WO2020087260A1 - Method and apparatus for sinr prediction for link adaption - Google Patents

Method and apparatus for sinr prediction for link adaption Download PDF

Info

Publication number
WO2020087260A1
WO2020087260A1 PCT/CN2018/112608 CN2018112608W WO2020087260A1 WO 2020087260 A1 WO2020087260 A1 WO 2020087260A1 CN 2018112608 W CN2018112608 W CN 2018112608W WO 2020087260 A1 WO2020087260 A1 WO 2020087260A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement data
sinr
prediction
prediction models
historic
Prior art date
Application number
PCT/CN2018/112608
Other languages
French (fr)
Inventor
Dezheng YAN
Gang Xu
Biao Yang
Kefeng Liu
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd. filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2018/112608 priority Critical patent/WO2020087260A1/en
Priority to CN201880099042.1A priority patent/CN112913275A/en
Publication of WO2020087260A1 publication Critical patent/WO2020087260A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0019Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3913Predictive models, e.g. based on neural network models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • Various example embodiments relate to cellular radio implementation, especially to a technique for SINR prediction for link adaption.
  • link adaptation is an important component which is desired to improve system capacity, peak data rate and coverage reliability by the adaptation of transmission settings to the radio channel conditions, and proper SINR (Signal to Interference plus Noise Ratio) estimation/prediction for transmitting timing is the key for link adaption to achieve its purposes as much as possible.
  • SINR Signal to Interference plus Noise Ratio
  • high level modulation and coding scheme and less HARQ (Hybrid Automatic Repeat Request) retransmissions will get high data throughput if radio channel is good, and respectively, low level modulation and coding scheme and more HARQ retransmissions will drop data throughput if radio channel is poor.
  • HARQ Hybrid Automatic Repeat Request
  • initial MCS Modulation Coding Scheme selection is based on SINR to MCS lookup table, where SINR is calculated with averaging historic measurements from PUSCH/SRS/PUCCH (Physical Uplink Control Channel) . MCS selection is then updated with historic ACK/NACK information on transmitted PDUs (Protocol Data Units) .
  • Various example embodiments relate to a method for SINR prediction for link adaption, comprising the steps of:
  • the measurement data comprises SINR and related measurements
  • a first apparatus for SINR prediction for link adaption comprises:
  • At least one memory including computer program code
  • the at least one memory and the computer program code configured to, with the at least one processor, cause the first apparatus to perform operation of at least the following:
  • the measurement data comprises SINR and related measurements
  • a second apparatus for SINR prediction for link adaption comprises:
  • At least one memory including computer program code
  • the at least one memory and the computer program code configured to, with the at least one processor, cause the second apparatus to perform operation of at least the following:
  • the measurement data comprises SINR and related measurements
  • the measurement data comprises SINR and related measurements
  • the measurement data comprises SINR and related measurements
  • DLA Deep-Learning-Assistant
  • FIG. 1 is a block diagram illustrating an exemplary embodiment of a first apparatus for SINR prediction for link adaption.
  • FIG. 2 is a block diagram illustrating an exemplary embodiment of a second apparatus for SINR prediction for link adaption.
  • FIG. 3 is a block diagram illustrating an exemplary embodiment of a deployment for SINR prediction for link adaption.
  • FIG. 4 shows an exemplary embodiment of SINR prediction implantation using DNN.
  • FIG. 5 is a flow chart illustrating an exemplary embodiment of a method for SINR prediction for link adaption.
  • an exemplary embodiment of a first apparatus 10 for SINR prediction modeling for link adaption comprising means for performing:
  • the related measurements includes but not limited to RSSI (Received Signal Strength Indication) , PHR (Power Headroom Report) , CQI (Channel Quality Indicator) .
  • RSSI Receiveived Signal Strength Indication
  • PHR Power Headroom Report
  • CQI Channel Quality Indicator
  • the radio access nodes send SINR, RSSI, PHR, CQI which collected from a plurality of TTIs before to the first apparatus 10.
  • the prediction models could predict SINR and related measurements on the next sequence.
  • the prediction models are trained based on historic SINR and related measurements from TTI (n) and before, and the prediction models could predict the SINR and related measurements for TTI (n+1) .
  • the neutral networks comprise any one or more DNNs (Deep Neural Networks) .
  • the DNNs includes but not limited to CNN (Convolutional Neural Network) , RNN (Recurrent Neural Network) , LSTM (Long Short-Term Memory) or other neutral networks.
  • the first apparatus 10 further comprises: means for converting the historic measurement data into input data for one or more neutral networks.
  • the first apparatus 10 converts the historic measurement data in format into adaptive input data for neural networks.
  • the means for training one or more prediction models trains one or more prediction models with the input data based on the one or more neutral networks.
  • the first apparatus 10 further comprises: means for obtaining one or more prediction measurement data predicted by the prediction models and real measured SINR corresponding to the prediction measurement data; and means for updating the prediction models based on the prediction measurement data and real measured SINR.
  • the means for updating the prediction models compares the predict SINR and real measured SINR first, and determines whether updating the prediction models or not; if the predict SINR and real measured SINR are not same, or the difference between the predict SINR and real measured SINR exceeds the predetermined threshold, the means will update the prediction models by the historic measurement data which is used as input data and the real measured SINR which is used as a model answer.
  • the historic measurement data includes but not limited to SINR, RSSI, PHR, CQI, etc.
  • the first apparatus 10 could realize a self-corrective feedback with online learning, which updates learned models based on predicted SINR data and real measured SINR data later.
  • an exemplary embodiment of a second apparatus 20 for SINR prediction for link adaption comprising means for performing:
  • means 240 for sending the predicting SINR to one or more link adaptation modules in cellular network.
  • the means 220 could obtain the one or more prediction models from the apparatus 10, or other apparatus which could provide the prediction models.
  • the means 230 takes the historic measurement data as input information.
  • the prediction models could calculate a result as the predicting SINR.
  • the means preceding comprises:
  • At least one memory including computer program code, that at least one memory and computer program code configured to , with the at least one processor, cause the performance of the apparatus.
  • FIG. 3 is a block diagram illustrating an exemplary embodiment of a deployment for SINR prediction for link adaption.
  • the first apparatus is deployed on Central Unit (CU) to train the model with batch measurement data collected from Radio Access Node (RAN)
  • RAN Radio Access Node
  • the second apparatus is deployed on DU to close RAN (UP) and ensure quick delivery of model output.
  • This deployment could support Deep-Learning-Assistant (DLA) SINR prediction or intelligent Link Adaption.
  • DLA Deep-Learning-Assistant
  • the RAN transmits batch sampled measurement data to the first apparatus on CU.
  • the first apparatus trains models, and the second apparatus on DU predicts SINR.
  • the second apparatus transmits predict results to RAN, and RAN sends current measurement data to the second apparatus.
  • the second apparatus transmits the current measurement data to the first apparatus as model feedback, and the first apparatus updates the models with the model feedback. Then the update model is send to the second apparatus.
  • FIG. 4 shows an exemplary embodiment of SINR prediction implantation using DNN.
  • the embodiment takes use of RNN /LSTM as the deep learning model. It includes two parts:
  • One is a feature extractor with prediction, which learns features from raw data automatically.
  • the other is a self-corrective feedback with online learning, which updates learned model based on predicted SINR data and real measured SINR data later.
  • n and k could be determined by product requirements.
  • the n could be defined 5 or 10.
  • FIG. 5 is a flow chart illustrating an exemplary embodiment of a method for SINR prediction for link adaption.
  • the measurement data comprises SINR and related measurements
  • step520 training one or more prediction models with the historic measurement data based on one or more neutral networks
  • step530 predicting SINR with the prediction models and the historic measurement data.
  • the related measurements includes but not limited to RSSI (Received Signal Strength Indication) , PHR (Power Headroom Report) , CQI (Channel Quality Indicator) .
  • RSSI Received Signal Strength Indication
  • PHR Power Headroom Report
  • CQI Channel Quality Indicator
  • the radio access nodes send SINR, RSSI, PHR, CQI which collected from a plurality of TTIs before.
  • the prediction models could predict SINR and related measurements on the next sequence.
  • the prediction models are trained based on historic SINR and related measurements from TTI (n) and before, and the prediction models could predict the SINR and related measurements for TTI (n+1) .
  • the neutral networks comprise any one or more DNNs (Deep Neural Networks) .
  • the DNNs includes but not limited to CNN (Convolutional Neural Network) , RNN (Recurrent Neural Network) , LSTM (Long Short-Term Memory) or other neutral networks.
  • the method further comprises the following steps:
  • converting the historic measurement data into input data for one or more neutral networks For example, according to the format requirement of neural networks, it converts the historic measurement data in format into adaptive input data for neural networks.
  • step520 it trains one or more prediction models with the input data based on the one or more neutral networks.
  • the method further comprises the following steps:
  • the prediction models compares the predict SINR and real measured SINR first, and determines whether updating the prediction models or not; if the predict SINR and real measured SINR are not same, or the difference between the predict SINR and real measured SINR exceeds the predetermined threshold, the prediction models will be updated by the historic measurement data which is used as input data and the real measured SINR which is used as a model answer.
  • the historic measurement data includes but not limited to SINR, RSSI, PHR, CQI, etc.
  • the method could realize a self-corrective feedback with online learning, which updates learned models based on predicted SINR data and real measured SINR data later.
  • the prediction models could calculate a result as the predicting SINR.
  • a non-transitory computer-readable medium comprising computer instructions for causing an apparatus to perform at least:
  • the measurement data comprises SINR and related measurements
  • a non-transitory computer-readable medium comprising computer instructions for causing an apparatus to perform at least:
  • the measurement data comprises SINR and related measurements
  • a method for SINR prediction for link adaption comprising the steps of:
  • the measurement data comprises SINR and related measurements
  • the step of training one or more prediction models with the historic measurement data based on one or more neutral networks comprises:
  • a method for SINR prediction modeling for link adaption in first apparatus comprising the following steps:
  • the measurement data comprises SINR and related measurements
  • the step of training one or more prediction models with the historic measurement data based on one or more neutral networks comprises:
  • a method for SINR prediction for link adaption in second apparatus comprising the following steps:
  • the measurement data comprises SINR and related measurements
  • a first apparatus for SINR prediction modeling for link adaption comprising means for performing:
  • the measurement data comprises SINR and related measurements
  • the means for training one or more prediction models with the historic measurement data based on one or more neutral networks performing:
  • At least one memory including computer program code, that at least one memory and computer program code configured to , with the at least one processor, cause the performance of the apparatus.
  • a second apparatus for SINR prediction for link adaption comprising means for performing:
  • the measurement data comprises SINR and related measurements
  • At least one memory including computer program code, that at least one memory and computer program code configured to , with the at least one processor, cause the performance of the apparatus.
  • a system for SINR prediction for link adaption wherein, the system comprises a first apparatus of anyone of clauses 10 to 14 and a second apparatus of anyone of clauses 15 or 16.
  • a non-transitory computer-readable medium comprising computer instructions for causing an apparatus to perform at least: :
  • the measurement data comprises SINR and related measurements
  • a non-transitory computer-readable medium comprising computer instructions for causing an apparatus to perform at least:
  • the measurement data comprises SINR and related measurements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and apparatus for SINR prediction for link adaption are provided. The method comprises a step of receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements, a step of training one or more prediction models with the historic measurement data based on one or more neutral networks, and a step of predicting SINR with the prediction models and the historic measurement data. With a deep learning network, a Deep-Learning-Assistant (DLA) SINR prediction is provided. It will simplify the online calculation in field, by shifting many challenges in traditional approach to neutral training stage. Besides, it will improve the accuracy of SINR prediction, and then improve the accuracy of MCS selection.

Description

[Title established by the ISA under Rule 37.2] METHOD AND APPARATUS FOR SINR PREDICTION FOR LINK ADAPTION TECHNICAL FIELD
Various example embodiments relate to cellular radio implementation, especially to a technique for SINR prediction for link adaption.
BACKGROUND
In operator’s cellular network, link adaptation is an important component which is desired to improve system capacity, peak data rate and coverage reliability by the adaptation of transmission settings to the radio channel conditions, and proper SINR (Signal to Interference plus Noise Ratio) estimation/prediction for transmitting timing is the key for link adaption to achieve its purposes as much as possible.
For the scheme overview, high level modulation and coding scheme and less HARQ (Hybrid Automatic Repeat Request) retransmissions will get high data throughput if radio channel is good, and respectively, low level modulation and coding scheme and more HARQ retransmissions will drop data throughput if radio channel is poor.
Besides, for a traditional LTE (Long Term Evolution) link adaption PUSCH (Physical Uplink Shared Channel) /SRS (Sounding Reference Signal) and AN (Access Network) feedback, initial MCS (Modulation Coding Scheme) selection is based on SINR to MCS lookup table, where SINR is calculated with averaging historic measurements from PUSCH/SRS/PUCCH (Physical Uplink Control Channel) . MCS selection is then updated with historic ACK/NACK information on transmitted PDUs (Protocol Data Units) .
Historic SINR measurement may not reflect latest channel radio, especially in high speed train scenario where fast fading and path loss are changed quickly. During evolution to LTE-Advanced Pro and 5G, interference  may be varying rapidly further with the deployment of more spectral efficiency technologies like higher-order MU-MIMO (multi-user MIMO) . Interference among paired UEs may vary in TTI level.
Consequently, it’s very challenge to select right MCS for high throughput in those scenarios. Inaccurate MCS leads to high BLER (Block Error Ratio) , low transmission efficiency and throughput, bad experience to users. For example, smaller MCS results in lower throughput, and higher MCS may result in re-transmission and bandwidth waste if it cannot be received correctly due to wrong prediction on varying interference from many factors.
SUMMARY
Various example embodiments relate to a method for SINR prediction for link adaption, comprising the steps of:
receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
training one or more prediction models with the historic measurement data based on one or more neutral networks;
predicting SINR with the prediction models and the historic measurement data.
Other various example embodiments relate to a first apparatus for SINR prediction for link adaption, comprises:
at least one processor; and
at least one memory including computer program code,
the at least one memory and the computer program code configured to, with the at least one processor, cause the first apparatus to perform operation of at least the following:
receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
training one or more prediction models with the historic measurement  data based on one or more neutral networks.
Other various example embodiments relate to a second apparatus for SINR prediction for link adaption, comprises:
at least one processor; and
at least one memory including computer program code,
the at least one memory and the computer program code configured to, with the at least one processor, cause the second apparatus to perform operation of at least the following:
receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
obtaining one or more prediction models based on one or more neutral networks;
predicting SINR with the prediction models and the historic measurement data;
sending the predicting SINR to one or more link adaptation modules in cellular network.
Other various example embodiments relate to a central unit of radio access nodes, for SINR prediction for link adaption, wherein, the central unit comprises the above first apparatus.
Other various example embodiments relate to a distributed unit of radio access nodes, for SINR prediction for link adaption, wherein, the central unit comprises the above second apparatus.
Other various example embodiments relate to a system for SINR prediction for link adaption, wherein, the system comprises the above first apparatus and the above second apparatus.
Other various example embodiments relate to a non-transitory computer-readable medium comprising computer instructions for causing an apparatus to perform at least:
receiving historic measurement data collected from radio access nodes,  wherein, the measurement data comprises SINR and related measurements;
training one or more prediction models with the historic measurement data based on one or more neutral networks.
Other various example embodiments relate to a non-transitory computer-readable medium comprising computer instructions for causing an apparatus to perform at least:
receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
obtaining one or more prediction models based on one or more neutral networks;
predicting SINR with the prediction models and the historic measurement data;
sending the predicting SINR to one or more link adaptation modules in cellular network.
As such, the implementation of various example embodiments of the subject matter proposes methods and apparatuses for SINR prediction for link adaption. With a deep learning network, a Deep-Learning-Assistant (DLA) SINR prediction is provided. It will simplify the online calculation in field, by shifting many challenges in traditional approach to neutral training stage. Besides, it will improve the accuracy of SINR prediction, and then improve the accuracy of MCS selection.
BRIEF DESCRIPTION OF THE DRAWINGS
Other features, purposes and advantages of the subject matter will become more explicit by means of reading the detailed statement of the non-restrictive embodiments made with reference to the accompanying drawings.
FIG. 1 is a block diagram illustrating an exemplary embodiment of a first apparatus for SINR prediction for link adaption.
FIG. 2 is a block diagram illustrating an exemplary embodiment of a second apparatus for SINR prediction for link adaption.
FIG. 3 is a block diagram illustrating an exemplary embodiment of a deployment for SINR prediction for link adaption.
FIG. 4 shows an exemplary embodiment of SINR prediction implantation using DNN.
FIG. 5 is a flow chart illustrating an exemplary embodiment of a method for SINR prediction for link adaption.
DETAILED DESCRIPTION AND PREFERRED EMBODIMENT
The word "exemplary" is used herein to mean "serving as an example, instance, or illustration. "
Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments. All of the embodiments described in this Detailed Description are exemplary embodiments provided to enable persons skilled in the art to make or use the disclosure and not to limit the scope of the disclosure.
Referring to FIG. 1, an exemplary embodiment of a first apparatus 10 for SINR prediction modeling for link adaption, comprising means for performing:
means 110 for receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
means 120 for training one or more prediction models with the historic measurement data based on one or more neutral networks.
Specifically, the related measurements includes but not limited to RSSI (Received Signal Strength Indication) , PHR (Power Headroom Report) , CQI (Channel Quality Indicator) . For example, the radio access nodes send SINR, RSSI, PHR, CQI which collected from a plurality of TTIs before to the first apparatus 10.
The prediction models could predict SINR and related measurements on the next sequence. For example, the prediction models are trained based on historic SINR and related measurements from TTI (n) and before, and the prediction models could predict the SINR and related measurements for TTI (n+1) .
In another embodiment, the neutral networks comprise any one or more DNNs (Deep Neural Networks) . Specifically, the DNNs includes but not limited to CNN (Convolutional Neural Network) , RNN (Recurrent Neural Network) , LSTM (Long Short-Term Memory) or other neutral networks.
In another embodiment, the first apparatus 10 further comprises: means for converting the historic measurement data into input data for one or more neutral networks. For example, according to the format requirement of neural networks, the first apparatus 10 converts the historic measurement data in format into adaptive input data for neural networks.
Then, the means for training one or more prediction models trains one or more prediction models with the input data based on the one or more neutral networks.
In another embodiment, the first apparatus 10 further comprises: means for obtaining one or more prediction measurement data predicted by the prediction models and real measured SINR corresponding to the prediction measurement data; and means for updating the prediction models based on the prediction measurement data and real measured SINR.
Specifically, the means for updating the prediction models compares the predict SINR and real measured SINR first, and determines whether updating the prediction models or not; if the predict SINR and real measured SINR are not same, or the difference between the predict SINR and real measured SINR exceeds the predetermined threshold, the means will update the prediction models by the historic measurement data which is used as input data and the real measured SINR which is used as a model answer. Herein, the historic  measurement data includes but not limited to SINR, RSSI, PHR, CQI, etc.
Therefore, the first apparatus 10 could realize a self-corrective feedback with online learning, which updates learned models based on predicted SINR data and real measured SINR data later.
Those skilled in the art could understand that it will simplify the online calculation in field, by shifting many challenges in traditional approach to offline training stage. Additionally, none latency sensitivity online training and learning is also further options for better fine tuning on results later.
Referring to FIG. 2, an exemplary embodiment of a second apparatus 20 for SINR prediction for link adaption, comprising means for performing:
means 210 for receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
means 220 for obtaining one or more prediction models based on one or more neutral networks;
means 230 for predicting SINR with the prediction models and the historic measurement data;
means 240 for sending the predicting SINR to one or more link adaptation modules in cellular network.
Specifically, the means 220 could obtain the one or more prediction models from the apparatus 10, or other apparatus which could provide the prediction models. The means 230 takes the historic measurement data as input information. The prediction models could calculate a result as the predicting SINR.
Herein, the means preceding comprises:
at least one processor; and
at least one memory including computer program code, that at least one  memory and computer program code configured to , with the at least one processor, cause the performance of the apparatus.
Referring to FIG. 3, FIG. 3 is a block diagram illustrating an exemplary embodiment of a deployment for SINR prediction for link adaption.
The first apparatus is deployed on Central Unit (CU) to train the model with batch measurement data collected from Radio Access Node (RAN) , and the second apparatus is deployed on DU to close RAN (UP) and ensure quick delivery of model output. This deployment could support Deep-Learning-Assistant (DLA) SINR prediction or intelligent Link Adaption.
RAN transmits batch sampled measurement data to the first apparatus on CU. The first apparatus trains models, and the second apparatus on DU predicts SINR.
The second apparatus transmits predict results to RAN, and RAN sends current measurement data to the second apparatus.
The second apparatus transmits the current measurement data to the first apparatus as model feedback, and the first apparatus updates the models with the model feedback. Then the update model is send to the second apparatus.
Referring to FIG. 4, FIG. 4 shows an exemplary embodiment of SINR prediction implantation using DNN.
The embodiment takes use of RNN /LSTM as the deep learning model. It includes two parts:
One is a feature extractor with prediction, which learns features from raw data automatically.
The other is a self-corrective feedback with online learning, which updates learned model based on predicted SINR data and real measured SINR data later.
The parameters n and k could be determined by product requirements. For  example, in an embodiment, the n could be defined 5 or 10.
Referring to FIG. 5, FIG. 5 is a flow chart illustrating an exemplary embodiment of a method for SINR prediction for link adaption.
at step510, receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
at step520, training one or more prediction models with the historic measurement data based on one or more neutral networks;
at step530, predicting SINR with the prediction models and the historic measurement data.
Specifically, the related measurements includes but not limited to RSSI (Received Signal Strength Indication) , PHR (Power Headroom Report) , CQI (Channel Quality Indicator) . For example, the radio access nodes send SINR, RSSI, PHR, CQI which collected from a plurality of TTIs before.
The prediction models could predict SINR and related measurements on the next sequence. For example, the prediction models are trained based on historic SINR and related measurements from TTI (n) and before, and the prediction models could predict the SINR and related measurements for TTI (n+1) .
In another embodiment, the neutral networks comprise any one or more DNNs (Deep Neural Networks) . Specifically, the DNNs includes but not limited to CNN (Convolutional Neural Network) , RNN (Recurrent Neural Network) , LSTM (Long Short-Term Memory) or other neutral networks.
In another embodiment, the method further comprises the following steps:
converting the historic measurement data into input data for one or more neutral networks. For example, according to the format requirement of neural networks, it converts the historic measurement data in format into adaptive  input data for neural networks.
Then, at step520, it trains one or more prediction models with the input data based on the one or more neutral networks.
In another embodiment, the method further comprises the following steps:
obtaining one or more prediction measurement data predicted by the prediction models and real measured SINR corresponding to the prediction measurement data; and updating the prediction models based on the prediction measurement data and real measured SINR.
Specifically, it compares the predict SINR and real measured SINR first, and determines whether updating the prediction models or not; if the predict SINR and real measured SINR are not same, or the difference between the predict SINR and real measured SINR exceeds the predetermined threshold, the prediction models will be updated by the historic measurement data which is used as input data and the real measured SINR which is used as a model answer. Herein, the historic measurement data includes but not limited to SINR, RSSI, PHR, CQI, etc.
Therefore, the method could realize a self-corrective feedback with online learning, which updates learned models based on predicted SINR data and real measured SINR data later.
Those skilled in the art could understand that it will simplify the online calculation in field, by shifting many challenges in traditional approach to offline training stage. Additionally, none latency sensitivity online training and learning is also further options for better fine tuning on results later.
At step530, it takes the historic measurement data as input information. The prediction models could calculate a result as the predicting SINR.
Also, a non-transitory computer-readable medium comprising computer instructions for causing an apparatus to perform at least:
receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
training one or more prediction models with the historic measurement data based on one or more neutral networks.
And, a non-transitory computer-readable medium comprising computer instructions for causing an apparatus to perform at least:
receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
obtaining one or more prediction models based on one or more neutral networks;
predicting SINR with the prediction models and the historic measurement data;
sending the predicting SINR to one or more link adaptation modules in cellular network.
For a person skilled in the art, it is apparent that the present disclosure is not limited to the details of the above exemplary embodiments, and the present disclosure can be implemented in other specific forms without departing from the spirit or essential characteristics of the present disclosure. Therefore, the embodiments should be regarded as exemplarily and not restrictive, and the scope of the present disclosure is defined by the appended claims rather than the above description, and therefore it is intended that the claims All changes that come within the meaning and range of equivalency of the disclosure are encompassed by the disclosure. Any reference signs in the claims should not be regarded as limiting the involved claims. In addition, it is clear that the word "comprising" does not exclude other units or steps, and the singular does not exclude the plural. The multiple units or devices recited in the system claims may also be implemented by one unit or device through software or hardware. Words such as first, second, etc., are used to indicate a name and do  not indicate any specific order.
Aspects of various embodiments are specified in the claims. Those and other aspects of various embodiments are specified in the following numbered clauses:
1. A method for SINR prediction for link adaption, comprising the steps of:
receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
training one or more prediction models with the historic measurement data based on one or more neutral networks;
predicting SINR with the prediction models and the historic measurement data.
2. The method of clause 1, wherein the method further comprises:
a step of obtaining one or more prediction measurement data predicted by the prediction models and real measured SINR corresponding to the prediction measurement data;
a step of updating the prediction models based on the prediction measurement data and real measured SINR.
3. The method of  clause  1 or 2, wherein the method further comprises:
a step of converting the historic measurement data into input data for one or more neutral networks;
wherein, the step of training one or more prediction models with the historic measurement data based on one or more neutral networks comprises:
training one or more prediction models with the input data based on the one or more neutral networks.
4. The method of any one of clauses 1 to 3, wherein the neutral networks comprises any one or more DNNs (Deep Neural Networks) .
5. A method for SINR prediction modeling for link adaption in first apparatus, comprising the following steps:
receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
training one or more prediction models with the historic measurement data based on one or more neutral networks.
6. The method of clause 5, wherein the method further comprises:
a step of obtaining one or more prediction measurement data predicted by the prediction models and real measured SINR corresponding to the prediction measurement data;
a step of updating the prediction models based on the prediction measurement data and real measured SINR.
7. The method of clause 5 or 6, wherein the method further comprises:
a step of converting the historic measurement data into input data for one or more neutral networks;
wherein, the step of training one or more prediction models with the historic measurement data based on one or more neutral networks comprises:
training one or more prediction models with the input data based on the one or more neutral networks.
8. The method of any one of clause s 5 to 7, wherein the neutral networks comprises any one or more DNNs (Deep Neural Networks) .
9. A method for SINR prediction for link adaption in second apparatus, comprising the following steps:
receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
obtaining one or more prediction models based on one or more neutral networks;
predicting SINR with the prediction models and the historic measurement data;
sending the predicting SINR to one or more link adaptation modules in cellular network.
10. A first apparatus for SINR prediction modeling for link adaption, comprising means for performing:
receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
training one or more prediction models with the historic measurement data based on one or more neutral networks.
11. The apparatus of claim 10, wherein the means are further configured to perform:
obtaining one or more prediction measurement data predicted by the prediction models and real measured SINR corresponding to the prediction measurement data;
updating the prediction models based on the prediction measurement data and real measured SINR.
12. The apparatus of claim 10 or 11, wherein the means are further configured to perform:
converting the historic measurement data into input data for one or more neutral networks;
wherein, the means for training one or more prediction models with the historic measurement data based on one or more neutral networks performing:
training one or more prediction models with the input data based on the one or more neutral networks.
13. The apparatus of any one of claims 10 to 12, wherein the neutral networks comprises any one or more DNNs (Deep Neural Networks) .
14. The apparatus of any one of claims 10 to 13, wherein the means comprises:
at least one processor; and
at least one memory including computer program code, that at least one memory and computer program code configured to , with the at least one processor, cause the performance of the apparatus.
15. A second apparatus for SINR prediction for link adaption, comprising means for performing:
receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
obtaining one or more prediction models based on one or more neutral networks;
predicting SINR with the prediction models and the historic measurement data;
sending the predicting SINR to one or more link adaptation modules in cellular network.
16. The apparatus of claim 15, wherein the means comprises:
at least one processor; and
at least one memory including computer program code, that at least one memory and computer program code configured to , with the at least one processor, cause the performance of the apparatus.
17. A central unit of radio access nodes, for SINR prediction modeling for link adaption, wherein, the central unit comprises the first apparatus of anyone of clauses 10 to 14.
18. A distributed unit of radio access nodes, for SINR prediction for link adaption, wherein, the central unit comprises the second apparatus of anyone of clauses 15 or 16.
19. A system for SINR prediction for link adaption, wherein, the system comprises a first apparatus of anyone of clauses 10 to 14 and a second apparatus of anyone of clauses 15 or 16.
20. A non-transitory computer-readable medium comprising computer instructions for causing an apparatus to perform at least: :
receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
training one or more prediction models with the historic measurement  data based on one or more neutral networks.
21. A non-transitory computer-readable medium comprising computer instructions for causing an apparatus to perform at least:
receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
obtaining one or more prediction models based on one or more neutral networks;
predicting SINR with the prediction models and the historic measurement data;
sending the predicting SINR to one or more link adaptation modules in cellular network.

Claims (14)

  1. A method for SINR prediction for link adaption, comprising the steps of:
    receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
    training one or more prediction models with the historic measurement data based on one or more neutral networks;
    predicting SINR with the prediction models and the historic measurement data.
  2. The method of claim 1, wherein the method further comprises:
    a step of obtaining one or more prediction measurement data predicted by the prediction models and real measured SINR corresponding to the prediction measurement data;
    a step of updating the prediction models based on the prediction measurement data and real measured SINR.
  3. The method of claim 1 or 2, wherein the method further comprises:
    a step of converting the historic measurement data into input data for one or more neutral networks;
    wherein, the step of training one or more prediction models with the historic measurement data based on one or more neutral networks comprises:
    training one or more prediction models with the input data based on the one or more neutral networks.
  4. The method of any one of claims 1 to 3, wherein the neutral networks comprises any one or more DNNs (Deep Neural Networks) .
  5. A first apparatus for SINR prediction modeling for link adaption, comprises:
    at least one processor; and
    at least one memory including computer program code,
    the at least one memory and the computer program code configured to,  with the at least one processor, cause the first apparatus to perform operation of at least the following:
    receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
    training one or more prediction models with the historic measurement data based on one or more neutral networks.
  6. The apparatus of claim 5, wherein the operation further comprises:
    obtaining one or more prediction measurement data predicted by the prediction models and real measured SINR corresponding to the prediction measurement data;
    updating the prediction models based on the prediction measurement data and real measured SINR.
  7. The apparatus of claim 5 or 6, wherein the operation further comprises::
    converting the historic measurement data into input data for one or more neutral networks;
    wherein, the means for training one or more prediction models with the historic measurement data based on one or more neutral networks performing:
    training one or more prediction models with the input data based on the one or more neutral networks.
  8. The apparatus of any one of claims 5 to 7, wherein the neutral networks comprises any one or more DNNs (Deep Neural Networks) .
  9. A second apparatus for SINR prediction for link adaption, comprises:
    at least one processor; and
    at least one memory including computer program code,
    the at least one memory and the computer program code configured to, with the at least one processor, cause the second apparatus to perform operation of at least the following:
    receiving historic measurement data collected from radio access nodes,  wherein, the measurement data comprises SINR and related measurements;
    obtaining one or more prediction models based on one or more neutral networks;
    predicting SINR with the prediction models and the historic measurement data;
    sending the predicting SINR to one or more link adaptation modules in cellular network.
  10. A central unit of radio access nodes, for SINR prediction modeling for link adaption, wherein, the central unit comprises the first apparatus of anyone of claims 5 to 8.
  11. A distributed unit of radio access nodes, for SINR prediction for link adaption, wherein, the central unit comprises the second apparatus of claim 9.
  12. A system for SINR prediction for link adaption, wherein, the system comprises a first apparatus of anyone of claims 5 to 8 and a second apparatus of claim 9.
  13. A non-transitory computer-readable medium comprising computer instructions for causing an apparatus to perform at least:
    receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
    training one or more prediction models with the historic measurement data based on one or more neutral networks.
  14. A non-transitory computer-readable medium comprising computer instructions for causing an apparatus to perform at least:
    receiving historic measurement data collected from radio access nodes, wherein, the measurement data comprises SINR and related measurements;
    obtaining one or more prediction models based on one or more neutral networks;
    predicting SINR with the prediction models and the historic measurement data;
    sending the predicting SINR to one or more link adaptation modules in cellular network.
PCT/CN2018/112608 2018-10-30 2018-10-30 Method and apparatus for sinr prediction for link adaption WO2020087260A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/112608 WO2020087260A1 (en) 2018-10-30 2018-10-30 Method and apparatus for sinr prediction for link adaption
CN201880099042.1A CN112913275A (en) 2018-10-30 2018-10-30 Method and apparatus for SINR prediction for link adaptation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112608 WO2020087260A1 (en) 2018-10-30 2018-10-30 Method and apparatus for sinr prediction for link adaption

Publications (1)

Publication Number Publication Date
WO2020087260A1 true WO2020087260A1 (en) 2020-05-07

Family

ID=70463313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112608 WO2020087260A1 (en) 2018-10-30 2018-10-30 Method and apparatus for sinr prediction for link adaption

Country Status (2)

Country Link
CN (1) CN112913275A (en)
WO (1) WO2020087260A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11412521B1 (en) 2021-03-02 2022-08-09 Qualcomm Incorporated Machine learning aided location-based downlink interference assistance information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041893A1 (en) * 2006-10-05 2008-04-10 Telefonaktiebolaget Lm Ericsson (Publ) Method for predicting channel quality indicator (cq i) values.
US20110170586A1 (en) * 2010-01-13 2011-07-14 Electronics And Telecommunications Research Institute Apparatus and method for predicting sinr in spatially multiplexed multiple input multiple output system
CN102457321A (en) * 2010-10-26 2012-05-16 上海贝尔股份有限公司 Method for predicting down link SINR (Signal-to-Interference and Noise Ratio) in wireless communication system, equipment and base station
CN106068017A (en) * 2016-04-13 2016-11-02 合肥工业大学 Radio link quality Forecasting Methodology based on wavelet neural network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104811991B (en) * 2015-04-17 2018-07-06 合肥工业大学 Radio link quality Forecasting Methodology based on dynamic time warping algorithm

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041893A1 (en) * 2006-10-05 2008-04-10 Telefonaktiebolaget Lm Ericsson (Publ) Method for predicting channel quality indicator (cq i) values.
US20110170586A1 (en) * 2010-01-13 2011-07-14 Electronics And Telecommunications Research Institute Apparatus and method for predicting sinr in spatially multiplexed multiple input multiple output system
CN102457321A (en) * 2010-10-26 2012-05-16 上海贝尔股份有限公司 Method for predicting down link SINR (Signal-to-Interference and Noise Ratio) in wireless communication system, equipment and base station
CN106068017A (en) * 2016-04-13 2016-11-02 合肥工业大学 Radio link quality Forecasting Methodology based on wavelet neural network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARDALANI NAHID: "SINR Prediction in Mobile CDMA Systems by Linear and Nonlinear Artificial Neural-Network-Based Predictors", IJCSI INTERNATIONAL JOURNAL OF COMPUTER SCIENCE ISSUES, vol. 8, no. 4, 1 July 2011 (2011-07-01), pages 220 - 228, XP055698822 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11412521B1 (en) 2021-03-02 2022-08-09 Qualcomm Incorporated Machine learning aided location-based downlink interference assistance information
WO2022186942A1 (en) * 2021-03-02 2022-09-09 Qualcomm Incorporated Machine learning aided location-based downlink interference assistance information

Also Published As

Publication number Publication date
CN112913275A (en) 2021-06-04

Similar Documents

Publication Publication Date Title
US10873413B2 (en) Apparatus and method for link adaptation in uplink grant-less random access
JP6830100B2 (en) CQI information receiving method, transmitting method, receiving device, and transmitting device
RU2386214C2 (en) Stable range forecasting for mimo system
US10778369B2 (en) Method and apparatus for acquiring channel state information (CSI)
EP1810437B1 (en) Wireless communication method and apparatus for adaptively biasing channel quality indicators to maintain a desired block error rate
CN110198180B (en) Link self-adaptive adjustment method, device and computer readable storage medium
US8914686B2 (en) Throughput improvement in wireless systems
US9198064B2 (en) Methods, systems, and computer readable media for simulating channel conditions
US10171146B2 (en) MIMO rank reduction to improve downlink throughput
EP2887572B1 (en) Open-loop link adaption adjusting method and device
CN105519030A (en) Computer program product and apparatus for fast link adaptation in a communication system
US11457453B2 (en) Outer-loop adjustment for link adaptation
US20230309133A1 (en) Method and system for user equipment pairing in full duplex networks based on machine learning
WO2020087260A1 (en) Method and apparatus for sinr prediction for link adaption
US20240113915A1 (en) Selecting a joint equalization and decoding model
CN109842466A (en) A kind of data repeating method and the network equipment
WO2023029751A1 (en) Adaptive coding and modulation method and apparatus, electronic device and storage medium
WO2021048594A1 (en) Methods for block error rate target selection for a communication session and related apparatus
KR20240048524A (en) Hybrid wireless processing chain including deep neural network and static algorithm modules
Zhao et al. Greedy Hybrid Rate Adaptation in Dynamic Wireless Communication Environment
EP4285520A2 (en) Method for transmitting link adaptation state information in telecommunication networks
Liu et al. MIMO mode switching algorithm based on CQI correction of TD-LTE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938419

Country of ref document: EP

Kind code of ref document: A1