WO2020085610A1 - Anode comprising graphite and silicon-based material which have different diameters, and lithium secondary battery comprising same - Google Patents

Anode comprising graphite and silicon-based material which have different diameters, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2020085610A1
WO2020085610A1 PCT/KR2019/007740 KR2019007740W WO2020085610A1 WO 2020085610 A1 WO2020085610 A1 WO 2020085610A1 KR 2019007740 W KR2019007740 W KR 2019007740W WO 2020085610 A1 WO2020085610 A1 WO 2020085610A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
negative electrode
secondary battery
lithium secondary
silicon
Prior art date
Application number
PCT/KR2019/007740
Other languages
French (fr)
Korean (ko)
Inventor
최정현
송현민
성주환
박한솔
조민수
박성해
곽진구
박영욱
김수진
장진수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190072305A external-priority patent/KR102590425B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980026545.0A priority Critical patent/CN112005407A/en
Priority to US17/047,593 priority patent/US20210151744A1/en
Priority to PL19876531.5T priority patent/PL3754762T3/en
Priority to CN202311079497.6A priority patent/CN116885101A/en
Priority to EP19876531.5A priority patent/EP3754762B1/en
Priority to ES19876531T priority patent/ES2953152T3/en
Publication of WO2020085610A1 publication Critical patent/WO2020085610A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a negative electrode comprising graphite and silicon-based materials having different particle diameters and a lithium secondary battery comprising the same
  • the present invention relates to a negative electrode comprising graphite and silicon-based materials having different particle diameters and a ritual secondary battery comprising the same, in detail, allele graphite, small-particle silicon-based material, particulate graphite and further carbon satisfying specific particle diameter conditions It relates to a negative electrode comprising a nanotube and a lithium secondary battery comprising the same.
  • a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually expanding.
  • the negative electrode of the Litum secondary battery (Large! 10 (1 is a material containing deflagration as an active material) is widely used.
  • the material containing graphite releases lithium, the average potential is about 0.2 ⁇ : /] + standard), and when discharging, the potential shifts relatively flat. For this reason, the voltage of the battery is high and constant.
  • the electrical capacity per unit mass of graphite material ((back ⁇ ) is 372 111 new, while the capacity of the current graphite material has been improved close to the theoretical capacity, so it is difficult to further increase the capacity.
  • a material forming a compound between lithium and metal for example, silicon or tin
  • silicon is an alloy-type negative electrode active material having a theoretical capacity (4,200 11 ⁇ ) of about 10 times or more higher than that of graphite, and is currently spotlighted as a negative electrode active material of a lithium secondary battery.
  • the silicon-based material containing silicon has a large volume change during charging and discharging.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems requested from the past.
  • the present invention by including a carbon nanotube, as well as allele graphite, small particle silicon-based material, and particulate graphite satisfying specific particle diameter conditions in the negative electrode material layer, the negative electrode having improved early life characteristics while including the silicon-based material as an active material And a lithium secondary battery including the same. ⁇ Technical Solution ⁇
  • the negative electrode material layer is formed on at least one surface of the negative electrode current collector as a negative electrode for a lithium secondary battery
  • the negative electrode material layer includes an allele graphite, a small particle silicon-based material, particulate graphite, and carbon nanotubes, and provides a negative electrode for a lithium secondary battery satisfying the following conditions 1 to 3.
  • the present invention also provides a lithium secondary battery comprising the negative electrode for a lithium secondary battery.
  • the configuration of the negative electrode and the lithium secondary battery according to embodiments of the present invention will be described in detail.
  • the negative electrode material layer is formed on at least one surface of the negative electrode current collector
  • the negative electrode material layer includes an allele graphite, a small particle silicon-based material, particulate graphite, and carbon nanotubes, and a cathode for a lithium secondary battery satisfying the following conditions 1 to 3 is provided.
  • the average diameter (D50) is defined as a diameter at 50% of the particle diameter distribution based on the volume of the particles, and the average diameter of the additive particles (D50) is, for example, laser diffraction (laser diffraction method).
  • each particle After dispersing each particle in a solution of water / triton X-100, it is introduced into a commercially available laser diffraction particle size measuring device (e.g., Microtrac S 3500) to generate ultrasonic waves at about 28 kHz. After irradiation at 60 W for 1 minute, the average diameter (D50) based on 50% of the diameter distribution in the measuring device was determined. Can be calculated.
  • the allele graphite and the particulate graphite may be one or more selected from the group consisting of natural graphite and artificial graphite, respectively.
  • the natural graphite has excellent adhesion, and artificial graphite has excellent output and life characteristics. Therefore, it can be appropriately selected in consideration of this, and their content ratio can be appropriately selected.
  • the structure in which the allele graphite and particulate graphite is a mixture of natural graphite and artificial graphite is not excluded, and the allele graphite and particulate graphite may be a mixture of natural graphite and artificial graphite, and the allele graphite is artificial graphite ,
  • the particulate graphite may be natural graphite, the allele graphite may be natural graphite, and the particulate graphite may be artificial graphite.
  • the content ratio thereof is most preferable in terms of secondary battery performance in that natural graphite: artificial graphite is included in a range of 5:95 to 95: 5.
  • the natural graphite may have a specific surface area (BET) of 2 m 2 / g to 8 m 2 / g, and in detail, 2.1 m 2 / g to 4 m 2 / g, and artificial graphite,
  • the surface area (BET) may be 0.5 m 2 / g to 5 m 2 / g, and specifically, 0.6 m 2 / g to 4 m 2 / g.
  • the specific surface area may be determined immediately by BET (Brunauer-Emmett-Teller; BET) method. For example, Porosimetiy analyzer (Bell Japan Inc.,
  • Belsorp-II mini can be measured by the BET 6-point method by the nitrogen gas trapping method.
  • Natural graphite which exhibits excellent adhesion, is preferred as the specific surface area is large. This is because the larger the specific surface area, the more mechanically interlocking effect of adhesion between particles through a binder can be secured.
  • the shape of the natural graphite is not limited, and may be impression graphite, vein graphite, or amorphous graphite, and specifically, lump graphite or lumped graphite, and more specifically, As the contact area between the particles increases, the adhesive area increases and the adhesive force improves. Since it is preferable that the density or bulk density is large, and the grain orientation of natural graphite exhibits anisotropy, it may be ground graphite.
  • the shape of the artificial graphite is not limited, and may be in the form of powder, flake, block, plate, or rod, but in detail, the shorter the travel distance of lithium ions is, the better it is to exhibit the best output characteristics.
  • the grain orientation of the artificial graphite exhibits isotropy, and thus may be in the form of flake or plate, and more specifically flake.
  • the tap density of the natural graphite may be 0.9 g / cc to 1.3 g / cc, and in detail, it may be 0.92 g / cc to 1.15 g / cc, and the tap density of the artificial graphite is 0.7 g / cc to l.lg. / cc, and may be 0.8 g / cc to 1.05 g / cc in detail.
  • the tap density is obtained by inserting 50 g of a precursor into a lOOcc tapping cylinder using a SEISI «N (KYT-4000) measuring device using a JPL-1000 measuring device manufactured by COPLEY, and then applying 3000 tapping.
  • the allele graphite regardless of its type, has an average diameter of 050 (1 ) 0 of 1 // m to 50 IM, specifically 3 m to 40 ⁇ m, and more specifically 5 m to
  • the average diameter (micro) of the allele graphite is too small, the initial efficiency of the secondary battery may decrease due to an increase in specific surface area, and the battery performance may deteriorate. If the average diameter (micro) is too large, the rollability of the electrode This decreases, making it difficult to implement the electrode density, and the electrode surface layer becomes non-uniform, so that the charge / discharge capacity may decrease.
  • the average diameter of the particulate graphite D50 (D 3 ) is 0.155D J to 0.41413 ! Or, it may be 0.155D 2 to 0.414D 2 in relation to the average diameter D50 (D 2 ) of the small-particle silicon-based material described below.
  • the particulate graphite in addition to exhibiting a capacity, connects them while being properly positioned between the particles of the allele graphite and the small particle silicon-based material.
  • the average diameter of the particulate graphite (3 ⁇ 4) is too small, agglomeration occurs, and even formation of the negative electrode material layer makes it difficult to apply evenly to the current collector. If the average diameter ( ⁇ ) 3 ) is too large, the adhesive strength falls, and particulate graphite Since these particles do not effectively penetrate between the particles of graphite and silicon-based material, they do not sufficiently play a role in connecting them, and accordingly, the electronic conductivity may deteriorate, which is not effective in improving the initial life characteristics.
  • the average diameter of particulate graphite 3 is 0.2 to 0.413 ! Or, it may be 0.23 ⁇ 4 to 0.41) 2 .
  • the small-particle silicon-based material may be one or more selected from the group consisting of a warp complex, a wah (0 ⁇ 2), a metal doped ⁇ resin), a pure wah (131), and an alloy (wa-), Specifically, it may be a ((3 ⁇ 4 (0 ⁇ 2), a metal doped ⁇ .
  • the composite is, for example, a structure in which carbon materials are coated on the surface of a particle by heat treatment 13 ⁇ 4) in a state where carbon is combined with silicon or silicon oxide particles, or a structure in which carbon is dispersed in an atomic state inside the silicon particle, or It may be the same configuration as the applicant's international application ⁇ ⁇ 0 2005/011030 silicon / carbon composite, and is not limited as long as carbon and silicon materials form a composite.
  • the silicon oxide may be 0 ⁇ 3 ⁇ 4 £ 1, and includes a configuration in which a surface treatment such as a carbon coating layer is formed on the surface of the silicon oxide.
  • 3 ⁇ 4 (0 ⁇ 2) doped with the metal, 3 ⁇ 4 Mg, And II may be a structure doped with one or more metals selected from the group consisting of.
  • the small particle silicon-based material the average diameter D50 (D 2 ) is 0.155D! To 0.4141 ⁇ , and, in detail, 0.2D ! To 0.4D ! Can be
  • the silicon-based material exhibits a very high capacity, but has a problem that conductivity is poor compared to graphite, so that initial capacity and efficiency are not well implemented.
  • silicon-based materials are located between the particles of the allele graphite, the conductive path is well formed and the capacity and efficiency are realized stably because the conductive path is well formed.
  • the silicon-based material when the average diameter (D 2 ) of the silicon-based material satisfies the above range, the silicon-based material is appropriately positioned between the allelic graphite particles to form a conductive path, thereby enabling capacity and efficiency.
  • the carbon nanotubes may be included in the cathode material layer.
  • the carbon nanotube has a three-dimensional structure, which is more advantageous for the formation of a web-like network structure in the thickness direction of a bar electrode having a tube shape, which is good for securing an electron transfer path between the negative electrode material layer and the negative electrode current collector. This intended effect can be further improved.
  • the carbon nanotube may have a largely aligned (aligned type) or entangle type (entangle type) structure, the carbon nanotube according to the present invention may be included in any form, in detail, having a bundled structure desirable. 2020/085610 1 »(: 1 ⁇ 1 ⁇ 2019/007740
  • the bundle-type carbon nanotube and the entangled carbon nanotube are divided into particle sizes and shapes, and in a chemical vapor deposition method, they are manufactured at different temperatures to produce a desired shape of the carbon nanotubes. can do.
  • the carbon nanotubes of the entangled structure are agglomerated structures, which are similar to the intermediate form of the viscous conductive material and the carbon nanotubes of the bundled structure, network structure formation is unfavorable, whereas the bundled structure has predetermined carbon atoms. Since the strands are spaced apart at a distance, it is easier to transfer electrons, and it is more preferable that the carbon nanotubes have a bundled structure.
  • the diameter and the length for the carbon nanotubes to have the most preferable electron transport path to further improve conductivity may have an average diameter of 0.1111X1 to 20 11111, and a length of 100 to 5 / pile.
  • the diameter and length can be measured by AFM, and when it is within the above range, it is more advantageous for forming a three-dimensional network structure in the form of a web, and is more preferable in terms of securing electronic conductivity.
  • the present invention by including a silicon-based material as an active material, while exhibiting a high capacity, in order to ensure the insufficient conductivity of these materials, includes both allele graphite and particulate graphite.
  • the conductive path of the silicon-based material 11 is well formed, so that capacity and efficiency are stable.
  • the allele graphite is the main form, and the shape in which the silicon-based material is located in between is most preferable, and it is preferable that the allele graphite occupies the most weight% in the anode material layer.
  • the allele graphite is 30 to 98.5 wt% based on the total weight of the allele graphite, small particle silicon-based material, particulate graphite, and carbon nanotubes, specifically, 40 to 97 wt%, more specifically, 60 It may be from 95.5% by weight, and the small particle silicon-based material may be 0.5 to 30% by weight, specifically, 1 to 25% by weight, and particularly, 1.5 to 20% by weight.
  • fine particle graphite like allel graphite, also acts on capacity and efficiency, but is located between the particles of the allel graphite and the small particle silicon-based material, thereby exerting an effect of increasing electronic conductivity by connecting them.
  • the most preferable content of the particulate graphite may be 0.5 to 20% by weight based on the total weight of the allele graphite, the small particle silicon-based material, the particulate graphite, and the carbon nanotube, and in detail, 1 to 20% by weight, further Specifically, it may be 1.5 to 10% by weight.
  • the carbon nanotube is more advantageous for the formation of a web-like network structure in the thickness direction of the electrode, and can serve as a conductive material to secure an electron transfer path between the negative electrode material layer and the negative electrode current collector.
  • the carbon nanotubes are 0.005 to 20% by weight, more specifically, 0.007 to 15% by weight, more specifically, 0.01 based on the total weight of allele graphite, small particle silicon-based material, particulate graphite, and carbon nanotubes. To 10% by weight.
  • the negative electrode material layer is not limited to the above materials, and may further include a conductive material and a binder.
  • the conductive material in addition to the carbon nanotubes, is a conventionally known conductive material and is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • Carbon black such as black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the binder is not limited as long as it is a component that assists in the bonding of the active material and the conductive material and the like to the current collector, for example, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, Hydroxypropyl cellulose, recycled cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene Sulfonated table. It can be selected from styrene-butadiene rubber, fluorine rubber, and various copolymers.
  • the conductive material except the carbon nanotubes, and the binder, respectively based on the total weight of the anode material layer, 0.1 to 30% by weight, in detail, 0.5 to 10% by weight, more specifically, 1 to 5% by weight It can be included as
  • the negative electrode material layer may be composed of allele graphite, small particle silicon-based material, particulate graphite, carbon nanotubes, and a binder.
  • additional active materials for example, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, ketjen black, super?, Graphene ( & 1 ) 11 ⁇ 2), and fibrous carbon
  • amorphous hard carbon for example, low crystalline soft carbon, carbon black, acetylene black, ketjen black, super?, Graphene ( & 1 ) 11 ⁇ 2), and fibrous carbon
  • fibrous carbon One or more carbon-based materials selected from the group consisting of, 3 ⁇ 43 ⁇ 4 2 0 3 (0 £ 1),
  • Metal oxides such as ⁇ 3 0 4 , 2 0 3 , 2 0 4 , 3 ⁇ 4 2 0 5 ,, 0 0 2 , li 2 0 3 , 2 0 4 , (1P 2 0 5 ); Conductive polymers such as polyacetylene; 1 ⁇ 0) -based materials; Titanium oxide; Lithium titanium oxide, and the like.
  • a filler or the like may be selectively included in the anode material layer.
  • the filler is a component that inhibits the expansion of the positive electrode selectively 2020/085610 1 »(: 1 ⁇ 1 ⁇ 2019/007740
  • olefinic polymers such as polyethylene and polypropylene
  • fibrous materials such as glass fibers and carbon fibers are used.
  • the negative electrode current collector is generally made of a thickness of 3-200, and is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • copper, stainless steel, aluminum, Surfaces of nickel, titanium, calcined carbon, copper or stainless steel with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloys, etc. may be used.
  • it is also possible to form fine irregularities on the surface to enhance the bonding force of the negative electrode active material and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • a lithium secondary battery including the negative electrode for a secondary battery is provided.
  • the lithium secondary battery may have a structure in which an electrode assembly including an anode and a separator, in addition to the cathode, is embedded in a battery case together with an electrolyte.
  • the positive electrode may be manufactured by, for example, coating a positive electrode current collector with a positive electrode active material and a binder on a positive electrode current collector, and, if necessary, further adding a conductive material and a filler as described in the negative electrode.
  • the positive electrode current collector is generally manufactured to a thickness of 3 to 200, and is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • stainless steel, aluminum, nickel, titanium, And one surface selected from carbon, nickel, titanium or silver on the surface of aluminum or stainless steel, and aluminum may be used in detail.
  • the current collector can also increase the adhesion of the positive electrode active material by forming fine irregularities on its surface, and various forms such as film, sheet, foil, net, porous body, foam, and nonwoven fabric are possible.
  • the positive electrode active material may be, for example, a layered compound such as lithium cobalt oxide (1 mountain 0 2 2 ), lithium lithium oxide (1 high 0 2 ), or one or more transition metals. 2020/085610 1 »(: 1 ⁇ 1 ⁇ 2019/007740
  • the binder examples of the binder, conductive material, and filler are as described for the negative electrode.
  • the separator may be made of the same material, but is not limited thereto, and may be made of different materials depending on the safety, energy density, and overall performance of the battery cell.
  • the pore size and porosity of the separator are not particularly limited, but the porosity may range from 10 to 95%, and the pore size (diameter) may be from 0.1 to 50 / pile. When the pore size and porosity are less than 0.1 m and 10%, respectively, it acts as a resistive layer, and when the pore size and porosity exceeds 50 and 95%, it becomes difficult to maintain mechanical properties.
  • the electrolyte solution may be a lithium salt-containing non-aqueous electrolyte, and the lithium-containing non-aqueous electrolyte is composed of a non-aqueous electrolyte and a lithum salt, and the non-aqueous electrolyte includes a non-aqueous organic solvent, an organic solid electrolyte, and an inorganic solid electrolyte. It is not limited to.
  • non-aqueous organic solvent for example, methyl-2 -pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyl Low lactone, 1,2-dimethoxy ethane, tetrahydroxyfuran, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1,3-dioxorun, formamide, dimethylformamide, dioxorun, acetonitrile, nitro Methane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxy methane, dioxoren derivative, sulfolane, methyl sulfolane, 1,3 -dimethyl-2 -imidazolidinone, propylene carbonate derivative, tetrahydro Furan derivatives, ethers, Aprotic organic solvents, such as methyl pyropionate and ethyl propionate, can be
  • organic solid electrolyte examples include, for example, a glycolide derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphoric acid ester polymer, a polyagitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, A polymerization agent or the like containing an ionic dissociative group can be used.
  • the inorganic solid electrolyte for example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSi0 4 , LiSi0 4 -LiI-LiOH, Li 2 SiS 3 , I ⁇ Si0 4 , Li nitrides such as Li 4 Si0 4 -LiI-Li0H, Li 3 P0 4 -Li 2 S-SiS 2 , halides, sulfates and the like can be used.
  • the lithium salt is a material that is soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, Lil, LiC10 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 S0 3 , LiCF 3 C0 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 S0 3 Li, (CF 3 S0 2 ) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4phenyl lithium borate, imide, and the like.
  • non-aqueous electrolytes are used for the purpose of improving charge / discharge characteristics, flame retardancy, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme (glyme), nuclear phosphate triamide, Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxy ethanol, aluminum trichloride, etc. may be added. have.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, or carbon dioxide gas may be further included to improve high temperature storage properties, and FEC (Fluoro-Ethylene) Carbonate), PRS (Propene sultone), etc. may be further included.
  • lithium salts such as LiPF 6 , LiC10 4 , LiBF 4 , and LiN (S0 2 CF 3 ) 2 are used as a high-viscosity solvent of EC or PC cyclic carbonate and low-viscosity solvent DEC, DMC or EMC.
  • a non-aqueous electrolyte containing a lithium salt can be prepared by adding it to a mixed solvent of a linear carbonate.
  • Lithium secondary battery according to the present invention is a device including it as a power source, for example, a notebook computer, netbook, tablet PC, mobile phone, MP3, wearable electronic devices, Power tool, electric vehicle (EV), hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), electric bicycle (E- bike), an electric scooter (E-scooter), an electric golf cart (electric golf cart), or a power storage system.
  • a power source for example, a notebook computer, netbook, tablet PC, mobile phone, MP3, wearable electronic devices, Power tool, electric vehicle (EV), hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), electric bicycle (E- bike), an electric scooter (E-scooter), an electric golf cart (electric golf cart), or a power storage system.
  • a power source for example, a notebook computer, netbook, tablet PC, mobile phone, MP3, wearable electronic devices, Power tool, electric vehicle (EV), hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), electric bicycle (E- bike),
  • Spherical type natural deflagration (spherical type, D50: 15 / im), silicon-based material (SiO, D50: 6im), and fine-particle artificial deflagration (flake type, D50: 3. 5 ) as negative electrode active material weight ratio 88: 7: 5
  • carbon nanotubes (CNT bundle type, average diameter: 10 nm, length: 4.5 _)
  • CMC Carboxylmethyl cellulose
  • SBR Stryene Butadiene Rubber
  • the cathode slurry was applied to a thickness of 150 IM on a copper foil of 15 m thickness.
  • a cathode was prepared by rolling it to a porosity of 25% and drying it under vacuum at 130 ° C for about 8 hours.
  • a negative electrode was prepared in the same manner as in Example 1, except that a structure in which D50 was 2 m was used as fine artificial graphite.
  • a negative electrode was prepared in the same manner as in Example 1.
  • Example 2 Same as Example 1 except that allele spheroidized natural graphite (spherical type, D50: 5 / im), silicon-based material (SiO, D50: 2 j ), and fine particle artificial deflagration (flake type, D50: 0.8 ratio were used) A negative electrode was prepared.
  • allele spheroidized natural graphite spherical type, D50: 5 / im
  • silicon-based material SiO, D50: 2 j
  • fine particle artificial deflagration fine particle artificial deflagration
  • Example 2 Same as Example 1, except that allele-spherical natural graphite (spherical type, D50: 2Sm), silicon-based material (SiO, D50: 6j ⁇ ), and fine-particle artificial deflagration (flake type, D50: 2 ; ⁇ ) were used.
  • a negative electrode was prepared.
  • Example 1 (spherical type, D50: 55 / ira), silicon-based material (SiO, D50: 15; ⁇ ), and fine particles of artificial graphite (flake type, D50: 10; ⁇ ) were mixed at 88: 7: 5 by weight ratio of the negative electrode active material, followed by a mixture of negative electrode active materials, carbon nanotubes (CNT bundle type, average diameter) : 10 nm, length: 4.5 m), and 97.8: 0.8: 0.7: 0.7 based on the weight of CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) as a binder were added to the solvent distilled water to prepare a negative electrode slurry.
  • a cathode was prepared in the same manner as in Example 1 except for the above.
  • Example 1 allele-spheroidized natural deflagration (spherical type, D50: 15 // m), silicon-based material (SiO, D50: 2m), and fine particles of artificial graphite (flake type, D50: 3.5 n) as the negative electrode active material weight ratio
  • the mixture of negative electrode active material, carbon nanotubes (CNT bundle type, average diameter: 10 nm, length: 4.5 m), and CMC (C rboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) as binders ) was added to 97.8: 0.8: 0.7: 0.7 by weight to distilled water to prepare a negative electrode in the same manner as in Example 1, except that a negative electrode slurry was prepared.
  • Example 1 allele-spheronized natural deflagration (spherical type, D50: 15j), silicon-based material (SiO, D50: 10_), and particulate artificial graphite (flake type, D50: 3.5 / k) were negative After mixing in an active material weight ratio of 88: 7: 5, a mixture of the negative electrode active material, carbon nanotubes (CNT bundle type, average diameter: 10 nm, length: 4.5 m), and CMC (Carboxylmethyl cellulose) and SBR (Stryene) as binders A negative electrode was prepared in the same manner as in Example 1, except that 97.8: 0.8: 0.7: 0.7 by weight of Butadiene Rubber) was added to the solvent distilled water to prepare a negative electrode slurry.
  • Example 1 the allele spheroidized natural deflagration (spherical type, D50: 15 ⁇ m), silicon-based material (S ⁇ , D50: 6m), and fine particles of artificial graphite (flake type, D50: 0.5; _) were negative electrode active material weight ratio After mixing with 88: 7: 5, the mixture of negative electrode active material, carbon nanotube (CNT bundle type, average diameter: 10 run, length: 4.5 m), and CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene) as binders Rubber) was added in the same manner as in Example 1, except that a negative electrode slurry was prepared by adding 97.8: 0.8: 0.7: 0.7 to the solvent distilled water based on the weight.
  • CNT bundle type carbon nanotube
  • SBR Tine Butadiene
  • Example 1 allele spheroidized natural deflagration (spherical type, D50: 15; ⁇ ), silicon-based material (SiO, D50: 6m), and fine particles of artificial graphite (flake type, D50: 8j ⁇ ) were used as the negative electrode active material weight ratio 88 : 7: After mixing to 5, the mixture of negative electrode active material, carbon nanotube (CNT bundle type, average diameter: 10 nm, length: 4.5 m), and as a binder
  • a negative electrode was prepared in the same manner as in Example 1, except that 97.8: 0.8: 0.7: 0.7 of CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) was added to the solvent distilled water to prepare a negative electrode slurry. .
  • CMC Carboxylmethyl cellulose
  • SBR Stryene Butadiene Rubber
  • Example 1 allele spheroidized natural deflagration (spherical type, D50: 15,), silicon-based material (SiO, D50: 2 m), and fine particles of artificial graphite (flake type, D50: 0.2 // m) were used as the negative electrode active material weight ratio.
  • Example 1 the ratio of allele spheroidized natural deflagration (spherical type, D50: 15), silicon-based material (SiO, D50: 10 / im), and fine particle artificial graphite (flake type, D50: 8) was used as the negative electrode active material weight ratio 88 : 7 : After mixing with 5, mixture of negative electrode active material, carbon nanotube (CNT bundle type, average diameter: 10 nm, length: 4.5 m), and CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) as a binder A negative electrode was prepared in the same manner as in Example 1, except that 97.8: 0.8: 0.7: 0.7 was added to the solvent distilled water to prepare a negative electrode slurry.
  • CNT bundle type average diameter: 10 nm, length: 4.5 m
  • CMC Carboxylmethyl cellulose
  • SBR Stryene Butadiene Rubber
  • Example 1 the spheroidized natural deflagration (spherical type, D50: 15 / im) and silicon-based material (SiO, D50: 6_) were mixed at a weight ratio of negative electrode active material of 93: 7, followed by a mixture of negative electrode active materials and a point shape Conductive material (denka black) and as binder
  • a negative electrode was prepared in the same manner as in Example 1, except that 97: 1.6: 0.7: 0.7 of CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) was added to the solvent distilled water to prepare a negative electrode slurry. .
  • Cathode active material LiNi a4 Mn Q.3 Co Q.3 0 2 and LiNi0 2 mixture in a weight ratio of 97: 3) 96% by weight, Super-P (conductive material) 2.3% by weight, and PVDF (Binder) 1.7
  • NMP N-me ⁇ iyl-2-pyrrolidone
  • Secondary batteries were prepared using a liquid electrolyte in which carbonate ( ⁇ ) was dissolved in 0.5% by weight based on the weight of the electrolyte solvent and 1M in 1 Gopyeong 6 .
  • the negative electrode for a secondary battery according to the present invention includes allelic graphite, small particle silicon-based material, and particulate graphite satisfying specific particle diameter conditions in the negative electrode material layer, and further includes carbon nanotubes as an active material. While using a silicone-based material, there is an effect of significantly improving the early life characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to: an anode for a lithium secondary battery, having an anode material layer formed on at least one surface of an anode current collector, wherein the anode material layer comprises large graphite particles, a small-particle silicon-based material, graphite microparticles and carbon nanotubes and meets the following conditions 1 to 3; and a lithium secondary battery comprising same. [Condition 1] The average diameter D50(D1) of the large graphite particles: 1-50μm [Condition 2] The average diameter D50(D2) of the small-particle silicon-based material: 0.155D1-0.414D1 [Condition 3] The average diameter D50(D3) of the graphite microparticles: 0.155D1-0.414D1, or 0.155D2-0.414D2

Description

2020/085610 1»(:1^1{2019/007740  2020/085610 1 »(: 1 ^ 1 {2019/007740
【명세서】 【Specification】
【발명의 명칭】  【Name of invention】
입경이 상이한 흑연 및 실리콘계 소재를 포함하는 음극 및 이를 포함하는 리튬 이차전지  A negative electrode comprising graphite and silicon-based materials having different particle diameters and a lithium secondary battery comprising the same
【기술분야】 【Technical Field】
관련 출원(들)과의 상호 인용 Mutual citation with related application (s)
본 출원은 2018년 10월 24일자 한국 특허 출원 제 10-2018-0127486호 및 2019년 6월 18일자 한국 특허 출원 제 10-2019-0072305호에 기초한 우선권의 이익을 주장하며,-해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0127486 filed on October 24, 2018 and Korean Patent Application No. 10-2019-0072305 filed on June 18, 2019-Applicable Korean Patent Application All content disclosed in the documents of is included as part of the present specification.
본 발명은, 입경이 상이한 흑연 및 실리콘계 소재를 포함하는 음극 및 이를 포함하는 리툼 이차전지에 관한 것으로서, 상세하게는, 특정한 입경 조건을 만족하는 대립자 흑연, 소립자 실리콘계 소재, 미립자 흑연 및 더 나아가 탄소 나노 튜브를 포함하는 음극 및 이를 포함하는 리튬 이차전지에 관한 것이다.  The present invention relates to a negative electrode comprising graphite and silicon-based materials having different particle diameters and a ritual secondary battery comprising the same, in detail, allele graphite, small-particle silicon-based material, particulate graphite and further carbon satisfying specific particle diameter conditions It relates to a negative electrode comprising a nanotube and a lithium secondary battery comprising the same.
【배경기술】 【Background technology】
화석연료 사용의 급격한 증가로 인하여 대체 에너지, 청정 에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학을 이용한 발전, 축전 분야이다.  Due to the rapid increase in the use of fossil fuels, the demand for the use of alternative energy and clean energy is increasing, and as a part, the fields most actively researched are electricity generation and electricity storage using electrochemistry.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.  At present, a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually expanding.
최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고 사이클 수명이 길며 자기방전율이 낮은 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다. 또한, 환경문제에 대한 관심이 커짐에 따라, 대기 오염의 주요 2020/085610 1»(:1^1{2019/007740 In recent years, as technology development and demand for portable devices such as portable computers, portable telephones, and cameras have increased, the demand for secondary batteries as an energy source has rapidly increased, indicating high energy density and operating potential among such secondary batteries and showing cycle life Many studies have been conducted on this long and low self-discharge lithium secondary battery, and it has been commercialized and widely used. In addition, as interest in environmental issues grows, air pollution is a major 2020/085610 1 »(: 1 ^ 1 {2019/007740
원인의 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로는 주로 니켈 수소금속 이차전지가 사용되고 있지만, 높은 에너지 밀도와 방전 전압의 리툼 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부상용화단계에 있다. Research into electric vehicles, hybrid electric vehicles, and the like, which can replace fossil fuel vehicles, such as gasoline vehicles and diesel vehicles, is one of the causes. As a power source for such electric vehicles and hybrid electric vehicles, nickel-metal hydride secondary batteries are mainly used, but studies using lithium-based secondary batteries with high energy density and discharge voltage have been actively conducted, and are in the stage of commercialization.
리툼 이차전지의 음극(크!10(1이 활물질로서는 폭연을 포함하는 재료가 널리 이용되고 있는 실정이다. 흑연을 포함하는 재료가 리륨을 방출할 때의 평균 전위는 약 0.2\ : /] +기준)이며,방전 시 그 전위가비교적 평탄하게 추이(推移)한다. 이 때문에 전지의 전압아 높고 일정해지는 장점어 있다. 그러나, 흑연 재료의 단위 질량당 전기적 용량((백^財)은 372 111새 로 작은 반면, 현재 흑연 재료의 용량은 상기 이론적인 용량에 가깝게 향상되어 있기 때문에,추가적인 용량증가는 어려운실정이다. The negative electrode of the Litum secondary battery (Large! 10 (1 is a material containing deflagration as an active material) is widely used. When the material containing graphite releases lithium, the average potential is about 0.2 \: /] + standard), and when discharging, the potential shifts relatively flat. For this reason, the voltage of the battery is high and constant. However, the electrical capacity per unit mass of graphite material ((back ^^) is 372 111 new, while the capacity of the current graphite material has been improved close to the theoretical capacity, so it is difficult to further increase the capacity.
이에 리륨 이차전지의 추가적인 고용량화를 위해서, 여러 가지 음극 활물질이 연구되고 있다. 고용량의 음극 활물질로서는, 리튬과 금속 간 화합물을 형성하는 재료, 예를 들면, 실리콘이나 주석 등이 유망한 음극 활물질로 기대되고 있다. 특히, 실리콘은 흑연에 비해 약 10 배 이상의 높은 이론 용량 (4,200 11^ )을 가지는 합금 타입의 음극 활물질로서, 오늘날 리륨 이차전지의 음극활물질로서 각광받고 있다.  Accordingly, in order to further increase the capacity of the lithium secondary battery, various negative electrode active materials have been studied. As a high-capacity negative electrode active material, a material forming a compound between lithium and metal, for example, silicon or tin, is expected to be a promising negative electrode active material. In particular, silicon is an alloy-type negative electrode active material having a theoretical capacity (4,200 11 ^) of about 10 times or more higher than that of graphite, and is currently spotlighted as a negative electrode active material of a lithium secondary battery.
그러나, 실리콘을 포함하는 실리콘계 소재는 충방전 시 큰 부피 변화 However, the silicon-based material containing silicon has a large volume change during charging and discharging.
( 300%)가 일어나고, 그에 따라 물질 간의 물리적 접촉이 끊어져 파편화가 발생하므로, 급격히 이온 전도성, 전기 전도성 등이 저하되기 때문에 실제적인 초반수명특성이 급감하는 경향을보안다. (300%) occurs, and accordingly, the physical contact between the materials is broken and fragmentation occurs. Therefore, since the ionic conductivity and electrical conductivity are rapidly reduced, the actual ultra-life characteristics tend to drop sharply.
이에 따라, 높은 이론적인 용량을 가지는 실리콘계 소재의 특성을 개선하고자, 81/0^011 복합체 제조 등 다양한 시도를 탑-다운(切|>(10·) 방식으로 하고 있으나, 제조 공정이 복잡하고, 낮은 수율로 인하여, 이를 상용화하기에는 미흡한단점이 있다.  Accordingly, in order to improve the properties of a silicon-based material having a high theoretical capacity, various attempts, such as manufacturing a 81/0 ^ 011 composite, are made in a top-down (切 |> (10 ·) method, but the manufacturing process is complicated. Due to the low yield, there are insufficient disadvantages to commercialize it.
따라서, 실리콘계 소재를 리튬 이차전지의 활물질로 사용하면서도 초반수명 특성을 향상시키기 위한 기술 개발의 필요성이 높은 실정이다. 2020/085610 1»(:1^1{2019/007740 Therefore, there is a high need to develop a technology for improving ultra-short life characteristics while using a silicon-based material as an active material for a lithium secondary battery. 2020/085610 1 »(: 1 ^ 1 {2019/007740
【발명의 상세한설명】 【Detailed explanation of the invention】
【기술적 과제】  【Technical tasks】
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.  The present invention aims to solve the problems of the prior art as described above and the technical problems requested from the past.
구체적으로, 본 발명은, 음극재층에 특정한 입경 조건을 만족하는 대립자 흑연, 소립자 실리콘계 소재, 미립자 흑연과 더불어, 탄소 나노 튜브를 포함함으로써, 실리콘계 소재를 활물질로서 포함하면서도 초반 수명 특성이 개선된 음극 및 이를포함하는 리튬 이차전지를 제공한다. 【기술적 해결방법】  Specifically, the present invention, by including a carbon nanotube, as well as allele graphite, small particle silicon-based material, and particulate graphite satisfying specific particle diameter conditions in the negative electrode material layer, the negative electrode having improved early life characteristics while including the silicon-based material as an active material And a lithium secondary battery including the same. 【Technical Solution】
이러한목적을 달성하기 위한본 발명의 일 구현예에 따르면, 본 발명은, 음극재층이 음극 집전체의 적어도 일면에 형성되어 있는 리륨 이차전지용 음극으로서,  According to an embodiment of the present invention for achieving this object, the present invention, the negative electrode material layer is formed on at least one surface of the negative electrode current collector as a negative electrode for a lithium secondary battery,
상기 음극재층은, 대립자 흑연, 소립자 실리콘계 소재, 미립자 흑연, 및 탄소 나노 튜브를 포함하며, 하기 조건 1 내지 3을 만족하는 리튬 이차전지용 음극을 제공한다.  The negative electrode material layer includes an allele graphite, a small particle silicon-based material, particulate graphite, and carbon nanotubes, and provides a negative electrode for a lithium secondary battery satisfying the following conditions 1 to 3.
[조건 1] 대립자흑연의 평균 직경 050(00: 1 내지 50 / /III  [Condition 1] Average diameter of allele graphite 050 (00: 1 to 50 / / III
[조건 2] 소립자 실리콘계 소재의 평균 직경 여0(1¾)·· 0.1551)! 내지[Condition 2] The average diameter of the small-particle silicon-based material is 0 (1¾) ... 0.1551) ! To
0.4141)1 0.4141) 1
[조건 3] 미립자 흑연의 평균 직경 £)50(1)3): 0.1550! 내지 0.4140!, 또는 0.155])2내지 0.414¾ 본 발명의 또 다른 일 구현예에 따르면, [Condition 3] Average diameter of particulate graphite £) 5 0 (1) 3 ): 0.1550 ! To 0.4140 ! Or 0.155] 2 to 0.414¾ According to another embodiment of the present invention,
본 발명은 또한, 상기 리튬 이차전지용 음극을 포함하는 리륨 이차전지를 제공한다. 상기와 같은 구성의 음극을 포함하는 리륨 이차전지는, 실리콘계 소재를 활물질로서 포함하면서도, 초반 수명특성이 현저히 향상된 효과가 있다. 이하, 발명의 구현 예들에 따른 음극 및 리륨 이차전지의 구성에 대하여 보다상세히 설명한다. The present invention also provides a lithium secondary battery comprising the negative electrode for a lithium secondary battery. The lithium secondary battery including the negative electrode having the above-described configuration, while including a silicon-based material as an active material, has a significantly improved early life characteristics. Hereinafter, the configuration of the negative electrode and the lithium secondary battery according to embodiments of the present invention will be described in detail.
본 명세서 명시적인 언급이 없는 한, 전문용어는 단지 특정 구현예를 언급하기 위한 것이며,본 발명을 한정하는 것을 의도하지 않는다.  Unless expressly stated in this specification, the terminology is only for referring to specific embodiments and is not intended to limit the present invention.
본 명세서에서 사용되는 단수 형태들은문구들이 이와 명백히 반대의 의미를 나타내지 않는 한복수 형태들도포함한다.  Singular forms used herein also include plural forms unless the phrases clearly indicate the opposite.
본 명세서에서 사용되는 ’포함’의 의미는 특정 특성, 영역, 정수, 단계, 동작,요소 또는 성분을 구체화하며, 다른특정 특성, 영역,정수, 단계, 동작, 요소,또는성분의 부가를 제외시키는 것은 아니다. 【발명의 실시를 위한 형태】  As used herein, the meaning of 'include' specifies a specific characteristic, region, integer, step, operation, element, or component, and excludes the addition of another specific characteristic, region, integer, step, operation, element, or component. It is not. [Mode for the Invention]
본 발명의 일 구현예에 따르면,  According to one embodiment of the invention,
음극재층이 음극 집전체의 적어도 일면에 형성되어 있는 리륨 이차전지용음극으로서,  As a negative electrode for a lithium secondary battery, the negative electrode material layer is formed on at least one surface of the negative electrode current collector,
상기 음극재층은, 대립자 흑연, 소립자 실리콘계 소재, 미립자 흑연, 및 탄소 나노 튜브를 포함하며, 하기 조건 1 내지 3을 만족하는 리튬 이차전지용음극이 제공된다.  The negative electrode material layer includes an allele graphite, a small particle silicon-based material, particulate graphite, and carbon nanotubes, and a cathode for a lithium secondary battery satisfying the following conditions 1 to 3 is provided.
[조건 1] 대립자흑연의 평균 직경 D50(Di): 1 내지 50m  [Condition 1] Average diameter of allele graphite D50 (Di): 1 to 50 m
[조건 2] 소립자 실리콘계 소재의 평균 직경 D50(D2): 0.155DJ 내지 0.414Di [Condition 2] Average diameter of small particle silicon-based material D50 (D 2 ): 0.155D J to 0.414Di
[조건 3] 미립자 흑연의 평균 직경 D50(D3): 0.155DI 내지 0.414Di, 또는 0.155D2내지 0.414D2 [Condition 3] Average diameter D50 (D 3 ) of particulate graphite: 0.155D I to 0.414Di, or 0.155D 2 to 0.414D 2
여기서,상기 평균 직경 (D50)은 입자의 체적을 기준으로, 입자의 직경 분포의 50% 기준에서의 직경으로 정의된 것으로, 상가 입자들의 평균 직경 (D50)은 예를 들어, 레이저 회절법 (laser diffraction method)을 이용하여 측정될 수 있다.  Here, the average diameter (D50) is defined as a diameter at 50% of the particle diameter distribution based on the volume of the particles, and the average diameter of the additive particles (D50) is, for example, laser diffraction (laser diffraction method).
예를 들면, 각 입자들을 물/트리톤 X-100(triton X-100)의 용액에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치 (예를 들어 Microtrac S 3500)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 1분동안 조사한 후, 측정 장치에 있어서의 직경 분포의 50% 기준에서의 평균 직경 (D50)을 산출할수 있다. 상기 대립자 흑연 및 미립자 흑연은, 각각 천연 흑연 및 인조 흑연으로 이루어진 군에서 선택되는 1종 이상일 수 있다. For example, after dispersing each particle in a solution of water / triton X-100, it is introduced into a commercially available laser diffraction particle size measuring device (e.g., Microtrac S 3500) to generate ultrasonic waves at about 28 kHz. After irradiation at 60 W for 1 minute, the average diameter (D50) based on 50% of the diameter distribution in the measuring device was determined. Can be calculated. The allele graphite and the particulate graphite may be one or more selected from the group consisting of natural graphite and artificial graphite, respectively.
상기 천연 흑연은, 접착력이 우수하고, 인조흑연은출력 특성과수명 특성이 우수하다. 따라서, 이를 고려하여 적절히 선택할 수 있고, 이들의 함량 비율을 적절히 선택할수 있다.  The natural graphite has excellent adhesion, and artificial graphite has excellent output and life characteristics. Therefore, it can be appropriately selected in consideration of this, and their content ratio can be appropriately selected.
또한, 상기 대립자 흑연 및 미립자 흑연이 천연 흑연과 인조 흑연의 혼합물인 구성을 배제하는 것은 아니며, 대립자흑연 및 미립자흑연이 천연 흑연과 인조 흑연의 혼합물일 수 있으며, 대립자 흑연은 인조 흑연이고, 미립자 흑연은 천연 흑연일 수도 있고, 대립자 흑연은 천연 흑연이고, 미립자흑연은 인조흑연일 수도 있다.  In addition, the structure in which the allele graphite and particulate graphite is a mixture of natural graphite and artificial graphite is not excluded, and the allele graphite and particulate graphite may be a mixture of natural graphite and artificial graphite, and the allele graphite is artificial graphite , The particulate graphite may be natural graphite, the allele graphite may be natural graphite, and the particulate graphite may be artificial graphite.
천연 흑연과 인조 흑연이 모두 포함되는 경우, 그 함량비는, 천연 흑연 : 인조 흑연이 5:95 내지 95:5인 범위로 포함됨이 이차전지 성능 측면에서 가장 바람직하다.  When both natural graphite and artificial graphite are included, the content ratio thereof is most preferable in terms of secondary battery performance in that natural graphite: artificial graphite is included in a range of 5:95 to 95: 5.
상기 천연 흑연은, 비표면적 (BET)이 2 m2/g 내지 8 m2/g일 수 있고, 상세하게는, 2.1 m2/g내지 4 m2/g일 수 있으며, 인조흑연은,비표면적 (BET)이 0.5 m2/g내지 5 m2/g일 수 있고,상세하게는, 0.6 m2/g내지 4 m2/g일 수 있다. 상기 상기 비표면적은 BET (Brunauer-Emmett-T eller ; BET)법으로즉정할 수 있다. 예를 들어, 기공분포 즉정기 (Porosimetiy analyzer; Bell Japan Inc,The natural graphite may have a specific surface area (BET) of 2 m 2 / g to 8 m 2 / g, and in detail, 2.1 m 2 / g to 4 m 2 / g, and artificial graphite, The surface area (BET) may be 0.5 m 2 / g to 5 m 2 / g, and specifically, 0.6 m 2 / g to 4 m 2 / g. The specific surface area may be determined immediately by BET (Brunauer-Emmett-Teller; BET) method. For example, Porosimetiy analyzer (Bell Japan Inc.,
Belsorp-II mini)를 사용하여 질소 가스 듭착 유통법에 의해 BET 6 점법으로 측정할수 있다. Belsorp-II mini) can be measured by the BET 6-point method by the nitrogen gas trapping method.
우수한 접착력을 발휘하는 천연 흑연은, 비표면적이 클수록 바람직하다. 이는, 비표면적이 클수록 바인더를 통한 입자간 접착의 기계적 상호결합 효과 (Mechanically interlocking effect)를 중분히 확보할 수 있기 때문이다.  Natural graphite, which exhibits excellent adhesion, is preferred as the specific surface area is large. This is because the larger the specific surface area, the more mechanically interlocking effect of adhesion between particles through a binder can be secured.
상기 천연 흑연의 형상은 한정되지 아니하고, 인상흑연 (flake graphite), 괴상 폭연 (vein graphite), 또는 토상 폭연 (amorphous graphite)일 수 있고, 상세하게는, 괴상 흑연 또는 토상 흑연, 더욱 상세하게는, 입자간의 접촉 면적이 커지면 접착면적이 커지고 이로 인해 접착력이 향상되기 때문에 탭 밀도 또는 벌크 밀도가 큰 것이 바람직하고, 천연 흑연의 결정립 배향도가 이방성을 나타내는 것이 바람직하므로, 토상 흑연일 수 있다. The shape of the natural graphite is not limited, and may be impression graphite, vein graphite, or amorphous graphite, and specifically, lump graphite or lumped graphite, and more specifically, As the contact area between the particles increases, the adhesive area increases and the adhesive force improves. Since it is preferable that the density or bulk density is large, and the grain orientation of natural graphite exhibits anisotropy, it may be ground graphite.
한편, 상기 인조 흑연의 형상은 한정되지는 아니하고, 분말상, 플레이크상, 블록상, 판상, 또는 봉상일 수 있으나, 상세하게는, 가장 우수한 출력 특성을 나타내기 위해서는 리튬 이온의 이동거리가 짧을수록 좋고, 전극 방향으로의 이동거리가 짧기 위해서는 인조 흑연의 결정립 배향도가 등방성을 나타내는 것이 바람직하므로, 상세하게는 플레이크상, 또는 판상, 더욱 상세하게는 플레이크상일 수 있다.  Meanwhile, the shape of the artificial graphite is not limited, and may be in the form of powder, flake, block, plate, or rod, but in detail, the shorter the travel distance of lithium ions is, the better it is to exhibit the best output characteristics. In order to have a short moving distance in the direction of the electrode, it is preferable that the grain orientation of the artificial graphite exhibits isotropy, and thus may be in the form of flake or plate, and more specifically flake.
상기 천연 흑연의 탭 밀도는 0.9 g/cc 내지 1.3g/cc일 수 있고, 상세하게는 0.92 g/cc 내지 1.15g/cc 일 수 있으며, 인조 흑연의 탭 밀도는 0.7 g/cc 내지 l.lg/cc일 수 있고, 상세하게는 0.8 g/cc 내지 1.05g/cc 일 수 있다. 여기서, 상기 탭 밀도는 COPLEY사의 JV-1000 측정기기를 이용하여 SEISI«N(KYT-4000) 측정기기를 이용하여 lOOcc 태핑용 실린더에 전구체를 50g을 넣은 후 3000회 태핑을 가하여 구한다.  The tap density of the natural graphite may be 0.9 g / cc to 1.3 g / cc, and in detail, it may be 0.92 g / cc to 1.15 g / cc, and the tap density of the artificial graphite is 0.7 g / cc to l.lg. / cc, and may be 0.8 g / cc to 1.05 g / cc in detail. Here, the tap density is obtained by inserting 50 g of a precursor into a lOOcc tapping cylinder using a SEISI «N (KYT-4000) measuring device using a JPL-1000 measuring device manufactured by COPLEY, and then applying 3000 tapping.
상기 범위를 벗어나, 탭 밀도가 너무 작은 경우 입자간의 접촉면적이 충분하지 않아 접착력 특성이 저하 되고, 큰 경우에는 전극의 만곡성 (tortuosity) 저하 및 전해액 젖음성 (wet-ability)이 저하되어 중방전시의 줄력특성이 저하되는 문제가 있는 바, 바람직하지 않다.  Outside the above range, if the tap density is too small, the contact area between the particles is insufficient, and the adhesion properties are deteriorated. In the large case, the electrode curvature (tortuosity) decreases and the electrolyte wettability decreases. There is a problem in that the streak characteristics are lowered, which is not preferable.
한편, 상기 대립자 흑연은, 그 종류에 관계 없이 평균 직경 050(1)0이 1 //m 내지 50 IM, 상세하게는 3 m 내지 40 ^m, 더욱 상세하게는 5 m 내지On the other hand, the allele graphite, regardless of its type, has an average diameter of 050 (1 ) 0 of 1 // m to 50 IM, specifically 3 m to 40 ^ m, and more specifically 5 m to
30 일 수 있다. It can be 30 days.
상기 대립자 흑연의 평균 직경 (미)이 너무 작은 경우, 비표면적 증가로 인해 이차전지의 초기 효율이 감소하여 전지 성능이 저하될 수 있고, 평균 직경 (미)이 너무 큰 경우, 전극의 압연성이 저하되어, 전극 밀도 구현이 어려워지며, 전극 표면층이 불균일해져 충방전 용량이 저하될 수 있다.  If the average diameter (micro) of the allele graphite is too small, the initial efficiency of the secondary battery may decrease due to an increase in specific surface area, and the battery performance may deteriorate. If the average diameter (micro) is too large, the rollability of the electrode This decreases, making it difficult to implement the electrode density, and the electrode surface layer becomes non-uniform, so that the charge / discharge capacity may decrease.
상기 미립자 흑연의 평균 직경 D50(D3)은 0.155DJ 내지 0.41413!, 또는 이하에서 설명할 소립자 실리콘계 소재의 평균 직경 D50(D2)와 관련하여, 0.155D2 내지 0.414D2일 수 있다. The average diameter of the particulate graphite D50 (D 3 ) is 0.155D J to 0.41413 ! Or, it may be 0.155D 2 to 0.414D 2 in relation to the average diameter D50 (D 2 ) of the small-particle silicon-based material described below.
상기 미립자 흑연은, 용량을 나타내는 것 외에도, 대립자 흑연과 소립자 실리콘계 소재의 입자들 사이에 적절히 위치하면서 이들을 연결시켜 2020/085610 1»(:1^1{2019/007740 The particulate graphite, in addition to exhibiting a capacity, connects them while being properly positioned between the particles of the allele graphite and the small particle silicon-based material. 2020/085610 1 »(: 1 ^ 1 {2019/007740
보다 전자 전도성을 향상시키는 역할을 수행할 수 있도록 상기 두 조건 중 어느하나를 만족하는 것이 바람직하다. It is preferable that one of the two conditions is satisfied so that it can serve to improve the electronic conductivity.
상기 미립자 흑연의 평균 직경(¾)이 너무 작은 경우, 뭉침 현상이 나타나 음극재층의 형성시 집전체에의 고른 도포가 어려우며, 평균 직경(å)3)이 너무 큰 경우, 접착력이 떨어지고, 미립자흑연이 대립자 흑연 및 실리콘계 소재의 입자 사이에 효과적으로 침투하지 못하므로 이들을 연결시켜주는 역할을 충분히 수행하지 못하고, 이에 따라 전자 전도성이 저하될 수 있는 바,초기 수명 특성의 향상에 효과적이지 않다. When the average diameter of the particulate graphite (¾) is too small, agglomeration occurs, and even formation of the negative electrode material layer makes it difficult to apply evenly to the current collector. If the average diameter (å) 3 ) is too large, the adhesive strength falls, and particulate graphite Since these particles do not effectively penetrate between the particles of graphite and silicon-based material, they do not sufficiently play a role in connecting them, and accordingly, the electronic conductivity may deteriorate, which is not effective in improving the initial life characteristics.
더욱상세한 범위로, 미립자흑연의 평균 직경 3)는 0.2 내지 0.413! 또는, 0.2¾내지 0.41)2일 수 있다. 상기 소립자 실리콘계 소재는, 와幻 복합체, 와 (0 <2), 금속이 도핑된 와^예신), 순수 와(131 ), 및 합금(와- )로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 상세하게는, 와(¾(0<<2), 금속이 도핑된 와 幻일 수 있다. In a more detailed range, the average diameter of particulate graphite 3 ) is 0.2 to 0.413 ! Or, it may be 0.2¾ to 0.41) 2 . The small-particle silicon-based material may be one or more selected from the group consisting of a warp complex, a wah (0 < 2), a metal doped ^ resin), a pure wah (131), and an alloy (wa-), Specifically, it may be a ((¾ (0 << 2), a metal doped 와.
상기 복합체는, 예를 들어, 탄소가 실리콘 또는 실리콘 산화물 입자와 결합한 상태에서 열처리 1¾)됨으로써 탄소 물질이 입자 표면에 코팅된 구성, 또는 실리콘 입자 내부에 탄소가 원자 상태로 분산되어 있는 구성, 또는 본 출원인의 국제출원 \¥0 2005/011030의 실리콘/탄소 복합체와 같은 구성일 수도 있으며, 탄소와 실리콘 물질이 복합체를 이루는 구성이라면 한정되지 아니하고가능하다.  The composite is, for example, a structure in which carbon materials are coated on the surface of a particle by heat treatment 1¾) in a state where carbon is combined with silicon or silicon oxide particles, or a structure in which carbon is dispersed in an atomic state inside the silicon particle, or It may be the same configuration as the applicant's international application \ ¥ 0 2005/011030 silicon / carbon composite, and is not limited as long as carbon and silicon materials form a composite.
상기 실리콘 산화물은, 0<¾£ 1일 수 있으며, 실리콘산화물의 표면에 탄소코팅층등의 표면 처리가 이루어진 구성도포함한다.  The silicon oxide may be 0 <¾ £ 1, and includes a configuration in which a surface treatment such as a carbon coating layer is formed on the surface of the silicon oxide.
또한, 상기 금속이 도핑된 와¾(0 <2)는, ¾ Mg,
Figure imgf000008_0001
및 II로 이루어진 군에서 선택된 1종 이상의 금속이 도핑된 구성일 수 있다.
In addition, ¾ (0 <2) doped with the metal, ¾ Mg,
Figure imgf000008_0001
And II may be a structure doped with one or more metals selected from the group consisting of.
상기와 같이 도핑되는 경우, (¾ 소재의 비가역인 와02 상을 환원시키거나, 전기화학적으로 비활성인 금속-실리케이트(111 1- 1 6) 상으로 변환 시켜 ¾ 소재의 초기 효율을 높일 수 있는 바, 더욱 바람직하다.In the case of doping as above, it is possible to increase the initial efficiency of the ¾ material by reducing the irreversible W0 2 phase of the ¾ material or converting it to the electrochemically inactive metal-silicate (111 1-1 6) phase. Bar, it is more preferable.
Figure imgf000008_0002
군에서 선택된 1종 이상의 금속과 합금된 것으로, 이들과의 고용체, 금속간화합물, 공정합금 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
Figure imgf000008_0002
It is alloyed with one or more metals selected from the group, and examples thereof include solid solutions, intermetallic compounds, process alloys, and the like, but are not limited to these.
한편, 상기 소립자 실리콘계 소재는, 그 평균 직경 D50(D2)이 0.155D! 내지 0.4141^일 수 있고,상세하게는, 0.2D! 내지 0.4D!일 수있다. On the other hand, the small particle silicon-based material, the average diameter D50 (D 2 ) is 0.155D! To 0.4141 ^, and, in detail, 0.2D ! To 0.4D ! Can be
상기 실리콘계 소재는, 매우 높은 용량을 나타내지만, 도전성이 흑연 대비 떨어져 초기 용량 및 효율이 잘 구현되지 않는 문제가 있다. 그러나 대립자 흑연의 입자들 사이에 실리콘계 소재들이 위치하면, 흑연과 접촉을 잘 하고 있어 도전 패스 (path)가 잘 형성되어 용량 및 효율 구현이 안정적으로 일어난다,  The silicon-based material exhibits a very high capacity, but has a problem that conductivity is poor compared to graphite, so that initial capacity and efficiency are not well implemented. However, when silicon-based materials are located between the particles of the allele graphite, the conductive path is well formed and the capacity and efficiency are realized stably because the conductive path is well formed.
이때, 실리콘계 소재의 평균 직경 (D2)이, 상기 범위를 만족하는 경우,실리콘계 소재가 적절히 대립자 흑연 입자들 사이에 위치하여 도전 패스 (path)가잘 형성되어 용량 및 효율구현이 가능하다. At this time, when the average diameter (D 2 ) of the silicon-based material satisfies the above range, the silicon-based material is appropriately positioned between the allelic graphite particles to form a conductive path, thereby enabling capacity and efficiency.
상기 범위를 벗어나, 소립자 실리콘계 소재의 평균 직경 (D2)이 너무 작은 경우, 대립자 흑연 입자들 사이에 실리콘계 소재들이 분포하여도 실리콘계 소재들끼리 뭉쳐있고 전해액 부반응이 많이 일어나 초기 효율이 낮아지고, 평균 직경 (D2)이 너무 큰 경우, 대립자 흑연 입자들 사이에 실리콘계 소재들이 분포하지 않아 음극의 용량 및 효율이 잘 구현되지 않아 전체적으로 낮게 구현될 수 있다. 본 발명에 따르면, 상기 대립자 흑연, 소립자 실리콘계 소재, 및 미립자흑연과더불어, 탄소 나노튜브가음극재층에 포함될 수 있다. Outside the above range, when the average diameter (D 2 ) of the small-particle silicon-based material is too small, even if the silicon-based materials are distributed between the allele graphite particles, the silicon-based materials are aggregated and a lot of side reactions occur, resulting in low initial efficiency, If the average diameter (D 2 ) is too large, the silicon-based materials are not distributed between the allelic graphite particles, so that the capacity and efficiency of the cathode are not well implemented, and thus it can be implemented as a whole. According to the present invention, in addition to the allele graphite, the small particle silicon-based material, and the particulate graphite, the carbon nanotubes may be included in the cathode material layer.
상기 탄소 나노 튜브는 3차원적인 구조로 튜브 형태를 갖는 바 전극의 두께 방향으로 웹 형태의 네트워크 구조의 형성에 좀 더 유리하여 음극재층과 음극 집전체와의 전자 전달 경로 확보에 좋은 바, 본 발명이 의도한효과를 더욱 향상시킬 수 있다.  The carbon nanotube has a three-dimensional structure, which is more advantageous for the formation of a web-like network structure in the thickness direction of a bar electrode having a tube shape, which is good for securing an electron transfer path between the negative electrode material layer and the negative electrode current collector. This intended effect can be further improved.
상기 탄소 나노 튜브는 크게 번들형 (aligned type) 또는 인탱글형 (entangle type)구조를가질 수 있고,본 발명에 따른상기 탄소 나노 튜브는 어떠한 형태라도 포함될 수 있으나, 상세하게는 번들형 구조를 갖는 것이 바람직하다. 2020/085610 1»(:1^1{2019/007740 The carbon nanotube may have a largely aligned (aligned type) or entangle type (entangle type) structure, the carbon nanotube according to the present invention may be included in any form, in detail, having a bundled structure desirable. 2020/085610 1 »(: 1 ^ 1 {2019/007740
구체적으로, 상기 번들형 구조의 탄소 나노 튜브와 인탱글형 구조의 탄소 나노튜브는 입도와 형상으로 구분되고, 화학기상증착 방식에 있어서, 소망하는 형태의 탄소 나노 튜브를 제조하기 위해 온도를 달리하여 제조할 수 있다. 이때, 상기 인탱글형 구조의 탄소 나노 튜브는 덩어리진 구조로서 점형 도전재와 상기 번들형 구조의 탄소 나노 튜브의 중간 형태와 유사하므로, 네트워크 구조 형성이 불리한 반면, 상기 번들형 구조는 탄소 원자끼리 소정 거리로 이격되어 가닥가닥 존재하기 때문에 전자 전달에 있어 좀 더 용이한 바, 상기 탄소 나노 튜브는 번들형 구조를 갖는 것이 보다바람직하다. Specifically, the bundle-type carbon nanotube and the entangled carbon nanotube are divided into particle sizes and shapes, and in a chemical vapor deposition method, they are manufactured at different temperatures to produce a desired shape of the carbon nanotubes. can do. At this time, since the carbon nanotubes of the entangled structure are agglomerated structures, which are similar to the intermediate form of the viscous conductive material and the carbon nanotubes of the bundled structure, network structure formation is unfavorable, whereas the bundled structure has predetermined carbon atoms. Since the strands are spaced apart at a distance, it is easier to transfer electrons, and it is more preferable that the carbon nanotubes have a bundled structure.
또한, 상기 탄소 나노 튜브가 가장 바람직한 전자 전달 경로를 가져 도전성을 보다 향상시키기 위한 직경 및 길이는, 상세하게는, 평균 직경이 0.1111X1내지 20 11111,길이가 100 내지 5 /페일 수 있다.  In addition, the diameter and the length for the carbon nanotubes to have the most preferable electron transport path to further improve conductivity, in detail, may have an average diameter of 0.1111X1 to 20 11111, and a length of 100 to 5 / pile.
여기서, 상기 직경 및 길이는 AFM으로 측정할 수 있고, 상기 범위 내 일 때, 3차원적인 웹 형태의 네트워크 구조의 형성에 좀 더 유리한 바, 전자전도성 확보측면에서 더욱 바람직하다.  Here, the diameter and length can be measured by AFM, and when it is within the above range, it is more advantageous for forming a three-dimensional network structure in the form of a web, and is more preferable in terms of securing electronic conductivity.
상기 범위를 벗어나, 직경이 너무 큰 경우에는 결정성이 떨어져 전도성이 저하되는 문제가 있으며, 너무 작은 경우에는 음극재를 음극 집전체 상에 도포하기 용이하지 않으며, 상기 길이가 너무 짧은 경우에는 네트워크 구조 형성에 문제가 있고, 너무 길어 5 _를 초과하는 경우에는 균일한분포가어려운 바,바람직하지 않다. 구체적으로, 상기에서 설명한 성분들은, 음극재층에서, 대립자 흑연, 소립자 실리콘계 소재, 미립자 흑연, 및 탄소 나노 튜브 전체중량을 기준으로, 대립자 흑연 30 내지 98.995 중량%, 소립자 실리콘계 소재 0.5 내지 30 중량%, 미립자 흑연 0.5 내지 20 중량%, 및 탄소 나노 튜브 0.005 내지 20중량%를포함할수 있다.  Outside the above range, if the diameter is too large, there is a problem that the crystallinity falls and conductivity decreases. If it is too small, it is not easy to apply the negative electrode material on the negative electrode current collector, and if the length is too short, the network structure There is a problem with formation, and if it is too long to exceed 5 _, uniform distribution is difficult, which is not desirable. Specifically, the components described above, in the anode material layer, based on the total weight of the allele graphite, small particle silicon-based material, particulate graphite, and carbon nanotubes, 30 to 98.995% by weight of the allele graphite, 0.5 to 30 weight of the small particle silicon-based material %, Particulate graphite 0.5 to 20% by weight, and carbon nanotubes 0.005 to 20% by weight.
상기에서 설명한 바와 같이, 본 발명은, 실리콘계 소재를 활물질로서 포함함으로써, 높은 용량을 발휘하는 반면, 이들 소재가 가지는 부족한 도전성을 확보하기 위하여 대립자흑연과 미립자흑연을 함께 포함한다.  As described above, the present invention, by including a silicon-based material as an active material, while exhibiting a high capacity, in order to ensure the insufficient conductivity of these materials, includes both allele graphite and particulate graphite.
이 경우, 대립자 흑연이 이루는 공극에, 소립자의 실리콘계 소재가 2020/085610 1»(:1^1{2019/007740 In this case, the silicon-based material of the small particles in the void formed by the allele graphite 2020/085610 1 »(: 1 ^ 1 {2019/007740
위치하게 되어, 실리콘계 소재와 흑연이 접촉 되므로, 실리콘계 소재의 도전 패스여 11)가잘형성되게 되므로,용량 및 효율 구현이 안정적이다. Since the silicon-based material and graphite are in contact with each other, the conductive path of the silicon-based material 11) is well formed, so that capacity and efficiency are stable.
결론적으로, 상기 대립자 흑연이 주를 이루고, 이 사이에 실리콘계 소재가 위치하는 형태가 가장 바람직한 바, 대립자 흑연이 음극재층에서 가장 많은중량%를차지하는 것이 바람직하다.  In conclusion, the allele graphite is the main form, and the shape in which the silicon-based material is located in between is most preferable, and it is preferable that the allele graphite occupies the most weight% in the anode material layer.
따라서, 상기 대립자 흑연은, 대립자 흑연, 소립자 실리콘계 소재, 미립자흑연, 및 탄소 나노 튜브 전체 중량을 기준으로 30내지 98.5 중량%, 상세하게는, 40 내지 97 중량%, 더욱 상세하게는, 60 내지 95.5 중량%일 수 있고, 소립자 실리콘계 소재는 0.5 내지 30 중량%, 상세하게는, 1 내지 25 중량%,저욱상세하게는, 1.5 내지 20중량%일 수 있다.  Accordingly, the allele graphite is 30 to 98.5 wt% based on the total weight of the allele graphite, small particle silicon-based material, particulate graphite, and carbon nanotubes, specifically, 40 to 97 wt%, more specifically, 60 It may be from 95.5% by weight, and the small particle silicon-based material may be 0.5 to 30% by weight, specifically, 1 to 25% by weight, and particularly, 1.5 to 20% by weight.
한편, 미립자 흑연은, 대립자 흑연과 같이 용량 및 효율에도 작용하지만, 상기 대립자 흑연 및 소립자 실리콘계 소재의 입자들 사이에 위치하여 이들을 연결함으로써 전자 전도성을 높이는 효과를 발휘한다. 이때, 상기 미립자 흑연의 가장 바람직한 함량은 대립자 흑연, 소립자 실리콘계 소재, 미립자 흑연, 및 탄소 나노 튜브 전체 중량을 기준으로 0.5 내지 20중량%일 수 있고,상세하게는, 1 내지 20중량%,더욱상세하게는, 1.5 내지 10중량%일 수 있다.  On the other hand, fine particle graphite, like allel graphite, also acts on capacity and efficiency, but is located between the particles of the allel graphite and the small particle silicon-based material, thereby exerting an effect of increasing electronic conductivity by connecting them. At this time, the most preferable content of the particulate graphite may be 0.5 to 20% by weight based on the total weight of the allele graphite, the small particle silicon-based material, the particulate graphite, and the carbon nanotube, and in detail, 1 to 20% by weight, further Specifically, it may be 1.5 to 10% by weight.
상기 탄소 나노 튜브는 상기에서 설명한 바와 같이, 전극의 두께 방향으로 웹 형태의 네트워크 구조의 형성에 좀 더 유리하여, 음극재층과 음극 집전체와의 전자전달 경로 확보하는도전재 역할을수행할수 있다. 따라서, 상기 탄소 나노 튜브는, 대립자 흑연, 소립자 실리콘계 소재, 미립자흑연, 및 탄소 나노튜브 전체 중량을 기준으로 0.005 내지 20중량%, 상세하게는, 0.007내지 15 중량%,더욱상세하게는, 0.01 내지 10중량%일 수 있다. 한편, 상기 음극재층에는, 상기 물질들에 한정되지 아니하고, 도전재, 및 바인더를 더 포함할수 있다.  As described above, the carbon nanotube is more advantageous for the formation of a web-like network structure in the thickness direction of the electrode, and can serve as a conductive material to secure an electron transfer path between the negative electrode material layer and the negative electrode current collector. Accordingly, the carbon nanotubes are 0.005 to 20% by weight, more specifically, 0.007 to 15% by weight, more specifically, 0.01 based on the total weight of allele graphite, small particle silicon-based material, particulate graphite, and carbon nanotubes. To 10% by weight. Meanwhile, the negative electrode material layer is not limited to the above materials, and may further include a conductive material and a binder.
상기 도전재는, 탄소 나노 튜브 외에, 종래 공지된 도전재로서 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를들어, 카본블랙, 아세틸렌 블랙,케첸 블랙, 채널 2020/085610 1»(:1^1{2019/007740 The conductive material, in addition to the carbon nanotubes, is a conventionally known conductive material and is not particularly limited as long as it has conductivity without causing chemical changes in the battery. For example, carbon black, acetylene black, ketjen black, and channels 2020/085610 1 »(: 1 ^ 1 {2019/007740
블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 상기 바인더는, 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분이라면 한정되지 아니하고, 예를 들어, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르
Figure imgf000012_0001
술폰화 표。 스타렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등에서 각각 선택될 수 있다.
Carbon black such as black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used. The binder is not limited as long as it is a component that assists in the bonding of the active material and the conductive material and the like to the current collector, for example, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, Hydroxypropyl cellulose, recycled cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene
Figure imgf000012_0001
Sulfonated table. It can be selected from styrene-butadiene rubber, fluorine rubber, and various copolymers.
이때, 상기 탄소 나노 튜브를 제외한 도전재, 및 바인더는, 각각 음극재층 전체 중량을 기준으로, 0.1 내지 30중량%, 상세하게는, 0.5 내지 10 중량%, 더욱 상세하게는 , 1 내지 5 중량%로 포함될 수 있다.  At this time, the conductive material except the carbon nanotubes, and the binder, respectively, based on the total weight of the anode material layer, 0.1 to 30% by weight, in detail, 0.5 to 10% by weight, more specifically, 1 to 5% by weight It can be included as
한편, 상기 탄소 나노 튜브가 도전재 역할을 수행할 수 있으므로, 상기 음극재층은, 대립자 흑연, 소립자 실리콘계 소재, 미립자 흑연, 탄소 나노 튜브, 및 바인더로 구성될 수 있다.  On the other hand, since the carbon nanotubes can serve as a conductive material, the negative electrode material layer may be composed of allele graphite, small particle silicon-based material, particulate graphite, carbon nanotubes, and a binder.
또한, 상기 음극재층에는 상기 물질 외에, 추가적인 활물질, 예를 들어, 비정질 하드카본, 저결정질 소프트카본, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 수퍼 ?, 그래핀 ( &1) 1½), 및 섬유상 탄소로 이루어진 군으로부터 선택되는 하나 이상의 탄소계 물질, ¾¾203(0£ 1),
Figure imgf000012_0002
In addition, in the anode material layer, in addition to the above materials, additional active materials, for example, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, ketjen black, super?, Graphene ( & 1 ) 1½), and fibrous carbon One or more carbon-based materials selected from the group consisting of, ¾¾ 2 0 3 (0 £ 1),
Figure imgf000012_0002
주기율표의 1족, 2족, 3족 원소, 할로겐; 0< £ 1 ; 1 £ £3; 1 £ £8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 주석계 합금;
Figure imgf000012_0003
Group 1, Group 2, and Group 3 elements of the periodic table, halogen; 0 <£ 1; 1 ££ 3; Metal composite oxides such as 1 ££ 8); Lithium metal; Lithium alloys; Tin-based alloys;
Figure imgf000012_0003
304, 203, 204, ¾205, , 0 02,리203, 204, (1피205 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; 1木0)- 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 포함할 수 있다. Metal oxides such as 此3 0 4 , 2 0 3 , 2 0 4 , ¾ 2 0 5 ,, 0 0 2 , li 2 0 3 , 2 0 4 , (1P 2 0 5 ); Conductive polymers such as polyacetylene; 1 木 0) -based materials; Titanium oxide; Lithium titanium oxide, and the like.
더 나아가, 상기 음극재층에는 충진제 등이 선택적으로 더 포함될 수 있다.  Furthermore, a filler or the like may be selectively included in the anode material layer.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 2020/085610 1»(:1^1{2019/007740 The filler is a component that inhibits the expansion of the positive electrode selectively 2020/085610 1 »(: 1 ^ 1 {2019/007740
사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체;유리섬유, 탄소섬유등의 섬유상물질이 사용된다. It is used, and is not particularly limited if it is a fibrous material without causing a chemical change in the battery. For example, olefinic polymers such as polyethylene and polypropylene; fibrous materials such as glass fibers and carbon fibers are used.
한편,상기 음극 집전체는, 일반적으로 3 - 200 의 두께로 제조되며, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등다양한 형태로사용될 수 있다. 본 발명의 또 다른 일 구현예에 따르면, 상기 이차전지용 음극을 포함하는 리륨 이차전지가제공된다.  On the other hand, the negative electrode current collector is generally made of a thickness of 3-200, and is not particularly limited as long as it has conductivity without causing a chemical change in the battery. For example, copper, stainless steel, aluminum, Surfaces of nickel, titanium, calcined carbon, copper or stainless steel with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloys, etc. may be used. In addition, like the positive electrode current collector, it is also possible to form fine irregularities on the surface to enhance the bonding force of the negative electrode active material, and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics. According to another embodiment of the present invention, a lithium secondary battery including the negative electrode for a secondary battery is provided.
상기 리튬 이차전지는 상기 음극과 더불어 , 양극 및 분리막을 포함하는 전극조립체가 전해액과 함께 전지케이스에 내장되어 있는 구조로 이루어질 수 있다.  The lithium secondary battery may have a structure in which an electrode assembly including an anode and a separator, in addition to the cathode, is embedded in a battery case together with an electrolyte.
상기 양극은 예를 들어, 양극 집전체에 양극 활물질 및 바인더가 혼합된 양극재를 도포하여 제조될 수 있고, 필요에 따라서는 상기 음극에서 설명한바와같이 도전재, 및 충진제를 더 첨가할수 있다.  The positive electrode may be manufactured by, for example, coating a positive electrode current collector with a positive electrode active material and a binder on a positive electrode current collector, and, if necessary, further adding a conductive material and a filler as described in the negative electrode.
상기 양극 집전체는 일반적으로 3 ~ 200 의 두께로 제조되며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티타늄, 및 알루미늄이나스테인레스 스틸의 표면에 카본, 니켈, 티타늄 또는 은으로 표면처리 한 것 중에서 선택되는 하나를사용할수 있고,상세하게는 알루미늄이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 점착력을 높일 수도 있으며, 필름,시트,호일, 네트, 다공질체, 발포체,부직포체 등다양한 형태가가능하다.  The positive electrode current collector is generally manufactured to a thickness of 3 to 200, and is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. For example, stainless steel, aluminum, nickel, titanium, And one surface selected from carbon, nickel, titanium or silver on the surface of aluminum or stainless steel, and aluminum may be used in detail. The current collector can also increase the adhesion of the positive electrode active material by forming fine irregularities on its surface, and various forms such as film, sheet, foil, net, porous body, foam, and nonwoven fabric are possible.
상기 양극 활물질은, 예를 들어, 리튬 코발트 산화물(1山그002), 리륨 니켈 산화물(1고 02) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 2020/085610 1»(:1^1{2019/007740 The positive electrode active material may be, for example, a layered compound such as lithium cobalt oxide (1 mountain 0 2 2 ), lithium lithium oxide (1 high 0 2 ), or one or more transition metals. 2020/085610 1 »(: 1 ^ 1 {2019/007740
치환된 화합물; 화학식 내+ 어 (여기서, X 는 0 ~ 0.33 임), 1^1103, 느 어, : 등의 리륨 망간 산화물; 리륨 동 산화물( 2 102; 1 /308, 1 /304, \ )5, CU2V207등의 바나듐 산화물; 화학식 ^11^02(여기서, M = 00, 신, <¾ 1^,묘 또는 03 이고, X = 0.01 ~ 0.3 임)으로 표현되는해 사이트형 리튬 니켈 산화물; 화학식
Figure imgf000014_0001
(여기서, =(¾섀, 1½,(¾
Substituted compounds; In the chemical formula + (where X is 0 to 0.33), 1 ^ 110 3 , uh,: Lilium manganese oxide such as:; Iridium copper oxide ( 2 10 2 ) ; Vanadium oxide such as 1/3 0 8 , 1/3 0 4 , \) 5 , CU2V20 7 ; A solution site type lithium nickel oxide represented by the formula ^ 1 1 ^ 0 2 (where M = 00, shin, <¾ 1 ^, seed or 03, and X = 0.01 to 0.3); Chemical formula
Figure imgf000014_0001
(Here, = (¾ sha, 1½, (¾
¾또는 Ta 이고, X : 0.01 ~ 0.1 임) 또는] 11 08(여기서, M = Fe,(¾섀,어 또는 7요 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 일부가 알칼리토금속 이온으로 치환된 LiMn204; 디설파이드 화합물; 1½2( 10043 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. ¾ or Ta, and X : 0.01 to 0.1) or] 11 0 8 (here, M = Fe, (¾ shaer, or 7 yo)) lithium manganese composite oxide; LiMn 2 0 4 in which a part of the formula is substituted with alkaline earth metal ions ; Disulfide compounds; 1½ 2 (100 4 ) 3, etc. are mentioned, but it is not limited to these.
상기 바인더, 도전재, 및 충진제의 예는 음극에서 설명한 바와 같다. 상기 분리막은, 서로 동일한 물질로 이루어진 것일 수 있지만, 이에 한정되는 것은 아니고, 전지셀의 안전성, 에너지 밀도, 및 전반적인 성능에 따라서, 서로 상이한 물질로 이루어질 수 있음은 물론이다.  Examples of the binder, conductive material, and filler are as described for the negative electrode. The separator may be made of the same material, but is not limited thereto, and may be made of different materials depending on the safety, energy density, and overall performance of the battery cell.
상기 분리막의 기공 크기 및 기공도는 특별한 제한이 없으나, 기공도는 10 내지 95% 범위, 기공 크기(직경)는 0.1 내지 50 /페일 수 있다. 기공 크기 및 기공도가 각각 0.1 m 및 10% 미만인 경우에는 저항층으로 작용하게 되며, 기공 크기 및 기공도가 50 및 95%를 초과할 경우에는 기계적 물성을 유지하기가 어렵게 된다.  The pore size and porosity of the separator are not particularly limited, but the porosity may range from 10 to 95%, and the pore size (diameter) may be from 0.1 to 50 / pile. When the pore size and porosity are less than 0.1 m and 10%, respectively, it acts as a resistive layer, and when the pore size and porosity exceeds 50 and 95%, it becomes difficult to maintain mechanical properties.
상기 전해액은 리튬염 함유 비수 전해질일 수 있고, 상기 리륨염 함유 비수 전해질은 비수 전해질과 리툼염으로 이루어져 있으며, 상기 비수 전해질로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.  The electrolyte solution may be a lithium salt-containing non-aqueous electrolyte, and the lithium-containing non-aqueous electrolyte is composed of a non-aqueous electrolyte and a lithum salt, and the non-aqueous electrolyte includes a non-aqueous organic solvent, an organic solid electrolyte, and an inorganic solid electrolyte. It is not limited to.
상기 비수계 유기용매로는, 예를 들어, 메틸- 2 -피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2 -디메톡시 에탄, 테트라히드록시푸란, 2 -메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3- 디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3 -디메틸- 2 -이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다. As the non-aqueous organic solvent, for example, methyl-2 -pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyl Low lactone, 1,2-dimethoxy ethane, tetrahydroxyfuran, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1,3-dioxorun, formamide, dimethylformamide, dioxorun, acetonitrile, nitro Methane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxy methane, dioxoren derivative, sulfolane, methyl sulfolane, 1,3 -dimethyl-2 -imidazolidinone, propylene carbonate derivative, tetrahydro Furan derivatives, ethers, Aprotic organic solvents, such as methyl pyropionate and ethyl propionate, can be used.
상기 유기 고체 전해질로는, 예를 들어, 콜리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신 (agitation lysine), 폴리에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.  Examples of the organic solid electrolyte include, for example, a glycolide derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphoric acid ester polymer, a polyagitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, A polymerization agent or the like containing an ionic dissociative group can be used.
상기 무기 고체 전해질로는, 예를들어, Li3N,LiI, Li5NI2, Li3N-LiI-LiOH, LiSi04, LiSi04-LiI-LiOH, Li2SiS3, I山 Si04, Li4Si04-LiI-Li0H, Li3P04-Li2S-SiS2등의 Li의질화물, 할로겐화물,황산염 등이 사용될 수 있다. The inorganic solid electrolyte, for example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSi0 4 , LiSi0 4 -LiI-LiOH, Li 2 SiS 3 , I 山 Si0 4 , Li nitrides such as Li 4 Si0 4 -LiI-Li0H, Li 3 P0 4 -Li 2 S-SiS 2 , halides, sulfates and the like can be used.
상기 리륨염은 상기 비수 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, Lil, LiC104, LiBF4, LiB10Cl10, LiPF6, LiCF3S03, LiCF3C02, LiAsF6, LiSbF6, LiAlCl4, CH3S03Li, (CF3S02)2NLi, 클로로 보란 리륨, 저급 지방족 카르본산 리륨, 4페닐 붕산 리륨, 이미드등이 사용될 수 있다. The lithium salt is a material that is soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, Lil, LiC10 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 S0 3 , LiCF 3 C0 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 S0 3 Li, (CF 3 S0 2 ) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4phenyl lithium borate, imide, and the like.
또한, 비수 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임 (glyme), 핵사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2 -메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone)등을 더 포함시킬 수 있다.  In addition, non-aqueous electrolytes are used for the purpose of improving charge / discharge characteristics, flame retardancy, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme (glyme), nuclear phosphate triamide, Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxy ethanol, aluminum trichloride, etc. may be added. have. In some cases, in order to impart non-flammability, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, or carbon dioxide gas may be further included to improve high temperature storage properties, and FEC (Fluoro-Ethylene) Carbonate), PRS (Propene sultone), etc. may be further included.
하나의 구체적인 예에서, LiPF6, LiC104, LiBF4, LiN(S02CF3)2 등의 리튬염을, 고유전성 용매인 EC또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리륨염 함유 비수 전해질을 제조할수 있다. In one specific example, lithium salts such as LiPF 6 , LiC10 4 , LiBF 4 , and LiN (S0 2 CF 3 ) 2 are used as a high-viscosity solvent of EC or PC cyclic carbonate and low-viscosity solvent DEC, DMC or EMC. A non-aqueous electrolyte containing a lithium salt can be prepared by adding it to a mixed solvent of a linear carbonate.
본 발명에 따른 리륨 이차전지는 이를 전원으로서 포함하는 디바이스, 예를 들어, 노트북 컴퓨터, 넷북, 태블릿 PC,휴대폰, MP3, 웨어러블 전자기기, 파워 툴 (power tool), 전기자동차 (Eledric Vehicle, EV), 하이브리드 전기자동차 (Hybrid Electric Vehicle, HEV), 클러그-인 하이브리드 전기자동차 (Plug-in Hybrid Electric Vehicle, PHEV), 전기 자전거 (E-bike), 전기 스쿠터 (E-scooter), 전기 골프 카트 (electric golf cart), 또는 전력저장용 시스템 등에 사용될 수 있다. 이하에서는 실시예를 통해 본 발명의 내용을 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다. Lithium secondary battery according to the present invention is a device including it as a power source, for example, a notebook computer, netbook, tablet PC, mobile phone, MP3, wearable electronic devices, Power tool, electric vehicle (EV), hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), electric bicycle (E- bike), an electric scooter (E-scooter), an electric golf cart (electric golf cart), or a power storage system. Hereinafter, the contents of the present invention will be described through examples, but the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
<실시예 1>(D2: 0.4DI, D3: 0.23D,) <Example 1> (D 2 : 0.4D I , D 3 : 0.23D,)
대립자구형화천연폭연 (spherical type, D50: 15/im),실리콘계 소재 (SiO, D50: 6im), 미립자 인조 폭연 (flake type, D50: 3.5 )을 음극활물질 중량비로 88 : 7 : 5로혼합한후, 음극 활물질의 혼합물, 탄소 나노튜브 (CNT 번들형, 평균 직경: 10 nm, 길이: 4.5 _), 및 바인더로서 CMC(Carboxylmethyl cellulose)와 SBR(Stryene Butadiene Rubber)를 중량을 기준으로 97.8 : 0.8 : 0.7 : 0.7룰,용매 증류수에 첨가하여 음극슬러리를 준비하였다. Spherical type natural deflagration (spherical type, D50: 15 / im), silicon-based material (SiO, D50: 6im), and fine-particle artificial deflagration (flake type, D50: 3. 5 ) as negative electrode active material weight ratio 88: 7: 5 After mixing with a mixture of negative electrode active materials, carbon nanotubes (CNT bundle type, average diameter: 10 nm, length: 4.5 _), and CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) as a binder, based on weight. 97.8: 0.8: 0.7: 0.7 rule, and added to distilled water for solvent to prepare cathode slurry.
15 m 두께의 구리 호일에 상기 음극 슬러리를 150 IM 두께로 도포하였다. 공극률이 25%가 되도록 압연 (press)한 후 진공 하에서 130°C로 약 8시간동안건조하여 음극을 제조하였다. The cathode slurry was applied to a thickness of 150 IM on a copper foil of 15 m thickness. A cathode was prepared by rolling it to a porosity of 25% and drying it under vacuum at 130 ° C for about 8 hours.
<실시예 2>(D2: 0.4DI, D3: 0.33D2) <Example 2> (D 2 : 0.4D I , D 3 : 0.33D 2 )
미립자 인조 흑연으로 D50이 2 m인 구성을 사용한 것을 제외하고는 실시예 1과동일하게 음극을 제조하였다.  A negative electrode was prepared in the same manner as in Example 1, except that a structure in which D50 was 2 m was used as fine artificial graphite.
<실시예 3>(D2: 0.4DI, D3: 0.23D0 <Example 3> (D 2 : 0.4D I , D 3 : 0.23D0
대립자구형화천연폭연 (spherical type, D50: 15/M),실리콘계 소、재 (SiO, D50: 6j·), 미립자 인조 폭연 (flake type, D50: 3.5;·)을 음극활물질 중량비로 85 : 10 : 5로 혼합한 것을 제외하고는, 실시예 1과 동일하게 음극을 제조하였다. <실시예 4>(D2: 0.3DI, D3: 0.3D0 Allele-shaped natural deflagration (spherical type, D50: 15 / M), silicon-based material (SiO, D50: 6 j ·), and fine particle artificial deflagration (flake type, D50: 3.5; A negative electrode was prepared in the same manner as in Example 1, except that the mixture was mixed at 10: 5. <Example 4> (D 2 : 0.3D I , D 3 : 0.3D0
대립자 구형화 천연폭연 (spherical type, D50: 5/M), 실리콘계 소재 (SiO, D50: 1.5/^n), 미립자 인조 폭연 (flake type, D50: 1.5//m)을 사용한 것을 제외하고는실시예 1과동일하게 음극을 제조하였다.  Conducted except that allele spheroidized natural deflagration (spherical type, D50: 5 / M), silicon-based material (SiO, D50: 1.5 / ^ n), and fine particle artificial deflagration (flake type, D50: 1.5 // m) were used. A negative electrode was prepared in the same manner as in Example 1.
<실시예 5>(D2: 0.25DI, D3: 0.16D1;D3: 0.4D2) <Example 5> (D 2 : 0.25D I , D 3 : 0.16D 1 ; D 3 : 0.4D 2 )
대립자 구형화 천연흑연 (spherical type, D50: 5/im), 실리콘계 소재 (SiO, D50: 2j·), 미립자 인조폭연 (flake type, D50: 0.8비을사용한것을 제외하고는 실시예 1과동일하게 음극을제조하였다. Same as Example 1 except that allele spheroidized natural graphite (spherical type, D50: 5 / im), silicon-based material (SiO, D50: 2 j ), and fine particle artificial deflagration (flake type, D50: 0.8 ratio were used) A negative electrode was prepared.
<실시예 6»(D2: 0.24DI, D3: 0.2D0 <Example 6 »(D 2 : 0.24D I , D 3 : 0.2D0
대립자구형화천연폭연 (spherical type, D50: 25im),실리콘계 소재 (SiO, D50: 6m), 미립자 인조 폭연 (flake type, D50: 5_)을사용한것을 제외하고는 실시예 1과동일하게 음극을 제조하였다. Same negative electrode as in Example 1, except that allele-spherical natural smoke (spherical type, D50: 25im), silicon-based material (SiO, D50: 6m), and fine-particle artificial smoke (flake type, D50: 5 _) were used. Was prepared.
<실시예 7»(D2: 0.25D], D3: 0.33D2) <Example 7 »(D 2 : 0.25D ) , D 3 : 0.33D 2 )
대립자구형화천연흑연 (spherical type, D50: 2Sm), 실리콘계 소재 (SiO, D50: 6j·), 미립자 인조 폭연 (flake type, D50: 2;·)을사용한것을 제외하고는 실시예 1과동일하게 음극을 제조하였다.  Same as Example 1, except that allele-spherical natural graphite (spherical type, D50: 2Sm), silicon-based material (SiO, D50: 6j ·), and fine-particle artificial deflagration (flake type, D50: 2 ; ·) were used. A negative electrode was prepared.
<비교예 1> <Comparative Example 1>
상기 실시예 1에서 탄소 나노 튜브를 제외하여, 대립자 구형화 천연흑연 (spherical type, D50: 15卵),실리콘계 소재 (SiO, D50: 6 ), 미립자 인조 흑연 (flake type, D50: 3.5썬!)을 음극 활물질 중량비로 88 : 7 : 5로 혼합한후, 음극 활물질의 혼합물 및 바인더로서 CMC(Carboxylmethyl cellulose)와 SBR(Stryene Butadiene Rubber)를 중량을 기준으로 98.6 : 0.7 : 0.7를, 용매 증류수에 첨가하여 음극 슬러리를 준비한 것을 제외하고는 실시예 1과 동일하게 음극을 제조하였다. <비교예 2> Except for the carbon nanotubes in Example 1, allele spheroidized natural graphite (spherical type, D50: 15 卵), silicon-based material (SiO, D 5 0 : 6 ), particulate artificial graphite (flake type, D50: 3.5 Sun!) In a weight ratio of negative electrode active material to 88: 7 : 5 , and then CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) as a mixture and binder of negative electrode active material are 98.6: 0.7: 0.7 based on the weight and solvent. A negative electrode was prepared in the same manner as in Example 1, except that a negative electrode slurry was prepared by adding it to distilled water. <Comparative Example 2>
상기 실시예 2에서 탄소 나노 튜브를 제외하여, 대립자 구형화 천연흑연 (spherical type, D50: 15_),실리콘계 소재 (SiO, D50: 6/페), 미립자 인조 폭연 (flake type, D50: 2/im)을 음극활물질 중량비로 88 : 7 : 5로혼합한후,음극 활물질의 혼합물 및 바인더로서 CMC(Carboxylmethyl cellulose)와 SBR(Stryene Butadiene Rubber)를 중량을 기준으로 98.6 : 0.7 : 0.7를, 용매 증류수에 첨가하여 음극 슬러리를 준비한 것을 제외하고는 실시예 2와 동일하게 음극을 제조하였다. <비교예 3>(IV?l·만족 못함, Dy aZ/Db Dy dl SEh) - 상기 실시예 1에서 대립자구형화천연폭연 (spherical type, D50: 55/ira), 실리콘계 소재 (SiO, D50: 15;·), 미립자 인조흑연 (flake type, D50: 10;·)을 음극 활물질 중량비로 88 : 7 : 5로 혼합한 후, 음극 활물질의 혼합물, 탄소 나노 튜브 (CNT 번들형, 평균 직경: 10 nm, 길이: 4.5 m), 및 바인더로서 CMC(Carboxylmethyl cellulose)와 SBR(Stryene Butadiene Rubber)를 중량을 기준으로 97.8 : 0.8 : 0.7 : 0.7를, 용매 증류수에 첨가하여 음극 슬러리를 제조한것을제외하고는실시예 1과동일하게 음극을 제조하였다. Excluding the carbon nanotubes in Example 2, allele spheroidized natural graphite (spherical type, D50: 15_), silicon-based material (SiO, D50: 6 / pe), artificial artificial deflagration (flake type, D50: 2 / im) is mixed at 88: 7: 5 by weight ratio of the negative electrode active material, 98.6: 0.7: 0.7 based on the weight of CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) as the mixture and binder of the negative electrode active material, and solvent distilled water A negative electrode was prepared in the same manner as in Example 2, except that the negative electrode slurry was prepared by adding to the negative electrode. <Comparative Example 3> (IV? L, not satisfied, Dy aZ / D b Dy dl SEh)-Allele-spherical natural detonation in Example 1 (spherical type, D50: 55 / ira), silicon-based material (SiO, D50: 15; ·), and fine particles of artificial graphite (flake type, D50: 10; ·) were mixed at 88: 7: 5 by weight ratio of the negative electrode active material, followed by a mixture of negative electrode active materials, carbon nanotubes (CNT bundle type, average diameter) : 10 nm, length: 4.5 m), and 97.8: 0.8: 0.7: 0.7 based on the weight of CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) as a binder were added to the solvent distilled water to prepare a negative electrode slurry. A cathode was prepared in the same manner as in Example 1 except for the above.
<비교예 4>(D2: 0.133D,, D3: 0.23D0 <Comparative Example 4> (D 2 : 0.133D, D 3 : 0.23D0
상기 실시예 1에서 대립자구형화천연폭연 (spherical type, D50: 15//m), 실리콘계 소재 (SiO, D50: 2m), 미립자 인조흑연 (flake type, D50: 3.5 n)을 음극 활물질 중량비로 88 : 7 : 5로 혼합한 후, 음극 활물질의 혼합물, 탄소 나노 튜브 (CNT 번들형, 평균 직경: 10 nm, 길이: 4.5 m), 및 바인더로서 CMC(C rboxylmethyl cellulose)와 SBR(Stryene Butadiene Rubber)를 중량을 기준으로 97.8 : 0.8 : 0.7 : 0.7를, 용매 증류수에 첨가하여 음극 슬러리를 제조한 것을제외하고는실시예 1과동일하게 음극을 제조하였다.  In Example 1, allele-spheroidized natural deflagration (spherical type, D50: 15 // m), silicon-based material (SiO, D50: 2m), and fine particles of artificial graphite (flake type, D50: 3.5 n) as the negative electrode active material weight ratio After mixing to 88: 7: 5, the mixture of negative electrode active material, carbon nanotubes (CNT bundle type, average diameter: 10 nm, length: 4.5 m), and CMC (C rboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) as binders ) Was added to 97.8: 0.8: 0.7: 0.7 by weight to distilled water to prepare a negative electrode in the same manner as in Example 1, except that a negative electrode slurry was prepared.
<비교예 5>(D2: 0.66D,, D3: 0.23DI, 0.35D2) <Comparative Example 5> (D 2 : 0.66D ,, D 3 : 0.23D I , 0.35D 2 )
상기 실시예 1에서 대립자구형화 천연폭연 (spherical type, D50: 15j ), 실리콘계 소재 (SiO, D50: 10_),미립자 인조흑연 (flake type, D50: 3.5/께)을 음극 활물질 중량비로 88 : 7 : 5로 혼합한 후, 음극 활물질의 혼합물, 탄소 나노 튜브 (CNT 번들형, 평균 직경: 10 nm, 길이: 4.5 m), 및 바인더로서 CMC(Carboxylmethyl cellulose)와 SBR(Stryene Butadiene Rubber)를 중량을 기준으로 97.8 : 0.8 : 0.7 : 0.7를, 용매 증류수에 첨가하여 음극 슬러리를 제조한 것을 제외하고는 실시예 1과 동일하게 음극을 제조하였다. In Example 1, allele-spheronized natural deflagration (spherical type, D50: 15j), silicon-based material (SiO, D50: 10_), and particulate artificial graphite (flake type, D50: 3.5 / k) were negative After mixing in an active material weight ratio of 88: 7: 5, a mixture of the negative electrode active material, carbon nanotubes (CNT bundle type, average diameter: 10 nm, length: 4.5 m), and CMC (Carboxylmethyl cellulose) and SBR (Stryene) as binders A negative electrode was prepared in the same manner as in Example 1, except that 97.8: 0.8: 0.7: 0.7 by weight of Butadiene Rubber) was added to the solvent distilled water to prepare a negative electrode slurry.
<바교예 6>(D2: 0.4DI, D3: 0.03DI, 0.083D2) <Basic Example 6> (D 2 : 0.4D I , D 3 : 0.03D I , 0.083D 2 )
상기 실시예 1에서 대립자 구형화 천연폭연 (spherical type, D50: 15^m), 실리콘계 소재 (S於, D50: 6m), 미립자 인조 흑연 (flake type, D50: 0.5;_)을 음극 활물질 중량비로 88 : 7 : 5로 혼합한 후,-음극 활물질의 혼합물, 탄소 나노 튜브 (CNT 번들형, 평균 직경: 10 run, 길이: 4.5 m), 및 바인더로서 CMC(Carboxylmethyl cellulose)와 SBR(Stryene Butadiene Rubber)를 중량을 기준으로 97.8 : 0.8 : 0.7 : 0.7를, 용매 증류수에 첨가하여 음극 슬러리를 제조한 것을 제외하고는 실시예 1과 동일하게 음극을 제조하였다.  In Example 1, the allele spheroidized natural deflagration (spherical type, D50: 15 ^ m), silicon-based material (S 於, D50: 6m), and fine particles of artificial graphite (flake type, D50: 0.5; _) were negative electrode active material weight ratio After mixing with 88: 7: 5, the mixture of negative electrode active material, carbon nanotube (CNT bundle type, average diameter: 10 run, length: 4.5 m), and CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene) as binders Rubber) was added in the same manner as in Example 1, except that a negative electrode slurry was prepared by adding 97.8: 0.8: 0.7: 0.7 to the solvent distilled water based on the weight.
<비교예 7>(D2: 0.4DI, D3: 0.53Dh 1.33D2) <Comparative Example 7> (D 2 : 0.4D I , D 3 : 0.53D h 1.33D 2 )
상기 실시예 1에서 대립자 구형화 천연폭연 (spherical type, D50: 15;·), 실리콘계 소재 (SiO, D50: 6m), 미립자 인조 흑연 (flake type, D50: 8j·)을 음극 활물질 중량비로 88 : 7 : 5로 혼합한 후, 음극 활물질의 혼합물, 탄소 나노 튜브 (CNT 번들형, 평균 직경: 10 nm, 길이: 4.5 m), 및 바인더로서 In Example 1, allele spheroidized natural deflagration (spherical type, D50: 15; ·), silicon-based material (SiO, D50: 6m), and fine particles of artificial graphite (flake type, D50: 8j ·) were used as the negative electrode active material weight ratio 88 : 7: After mixing to 5, the mixture of negative electrode active material, carbon nanotube (CNT bundle type, average diameter: 10 nm, length: 4.5 m), and as a binder
CMC(Carboxylmethyl cellulose)와 SBR(Stryene Butadiene Rubber)를 중량을 기준으로 97.8 : 0.8 : 0.7 : 0.7를, 용매 증류수에 첨가하여 음극 슬러리를 제조한 것을 제외하고는 실시예 1과 동일하게 음극을 제조하였다. <비교예 8>(D2: 0.133DI, D3: 0.013DI, 0.1D2) A negative electrode was prepared in the same manner as in Example 1, except that 97.8: 0.8: 0.7: 0.7 of CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) was added to the solvent distilled water to prepare a negative electrode slurry. . <Comparative Example 8> (D 2 : 0.133D I , D 3 : 0.013D I , 0.1D 2 )
상기 실시예 1에서 대립자 구형화 천연폭연 (spherical type, D50: 15,), 실리콘계 소재 (SiO, D50: 2m), 미립자 인조 흑연 (flake type, D50: 0.2//m)을 음극 활물질 중량비로 88 : 7 : 5로 혼합한 후, 음극 활물질의 혼합물, 탄소 나노 튜브 (CNT 번들형, 평균 직경: 10 nm, 길이: 4.5 m), 및 바인더로서 CMC(Carboxylmethyl cellulose)와 SBR(Stryene Butadiene Rubber)를 중량을 기준으로 97.8 : 0.8 : 0.7 : 0.7를, 용매 증류수에 첨가하여 음극 슬러리를 제조한 것을 제외하고는 실시예 1과 동일하게 음극을 제조하였다. In Example 1, allele spheroidized natural deflagration (spherical type, D50: 15,), silicon-based material (SiO, D50: 2 m), and fine particles of artificial graphite (flake type, D50: 0.2 // m) were used as the negative electrode active material weight ratio. After mixing with 88: 7: 5, the mixture of negative electrode active material, carbon nanotube (CNT bundle type, average diameter: 10 nm, length: 4.5 m), and CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) as binders To weight A negative electrode was prepared in the same manner as in Example 1, except that 97.8: 0.8: 0.7: 0.7 was added to the solvent distilled water to prepare a negative electrode slurry.
<비교예 9>(D2: 0.66D,, D3: 0.53DI, 0.8D2) <Comparative Example 9> (D 2 : 0.66D, D 3 : 0.53D I , 0.8D 2 )
상기 실시예 1에서 대립자 구형화 천연폭연 (spherical type, D50: 15 ), 실리콘계 소재 (SiO, D50: 10/im), 미립자 인조 흑연 (flake type, D50: 8 비을 음극 활물질 중량비로 88 : 7 : 5로 혼합한 후, 음극 활물질의 혼합물, 탄소 나노 튜브 (CNT 번들형, 평균 직경: 10 nm, 길이: 4.5 m), 및 바인더로서 CMC(Carboxylmethyl cellulose)와 SBR(Stryene Butadiene Rubber)를 중량을 가준으로 97.8 : 0.8 : 0.7 : 0.7를, 용매 증류수에 첨가하여 음극 슬러리를 제조한 것을 제외하고는 실시예 1과 동일하게 음극을 제조하였다. In Example 1, the ratio of allele spheroidized natural deflagration (spherical type, D50: 15), silicon-based material (SiO, D50: 10 / im), and fine particle artificial graphite (flake type, D50: 8) was used as the negative electrode active material weight ratio 88 : 7 : After mixing with 5, mixture of negative electrode active material, carbon nanotube (CNT bundle type, average diameter: 10 nm, length: 4.5 m), and CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) as a binder A negative electrode was prepared in the same manner as in Example 1, except that 97.8: 0.8: 0.7: 0.7 was added to the solvent distilled water to prepare a negative electrode slurry.
<비교예 10> <Comparative Example 10>
상기 실시예 1에서 대립자 구형화 천연폭연 (spherical type, D50: 15/im), 실리콘계 소재 (SiO, D50: 6_)를 음극 활물질 중량비로 93 : 7로 혼합한 후, 음극 활물질의 혼합물, 점형 도전재 (덴카 블랙), 및 바인더로서 In Example 1, the spheroidized natural deflagration (spherical type, D50: 15 / im) and silicon-based material (SiO, D50: 6_) were mixed at a weight ratio of negative electrode active material of 93: 7, followed by a mixture of negative electrode active materials and a point shape Conductive material (denka black) and as binder
CMC(Carboxylmethyl cellulose)와 SBR(Stryene Butadiene Rubber)를 중량을 기준으로 97 : 1.6 : 0.7 : 0.7를, 용매 증류수에 첨가하여 음극슬러리를 제조한 것을 제외하고는 실시예 1과 동일하게 음극을 제조하였다. A negative electrode was prepared in the same manner as in Example 1, except that 97: 1.6: 0.7: 0.7 of CMC (Carboxylmethyl cellulose) and SBR (Stryene Butadiene Rubber) was added to the solvent distilled water to prepare a negative electrode slurry. .
<실험예 1> <Experimental Example 1>
양극 활물질 (LiNia4MnQ.3CoQ.302 및 LiNi02가 중량비 97 : 3로 혼합된 혼합물) 96 중량%, Super-P (도전재) 2.3 중량%, 및 PVDF (결착제) 1.7 중량% 조성의 양극 합제를 용제인 NMP(N-me仕 iyl-2-pyrrolidone)에 첨가하여 양극 슬러리를 제조한 후, 15 m 두께의 알루미늄 호일에 상기 양극 슬러리를 150 m두께로 도포하였다. 공극률이 23%가 되도록 압연 (press)한 후 진공 하에서 130°C로 약 12시간동안 건조하여 양극을 제조하였다. Cathode active material (LiNi a4 Mn Q.3 Co Q.3 0 2 and LiNi0 2 mixture in a weight ratio of 97: 3) 96% by weight, Super-P (conductive material) 2.3% by weight, and PVDF (Binder) 1.7 After preparing a positive electrode slurry by adding a positive electrode mixture having a weight percent composition to NMP (N-me 仕 iyl-2-pyrrolidone) as a solvent, the positive electrode slurry was applied to a 15 m thick aluminum foil to a thickness of 150 m. A positive electrode was prepared by rolling to a porosity of 23% and drying at 130 ° C under vacuum for about 12 hours.
상기 실시예들 및 비교예들에서 제조된 음극들에 상기 양극, 분리막으로서 폴리 에틸렌막 (Celgard, 두께: 20 m), 및 에틸렌 카보네이트와 에틸 메틸 카보네이트가 부피비 3 : 7로 혼합된 용매에 첨가제로서 비닐렌 2020/085610 1»(:1^1{2019/007740 The anodes prepared in the Examples and Comparative Examples, as the additive to the solvent in which the anode, a polyethylene membrane (Celgard, thickness: 20 m) as a separator, and ethylene carbonate and ethyl methyl carbonate were mixed in a volume ratio of 3: 7. Vinylene 2020/085610 1 »(: 1 ^ 1 {2019/007740
카보네이트(\ )가 전해액 용매 중량을 기준으로 0.5중량%, 1고平6가 1M로 녹아 있는 액체 전해액을사용하여, 이차전지들 제조하였다. Secondary batteries were prepared using a liquid electrolyte in which carbonate (\) was dissolved in 0.5% by weight based on the weight of the electrolyte solvent and 1M in 1 Gopyeong 6 .
이들 이차전지들을 2.5 V 내지 4.2 V 전압 구간에서 1.0 (:로 100 사이클동안충방전을실시하고,그 결과를표 1 에 나타내었다.  These secondary batteries were charged and discharged for 1.0 cycle with 1.0 (:) in a voltage range of 2.5 V to 4.2 V, and the results are shown in Table 1.
【표 1 ]  [Table 1]
Figure imgf000021_0001
Figure imgf000021_0001
상기 표 1을 참조하면, 본 발명에 따른 조건을 모두 만족한 경우 100사이클에서 85% 이상의 수명특성을 발휘하는 반면, 하나의 조건이라도 만족하지 못한 경우에는 만족할만한수명 특성의 효과를 얻을 수 없음을 알 수 있다. 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 2020/085610 1»(:1^1{2019/007740 Referring to Table 1 above, when all the conditions according to the present invention are satisfied, the lifespan characteristic of 85% or more is exhibited at 100 cycles, whereas when one condition is not satisfied, the effect of satisfactory life characteristics cannot be obtained. Able to know. Those of ordinary skill in the art to which the present invention pertains may make various applications and modifications within the scope of the present invention based on the above contents. 2020/085610 1 »(: 1 ^ 1 {2019/007740
가능할것이다. It will be possible.
【산업상 이용가능성】  【Industrial availability】
이상의 설명한 바와 같이, 본 발명에 따른 이차전지용 음극은, 음극재층에 특정 입경 조건을 만족하는 대립자 흑연, 소립자 실리콘계 소재, 및 미립자 흑연을 포함하고, 여기에 추가적으로 탄소 나노 튜브를 포함함으로써, 활물질로서 실리콘계 소재를 사용하면서도 초반 수명 특성이 현저히 향상되는효과가 있다.  As described above, the negative electrode for a secondary battery according to the present invention includes allelic graphite, small particle silicon-based material, and particulate graphite satisfying specific particle diameter conditions in the negative electrode material layer, and further includes carbon nanotubes as an active material. While using a silicone-based material, there is an effect of significantly improving the early life characteristics.

Claims

2020/085610 1»(:1^1{2019/007740 【청구의 범위】 【청구항 1】 음극재층이 음극 집전체의 적어도 일면에 형성되어 있는 리튬 이차전지용 음극으로서, 상기 음극재층은, 대립자 흑연, 소립자 실리콘계 소재, 미립자 흑연, 및 탄소 나노 튜브를 포함하며, 하기 조건 1 내지 3을 만족하는 리륨 이차전지용 음극: 2020/085610 1 »(: 1 ^ 1 {2019/007740 [Claim of claim] [Claim 1] The negative electrode material layer is a negative electrode for a lithium secondary battery formed on at least one surface of the negative electrode current collector, wherein the negative electrode material layer is an allele graphite , Small particle silicon-based material, particulate graphite, and carbon nanotubes, the cathode for a lithium secondary battery that satisfies the following conditions 1 to 3:
[조건 1] 대립자흑연의 평균 직경 050(00: 1 내지 50/페  [Condition 1] Average diameter of allele graphite 050 (00: 1 to 50 / page
[조건 2] 소립자 실리콘계 소재의 평균 직경 050(1)2): 0.1550, 내지 0.4140! [Condition 2] Average diameter of small particle silicon-based material 050 (1) 2 ): 0.1550, to 0.4140 !
[조건 3] 미립자 흑연의 평균 직경 050(03): 0.1550! 내지 0.4140,, 또는 0.1551)2 내지 0.4141)2 [Condition 3] Average diameter of particulate graphite 050 (0 3 ): 0.1550 ! To 0.4140, or 0.1551) 2 to 0.4141) 2
【청구항 2] [Claim 2]
제 1 항에 있어서,상기 대립자흑연 및 미립자흑연은 각각,천연 흑연 및 인조흑연으로 이루어진 군에서 선택되는 1종 이상인 리튬  The lithium of claim 1, wherein the allele graphite and the particulate graphite are each selected from the group consisting of natural graphite and artificial graphite.
이차전지용음극. Cathode for secondary battery.
【청구항 3】 【Claim 3】
제 1 항에 있어서, 상기 [조건 1] 대립자 흑연의 직경 050(13!)은 5 내지 30;·인 리튬 이차전지용음극. The negative electrode for a lithium secondary battery according to claim 1, wherein the [condition 1] allele graphite has a diameter of 050 (13 ! ) Of 5 to 30;
【청구항 4] [Claim 4]
제 1 항에 있어서, 상기 [조건 2] 소립자 실리콘계 소재의 직경 050(¾)은 0.2^ 내지 0.40, ¾ 리튬 이차전지용음극.  The cathode of claim 1, wherein the [Condition 2] small particle silicon-based material has a diameter of 050 (¾) of 0.2 to 0.40, ¾ of a lithium secondary battery.
【청구항 5】 【Claim 5】
제 1 항에 있어서, 상기 [조건 3] 미립자 흑연의 직경 050(1) 3)은 0.20! 내지 0.4^,또는 0.21)2내지 0.4¾인 리륨 이차전지용음극. The method according to claim 1, wherein the [Condition 3] diameter of the particulate graphite 050 (1 ) 3 ) is 0.20 ! To 0.4 ^, or 0.21) A cathode for a lithium battery of 2 to 0.4¾.
【청구항 6】 【Claim 6】
제 1 항에 있어서, 상기 소립자 실리콘계 소재는,와凡 복합체, ¾(\(0<<2), 금속이 도핑된 ¾(\(0<<2), 순수 와(!)11 와), 및 ¾합금 (¾- )로 이루어진 군에서 선택되는 1종 이상인 리륨 이차전지용 음극.  The method of claim 1, wherein the small-particle silicon-based material is a 凡 (\ (0 << 2), a metal-doped ¾ (\ (0 << 2), pure wah (!) 11 wah), and A cathode for at least one lithium secondary battery selected from the group consisting of ¾ alloy (¾-).
【청구항 7] [Claim 7]
제 5 항에 있어서, 상기 금속이 도핑된 와0 0 <2)는, Li, Mg, Al,Ca, 및 11로 이루어진 군에서 선택된 1종 이상의 금속이 도핑된 리륨 이차전지용 으그  The method of claim 5, wherein the metal-doped and 0 0 <2) is a rug for a lithium secondary battery doped with one or more metals selected from the group consisting of Li, Mg, Al, Ca, and 11
- -
【청구항 8】 【Claim 8】
제 1 항에 있어서, 상기 탄소 나노 튜브는 번들형 (aligned type) 또는 인탱글형 (entangle type) 구조를 갖는 리튬 이차전지용 음극.  The negative electrode for a lithium secondary battery according to claim 1, wherein the carbon nanotube has an aligned type or an entangle type structure.
【청구항 9】 【Claim 9】
제 1 항에 있어서, 상기 탄소 나노 튜브의 평균 직경은 O.lrnn 내지 20mn이고, 평균 길이는 100 mn 내지 5 ,인 리튬 이차전지용 음극.  The negative electrode for a lithium secondary battery according to claim 1, wherein the average diameter of the carbon nanotubes is from O.lrnn to 20mn, and the average length is from 100 mn to 5, respectively.
【청구항 10】 【Claim 10】
제 1 항에 있어서, 상기 음극재층은, 대립자 흑연, 소립자 실리콘계 소재, 미립자 흑연, 및 탄소 나노 튜브 전체중량을 기준으로, 대립자 흑연 30 내지 98.5 중량%, 소립자 실리콘계 소재 0.5 내지 30 중량%, 미립자 흑연 0.5 내지 20 중량%, 및 탄소 나노 튜브 0.005 내지 20 중량%를포함하는 리튬 이차전지용 음극.  According to claim 1, The negative electrode material layer is, based on the total weight of the allele graphite, small particle silicon-based material, particulate graphite, and carbon nanotubes, 30 to 98.5% by weight of allele graphite, 0.5 to 30% by weight of small particle silicon-based material, A negative electrode for a lithium secondary battery comprising 0.5 to 20% by weight of particulate graphite and 0.005 to 20% by weight of carbon nanotubes.
【청구항 11】 【Claim 11】
제 1 항에 있어서, 상기 음극재층은, 도전재 및 바인더를 더 포함하는 리륨 이차전지용 음극.  The negative electrode for a lithium secondary battery of claim 1, wherein the negative electrode material layer further comprises a conductive material and a binder.
【청구항 12】 2020/085610 1»(:1^1{2019/007740 【Claim 12】 2020/085610 1 »(: 1 ^ 1 {2019/007740
제 11 항에 있어서,상기 도전재 및 바인더는각각음극재층 전체 중량을 기준으로 0.1 내지 30중량%로포함되는 리륨 이차전지용 음극. According to claim 11, The conductive material and the binder is a negative electrode for a lithium secondary battery contained in an amount of 0.1 to 30% by weight based on the total weight of each negative electrode layer.
【청구항 13】 【Claim 13】
제 1 항에 따른 리튬 이차전지용음극을포함하는 리륨 이차전지.  Lithium secondary battery comprising a cathode for a lithium secondary battery according to claim 1.
PCT/KR2019/007740 2018-10-24 2019-06-26 Anode comprising graphite and silicon-based material which have different diameters, and lithium secondary battery comprising same WO2020085610A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980026545.0A CN112005407A (en) 2018-10-24 2019-06-26 Negative electrode comprising graphite and silicon-based material having different diameters and lithium secondary battery comprising same
US17/047,593 US20210151744A1 (en) 2018-10-24 2019-06-26 Anode including graphite and silicon-based material having different diameters and lithium secondary battery including the same
PL19876531.5T PL3754762T3 (en) 2018-10-24 2019-06-26 Anode including graphite and silicon-based material having different diameters and lithium secondary battery including the same
CN202311079497.6A CN116885101A (en) 2018-10-24 2019-06-26 Negative electrode comprising graphite and silicon-based material having different diameters and lithium secondary battery comprising same
EP19876531.5A EP3754762B1 (en) 2018-10-24 2019-06-26 Anode including graphite and silicon-based material having different diameters and lithium secondary battery including the same
ES19876531T ES2953152T3 (en) 2018-10-24 2019-06-26 Anode including graphite and silicon based material having different diameters and lithium secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0127486 2018-10-24
KR20180127486 2018-10-24
KR10-2019-0072305 2019-06-18
KR1020190072305A KR102590425B1 (en) 2018-10-24 2019-06-18 Anode Comprising Graphite and Silicon-based material having the Different Diameter and Lithium Secondary Battery Comprising the Same

Publications (1)

Publication Number Publication Date
WO2020085610A1 true WO2020085610A1 (en) 2020-04-30

Family

ID=70332062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007740 WO2020085610A1 (en) 2018-10-24 2019-06-26 Anode comprising graphite and silicon-based material which have different diameters, and lithium secondary battery comprising same

Country Status (5)

Country Link
CN (1) CN116885101A (en)
ES (1) ES2953152T3 (en)
HU (1) HUE063054T2 (en)
PL (1) PL3754762T3 (en)
WO (1) WO2020085610A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312697A (en) * 2022-09-19 2022-11-08 江苏正力新能电池技术有限公司 Negative pole piece and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011030A1 (en) 2003-07-29 2005-02-03 Lg Chem, Ltd. A negative active material for lithium secondary battery and a method for preparing same
KR20150063620A (en) * 2013-11-29 2015-06-10 강원대학교산학협력단 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2015164127A (en) * 2014-01-31 2015-09-10 三菱化学株式会社 Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2015167127A (en) * 2014-02-12 2015-09-24 大阪瓦斯株式会社 Negative electrode material for lithium secondary battery and manufacturing method therefor, negative electrode active material composition for lithium secondary battery using negative electrode material, negative electrode for lithium secondary battery and lithium secondary battery
KR20160081969A (en) * 2014-01-09 2016-07-08 쇼와 덴코 가부시키가이샤 Negative electrode active material for lithium-ion secondary cell
KR20160109946A (en) * 2015-03-13 2016-09-21 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, method of manufacturing the same, and rechargeable lithium battery including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011030A1 (en) 2003-07-29 2005-02-03 Lg Chem, Ltd. A negative active material for lithium secondary battery and a method for preparing same
KR20150063620A (en) * 2013-11-29 2015-06-10 강원대학교산학협력단 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20160081969A (en) * 2014-01-09 2016-07-08 쇼와 덴코 가부시키가이샤 Negative electrode active material for lithium-ion secondary cell
JP2015164127A (en) * 2014-01-31 2015-09-10 三菱化学株式会社 Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2015167127A (en) * 2014-02-12 2015-09-24 大阪瓦斯株式会社 Negative electrode material for lithium secondary battery and manufacturing method therefor, negative electrode active material composition for lithium secondary battery using negative electrode material, negative electrode for lithium secondary battery and lithium secondary battery
KR20160109946A (en) * 2015-03-13 2016-09-21 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, method of manufacturing the same, and rechargeable lithium battery including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312697A (en) * 2022-09-19 2022-11-08 江苏正力新能电池技术有限公司 Negative pole piece and battery

Also Published As

Publication number Publication date
HUE063054T2 (en) 2023-12-28
PL3754762T3 (en) 2023-10-09
ES2953152T3 (en) 2023-11-08
CN116885101A (en) 2023-10-13

Similar Documents

Publication Publication Date Title
US9711794B2 (en) Lithium secondary battery having anode containing aqueous binder
JP6391244B2 (en) Negative electrode active material, negative electrode employing the same, and lithium battery employing the negative electrode
KR101169947B1 (en) Cathode Active Material for Lithium Secondary Battery
KR101785268B1 (en) Negative active material and lithium battery including the material, and method for manufacturing the material
KR101138637B1 (en) Cathode Active Material for Lithium Secondary Battery
CN102751479B (en) Negative active core-shell material, containing its negative pole and the method for making of lithium battery and this material
JP2013084601A (en) Negative electrode active material and lithium battery employing the same material
KR20100081955A (en) Cathode active material for lithium secondary battery
KR102590416B1 (en) Anode Comprising Graphite and Silicon-based material having the Different Diameter and Lithium Secondary Battery Comprising the Same
US10062902B2 (en) Positive electrode for secondary batteries and secondary battery including the same
KR20100081948A (en) Cathode active material for lithium secondary battery
JPWO2016136178A1 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US9406933B2 (en) Negative active material, negative electrode and lithium battery including negative active material, and method of manufacturing negative active material
US20160099471A1 (en) Positive electrode having enhanced conductivity and secondary battery including the same
US10693133B2 (en) Method of manufacturing positive material
WO2018097451A1 (en) Positive electrode active material particles each comprising core containing lithium cobalt oxide and shell containing lithium cobalt phosphate and method for manufacturing same
KR102590425B1 (en) Anode Comprising Graphite and Silicon-based material having the Different Diameter and Lithium Secondary Battery Comprising the Same
WO2020085609A1 (en) Anode comprising graphite and silicon-based material which have different diameters, and lithium secondary battery comprising same
WO2020085610A1 (en) Anode comprising graphite and silicon-based material which have different diameters, and lithium secondary battery comprising same
KR20200100962A (en) Cathode for lithium secondary battery comprising sulfur-montmorillonite composite, and lithium secondary battery comprising the same
KR20170092122A (en) Anode Coated with Primer Layer Comprising Graphene and CNT and Method of Manufacturing the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019876531

Country of ref document: EP

Effective date: 20200918

NENP Non-entry into the national phase

Ref country code: DE