WO2020085851A1 - 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법 - Google Patents

표면품질이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법 Download PDF

Info

Publication number
WO2020085851A1
WO2020085851A1 PCT/KR2019/014170 KR2019014170W WO2020085851A1 WO 2020085851 A1 WO2020085851 A1 WO 2020085851A1 KR 2019014170 W KR2019014170 W KR 2019014170W WO 2020085851 A1 WO2020085851 A1 WO 2020085851A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
surface quality
manganese steel
austenite
slab
Prior art date
Application number
PCT/KR2019/014170
Other languages
English (en)
French (fr)
Inventor
김성규
하유미
이동호
이운해
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190118927A external-priority patent/KR102255827B1/ko
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201980068253.3A priority Critical patent/CN112888804A/zh
Priority to EP19877327.7A priority patent/EP3872217A4/en
Publication of WO2020085851A1 publication Critical patent/WO2020085851A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a cryogenic austenitic high-manganese steel material for a storage tank, a storage tank, a ship membrane, and a transport pipe for storage and transportation of liquefied petroleum gas, liquefied natural gas, and a method of manufacturing the same.
  • the present invention relates to an austenitic high-manganese steel for cryogenic temperature that effectively secures surface quality by suppressing surface flaw formation and a method for manufacturing the same.
  • Austenitic high-manganese (Mn) steel has a high toughness because the austenite phase is stable even at room temperature or cryogenic temperature by adjusting the content of manganese (Mn) and carbon (C), which are elements that increase the phase stability of austenite. It can be used as a material for fuel tanks, storage tanks, ship membranes, and transport pipes for storage and transportation of liquefied petroleum gas, liquefied natural gas, etc., which require properties.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2015-0075275 (2015.07.03. Public)
  • an austenitic high-manganese steel for cryogenic temperature and a method for manufacturing the same can be provided by effectively suppressing the formation of surface defects and effectively securing the surface quality.
  • the austenite-based high-manganese steel material having excellent surface quality according to an aspect of the present invention is in weight percent, C: 0.4 to 0.5%, Mn: 23 to 26%, Si: 0.03 to 0.5%, Cr: 3 to 5%, Al: 0.05% or less, S: 0.05% or less, P: 0.5% or less, B: 0.005% or less, including residual Fe and unavoidable impurities, and containing 95% by area or more of austenite as a microstructure.
  • the number of surface flaws formed at a depth of 10 ⁇ m or more from the surface among the surface flaws observed in the area from the surface to the point t / 8 (where t stands for product thickness (mm)) is the unit area. It may be 0.0001 or less per (mm 2 ).
  • the steel material may further include less than 0.7% by weight of Cu.
  • the yield strength of the steel material is 400 MPa or more, and the Charpy impact toughness of -196 ° C may be 41 J or more.
  • the austenite-based high-manganese steel material having excellent surface quality according to an aspect of the present invention is in weight percent, C: 0.4 to 0.5%, Mn: 23 to 26%, Si: 0.03 to 0.5%, Cr: 3 to 5%, Al: 0.05% or less, S: 0.05% or less, P: 0.5% or less, B: 0.005% or less, the slab containing the residual Fe and unavoidable impurities is reheated in a temperature range of 1000 to 1300 ° C, and the reheating is performed.
  • T SR means rough rolling reduction (mm) and slab reheating temperature (°C), respectively.
  • the slab may further include less than 0.7% by weight of Cu.
  • the hot-rolled hot rolled material may be accelerated to 600 ° C. or less at a cooling rate of 10 ° C./s or more.
  • an austenitic high-manganese steel having excellent surface quality while having properties particularly suitable for cryogenic temperatures.
  • FIG 3 is a photograph of a specimen 1 cut in the thickness direction, and a cross section observed by an optical microscope.
  • the present invention relates to an austenitic high-manganese steel for cryogenic temperature and a method of manufacturing the same, hereinafter, to describe preferred embodiments of the present invention.
  • the embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. Embodiments of the present invention are provided to those having ordinary skill in the art to further describe the present invention.
  • the austenite-based high-manganese steel material having excellent surface quality according to an aspect of the present invention is in weight percent, C: 0.4 to 0.5%, Mn: 23 to 26%, Si: 0.03 to 0.5%, Cr: 3 to 5%, Al: 0.05% or less, S: 0.05% or less, P: 0.5% or less, B: 0.005% or less, balance Fe and unavoidable impurities.
  • the austenite-based high-manganese steel material having excellent surface quality according to an aspect of the present invention may further include 0.7 wt% or less of Cu.
  • Carbon (C) is an effective element for stabilizing austenite in steel and securing strength by solid solution strengthening. Therefore, the present invention can limit the lower limit of the carbon (C) content to 0.4% in order to secure low-temperature toughness and strength.
  • the lower limit of the preferred carbon (C) content may be 0.41%, and the lower limit of the more preferred carbon (C) content may be 0.43%. That is, when the carbon (C) content is less than 0.4%, the yield strength may be lowered, the austenite stability is lowered, ferrite or martensite is formed, and the low-temperature toughness may be lowered.
  • the present invention may limit the upper limit of the carbon (C) content to 0.5%.
  • the upper limit of the preferred carbon (C) content may be 0.49%, and the upper limit of the more preferred carbon (C) content may be 0.47%.
  • Manganese (Mn) is an important element that plays a role in stabilizing austenite. Therefore, the present invention can limit the lower limit of the manganese (Mn) content to 23% to achieve this effect. That is, since the present invention includes 23% or more of manganese (Mn), it is possible to effectively increase austenite stability, thereby suppressing the formation of ferrite, ⁇ -martensite, and ⁇ '-martensite, thereby effectively securing low-temperature toughness. You can.
  • the lower limit of the more preferred manganese (Mn) content may be 23.1%.
  • the manganese (Mn) content when the manganese (Mn) content is more than a certain level, the effect of increasing the austenite stability is saturated, while excessive manufacturing cost is greatly increased, and surface oxidation may be deteriorated due to excessive internal oxidation during hot rolling.
  • the upper limit of the silver manganese (Mn) content may be limited to 26%.
  • the upper limit of the more preferable manganese (Mn) content may be 25.5%.
  • Silicon (Si) is an element that is indispensably added in trace amounts as a deoxidizer, such as aluminum (Al).
  • a deoxidizer such as aluminum (Al).
  • the present invention is an upper limit of the silicon (Si) content. Can be limited to 0.5%.
  • the upper limit of the more preferable silicon (Si) content may be 0.45%.
  • an excessive cost is required to reduce the Si content in the steel, so the present invention can limit the lower limit of the silicon (Si) content to 0.03%.
  • the lower limit of the more preferable silicon (Si) content may be 0.04%.
  • Chromium (Cr) is an element that contributes to the increase in strength through solid solution strengthening in austenite.
  • Cr chromium
  • the present invention can limit the lower limit of the chromium (Cr) content to 3% to achieve this effect.
  • the lower limit of the preferred chromium (Cr) content may be 3.1%, and the lower limit of the more preferred chromium (Cr) content may be 3.3%.
  • the present invention may limit the upper limit of the chromium (Cr) content to 5%.
  • the upper limit of the preferred chromium (Cr) content may be 4.5%, and the upper limit of the more preferred chromium (Cr) content may be 4.0%.
  • Sulfur (S) is not only an inevitably introduced impurity element, but also an element that causes hot brittle defects by inclusion formation. Therefore, the present invention can actively suppress the upper limit of the sulfur (S) content, the upper limit of the preferred sulfur (S) content may be 0.05%.
  • Phosphorus (P) 0.5% or less
  • Phosphorus (P) is not only an inevitably introduced impurity element, but also an element that is easily segregated and causes cracking during casting or deteriorates weldability. Therefore, the present invention can actively suppress the upper limit of the phosphorus (P) content, the upper limit of the preferred phosphorus (P) content may be 0.5%.
  • Boron (B) is an element that contributes to the improvement of surface quality by suppressing grain boundary destruction through strengthening of grain boundaries, but is also an element that deteriorates toughness and weldability due to formation of coarse precipitates when excessively added. Therefore, the present invention may include boron (B) of 0.0005% or more to achieve the effect of improving surface quality, but the upper limit of the boron (B) content may be limited to 0.005% to prevent deterioration of weldability.
  • Copper (Cu) is an austenite stabilizing element and is an element that stabilizes austenite together with manganese (Mn) and carbon (C), and is an element contributing to the improvement of low-temperature toughness.
  • copper (Cu) is a very low solid solution in carbide and has a slow diffusion in austenite, it is concentrated at the interface between austenite and carbide to surround the nucleus of fine carbide to further diffuse carbon (C). It is an element that effectively suppresses the formation and growth of carbides. Therefore, the present invention can additionally add a certain amount of copper (Cu) to achieve this effect.
  • the lower limit of the copper (Cu) content may be 0.3%, the lower limit of the preferred copper (Cu) content may be 0.35%, and the lower limit of the more preferred copper (Cu) content may be 0.4%.
  • the present invention may limit the upper limit of the copper (Cu) content to 0.7%.
  • the upper limit of the preferred copper (Cu) content may be 0.65%, and the upper limit of the more preferred copper (Cu) content may be 0.6%.
  • the austenite-based high-manganese steel material having excellent surface quality according to an aspect of the present invention may contain the remaining Fe and other unavoidable impurities in addition to the above-described components.
  • unintended impurities may be inevitably mixed from the raw material or the surrounding environment, and thus cannot be entirely excluded. Since these impurities are known to anyone skilled in the art, they are not specifically mentioned in this specification.
  • addition of effective ingredients other than the above composition is not excluded.
  • the austenite-based high-manganese steel material having excellent surface quality contains 95% by area or more of austenite as a microstructure, and when observed through a cross section using an optical microscope, t / 8 (where t (Meaning the product thickness (mm)) may be 0.0001 or less per unit area (mm 2 ) of the number of surface defects formed at a depth of 10 ⁇ m or more from the surface among the surface defects observed in the region up to the point.
  • the observation area means an arbitrary rectangular area formed on a steel section, and one surface of the observation area may be located adjacent to the surface of the steel material. That is, the height of the observation area is t / 8 (t: product thickness, mm), and the density of surface defects can be calculated using the number of surface defects having a depth of a predetermined level or more among the defects formed in the observation area.
  • the austenite-based high-manganese steel material having excellent surface quality actively suppresses surface defect formation on the product surface through strict process condition control as described below, effectively improving surface quality It is possible to omit subsequent processes such as a grinding process, thereby effectively securing the economics and productivity of the product.
  • the austenite-based high-manganese steel for cryogenic properties with excellent surface quality has a yield strength of 400 MPa or more and a Charpy impact toughness of 41 J or more at -196 ° C, so liquefied petroleum gas, liquefaction requiring cryogenic properties It is possible to provide austenite-based high-manganese steel materials particularly suitable as materials for fuel tanks, storage tanks, ship membranes, and transport pipes for storage and transportation of natural gas.
  • the austenite-based high-manganese steel material having excellent surface quality re-heats a slab provided with the above-described composition in a temperature range of 1000 to 1300 ° C, and rough-rolls the re-heated slab.
  • a bar is provided, and finish rolled in a temperature range of 750 to 1000 ° C to provide a hot rolled material, but the reheating temperature of the slab (T SR , ° C) and the rolling reduction amount of the rough rolling (R RM , mm).
  • the steel composition of the slab corresponds to the steel composition of the austenitic high-manganese steel described above
  • the steel composition of the austenitic high-manganese steel described above is replaced with the description of the steel composition of the austenitic high-manganese steel.
  • Slabs provided with the above-described steel composition can be uniformly heated in a temperature range of 1000 to 1300 ° C.
  • the thickness of the slab provided in the slab reheating step may be about 250 mm, but the scope of the present invention is not necessarily limited thereto.
  • the lower limit of the slab reheating temperature may be limited to 1000 ° C in order to prevent excessive rolling loads in subsequent hot rolling.
  • the higher the heating temperature the easier the hot rolling is secured, but the higher the manganese (Mn) content, the higher the temperature may cause grain boundary oxidation during high-temperature heating, and the present invention limits the upper limit of the slab reheating temperature to 1300 ° C. You can.
  • a re-heated slab may be roughly rolled with a rough rolling bar, and the hot rolling process may be performed by finishing rolling the rough rolling bar at a temperature range of 750 to 1000 ° C to provide a hot rolled material.
  • the high temperature of the hot rolling finish rolling also lowers the deformation resistance, so that the ease of rolling is secured, but the higher the finish rolling temperature causes the surface quality to decrease due to grain boundary oxidation, so the finish rolling temperature of the present invention is 750 to 1000 ° C. Can be limited.
  • the austenitic high-manganese steel of the present invention contains a large amount of manganese (Mn) having strong oxidizing properties, intergranular oxidation is inevitably caused by temperature limitations of the heating furnace. Even if some of the grain boundary oxidation formed during slab reheating is removed by scale, the remaining part grows as a crack during hot rolling to form a surface defect on the surface of the product, thereby deteriorating the surface quality of the product.
  • Mn manganese
  • the inventors of the present invention have reached the conclusion that it is effective to refine the tissue by heating the slab as quickly as possible to minimize re-crystallization to minimize the growth of grain boundary oxidation remaining on the slab surface during hot rolling.
  • an increase in the strain rate is most effective, and an increase in the strain rate is a factor that can be reached through an increase in the rolling amount of the rough rolling, but minimizes the growth of grain boundary oxidation into cracks when the rolling amount is excessively increased.
  • equipment damage due to excessive rolling load may be a problem.
  • the inventor of the present invention has derived the following relational expression 1, which controls the rolling load of hot rolling to a threshold value or less while actively suppressing the formation of surface flaws in the product through repeated experiments.
  • the present invention controls the amount of rough rolling against the furnace temperature to a certain range, as in the relational expression 1 above, so that when the temperature of the furnace is high, the amount of rolling reduction of the rough rolling is relatively increased, thereby intergranular oxidation during hot rolling surface flaws. Growth can be suppressed, and when the furnace temperature is low, the rolling load applied to the rolling mill during hot rolling can be reduced by relatively reducing the rolling amount of rough rolling, so that the optimum slab heating conditions and hot rolling conditions Can provide
  • the hot-rolled hot rolled material may be accelerated to 600 ° C. or less at a cooling rate of 10 ° C./s or more. Since the austenitic high manganese steel of the present invention contains 3 to 5% of chromium (Cr) and C, the cooling rate of the hot rolled material is controlled to 10 ° C./s or more to effectively prevent low-temperature toughness degradation due to carbide precipitation. You can. In addition, in normal accelerated cooling, a cooling rate exceeding 100 ° C / s is difficult to implement due to the characteristics of the equipment, and the present invention can limit the upper limit of the cooling rate to 100 ° C / s.
  • Cr chromium
  • the present invention can limit the cooling stop temperature to 600 ° C. have.
  • the austenitic high-manganese steel material prepared as described above contains 95% by area or more of austenite as a microstructure, but when observing a cross section using an optical microscope, t / 8 from the surface (where t is the product thickness (mm))
  • the number of surface flaws formed at a depth of 10 ⁇ m or more from the surface with respect to the cross-sectional area up to the point may be 0.0001 or less per unit area (mm 2 ), and yield strength of 400 MPa or more and Charpy impact toughness of 41 J or more at -196 ° C can do.
  • a slab having a thickness of 250 mm was manufactured using a steel material having the composition of Table 1 below, and a specimen was prepared by preparing through the process conditions of Table 2 below. Each specimen was prepared by finish rolling in a temperature range of 750 to 1000 ° C, and accelerated cooling to 600 ° C or less at a cooling rate of 10 ° C / s or higher. Impact absorption energy, yield strength, and surface flaw formation were evaluated for each specimen, and the results are shown in Table 2 below. The shock absorption energy was evaluated at -196 ° C using a plate-shaped specimen having a notch of 2 mm according to the standard test method ASTM E23.
  • the tensile test was performed by processing a plate specimen according to the standard test method ASTM E8 / E8M and evaluated by a one-way tensile tester. Depth and number of surface flaws are prepared by cutting specimens in the thickness direction to prepare specimens according to ASTM E112, and then using an optical microscope, the depth of the largest surface flaw in the viewing area and the number of surface flaws greater than 10 ⁇ m per unit area in the viewing area was measured and evaluated.
  • FIG. 1 is a photograph of the surface of the specimen 1
  • FIG. 2 is a photograph of the surface of the specimen 3.
  • FIG. 3 is a photograph obtained by cutting the specimen 1 in the thickness direction and observing the cross section with an optical microscope, and it can be seen that a surface defect was formed on the surface side of the specimen 1 in a direction inclined with respect to the thickness direction of the specimen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고 망간 강재는, 중량%로, C: 0.4~0.5%, Mn: 23~26%, Si: 0.03~0.5%, Cr: 3~5%, Al: 0.05% 이하, S: 0.05% 이하, P: 0.5% 이하, B: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 95면적% 이상의 오스테나이트를 미세조직으로 포함하되, 광학현미경을 이용한 단면 관찰 시, 표면으로부터 t/8(여기서 t는 제품 두께(mm)를 의미함) 지점까지의 영역에서 관찰되는 표면 흠 중 표면으로부터 10㎛ 이상의 깊이로 형성된 표면 흠의 개수가 단위 면적(mm 2)당 0.0001개 이하일 수 있다.

Description

표면품질이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법
본 발명은 액화석유가스, 액화천연가스 등의 저장 및 운반을 위한 연료탱크, 저장탱크, 선박용 멤브레인 및 수송용 파이프 등에 적합한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법에 관한 것이며, 상세하게는 표면 흠 형성을 억제하여 표면품질을 효과적으로 확보한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법에 관한 것이다.
오스테나이트계 고망간(Mn) 강은 오스테나이트의 상 안정성을 높여주는 원소인 망간(Mn)과 탄소(C)의 함량을 조율하여 상온 또는 극저온에서도 오스테나이트 상이 안정하여 높은 인성을 가지므로, 극저온 특성이 요구되는 액화석유가스, 액화천연가스 등의 저장 및 운반을 위한 연료탱크, 저장탱크, 선박용 멤브레인 및 수송용 파이프 등의 소재로 사용될 수 있다.
다만, 고망간(Mn) 강은 산화 경향이 강한 망간(Mn)을 다량 포함하므로, 슬라브 재가열 시 형성된 입계산화 중 일부는 스케일로 제거되지만, 일부는 열간압연 시 크랙으로 성장하여 제품의 표면에 표면 흠으로 잔존할 수 있다. 따라서, 고망간(Mn) 강의 제조 시 제품 표면의 그라인딩 공정이 필수적으로 수반되는바, 경제성 및 생산성 측면에서 바람직하지 않다.
(선행기술문헌)
(특허문헌 1) 대한민국 공개특허공보 제10-2015-0075275호 (2015.07.03. 공개)
본 발명의 한 가지 측면에 따르면 표면 흠 형성을 억제하여 표면품질을 효과적으로 확보한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법이 제공될 수 있다
본 발명의 과제는 상술한 내용에 한정되지 않는다. 통상의 기술자라면 본 명세서의 전반적인 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는, 중량%로, C: 0.4~0.5%, Mn: 23~26%, Si: 0.03~0.5%, Cr: 3~5%, Al: 0.05% 이하, S: 0.05% 이하, P: 0.5% 이하, B: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 95면적% 이상의 오스테나이트를 미세조직으로 포함하되, 광학현미경을 이용한 단면 관찰 시, 표면으로부터 t/8(여기서 t는 제품 두께(mm)를 의미함) 지점까지의 영역에서 관찰되는 표면 흠 중 표면으로부터 10㎛ 이상의 깊이로 형성된 표면 흠의 개수가 단위 면적(mm 2)당 0.0001개 이하일 수 있다.
상기 강재는 0.7중량% 이하의 Cu를 더 포함할 수 있다.
상기 강재의 항복강도는 400MPa 이상이고, -196℃의 샤르피 충격인성은 41J 이상일 수 있다.
본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는, 중량%로, C: 0.4~0.5%, Mn: 23~26%, Si: 0.03~0.5%, Cr: 3~5%, Al: 0.05% 이하, S: 0.05% 이하, P: 0.5% 이하, B: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 1000~1300℃의 온도범위에서 재가열하고, 상기 재가열된 슬라브를 조압연하여 조압연바를 제공하고, 상기 조압연바를 750~1000℃의 온도범위에서 마무리 압연하여 열연재를 제공하되, 하기의 관계식 1을 만족하도록 상기 슬라브의 재가열 온도(T SR)와 상기 조압연의 압하량(R RM)을 제어하여 제조될 수 있다.
[관계식 1]
R RM/T SR > 0.15
(관계식 1에서 R RM 및 T SR는 각각 조압연 압하량(mm) 및 슬라브 재가열 온도(℃)를 의미함)
상기 슬라브는 0.7중량% 이하의 Cu를 더 포함할 수 있다.
상기 마무리 압연 된 열연재를 10℃/s 이상의 냉각속도로 600℃ 이하까지 가속냉각할 수 있다.
상기 과제의 해결 수단은 본 발명의 특징을 모두 열거한 것은 아니며, 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시예를 참조하여 보다 상세하게 이해될 수 있을 것이다.
본 발명의 일 측면에 따르면 극저온용으로 특히 적합한 물성을 가지면서도 우수한 표면품질을 가지 오스테나이트계 고망간 강재를 제공할 수 있다.
또한, 본 발명의 일 측면에 따르면, 그라인딩 등의 후속 공정을 수반하지 않고서도 우수한 표면품질을 확보하여, 생산성 및 경제성을 효과적으로 확보 가능한 오스테나이트계 고망간 강재의 제조방법을 제공할 수 있다.
도 1은 시편 1의 표면을 촬영한 사진이다.
도 2는 시편 3의 표면을 촬영한 사진이다.
도 3은 시편 1을 두께 방향으로 절단한 후 단면을 광학현미경으로 관찰한 사진이다.
본 발명은 극저온용 오스테나이트계 고망간 강재 및 그 제조방법에 관한 것으로, 이하에서는 본 발명의 바람직한 구현예들을 설명하고자 한다. 본 발명의 구현예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명되는 구현예들에 한정되는 것으로 해석되어서는 안된다. 본 발명의 구현예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 본 발명을 더욱 상세하기 위하여 제공되는 것이다.
이하, 본 발명의 강 조성에 대하여 보다 상세히 설명한다. 이하, 특별히 달리 표시하지 않는 한 각 원소의 함량을 나타내는 %는 중량을 기준으로 한다.
본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는, 중량%로, C: 0.4~0.5%, Mn: 23~26%, Si: 0.03~0.5%, Cr: 3~5%, Al: 0.05% 이하, S: 0.05% 이하, P: 0.5% 이하, B: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함할 수 있다. 또한, 본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는 0.7중량% 이하의 Cu를 더 포함할 수 있다.
탄소(C): 0.4~0.5%
탄소(C)는 강 내에 오스테나이트를 안정화시키고, 고용강화에 의해 강도를 확보하는데 효과적인 원소이다. 따라서, 본 발명은 저온인성 및 강도 확보를 위하여 탄소(C) 함량의 하한을 0.4%로 제한할 수 있다. 바람직한 탄소(C) 함량의 하한은 0.41% 일 수 있으며, 보다 바람직한 탄소(C) 함량의 하한은 0.43% 일 수 있다. 즉, 탄소(C) 함량이 0.4% 미만인 경우, 항복강도가 저하될 수 있으며, 오스테나이트 안정도가 저하되어 페라이트 또는 마르텐사이트가 형성되며, 저온인성이 저하될 수 있기 때문이다. 반면, 탄소(C) 함량이 일정 범위를 초과하는 경우 압연 후 냉각 시 과다한 탄화물이 형성될 수 있는바, 본 발명은 탄소(C) 함량의 상한을 0.5%로 제한할 수 있다. 바람직한 탄소(C) 함량의 상한은 0.49%일 수 있으며, 보다 바람직한 탄소(C) 함량의 상한은 0.47% 일 수 있다.
망간(Mn): 23~26%
망간(Mn)은 오스테나이트를 안정화시키는 역할을 하는 중요한 원소이다. 따라서, 본 발명은 이와 같은 효과 달성을 위해 망간(Mn) 함량의 하한을 23%로 제한할 수 있다. 즉, 본 발명은 23% 이상의 망간(Mn)을 포함하므로 오스테나이트 안정도를 효과적으로 증가시킬 수 있으며, 그에 따라 페라이트, ε-마르텐사이트 및 α'-마르텐사이트의 형성을 억제하여 저온인성을 효과적으로 확보할 수 있다. 보다 바람직한 망간(Mn) 함량의 하한은 23.1%일 수 있다. 반면, 망간(Mn) 함량이 일정 수준 이상인 경우, 오스테나이트 안정도 증가 효과는 포화되는 반면 과다한 제조원가가 크게 증가하고, 열간압연 중 내부산화가 과도하게 발생하여 표면품질이 열위해질 수 있는바, 본 발명은 망간(Mn) 함량의 상한을 26%로 제한할 수 있다. 보다 바람직한 망간(Mn) 함량의 상한은 25.5%일 수 있다.
실리콘(Si): 0.03~0.5%
실리콘(Si)은 알루미늄(Al)과 같이 탈산제로서 필수불가결하게 미량 첨가되는 원소이다. 다만, 실리콘(Si)이 과도하게 첨가되는 경우, 입계에 산화물을 형성하여 고온연성을 감소시키고, 크랙 등을 유발하여 표면품질을 저하시킬 우려가 있는바, 본 발명은 실리콘(Si) 함량의 상한을 0.5%로 제한할 수 있다. 보다 바람직한 실리콘(Si) 함량의 상한은 0.45%일 수 있다. 반면, 강 중에서 Si 함량을 줄이기 위해서는 과도한 비용이 소요되는바, 본 발명은 실리콘(Si) 함량의 하한을 0.03%로 제한할 수 있다. 보다 바람직한 실리콘(Si) 함량의 하한은 0.04%일 수 있다.
크롬(Cr): 3~5%
크롬(Cr)은 오스테나이트 내에서 고용강화를 통해 강도 상향에 기여하는 원소이다. 또한, 크롬(Cr)은 우수한 내식성을 가지므로, 고온산화에 의한 표면품질 저하 방지에 효과적으로 기여하는 원소이다. 따라서, 본 발명은 이와 같은 효과 달성을 위해 크롬(Cr) 함량의 하한을 3%로 제한할 수 있다. 바람직한 크롬(Cr) 함량의 하한은 3.1%일 수 있으며, 보다 바람직한 크롬(Cr) 함량의 하한은 3.3%일 수 있다. 반면, 크롬(Cr) 함량이 일정 수준 이상인 경우, 탄화물 생성에 따른 극저온인성 저하가 문제되는바, 본 발명은 크롬(Cr) 함량의 상한을 5%로 제한할 수 있다. 바람직한 크롬(Cr) 함량의 상한은 4.5%일 수 있으며, 보다 바람직한 크롬(Cr) 함량의 상한은 4.0%일 수 있다.
황(S): 0.05% 이하
황(S)은 불가피하게 유입되는 불순물 원소일 뿐만 아니라, 개재물 형성에 의해 열간취성 결함을 유발하는 원소이기도 하다. 따라서, 본 발명은 황(S) 함량의 상한을 적극 억제할 수 있으며, 바람직한 황(S) 함량의 상한은 0.05%일 수 있다.
인(P): 0.5% 이하
인(P)은 불가피하게 유입되는 불순물 원소일 뿐만 아니라, 쉽게 편석되는 원소로서 주조 시 균열발생을 유발하거나, 용접성을 저하시키는 원소이기도 하다. 따라서, 본 발명은 인(P) 함량의 상한을 적극 억제할 수 있으며, 바람직한 인(P) 함량의 상한은 0.5%일 수 있다.
보론(B): 0.005% 이하
보론(B)은 결정입계 강화를 통한 입계파괴의 억제 효과로 표면품질 향상에 기여하는 원소이나, 과도한 첨가 시 조대 석출물의 형성 등에 의해 인성 및 용접성을 저하시키는 원소이기도 하다. 따라서 본 발명은 표면품질 향상의 효과 달성을 위해 0.0005% 이상의 보론(B)을 포함할 수 있으나, 용접성 저하를 방지하기 위하여 보론(B) 함량의 상한을 0.005%로 제한할 수 있다.
구리(Cu): 0.7% 이하
구리(Cu)는 오스테나이트 안정화 원소로 망간(Mn) 및 탄소(C)와 더불어 오스테나이트를 안정화시키는 원소로서, 저온인성 향상에 기여하는 원소이다. 또한, 구리(Cu)는 탄화물 내 고용도가 매우 낮고 오스테나이트 내에서의 확산이 느린 원소이므로, 오스테나이트와 탄화물의 계면에 농축되어 미세한 탄화물의 핵 주위를 둘러싸게 됨으로써 탄소(C)의 추가적인 확산에 따른 탄화물의 생성 및 성장을 효과적으로 억제하는 원소이다. 따라서, 본 발명은 이와 같은 효과 달성을 위해 일정 함량의 구리(Cu)를 추가적으로 첨가할 수 있다. 구리(Cu) 함량의 하한은 0.3%일 수 있으며, 바람직한 구리(Cu) 함량의 하한은 0.35%일 수 있으며, 보다 바람직한 구리(Cu) 함량의 하한은 0.4%일 수 있다. 다만, 구리(Cu) 함량이 일정 수준 이상인 경우 열간취성(hot shortness)에 의한 표면품질이 저하가 문제되는바, 본 발명은 구리(Cu) 함량의 상한을 0.7%로 제한할 수 있다. 바람직한 구리(Cu) 함량의 상한은 0.65%일 수 있으며, 보다 바람직한 구리(Cu) 함량의 상한은 0.6%일 수 있다.
본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는 상기한 성분 이외에 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물이 불가피하게 혼입될 수 있으므로, 이를 전면적으로 배제할 수는 없다. 이들 불순물은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않는다. 더불어, 상기 조성 이외에 유효한 성분의 첨가가 배제되는 것은 아니다.
본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는, 95면적% 이상의 오스테나이트를 미세조직으로 포함하되, 광학현미경을 이용한 단면 관찰 시, 표면으로부터 t/8(여기서 t는 제품 두께(mm)를 의미함) 지점까지의 영역에서 관찰되는 표면 흠 중 표면으로부터 10㎛ 이상의 깊이로 형성된 표면 흠의 개수가 단위 면적(mm 2)당 0.0001개 이하일 수 있다. 여기서, 관찰 영역은 강재 단면상 형성되는 임의의 직사각형 영역을 의미하며, 관찰 영역의 일면은 강재의 표면에 인접하여 위치할 수 있다. 즉, 관찰 영역의 높이는 t/8(t: 제품 두께, mm)이며, 관찰영역 내에 형성된 흠 중 깊이가 일정 수준 이상인 표면 흠 개수를 이용하여 표면 흠 개수 밀도를 산출할 수 있다.
즉, 본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는, 후술하는 바와 같이 엄격한 공정 조건 제어를 통해 제품 표면에서의 표면 흠 형성을 적극 억제하는바, 표면 품질을 효과적으로 확보하여 그라인딩 공정 등의 후속 공정의 생략이 가능하며, 그에 따라 제품의 경제성 및 생산성을 효과적으로 확보할 수 있다.
또한, 본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는 400MPa 이상의 항복강도 및 -196℃에서 41J 이상의 샤르피 충격인성을 구비하므로, 극저온 특성이 요구되는 액화석유가스, 액화천연가스 등의 저장 및 운반을 위한 연료탱크, 저장탱크, 선박용 멤브레인 및 수송용 파이프 등의 소재로 특히 적합한 오스테나이트계 고망간 강재를 제공할 수 있다.
이하, 본 발명의 제조방법에 대해 보다 상세히 설명한다.
본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는, 상술한 조성으로 구비되는 슬라브를 1000~1300℃의 온도범위에서 재가열하고, 상기 재가열된 슬라브를 조압연하여 조압연바를 제공하고, 750~1000℃의 온도범위에서 마무리 압연하여 열연재를 제공하되, 하기의 관계식 1을 만족하도록 상기 슬라브의 재가열 온도(T SR, ℃)와 상기 조압연의 압하량(R RM, mm)을 제어하여 제조될 수 있다.
[관계식 1]
R RM/T SR > 0.15
슬라브 재가열
슬라브의 강 조성은 전술한 오스테나이트계 고망간 강재의 강 조성과 대응하므로, 슬라브의 강 조성에 대한 전술한 오스테나이트계 고망간 강재의 강 조성에 대한 설명으로 대신한다.
전술한 강 조성으로 구비되는 슬라브를 1000~1300℃의 온도범위에서 균일하게 가열할 수 있다. 슬라브 재가열 단계에 제공되는 슬라브의 두께는 약 250mm일 수 있으나, 본 발명의 범위가 반드시 이에 국한되는 것은 아니다.
후속되는 열간압연에서 압연하중이 과도하게 걸리는 것을 방지하기 위하여 슬라브 재가열 온도의 하한은 1000℃로 제한할 수 있다. 또한, 가열온도가 높을수록 열간압연의 용이성이 확보되지만, 망간(Mn) 함량이 높은 강은 고온 가열 시 입계산화가 심하게 발생할 수 있는바, 본 발명은 슬라브 재가열 온도의 상한을 1300℃로 제한할 수 있다.
열간압연
슬라브 재가열 공정 이후 재가열된 슬라브를 조압연바로 조압연하고, 조압연바를 750~1000℃의 온도범위에서 마무리 압연하여 열연재를 제공하는 열간압연 공정이 수반될 수 있다. 열간압연의 마무리 압연 온도 역시 고온일수록 변형저항이 낮아져 압연의 용이성이 확보되지만, 마무리 압연 온도가 높을수록 입계산화에 따른 표면품질 저하가 유발되므로, 본 발명의 마무리 압연 온도는 750~1000℃로 제한될 수 있다.
본 발명의 오스테나이트계 고망간 강은 산화성이 강한 망간(Mn)을 다량 포함하므로, 가열로의 온도 제한에 의하더라도 필연적으로 입계산화가 발생하게 된다. 슬라브 재가열 중에 형성된 입계산화 중 일부는 스케일로 제거되더라도, 잔존하는 일부는 열간압연 중 크랙으로 성장하여 제품의 표면에 표면 흠을 형성하며, 그에 따라 제품의 표면품질이 악화된다.
본 발명의 발명자는 심도 있는 연구를 통해 열간압연 중 슬라브 표면에 잔존하는 입계산화가 크랙으로 성장하는 것을 최소화하기 위해서는 슬라브 가열 후 가급적 신속하게 재결정이 발생하도록 하여 조직을 미세화하는 것이 효과적이라는 결론에 도달하였다. 다만, 재결정 촉진을 위해서는 변형속도의 증가가 가장 효과적이며, 변형속도의 증가는 조압연의 압하량 증가를 통해 도달 가능한 요소이나, 압하량이 과다하게 증가하는 경우 입계산화가 크랙으로 성장하는 것을 최소화하는 것은 별론, 과다한 압연부하에 의한 설비 파손 등이 문제될 수 있다.
따라서, 본 발명의 발명자는 거듭된 실험을 통해 제품의 표면 흠 형성을 적극 억제하면서도 열간압연의 압연부하를 임계치 이하로 제어하는 아래의 관계식 1을 도출하였다.
[관계식 1]
R RM/T SR > 0.15
(관계식 1에서 R RM 및 T SR은 각각 조압연 압하량(mm) 및 슬라브 재가열 온도(℃)를 의미함)
즉, 본 발명은 상기 관계식 1과 같이 가열로 온도에 대한 조압연 압하량을 일정 범위로 제어하므로, 가열로 온도가 높은 경우 상대적으로 조압연의 압하량을 증가시켜 열간압연 중 입계산화가 표면 흠으로 성장하는 것을 억제할 수 있으며, 가열로 온도가 낮은 경우 상대적으로 조압연의 압연량을 감소시켜 열간압연 중 압연기에 가해지는 압연부하를 감소시킬 수 있는바, 최적의 슬라브 가열 조건 및 열간 압연 조건을 제공할 수 있다.
가속냉각
열간압연 공정 이후 마무리 압연된 열연재를 10℃/s 이상의 냉각속도로 600℃ 이하까지 가속냉각할 수 있다. 본 발명의 오스테나이트계 고 망간 강재는 3~5%의 크롬(Cr) 및 C를 포함하므로, 열연재의 냉각속도를 10℃/s 이상으로 제어하여 탄화물 석출에 의한 저온인성 저하를 효과적으로 방지할 수 있다. 또한, 통상의 가속냉각에 있어서 100℃/s를 초과하는 냉각속도는 설비 특성상 구현하기 어려운바, 본 발명은 냉각속도의 상한을 100℃/s로 제한할 수 있다.
또한, 10℃/s 이상의 냉각속도를 적용하여 열연재를 냉각하더라도, 높은 온도에서 냉각이 정지되는 경우 탄화물이 생성 및 성장할 가능성이 높으므로, 본 발명은 냉각 정지 온도를 600℃ 이하로 제한할 수 있다.
상기와 같이 제조된 오스테나이트계 고망간 강재는, 95면적% 이상의 오스테나이트를 미세조직으로 포함하되, 광학현미경을 이용한 단면 관찰 시, 표면으로부터 t/8(여기서 t는 제품 두께(mm)를 의미함) 지점까지의 단면적에 대해 표면으로부터 10㎛ 이상의 깊이로 형성된 표면 흠의 개수가 단위 면적(mm 2)당 0.0001개 이하일 수 있으며, 400MPa 이상의 항복강도 및 -196℃에서 41J 이상의 샤르피 충격인성은 구비할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 후술하는 실시예는 본 발명을 예시하여 보다 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것은 아니라는 점에 유의할 필요가 있다.
(실시예)
하기 표 1의 조성을 가지는 강재를 이용하여 250mm 두께의 슬라브를 제작하였으며, 하기 표 2의 공정 조건을 통해 제조하여 시편을 준비하였다. 각각의 시편은 750~1000℃의 온도범위에서 마무리 압연하고, 10℃/s 이상의 냉각속도로 600℃ 이하까지 가속냉각하여 제조되었다. 각각의 시편에 대해 충격흡수에너지, 항복강도 및 표면 흠 형성 여부를 평가하여 그 결과를 하기 표 2에 함께 나타내었다. 충격흡수에너지는 표준 시험법인 ASTM E23에 준하여 2mm의 노치를 가지는 판상시편을 이용하여 -196℃에서 평가하였다. 인장시험은 표준 시험법인 ASTM E8/E8M에 준하는 판상시편을 가공하여 일방향 인장시험기로 평가하였다. 표면 흠의 깊이 및 개수는 시편을 두께방향으로 절단하여 ASTM E112에 따라 시편을 준비한 후 광학현미경을 이용하여 관찰 영역 내의 가장 큰 표면 흠의 깊이 및 관찰 영역 내의 단위면적당 깊이 10㎛ 이상인 표면 흠의 개수를 측정하여 평가하였다.
구분 Mn Cr C Cu B Si P S.Al S
1 23.2 3.5 0.44 0.50 0.0012 0.041 0.027 0.036 0.0014
2 24.6 3.4 0.46 0.52 0.0028 0.311 0.014 0.039 0.0013
3 25.2 3.4 0.45 0.49 0.0026 0.318 0.017 0.043 0.0015
4 24.8 3.4 0.45 0.48 0.0029 0.300 0.017 0.033 0.0013
5 24.8 3.4 0.45 0.48 0.0029 0.300 0.017 0.033 0.0014
6 24.8 3.4 0.45 0.48 0.0029 0.300 0.017 0.033 0.0015
7 24.8 3.4 0.45 0.48 0.0029 0.300 0.017 0.033 0.0013
8 24.0 3.4 0.44 0.43 0.0030 0.270 0.013 0.023 0.0014
9 24.0 3.4 0.44 0.43 0.0030 0.270 0.013 0.023 0.0015
구분 재가열온도(℃) 조압연압하량(mm) 관계식 1(R RM/T SR) 충격흡수에너지(J, @-196℃) 항복강도(MPa) 최대표면 흠깊이(㎛) 표면 흠개수(개/mm 2) 비고
1 1300 132 0.102 123 458 30 0.03 비교예
2 1174 130 0.111 90 464 28 0.02 비교예
3 1120 180 0.161 96 465 0 0 발명예
4 1150 105 0.091 86 486 32 0.03 비교예
5 1162 135 0.116 84 514 30 0.03 비교예
6 1155 175 0.152 84 514 0 0 발명예
7 1199 203 0.170 84 495 0 0 발명예
8 1198 207 0.173 71 529 0 0 발명예
9 1130 207 0.184 70 531 0 0 발명예
관계식 1을 만족하는 시편 3, 6 내지 9의 경우, 표면 흠이 발생하지 않아 표면품질이 우수한 반면, 관계식 1을 만족하지 않는 시편 1, 2, 4 및 5의 경우, 표면 흠이 발생하여 표면품질이 열위하며, 표면품질 확보를 위해 그라인딩 등의 후속 공정 필수적으로 수반되어야 함을 확인할 수 있다.
도 1은 시편 1의 표면을 촬영한 사진이며, 도 2는 시편 3의 표면을 촬영한 사진이다. 육안 관찰 결과 시편 1에는 미세한 표면 흠이 다량 형성된 반면, 시편 3에는 표면 흠이 형성되지 않아 우수한 표면품질을 확보함을 알 수 있다. 또한, 도 3은 시편 1을 두께 방향으로 절단한 후 단면을 광학현미경으로 관찰한 사진으로, 시편 1의 표면측에는 시편의 두께방향에 대해 경사진 방향으로 표면 흠이 형성된 것을 확인할 수 있다.
이상에서 실시예를 통하여 본 발명을 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.

Claims (6)

  1. 중량%로, C: 0.4~0.5%, Mn: 23~26%, Si: 0.03~0.5%, Cr: 3~5%, Al: 0.05% 이하, S: 0.05% 이하, P: 0.5% 이하, B: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고,
    95면적% 이상의 오스테나이트를 미세조직으로 포함하되,
    광학현미경을 이용한 단면 관찰 시, 표면으로부터 t/8(여기서 t는 제품 두께(mm)를 의미함) 지점까지의 영역에서 관찰되는 표면 흠 중 표면으로부터 10㎛ 이상의 깊이로 형성된 표면 흠의 개수가 단위 면적(mm 2)당 0.0001개 이하인, 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재.
  2. 제1항에 있어서,
    상기 강재는 0.7중량% 이하의 Cu를 더 포함하는, 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재.
  3. 제1항에 있어서,
    상기 강재의 항복강도는 400MPa 이상이고, -196℃의 샤르피 충격인성은 41J 이상인, 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재.
  4. 중량%로, C: 0.4~0.5%, Mn: 23~26%, Si: 0.03~0.5%, Cr: 3~5%, Al: 0.05% 이하, S: 0.05% 이하, P: 0.5% 이하, B: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 1000~1300℃의 온도범위에서 재가열하고,
    상기 재가열된 슬라브를 조압연하여 조압연바를 제공하고,
    상기 조압연바를 750~1000℃의 온도범위에서 마무리 압연하여 열연재를 제공하되,
    하기의 관계식 1을 만족하도록 상기 슬라브의 재가열 온도(T SR)와 상기 조압연의 압하량(R RM)를 제어하는, 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재의 제조방법.
    [관계식 1]
    R RM/T SR > 0.15
    (관계식 1에서 R RM 및 T SR은 각각 조압연 압하량(mm) 및 슬라브 재가열 온도(℃)를 의미함)
  5. 제4항에 있어서,
    상기 슬라브는 0.7중량% 이하의 Cu를 더 포함하는, 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재의 제조방법.
  6. 제4항에 있어서,
    상기 마무리 압연 된 열연재를 10℃/s 이상의 냉각속도로 600℃ 이하까지 가속냉각하는, 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재의 제조방법.
PCT/KR2019/014170 2018-10-25 2019-10-25 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법 WO2020085851A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980068253.3A CN112888804A (zh) 2018-10-25 2019-10-25 表面质量优异的超低温用奥氏体高锰钢材及其制备方法
EP19877327.7A EP3872217A4 (en) 2018-10-25 2019-10-25 HIGH MANGANESE AUSTENITIC AUSTENITIC STAINLESS STEEL WITH EXCELLENT SURFACE QUALITY AND ASSOCIATED MANUFACTURING PROCESS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0128501 2018-10-25
KR20180128501 2018-10-25
KR1020190118927A KR102255827B1 (ko) 2018-10-25 2019-09-26 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법
KR10-2019-0118927 2019-09-26

Publications (1)

Publication Number Publication Date
WO2020085851A1 true WO2020085851A1 (ko) 2020-04-30

Family

ID=70331684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014170 WO2020085851A1 (ko) 2018-10-25 2019-10-25 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2020085851A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000041265A (ko) * 1998-12-22 2000-07-15 이구택 표면스켑결함과 크랙결함을 동시에 방지하는 미니밀공정에 의한고망간강 열연강판의 제조방법
JP2011246817A (ja) * 2003-07-22 2011-12-08 Arcelormittal France 強度を高められ、靱性に優れ、低温での成形に適した、鉄・炭素・マンガンのオーステナイト鋼板の製造方法並びにそのようにして製造された鋼板
KR20150075275A (ko) 2013-12-25 2015-07-03 주식회사 포스코 저온인성이 우수한 고망간 강판 및 그 제조방법
KR20170075657A (ko) * 2015-12-23 2017-07-03 주식회사 포스코 열간 가공성이 우수한 비자성 강재 및 그 제조방법
KR20180070383A (ko) * 2016-12-16 2018-06-26 주식회사 포스코 내지연파괴 특성이 우수한 고강도 클래드 강판
US10041156B2 (en) * 2012-12-26 2018-08-07 Posco High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000041265A (ko) * 1998-12-22 2000-07-15 이구택 표면스켑결함과 크랙결함을 동시에 방지하는 미니밀공정에 의한고망간강 열연강판의 제조방법
JP2011246817A (ja) * 2003-07-22 2011-12-08 Arcelormittal France 強度を高められ、靱性に優れ、低温での成形に適した、鉄・炭素・マンガンのオーステナイト鋼板の製造方法並びにそのようにして製造された鋼板
US10041156B2 (en) * 2012-12-26 2018-08-07 Posco High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor
KR20150075275A (ko) 2013-12-25 2015-07-03 주식회사 포스코 저온인성이 우수한 고망간 강판 및 그 제조방법
KR20170075657A (ko) * 2015-12-23 2017-07-03 주식회사 포스코 열간 가공성이 우수한 비자성 강재 및 그 제조방법
KR20180070383A (ko) * 2016-12-16 2018-06-26 주식회사 포스코 내지연파괴 특성이 우수한 고강도 클래드 강판

Similar Documents

Publication Publication Date Title
WO2016104975A1 (ko) Pwht 후 인성이 우수한 고강도 압력용기용 강재 및 그 제조방법
WO2015099363A1 (ko) 표면 가공 품질이 우수한 저온용강
WO2018117712A1 (ko) 저온인성 및 항복강도가 우수한 고 망간 강 및 제조 방법
WO2019117536A1 (ko) 인장강도 및 저온충격인성이 우수한 압력용기용 강판 및 그 제조방법
WO2021091138A1 (ko) 저온 충격인성이 우수한 고강도 강재 및 그 제조방법
WO2019125083A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2018117450A1 (ko) 저온인성 및 후열처리 특성이 우수한 내sour 후판 강재 및 그 제조방법
KR20210102146A (ko) 항복강도가 우수한 오스테나이트계 고망간 강재
WO2020085684A1 (ko) 극저온 인성 및 연성이 우수한 압력용기용 강판 및 그 제조 방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2020111628A1 (ko) 수소유기균열 저항성이 우수한 강재 및 그 제조방법
WO2017104995A1 (ko) 인성과 절단균열저항성이 우수한 고경도 내마모강 및 그 제조방법
WO2020111891A1 (ko) 저온파괴인성 및 연신율이 우수한 고강도 강판 및 그 제조방법
WO2020060051A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스 열연 무소둔 강판 및 그 제조방법
WO2013048181A2 (ko) 내식성 및 열간가공성이 우수한 저합금 듀플렉스 스테인리스강
WO2020085847A1 (ko) 표면품질 및 응력부식균열 저항성이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법
WO2019132179A1 (ko) 고강도 고인성 열연강판 및 그 제조방법
WO2020085851A1 (ko) 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법
WO2019117432A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스강 및 그 제조방법
WO2020085852A1 (ko) 항복강도가 우수한 오스테나이트계 고망간 강재 및 그 제조방법
KR102255827B1 (ko) 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법
WO2019125076A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2020085861A1 (ko) 형상이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법
WO2019093689A1 (ko) 파단 특성이 우수한 고강도, 저인성 냉연강판 및 그 제조 방법
WO2020085864A1 (ko) 내부식성이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019877327

Country of ref document: EP

Effective date: 20210525