WO2020085572A1 - Novel polymer and organic electronic device employing same - Google Patents

Novel polymer and organic electronic device employing same Download PDF

Info

Publication number
WO2020085572A1
WO2020085572A1 PCT/KR2018/014790 KR2018014790W WO2020085572A1 WO 2020085572 A1 WO2020085572 A1 WO 2020085572A1 KR 2018014790 W KR2018014790 W KR 2018014790W WO 2020085572 A1 WO2020085572 A1 WO 2020085572A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
organic
present
electronic device
solar cell
Prior art date
Application number
PCT/KR2018/014790
Other languages
French (fr)
Korean (ko)
Inventor
권순기
김윤희
왕찬결
최지영
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Publication of WO2020085572A1 publication Critical patent/WO2020085572A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule

Definitions

  • the present invention relates to a novel polymer and an organic electronic device employing the same.
  • the organic electronic device is an electronic device using an organic semiconductor material, and requires exchange of holes and electrons between the electrode and the organic semiconductor material.
  • Organic electronic devices can be roughly divided into two types according to the operating principle.
  • excitons are formed in the organic layer by photons introduced into the device from an external light source, and the excitons are separated into electrons and holes, and the electrons and holes are transferred to different electrodes to be used as a current source (voltage source).
  • a current source voltage source
  • the second is an electronic device in which holes and electrons are injected into a layer of an organic semiconductor material forming an interface with an electrode by applying voltage or current to two or more electrodes, and operated by the injected electrons and holes.
  • organic electronic devices include organic solar cells, organic light emitting devices, organic photoreceptors, and organic transistors, all of which are electron / hole injection materials, electron / hole extraction materials, electron / hole transport materials or light emitting materials for driving devices. need.
  • organic solar cell will be mainly described in detail, but in the organic electronic devices, electron / hole injection material, electron / hole extraction material, electron / hole transport material, or light-emitting material all work on a similar principle.
  • polymer solar cells polymer-fullerene derivative solar cells (fullerene PSC) and polymer-polymer solar cells (all-PSC).
  • the existing fullerene PSC is 11%. Although it has a high degree of power conversion efficiency, it has a disadvantage that it is difficult to obtain a high voltage value because it is expensive to synthesize, difficult to purify, and difficult to control the energy level.
  • all-PSC has excellent mechanical stability and heat durability compared to the existing fullerene PSC, but has a limitation that the power conversion efficiency is remarkably low at 4%.
  • all-PSCs capable of introducing a photoactive layer composed of a blend of two components of a conjugated polymer and a receiving polymer into a solution process have superior properties of fullerene PSCs, that is, improved light absorption and chemical structure. Due to its various variability and properties such as energy level, it has received considerable attention. Moreover, all-PSC has improved stability against thermal and mechanical stress compared to fullerene PSC.
  • the performance of all-PSCs includes (i) poorly aligned polymer receiving to produce low electron mobility, (ii) insufficient charge dissociation at the donor / receiver (D / A) interface, and (iii) energetically preferred polymers.
  • -Unoptimized bulk-heterojunction (BHJ) blend morphology due to polymer-demixing, (iv) low short-circuit current density, mainly caused by the relatively low light absorption coefficient of the polymer receiver ( J sc ) and filling rate (FF) were often limited.
  • the object of the present invention is BDT (benzo [1,2-b: 4,5-b '] dithiophene) -DTBDD (1,3-bis (thiophen-2-yl) -4H, 8H-benzo [1,2- c: 4,5-c '] dithiophene-4,8-dione) It is to provide a polymer that improves solubility and improves electron transport properties by introducing an alkylthio group to the backbone.
  • Another object of the present invention is to provide an organic electronic device having excellent efficiency by employing the polymer of the present invention.
  • Another object of the present invention is to provide an organic solar cell having excellent photoelectric conversion efficiency as the polymer of the present invention is employed in a photoactive layer.
  • R 1 to R 4 are each independently C 1 -C 30 alkyl
  • X 1 to X 4 are each independently O, S or Se;
  • Y 1 and Y 2 are each independently O, S or Se.
  • X 1 to X 4 are the same as each other, and may be O or S.
  • R 1 to R 4 are each independently C 6 -C 30 alkyl
  • X 1 to X 4 are the same as each other
  • O or S
  • Y 1 and Y 2 may be each independently O or S.
  • the polymer according to an embodiment of the present invention may be more preferably represented by the following formula (2).
  • R 1 to R 4 are each independently crushed C 6 -C 30 alkyl.
  • an organic electronic device including the polymer according to an embodiment of the present invention is provided.
  • the organic electronic device may be an organic light emitting device, an organic thin film transistor, an organic photosensor or an organic solar cell, and preferably an organic solar cell.
  • the polymer may be included in the photoactive layer of the organic solar cell.
  • the polymer may be included in the photoactive layer of the organic solar cell as an electron donor.
  • the polymer of the present invention is a benzo [1,2-b: 4,5-b '] dithiophene (benzo [1,2-b: 4,5-) in which a 5-membered heteroaromatic ring substituted with alkylthio is introduced into the side chain.
  • the polymer of the present invention can have improved solubility in organic solvents due to the alkylthio groups introduced into the main chain and side chains of the repeating unit, and thus is applicable not only to vacuum deposition but also to solution processes such as spin coating and printing, as well as electron mobility. Because it has high and shows excellent electrical properties, the organic electronic device including the polymer of the present invention has excellent short-circuit current (J sc ) and fill factor (FF) properties.
  • J sc short-circuit current
  • FF fill factor
  • the polymer of the present invention can effectively absorb light in the visible ray region emitted from the sun and transfer electrons generated by the absorbed energy more efficiently, and the organic electronic device employing the polymer of the present invention has high efficiency. Indicates.
  • Alkyl as described herein includes both straight chain or pulverized forms.
  • the present invention BDT (benzo [1,2-b: 4,5-b '] dithiophene) -DTBDD (1,3-bis (thiophen-2-yl) -4H, 8H-benzo [1,2-c: 4,5-c '] dithiophene-4,8-dione) by providing an alkylthio group in the backbone to improve solubility and to provide a polymer with improved electron transport properties
  • the polymer of the present invention is represented by the following formula (1) It may include a repeating unit.
  • R 1 to R 4 are each independently C 1 -C 30 alkyl
  • X 1 to X 4 are each independently O, S or Se;
  • Y 1 and Y 2 are each independently O, S or Se.
  • the polymer according to the present invention is BDT (benzo [1,2-b: 4,5-b '] dithiophene) -DTBDD (1,3-bis (thiophen-2-yl) -4H, 8H-benzo [1,2 -c: 4,5-c '] dithiophene-4,8-dione) structure having a backbone, a thiophene substituted with an alkylthio group as a side chain in the BDT of the backbone, and an alkylthio group substituted in DTBDD of the backbone Furnace, by inducing delocalization of electrons, it is possible to appropriately adjust the band gap, HOMO, and LUMO values of the polymer, and has improved electron density through high interaction between molecules.
  • BDT benzo [1,2-b: 4,5-b '] dithiophene
  • DTBDD 1,3-bis (thiophen-2-yl) -4H, 8H-benzo [1,2 -c: 4,5-c
  • the polymer according to the present invention has high hole and electron mobility as it has a repeating unit of a specific structure, and has high solubility in a common organic solvent. Moreover, it is possible to impart more advantage to the solution process because it satisfies the viscosity range favorable to the solution process with high solubility in a conventional organic solvent.
  • the polymer of the present invention exhibits excellent charge generation ability and effective exciton dissociation to improve short-circuit current density and charge rate, and exhibits an excellent balance between hole and charge mobility.
  • the polymer of the present invention is a new p-type material capable of efficiently absorbing light in the visible region emitted from the sun and delivering holes generated when the photovoltaic element receives light, has excellent hole mobility, and is an organic solar cell As an electron donor, it has excellent electrical properties.
  • X 1 to X 4 are the same as each other, and may be O or S.
  • R 1 to R 4 are each independently C 6 -C 30 alkyl, and X 1 to X 4 are the same as each other, O or S, and Y 1 and Y 2 may each independently be O or S.
  • the polymer according to an embodiment of the present invention may be more preferably represented by the following formula (2).
  • R 1 to R 4 are each independently crushed C 6 -C 30 alkyl.
  • R 1 to R 4 are each independently C 6 -C 30 alkyl It may be, preferably may be pulverized C 6 -C 30 alkyl, more preferably It may be, wherein a is an integer from 1 to 5, R may be C 3 -C 25 alkyl of the branched chain and preferably C 5 -C 20 alkyl of the branched chain.
  • a value increases in R 1 to R 4 , characteristics of the organic solar cell device may be further improved due to an increase in crystallinity and an increase in mobility.
  • the polymer according to an embodiment of the present invention may be included in an organic electronic device, and among them, it is used as an electron donor material in a photoactive layer of an organic solar cell and has improved short circuit current (J SC ) and open voltage (V OC ). It is possible to provide a highly efficient organic solar cell.
  • the polymer according to an embodiment of the present invention can be prepared as in the following reaction scheme, but can be prepared through a conventional organic synthesis method, and the organic solvent used therein is not limited, and the reaction time and temperature are also invented.
  • the reaction time and temperature are also invented.
  • changes can be made without departing from the core.
  • it is needless to say that synthesis is possible in a manner that can be recognized by those skilled in the art.
  • the present invention provides an organic electronic device comprising the polymer of the present invention.
  • the organic electronic device is not limited as long as it is a device in which the polymer of the present invention can be used.
  • the organic electronic device is an organic solar cell, an organic thin film transistor, an organic memory, or an organic.
  • the organic electronic device may be an organic solar cell, and the polymer may be included in the photoactive layer of the organic solar cell.
  • the polymer of the present invention is used as an electron donor in the photoactive layer of an organic solar cell, and the organic solar cell employing it has improved photoelectric conversion efficiency.
  • the polymer of the present invention has excellent electron transport properties and can be used as an electron donor material in a photoactive layer of an organic solar cell, thereby realizing high efficiency.
  • the organic solar cell according to an embodiment of the present invention may include a substrate, a first electrode, a photoactive layer, and a second electrode, and of course, may further include a hole transport layer, an electron transport layer, and the like.
  • the organic solar cell according to an embodiment of the present invention may be an inverted type organic solar cell.
  • the substrate is PET (polyethylene terephthalate), PEN (polyethylene naphthelate), PP (polyperopylene), PI (polyimide), PC (polycarbornate), PS (polystylene), POM (polyoxyethlene), AS resin (acrylonitrile styrene) copolymer), ABS resin (acrylonitrile butadiene styrene copolymer) and TAC (Triacetyl cellulose).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthelate
  • PP polyperopylene
  • PI polyimide
  • PC polycarbornate
  • PS polystylene
  • POM polyoxyethlene
  • AS resin acrylonitrile styrene copolymer
  • ABS resin acrylonitrile butadiene styrene copolymer
  • TAC Triacetyl cellulose
  • the first electrode is formed by applying a transparent electrode material to one surface of the substrate or coated in a film form using sputtering, E-Beam, thermal evaporation, spin coating, screen printing, inkjet printing, doctor blade or gravure printing. do.
  • the first electrode is a part that functions as an anode.
  • any material having transparency and conductivity may be used.
  • ITO indium tin oxide
  • gold silver
  • fluorine doped tin oxide FTO
  • aluminum doped zinc oxide aluminium doped zink oxide, AZO
  • IZO indium zink oxide
  • ZnO-Ga 2 O 3 ZnO-Al 2 O 3 and ATO (antimony tin oxide, SnO 2 -Sb 2 O 3 ), and the like, preferably ITO.
  • a hole transport layer may be inserted between the first electrode and the photoactive layer, and the hole transport layer may be formed through a method such as spin coating or dip coating.
  • a material for forming the hole transport layer it is preferable to use a conductive polymer PEDOT: PSS (poly (3,4-ethylenedioxythiophene): polystyrene sulfonate), which transfers electrons to an indium tin oxide (ITO) layer as an anode. It helps to transport the hole smoothly while preventing it from being done.
  • An electron transport layer may be inserted between the second electrode and the photoactive layer, and the electron transport layer is a metal oxide layer including a metal oxide, but the metal oxide is not limited thereto, titanium dioxide (TiO 2 ), tin dioxide It may be formed of nanoparticle oxides such as (SnO 2 ), zinc oxide (ZnO).
  • the photoactive layer may include an electron donor electron donor and an electron acceptor.
  • the polymer can be used as an electron donor of the photoactive layer to realize improved external quantum efficiency.
  • the electron donor and the electron acceptor of the photoactive layer constitute a bulk heterojunction (BHJ).
  • Bulk heterojunction means that each compound corresponding to an electron donor and an electron acceptor in the photoactive layer is mixed with each other.
  • the photoactive layer may include the polymer as an electron donor of the photoactive layer, and constitute a bulk heterojunction together with the electron acceptor.
  • the photoactive layer may include the polymer according to the present invention as an electron donor, and the compounding amount thereof may be appropriately adjusted according to the application.
  • the polymer may include a solvent and an electron acceptor.
  • the electron acceptor include C60, C70, [60] Phenyl C 61 -butyric acid methyl ester (PCBM), [70] PCBM (Phenyl C 71 -butyric acid methyl ester), [60] ICBA (Indene-C 60 Bis-Adduct), [60] PCBCR (phenyl-C 61 -butyric acid cholestryl ester), [70] PCBCR (phenyl-C 71 -butyric acid cholestryl ester), perylene, PBI (polybenzimidazole), PTCBI (3,4,9,10-perylene-tetracarboxylic bis-benzimidazole), P (NDI2HD-Se), etc. may be used, but is not limited thereto.
  • the polymer according to the present invention when included as an electron donor of the photoactive layer, it is possible to effectively compensate for the relatively low light absorption coefficient of the electron acceptor, thereby simultaneously improving the short circuit current density ( J sc ) and the filling factor (FF). .
  • the photoactive layer may further include additional additives in order to realize excellently improved efficiency by controlling the morphology and crystallinity of the active layer.
  • additional additives are 1,8-diiodooctane (DIO: 1,8-diiodooctane), 1-chloronaphthalene (1-CN: 1-chloronaphthalene), diphenyl ether (DPE: diphenylether), octanediol (octane dithiol) and tetrabromothiophene, and the like, and may be appropriately combined according to the use.
  • DIO 1,8-diiodooctane
  • 1-chloronaphthalene (1-CN: 1-chloronaphthalene
  • DPE diphenylether
  • octanediol octane dithiol
  • tetrabromothiophene and the like, and may be appropriately combined according to the
  • the polymer according to the present invention realizes significantly improved crystallinity when used in combination with 1,8-diiodooctane, which improves short-circuit current density ( J sc ) and fill rate (FF) as well as significantly External quantum efficiency can be implemented.
  • the polymer may be used by dissolving in a solvent, and the solvent may be used as acetone, methanol, THF, toluene, xylene, tetralin, chloroform, chlorobenzene, dichlorobenzene, or a mixed solvent thereof, but is not limited thereto. .
  • the polymer is preferably introduced into the photoactive layer with a thickness of 60 to 120 nm, but is not limited thereto.
  • the photoactive layer comprising the polymer according to the present invention is good in energy conversion efficiency due to an increase in short circuit current density and open circuit voltage due to high electron density.
  • the organic solar cell may further include an electron transport layer.
  • the electron transport layer may be prepared by adding a surfactant to improve the morphology of the electron transport layer.
  • the electron transport layer may be prepared by dissolving a water-soluble polymer having an electrophilic function in water, ethanol or a mixed solvent thereof, adding a surfactant to the polymer solution, and filtering to form a thin film. have.
  • poly [9,9-bis (6'-diethanolamino) hexyl) -fluorene] is preferable as the water-soluble polymer having the electrophilic functional group
  • the surfactant is 2,4,7,9- It is preferably tetramethyl-5-dekin-4,7-diol, but is not limited thereto.
  • the solution of the water-soluble polymer and the surfactant is preferably 2 to 20 nm coated by a method such as spin coating to heat treatment.
  • the electron transport layer may apply methods such as dip coating, screen printing, inkjet printing, gravure printing, spray coating, doctor blade or brush painting, and the present invention is not limited thereto.
  • the second electrode may be deposited using a thermal evaporator in the state where the electron transport layer is introduced.
  • the electrode materials that can be used are lithium fluoride / aluminum, lithium fluoride / calcium / aluminum, aluminum / calcium, barium fluoride / aluminum, barium fluoride / barium / aluminum, barium / aluminum, aluminum, gold, silver, magnesium: silver and lithium : It can be selected from aluminum, and preferably, an electrode made of silver, aluminum, aluminum / calcium or barium fluoride / barium / aluminum is used.
  • the 1 H NMR spectrum was measured with a Varian Mercury Plus 300 MHz and Bruker FT NMR spectroscopy system, and the ultraviolet absorption spectrum was measured with a UV-1800 spectrophotometer (Shimadzu Scientific Instruments).
  • cyclic current-voltage analysis Cyclic Voltammetry, CV
  • the JV curve of the solar cell was used with a 1Kw solar simulator (Newport 91192).
  • IPCE characteristics were measured by Solar cell response / Quantum efficiency / IPCE Measurement system (PV Measurements. Inc.).
  • M n and PDI values were measured under an o-DCB (o-dichlorobenzene) solvent at 80 mL at a rate of 1 mL / min using a GPC consisting of a Waters 1515 Isocratic HPLC pump, a temperature control module and a Waters 2414 differential refractive detector. Molecular weights were calibrated using polystyrene standards.
  • the polymer 1 may be polymerized through a Stille coupling reaction.
  • the light absorption region of the polymer 1 prepared in Example 1 was measured in a solution state and a film state, and the results are shown in Table 1 below.
  • the glass substrate coated with ITO Indium Tin Oxide
  • ITO Indium Tin Oxide
  • IPA isopropyl alcohol
  • the cleaned ITO glass substrate was treated with UV-Ozone for 30 minutes.
  • PEDOT-PSS Boytron P TP AI 4083, Bayer AG
  • annealing was performed at 120 ° C for 60 minutes.
  • the PCBM derivative PC 70 BM
  • JV current density-voltage
  • An organic solar cell was prepared in the same manner as in Comparative Example C1 and C2, respectively, instead of Polymer 1 prepared in Example 1 used for the photoactive layer in Example 2, and the properties were compared.
  • Comparative polymer C1 (Mw: 432,000 g / mol; Mn: 181,000 g / mol; PDI: 2.38; T d, 5% (° C): 377 ° C)
  • Comparative polymer C2 (Mw: 541,000 g / mol; Mn: 216,000 g / mol; PDI: 2.51; T d, 5% (° C): 427 ° C)
  • V oc (V) and J sc (mA / cm 2 ) each represent a voltage value when the current is 0 and a current value when the voltage is 0, in the current-voltage curve of the fabricated device.
  • the fill factor (FF) is calculated from Equation 1 below.
  • V mpp and J mpp each represents the voltage and current value at the point indicating the maximum power when measuring the current-voltage of the fabricated device
  • V oc (V) and J sc (mA / cm 2 ) Each represents the voltage value when the current is 0 and the current value when the voltage is 0 in the current-voltage curve of the fabricated device.
  • Equation 2 FF, V oc and J sc are as defined in Equation 1, and P in represents the total energy of light incident on the device.
  • the organic solar cell employing the polymer of the present invention can realize remarkable power conversion efficiency by simultaneously realizing the improvement of the short-circuit current density, charging rate and open-voltage value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

The present invention relates to a novel polymer and an organic electronic device including same, and more specifically, to: a novel polymer having improved solubility as well as improved electron transfer properties; and an organic electronic device having excellent efficiency due to employing the novel polymer.

Description

신규한 중합체 및 이를 채용한 유기 전자 소자Novel polymer and organic electronic device employing the same
본 발명은 신규한 중합체 및 이를 채용한 유기 전자 소자에 관한 것이다.The present invention relates to a novel polymer and an organic electronic device employing the same.
유기 전자 소자란 유기 반도체 물질을 이용한 전자 소자로서, 전극과 유기 반도체 물질 사이에서의 정공 및 전자의 교류를 필요로 한다. 유기 전자 소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있다.The organic electronic device is an electronic device using an organic semiconductor material, and requires exchange of holes and electrons between the electrode and the organic semiconductor material. Organic electronic devices can be roughly divided into two types according to the operating principle.
첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 엑시톤(exiton)이 형성되고, 이 엑시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되어 전류원(전압원)으로 사용되는 형태의 전자 소자이다. 둘째는 2개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기 반도체 물질층에 정공 및 전자를 주입하고, 주입된 전자와 정공에 의하여 작동하는 형태의 전자 소자이다.First, excitons are formed in the organic layer by photons introduced into the device from an external light source, and the excitons are separated into electrons and holes, and the electrons and holes are transferred to different electrodes to be used as a current source (voltage source). It is a form of electronic device. The second is an electronic device in which holes and electrons are injected into a layer of an organic semiconductor material forming an interface with an electrode by applying voltage or current to two or more electrodes, and operated by the injected electrons and holes.
유기 전자 소자의 예로는 유기 태양 전지, 유기 발광 소자, 유기 감광체 및 유기 트랜지스터 등이 있으며, 이들은 모두 소자의 구동을 위하여 전자/정공 주입 물질, 전자/정공 추출 물질, 전자/정공 수송 물질 또는 발광 물질을 필요로 한다. 이하에서는 주로 유기 태양 전지에 대하여 구체적으로 설명하지만, 상기 유기 전자 소자들에서는 전자/정공 주입 물질, 전자/정공 추출 물질, 전자/정공 수송 물질 또는 발광 물질이 모두 유사한 원리로 작용한다.Examples of organic electronic devices include organic solar cells, organic light emitting devices, organic photoreceptors, and organic transistors, all of which are electron / hole injection materials, electron / hole extraction materials, electron / hole transport materials or light emitting materials for driving devices. need. Hereinafter, an organic solar cell will be mainly described in detail, but in the organic electronic devices, electron / hole injection material, electron / hole extraction material, electron / hole transport material, or light-emitting material all work on a similar principle.
고분자 태양전지 (Polymer Solar Cell, PSC)는 고분자-플러렌(fullerene) 유도체 태양전지(플러렌계 PSC)와 고분자-고분자 태양전지(all-PSC) 등의 두 가지 형태가 있는데 기존 플러렌계 PSC는 11% 정도의 높은 전력변환효율을 갖지만 합성비용이 비싸고 정제하기 어려우며 에너지 레벨을 제어하기 어려워 높은 전압값을 얻기 힘들다는 단점이 있다. 반면 all-PSC는 기존 플러렌계 PSC에 비해 기계적인 안정성과 열내구성이 탁월하지만 전력변환효율이 4%로 현저히 낮다는 한계가 있다.There are two types of polymer solar cells (PSC): polymer-fullerene derivative solar cells (fullerene PSC) and polymer-polymer solar cells (all-PSC). The existing fullerene PSC is 11%. Although it has a high degree of power conversion efficiency, it has a disadvantage that it is difficult to obtain a high voltage value because it is expensive to synthesize, difficult to purify, and difficult to control the energy level. On the other hand, all-PSC has excellent mechanical stability and heat durability compared to the existing fullerene PSC, but has a limitation that the power conversion efficiency is remarkably low at 4%.
한편, 컨쥬게이트된 주게 고분자와 받게 고분자의 두 성분의 블렌드로 구성된 광활성층을 용액공정으로 도입할 수 있는 all-PSC는 플러렌계 PSC를 뛰어넘는 그들의 우수한 특성, 즉, 향상된 광흡수, 화학구조의 다양한 가변성 및 에너지 레벨과 같은 특성 때문에 상당한 관심을 받고 있다. 게다가, all-PSC는 열적 및 기계적 스트레스에 대해 플러렌계 PSC에 비해 향상된 안정성을 갖는다.On the other hand, all-PSCs capable of introducing a photoactive layer composed of a blend of two components of a conjugated polymer and a receiving polymer into a solution process have superior properties of fullerene PSCs, that is, improved light absorption and chemical structure. Due to its various variability and properties such as energy level, it has received considerable attention. Moreover, all-PSC has improved stability against thermal and mechanical stress compared to fullerene PSC.
최근, all-PSC의 전력변환효율(power conversion efficiency, PCE)을 향상시키기 위한 연구가 집중되고 있다. 그러나, 고성능 all-PSC에 대한 예는 드물다. Recently, research has been focused on improving the power conversion efficiency (PCE) of the all-PSC. However, examples of high performance all-PSCs are rare.
all-PSC의 성능은 (i) 낮은 전자 이동도를 생성하기 위한 잘못 배열된 고분자 받게, (ii) 주게/받게(D/A) 계면에서 불충분한 전하 해리, (iii) 에너지적으로 선호된 고분자-고분자-디믹싱(demixing)으로 인한 최적화되지 않은 벌크-헤테로정션(bulk-heterojunction, BHJ) 블렌드 모폴리지, (iv) 고분자 받게의 상대적으로 낮은 광 흡수 계수로 주로 야기되는 낮은 단락전류밀도(J sc)와 충전률(FF)에 의해 종종 제한되었다.The performance of all-PSCs includes (i) poorly aligned polymer receiving to produce low electron mobility, (ii) insufficient charge dissociation at the donor / receiver (D / A) interface, and (iii) energetically preferred polymers. -Unoptimized bulk-heterojunction (BHJ) blend morphology due to polymer-demixing, (iv) low short-circuit current density, mainly caused by the relatively low light absorption coefficient of the polymer receiver ( J sc ) and filling rate (FF) were often limited.
게다가, 높은 개방전압(V OC)을 생산하기 위한 all-PSC의 큰 잠재력에도 불구하고, 고분자 받게의 제한된 선택 때문에 높은 개방전압(V OC)를 가진 all-PSC의 구현이 어렵다.Moreover, despite the great potential of the all-PSC for the production of a high open-circuit voltage (V OC), and it is difficult to the all-PSC with the highest open-circuit voltage (V OC), because of the limited choice of implementation given polymer.
고분자 태양전지의 경우 새로운 소자 구성 및 공정 조건의 변화 등으로 효율의 향상이 두드러지고 있어, 여전히 기존의 물질을 대체하기 위해 낮은 밴드갭(bandgap)을 지니는 주개(donor)물질과 전하 이동도가 좋은 새로운 받개(acceptor)물질들의 개발이 지속적으로 연구개발이 요구되고 있다.In the case of the polymer solar cell, the improvement of efficiency is prominent due to the new device configuration and the change of process conditions, so the donor material and charge mobility with low bandgap are still good to replace the existing material. The development of new acceptor materials continues to require research and development.
본 발명의 목적은 BDT (benzo[1,2-b:4,5-b']dithiophene)-DTBDD (1,3-bis(thiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c']dithiophene-4,8-dione) 백본에 알킬티오기를 도입시켜 용해도를 향상시킴과 동시에 전자 전달 특성을 향상시킨 중합체를 제공하는 것이다.The object of the present invention is BDT (benzo [1,2-b: 4,5-b '] dithiophene) -DTBDD (1,3-bis (thiophen-2-yl) -4H, 8H-benzo [1,2- c: 4,5-c '] dithiophene-4,8-dione) It is to provide a polymer that improves solubility and improves electron transport properties by introducing an alkylthio group to the backbone.
본 발명의 다른 목적은 본 발명의 중합체를 채용함에 따라 우수한 효율을 가지는 유기 전자 소자를 제공하는 것이다.Another object of the present invention is to provide an organic electronic device having excellent efficiency by employing the polymer of the present invention.
본 발명의 또 다른 목적은 본 발명의 중합체를 광활성층에 채용함에 따라 우수한 광전변환효율을 가지는 유기 태양 전지를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide an organic solar cell having excellent photoelectric conversion efficiency as the polymer of the present invention is employed in a photoactive layer.
상술된 목적을 구현하기 위해서, 하기 화학식 1로 표시되는 반복단위를 포함하는 중합체가 제공된다.In order to achieve the above-mentioned object, a polymer comprising a repeating unit represented by Formula 1 below is provided.
[화학식 1][Formula 1]
Figure PCTKR2018014790-appb-img-000001
Figure PCTKR2018014790-appb-img-000001
[상기 화학식 1에서,[In the formula 1,
R 1 내지 R 4는 각각 독립적으로 C 1-C 30알킬이고;R 1 to R 4 are each independently C 1 -C 30 alkyl;
X 1 내지 X 4는 각각 독립적으로 O, S 또는 Se이고;X 1 to X 4 are each independently O, S or Se;
Y 1 및 Y 2는 각각 독립적으로 O, S 또는 Se이다.]Y 1 and Y 2 are each independently O, S or Se.]
본 발명의 일 실시예에 따른 상기 중합체에 있어서, 상기 X 1 내지 X 4는 서로 동일하며, O 또는 S 일 수 있다.In the polymer according to an embodiment of the present invention, X 1 to X 4 are the same as each other, and may be O or S.
본 발명의 일 실시예에 따른 상기 중합체에 있어서, 상기 R 1 내지 R 4는 각각 독립적으로 C 6-C 30알킬이고, X 1 내지 X 4는 서로 동일하며, O 또는 S이고, Y 1 및 Y 2는 각각 독립적으로 O 또는 S일 수 있다.In the polymer according to an embodiment of the present invention, R 1 to R 4 are each independently C 6 -C 30 alkyl, X 1 to X 4 are the same as each other, O or S, Y 1 and Y 2 may be each independently O or S.
본 발명의 일 실시예에 따른 상기 중합체는 보다 바람직하게 하기 화학식 2로 표시될 수 있다.The polymer according to an embodiment of the present invention may be more preferably represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2018014790-appb-img-000002
Figure PCTKR2018014790-appb-img-000002
[상기 화학식 2에서, [In the formula 2,
R 1 내지 R 4는 각각 독립적으로 분쇄형 C 6-C 30알킬이다.]R 1 to R 4 are each independently crushed C 6 -C 30 alkyl.]
상술된 목적을 구현하기 위해서, 본 발명의 일 실시예에 따른 상기 중합체를 포함하는 유기 전자 소자가 제공된다.In order to realize the above object, an organic electronic device including the polymer according to an embodiment of the present invention is provided.
본 발명의 일 실시예에 따른 유기 전자 소자는 유기 발광 소자, 유기 박막 트랜지스터, 유기 광센서 또는 유기 태양 전지 등일 수 있으며, 바람직하게는 유기 태양 전지 일 수 있다.The organic electronic device according to an embodiment of the present invention may be an organic light emitting device, an organic thin film transistor, an organic photosensor or an organic solar cell, and preferably an organic solar cell.
본 발명의 일 실시예에 따른 유기 전자 소자에서, 상기 중합체는 유기 태양 전지의 광활성층에 포함될 수 있다.In the organic electronic device according to an embodiment of the present invention, the polymer may be included in the photoactive layer of the organic solar cell.
본 발명의 일 실시예에 따른 유기 전자 소자에서, 상기 중합체는 전자공여체로 유기 태양 전지의 광활성층에 포함될 수 있다.In the organic electronic device according to an embodiment of the present invention, the polymer may be included in the photoactive layer of the organic solar cell as an electron donor.
본 발명의 중합체는 알킬티오가 치환된 5원 헤테로방향족고리가 곁사슬로 도입된 벤조[1,2-b:4,5-b']디티오펜(benzo[1,2-b:4,5-b']dithiophene, BDT)으로부터 유도되는 전자주게 유닛과 알킬티오가 치환된 1,3-비스(티오펜-2-일)-4H,8H-벤조[1,2-c:4,5-c']디티오펜-4,8-디온(1,3-bis(thiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c']dithiophene-4,8-dione, DTBDD)으로부터 유도되는 전자받게 유닛의 공중합체로, 산화 안정성 및 열적 안정성이 탁월할 뿐 아니라 분자간 상호 작용이 높아 정공과 전자 이동도에 있어 현저함을 보이고, 확장된 파이-파이 스태킹(π-πstacking)을 통하여 낮은 밴드갭을 나타낸다.The polymer of the present invention is a benzo [1,2-b: 4,5-b '] dithiophene (benzo [1,2-b: 4,5-) in which a 5-membered heteroaromatic ring substituted with alkylthio is introduced into the side chain. b '] dithiophene (BDT) -derived electron donor unit and alkylthio substituted 1,3-bis (thiophen-2-yl) -4H, 8H-benzo [1,2-c: 4,5-c '] Dithiophene-4,8-dione (1,3-bis (thiophen-2-yl) -4H, 8H-benzo [1,2-c: 4,5-c'] dithiophene-4,8-dione , DTBDD) is a copolymer of electron acceptor units, which not only has excellent oxidation stability and thermal stability, but also has high intermolecular interaction, showing remarkability in hole and electron mobility, and extended pi-pie stacking (π- πstacking) to show a low band gap.
또한, 본 발명의 중합체는 반복단위 주쇄 및 곁사슬에 도입된 알킬티오기로 인하여유기 용매에 대한 보다 향상된 용해도를 가질 수 있어 진공증착 뿐만 아니라 스핀코팅이나 프린팅과 같은 용액 공정에 적용가능할 뿐만 아니라 전자이동도가 높아 우수한 전기특성을 나타내어, 본 발명의 중합체를 포함하는 유기전자소자는 단락전류(J sc)와 Fill factor(FF) 특성이 우수하다.In addition, the polymer of the present invention can have improved solubility in organic solvents due to the alkylthio groups introduced into the main chain and side chains of the repeating unit, and thus is applicable not only to vacuum deposition but also to solution processes such as spin coating and printing, as well as electron mobility. Because it has high and shows excellent electrical properties, the organic electronic device including the polymer of the present invention has excellent short-circuit current (J sc ) and fill factor (FF) properties.
또한, 본 발명의 중합체는 태양으로부터 방출되는 가시광선 영역의 빛을 효과적으로 흡수하고 흡수한 에너지로 생성되는 전자의 전달을 보다 효율적으로 이룰 수 있어, 본 발명의 중합체를 채용한 유기전자소자는 높은 효율을 나타낸다. In addition, the polymer of the present invention can effectively absorb light in the visible ray region emitted from the sun and transfer electrons generated by the absorbed energy more efficiently, and the organic electronic device employing the polymer of the present invention has high efficiency. Indicates.
본 발명에 따른 신규한 중합체 및 이를 채용한 유기 전자 소자에 대하여 이하 상술하나, 이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. The novel polymer according to the present invention and the organic electronic device employing the same will be described below, but unless otherwise defined in the technical terms and scientific terms used at this time, those skilled in the art to which the present invention pertains will usually Descriptions of well-known functions and configurations that have an understanding meaning and may unnecessarily obscure the subject matter of the present invention are omitted in the following description.
본 명세서에 기재된 「알킬」은 직쇄 또는 분쇄 형태를 모두 포함한다. "Alkyl" as described herein includes both straight chain or pulverized forms.
본 발명은 BDT (benzo[1,2-b:4,5-b']dithiophene)-DTBDD (1,3-bis(thiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c']dithiophene-4,8-dione) 백본에 알킬티오기를 도입시켜 용해도를 향상시킴과 동시에 전자 전달 특성을 향상시킨 중합체를 제공하는 것으로, 본 발명의 중합체는 하기 화학식 1로 표시되는 반복단위를 포함하는 것일 수 있다.The present invention BDT (benzo [1,2-b: 4,5-b '] dithiophene) -DTBDD (1,3-bis (thiophen-2-yl) -4H, 8H-benzo [1,2-c: 4,5-c '] dithiophene-4,8-dione) by providing an alkylthio group in the backbone to improve solubility and to provide a polymer with improved electron transport properties, the polymer of the present invention is represented by the following formula (1) It may include a repeating unit.
[화학식 1][Formula 1]
Figure PCTKR2018014790-appb-img-000003
Figure PCTKR2018014790-appb-img-000003
[상기 화학식 1에서,[In the formula 1,
R 1 내지 R 4는 각각 독립적으로 C 1-C 30알킬이고;R 1 to R 4 are each independently C 1 -C 30 alkyl;
X 1 내지 X 4는 각각 독립적으로 O, S 또는 Se이고;X 1 to X 4 are each independently O, S or Se;
Y 1 및 Y 2는 각각 독립적으로 O, S 또는 Se이다.]Y 1 and Y 2 are each independently O, S or Se.]
본 발명에 따른 중합체는 BDT (benzo[1,2-b:4,5-b']dithiophene)-DTBDD (1,3-bis(thiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c']dithiophene-4,8-dione) 백본을 가지며, 상기 백본의 BDT에 곁사슬로 알킬티오기가 치환된 티오펜이 치환되고 상기 백본의 DTBDD에 알킬티오기가 치환된 구조로, 전자의 비편재화를 유도함으로써, 중합체의 밴드갭, HOMO, LUMO 값을 적절하게 조절할 수 있으며, 분자 간 높은 상호작용으로 향상된 전자밀도를 갖는다. The polymer according to the present invention is BDT (benzo [1,2-b: 4,5-b '] dithiophene) -DTBDD (1,3-bis (thiophen-2-yl) -4H, 8H-benzo [1,2 -c: 4,5-c '] dithiophene-4,8-dione) structure having a backbone, a thiophene substituted with an alkylthio group as a side chain in the BDT of the backbone, and an alkylthio group substituted in DTBDD of the backbone Furnace, by inducing delocalization of electrons, it is possible to appropriately adjust the band gap, HOMO, and LUMO values of the polymer, and has improved electron density through high interaction between molecules.
또한 본 발명에 따른 중합체는 상술된 바와 같이, 특정구조의 반복단위를 가짐에 따라 높은 정공과 전자 이동도를 갖는 동시에 통상의 유기 용매에 대한 높은 용해도를 갖는다. 더욱이, 통상의 유기 용매에 대한 높은 용해도로 용액공정에 유리한 점성 범위를 만족하기에 용액공정에 보다 유리함을 부여할 수 있다.In addition, as described above, the polymer according to the present invention has high hole and electron mobility as it has a repeating unit of a specific structure, and has high solubility in a common organic solvent. Moreover, it is possible to impart more advantage to the solution process because it satisfies the viscosity range favorable to the solution process with high solubility in a conventional organic solvent.
또한 본 발명의 중합체는 우수한 전하 생성 능력과 효과적인 엑시톤 해리를 나타내어 단락전류밀도와 충전률을 향상시키고, 정공과 전하 이동도 사이의 탁월한 균형을 나타낸다.In addition, the polymer of the present invention exhibits excellent charge generation ability and effective exciton dissociation to improve short-circuit current density and charge rate, and exhibits an excellent balance between hole and charge mobility.
본 발명의 중합체는 태양으로부터 방출되는 가시광 영역의 빛을 효율적으로 흡수하고 광기전력 소자가 빛을 받았을 때 생성되는 정공을 잘 전달할 수 있는 새로운 p-형 재료로서 우수한 정공이동도를 가지며, 유기 태양 전지에서 전자공여체로서 우수한 전기적 특성을 가진다.The polymer of the present invention is a new p-type material capable of efficiently absorbing light in the visible region emitted from the sun and delivering holes generated when the photovoltaic element receives light, has excellent hole mobility, and is an organic solar cell As an electron donor, it has excellent electrical properties.
본 발명의 일 실시예에 따른 상기 중합체에 있어서, 높은 용해도와 우수한 전자 전달 특성을 가지기 위한 측면에서, 상기 X 1 내지 X 4는 서로 동일하며, O 또는 S일 수 있다.In the polymer according to an embodiment of the present invention, in terms of having high solubility and excellent electron transport properties, X 1 to X 4 are the same as each other, and may be O or S.
본 발명의 일 실시예에 따른 상기 중합체에 있어서, 높은 용해도와 우수한 전자 전달 특성을 가지기 위한 측면에서, 보다 바람직하게는, 상기 R 1 내지 R 4는 각각 독립적으로 C 6-C 30알킬이고, X 1 내지 X 4는 서로 동일하며, O 또는 S이고, Y 1 및 Y 2는 각각 독립적으로 O 또는 S일 수 있다.In the polymer according to an embodiment of the present invention, in terms of having high solubility and excellent electron transport properties, more preferably, R 1 to R 4 are each independently C 6 -C 30 alkyl, and X 1 to X 4 are the same as each other, O or S, and Y 1 and Y 2 may each independently be O or S.
본 발명의 일 실시예에 따른 상기 중합체는 보다 바람직하게 하기 화학식 2로 표시될 수 있다.The polymer according to an embodiment of the present invention may be more preferably represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2018014790-appb-img-000004
Figure PCTKR2018014790-appb-img-000004
[상기 화학식 2에서, [In the formula 2,
R 1 내지 R 4는 각각 독립적으로 분쇄형 C 6-C 30알킬이다.]R 1 to R 4 are each independently crushed C 6 -C 30 alkyl.]
본 발명의 일 실시예에 따른 상기 중합체에 있어서, 높은 전하이동도 및 높은 전자 밀도와 함께 유기용매에 대한 높은 용해도를 가지기 위한 측면에서 상기 R 1 내지 R 4는 각각 독립적으로 C 6-C 30알킬일 수 있고, 바람직하게는 분쇄형 C 6-C 30알킬일 수 있으며, 보다 바람직하게는
Figure PCTKR2018014790-appb-img-000005
일 수 있으며, 여기서, a는 1 내지 5의 정수이고, R은 분지쇄의 C 3-C 25알킬일 수 있고 바람직하게는 분지쇄의 C 5-C 20알킬일 수 있다. 상술된 바와 같은 분지쇄의 알킬기를 가지는 경우, 유기 용매에 대한 높은 용해도를 구현할 수 있으며, 중합체의 모폴로지(morphology)를 조절하여, 반복단위의 결정화도를 증가시켜 보다 우수한 전하 이동도를 부여할 수 있다. 특히, 상기 R 1 내지 R 4에서 a 값이 증가함에 따라 결정성 증가와 이동도 증가로 인해 유기 태양전지 소자의 특성을 더욱 향상시킬 수 있다.
In the polymer according to an embodiment of the present invention, in terms of having high charge mobility and high solubility in an organic solvent together with high electron density, R 1 to R 4 are each independently C 6 -C 30 alkyl It may be, preferably may be pulverized C 6 -C 30 alkyl, more preferably
Figure PCTKR2018014790-appb-img-000005
It may be, wherein a is an integer from 1 to 5, R may be C 3 -C 25 alkyl of the branched chain and preferably C 5 -C 20 alkyl of the branched chain. When having the alkyl group of the branched chain as described above, high solubility in an organic solvent can be realized, and by controlling the morphology of the polymer, the crystallinity of the repeating unit is increased to impart better charge mobility. . In particular, as the a value increases in R 1 to R 4 , characteristics of the organic solar cell device may be further improved due to an increase in crystallinity and an increase in mobility.
본 발명의 일 실시예에 따른 상기 중합체는 유기 전자 소자에 포함될 수 있으며, 그 중에서도 유기 태양 전지의 광활성층에 전자공여체 재료로서 사용되어 향상된 단락 전류(J SC)와 개방전압(V OC)을 가지는 고효율의 유기태양전지를 제공할 수 있다.The polymer according to an embodiment of the present invention may be included in an organic electronic device, and among them, it is used as an electron donor material in a photoactive layer of an organic solar cell and has improved short circuit current (J SC ) and open voltage (V OC ). It is possible to provide a highly efficient organic solar cell.
본 발명의 일 실시예에 따른 중합체는 하기 반응식에서와 같은 제조가능하나, 통상의 유기합성방법을 통하여 제조될 수 있음은 물론이며, 이에 사용되는 유기 용매는 제한되지 않으며, 반응시간과 온도 또한 발명의 핵심을 벗어나지 않는 범위 내에서 변경이 가능함은 물론이다. 또한, 이외의 통상의 당업자가 인식할 수 있는 방법으로도 합성가능함은 물론이다.The polymer according to an embodiment of the present invention can be prepared as in the following reaction scheme, but can be prepared through a conventional organic synthesis method, and the organic solvent used therein is not limited, and the reaction time and temperature are also invented. Of course, changes can be made without departing from the core. In addition, it is needless to say that synthesis is possible in a manner that can be recognized by those skilled in the art.
[반응식 1][Scheme 1]
Figure PCTKR2018014790-appb-img-000006
Figure PCTKR2018014790-appb-img-000006
또한, 본 발명은 본 발명의 중합체를 포함하는 유기 전자 소자를 제공한다.In addition, the present invention provides an organic electronic device comprising the polymer of the present invention.
본 발명의 일 실시예에 따른 유기 전자 소자는 본 발명의 중합체가 사용될 수 있는 소자라면 제한되지 않으며, 이의 비한정적인 일예로는 유기 전자 소자는 유기 태양 전지, 유기 박막 트랜지스터, 유기메모리, 또는 유기감광체, 유기 광센서 등을 들 수 있으며, 바람직하게는 유기태양전지 또는 유기박막트랜지스터일 수 있다.The organic electronic device according to an embodiment of the present invention is not limited as long as it is a device in which the polymer of the present invention can be used. In one non-limiting example, the organic electronic device is an organic solar cell, an organic thin film transistor, an organic memory, or an organic. A photoreceptor, an organic optical sensor, and the like, preferably an organic solar cell or an organic thin film transistor.
본 발명의 일 실시예에 따른 유기 전자 소자는 유기 태양 전지일 수 있으며, 상기 중합체는 유기 태양 전지의 광활성층에 포함될 수 있다.The organic electronic device according to an embodiment of the present invention may be an organic solar cell, and the polymer may be included in the photoactive layer of the organic solar cell.
보다 구체적으로, 본 발명의 중합체는 유기 태양 전지의 광활성층에 전자공여체로 사용되어 이를 채용한 유기 태양 전지는 향상된 광전변환효율을 가진다.More specifically, the polymer of the present invention is used as an electron donor in the photoactive layer of an organic solar cell, and the organic solar cell employing it has improved photoelectric conversion efficiency.
이하, 본 발명의 일 양태에 따른 유기 태양 전지에 대하여 설명하나, 이는 일 예를 들어 설명하는 것으로 이에 한정이 있는 것은 아니다.Hereinafter, an organic solar cell according to an aspect of the present invention will be described, but this is for example, and is not limited thereto.
본 발명의 중합체는 우수한 전자 전달 특성을 가져 유기 태양 전지의 광활성층에 전자공여체 재료로 사용되어 높은 효율을 구현할 수 있다.The polymer of the present invention has excellent electron transport properties and can be used as an electron donor material in a photoactive layer of an organic solar cell, thereby realizing high efficiency.
본 발명의 일 실시예에 따른 유기 태양 전지는 기판, 제1전극, 광활성층 및 제2전극을 포함하는 것일 수 있으며, 정공수송층, 전자수송층 등을 더 포함할 수 있음은 물론이다.The organic solar cell according to an embodiment of the present invention may include a substrate, a first electrode, a photoactive layer, and a second electrode, and of course, may further include a hole transport layer, an electron transport layer, and the like.
또한 본 발명의 일 실시예에 따른 유기 태양 전지는 반전된 유형의 유기 태양 전지일 수 있다.In addition, the organic solar cell according to an embodiment of the present invention may be an inverted type organic solar cell.
상기 기판은 유리 및 석영판 이외에도 PET(polyethylene terephthalate), PEN(polyethylene naphthelate), PP(polyperopylene), PI(polyimide), PC(polycarbornate), PS(polystylene), POM(polyoxyethlene), AS 수지(acrylonitrile styrene copolymer), ABS 수지(acrylonitrile butadiene styrene copolymer) 및 TAC(Triacetyl cellulose) 등을 포함하는 플라스틱과 같은 유연하고 투명한 물질로 제조될 수 있다.In addition to the glass and quartz plates, the substrate is PET (polyethylene terephthalate), PEN (polyethylene naphthelate), PP (polyperopylene), PI (polyimide), PC (polycarbornate), PS (polystylene), POM (polyoxyethlene), AS resin (acrylonitrile styrene) copolymer), ABS resin (acrylonitrile butadiene styrene copolymer) and TAC (Triacetyl cellulose).
또한 상기 제1전극은 스퍼터링, E-Beam, 열증착, 스핀코팅, 스크린 프린팅, 잉크젯 프린팅, 닥터 블레이드 또는 그라비아 프린팅법을 사용하여 투명전극 물질을 상기 기판의 일면에 도포되거나 필름형태로 코팅됨으로써 형성된다. 제1전극은 애노드의 기능을 하는 부분으로써, 후술하는 제2전극에 비해 일함수가 큰 물질로 투명성 및 도전성을 갖는 임의의 물질이 사용될 수 있다. 예를 들면, ITO(indium tin oxide), 금, 은, 불소가 도핑된 틴 옥사이드(fluorine doped tin oxide; FTO), 알루미늄이 도핑된 징크 옥사이드(aluminium doped zink oxide, AZO), IZO(indium zink oxide), ZnO-Ga 2O 3, ZnO-Al 2O 3 및 ATO(antimony tin oxide, SnO 2-Sb 2O 3) 등이 있으며, 바람직하게는 ITO를 사용하는 것이 좋다.In addition, the first electrode is formed by applying a transparent electrode material to one surface of the substrate or coated in a film form using sputtering, E-Beam, thermal evaporation, spin coating, screen printing, inkjet printing, doctor blade or gravure printing. do. The first electrode is a part that functions as an anode. As a material having a larger work function than the second electrode described later, any material having transparency and conductivity may be used. For example, ITO (indium tin oxide), gold, silver, fluorine doped tin oxide (FTO), aluminum doped zinc oxide (aluminium doped zink oxide, AZO), IZO (indium zink oxide) ), ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 and ATO (antimony tin oxide, SnO 2 -Sb 2 O 3 ), and the like, preferably ITO.
상기 제1 전극과 광활성층의 사이에는 정공수송층이 삽입될 수도 있으며, 상기 정공수송층은 스핀코팅 또는 딥코팅 등의 방법을 통해 형성될 수 있다. 상기 정공수송층을 형성하기 위한 재료로는 전도성 고분자인 PEDOT:PSS (poly(3,4-ethylenedioxythiophene):polystyrene sulfonate)를 사용하는 것이 바람직하며, 이는 전자가 양극인 ITO(indium tin oxide)층으로 이동하는 것을 막아주면서 정공의 수송을 원활하게 도와준다.A hole transport layer may be inserted between the first electrode and the photoactive layer, and the hole transport layer may be formed through a method such as spin coating or dip coating. As a material for forming the hole transport layer, it is preferable to use a conductive polymer PEDOT: PSS (poly (3,4-ethylenedioxythiophene): polystyrene sulfonate), which transfers electrons to an indium tin oxide (ITO) layer as an anode. It helps to transport the hole smoothly while preventing it from being done.
상기 제2전극과 광활성층 사이에 전자수송층이 삽입될 수도 있으며, 상기 전자수송층은 금속산화물을 포함하는 금속산화물층으로, 상기 금속산화물은 이에 한정되는 것은 아니나, 이산화티탄(TiO 2), 이산화주석(SnO 2), 산화아연(ZnO) 등의 나노입자 산화물로 형성될 수 있다.An electron transport layer may be inserted between the second electrode and the photoactive layer, and the electron transport layer is a metal oxide layer including a metal oxide, but the metal oxide is not limited thereto, titanium dioxide (TiO 2 ), tin dioxide It may be formed of nanoparticle oxides such as (SnO 2 ), zinc oxide (ZnO).
상기 광활성층은 전자 주게인 전자공여체 및 전자 받게인 전자수용체를 포함하는 것일 수 있다. 이때, 상기 중합체는 광활성층의 전자공여체로 사용되어 향상된 외부 양자 효율을 구현할 수 있다. 이때, 상기 광활성층의 전자공여체 및 전자수용체는 벌크 헤테로 정션(BHJ, Bulk-heterojunction)을 구성한다. 벌크 헤테로 정션이란 광활성층에서 전자공여체 및 전자수용체에 해당하는 각 화합물이 서로 섞여 있는 것을 의미한다.The photoactive layer may include an electron donor electron donor and an electron acceptor. At this time, the polymer can be used as an electron donor of the photoactive layer to realize improved external quantum efficiency. At this time, the electron donor and the electron acceptor of the photoactive layer constitute a bulk heterojunction (BHJ). Bulk heterojunction means that each compound corresponding to an electron donor and an electron acceptor in the photoactive layer is mixed with each other.
상기 광활성층은 상기 중합체는 광활성층의 전자공여체로 포함하고, 전자수용체와 함께 벌크 헤테로 정션을 구성하는 것일 수 있다.The photoactive layer may include the polymer as an electron donor of the photoactive layer, and constitute a bulk heterojunction together with the electron acceptor.
또한 상기 광활성층에는 본 발명에 따른 중합체를 전자공여체로 포함할 수 있으며, 이의 배합량은 용도에 따라 적절하게 조절될 수 있다. 또한 상기 중합체는 용매 및 전자수용체를 포함할 수 있다. 상기 전자수용체로는 예를 들어 C60, C70, [60]PCBM (Phenyl C 61-butyric acid methyl ester), [70]PCBM (Phenyl C 71-butyric acid methyl ester), [60]ICBA (Indene-C 60 Bis-Adduct), [60]PCBCR (phenyl-C 61-butyric acid cholestryl ester), [70]PCBCR (phenyl-C 71-butyric acid cholestryl ester), 페릴렌 (perylene), PBI (polybenzimidazole), PTCBI (3,4,9,10-perylene-tetracarboxylic bis-benzimidazole), P(NDI2HD-Se) 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.In addition, the photoactive layer may include the polymer according to the present invention as an electron donor, and the compounding amount thereof may be appropriately adjusted according to the application. In addition, the polymer may include a solvent and an electron acceptor. Examples of the electron acceptor include C60, C70, [60] Phenyl C 61 -butyric acid methyl ester (PCBM), [70] PCBM (Phenyl C 71 -butyric acid methyl ester), [60] ICBA (Indene-C 60 Bis-Adduct), [60] PCBCR (phenyl-C 61 -butyric acid cholestryl ester), [70] PCBCR (phenyl-C 71 -butyric acid cholestryl ester), perylene, PBI (polybenzimidazole), PTCBI (3,4,9,10-perylene-tetracarboxylic bis-benzimidazole), P (NDI2HD-Se), etc. may be used, but is not limited thereto.
이때, 본 발명에 따른 중합체를 광활성층의 전자공여체로 포함하는 경우, 전자수용체의 상대적으로 낮은 광 흡수 계수를 효과적으로 보완하여 향상된 단락전류밀도( J sc)와 충전률(FF)을 동시에 구현할 수 있다.In this case, when the polymer according to the present invention is included as an electron donor of the photoactive layer, it is possible to effectively compensate for the relatively low light absorption coefficient of the electron acceptor, thereby simultaneously improving the short circuit current density ( J sc ) and the filling factor (FF). .
또한 상기 광활성층에는 활성층의 모폴로지와 결정성을 조절하여 탁월하게 향상된 효율을 구현하기 위하여, 추가의 첨가제를 더 포함할 수 있다. 상기 첨가제의 일 예로는 1,8-디아이오도옥탄(DIO:1,8-diiodooctane), 1-클로로나프탈렌(1-CN:1-chloronaphthalene), 다이페닐에테르(DPE:diphenylether), 옥탄디싸이올(octane dithiol) 및 테트라브로모싸이오펜(tetrabromothiophene) 등을 들 수 있으며, 용도에 따라 적절하게 배합되어 사용될 수 있다. 바람직하게, 본 발명에 따른 중합체는 1,8-디아이오도옥탄과 함께 사용되는 경우 현저하게 향상된 결정성을 구현하여, 단락전류밀도( J sc) 및 충전률(FF)의 향상은 물론 현저하게 향상된 외부 양자 효율을 구현할 수 있다.In addition, the photoactive layer may further include additional additives in order to realize excellently improved efficiency by controlling the morphology and crystallinity of the active layer. Examples of the additives are 1,8-diiodooctane (DIO: 1,8-diiodooctane), 1-chloronaphthalene (1-CN: 1-chloronaphthalene), diphenyl ether (DPE: diphenylether), octanediol (octane dithiol) and tetrabromothiophene, and the like, and may be appropriately combined according to the use. Preferably, the polymer according to the present invention realizes significantly improved crystallinity when used in combination with 1,8-diiodooctane, which improves short-circuit current density ( J sc ) and fill rate (FF) as well as significantly External quantum efficiency can be implemented.
상기 중합체는 용매에 용해시켜 사용될 수 있으며, 상기 용매는 아세톤, 메탄올, THF, 톨루엔, 자일렌, 테트랄린, 클로로포름, 클로로벤젠, 디클로로벤젠 또는 이들의 혼합용매로 사용될 수 있으나 이에 한정되는 것은 아니다. 상기 중합체는 60 내지 120 nm 두께로 광활성층에 도입되는 것이 바람직하나 이에 한정되는 것은 아니다. 또한 본 발명에 따른 중합체를 포함하는 상기 광활성층은 높은 전자 밀도로 인하여, 단락전류밀도(short circuit current density) 및 개방전압(open circuit voltage)이 증가하여 에너지변환효율에 좋다.The polymer may be used by dissolving in a solvent, and the solvent may be used as acetone, methanol, THF, toluene, xylene, tetralin, chloroform, chlorobenzene, dichlorobenzene, or a mixed solvent thereof, but is not limited thereto. . The polymer is preferably introduced into the photoactive layer with a thickness of 60 to 120 nm, but is not limited thereto. In addition, the photoactive layer comprising the polymer according to the present invention is good in energy conversion efficiency due to an increase in short circuit current density and open circuit voltage due to high electron density.
상기 유기 태양 전지는 전자수송층을 더 포함할 수 있다. 상기 전자수송층은 전자수송층의 모폴로지를 향상시키기 위해 계면활성제(surfactant)를 첨가하여 제조 할 수 있다. 이때, 상기 전자수송층은 친전자성 기능을 가지는 수용성 고분자를 물, 에탄올 또는 이들의 혼합용매에 용해하고, 상기 고분자 용액에 계면활성제를 첨가한 후 여과하여 박막을 형성하는 단계를 포함하여 제조할 수 있다. 이때, 상기 친전자성 기능기를 가지는 수용성 고분자로는 폴리[9,9-비스(6'-디에탄올아미노)헥실)-플루오렌]이 바람직하며, 상기 계면활성제는 2,4,7,9-테트라메틸-5-데킨-4,7-디올인 것이 바람직하지만, 이에 한정되는 것은 아니다. 또한 상기 수용성 고분자 및 계면활성제가 혼합된 용액을 스핀 코팅 등의 방법으로 2 내지 20nm 코팅하여 열처리하는 것이 좋다. 이때, 상기 전자수송층은 스핀코팅의 방법 외에도 딥코팅, 스크린 프린팅, 잉크젯 프린팅, 그라비아 프린팅, 스프레이 코팅, 닥터블레이드 또는 브러쉬 페인팅 등의 방법을 응용할 수 있으며, 본 발명이 이에 제한되는 것은 아니다.The organic solar cell may further include an electron transport layer. The electron transport layer may be prepared by adding a surfactant to improve the morphology of the electron transport layer. At this time, the electron transport layer may be prepared by dissolving a water-soluble polymer having an electrophilic function in water, ethanol or a mixed solvent thereof, adding a surfactant to the polymer solution, and filtering to form a thin film. have. At this time, poly [9,9-bis (6'-diethanolamino) hexyl) -fluorene] is preferable as the water-soluble polymer having the electrophilic functional group, and the surfactant is 2,4,7,9- It is preferably tetramethyl-5-dekin-4,7-diol, but is not limited thereto. In addition, the solution of the water-soluble polymer and the surfactant is preferably 2 to 20 nm coated by a method such as spin coating to heat treatment. At this time, in addition to the spin coating method, the electron transport layer may apply methods such as dip coating, screen printing, inkjet printing, gravure printing, spray coating, doctor blade or brush painting, and the present invention is not limited thereto.
또한 상기 제2 전극은 전자수송층이 도입된 상태에서 열증착기를 이용하여 증착될 수 있다. 이때 사용가능한 전극재료로는 불화리튬/알루미늄, 불화리튬/칼슘/알루미늄, 알루미늄/칼슘, 불화바륨/알루미늄, 불화바륨/바륨/알루미늄, 바륨/알루미늄, 알루미늄, 금, 은, 마그네슘:은 및 리튬:알루미늄 중에서 선택될 수 있으며, 바람직하게는 은, 알루미늄, 알루미늄/칼슘 또는 불화바륨/바륨/알루미늄 구조로 제작된 전극을 사용하는 것이 좋다.In addition, the second electrode may be deposited using a thermal evaporator in the state where the electron transport layer is introduced. The electrode materials that can be used are lithium fluoride / aluminum, lithium fluoride / calcium / aluminum, aluminum / calcium, barium fluoride / aluminum, barium fluoride / barium / aluminum, barium / aluminum, aluminum, gold, silver, magnesium: silver and lithium : It can be selected from aluminum, and preferably, an electrode made of silver, aluminum, aluminum / calcium or barium fluoride / barium / aluminum is used.
일반 유기 태양전지는 전자(electron)가 음극으로, 정공(Hole)이 양극으로 빠져나가는 원리이나, 반전 유기 태양전지는 반대로 전자(electron)가 양극으로, 정공(Hole)이 음극으로 빠져나가는 원리로, 본 발명은 이를 모두 포함한다.In general organic solar cells, electrons are cathodes, and holes are discharged to anodes. Inverted organic solar cells, on the contrary, electrons are anodes, and holes are cathodes. , The present invention includes all of them.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다. 또한, 종래와 동일한 기술적 구성 및 작용에 대한 반복되는 설명은 생략하기로 한다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only for illustrating the present invention, and the contents of the present invention are not limited by the following examples. At this time, unless there is another definition in the technical terminology and scientific terminology used, it has a meaning that a person with ordinary knowledge in the technical field to which this invention belongs generally understands. In addition, repeated description of the same technical configuration and operation as the prior art will be omitted.
[물성 평가 방법][Physical property evaluation method]
1H NMR 스펙트럼은 Varian Mercury Plus 300 MHz 및 Bruker FT NMR spectroscopy system으로 측정하였고, 자외선 흡수 스펙트럼은 UV-1800 spectrophotometer(Shimadzu Scientific Instruments)으로 측정하였다. 물질의 HOMO Level을 구하기 위하여 순환 전류-전압 분석(Cyclic Voltammetry, CV)은 CHI 600C electrochemical analyzer를 이용하여 측정하였고, 태양전지의 J-V 곡선(curve)은 1Kw 솔라 시뮬레이터(Solar simulator, Newport 91192)를 이용하여 측정하였다. IPCE 특성은 Solar cell response/Quantum efficiency/IPCE Measurement system (PV Measurements. Inc.)으로 측정하였다. The 1 H NMR spectrum was measured with a Varian Mercury Plus 300 MHz and Bruker FT NMR spectroscopy system, and the ultraviolet absorption spectrum was measured with a UV-1800 spectrophotometer (Shimadzu Scientific Instruments). In order to obtain the HOMO level of the material, cyclic current-voltage analysis (Cyclic Voltammetry, CV) was measured using a CHI 600C electrochemical analyzer, and the JV curve of the solar cell was used with a 1Kw solar simulator (Newport 91192). Was measured. IPCE characteristics were measured by Solar cell response / Quantum efficiency / IPCE Measurement system (PV Measurements. Inc.).
M n 및 PDI 값은 Waters 1515 Isocratic HPLC 펌프, 온도 제어 모듈 및 Waters 2414 시차굴절 검출기로 구성된 GPC를 이용하여 80℃에서 1 mL/min의 속도로 o-DCB(o-dichlorobenzene) 용매 하에서 측정하였으며, 폴리스티렌 표준물질을 사용하여 분자량을 보정하였다.M n and PDI values were measured under an o-DCB (o-dichlorobenzene) solvent at 80 mL at a rate of 1 mL / min using a GPC consisting of a Waters 1515 Isocratic HPLC pump, a temperature control module and a Waters 2414 differential refractive detector. Molecular weights were calibrated using polystyrene standards.
[실시예 1] 중합체 1의 제조[Example 1] Preparation of polymer 1
단계1: 화합물 A의 제조Step 1: Preparation of Compound A
Figure PCTKR2018014790-appb-img-000007
Figure PCTKR2018014790-appb-img-000007
thiophene (3 g, 35.7 mmol)을 THF (20 mL)에 넣고 녹여 준 후 온도를 -78 ℃로 낮추고, 2.5M n-Butyllithium (14.3 mL, 35.7 mmol)을 천천히 드랍핑(dropping)하여 2시간 동안 교반하였다. 상온에서 30분간 더 교반한 후 0 ℃로 온도를 낮춰 Sulfur (1.14 g, 35.7 mmol)를 넣고 2시간 동안 교반하였다. 그리고 2-Ethylhexyl bromide (6.89 g, 35.7 mmol)를 천천히 드랍핑(dropping) 후 상온에서 12시간 교반하였다. 상기 반응혼합물에 증류수 (40 mL)을 투입하여 반응을 종결시켰다. 에틸아세테이트(EA)로 추출하고 유기층을 물로 씻어준 다음 MgSO 4로 건조시킨 후, 회전식 증발기를 사용하여 용매를 제거하였다. 그 후 컬럼 크로마토그래피(n-Hexane)으로 정제하여 액체로 화합물 A를 얻었다(수율= 42%). Thiophene (3 g, 35.7 mmol) was added to THF (20 mL), dissolved, and the temperature was lowered to -78 ° C, and 2.5M n-Butyllithium (14.3 mL, 35.7 mmol) was slowly dropped for 2 hours. It was stirred. After further stirring at room temperature for 30 minutes, the temperature was lowered to 0 ° C, sulfur (1.14 g, 35.7 mmol) was added, and the mixture was stirred for 2 hours. And 2-Ethylhexyl bromide (6.89 g, 35.7 mmol) was slowly dropped and stirred at room temperature for 12 hours. Distilled water (40 mL) was added to the reaction mixture to terminate the reaction. After extracting with ethyl acetate (EA), the organic layer was washed with water, dried over MgSO 4, and the solvent was removed using a rotary evaporator. Then, it was purified by column chromatography (n-Hexane) to obtain Compound A as a liquid (yield = 42%).
1H NMR (CD 2Cl 2, 300 MHz), δ(ppm): 6.96 (s, 2 H), 2.84 (m, 4 H), 1.56-1.29 (m,18 H), 0.95-0.86 (m, 12 H). 1 H NMR (CD 2 Cl 2 , 300 MHz), δ (ppm): 6.96 (s, 2 H), 2.84 (m, 4 H), 1.56-1.29 (m, 18 H), 0.95-0.86 (m, 12 H).
단계2: 화합물 B의 제조Step 2: Preparation of compound B
Figure PCTKR2018014790-appb-img-000008
Figure PCTKR2018014790-appb-img-000008
2,5-Dibromo-3,4-thiophenedicarboxylic acid (6 g, 18.2 mmol)와 DMF (2 drop)를 1,2-Dichloroethane (40 mL)에 녹인 후 Oxalyl chloride (14 mL, 163.7 mmol)를 천천히 드랍핑(dropping)하여 상온에서 12 시간 교반하였다. 회전식 증발기를 사용하여 용매를 제거하여 crude한 2,5-dibromothiophene-3,4-dicarbonyl dichloride를 얻었으며, 이를 정제하지 않고 다음 반응을 진행하였다. After dissolving 2,5-Dibromo-3,4-thiophenedicarboxylic acid (6 g, 18.2 mmol) and DMF (2 drop) in 1,2-Dichloroethane (40 mL), Oxalyl chloride (14 mL, 163.7 mmol) was slowly dropped. The mixture was dropped and stirred at room temperature for 12 hours. The solvent was removed using a rotary evaporator to obtain crude 2,5-dibromothiophene-3,4-dicarbonyl dichloride, which was subjected to the next reaction without purification.
crude한 2,5-dibromothiophene-3,4-dicarbonyl dichloride (6.7 g, 18.2 mmol)와 화합물 A (6.8 g, 18.2 mmol)를 1,2-Dichloroethane (40 mL)에 녹인 후 AlCl 3 (9.7 g, 72.7 mmol) 천천히 드랍핑(dropping)하여 0 ℃에서 30분간 교반 후 상온에서 3시간 교반하였다. 상기 반응혼합물에 증류수 (80 mL)와 HCl (20 mL)를 투입하여 반응을 종결시켰다. 다이클로로메탄(MC)로 추출하고 유기층을 물로 씻어준 다음 MgSO 4로 건조시킨 후, 회전식 증발기를 사용하여 용매를 제거하였다. 그 후 컬럼 크로마토그래피(n-Hexane/dichloromethane=8/1)로 정제하여 고체로 화합물 B를 얻었다(수율= 42%). After dissolving crude 2,5-dibromothiophene-3,4-dicarbonyl dichloride (6.7 g, 18.2 mmol) and compound A (6.8 g, 18.2 mmol) in 1,2-Dichloroethane (40 mL), AlCl 3 (9.7 g, 72.7 mmol) Slowly dropped, stirred at 0 ° C. for 30 minutes, and then stirred at room temperature for 3 hours. Distilled water (80 mL) and HCl (20 mL) were added to the reaction mixture to terminate the reaction. After extracting with dichloromethane (MC), the organic layer was washed with water, dried over MgSO 4, and the solvent was removed using a rotary evaporator. Then, it was purified by column chromatography (n-Hexane / dichloromethane = 8/1) to obtain Compound B as a solid (yield = 42%).
1H NMR (CD 2Cl 2, 300 MHz), δ(ppm): 3.12 (m, 4 H), 1.88-1.80 (m, 2 H), 1.60-1.51 (m,8 H), 1.41-1.35 (m, 8 H), 1.02-0.93 (m, 12 H). 1 H NMR (CD 2 Cl 2 , 300 MHz), δ (ppm): 3.12 (m, 4 H), 1.88-1.80 (m, 2 H), 1.60-1.51 (m, 8 H), 1.41-1.35 ( m, 8 H), 1.02-0.93 (m, 12 H).
단계3: 화합물 C의 제조Step 3: Preparation of compound C
Figure PCTKR2018014790-appb-img-000009
Figure PCTKR2018014790-appb-img-000009
2-(2-ethylhexylthio)thiophene (8.8 g, 31 mmol)을 THF (60 mL)에 넣고 녹여 준 후 온도를 -78 ℃로 낮추고, 2.5M n-Butyllithium (13.6 mL, 34 mmol)을 천천히 드랍핑(dropping)하여 상온에서 2시간 교반하였다. 그리고 4,8-Dihydrobenzo[1,2-b:4,5-b']dithiophen-4,8-dione (1.7 g, 7.8 mmol)를 넣고 50 ℃로 온도를 올려 2시간 교반하였다. 온도를 상온으로 낮춘 후 상기 반응용액에 SnCl 2·2H 2O (13.6 g, 60.7 mmol) in 10% hydrochloric acid (30 mL)을 투입하여 2시간 교반하여 반응을 종결시켰다. 다이에틸이서(Ether)로 추출하고 유기층을 물로 씻어준 다음 MgSO 4로 건조시킨 후, 회전식 증발기를 사용하여 용매를 제거하였다. 그 후 컬럼 크로마토그래피(n-hexane)으로 정제하여 액체로 화합물 C를 얻었다(수율= 50%). 2- (2-ethylhexylthio) thiophene (8.8 g, 31 mmol) was added to THF (60 mL), melted, the temperature was lowered to -78 ° C, and 2.5M n-Butyllithium (13.6 mL, 34 mmol) was slowly dropped. (dropping) and stirred at room temperature for 2 hours. Then, 4,8-Dihydrobenzo [1,2-b: 4,5-b '] dithiophen-4,8-dione (1.7 g, 7.8 mmol) was added thereto, and the temperature was raised to 50 ° C and stirred for 2 hours. After lowering the temperature to room temperature, SnCl 2 · 2H 2 O (13.6 g, 60.7 mmol) in 10% hydrochloric acid (30 mL) was added to the reaction solution and stirred for 2 hours to terminate the reaction. After extraction with diethyl ether (Ether), the organic layer was washed with water, dried over MgSO 4, and the solvent was removed using a rotary evaporator. Then, it was purified by column chromatography (n-hexane) to obtain compound C as a liquid (yield = 50%).
1H NMR (CD 2Cl 2, 300 MHz), δ(ppm): 7.65 (d, 2 H), 7.56 (d, 2 H), 7.38 (d, 2 H), 2.99 (m, 4 H), 1.73-1.64 (m, 2H), 1.57-1.30 (m, 16 H), 0.97-0.92 (m, 12 H). 1 H NMR (CD 2 Cl 2 , 300 MHz), δ (ppm): 7.65 (d, 2 H), 7.56 (d, 2 H), 7.38 (d, 2 H), 2.99 (m, 4 H), 1.73-1.64 (m, 2H), 1.57-1.30 (m, 16 H), 0.97-0.92 (m, 12 H).
단계4: 화합물 D의 제조Step 4: Preparation of compound D
Figure PCTKR2018014790-appb-img-000010
Figure PCTKR2018014790-appb-img-000010
화합물 C (16.5 g, 25.7 mmol)를 THF (250 mL)에 넣고 녹여 준 후 온도를 -70 ℃로 낮춰 2.5M n-Butyllithium (25.6 mL, 64 mmol)을 천천히 드랍핑(dropping)하고 40 ℃에서 3시간 교반하였다. Carbon tetrabromide (21 g, 64 mmol)를 THF (35 mL)에 넣고 녹여 준 후 온도를 -70 ℃로 낮추고 천천히 드랍핑(dropping)하였다. 30분 교반 후 온도를 서서히 상온으로 올렸다. 상기 반응혼합물에 증류수 (500 mL)를 투입하여 반응을 종결시켰다. 다이클로로메탄(MC)으로 추출하고 유기층을 물로 씻어준 다음 MgSO 4로 건조시킨 후, 회전식 증발기를 사용하여 용매를 제거하였다. 그 후 컬럼 크로마토그래피(n-Hexane)로 정제하여 고체로 화합물 D를 얻었다(수율= 78%). Compound C (16.5 g, 25.7 mmol) was added to THF (250 mL), dissolved, and the temperature was lowered to -70 ° C to slowly drop 2.5M n-Butyllithium (25.6 mL, 64 mmol) at 40 ° C. Stir for 3 hours. Carbon tetrabromide (21 g, 64 mmol) was added to THF (35 mL) and dissolved, and then the temperature was lowered to -70 ° C and dropped slowly. After stirring for 30 minutes, the temperature was gradually raised to room temperature. Distilled water (500 mL) was added to the reaction mixture to terminate the reaction. After extracting with dichloromethane (MC), the organic layer was washed with water, dried over MgSO 4, and the solvent was removed using a rotary evaporator. Then, it was purified by column chromatography (n-Hexane) to obtain Compound D as a solid (yield = 78%).
1H NMR (CD 2Cl 2, 300 MHz), δ (ppm) : 7.62 (s, 2 H), 7.31 (d, 2 H), 7.25 (d, 2 H), 2.99 (m, 4 H), 1.72-1.61 (m, 2 H), 1.58-1.33 (m, 16 H), 0.97-0.93 (m, 12 H). 1 H NMR (CD 2 Cl 2 , 300 MHz), δ (ppm): 7.62 (s, 2 H), 7.31 (d, 2 H), 7.25 (d, 2 H), 2.99 (m, 4 H), 1.72-1.61 (m, 2 H), 1.58-1.33 (m, 16 H), 0.97-0.93 (m, 12 H).
단계5: 화합물 E의 제조Step 5: Preparation of compound E
Figure PCTKR2018014790-appb-img-000011
Figure PCTKR2018014790-appb-img-000011
화합물D (8.1 g, 10.1 mmol)와 2-(Tributylstannyl)thiophene (11.3 g, 30.3 mmol)를 toluene (150 mL)과 DMF (20 mL)에 넣어 녹인 후 질소 치환을 하였다. Pd(PPh 3) 4 (1.2 g, 1 mmol)를 넣어준 뒤 100 ℃에서 6시간 교반하였다. 상온으로 온도를 낮춰 여과한 후 얻어진 여액에 증류수 (300 mL)를 투입하여 반응을 종결시켰다. 다이클로로메탄(MC)으로 추출하고 유기층을 물로 씻어준 다음 MgSO 4로 건조시킨 후, 회전식 증발기를 사용하여 용매를 제거하였다. 그 후 컬럼 크로마토그래피(n-Hexane/dichloromethane=6/1)로 정제하여 고체로 화합물 E를 얻었다(수율= 69%). Compound D (8.1 g, 10.1 mmol) and 2- (Tributylstannyl) thiophene (11.3 g, 30.3 mmol) were dissolved in toluene (150 mL) and DMF (20 mL), followed by nitrogen substitution. After adding Pd (PPh 3 ) 4 (1.2 g, 1 mmol), the mixture was stirred at 100 ° C. for 6 hours. After filtering by lowering the temperature to room temperature, distilled water (300 mL) was added to the obtained filtrate to terminate the reaction. After extracting with dichloromethane (MC), the organic layer was washed with water, dried over MgSO 4, and the solvent was removed using a rotary evaporator. Then, it was purified by column chromatography (n-Hexane / dichloromethane = 6/1) to obtain Compound E as a solid (yield = 69%).
1H NMR (CD 2Cl 2, 300 MHz), δ(ppm) : 7.66 (s, 2 H), 7.41-7.35 (m, 6 H), 7.30 (d, 2 H), 3.02 (m, 4 H), 1.74-1.68 (m, 2 H), 1.60-1.33 (m, 16 H), 1.00-0.92 (m, 12 H). 1 H NMR (CD 2 Cl 2 , 300 MHz), δ (ppm): 7.66 (s, 2 H), 7.41-7.35 (m, 6 H), 7.30 (d, 2 H), 3.02 (m, 4 H ), 1.74-1.68 (m, 2 H), 1.60-1.33 (m, 16 H), 1.00-0.92 (m, 12 H).
단계6: 화합물 F의 제조Step 6: Preparation of compound F
Figure PCTKR2018014790-appb-img-000012
Figure PCTKR2018014790-appb-img-000012
화합물 E (4.5 g, 5.6 mmol)를 THF (120 mL)에 넣고 녹여 준 후 온도를 -78 ℃로 낮춰 2.5M n-Butyllithium (6.0 mL, 15 mmol)을 천천히 드랍핑(dropping)하고 40 ℃에서 3시간 교반하였다. -78 ℃로 낮추고 Trimethyltin chloride (3.3 g, 16.7 mmol)를 천천히 드랍핑(dropping)한 다음, 온도를 서서히 상온으로 올려 12시간 교반하였다. 상기 반응혼합물에 증류수 (200 mL)를 투입하여 반응을 종결시켰다. 다이에틸이서(Ether)로 추출하고 유기층을 물로 씻어준 다음 MgSO 4로 건조시킨 후, 회전식 증발기를 사용하여 용매를 제거하였다. 그 후 재결정(Ether : Hexane) 정제하여 고체로 화합물 F를 얻었다(수율= 51%). Compound E (4.5 g, 5.6 mmol) was added to THF (120 mL), dissolved, and then the temperature was lowered to -78 ° C to slowly drop 2.5M n-Butyllithium (6.0 mL, 15 mmol) at 40 ° C. Stir for 3 hours. After lowering to -78 ° C and slowly dropping Trimethyltin chloride (3.3 g, 16.7 mmol), the temperature was gradually raised to room temperature and stirred for 12 hours. Distilled water (200 mL) was added to the reaction mixture to terminate the reaction. After extraction with diethyl ether (Ether), the organic layer was washed with water, dried over MgSO 4, and the solvent was removed using a rotary evaporator. Then, recrystallization (Ether: Hexane) purification gave compound F as a solid (yield = 51%).
1H NMR (CD 2Cl 2, 300 MHz), δ(ppm) : 7.43 (s, 2 H), 7.23-7.18 (m, 4 H), 7.08 (d, 2 H), 6.97 (m, 2 H), 2.80 (m, 4 H), 1.52-1.46 (m, 2 H), 1.38-1.12 (m, 16 H), 0.79-0.71 (m, 12 H), 0.31-0.12 (m, 18 H). 1 H NMR (CD 2 Cl 2 , 300 MHz), δ (ppm): 7.43 (s, 2 H), 7.23-7.18 (m, 4 H), 7.08 (d, 2 H), 6.97 (m, 2 H ), 2.80 (m, 4 H), 1.52-1.46 (m, 2 H), 1.38-1.12 (m, 16 H), 0.79-0.71 (m, 12 H), 0.31-0.12 (m, 18 H).
단계 7: 중합체 1의 제조Step 7: Preparation of polymer 1
Figure PCTKR2018014790-appb-img-000013
Figure PCTKR2018014790-appb-img-000013
상기 중합체 1은 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. The polymer 1 may be polymerized through a Stille coupling reaction.
화합물 B (0.5 g, 0.44 mmol)와 화합물 F (0.294 g, 0.44 mmol)를 toluene (0.5 mL)과 DMF (9.5 mL)에 넣어 녹인 후 질소 치환을 실시하였다. 여기에 Pd(PPh 3) 4 (5 mg, 0.0044 mmol)를 넣어준 뒤 100 ℃에서 3시간 동안 환류하였다. 상기 반응혼합물을 메탄올 (500 mL)에 천천히 가하여 침전을 형성시키고 생성된 고체를 여과하였다. 여과한 고체는 속실렛(sohxlet)을 통해 메탄올, 헥산, 다이옥산 및 클로로포름 순으로 정제하였다. 얻어진 액체를 메탄올에 다시 침전시키고 필터를 통해 여과한 후 건조시켜 고체 형태로 중합체 1을 얻었다(수율= 44%). Compound B (0.5 g, 0.44 mmol) and compound F (0.294 g, 0.44 mmol) were dissolved in toluene (0.5 mL) and DMF (9.5 mL), followed by nitrogen substitution. Pd (PPh 3 ) 4 (5 mg, 0.0044 mmol) was added thereto and refluxed at 100 ° C. for 3 hours. The reaction mixture was slowly added to methanol (500 mL) to form a precipitate and the resulting solid was filtered. The filtered solid was purified in the order of methanol, hexane, dioxane, and chloroform through soxlet. The obtained liquid was precipitated again in methanol, filtered through a filter and dried to obtain polymer 1 in a solid form (yield = 44%).
1H NMR (CD 2Cl 2, 300 MHz), δ(ppm) : 7.78-7.17 (m, 7 H), 7.42 (m, 2 H), 7.17 (m, 3 H), 2.96 (m, 8 H), 1.47-1.18 (m, 36 H), 0.87 (m, 24 H). 1 H NMR (CD 2 Cl 2 , 300 MHz), δ (ppm): 7.78-7.17 (m, 7 H), 7.42 (m, 2 H), 7.17 (m, 3 H), 2.96 (m, 8 H ), 1.47-1.18 (m, 36 H), 0.87 (m, 24 H).
중량평균분자량(Mw) : 160,269 g/molWeight average molecular weight (Mw): 160,269 g / mol
수평균분자량(Mn) : 111,815 g/molNumber average molecular weight (Mn): 111,815 g / mol
PDI(polydispersity index) : 1.43PDI (polydispersity index): 1.43
T d, 5%(℃) : 350℃T d, 5% (℃): 350 ℃
상기 실시예 1에서 제조된 중합체 1의 광 흡수영역을 용액상태와 필름상태에서 측정하여, 그 결과를 하기 표 1에 기재하였다.The light absorption region of the polymer 1 prepared in Example 1 was measured in a solution state and a film state, and the results are shown in Table 1 below.
중합체 1 (실시예 1)Polymer 1 (Example 1)
용액 λ max (nm)Solution λ max (nm) 554, 464(s)554, 464 (s)
필름 λ max (nm)Film λ max (nm) 567, 468(s)567, 468 (s)
UV max(100℃) (nm)UV max (100 ℃) (nm) 572, 472(s)572, 472 (s)
E g (eV)E g (eV) 1.801.80
E HOMO (eV)E HOMO (eV) -5.36-5.36
E LUMO (eV)E LUMO (eV) -3.56-3.56
[실시예 2] 유기 태양 전지 제작[Example 2] Organic solar cell fabrication
실시예 1에서 제조된 중합체 1을 새로운 전자공여체로 사용하여 제작한 유기태양전지 소자의 광기전력 특성을 알아보고자 [ITO/PEDOT:PSS/중합체 1+PC 70BM/Al]구조의 유기태양전지소자를 제작하였다. To investigate the photovoltaic properties of the organic solar cell device produced using the polymer 1 prepared in Example 1 as a new electron donor [ITO / PEDOT: PSS / polymer 1 + PC 70 BM / Al] structure organic solar cell device Was produced.
ITO(Indium Tin Oxide)가 코팅된 유리기판을 아세톤과 이소프로필알코올(IPA, Isopropylalcohol)로 각각 3번씩 세척한 후 130℃의 오븐에서 5시간 건조시켰다. 상기와 같이 세척된 ITO 유리 기판을 30분간 UV-Ozone 처리하였다. 그 위에 PEDOT-PSS(Baytron P TP AI 4083, Bayer AG)층을 40 nm 두께로 스핀 코팅한 후 120℃에서 60분간 어닐링을 실시하였다. 상기 실시예 1에서 제조한 중합체 1 을 사용하여 PCBM 유도체(PC 70BM)를 무게비 1:1(wt:wt)의 비율로 클로로벤젠에 용해하여 60℃에서 12 시간동안 교반시킨 후에 0.45 ㎛ (PTFE) 실린지 필터(syringe filter)를 통해 필터링하여 유기 반도체 용액을 제조하였다. 상기 유기반도체 용액을 상기 PEDOT-PSS 층 위에 스핀코팅하여 93 nm 두께로 광활성층을 제조하였다. 그 후에 고진공 (10 -6 torr)에서 알루미늄(Al)을 100 nm 두께로 증착하여 유기 태양 전지를 제작하였다.The glass substrate coated with ITO (Indium Tin Oxide) was washed three times with acetone and isopropyl alcohol (IPA), and then dried in an oven at 130 ° C. for 5 hours. The cleaned ITO glass substrate was treated with UV-Ozone for 30 minutes. After the PEDOT-PSS (Baytron P TP AI 4083, Bayer AG) layer was spin coated to a thickness of 40 nm, annealing was performed at 120 ° C for 60 minutes. Using the polymer 1 prepared in Example 1, the PCBM derivative (PC 70 BM) was dissolved in chlorobenzene at a weight ratio of 1: 1 (wt: wt) and stirred at 60 ° C. for 12 hours, followed by 0.45 μm (PTFE ) Filtered through a syringe filter to prepare an organic semiconductor solution. The organic semiconductor solution was spin coated on the PEDOT-PSS layer to prepare a photoactive layer with a thickness of 93 nm. Thereafter, aluminum (Al) was deposited to a thickness of 100 nm in a high vacuum (10 -6 torr) to produce an organic solar cell.
상기 방법으로 제작된 유기 태양 전지의 전류밀도-전압 (J-V) 특성을 Oriel 1000W solar simulator에 의해 100 mW/㎠(AM1.5G)로써 태양광을 모사한 조명하에서 측정하고, V OC(open circuit voltage), J SC(short-circuit current density), FF(fill factor) 및 PCE(power Conversion Efficiency)의 광전 파라미터(photovoltaic parameter)들을 확인하였다.The current density-voltage (JV) characteristic of the organic solar cell produced by the above method was measured under illumination simulating sunlight as 100 mW / ㎠ (AM1.5G) by an Oriel 1000W solar simulator, and V OC (open circuit voltage) ), J SC (short-circuit current density), FF (fill factor) and photovoltaic parameters of power conversion efficiency (PCE) were confirmed.
[비교예 1 및 2] 유기 태양 전지 제작[Comparative Examples 1 and 2] Production of organic solar cells
상기 실시예 2에서 광활성층에 사용된 상기 실시예 1에서 제조한 중합체 1 대신 비교중합체 C1 및 C2 각각을 사용하는 것을 제외하고는 동일한 방법으로 유기 태양 전지를 제작하여 그 특성을 비교하였다.An organic solar cell was prepared in the same manner as in Comparative Example C1 and C2, respectively, instead of Polymer 1 prepared in Example 1 used for the photoactive layer in Example 2, and the properties were compared.
비교중합체 C1 :
Figure PCTKR2018014790-appb-img-000014
(Mw : 432,000 g/mol; Mn : 181,000 g/mol; PDI : 2.38; T d, 5%(℃) : 377℃)
Comparative polymer C1:
Figure PCTKR2018014790-appb-img-000014
(Mw: 432,000 g / mol; Mn: 181,000 g / mol; PDI: 2.38; T d, 5% (° C): 377 ° C)
비교중합체 C2 :
Figure PCTKR2018014790-appb-img-000015
(Mw : 541,000 g/mol; Mn : 216,000 g/mol; PDI : 2.51; T d, 5%(℃) : 427℃)
Comparative polymer C2:
Figure PCTKR2018014790-appb-img-000015
(Mw: 541,000 g / mol; Mn: 216,000 g / mol; PDI: 2.51; T d, 5% (° C): 427 ° C)
V oc(V) 및 J sc(mA/cm 2) 각각은 제작된 소자의 전류-전압 곡선에서, 전류가 0일 때 전압 값 및 전압이 0일 때 전류 값을 나타낸다.V oc (V) and J sc (mA / cm 2 ) each represent a voltage value when the current is 0 and a current value when the voltage is 0, in the current-voltage curve of the fabricated device.
또한, FF(fill factor)는 하기 수학식 1로부터 산출된다.In addition, the fill factor (FF) is calculated from Equation 1 below.
[수학식 1][Equation 1]
FF = V mppㆍJ mpp/V ocㆍJ sc FF = V mpp ㆍ J mpp / V oc ㆍ J sc
(상기 수학식 1에서, V mpp 및 J mpp 각각은 제작된 소자의 전류-전압 측정 시, 최대의 일률을 나타내는 지점에서의 전압 및 전류값을 나타내고, V oc(V) 및 J sc(mA/cm 2) 각각은 제작된 소자의 전류-전압 곡선에서, 전류가 0일 때 전압 값 및 전압이 0일 때 전류 값을 나타낸다.)(In the above Equation 1, V mpp and J mpp each represents the voltage and current value at the point indicating the maximum power when measuring the current-voltage of the fabricated device, V oc (V) and J sc (mA / cm 2 ) Each represents the voltage value when the current is 0 and the current value when the voltage is 0 in the current-voltage curve of the fabricated device.)
나아가, 광전변환 효율(%)은 하기 수학식 2로부터 산출된다.Furthermore, the photoelectric conversion efficiency (%) is calculated from Equation 2 below.
[수학식 2][Equation 2]
광전변환 효율(%) = 100×FF×V ocㆍJ sc/P in Photoelectric conversion efficiency (%) = 100 × FF × V oc ㆍ J sc / P in
(상기 수학식 2에서, FF, V oc 및 J sc는 상기 수학식 1에서 정의한 바와 같고, P in는 소자에 입사되는 빛의 총 에너지를 나타낸다.)(In Equation 2, FF, V oc and J sc are as defined in Equation 1, and P in represents the total energy of light incident on the device.)
본 발명의 중합체를 채용한 유기 태양 전지는 단락전류밀도, 충전률 및 개방전압 값의 향상을 동시에 실현시킴으로써 현저한 전력변환효율을 구현할 수 있음을 확인하였다. It has been confirmed that the organic solar cell employing the polymer of the present invention can realize remarkable power conversion efficiency by simultaneously realizing the improvement of the short-circuit current density, charging rate and open-voltage value.
이상에서 살펴본 바와 같이 본 발명의 실시예에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구범위에 정의된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.As described above, although the embodiments of the present invention have been described in detail, those of ordinary skill in the art to which the present invention pertains, without departing from the technical spirit of the present invention as defined in the appended claims The present invention may be implemented in various ways. Therefore, changes in the embodiments of the present invention will not be able to escape the technology of the present invention.

Claims (7)

  1. 하기 화학식 1로 표시되는 반복단위를 포함하는, 중합체:A polymer comprising a repeating unit represented by Formula 1 below:
    [화학식 1][Formula 1]
    Figure PCTKR2018014790-appb-img-000016
    Figure PCTKR2018014790-appb-img-000016
    [상기 화학식 1에서,[In the formula 1,
    R 1 내지 R 4는 각각 독립적으로 C 1-C 30알킬이고;R 1 to R 4 are each independently C 1 -C 30 alkyl;
    X 1 내지 X 4는 각각 독립적으로 O, S 또는 Se이고;X 1 to X 4 are each independently O, S or Se;
    Y 1 및 Y 2는 각각 독립적으로 O, S 또는 Se이다.]Y 1 and Y 2 are each independently O, S or Se.]
  2. 제 1항에 있어서,According to claim 1,
    상기 X 1 내지 X 4는 서로 동일하며, O 또는 S인, 중합체.The X 1 to X 4 are the same as each other, O or S, a polymer.
  3. 제 1항에 있어서,According to claim 1,
    상기 R 1 내지 R 4는 각각 독립적으로 C 6-C 30알킬이고, X 1 내지 X 4는 서로 동일하며, O 또는 S이고, Y 1 및 Y 2는 각각 독립적으로 O 또는 S인, 중합체.R 1 to R 4 are each independently C 6 -C 30 alkyl, X 1 to X 4 are the same as each other, O or S, and Y 1 and Y 2 are each independently O or S, a polymer.
  4. 제 1항에 있어서,According to claim 1,
    하기 화학식 2로 표시되는 반복단위를 포함하는, 중합체:A polymer comprising a repeating unit represented by Formula 2 below:
    [화학식 2][Formula 2]
    Figure PCTKR2018014790-appb-img-000017
    Figure PCTKR2018014790-appb-img-000017
    [상기 화학식 2에서, R 1 내지 R 4는 각각 독립적으로 분쇄형 C 6-C 30알킬이다.][In the above formula 2, R 1 to R 4 are each independently crushed C 6 -C 30 alkyl.]
  5. 제 1항 내지 제 4항에서 선택되는 어느 한 항에 따른 중합체를 포함하는, 유기 전자 소자.An organic electronic device comprising the polymer according to any one of claims 1 to 4.
  6. 제 5항에 있어서,The method of claim 5,
    상기 유기 전자 소자는 유기 태양 전지, 유기 박막 트랜지스터, 유기메모리, 유기감광체 또는 유기 광센서인, 유기 전자 소자.The organic electronic device is an organic solar cell, an organic thin film transistor, an organic memory, an organic photoreceptor or an organic photosensor, an organic electronic device.
  7. 제 6항에 있어서,The method of claim 6,
    상기 중합체는 유기 태양 전지의 광활성층에 전자공여체로 포함되는 것인, 유기 전자 소자.The polymer is included in the photoactive layer of the organic solar cell as an electron donor, an organic electronic device.
PCT/KR2018/014790 2018-10-22 2018-11-28 Novel polymer and organic electronic device employing same WO2020085572A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180126218A KR20200045318A (en) 2018-10-22 2018-10-22 Novel polymer and organic electronic device containing the same
KR10-2018-0126218 2018-10-22

Publications (1)

Publication Number Publication Date
WO2020085572A1 true WO2020085572A1 (en) 2020-04-30

Family

ID=70332045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014790 WO2020085572A1 (en) 2018-10-22 2018-11-28 Novel polymer and organic electronic device employing same

Country Status (2)

Country Link
KR (1) KR20200045318A (en)
WO (1) WO2020085572A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102314226B1 (en) * 2020-05-15 2021-10-15 부산대학교 산학협력단 Active layer composition for solar cell, preparation method thereof and organic solar cell comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213180A (en) * 2011-09-06 2013-10-17 Sumitomo Chemical Co Ltd Polymer, organic thin film using the polymer, and organic thin film element
CN103833991A (en) * 2014-02-26 2014-06-04 中国科学院化学研究所 Sulfur-containing substituted two-dimensional conjugated polymer as well as preparation method and application thereof
WO2018014163A1 (en) * 2016-07-18 2018-01-25 South University Of Science And Technology Of China Donor-acceptor polymer with 4-alkoxyl thiophene as conjugated side chain and composition having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213180A (en) * 2011-09-06 2013-10-17 Sumitomo Chemical Co Ltd Polymer, organic thin film using the polymer, and organic thin film element
CN103833991A (en) * 2014-02-26 2014-06-04 中国科学院化学研究所 Sulfur-containing substituted two-dimensional conjugated polymer as well as preparation method and application thereof
WO2018014163A1 (en) * 2016-07-18 2018-01-25 South University Of Science And Technology Of China Donor-acceptor polymer with 4-alkoxyl thiophene as conjugated side chain and composition having the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, T. ET AL.: "Alkyl Side-Chain Engineering in Wide-Bandgap Copolymers Leading to Power Conversion Efficiencies over 10%", ADVANCED MATERIALS, vol. 29, 2017, pages 1604251, XP55709352 *
PAN, X. ET AL.: "Influence of 2,2-bithiophene and threno[3,2-b] thiophene units on the photovoltaic performance of benzodithiophene-based widebandgap polymers", JOURNAL OF MATERIALS CHEMISTRY C., vol. 5, no. 18, 2017, pages 4471 - 4479, XP55709353 *

Also Published As

Publication number Publication date
KR20200045318A (en) 2020-05-04

Similar Documents

Publication Publication Date Title
US7781673B2 (en) Polymers with low band gaps and high charge mobility
US8372945B2 (en) Conjugated polymers with carbonyl substituted thieno[3,4-B]thiophene units for polymer solar cell active layer materials
WO2010117158A2 (en) Conductive polymer containing carbazole, and organic photovoltaic device using same
KR101853395B1 (en) Electron donating polymer and solar cell including the same
WO2011068305A2 (en) Conducting polymer to which pyrene compounds are introduced, and organic solar cell using same
US11716895B2 (en) Unsymmetrical Benzothiadiazole-based random copolymers
CA2844439C (en) Process for the preparation of polymers containing benzohetero[1,3]diazole units
KR101815755B1 (en) Phenazine derivatives with the extended conjugated structure and applied to the organic photovoltaic polymers
Liu et al. Polymer Solar Cells Based on the Copolymers of Naphtho [1, 2‐c: 5, 6‐c] bis (1, 2, 5‐thiadiazole) and Alkoxylphenyl Substituted Benzodithiophene with High Open‐Circuit Voltages
WO2020085572A1 (en) Novel polymer and organic electronic device employing same
WO2015182973A1 (en) Organic semiconductor compound containing phosphine oxide group, and organic solar cell using same
KR101400077B1 (en) new polymer process for producing the polymer and organic optoelectronic devices using the same
US11114619B2 (en) Conjugated polymer for a photoactive layer, a coating composition including the conjugated polymer, and an organic solar cell including the photoactive layer
KR101807228B1 (en) Novel polymer, manufacturing method thereof, and electronic device containing the same
WO2011148900A1 (en) Polymer compound and photoelectric conversion element using the same
KR101214546B1 (en) Organic photoelectric transfer polymer and organic photovoltaic device
KR101930279B1 (en) Preparation of phenazine derivatives with increased solubility and conjugated polymers consisting of phenazine derivatives for organo photoelectric conversion device
KR101306070B1 (en) Conductive Polymer Compound and Organic Solar Cells with the Same
WO2024025103A1 (en) Method for synthesizing delta-phase perovskite crystal, and delta-phase perovskite crystal produced thereby
WO2020076119A1 (en) Novel compound and organic electronic device using same
US11629231B2 (en) Unsymmetrical benzothtadiazole-based random copolymers
KR102389528B1 (en) Organic semiconducting compounds, and organic electronic device ing the same
WO2021107674A1 (en) Novel compound and organic electronic device using same
US20210238356A1 (en) Unsymmetrical benzothiadiazole-based random copolymers
WO2014193131A1 (en) Laminated organic solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938036

Country of ref document: EP

Kind code of ref document: A1