WO2020085653A1 - Multiple-pedestrian tracking method and system using teacher-student random fern - Google Patents

Multiple-pedestrian tracking method and system using teacher-student random fern Download PDF

Info

Publication number
WO2020085653A1
WO2020085653A1 PCT/KR2019/012101 KR2019012101W WO2020085653A1 WO 2020085653 A1 WO2020085653 A1 WO 2020085653A1 KR 2019012101 W KR2019012101 W KR 2019012101W WO 2020085653 A1 WO2020085653 A1 WO 2020085653A1
Authority
WO
WIPO (PCT)
Prior art keywords
teacher
random
fun
pedestrians
student
Prior art date
Application number
PCT/KR2019/012101
Other languages
French (fr)
Korean (ko)
Inventor
고병철
남재열
김상준
Original Assignee
계명대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 계명대학교 산학협력단 filed Critical 계명대학교 산학협력단
Publication of WO2020085653A1 publication Critical patent/WO2020085653A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/62Extraction of image or video features relating to a temporal dimension, e.g. time-based feature extraction; Pattern tracking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands

Definitions

  • the present invention relates to a plurality of pedestrian tracking methods and systems, and more particularly, to a plurality of pedestrian tracking methods and systems using a teacher-student random fun.
  • ITS Intelligent Transportation System
  • ADAS Advanced Driver Assistance System
  • the state-of-the-art driver assistance system In order to achieve the appropriate level of safety in an active intelligent traffic system, the state-of-the-art driver assistance system must track all pedestrians in motion to identify pedestrians at risk of entering the road in advance.
  • the Kalman filter is a recursive filter that tracks the dynamic state of noise, and is based on measurements made over time.
  • the Kalman filter repeatedly performs state prediction and measurement update when the motion model and measurement model are linear, or when the motion model and measurement model follow the Gaussian distribution, but cannot be used unless the above two cases are true. have.
  • CNN convolutional neural network
  • Patent No. 10-1588648 name of the invention: pedestrian detection and tracking method for intelligent video surveillance
  • the present invention is proposed to solve the above problems of the previously proposed methods, and extracts a feature value of a pedestrian using tiny YOLO, a type of deep network, and uses a random fun ( Random Fern) aims to provide a number of pedestrian tracking methods and systems using teacher-student random fun that enable real-time learning to minimize false tracking due to pedestrian shape change and size change. Is done.
  • the present invention by using a teacher-student random fun (Teacher-Student Random Ferns) to reduce the number of Ferns (Ferns) to enable real-time tracking, it is possible to quickly and accurately track multiple pedestrians in real time.
  • Another object is to provide a plurality of pedestrian tracking methods and systems using teacher-student random fun.
  • step (3) extracting feature values by inputting an image including a plurality of pedestrians detected in step (2) into a deep network
  • step (2-2) detecting the pedestrians classified in step (2-1) as the plurality of pedestrians.
  • the deep network in step (3) is,
  • It can be a synthetic product neural network.
  • the synthetic product neural network may be tiny YOLO.
  • the tiny YOLO Even more preferably, the tiny YOLO,
  • It may be composed of 9 convolution layers, 6 max pooling layers, and 1 fully connected layers.
  • step (3) the step (3)
  • Feature values may be extracted for each of the plurality of pedestrians detected in step (2).
  • step (4-2) Using the teacher random fun (Teacher Random Fern) learned in step (4-1) may include the step of learning a student random fun (Student Random Fern).
  • the number of Ferns may be less than that of the Teacher Random Ferns.
  • step (5) Preferably, in step (5),
  • a plurality of pedestrians can be tracked by reducing the number of Ferns using the learned Teacher-Student Random Ferns.
  • a camera unit for photographing images including a plurality of pedestrians from a camera installed in a moving vehicle;
  • a detection unit that detects a plurality of pedestrians from the image taken by the camera unit
  • An extraction unit that extracts feature values by inputting an image containing a plurality of pedestrians detected by the detection unit into a deep network
  • It is characterized in that it comprises a tracking unit for tracking a plurality of pedestrians using a teacher-student random fun (Teacher-Student Random Ferns) learned from the learning unit.
  • a teacher-student random fun Teacher-Student Random Ferns
  • the detection unit Preferably, the detection unit, the senor
  • a segmentation module that distinguishes pedestrians and non-pedestrians from the images captured by the camera unit
  • It may include a detection module for detecting the pedestrians identified in the classification module to the plurality of pedestrians.
  • the deep network may be a synthetic product neural network.
  • the synthetic product neural network may be tiny YOLO.
  • the tiny YOLO Even more preferably, the tiny YOLO,
  • It may be composed of 9 convolution layers, 6 max pooling layers, and 1 fully connected layers.
  • the extraction unit Preferably, the extraction unit, the extraction unit, and
  • Feature values may be extracted for each of the pedestrians detected by the detection unit.
  • the learning unit Preferably, the learning unit, the learning unit, the learning unit, and
  • It may include a second learning module for learning the student random fun (Student Random Ferns) using the teacher random fun (Teacher Random Ferns) learned in the first learning module.
  • the number of Ferns may be less than that of the Teacher Random Ferns.
  • the tracking unit Preferably, the tracking unit,
  • a plurality of pedestrians can be tracked by reducing the number of Ferns using the learned Teacher-Student Random Ferns.
  • a feature value of a pedestrian is extracted using tiny YOLO, a type of deep network, and a random value is extracted using the extracted feature value
  • Fern Random Ferns
  • FIG. 1 is a flowchart illustrating a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a multi-layer perceptron (MLP) network among deep networks.
  • MLP multi-layer perceptron
  • step S200 is a view showing a detailed flow of step S200 in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
  • FIG. 4 is a view illustrating step S210 of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
  • FIG. 5 is a view illustrating step S300 of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
  • step S400 is a view showing the detailed flow of step S400 in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an overall process of learning a teacher random ferns in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing an algorithm for learning a student random fun in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
  • FIG. 10 is a view showing the configuration of a plurality of pedestrian tracking systems using a teacher-student random fun according to an embodiment of the present invention.
  • FIG. 11 is a view showing the detailed configuration of a detection unit in a plurality of pedestrian tracking systems using a teacher-student random fun according to an embodiment of the present invention.
  • FIG. 12 is a diagram showing the detailed configuration of a learning unit in a plurality of pedestrian tracking systems using a teacher-student random fun according to an embodiment of the present invention.
  • step S210 Step to distinguish pedestrian and non-pedestrian from the image taken in step S100
  • step S220 detecting pedestrians classified in step S210 as a plurality of pedestrians
  • step S300 extracting feature values by inputting an image including a plurality of pedestrians detected in step S200 into a deep network
  • step S420 Step of learning student random fun using teacher random ferns learned in step S410.
  • Each step of a plurality of pedestrian tracking methods using a teacher-student random fun may be performed by a computer device.
  • the subject may be omitted in each step.
  • a method for tracking a plurality of pedestrians using a teacher-student random fun includes photographing images including a plurality of pedestrians in a camera installed in a moving vehicle (S100) , Detecting a plurality of pedestrians from the image taken in step S100 (S200), extracting feature values by inputting an image including a plurality of pedestrians detected in step S200 into a deep network (S300), in step S300 Using the extracted feature value to learn a teacher-student random fun (Teacher-Student Random Ferns) step (S400), and using a teacher-student random fun (Teacher-Student Random Ferns) learned in step S400 a plurality of It may be implemented, including the step of tracking the pedestrian (S500).
  • ANN Artificial Neural Network
  • the artificial neural network refers to an entire network that has problem-solving ability by changing the strength of synaptic binding through learning by artificial neurons (nodes) that form a network through synaptic binding. In a narrow sense, it may refer to a multi-layer perceptron using error back propagation, but this is a misuse, and the artificial neural network is not limited thereto.
  • a deep network or a deep neural network is an artificial neural network composed of several hidden layers between an input layer and an output layer.
  • Deep networks can model complex non-linear relationships, just like a normal artificial neural network.
  • each object may be represented by a hierarchical configuration of basic elements of an image, where additional layers can aggregate features of progressively gathered lower layers. This feature of the deep network allows modeling of complex data with fewer units than a similarly performed artificial neural network.
  • FIG. 2 is a diagram illustrating a multi-layer perceptron (MLP) network among deep networks.
  • the MLP network is a neural network in which one or more intermediate layers exist between the input layer and the output layer, and the intermediate layer between the input layer and the output layer is called a hidden layer.
  • the network is connected to the input layer, the hidden layer, and the output layer, and there is no direct connection from each layer to the input layer from the output layer.
  • the MLP network has a structure similar to that of the single-layer perceptron, but improves the network capability by overcoming the input / output characteristics of the middle layer and each unit to overcome various disadvantages of the single-layer perceptron.
  • the characteristics of the crystal region formed by perceptrons become more advanced. More specifically, in the case of a single layer, the pattern space is divided into two sections, and in the case of the second floor, a convex open zone or a concave closed zone is formed, and in the case of the third floor, any type of zone may be formed in theory.
  • the Convolutional Neural Network is a type of MLP network designed to use minimal preprocessing.
  • the synthetic product neural network is a neural network composed of one or several convolutional layers, a pooling layer, and a fully connected layer, and has a structure suitable for learning two-dimensional data. Since it can be trained through a backpropagation algorithm, it can be widely used in various application fields such as object classification in image and object detection.
  • the convolution layer can serve to extract features from the input data.
  • the convolution layer may consist of a filter that functions to extract features and an activation function that converts the values extracted from the filter into nonlinear values.
  • Synthetic product neural networks can be trained through gradient descent and backpropagation algorithms.
  • the gradient descent method is an optimization algorithm for first-order approximation values. It is a method of finding the gradient (slope) of a function and continuously moving the gradient to the lower side and repeating it until an extreme value is reached.
  • the backpropagation algorithm is used for multi-layer perceptron learning It refers to a statistical technique, which is a method of adjusting individual weights so that a desired value is output for the same input layer.
  • Random Ferns a method proposed by Ozuysal in 2007, is a modification of Bayes' theory. Random Ferns overcomes the limitations of Bayes' theory by considering the correlation between feature functions. Also, it is possible to perform simple and fast calculations by implementing a feature function using the difference between two pixels. The performance of Random Ferns has better classification performance than the Random Tree, and has the same performance as the object recognition rate of SIFT and a faster computation speed than SIFT.
  • Random Ferns can be defined through the following process.
  • Equation 1 can be defined as Equation 2 by using Bayes definition.
  • Equation 2 Assuming P (C) and P (f 1 , f 2 ,..., f k ) in Equation 2 as predetermined probability values, the multi-class c z may be defined as in Equation 3 below.
  • each feature extraction function can be calculated as in Equation 4 below.
  • Equation (4) can be modified as shown in Equation (5) by using random ferns.
  • an image including a plurality of pedestrians may be photographed by a camera installed in a moving vehicle.
  • a camera installed in a moving vehicle.
  • all pedestrians in motion must be tracked to identify pedestrians at risk of entering the road in advance.
  • images containing multiple pedestrians can be captured.
  • step S200 a plurality of pedestrians may be detected from the image photographed in step S100.
  • 3 is a view showing a detailed flow of step S200 in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
  • step S200 of a method for tracking a plurality of pedestrians using a teacher-student random fun according to an embodiment of the present invention may include distinguishing a pedestrian and a non-pedestrian from the image photographed in step S100 ( S210), and detecting the pedestrians identified in step S210 as a plurality of pedestrians (S220).
  • step S210 is a diagram illustrating steps S210 of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
  • a pedestrian and a non-pedestrian may be distinguished from the image photographed in step S100.
  • the pedestrian may be a person
  • the non-pedestrian may be a power pole, a tree, a building, or the like.
  • step S220 the pedestrians classified in step S210 may be detected as a plurality of pedestrians.
  • the method of tracking a plurality of pedestrians using a teacher-student random fun since it is necessary to detect a plurality of pedestrians and input them to a deep network, feature values of each pedestrian must be extracted, in step S220, step The pedestrians classified in S210 may be detected as a plurality of pedestrians, and input to the deep network of step S300 described below to extract feature values of each pedestrian.
  • step S300 of a plurality of pedestrian tracking methods using a teacher-student random fun is a view illustrating a step S300 of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
  • step S300 of a method for tracking multiple pedestrians using a teacher-student random fun an image including a plurality of pedestrians detected in step S200 is input to a deep network
  • the feature values can be extracted.
  • step S300 of a plurality of pedestrian tracking methods using a teacher-student random fun using a teacher-student random fun according to an embodiment of the present invention, as a deep network, using tiny YOLO, which is a kind of synthetic multiplicity neural network, in step S200 Feature values may be extracted for each pedestrian from an image including a plurality of detected pedestrians.
  • the tiny YOLO may consist of 9 Convolution layers, 6 Max pooling layers, and 1 fully connected layers. At this time, the feature value of the pedestrian can be extracted through the last connection layer, which is the last layer of tiny YOLO.
  • step S400 a teacher-student random ferns may be learned using the feature values extracted in step S300.
  • 6 is a view showing the detailed flow of step S400 in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
  • step S400 of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention uses a teacher random fun using the feature values extracted in step S300.
  • Learning S410
  • teacher random fun Teacher Random Ferns learned in step S410 to learn the student random fun (Student Random Ferns) (S420).
  • Teacher-Student Random Ferns is a tracker composed of Random Ferns.
  • Teacher Random Ferns are constructed based on a large amount of training data, so they have high tracking performance, but tracking speed may be slow and it may be difficult to track pedestrians in real time.
  • a plurality of pedestrian tracking methods using a teacher-student random fun use a student random fun to maintain a tracking performance of a teacher random ferns while maintaining a tracking performance. By reducing the number of (Ferns), pedestrians can be tracked faster and more accurately than before.
  • a teacher random ferns detects and detects a plurality of pedestrians in step S200.
  • an image including a plurality of pedestrians may be input to a deep network and learned using the extracted feature values.
  • the teacher random fern (Teacher Random Ferns) may have a plurality of ferns (Fern), for example, 1 to L (L is a natural number) may have L ferns (Fern).
  • a teacher random fun can be learned using the feature values extracted in step S300. More specifically, the teacher random fun can be learned using the feature value of the pedestrian extracted in step S300 and tiny YOLO, which is one of the synthetic product neural networks.
  • step S420 the student random fun can be learned using the teacher random ferns learned in step S410. More specifically, by using the teacher random fun (Teacher Random Ferns) learned in step S410, it is possible to learn by dividing the case where the pedestrian first or twice appeared.
  • FIG. 8 is a diagram illustrating an algorithm for learning a student random fun in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
  • a student random fun can be learned when a pedestrian first appears.
  • the above algorithm can be repeated as many as the number of pedestrians detected through step S200 to learn student random ferns.
  • the number of Ferns in Student Random Ferns in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention It can be less than the Teacher Random Ferns.
  • step S500 a plurality of pedestrians may be tracked using a teacher-student random ferns learned in step S400. More specifically, in step S500 of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention, using a teacher-student random ferns learned in step S400 By reducing the number of ferns, multiple pedestrians can be tracked.
  • FIG. 10 is a view showing the configuration of a plurality of pedestrian tracking system 10 using a teacher-student random fun according to an embodiment of the present invention.
  • a plurality of pedestrian tracking system 10 using a teacher-student random fun according to an embodiment of the present invention, the camera unit 100, the detection unit 200, the extraction unit 300 , It may be configured to include a learning unit 400 and the tracking unit 500.
  • a plurality of pedestrian tracking systems 10 using a teacher-student random fun includes a camera unit 100 for photographing images including a plurality of pedestrians from a camera installed in a moving vehicle. ), A detection unit 200 for detecting a plurality of pedestrians from an image captured by the camera unit 100, and inputting an image including a plurality of pedestrians detected by the detection unit 200 into a deep network to extract feature values Extractor 300, a learning unit 400 for learning a teacher-student random fun using feature values extracted from the extracting unit 300, and a teacher trained in the learning unit 400 -It may be configured to include a tracker 500 that tracks a plurality of pedestrians using a student-fund random (Teacher-Student Random Ferns).
  • a tracker 500 that tracks a plurality of pedestrians using a student-fund random (Teacher-Student Random Ferns).
  • the detection unit 200 may be used in an image captured by the camera unit 100. It may be configured to include a detection module 220 for detecting the pedestrians separated from the pedestrians and non-pedestrians, and the pedestrians classified in the partitioning module 210 as the plurality of pedestrians.
  • FIG. 12 is a view showing the detailed configuration of the learning unit 400 in a plurality of pedestrian tracking systems 10 using a teacher-student random fun according to an embodiment of the present invention.
  • the learning unit 400 feature values extracted from the extraction unit 300
  • a first learning module 410 for learning a teacher random fun by using, and a student random fun by using a teacher random ferns learned in the first learning module 410 Ferns can be configured to include a second learning module 420.
  • the plurality of pedestrian tracking systems 10 using a teacher-student random fun have been sufficiently described in connection with a plurality of pedestrian tracking methods using a teacher-student random fun, and thus detailed description will be omitted. Shall be
  • a feature value of a pedestrian is extracted using tiny YOLO, a type of deep network, By learning the random ferns using the extracted feature values, real-time learning is possible, thereby minimizing mistracking due to pedestrian shape change and size change.
  • the present invention in order to reduce the number of Ferns (Ferns) to enable real-time tracking, it is possible to quickly and accurately track multiple pedestrians in real time using a Teacher-Student Random Ferns. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Human Computer Interaction (AREA)
  • Image Analysis (AREA)

Abstract

According to a multiple-pedestrian tracking method and system using a teacher-student random fern provided in the present invention, by extracting the feature values of pedestrians by means of tiny YOLO which is a type of depth network, and learning a random fern by means of the extracted feature values, real-time learning is made possible and erroneous tracking due to changes in the shapes and sizes of the pedestrians can be minimized.

Description

교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법 및 시스템Multiple pedestrian tracking method and system using teacher-student random fun
본 발명은 다수의 보행자 추적 방법 및 시스템에 관한 것으로서, 보다 구체적으로는 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법 및 시스템에 관한 것이다.The present invention relates to a plurality of pedestrian tracking methods and systems, and more particularly, to a plurality of pedestrian tracking methods and systems using a teacher-student random fun.
지능형 교통 시스템(Intelligent Transportation System, ITS)과 첨단 운전자 보조 시스템(Advanced Driver Assistance System, ADAS)에서 보행자와 차량의 충돌을 방지하기 위해, 보행자를 탐지하고 추적하는 기술은 필수적인 기술이다.In the Intelligent Transportation System (ITS) and Advanced Driver Assistance System (ADAS), to prevent pedestrians and vehicles from colliding, the technology to detect and track pedestrians is essential.
능동적인 지능형 교통 시스템의 적절한 수준의 안전을 달성하기 위해, 첨단 운전자 보조 시스템에서는 이동 중인 모든 보행자를 추적하여 사전에 도로에 진입할 위험이 있는 보행자를 식별해야한다.In order to achieve the appropriate level of safety in an active intelligent traffic system, the state-of-the-art driver assistance system must track all pedestrians in motion to identify pedestrians at risk of entering the road in advance.
보행자를 추적하는 여러 가지 방법 중에 칼만 필터(Kalman filter)를 이용하여 보행자를 추적하는 방법이 있다. 칼만 필터는 잡음이 포함되어 있는 역학적 상태를 추적하는 재귀 필터로서, 시간에 따라 진행한 측정을 기반으로 한다. 칼만 필터는 모션 모델과 측정 모델이 linear할 경우 또는 모션 모델과 측정 모델이 Gaussian 분포를 따를 경우에 상태 예측과 측정 업데이트를 반복적으로 수행하지만, 위의 두 가지 경우에 해당하지 않는다면 사용할 수 없다는 단점이 있다.Among various methods of tracking pedestrians, there is a method of tracking pedestrians using a Kalman filter. The Kalman filter is a recursive filter that tracks the dynamic state of noise, and is based on measurements made over time. The Kalman filter repeatedly performs state prediction and measurement update when the motion model and measurement model are linear, or when the motion model and measurement model follow the Gaussian distribution, but cannot be used unless the above two cases are true. have.
최근에는, 합성 곱 신경망(Convolutional Neural Network, CNN)을 이용하여 보행자를 추적하는 방법이 연구되고 있으나, 합성 곱 신경망을 이용하여 단일 보행자를 추적하기는 쉽지만, 다수의 보행자를 추적하기 위해서는 많은 양의 파라미터들이 필요하고, 처리해야하는 데이터의 양이 많아 실시간 추적 환경에 적합하지 않는 등의 문제점이 있다.Recently, a method of tracking pedestrians using a convolutional neural network (CNN) has been studied, but it is easy to track a single pedestrian using a synthetic product neural network, but a large amount of traffic is required to track multiple pedestrians. There are problems such as not being suitable for a real-time tracking environment because parameters are required and the amount of data to be processed is large.
따라서, 적은 양의 파라미터를 이용하고 실시간 추적 환경에 적합한 다수의 보행자 추적 방법 및 시스템의 개발이 요구된다.Accordingly, there is a need to develop a plurality of pedestrian tracking methods and systems suitable for a real-time tracking environment using a small amount of parameters.
한편, 본 발명과 관련된 선행기술로서, 등록특허 제10-1588648호(발명의 명칭: 지능형 영상 감시를 위한 보행자 검출 및 추적 방법) 등이 개시된 바 있다.On the other hand, as a prior art related to the present invention, Patent No. 10-1588648 (name of the invention: pedestrian detection and tracking method for intelligent video surveillance) has been disclosed.
본 발명은 기존에 제안된 방법들의 상기와 같은 문제점들을 해결하기 위해 제안된 것으로서, 심층 네트워크의 한 종류인 tiny YOLO를 사용하여 보행자의 특징값을 추출하고, 추출된 특징값을 이용하여 랜덤 펀(Random Fern)을 학습함으로써, 실시간 학습이 가능하여 보행자의 형태변화, 크기변화로 인한 오-추적을 최소화할 수 있는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법 및 시스템을 제공하는 것을 그 목적으로 한다.The present invention is proposed to solve the above problems of the previously proposed methods, and extracts a feature value of a pedestrian using tiny YOLO, a type of deep network, and uses a random fun ( Random Fern) aims to provide a number of pedestrian tracking methods and systems using teacher-student random fun that enable real-time learning to minimize false tracking due to pedestrian shape change and size change. Is done.
또한, 본 발명은, 펀(Ferns)의 개수를 줄여 실시간 추적이 가능하도록 하기 위해, 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 사용하여, 빠르고 정확하게 다수의 보행자를 실시간으로 추적할 수 있는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법 및 시스템을 제공하는 것을 다른 목적으로 한다.In addition, the present invention, by using a teacher-student random fun (Teacher-Student Random Ferns) to reduce the number of Ferns (Ferns) to enable real-time tracking, it is possible to quickly and accurately track multiple pedestrians in real time. Another object is to provide a plurality of pedestrian tracking methods and systems using teacher-student random fun.
상기한 목적을 달성하기 위한 본 발명의 특징에 따른 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용한 다수의 보행자 추적 방법은,In order to achieve the above object, a plurality of pedestrian tracking methods using a teacher-student random ferns according to the features of the present invention,
다수의 보행자 추적 방법으로서,As a number of pedestrian tracking methods,
(1) 움직이는 자동차에 설치된 카메라에서 다수의 보행자가 포함된 영상을 촬영하는 단계;(1) taking an image including a plurality of pedestrians from a camera installed in a moving vehicle;
(2) 상기 단계 (1)에서 촬영된 영상에서 다수의 보행자를 탐지하는 단계;(2) detecting a plurality of pedestrians from the image taken in step (1);
(3) 상기 단계 (2)에서 탐지된 다수의 보행자가 포함된 영상을 심층 네트워크에 입력하여 특징값을 추출하는 단계;(3) extracting feature values by inputting an image including a plurality of pedestrians detected in step (2) into a deep network;
(4) 상기 단계 (3)에서 추출된 특징값을 이용하여 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 학습하는 단계; 및(4) learning a teacher-student random ferns using the feature values extracted in step (3); And
(5) 상기 단계 (4)에서 학습된 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용하여 다수의 보행자를 추적하는 단계를 포함하는 것을 그 구성상의 특징으로 한다.And (5) tracking a plurality of pedestrians using the teacher-student random ferns learned in step (4).
바람직하게는, 상기 단계 (2)는,Preferably, the step (2),
(2-1) 상기 단계 (1)에서 촬영된 영상에서 보행자와 비-보행자를 구분하는 단계; 및(2-1) distinguishing a pedestrian and a non-pedestrian from the image photographed in step (1); And
(2-2) 상기 단계 (2-1)에서 구분된 보행자를 상기 다수의 보행자로 탐지하는 단계를 포함할 수 있다.(2-2) detecting the pedestrians classified in step (2-1) as the plurality of pedestrians.
바람직하게는, 상기 단계 (3)에서의 심층 네트워크는,Preferably, the deep network in step (3) is,
합성 곱 신경망일 수 있다.It can be a synthetic product neural network.
더욱 바람직하게는, 상기 합성 곱 신경망은, tiny YOLO일 수 있다.More preferably, the synthetic product neural network may be tiny YOLO.
더더욱 바람직하게는, 상기 tiny YOLO는,Even more preferably, the tiny YOLO,
9개의 콘볼루션 레이어(Convolution layers), 6개의 맥스 풀링 레이어(Max pooling layers) 및 1개의 완전 연결 레이어(fully connected layers)로 구성될 수 있다.It may be composed of 9 convolution layers, 6 max pooling layers, and 1 fully connected layers.
바람직하게는, 상기 단계 (3)에서는,Preferably, in step (3),
상기 단계 (2)에서 탐지된 다수의 보행자별로 특징값을 추출할 수 있다.Feature values may be extracted for each of the plurality of pedestrians detected in step (2).
바람직하게는, 상기 단계 (4)는,Preferably, the step (4),
(4-1) 상기 단계 (3)에서 추출된 특징값을 이용하여 교사 랜덤 펀(Teacher Random Ferns)을 학습하는 단계; 및(4-1) learning a teacher random fun using the feature values extracted in step (3); And
(4-2) 상기 단계 (4-1)에서 학습된 교사 랜덤 펀(Teacher Random Fern)을 이용하여 학생 랜덤 펀(Student Random Fern)을 학습하는 단계를 포함할 수 있다.(4-2) Using the teacher random fun (Teacher Random Fern) learned in step (4-1) may include the step of learning a student random fun (Student Random Fern).
더욱 바람직하게는, 상기 교사 랜덤 펀(Teacher Random Ferns)은,More preferably, the Teacher Random Ferns (Teacher Random Ferns),
복수개의 펀(Fern)을 가질 수 있다.You can have multiple Ferns.
더욱 바람직하게는, 상기 학생 랜덤 펀(Student Random Ferns)은,More preferably, the Student Random Ferns (Student Random Ferns),
상기 교사 랜덤 펀(Teacher Random Ferns)보다 펀(Fern)의 개수가 적을 수 있다.The number of Ferns may be less than that of the Teacher Random Ferns.
바람직하게는, 상기 단계 (5)에서는,Preferably, in step (5),
상기 학습된 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용하여 펀(Fern)의 개수를 줄여 다수의 보행자를 추적할 수 있다.A plurality of pedestrians can be tracked by reducing the number of Ferns using the learned Teacher-Student Random Ferns.
상기한 목적을 달성하기 위한 본 발명의 특징에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템은,A plurality of pedestrian tracking systems using a teacher-student random fun according to the features of the present invention for achieving the above object,
다수의 보행자 추적 시스템으로서,As a number of pedestrian tracking systems,
움직이는 자동차에 설치된 카메라에서 다수의 보행자가 포함된 영상을 촬영하는 카메라부;A camera unit for photographing images including a plurality of pedestrians from a camera installed in a moving vehicle;
상기 카메라부에서 촬영된 영상에서 다수의 보행자를 탐지하는 탐지부;A detection unit that detects a plurality of pedestrians from the image taken by the camera unit;
상기 탐지부에서 탐지된 다수의 보행자가 포함된 영상을 심층 네트워크에 입력하여 특징값을 추출하는 추출부;An extraction unit that extracts feature values by inputting an image containing a plurality of pedestrians detected by the detection unit into a deep network;
상기 추출부에서 추출된 특징값을 이용하여 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 학습하는 학습부; 및A learning unit for learning a teacher-student random ferns using the feature values extracted from the extraction unit; And
상기 학습부에서 학습된 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용하여 다수의 보행자를 추적하는 추적부를 포함하는 것을 그 구성상의 특징으로 한다.It is characterized in that it comprises a tracking unit for tracking a plurality of pedestrians using a teacher-student random fun (Teacher-Student Random Ferns) learned from the learning unit.
바람직하게는, 상기 탐지부는,Preferably, the detection unit,
상기 카메라부에서 촬영된 영상에서 보행자와 비-보행자를 구분하는 구분 모듈; 및A segmentation module that distinguishes pedestrians and non-pedestrians from the images captured by the camera unit; And
상기 구분 모듈에서 구분된 보행자를 상기 다수의 보행자로 탐지하는 탐지 모듈을 포함할 수 있다.It may include a detection module for detecting the pedestrians identified in the classification module to the plurality of pedestrians.
바람직하게는, 상기 심층 네트워크는, 합성 곱 신경망일 수 있다.Preferably, the deep network may be a synthetic product neural network.
더욱 바람직하게는, 상기 합성 곱 신경망은, tiny YOLO일 수 있다.More preferably, the synthetic product neural network may be tiny YOLO.
더더욱 바람직하게는, 상기 tiny YOLO는,Even more preferably, the tiny YOLO,
9개의 콘볼루션 레이어(Convolution layers), 6개의 맥스 풀링 레이어(Max pooling layers) 및 1개의 완전 연결 레이어(fully connected layers)로 구성될 수 있다.It may be composed of 9 convolution layers, 6 max pooling layers, and 1 fully connected layers.
바람직하게는, 상기 추출부는,Preferably, the extraction unit,
상기 탐지부에서 탐지된 다수의 보행자별로 특징값을 추출할 수 있다.Feature values may be extracted for each of the pedestrians detected by the detection unit.
바람직하게는, 상기 학습부는,Preferably, the learning unit,
상기 추출부에서 추출된 특징값을 이용하여 교사 랜덤 펀(Teacher Random Ferns)을 학습하는 제1 학습 모듈; 및A first learning module for learning a teacher random ferns using the feature values extracted from the extraction unit; And
상기 제1 학습 모듈에서 학습된 교사 랜덤 펀(Teacher Random Ferns)을 이용하여 학생 랜덤 펀(Student Random Ferns)을 학습하는 제2 학습 모듈을 포함할 수 있다.It may include a second learning module for learning the student random fun (Student Random Ferns) using the teacher random fun (Teacher Random Ferns) learned in the first learning module.
더욱 바람직하게는, 상기 교사 랜덤 펀(Teacher Random Ferns)은,More preferably, the Teacher Random Ferns (Teacher Random Ferns),
복수개의 펀(Fern)을 가질 수 있다.You can have multiple Ferns.
더욱 바람직하게는, 상기 학생 랜덤 펀(Student Random Ferns)은,More preferably, the Student Random Ferns (Student Random Ferns),
상기 교사 랜덤 펀(Teacher Random Ferns)보다 펀(Fern)의 개수가 적을 수 있다.The number of Ferns may be less than that of the Teacher Random Ferns.
바람직하게는, 상기 추적부는,Preferably, the tracking unit,
상기 학습된 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용하여 펀(Fern)의 개수를 줄여 다수의 보행자를 추적할 수 있다.A plurality of pedestrians can be tracked by reducing the number of Ferns using the learned Teacher-Student Random Ferns.
본 발명에서 제안하고 있는 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법 및 시스템에 따르면, 심층 네트워크의 한 종류인 tiny YOLO를 사용하여 보행자의 특징값을 추출하고, 추출된 특징값을 이용하여 랜덤 펀(Random Ferns)을 학습함으로써, 실시간 학습이 가능하여 보행자의 형태변화, 크기변화로 인한 오-추적을 최소화할 수 있다.According to a plurality of pedestrian tracking methods and systems using a teacher-student random fun proposed in the present invention, a feature value of a pedestrian is extracted using tiny YOLO, a type of deep network, and a random value is extracted using the extracted feature value By learning the Fern (Random Ferns), real-time learning is possible, minimizing mistracking due to pedestrian shape change and size change.
또한, 본 발명에서 제안하고 있는 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법 및 시스템에 따르면, 펀(Ferns)의 개수를 줄여 실시간 추적이 가능하도록 하기 위해, 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 사용하여, 빠르고 정확하게 다수의 보행자를 실시간으로 추적할 수 있다.In addition, according to a plurality of pedestrian tracking methods and systems using the teacher-student random fun proposed in the present invention, to reduce the number of ferns (Ferns) to enable real-time tracking, teacher-student random fun (Teacher-Student) Random Ferns), it is possible to quickly and accurately track multiple pedestrians in real time.
도 1은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 흐름도를 도시한 도면.1 is a flowchart illustrating a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
도 2는 심층 네트워크 중 MLP(Multi-Layer Perceptron) 네트워크를 설명하기 위해 도시한 도면.FIG. 2 is a diagram illustrating a multi-layer perceptron (MLP) network among deep networks.
도 3은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법에서, 단계 S200의 세부적인 흐름을 도시한 도면.3 is a view showing a detailed flow of step S200 in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 단계 S210을 설명하기 위해 도시한 도면.FIG. 4 is a view illustrating step S210 of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 단계 S300을 설명하기 위해 도시한 도면.FIG. 5 is a view illustrating step S300 of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법에서, 단계 S400의 세부적인 흐름을 도시한 도면.6 is a view showing the detailed flow of step S400 in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법에서 교사 랜덤 펀(Teacher Random Ferns)을 학습하는 전체적인 과정을 도시한 도면.7 is a diagram illustrating an overall process of learning a teacher random ferns in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법에서 학생 랜덤 펀(Student Random Ferns)을 학습하는 알고리즘을 도시한 도면.8 is a diagram showing an algorithm for learning a student random fun in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention.
도 9는 (a) QuadMOT를 이용하여 다수의 보행자를 추적한 모습과 (b) 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법을 이용하여 다수의 보행자를 추적한 모습을 비교하기 위해 도시한 도면.9 is (a) tracking a plurality of pedestrians using QuadMOT and (b) tracking a plurality of pedestrians using a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention Drawings for comparison.
도 10은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템의 구성을 도시한 도면.10 is a view showing the configuration of a plurality of pedestrian tracking systems using a teacher-student random fun according to an embodiment of the present invention.
도 11은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템에 있어서 탐지부의 세부적인 구성을 도시한 도면.11 is a view showing the detailed configuration of a detection unit in a plurality of pedestrian tracking systems using a teacher-student random fun according to an embodiment of the present invention.
도 12는 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템에 있어서 학습부의 세부적인 구성을 도시한 도면.12 is a diagram showing the detailed configuration of a learning unit in a plurality of pedestrian tracking systems using a teacher-student random fun according to an embodiment of the present invention.
<부호의 설명><Description of code>
10: 다수의 보행자 추적 시스템10: Multiple pedestrian tracking system
100: 카메라부100: camera unit
200: 탐지부200: detection unit
210: 구분 모듈210: classification module
220: 탐지 모듈220: detection module
300: 추출부300: extraction unit
400: 학습부400: learning department
410: 제1 학습 모듈410: first learning module
420: 제2 학습 모듈420: second learning module
500: 추적부500: tracker
S100: 움직이는 자동차에 설치된 카메라에서 다수의 보행자가 포함된 영상을 촬영하는 단계S100: Step of shooting an image containing a plurality of pedestrians from a camera installed in a moving car
S200: 단계 S100에서 촬영된 영상에서 다수의 보행자를 탐지하는 단계S200: detecting a plurality of pedestrians in the image taken in step S100
S210: 단계 S100에서 촬영된 영상에서 보행자와 비-보행자를 구분하는 단계S210: Step to distinguish pedestrian and non-pedestrian from the image taken in step S100
S220: 단계 S210에서 구분된 보행자를 다수의 보행자로 탐지하는 단계S220: detecting pedestrians classified in step S210 as a plurality of pedestrians
S300: 단계 S200에서 탐지된 다수의 보행자가 포함된 영상을 심층 네트워크에 입력하여 특징값을 추출하는 단계S300: extracting feature values by inputting an image including a plurality of pedestrians detected in step S200 into a deep network
S400: 단계 S300에서 추출된 특징값을 이용하여 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 학습하는 단계S400: Learning a teacher-student random ferns using the feature values extracted in step S300.
S410: 단계 S300에서 추출된 특징값을 이용하여 교사 랜덤 펀(Teacher Random Ferns)을 학습하는 단계S410: Learning a teacher random fun using the feature values extracted in step S300.
S420: 단계 S410에서 학습된 교사 랜덤 펀(Teacher Random Ferns)을 이용하여 학생 랜덤 펀(Student Random Ferns)을 학습하는 단계S420: Step of learning student random fun using teacher random ferns learned in step S410.
S500: 단계 S400에서 학습된 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용하여 다수의 보행자를 추적하는 단계S500: Tracking multiple pedestrians using the teacher-student random ferns learned in step S400
이하에서는 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일 또는 유사한 부호를 사용한다.Hereinafter, preferred embodiments will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains can easily implement the present invention. However, in the detailed description of a preferred embodiment of the present invention, when it is determined that a detailed description of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. In addition, the same or similar reference numerals are used throughout the drawings for parts having similar functions and functions.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 ‘연결’되어 있다고 할 때, 이는 ‘직접적으로 연결’되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 ‘간접적으로 연결’되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 ‘포함’한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, in the entire specification, when a part is said to be 'connected' with another part, it is not only 'directly connected', but also 'indirectly connected' with another element in between. Includes. In addition, "including" a component means that other components may be further included instead of excluding other components, unless otherwise stated.
본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 각각의 단계는 컴퓨터 장치에 의해 수행될 수 있다. 이하에서는 설명의 편의를 위해 각각의 단계에서 수행 주체가 생략될 수도 있다.Each step of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention may be performed by a computer device. Hereinafter, for convenience of description, the subject may be omitted in each step.
도 1은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 흐름도를 도시한 도면이다. 도 1에 도시된 바와 같이, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법은, 움직이는 자동차에 설치된 카메라에서 다수의 보행자가 포함된 영상을 촬영하는 단계(S100), 단계 S100에서 촬영된 영상에서 다수의 보행자를 탐지하는 단계(S200), 단계 S200에서 탐지된 다수의 보행자가 포함된 영상을 심층 네트워크에 입력하여 특징값을 추출하는 단계(S300), 단계 S300에서 추출된 특징값을 이용하여 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 학습하는 단계(S400), 및 단계 S400에서 학습된 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용하여 다수의 보행자를 추적하는 단계(S500)를 포함하여 구현될 수 있다.1 is a flowchart illustrating a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention. As illustrated in FIG. 1, a method for tracking a plurality of pedestrians using a teacher-student random fun according to an embodiment of the present invention includes photographing images including a plurality of pedestrians in a camera installed in a moving vehicle (S100) , Detecting a plurality of pedestrians from the image taken in step S100 (S200), extracting feature values by inputting an image including a plurality of pedestrians detected in step S200 into a deep network (S300), in step S300 Using the extracted feature value to learn a teacher-student random fun (Teacher-Student Random Ferns) step (S400), and using a teacher-student random fun (Teacher-Student Random Ferns) learned in step S400 a plurality of It may be implemented, including the step of tracking the pedestrian (S500).
이하에서는 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 각 단계에 대해 설명하기 전에, 본 발명에서 사용되는 심층 네트워크 및 랜덤 펀(Random Ferns)에 대하여 먼저 상세히 설명하도록 한다.Hereinafter, before explaining each step of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention, the deep network and random fun used in the present invention will be first described in detail. Do it.
인공신경망(Artificial Neural Network, ANN)은 기계학습과 인지과학에서 사용되며, 생물학의 신경망(동물의 중추신경계 중 특히 뇌)에서 영감을 얻은 통계학적 학습 알고리즘이다. 인공신경망은 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)이 학습을 통해 시냅스의 결합 세기를 변화시켜, 문제 해결 능력을 가지는 네트워크 전반을 가리킨다. 좁은 의미에서는 오차역전파법을 이용한 다층 퍼셉트론을 가리키는 경우도 있지만, 이것은 잘못된 용법으로, 인공신경망은 이에 국한되지 않는다.Artificial Neural Network (ANN) is a statistical learning algorithm used in machine learning and cognitive science, inspired by the neural network of biology (especially the brain of the animal's central nervous system). The artificial neural network refers to an entire network that has problem-solving ability by changing the strength of synaptic binding through learning by artificial neurons (nodes) that form a network through synaptic binding. In a narrow sense, it may refer to a multi-layer perceptron using error back propagation, but this is a misuse, and the artificial neural network is not limited thereto.
심층 네트워크 또는 심층 신경망(Deep Neural Network, DNN)은, 입력층(input layer)과 출력층(output layer) 사이에 여러 개의 은닉층(hidden layer)들로 이루어진 인공신경망이다. 심층 네트워크는 일반적인 인공신경망과 마찬가지로 복잡한 비선형 관계(non-linear relationship)들을 모델링할 수 있다. 예를 들어, 물체 식별 모델을 위한 심층 네트워크 구조에서는 각 물체가 영상의 기본적 요소들의 계층적 구성으로 표현될 수 있는데, 이때, 추가 계층들은 점진적으로 모여진 하위 계층들의 특징들을 규합시킬 수 있다. 심층 네트워크의 이러한 특징은, 비슷하게 수행된 인공신경망에 비해 더 적은 수의 유닛들만으로도 복잡한 데이터를 모델링할 수 있게 해준다.A deep network or a deep neural network (DNN) is an artificial neural network composed of several hidden layers between an input layer and an output layer. Deep networks can model complex non-linear relationships, just like a normal artificial neural network. For example, in a deep network structure for an object identification model, each object may be represented by a hierarchical configuration of basic elements of an image, where additional layers can aggregate features of progressively gathered lower layers. This feature of the deep network allows modeling of complex data with fewer units than a similarly performed artificial neural network.
도 2는 심층 네트워크 중 MLP(Multi-Layer Perceptron) 네트워크를 설명하기 위해 도시한 도면이다. 도 2에 도시된 바와 같이, MLP 네트워크는 입력층과 출력층 사이에 하나 이상의 중간층이 존재하는 신경망으로, 입력층과 출력층 사이에 중간층을 은닉층(hidden layer) 이라고 부른다. 네트워크는 입력층, 은닉층, 출력층 방향으로 연결되어 있으며, 각 층 내의 연결과 출력층에서 입력층으로의 직접적인 연결은 존재하지 않는 전방향(Feedforward) 네트워크이다.FIG. 2 is a diagram illustrating a multi-layer perceptron (MLP) network among deep networks. As shown in FIG. 2, the MLP network is a neural network in which one or more intermediate layers exist between the input layer and the output layer, and the intermediate layer between the input layer and the output layer is called a hidden layer. The network is connected to the input layer, the hidden layer, and the output layer, and there is no direct connection from each layer to the input layer from the output layer.
MLP 네트워크는, 단층 perceptron과 유사한 구조를 가지고 있지만 중간층과 각 unit의 입출력 특성을 비선형으로 함으로써, 네트워크의 능력을 향상시켜 단층 perceptron의 여러 가지 단점을 극복하였다. MLP 네트워크는 층의 개수가 증가할수록 perceptron이 형성하는 결정 구역의 특성은 더욱 고급화된다. 보다 구체적으로는, 단층일 경우 패턴공간을 두 구역으로 나누어주고, 2층인 경우 볼록한(convex) 개구역 또는 오목한 폐구역을 형성하며, 3층인 경우에는 이론상 어떠한 형태의 구역도 형성할 수 있다.The MLP network has a structure similar to that of the single-layer perceptron, but improves the network capability by overcoming the input / output characteristics of the middle layer and each unit to overcome various disadvantages of the single-layer perceptron. In the MLP network, as the number of layers increases, the characteristics of the crystal region formed by perceptrons become more advanced. More specifically, in the case of a single layer, the pattern space is divided into two sections, and in the case of the second floor, a convex open zone or a concave closed zone is formed, and in the case of the third floor, any type of zone may be formed in theory.
일반적으로, 입력층의 각 unit에 입력 데이터를 제시하면, 이 신호는 각 unit에서 변환되어 중간층에 전달되고, 최종적으로 출력층으로 출력되게 되는데, 이 출력값과 원하는 출력값을 비교하여 그 차이를 감소시키는 방향으로 연결강도를 조절하여 MLP 네트워크를 학습시킬 수 있다.In general, when input data is presented to each unit of the input layer, this signal is converted from each unit and transmitted to the middle layer, and finally output to the output layer. The direction of comparing the output value with the desired output value to reduce the difference By adjusting the connection strength, you can train the MLP network.
합성 곱 신경망(Convolutional Neural Network, CNN)은 최소한의 전처리(preprocess)를 사용하도록 설계된 MLP 네트워크의 한 종류이다. 합성 곱 신경망은, 하나 또는 여러 개의 콘볼루션 계층(convolutional layer)과 통합 계층(pooling layer), 완전 연결 계층(fully connected layer)들로 구성된 신경망으로서, 2차원 데이터의 학습에 적합한 구조를 가지고 있으며, 역전파 알고리즘(Backpropagation algorithm)을 통해 훈련될 수 있어, 영상 내 객체 분류, 객체 탐지 등 다양한 응용 분야에 폭넓게 활용될 수 있다.The Convolutional Neural Network (CNN) is a type of MLP network designed to use minimal preprocessing. The synthetic product neural network is a neural network composed of one or several convolutional layers, a pooling layer, and a fully connected layer, and has a structure suitable for learning two-dimensional data. Since it can be trained through a backpropagation algorithm, it can be widely used in various application fields such as object classification in image and object detection.
콘볼루션 계층은, 입력 데이터로부터 특징을 추출하는 역할을 할 수 있다. 콘볼루션 계층은 특징을 추출하는 기능을 하는 필터(filter)와, 필터에서 추출된 값을 비선형 값으로 바꾸어주는 액티베이션 함수(activation function)로 이루어질 수 있다. The convolution layer can serve to extract features from the input data. The convolution layer may consist of a filter that functions to extract features and an activation function that converts the values extracted from the filter into nonlinear values.
합성 곱 신경망은, 경사하강법(gradient descent)과 역전파(backpropagation) 알고리즘을 통해 학습시킬 수 있다. 이때, 경사하강법은 1차 근사값 발견용 최적화 알고리즘으로서, 함수의 기울기(경사)를 구하여 기울기가 낮은 쪽으로 계속 이동시켜서 극값에 이를 때까지 반복시키는 방법이고, 역전파 알고리즘은, 다층 퍼셉트론 학습에 사용되는 통계적 기법을 의미하는 것으로서, 동일 입력층에 대해 원하는 값이 출력되도록 개개의 가중치(weight)를 조정하는 방법이다.Synthetic product neural networks can be trained through gradient descent and backpropagation algorithms. At this time, the gradient descent method is an optimization algorithm for first-order approximation values. It is a method of finding the gradient (slope) of a function and continuously moving the gradient to the lower side and repeating it until an extreme value is reached. The backpropagation algorithm is used for multi-layer perceptron learning It refers to a statistical technique, which is a method of adjusting individual weights so that a desired value is output for the same input layer.
랜덤 펀(Random Ferns)는 2007년 Ozuysal가 제안한 방법으로서, Bayes 이론을 변형한 방법이다. 랜덤 펀(Random Ferns)은 특징 함수들 간의 상관관계를 고려하여 Bayes 이론의 한계를 극복하였다. 또한, 두 픽셀간의 차이를 이용한 특징 함수를 구현하여 간단하면서 빠른 연산을 할 수 있다. 랜덤 펀(Random Ferns)의 성능은 랜덤 트리(Random Tree)보다 우수한 분류 성능을 가지며, SIFT의 물체 인식률과 동일한 성능과 SIFT보다 빠른 연산속도를 가진다.Random Ferns, a method proposed by Ozuysal in 2007, is a modification of Bayes' theory. Random Ferns overcomes the limitations of Bayes' theory by considering the correlation between feature functions. Also, it is possible to perform simple and fast calculations by implementing a feature function using the difference between two pixels. The performance of Random Ferns has better classification performance than the Random Tree, and has the same performance as the object recognition rate of SIFT and a faster computation speed than SIFT.
랜덤 펀(Random Ferns)은 다음과 같은 과정을 통해 정의될 수 있다.Random Ferns can be defined through the following process.
H개의 다중 클래스를 cz, z = 1,…,H 로 정의하고, N개의 특징 추출 함수를 fj, j = 1,…,K 로 정의했을 때, 클래스를 확률로 분류하면 다음 수학식 1과 같이 정의할 수 있다.H multiple classes c z , z = 1,… Defined as, H, and N feature extraction functions f j , j = 1,… When defined as, K, classifying as a probability can be defined as in Equation 1 below.
수학식 1
Figure PCTKR2019012101-appb-M000001
Equation 1
Figure PCTKR2019012101-appb-M000001
Bayes 정의를 이용하여 수학식 1을 다음 수학식 2와 같이 정의할 수 있다. Equation 1 can be defined as Equation 2 by using Bayes definition.
수학식 2
Figure PCTKR2019012101-appb-M000002
Equation 2
Figure PCTKR2019012101-appb-M000002
수학식 2에서 P(C)와 P(f1,f2,…,fk)를 정해진 확률값으로 가정하면, 다중 클래스 cz는 다음 수학식 3과 같이 정의될 수 있다.Assuming P (C) and P (f 1 , f 2 ,…, f k ) in Equation 2 as predetermined probability values, the multi-class c z may be defined as in Equation 3 below.
수학식 3
Figure PCTKR2019012101-appb-M000003
Equation 3
Figure PCTKR2019012101-appb-M000003
수학식 3에서 P(f1,f2,…,fk|C=cz)를 구하기 위해 각 특징 추출 함수들을 독립적으로 생각한다면, 다음 수학식 4와 같이 계산할 수 있다.In order to obtain P (f 1 , f 2 ,…, f k | C = c z ) in Equation 3, each feature extraction function can be calculated as in Equation 4 below.
수학식 4
Figure PCTKR2019012101-appb-M000004
Equation 4
Figure PCTKR2019012101-appb-M000004
하지만, 일반적으로 몇몇 특징 추출 함수들끼리 의존적인 특징을 보이기 때문에 이를 고려하기 위해, 랜덤 펀(Random Ferns)은 특징 추출 함수들 사이에 상관관계가 있다고 가정하고, 상관관계가 있는 특징 추출 함수들을 묶어 하나의 펀(fern)이라고 지칭한다. 랜덤 펀(Random Ferns)을 이용하면 수학식 4를 다음 수학식 5와 같이 수정할 수 있다.However, in order to take account of this, in general, since some feature extraction functions show dependent features, Random Ferns assumes that there is a correlation between the feature extraction functions and bundles the correlated feature extraction functions. Referred to as a fern. Equation (4) can be modified as shown in Equation (5) by using random ferns.
수학식 5
Figure PCTKR2019012101-appb-M000005
Equation 5
Figure PCTKR2019012101-appb-M000005
수학식 5에서 Fk = {fa(k,1),fa(k,2),…,fa(k,S)} = 1,…,M 는 k번째 펀(ferns)을 나타내는데 내부에 S개의 특징 추출 함수를 포함하고 있다. a(k,j)는 범위가 1,…,N 인 랜덤 순열 함수로 S개의 특징 추출 함수가 임의로 선택된다. 이를 통해, 랜덤 펀(Random Ferns)은 M개의 펀(fern)의 결과를 이용하여 분류를 수행한다.In Equation 5, F k = {f a (k, 1) , f a (k, 2) ,… , f a (k, S) } = 1,… , M denotes the kth ferns, and contains S feature extraction functions inside. a (k, j) has a range of 1,… The random permutation function, N, is selected randomly from the S feature extraction functions. Through this, the random fern (Random Ferns) performs classification using the results of M ferns.
이하에서는, 전술한 바와 같은 심층 네트워크 및 랜덤 펀(Random Ferns)을 이용하는, 본 발명에서 제안하고 있는 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 각각의 단계에 대해 상세히 설명하기로 한다.Hereinafter, each step of the plurality of pedestrian tracking methods using the teacher-student random fun proposed in the present invention, using the deep network and the random fun (Random Ferns) as described above, will be described in detail.
단계 S100에서는, 움직이는 자동차에 설치된 카메라에서 다수의 보행자가 포함된 영상을 촬영할 수 있다. 능동적인 지능형 교통 시스템이 적절한 수준의 안전을 달성하기 위해서는, 첨단 운전자 보조 시스템에서 이동 중인 모든 보행자를 추적하여 사전에 도로에 진입할 위험이 있는 보행자를 식별하여야 하므로, 단계 S100에서는, 움직이는 자동차에 설치된 카메라를 통해 다수의 보행자가 포함된 영상을 촬영할 수 있다.In step S100, an image including a plurality of pedestrians may be photographed by a camera installed in a moving vehicle. In order for the active intelligent traffic system to achieve an appropriate level of safety, in the advanced driver assistance system, all pedestrians in motion must be tracked to identify pedestrians at risk of entering the road in advance. Through the camera, images containing multiple pedestrians can be captured.
단계 S200에서는, 단계 S100에서 촬영된 영상에서 다수의 보행자를 탐지할 수 있다. 도 3은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법에서, 단계 S200의 세부적인 흐름을 도시한 도면이다. 도 3에 도시된 바와 같이, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 단계 S200은, 단계 S100에서 촬영된 영상에서 보행자와 비-보행자를 구분하는 단계(S210), 및 단계 S210에서 구분된 보행자를 다수의 보행자로 탐지하는 단계(S220)를 포함하여 구현될 수 있다.In step S200, a plurality of pedestrians may be detected from the image photographed in step S100. 3 is a view showing a detailed flow of step S200 in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention. As illustrated in FIG. 3, step S200 of a method for tracking a plurality of pedestrians using a teacher-student random fun according to an embodiment of the present invention may include distinguishing a pedestrian and a non-pedestrian from the image photographed in step S100 ( S210), and detecting the pedestrians identified in step S210 as a plurality of pedestrians (S220).
도 4는 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 단계 S210을 설명하기 위해 도시한 도면이다. 도 4에 도시된 바와 같이, 단계 S210에서는 단계 S100에서 촬영된 영상에서 보행자와 비-보행자를 구분할 수 있다. 이때, 보행자는 사람이 될 수 있으며, 비-보행자는 전봇대, 나무, 건물 등이 될 수 있다.4 is a diagram illustrating steps S210 of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention. As shown in FIG. 4, in step S210, a pedestrian and a non-pedestrian may be distinguished from the image photographed in step S100. At this time, the pedestrian may be a person, and the non-pedestrian may be a power pole, a tree, a building, or the like.
단계 S220에서는, 단계 S210에서 구분된 보행자를 다수의 보행자로 탐지할 수 있다. 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법에서는, 다수의 보행자를 탐지하여 이를 심층 네트워크에 입력하여 각각의 보행자들의 특징값을 추출해야 하므로, 단계 S220에서는, 단계 S210에서 구분된 보행자를 다수의 보행자로 탐지하여, 이하에서 설명하는 단계 S300의 심층 네트워크에 입력하여 각각의 보행자들의 특징값을 추출하도록 할 수 있다.In step S220, the pedestrians classified in step S210 may be detected as a plurality of pedestrians. In the method of tracking a plurality of pedestrians using a teacher-student random fun according to an embodiment of the present invention, since it is necessary to detect a plurality of pedestrians and input them to a deep network, feature values of each pedestrian must be extracted, in step S220, step The pedestrians classified in S210 may be detected as a plurality of pedestrians, and input to the deep network of step S300 described below to extract feature values of each pedestrian.
도 5는 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 단계 S300을 설명하기 위해 도시한 도면이다. 도 5에 도시된 바와 같이, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 단계 S300에서는, 단계 S200에서 탐지된 다수의 보행자가 포함된 영상을 심층 네트워크에 입력하여 특징값을 추출할 수 있다.5 is a view illustrating a step S300 of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention. As shown in FIG. 5, in step S300 of a method for tracking multiple pedestrians using a teacher-student random fun according to an embodiment of the present invention, an image including a plurality of pedestrians detected in step S200 is input to a deep network The feature values can be extracted.
보다 구체적으로는, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 단계 S300에서는, 심층 네트워크로서, 합성 곱 신경망의 한 종류인 tiny YOLO를 사용하여, 단계 S200에서 탐지된 다수의 보행자가 포함된 영상에서 보행자별로 특징값을 추출할 수 있다.More specifically, in step S300 of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention, as a deep network, using tiny YOLO, which is a kind of synthetic multiplicity neural network, in step S200 Feature values may be extracted for each pedestrian from an image including a plurality of detected pedestrians.
tiny YOLO는, 9개의 콘볼루션 레이어(Convolution layers), 6개의 맥스 풀링 레이어(Max pooling layers) 및 1개의 완전 연결 레이어(fully connected layers)로 구성될 수 있다. 이때, 보행자의 특징값은 tiny YOLO의 마지막 레이어인 완전 연결 레이어를 통해 추출할 수 있다.The tiny YOLO may consist of 9 Convolution layers, 6 Max pooling layers, and 1 fully connected layers. At this time, the feature value of the pedestrian can be extracted through the last connection layer, which is the last layer of tiny YOLO.
단계 S400에서는, 단계 S300에서 추출된 특징값을 이용하여 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 학습할 수 있다. 도 6은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법에서, 단계 S400의 세부적인 흐름을 도시한 도면이다. 도 6에 도시된 바와 같이, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 단계 S400은, 단계 S300에서 추출된 특징값을 이용하여 교사 랜덤 펀(Teacher Random Ferns)을 학습하는 단계(S410), 및 단계 S410에서 학습된 교사 랜덤 펀(Teacher Random Ferns)을 이용하여 학생 랜덤 펀(Student Random Ferns)을 학습하는 단계(S420)를 포함하여 구현될 수 있다.In step S400, a teacher-student random ferns may be learned using the feature values extracted in step S300. 6 is a view showing the detailed flow of step S400 in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention. As illustrated in FIG. 6, step S400 of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention uses a teacher random fun using the feature values extracted in step S300. ) Learning (S410), and using the teacher random fun (Teacher Random Ferns) learned in step S410 to learn the student random fun (Student Random Ferns) (S420).
교사-학생 랜덤 펀(Teacher-Student Random Ferns)은 랜덤 펀(Random Ferns)으로 구성된 추적기이다. 교사 랜덤 펀(Teacher Random Ferns)은, 많은 양의 학습 데이터를 기반으로 구성되기 때문에, 높은 추적 성능을 갖지만, 추적 속도가 느려 실시간으로 보행자를 추적하기는 어려울 수 있다. 따라서, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법은, 학생 랜덤 펀(Student Random Ferns)을 사용하여 교사 랜덤 펀(Teacher Random Ferns)의 추적 성능은 유지하면서 펀(Ferns)의 개수를 줄여 이전보다 빠르고 정확하게 보행자를 추적할 수 있다.Teacher-Student Random Ferns is a tracker composed of Random Ferns. Teacher Random Ferns are constructed based on a large amount of training data, so they have high tracking performance, but tracking speed may be slow and it may be difficult to track pedestrians in real time. Accordingly, a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention use a student random fun to maintain a tracking performance of a teacher random ferns while maintaining a tracking performance. By reducing the number of (Ferns), pedestrians can be tracked faster and more accurately than before.
도 7은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법에서 교사 랜덤 펀(Teacher Random Ferns)을 학습하는 전체적인 과정을 도시한 도면이다. 도 7에 도시된 바와 같이, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법에서 교사 랜덤 펀(Teacher Random Ferns)은, 단계 S200에서 다수의 보행자를 탐지하고, 탐지된 다수의 보행자가 포함된 영상을 단계 S300에서 심층 네트워크에 입력하여 추출된 특징값을 이용하여 학습될 수 있다. 이때, 교사 랜덤 펀(Teacher Random Ferns)은 복수개의 펀(Fern)을 가질 수 있으며, 예를 들어, 1부터 L까지(L은 자연수) L개의 펀(Fern)을 가질 수 있다.7 is a diagram illustrating an overall process of learning a teacher random ferns in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention. As illustrated in FIG. 7, in a method for tracking a plurality of pedestrians using a teacher-student random fun according to an embodiment of the present invention, a teacher random ferns detects and detects a plurality of pedestrians in step S200. In step S300, an image including a plurality of pedestrians may be input to a deep network and learned using the extracted feature values. At this time, the teacher random fern (Teacher Random Ferns) may have a plurality of ferns (Fern), for example, 1 to L (L is a natural number) may have L ferns (Fern).
단계 S410에서는, 단계 S300에서 추출된 특징값을 이용하여 교사 랜덤 펀(Teacher Random Ferns)을 학습할 수 있다. 보다 구체적으로, 단계 S300에서 추출된 보행자의 특징값과 합성 곱 신경망 중의 한 종류인 tiny YOLO를 이용하여 교사 랜덤 펀(Teacher Random Ferns)을 학습할 수 있다.In step S410, a teacher random fun can be learned using the feature values extracted in step S300. More specifically, the teacher random fun can be learned using the feature value of the pedestrian extracted in step S300 and tiny YOLO, which is one of the synthetic product neural networks.
단계 S420에서는, 단계 S410에서 학습된 교사 랜덤 펀(Teacher Random Ferns)을 이용하여 학생 랜덤 펀(Student Random Ferns)을 학습할 수 있다. 보다 구체적으로는, 단계 S410을 통해 학습된 교사 랜덤 펀(Teacher Random Ferns)을 이용하여, 보행자가 처음 또는 두 번 이상 등장하였는지 경우를 나누어서 학습할 수 있습니다.In step S420, the student random fun can be learned using the teacher random ferns learned in step S410. More specifically, by using the teacher random fun (Teacher Random Ferns) learned in step S410, it is possible to learn by dividing the case where the pedestrian first or twice appeared.
도 8은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법에서 학생 랜덤 펀(Student Random Ferns)을 학습하는 알고리즘을 도시한 도면이다. 도 8의 알고리즘을 통해, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법에서 보행자가 처음 등장한 경우의 학생 랜덤 펀(Student Random Ferns)을 학습할 수 있다. 이때, 단계 S200을 통하여 탐지된 보행자의 숫자만큼 위의 알고리즘을 반복하여 학생 랜덤 펀(Student Random Ferns)을 학습할 수 있다.8 is a diagram illustrating an algorithm for learning a student random fun in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention. Through the algorithm of FIG. 8, in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention, a student random fun can be learned when a pedestrian first appears. At this time, the above algorithm can be repeated as many as the number of pedestrians detected through step S200 to learn student random ferns.
보행자가 두 번 이상 등장한 경우에는, 현재 프레임에서 탐지된 보행자와 이전 프레임의 학생 랜덤 펀(Student Random Ferns)이 학습한 보행자가 일치한다면, 두 프레임 사이에 데이터 연결이 수행되어, 학생 랜덤 펀(Student Random Ferns)이 새롭게 업데이트되어 학습할 수 있다.When a pedestrian appears more than once, if the pedestrian detected in the current frame matches the pedestrian learned by the Student Random Ferns of the previous frame, a data connection is performed between the two frames, and the Student Random Fun (Student) Random Ferns) has been updated to learn.
도 8의 알고리즘의 마지막 부분에 도시된 바와 같이, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법에서 학생 랜덤 펀(Student Random Ferns)에서 펀(Fern)의 개수는 교사 랜덤 펀(Teacher Random Ferns)보다 적을 수 있다.As shown in the last part of the algorithm of FIG. 8, the number of Ferns in Student Random Ferns in a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention It can be less than the Teacher Random Ferns.
단계 S500에 있어서, 단계 S400에서 학습된 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용하여 다수의 보행자를 추적할 수 있다. 보다 구체적으로는, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법의 단계 S500에서는, 단계 S400에서 학습된 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용하여 펀(Fern)의 개수를 줄여 다수의 보행자를 추적할 수 있다.In step S500, a plurality of pedestrians may be tracked using a teacher-student random ferns learned in step S400. More specifically, in step S500 of a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention, using a teacher-student random ferns learned in step S400 By reducing the number of ferns, multiple pedestrians can be tracked.
도 9는 (a) QuadMOT를 이용하여 다수의 보행자를 추적한 모습과 (b) 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법을 이용하여 다수의 보행자를 추적한 모습을 비교하기 위해 도시한 도면이다. 이때, 뒤의 프레임에서 학생 랜덤 펀(Student Random Ferns)이 동일한 보행자로 판단할 경우, 동일한 색상의 상자로 표시된다. 도 9의 (a)를 살펴보면, QuadMOT를 이용하여 다수의 보행자를 추적한 경우에는 카메라의 움직임이 크거나 보행자들이 서로 겹치는 현상이 발생하게 된다면, 보행자 추적이 누락되거나(네 번째 영상의 노란색 화살표), 다른 보행자를 추적하는 문제가 있다(세 번째 영상의 빨간색 화살표).9 is (a) tracking a plurality of pedestrians using QuadMOT and (b) tracking a plurality of pedestrians using a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention It is a drawing to compare the appearance. In this case, if the Student Random Ferns are judged to be the same pedestrian in the next frame, they are displayed as boxes of the same color. Referring to (a) of FIG. 9, when tracking a large number of pedestrians using QuadMOT, if the movement of the camera is large or if pedestrians overlap each other, pedestrian tracking is missing (yellow arrow in the fourth image). , There is a problem tracking other pedestrians (red arrow in the third image).
하지만, 도 9의 (b)를 살펴보면, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법을 이용하여 보행자를 추적한 경우에는, 학생 랜덤 펀(Student Random Ferns)이 새롭게 업데이트하여 학습함으로써, 보행자 추적이 누락되거나, 중간에 다른 보행자를 추적하는 현상이 발생하지 않는다.However, referring to (b) of FIG. 9, when a pedestrian is tracked using a plurality of pedestrian tracking methods using a teacher-student random fun according to an embodiment of the present invention, a student random fun By learning by updating and updating, pedestrian tracking is not omitted or the phenomenon of tracking another pedestrian in the middle does not occur.
도 10은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템(10)의 구성을 도시한 도면이다. 도 10에 도시된 바와 같이, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템(10)은, 카메라부(100), 탐지부(200), 추출부(300), 학습부(400) 및 추적부(500)를 포함하여 구성될 수 있다.10 is a view showing the configuration of a plurality of pedestrian tracking system 10 using a teacher-student random fun according to an embodiment of the present invention. As shown in Figure 10, a plurality of pedestrian tracking system 10 using a teacher-student random fun according to an embodiment of the present invention, the camera unit 100, the detection unit 200, the extraction unit 300 , It may be configured to include a learning unit 400 and the tracking unit 500.
보다 구체적으로는, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템(10)은, 움직이는 자동차에 설치된 카메라에서 다수의 보행자가 포함된 영상을 촬영하는 카메라부(100), 카메라부(100)에서 촬영된 영상에서 다수의 보행자를 탐지하는 탐지부(200), 탐지부(200)에서 탐지된 다수의 보행자가 포함된 영상을 심층 네트워크에 입력하여 특징값을 추출하는 추출부(300), 추출부(300)에서 추출된 특징값을 이용하여 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 학습하는 학습부(400), 및 학습부(400)에서 학습된 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용하여 다수의 보행자를 추적하는 추적부(500)를 포함하여 구성될 수 있다.More specifically, a plurality of pedestrian tracking systems 10 using a teacher-student random fun according to an embodiment of the present invention includes a camera unit 100 for photographing images including a plurality of pedestrians from a camera installed in a moving vehicle. ), A detection unit 200 for detecting a plurality of pedestrians from an image captured by the camera unit 100, and inputting an image including a plurality of pedestrians detected by the detection unit 200 into a deep network to extract feature values Extractor 300, a learning unit 400 for learning a teacher-student random fun using feature values extracted from the extracting unit 300, and a teacher trained in the learning unit 400 -It may be configured to include a tracker 500 that tracks a plurality of pedestrians using a student-fund random (Teacher-Student Random Ferns).
도 11은 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템(10)에 있어서 탐지부의 세부적인 구성을 도시한 도면이다. 도 11에 도시된 바와 같이, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템에(10) 있어서 탐지부(200)는, 카메라부(100)에서 촬영된 영상에서 보행자와 비-보행자를 구분하는 구분 모듈(210), 및 구분 모듈(210)에서 구분된 보행자를 상기 다수의 보행자로 탐지하는 탐지 모듈(220)을 포함하여 구성될 수 있다.11 is a diagram showing the detailed configuration of a detection unit in a plurality of pedestrian tracking systems 10 using a teacher-student random fun according to an embodiment of the present invention. As shown in FIG. 11, in a plurality of pedestrian tracking systems 10 using a teacher-student random fun according to an embodiment of the present invention, the detection unit 200 may be used in an image captured by the camera unit 100. It may be configured to include a detection module 220 for detecting the pedestrians separated from the pedestrians and non-pedestrians, and the pedestrians classified in the partitioning module 210 as the plurality of pedestrians.
도 12는 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템(10)에 있어서 학습부(400)의 세부적인 구성을 도시한 도면이다. 도 12에 도시된 바와 같이, 본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템(10)에 있어서 학습부(400)는, 추출부(300)에서 추출된 특징값을 이용하여 교사 랜덤 펀(Teacher Random Ferns)을 학습하는 제1 학습 모듈(410), 및 제1 학습 모듈(410)에서 학습된 교사 랜덤 펀(Teacher Random Ferns)을 이용하여 학생 랜덤 펀(Student Random Ferns)을 학습하는 제2 학습 모듈(420)을 포함하여 구성될 수 있다.12 is a view showing the detailed configuration of the learning unit 400 in a plurality of pedestrian tracking systems 10 using a teacher-student random fun according to an embodiment of the present invention. As shown in FIG. 12, in a plurality of pedestrian tracking systems 10 using a teacher-student random fun according to an embodiment of the present invention, the learning unit 400, feature values extracted from the extraction unit 300 A first learning module 410 for learning a teacher random fun by using, and a student random fun by using a teacher random ferns learned in the first learning module 410 Ferns) can be configured to include a second learning module 420.
본 발명의 일실시예에 따른 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템(10)에 대해서는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법과 관련하여 충분히 설명되었으므로, 상세한 설명은 생략하기로 한다.The plurality of pedestrian tracking systems 10 using a teacher-student random fun according to an embodiment of the present invention have been sufficiently described in connection with a plurality of pedestrian tracking methods using a teacher-student random fun, and thus detailed description will be omitted. Shall be
상술한 바와 같이, 본 발명에서 제안하고 있는 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법 및 시스템(10)에 따르면, 심층 네트워크의 한 종류인 tiny YOLO를 사용하여 보행자의 특징값을 추출하고, 추출된 특징값을 이용하여 랜덤 펀(Random Ferns)을 학습함으로써, 실시간 학습이 가능하여 보행자의 형태변화, 크기변화로 인한 오-추적을 최소화할 수 있다. 또한, 본 발명에 따르면, 펀(Ferns)의 개수를 줄여 실시간 추적이 가능하도록 하기 위해, 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 사용하여, 빠르고 정확하게 다수의 보행자를 실시간으로 추적할 수 있다.As described above, according to a plurality of pedestrian tracking methods and systems 10 using a teacher-student random fun proposed in the present invention, a feature value of a pedestrian is extracted using tiny YOLO, a type of deep network, By learning the random ferns using the extracted feature values, real-time learning is possible, thereby minimizing mistracking due to pedestrian shape change and size change. In addition, according to the present invention, in order to reduce the number of Ferns (Ferns) to enable real-time tracking, it is possible to quickly and accurately track multiple pedestrians in real time using a Teacher-Student Random Ferns. have.
이상 설명한 본 발명은 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에 의하여 다양한 변형이나 응용이 가능하며, 본 발명에 따른 기술적 사상의 범위는 아래의 특허청구범위에 의하여 정해져야 할 것이다.The present invention described above can be variously modified or applied by a person having ordinary knowledge in the technical field to which the present invention belongs, and the scope of the technical idea according to the present invention should be defined by the following claims.

Claims (20)

  1. 다수의 보행자 추적 방법으로서,As a number of pedestrian tracking methods,
    (1) 움직이는 자동차에 설치된 카메라에서 다수의 보행자가 포함된 영상을 촬영하는 단계;(1) taking an image including a plurality of pedestrians from a camera installed in a moving vehicle;
    (2) 상기 단계 (1)에서 촬영된 영상에서 다수의 보행자를 탐지하는 단계;(2) detecting a plurality of pedestrians from the image taken in step (1);
    (3) 상기 단계 (2)에서 탐지된 다수의 보행자가 포함된 영상을 심층 네트워크에 입력하여 특징값을 추출하는 단계;(3) extracting feature values by inputting an image including a plurality of pedestrians detected in step (2) into a deep network;
    (4) 상기 단계 (3)에서 추출된 특징값을 이용하여 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 학습하는 단계; 및(4) learning a teacher-student random ferns using the feature values extracted in step (3); And
    (5) 상기 단계 (4)에서 학습된 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용하여 다수의 보행자를 추적하는 단계를 포함하는 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법.(5) tracking a plurality of pedestrians using the teacher-student random ferns learned in step (4), characterized in that it comprises a plurality of teachers-student random fun Pedestrian tracking method.
  2. 제1항에 있어서, 상기 단계 (2)는,The method of claim 1, wherein the step (2),
    (2-1) 상기 단계 (1)에서 촬영된 영상에서 보행자와 비-보행자를 구분하는 단계; 및(2-1) distinguishing a pedestrian and a non-pedestrian from the image photographed in step (1); And
    (2-2) 상기 단계 (2-1)에서 구분된 보행자를 상기 다수의 보행자로 탐지하는 단계를 포함하는 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법.(2-2) A method of tracking a plurality of pedestrians using a teacher-student random fun, characterized in that it comprises the step of detecting the pedestrians separated in step (2-1) as the plurality of pedestrians.
  3. 제1항에 있어서, 상기 단계 (3)에서의 심층 네트워크는,According to claim 1, wherein the deep network in step (3),
    합성 곱 신경망인 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법.A method of tracking multiple pedestrians using a teacher-student random fun, characterized in that it is a synthetic product neural network.
  4. 제3항에 있어서, 상기 합성 곱 신경망은,The method of claim 3, wherein the synthetic product neural network,
    tiny YOLO인 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법.A method of tracking multiple pedestrians using a teacher-student random fun, characterized in that it is tiny YOLO.
  5. 제4항에 있어서, 상기 tiny YOLO는,The method of claim 4, wherein the tiny YOLO,
    9개의 콘볼루션 레이어(Convolution layers), 6개의 맥스 풀링 레이어(Max pooling layers) 및 1개의 완전 연결 레이어(fully connected layers)로 구성된 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법.Multiple pedestrian tracking method using teacher-student random fun, characterized by consisting of 9 convolution layers, 6 max pooling layers and 1 fully connected layers .
  6. 제1항에 있어서, 상기 단계 (3)에서는,The method of claim 1, wherein in step (3),
    상기 단계 (2)에서 탐지된 다수의 보행자별로 특징값을 추출하는 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법.Characterized in that the feature value is extracted for each of the pedestrians detected in the step (2), a plurality of pedestrian tracking method using a teacher-student random fun.
  7. 제1항에 있어서, 상기 단계 (4)는,The method of claim 1, wherein the step (4),
    (4-1) 상기 단계 (3)에서 추출된 특징값을 이용하여 교사 랜덤 펀(Teacher Random Ferns)을 학습하는 단계; 및(4-1) learning a teacher random fun using the feature values extracted in step (3); And
    (4-2) 상기 단계 (4-1)에서 학습된 교사 랜덤 펀(Teacher Random Ferns)을 이용하여 학생 랜덤 펀(Student Random Ferns)을 학습하는 단계를 포함하는 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법.(4-2) characterized in that it comprises the step of learning a student random fun (Student Random Ferns) using the teacher random fun (Teacher Random Ferns) learned in step (4-1), teacher-student random Multiple pedestrian tracking methods using fun.
  8. 제7항에 있어서, 상기 교사 랜덤 펀(Teacher Random Ferns)은,The method of claim 7, wherein the teacher random fun (Teacher Random Ferns),
    복수개의 펀(Fern)을 가지는 것을 특징으로 하는, 교사 학생 랜덤 펀을 이용한 다수의 보행자 추적 방법.A method of tracking a plurality of pedestrians using a teacher student random fun, characterized by having a plurality of ferns.
  9. 제7항에 있어서, 상기 학생 랜덤 펀(Student Random Ferns)은,The method of claim 7, wherein the student random fun (Student Random Ferns),
    상기 교사 랜덤 펀(Teacher Random Ferns)보다 펀(Fern)의 개수가 적은 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법.A method of tracking a plurality of pedestrians using a teacher-student random fun, characterized in that the number of ferns is less than that of the teacher random ferns.
  10. 제1항에 있어서, 상기 단계 (5)에서는,The method of claim 1, wherein in step (5),
    상기 학습된 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용하여 펀(Fern)의 개수를 줄여 다수의 보행자를 추적하는 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 방법.A method of tracking a plurality of pedestrians using a teacher-student random fun, characterized by tracking a plurality of pedestrians by reducing the number of ferns using the learned teacher-student random ferns.
  11. 다수의 보행자 추적 시스템(10)으로서,As a plurality of pedestrian tracking system 10,
    움직이는 자동차에 설치된 카메라에서 다수의 보행자가 포함된 영상을 촬영하는 카메라부(100);A camera unit 100 for photographing images including a plurality of pedestrians from a camera installed in a moving vehicle;
    상기 카메라부(100)에서 촬영된 영상에서 다수의 보행자를 탐지하는 탐지부(200);A detection unit 200 for detecting a plurality of pedestrians from the image taken by the camera unit 100;
    상기 탐지부(200)에서 탐지된 다수의 보행자가 포함된 영상을 심층 네트워크에 입력하여 특징값을 추출하는 추출부(300);An extraction unit (300) for extracting feature values by inputting an image containing a plurality of pedestrians detected by the detection unit (200) into a deep network;
    상기 추출부(300)에서 추출된 특징값을 이용하여 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 학습하는 학습부(400); 및A learning unit 400 for learning a teacher-student random ferns using the feature values extracted from the extraction unit 300; And
    상기 학습부(400)에서 학습된 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용하여 다수의 보행자를 추적하는 추적부(500)를 포함하는 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템.Characterized in that it comprises a tracking unit 500 for tracking a plurality of pedestrians using a teacher-student random fun (Teacher-Student Random Ferns) learned from the learning unit 400, using a teacher-student random fun Multiple pedestrian tracking systems.
  12. 제11항에 있어서, 상기 탐지부(200)는,The method of claim 11, wherein the detection unit 200,
    상기 카메라부(100)에서 촬영된 영상에서 보행자와 비-보행자를 구분하는 구분 모듈(210); 및A segmentation module 210 that distinguishes pedestrians and non-pedestrians from the images captured by the camera unit 100; And
    상기 구분 모듈(210)에서 구분된 보행자를 상기 다수의 보행자로 탐지하는 탐지 모듈(220)을 포함하는 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템.And a detection module 220 that detects the pedestrians classified in the classification module 210 as the plurality of pedestrians, a plurality of pedestrian tracking systems using teacher-student random fun.
  13. 제11항에 있어서, 상기 심층 네트워크는,The method of claim 11, wherein the deep network,
    합성 곱 신경망인 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템.Multiple pedestrian tracking system using a teacher-student random fun, characterized in that it is a synthetic product neural network.
  14. 제13항에 있어서, 상기 합성 곱 신경망은,14. The method of claim 13, The synthetic product neural network,
    tiny YOLO인 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템.Characterized by a tiny YOLO, multiple pedestrian tracking system using a teacher-student random fun.
  15. 제14항에 있어서, 상기 tiny YOLO는,The method of claim 14, wherein the tiny YOLO,
    9개의 콘볼루션 레이어(Convolution layers), 6개의 맥스 풀링 레이어(Max pooling layers) 및 1개의 완전 연결 레이어(fully connected layers)로 구성된 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템.Multiple pedestrian tracking system using teacher-student random fun, characterized by consisting of 9 convolution layers, 6 max pooling layers and 1 fully connected layers .
  16. 제11항에 있어서, 상기 추출부는,The method of claim 11, wherein the extraction unit,
    상기 탐지부에서 탐지된 다수의 보행자별로 특징값을 추출하는 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템.Characterized by extracting the feature value for each of the pedestrians detected by the detection unit, a plurality of pedestrian tracking system using a teacher-student random fun.
  17. 제11항에 있어서, 상기 학습부(400)는,The method of claim 11, wherein the learning unit 400,
    상기 추출부(300)에서 추출된 특징값을 이용하여 교사 랜덤 펀(Teacher Random Ferns)을 학습하는 제1 학습 모듈(410); 및A first learning module 410 for learning a teacher random ferns using the feature values extracted from the extraction unit 300; And
    상기 제1 학습 모듈(410)에서 학습된 교사 랜덤 펀(Teacher Random Ferns)을 이용하여 학생 랜덤 펀(Student Random Ferns)을 학습하는 제2 학습 모듈(420)을 포함하는 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템.Characterized in that it comprises a second learning module (420) for learning a student random fun (Student Random Ferns) using the teacher random fun (Teacher Random Ferns) learned in the first learning module 410, teacher- Multiple pedestrian tracking system using student random fun.
  18. 제17항에 있어서, 상기 교사 랜덤 펀(Teacher Random Ferns)은,The method of claim 17, wherein the Teacher Random Ferns (Teacher Random Ferns),
    복수개의 펀(Fern)을 가지는 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템.A plurality of pedestrian tracking system using a teacher-student random fun, characterized by having a plurality of ferns (Fern).
  19. 제17항에 있어서, 상기 학생 랜덤 펀(Student Random Ferns)은,The method of claim 17, wherein the student random fun (Student Random Ferns),
    상기 교사 랜덤 펀(Teacher Random Ferns)보다 펀(Fern)의 개수가 적은 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템.A plurality of pedestrian tracking system using a teacher-student random fun, characterized in that the number of ferns (Fern) less than the teacher random fun (Teacher Random Ferns).
  20. 제11항에 있어서, 상기 추적부(500)는,The method of claim 11, wherein the tracking unit 500,
    상기 학습된 교사-학생 랜덤 펀(Teacher-Student Random Ferns)을 이용하여 펀(Fern)의 개수를 줄여 다수의 보행자를 추적하는 것을 특징으로 하는, 교사-학생 랜덤 펀을 이용한 다수의 보행자 추적 시스템.A plurality of pedestrian tracking system using a teacher-student random fun, characterized in that to track a plurality of pedestrians by reducing the number of fun (Fern) using the learned teacher-student random fun (Teacher-Student Random Ferns).
PCT/KR2019/012101 2018-10-26 2019-09-18 Multiple-pedestrian tracking method and system using teacher-student random fern WO2020085653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180129172A KR102164950B1 (en) 2018-10-26 2018-10-26 Method and system for multi-pedestrian tracking using teacher-student random ferns
KR10-2018-0129172 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020085653A1 true WO2020085653A1 (en) 2020-04-30

Family

ID=70330343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012101 WO2020085653A1 (en) 2018-10-26 2019-09-18 Multiple-pedestrian tracking method and system using teacher-student random fern

Country Status (2)

Country Link
KR (1) KR102164950B1 (en)
WO (1) WO2020085653A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112668487A (en) * 2020-12-29 2021-04-16 杭州晨安科技股份有限公司 Teacher tracking method based on fusion of body fitness and human similarity
CN113392754A (en) * 2021-06-11 2021-09-14 成都掌中全景信息技术有限公司 Method for reducing false detection rate of pedestrian based on yolov5 pedestrian detection algorithm

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113158897A (en) * 2021-04-21 2021-07-23 新疆大学 Pedestrian detection system based on embedded YOLOv3 algorithm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160132731A (en) * 2015-05-11 2016-11-21 계명대학교 산학협력단 Device and method for tracking pedestrian in thermal image using an online random fern learning
KR20170028591A (en) * 2015-09-04 2017-03-14 한국전자통신연구원 Apparatus and method for object recognition with convolution neural network
KR101771146B1 (en) * 2017-03-22 2017-08-24 광운대학교 산학협력단 Method and apparatus for detecting pedestrian and vehicle based on convolutional neural network using stereo camera
JP2018060511A (en) * 2016-10-06 2018-04-12 株式会社アドバンスド・データ・コントロールズ Simulation system, simulation program, and simulation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160132731A (en) * 2015-05-11 2016-11-21 계명대학교 산학협력단 Device and method for tracking pedestrian in thermal image using an online random fern learning
KR20170028591A (en) * 2015-09-04 2017-03-14 한국전자통신연구원 Apparatus and method for object recognition with convolution neural network
JP2018060511A (en) * 2016-10-06 2018-04-12 株式会社アドバンスド・データ・コントロールズ Simulation system, simulation program, and simulation method
KR101771146B1 (en) * 2017-03-22 2017-08-24 광운대학교 산학협력단 Method and apparatus for detecting pedestrian and vehicle based on convolutional neural network using stereo camera

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SON , SE JI: "YOLO : Real-Time Object Detection DY N DY", LET'S PRACTICE YOLO : REAL-TIME OBJECT DETECTION. DY N DY, 19 October 2016 (2016-10-19), pages 1 - 7 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112668487A (en) * 2020-12-29 2021-04-16 杭州晨安科技股份有限公司 Teacher tracking method based on fusion of body fitness and human similarity
CN112668487B (en) * 2020-12-29 2022-05-27 杭州晨安科技股份有限公司 Teacher tracking method based on fusion of body fitness and human similarity
CN113392754A (en) * 2021-06-11 2021-09-14 成都掌中全景信息技术有限公司 Method for reducing false detection rate of pedestrian based on yolov5 pedestrian detection algorithm

Also Published As

Publication number Publication date
KR102164950B1 (en) 2020-10-13
KR20200052429A (en) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2020085653A1 (en) Multiple-pedestrian tracking method and system using teacher-student random fern
WO2020040391A1 (en) Combined deep layer network-based system for pedestrian recognition and attribute extraction
WO2020105948A1 (en) Image processing apparatus and control method thereof
WO2019031714A1 (en) Method and apparatus for recognizing object
WO2019164251A1 (en) Method of performing learning of deep neural network and apparatus thereof
WO2020085694A1 (en) Image-capturing device and method for controlling same
WO2022114731A1 (en) Deep learning-based abnormal behavior detection system and detection method for detecting and recognizing abnormal behavior
WO2020138745A1 (en) Image processing method, apparatus, electronic device and computer readable storage medium
WO2019182269A1 (en) Electronic device, image processing method of electronic device, and computer-readable medium
WO2020130747A1 (en) Image processing apparatus and method for style transformation
WO2019074316A1 (en) Convolutional artificial neural network-based recognition system in which registration, search, and reproduction of image and video are divided between and performed by mobile device and server
WO2022139111A1 (en) Method and system for recognizing marine object on basis of hyperspectral data
WO2021006404A1 (en) Artificial intelligence server
WO2020241930A1 (en) Method for estimating location using multi-sensor and robot for implementing same
WO2020262746A1 (en) Artificial intelligence-based apparatus for recommending laundry course, and control method therefor
WO2020241934A1 (en) Method for estimating position by synchronizing multi-sensor, and robot for implementing same
WO2022045425A1 (en) Inverse reinforcement learning-based delivery means detection apparatus and method
WO2020184747A1 (en) Artificial intelligence device and method for controlling auto-stop system
WO2020184746A1 (en) Artificial intelligence apparatus for controlling auto stop system on basis of driving information, and method therefor
WO2021206221A1 (en) Artificial intelligence apparatus using a plurality of output layers and method for same
WO2020171605A1 (en) Driving information providing method, and vehicle map providing server and method
WO2018186625A1 (en) Electronic device, warning message providing method therefor, and non-transitory computer-readable recording medium
WO2020091337A1 (en) Image analysis apparatus and method
EP3922036A1 (en) Apparatus and method for generating image
WO2020017814A1 (en) Abnormal entity detection system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876462

Country of ref document: EP

Kind code of ref document: A1