking nut adapted to be engaged with the threaded portion to press the wire (2011) against the contact portion (1011) .
  5. The power connector (100) of claim 4, wherein the locking nut comprises a knurled surface (1031) arranged on an end of the locking nut in contact with the wire (2011) .
  6. The power connector (100) of claim 1, wherein the insulation core (102)  comprises a plurality of through holes (1023) arranged adjacent to the contact portion (1011 ) and extending axially for the wire (2011) to pass through.
  7. The power connector (100) of claim 1, further comprising:
    a plurality of protrusions (1024) protruding axially from the ring-shaped portion (1021) for separating the wires (2011 ) .
  8. The power connector (100) of claim 1, further comprising:
    a receiving portion (110) arranged on the load (200) ; and
    a fastening assembly (105) coupled to the insulation core (102) and operable to be fastened to the receiving portion (110) to connect the cable (201) to the load (200) .
  9. The power connector (100) of claim 8, wherein the fastening assembly (105) comprises:
    a fastener (1052) operable to be coupled to the receiving portion (104) ; and
    a housing (1051) coupled to the fastener (1052) and operable to move with the fastener (1052) during coupling of the fastener (1052) to the receiving portion (104) to connect the cable (201) to the load (200) .
  10. The power connector (100) of claim 8, further comprising at least one of the following:
    a first O-ring (1071) arranged between the receiving portion (104) and the fastening assembly (105) ; or
    a second O-ring (1072) arranged between the housing (1051) and the insulation core (102) .
  11. The power connector (100) of claim 1, further comprising:
    a sealing assembly (106) coupled to an end of the insulation core (102) opposite to the load (200) and adapted for the cable (201) to pass through.
  12. The power connector (100) of claim 11, wherein the sealing assembly (106) comprises:
    a gland (1061) coupled to the insulation core (102) ; and
    a gasket (1062) arranged in the gland (1061) , the gasket (1062) adapted to be  deformed by a compression of the gland (1061) and the insulation core (102) to provide sealing.
  13. An electrical equipment comprising a power unit adapted to power the electrical equipment and operable to be connected to cable (201) via a power connector (100) of any of claims 1-12.
PCT/CN2018/112703 2018-10-30 2018-10-30 Power connector WO2020087279A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/112703 WO2020087279A1 (en) 2018-10-30 2018-10-30 Power connector
CN201880098822.4A CN112889190B (en) 2018-10-30 2018-10-30 Power supply connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112703 WO2020087279A1 (en) 2018-10-30 2018-10-30 Power connector

Publications (1)

Publication Number Publication Date
WO2020087279A1 true WO2020087279A1 (en) 2020-05-07

Family

ID=70463405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112703 WO2020087279A1 (en) 2018-10-30 2018-10-30 Power connector

Country Status (2)

Country Link
CN (1) CN112889190B (en)
WO (1) WO2020087279A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628330A (en) * 2020-06-09 2020-09-04 东莞市申瑞达精工科技有限公司 Quick plug waterproof connector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7021815B1 (en) * 2005-10-06 2006-04-04 Sun-Lite Sockets Industry Inc. Halogen lampholder
CN203800299U (en) * 2014-03-21 2014-08-27 江苏天昇光伏科技有限公司 Cable anti-fracture connector
CN207398480U (en) * 2017-10-18 2018-05-22 惠州市耀盈精密技术有限公司 A kind of waterproof connector structure of electronic product
CN207967378U (en) * 2018-01-12 2018-10-12 厦门华天高科电池科技有限公司 A kind of accumulator connector of portable

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1040280A (en) * 1975-04-29 1978-10-10 General Electric Company Fast torque screw retention of electrical connector housing
DE20217501U1 (en) * 2002-11-13 2003-02-06 Hummel Anton Verwaltung cable connection
DE102009018714B3 (en) * 2009-04-27 2010-12-02 Phoenix Contact Gmbh & Co. Kg Cable connecting device
CN102655290A (en) * 2011-03-03 2012-09-05 张宁 Telescopic flexible contact circular connector as well as plug and socket thereof
CN102891415B (en) * 2011-07-18 2016-04-13 德昌电机(深圳)有限公司 Commutator and forming method thereof
CN103490214A (en) * 2012-06-13 2014-01-01 富士康(昆山)电脑接插件有限公司 Cable connector assembly
US8926362B2 (en) * 2012-07-04 2015-01-06 Changzhou Amphenol Fuyang Communication Equip. Co., Ltd. Power adaptor
US9214656B2 (en) * 2014-03-03 2015-12-15 Deryl E. Markgraf Battery adapter for a night vision device
US10044152B2 (en) * 2015-02-10 2018-08-07 Commscope Technologies Llc Dielectric spacer for coaxial cable and connector
CN204761200U (en) * 2015-06-23 2015-11-11 中山大洋电机股份有限公司 Binding post and motor of using thereof
CN107799971A (en) * 2017-11-24 2018-03-13 绵阳市金华洋电器制造有限公司 The plug-assembly and its manufacture method of a kind of round electric connector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7021815B1 (en) * 2005-10-06 2006-04-04 Sun-Lite Sockets Industry Inc. Halogen lampholder
CN203800299U (en) * 2014-03-21 2014-08-27 江苏天昇光伏科技有限公司 Cable anti-fracture connector
CN207398480U (en) * 2017-10-18 2018-05-22 惠州市耀盈精密技术有限公司 A kind of waterproof connector structure of electronic product
CN207967378U (en) * 2018-01-12 2018-10-12 厦门华天高科电池科技有限公司 A kind of accumulator connector of portable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628330A (en) * 2020-06-09 2020-09-04 东莞市申瑞达精工科技有限公司 Quick plug waterproof connector
CN111628330B (en) * 2020-06-09 2021-11-26 东莞市申瑞达精工科技有限公司 Quick plug waterproof connector

Also Published As

Publication number Publication date
CN112889190B (en) 2023-03-03
CN112889190A (en) 2021-06-01

Similar Documents

Publication Publication Date Title
US3567843A (en) Electrical connector for waterproof jacketed armored cable
US5877452A (en) Coaxial cable connector
US8087949B2 (en) Connector with a threaded actuator and a sealing component entirely within a nut component
JP6088623B2 (en) Electrical connector assembly and elbow connector assembly
CN110521075B (en) Holding device for holding a shielded cable
US11271342B2 (en) Pin and sleeve devices
JPH077837A (en) Cable gland
US10854999B1 (en) Angled electrical header connectors
CN107994383B (en) Connector with a plurality of connectors
JP2011113945A (en) Connection structure
WO2020087279A1 (en) Power connector
US3710307A (en) Electrical connector
US2958842A (en) Cable connector
US20120325513A1 (en) Connector assembly having strain relief feature
JP4473367B2 (en) Waterproof coaxial connector
KR200342004Y1 (en) Coulpling for cable
US3794958A (en) High voltage connector
CN215732269U (en) Connecting assembly, connector and connector assembly
KR100561729B1 (en) A connector for cable
JP2019009010A (en) Connector for shielded wire
CN217086924U (en) Conductive terminal, terminal assembly, connector and connector assembly
US20200408841A1 (en) Connector Assembly, Battery Pole Terminal and Battery Sensor
JP3535921B2 (en) Washer for electrical conduction and cable connection box using the same
CN115642414A (en) Connecting assembly, connector and connector assembly
JP3073808U (en) Coaxial connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938614

Country of ref document: EP

Kind code of ref document: A1