WO2020085162A1 - Magnetic power transmission structure - Google Patents

Magnetic power transmission structure Download PDF

Info

Publication number
WO2020085162A1
WO2020085162A1 PCT/JP2019/040626 JP2019040626W WO2020085162A1 WO 2020085162 A1 WO2020085162 A1 WO 2020085162A1 JP 2019040626 W JP2019040626 W JP 2019040626W WO 2020085162 A1 WO2020085162 A1 WO 2020085162A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex
magnetic
tubular member
shaft member
magnet
Prior art date
Application number
PCT/JP2019/040626
Other languages
French (fr)
Japanese (ja)
Inventor
佳弘 仲田
石黒 浩
平田 勝弘
酒井 昌彦
明 部矢
阿部 哲也
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2020553224A priority Critical patent/JP7349160B2/en
Publication of WO2020085162A1 publication Critical patent/WO2020085162A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type

Definitions

  • the present invention relates to the technology of a magnetic power transmission structure.
  • the feed screw mechanism is known as a mechanism that converts rotational motion into translational motion.
  • the lead screw mechanism is a mechanical element indispensable for driving and positioning an object, and is widely used in various applications.
  • a general feed screw mechanism includes a screw and a nut, and is configured such that when either one is rotated, the other is propelled.
  • Machine tools often use a ball screw mechanism that reduces friction and improves efficiency by inserting a ball between the screw shaft and nut.
  • robots that combine this ball screw mechanism and a motor have been used.
  • Actuators have also been developed. However, since a general feed screw mechanism and a ball screw mechanism transmit power by a contact force, they have problems such as generation of vibration and noise and heat generation due to friction.
  • a magnetic screw mechanism that transmits power using magnetic force.
  • power can be transmitted in a non-contact manner between the screw and the nut by using magnetic force. That is, it is possible to prevent friction between the screw and the nut when transmitting power. Therefore, according to the magnetic screw mechanism, it is possible to solve the above problems, improve the power transmission efficiency, and realize high-speed driving.
  • this magnetic screw mechanism has the flexibility of an external force against the external force due to its magnetic properties. Therefore, according to the magnetic screw mechanism, it is possible to ensure safety at the time of contact by performing step-out at the time of overload. Therefore, in recent years, it is particularly expected to be applied as a drive source for the next-generation industrial robots and service robots that work together with humans.
  • Patent Document 1 proposes a magnetic screw actuator including a magnetic nut and a magnetic screw as an example of the magnetic screw mechanism.
  • a magnetic screw actuator a magnetic screw having two spiral magnetic poles of different polarities is used, but it is difficult to manufacture such a spirally magnetized magnetic screw.
  • the intermediate rotor of the magnetic nut is an annular body in which a large number of magnetic poles of S poles and N poles are alternately arranged, and each magnetic pole is formed by a magnet piece magnetized in the radial direction. . Therefore, a large number of magnet pieces are used to form the intermediate rotor, which increases the manufacturing cost. For these reasons, the magnetic screw mechanism proposed in Patent Document 1 has a problem of poor productivity.
  • Patent Document 2 proposes a method of forming a magnetic nut with a plurality of ring-shaped magnets and a yoke with a thread formed on the inner peripheral surface. According to this method, the magnetic nut can be manufactured without using many magnet pieces, so that the manufacturing cost of the magnetic screw mechanism can be suppressed.
  • a plurality of link-shaped magnets are arranged at intervals in the axial direction, and a yoke is arranged between adjacent magnets.
  • Patent Document 3 a cylindrical member configured by a plurality of magnets that are arranged so as to be divided around the axis and a plurality of magnetic pole members that are respectively arranged inside in the radial direction corresponding to each magnet,
  • a magnetic power transmission structure including a shaft member that is inserted into the hollow portion of the tubular member has been proposed.
  • the plurality of magnets include a magnet having an N pole on the inner side in the radial direction and a magnet having an S pole on the inner side in the radial direction.
  • the surface of is provided with protrusions along different spirals depending on the magnet to be magnetized.
  • On the outer peripheral surface of the shaft member a spiral ridge corresponding to each spiral is provided.
  • the magnetic pole members are magnetized by the magnets divided around the shaft so that the protrusions of the magnetic pole members can be used as magnetic poles. Therefore, one magnet can form a plurality of magnetic poles, and it is not necessary to prepare a magnet for each magnetic pole. Further, by appropriately processing each magnetic pole member to form the protrusion, the magnetic pole can be easily provided on each magnetic pole member. Therefore, according to Patent Document 3, since the number of magnets to be used can be reduced with respect to the number of magnetic poles to be formed and each magnetic pole can be easily formed, the magnetic screw mechanism with high productivity can be obtained. Can be provided. In addition, in the magnetic power transmission structure, the magnets and the magnetic pole members are arranged not in the axial direction but in the radial direction.
  • each magnet in order to magnetize each magnetic pole member, each magnet is arranged on the outer side in the radial direction of each magnetic pole member.
  • the machining accuracy of this magnet is lower than that of the material of the magnetic pole member (for example, electromagnetic soft iron, silicon steel, amorphous magnetic alloy, etc.), and in one example, a deviation of about 0.1 mm occurs between the magnets. Therefore, even if each magnetic pole member is manufactured with high precision, the positional deviation of each magnetic pole member around the axis is likely to be affected by the dimensional error of each magnet.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a magnetic screw mechanism having a simpler structure and easy to manage dimensional accuracy.
  • the present invention adopts the following configurations in order to solve the above problems.
  • a magnetic power transmission structure has a shaft member and an outer peripheral surface, a shaft member extending along the axial direction, and a cylinder having a hollow portion penetrating in the axial direction and an inner peripheral surface.
  • a magnet including a first surface facing the ridge and a second surface facing the first surface, the magnet being disposed so as to be adjacent to each other around the ridge, and the first surface of the magnet is a first surface. Is magnetized to a magnetic pole, and the second surface of the magnet has a second surface opposite to the first magnetic pole. It is magnetized to the magnetic pole.
  • the outer peripheral surface of the shaft member extending in the axial direction is a ridge protruding outward in the radial direction, and is provided with a ridge formed in a spiral shape around the axis.
  • the inner peripheral surface of the tubular member into which the shaft member is inserted is disposed so as to be adjacent to the convex unit including the convex portion protruding inward in the radial direction and the convex unit around the axis, and And a magnet including a first surface facing the first surface and a second surface facing the first surface.
  • the first surface of the magnet is magnetized to the first magnetic pole, and the second surface is magnetized to the second magnetic pole opposite to the first magnetic pole. That is, when the first surface is magnetized to the N pole, the second surface is magnetized to the S pole, and when the first surface is magnetized to the S pole, the second surface is magnetized to the N pole. Be magnetized.
  • the protrusion of the shaft member is formed in a spiral shape, the protrusion of the shaft member is translated in the translational direction (that is, the shaft by rotating either one of the tubular member and the shaft member).
  • the magnetic flux generated from the magnet passes through the shaft member (projection), the convex unit (projection), and the tubular member at the portion where the convex portion of the tubular member and the projecting strip of the shaft member face each other. Then, a magnetic circuit that returns to the magnet is formed (the direction of the magnetic flux depends on the polarity of each surface).
  • the convex unit serves as a consequent pole, and the magnetic circuit is formed in the shaft member, the magnet, the convex unit, and the tubular member.
  • a magnetic force is generated in which the convex portion of the tubular member and the ridge of the shaft member attract each other. Therefore, when one of the tubular member and the shaft member is rotated to shift the projection of the shaft member in the translational direction with respect to the tubular member, the convex portion of the tubular member causes the projection of the shaft member to project.
  • the other can be moved so as to maintain the state of facing each other. For example, when the shaft member is rotated, the tubular member can be moved in the translational direction so as to follow the deviation of the protrusion of the shaft member. Therefore, the magnetic power transmission structure according to the above configuration can operate as a magnetic screw mechanism.
  • the magnet for forming the magnetic circuit is not arranged radially outside the convex unit, but is arranged adjacent to the convex unit around the axis. Therefore, the influence of the dimensional error of the magnet can be prevented from affecting the dimensional accuracy of the distance between the convex portion of the convex unit (cylindrical member) and the protrusion of the shaft member. That is, according to the above configuration, the dimensional accuracy of the distance between the convex portion of the convex unit and the ridge of the shaft member can be controlled while ignoring the dimensional error of the magnet.
  • the “around the axis” refers to the rotation direction (circumferential direction) around the axis.
  • the “radial direction” refers to the direction of a plane perpendicular to the axial direction (that is, the direction of the radius of the circle centered on the axis).
  • the term “spiral” broadly includes shapes that can be drawn by translating in the axial direction while rotating around the axis. That is, “spiral” refers to a shape in which a point on a tangent line parallel to the axis shifts in either direction when rotated around the axis.
  • the "magnet” may be a permanent magnet or an electromagnet formed by a coil. The magnet may be skew magnetized.
  • the number of protrusions of the shaft member may be one, or two or more.
  • the number of ridges of the shaft member may not be particularly limited and may be appropriately selected according to the embodiment.
  • At least a portion of the tubular member through which the magnetic flux passes (including the convex unit) and at least a portion of the shaft member through which the magnetic flux passes are made of a magnetic material (hereinafter, also referred to as “magnetic material”).
  • a plurality of the convex portions of the convex unit may be provided, and the plurality of convex portions of the convex unit may be arranged apart from each other in the axial direction.
  • the respective convex portions of the convex unit may be arranged so as to correspond to the axial arrangement of the protrusions of the shaft member. That is, the interval between the protrusions in the axial direction may match the interval between the protrusions in the axial direction.
  • the arrangement of the protrusions in the protrusion unit is not limited to this example, and the interval between the protrusions in the axial direction does not have to match the interval between the protrusions in the axial direction.
  • the number of convex portions in the convex unit is not particularly limited and may be appropriately selected according to the embodiment.
  • the convex unit may have a concave portion provided between the convex portions adjacent to each other in the axial direction, and the concave portion of the convex unit has a non-magnetic portion.
  • the material may be filled. According to this configuration, it is possible to suppress damage to the convex portion of the convex unit.
  • the convex unit may be integrally formed on the inner peripheral surface of the tubular member. According to this configuration, the number of parts can be further suppressed, and thus a magnetic screw mechanism having a simpler structure can be provided.
  • the first surface of the magnet may include a convex portion that protrudes inward in the radial direction.
  • each convex part of a magnet may be arrange
  • the arrangement of the protrusions in the magnet may not be limited to such an example, and the interval between the protrusions in the axial direction may not match the interval between the protrusions in the axial direction.
  • the number of convex portions in the magnet may not be particularly limited and may be appropriately selected according to the embodiment.
  • a plurality of the convex units may be provided, a plurality of the magnets may be provided, and the respective convex units are arranged with a space around the axis.
  • the inner peripheral surface of the tubular member may further be provided with a plurality of groove portions respectively arranged between the pair of convex units adjacent to each other around the axis, and each magnet may be provided with each groove portion. May be located at.
  • the outer peripheral surface of the shaft member may be provided with a recessed portion arranged between the protrusions in the axial direction, and the recessed portion of the shaft member may be provided. May be filled with a non-magnetic material. According to this configuration, by filling the concave portion with the non-magnetic material, it is possible to reduce the possibility that the protrusion of the shaft member will be damaged.
  • the magnetic power transmission structure further includes a first covering member that is arranged radially inward of the inner peripheral surface of the tubular member and that covers the convex unit of the tubular member. Good.
  • the protrusion of the convex unit is covered with the first covering member with respect to the protrusion of the shaft member, so that contact between the protrusion of the shaft member and the protrusion of the convex unit can be suppressed. . Therefore, it is possible to reduce the possibility that the convex portion of the convex unit is damaged.
  • the magnetic power transmission structure may further include a second covering member that is arranged radially outside the outer peripheral surface of the shaft member and that covers the protrusion of the shaft member.
  • a second covering member that is arranged radially outside the outer peripheral surface of the shaft member and that covers the protrusion of the shaft member.
  • a magnetic power transmission structure has a shaft and an outer peripheral surface, a shaft member extending along the axial direction, and a cylinder having a hollow portion and an inner peripheral surface penetrating in the axial direction.
  • a protrusion formed in a spiral shape around the axis is provided, and the inner peripheral surface of the tubular member includes protrusions protruding inward in the radial direction, and arranged apart from each other around the axis.
  • each magnet is arranged between the adjacent convex units.
  • the magnetic power transmission structure according to the present configuration operates in the same manner as the magnetic power transmission structure according to the above configuration, and the effects can be obtained. Therefore, according to the said structure, a magnetic screw mechanism with a simpler structure and whose dimensional accuracy is easy to manage can be provided.
  • a plurality of the convex portions of each convex unit may be provided, and the plurality of convex portions of each convex unit are arranged apart from each other in the axial direction. You may With this configuration, it is possible to provide a magnetic screw mechanism with higher output. Note that the arrangement and number of the convex portions of each convex unit may be the same as in the above configuration.
  • an actuator according to one aspect of the present invention, a magnetic power transmission structure according to any one of the above, a rotating device for rotating the tubular member or the shaft member of the magnetic power transmission structure, Equipped with.
  • the actuator according to the one aspect may further include a position sensor configured to be able to measure the position of the tubular member, and a control device, wherein the control device is the tubular device obtained by the position sensor.
  • the rotating device may be driven so that the tubular member moves to a desired position based on the information on the position of the member. According to this configuration, it is possible to control the position of the actuator.
  • the actuator according to the one aspect further includes a position sensor configured to measure the position of the tubular member, a rotation sensor configured to measure the inclination of the shaft member, and a control device.
  • the control device generates a desired force in the tubular member based on information on the position of the tubular member obtained by the position sensor and information on the inclination of the shaft member obtained by the rotation sensor.
  • the rotating device may be driven.
  • output control of the actuator can be performed.
  • the inclination of the shaft member means the rotation angle of the shaft member, that is, the angle around the axis of the shaft member with respect to the tubular member.
  • the actuator according to the one aspect further includes a position sensor configured to measure the position of the tubular member, a rotation sensor configured to measure the inclination of the shaft member, and a control device.
  • the control device is configured such that the tubular force is obtained in a state in which a desired force is obtained, based on information on the position of the tubular member obtained by the position sensor and information on the inclination of the shaft member obtained by the rotation sensor.
  • the rotating device may be driven to move the member to a desired position. With this configuration, output control of the actuator can be performed.
  • FIG. 1 is an exploded view schematically illustrating a magnetic power transmission structure according to an embodiment.
  • FIG. 2 is a perspective view schematically illustrating the magnetic power transmission structure according to the embodiment.
  • FIG. 3 is a cross-sectional view schematically illustrating a cross section along the axial direction of the magnetic power transmission structure according to the embodiment.
  • FIG. 4 is a partially cutaway perspective sectional view schematically illustrating the magnetic power transmission structure according to the embodiment.
  • FIG. 5 schematically illustrates a state in which the tubular member of the magnetic power transmission structure according to the embodiment is viewed along the axial direction.
  • FIG. 6 is a partial cross-sectional perspective view for explaining the operation principle of the magnetic power transmission structure according to the embodiment.
  • FIG. 1 is an exploded view schematically illustrating a magnetic power transmission structure according to an embodiment.
  • FIG. 2 is a perspective view schematically illustrating the magnetic power transmission structure according to the embodiment.
  • FIG. 3 is a cross-sectional view schematically illustrating a cross section along the
  • FIG. 7 is a development view for explaining the operation principle of the magnetic power transmission structure according to the embodiment.
  • FIG. 8 is a diagram for explaining the operation principle of the magnetic power transmission structure according to the embodiment, and is a diagram schematically illustrating a state in which the magnetic power transmission structure is viewed along the axial direction.
  • Is. 9A is a partial cross-sectional view taken along the line A1-A1 of FIG. 9B is a partial cross-sectional view taken along the line B1-B1 of FIG.
  • FIG. 10 schematically illustrates the actuator according to the embodiment.
  • FIG. 11 schematically illustrates the hardware configuration of the control device according to the embodiment.
  • FIG. 12A illustrates the relationship between the position of the cylindrical member and the output when the inclination of the shaft member is constant.
  • FIG. 12A illustrates the relationship between the position of the cylindrical member and the output when the inclination of the shaft member is constant.
  • FIG. 12B illustrates the relationship between the inclination of the shaft member and the output when the position of the tubular member is constant.
  • FIG. 12C illustrates an example of correspondence data according to the embodiment.
  • FIG. 13 schematically illustrates a software configuration of the control device according to the embodiment.
  • FIG. 14 illustrates an example of control of the actuator by the control device according to the embodiment.
  • FIG. 15 illustrates an example of actuator control by the control device according to the embodiment.
  • FIG. 16 illustrates an example of actuator control performed by the control device according to the embodiment.
  • FIG. 17A illustrates an example of the magnetization direction of each magnet.
  • FIG. 17B illustrates an example of the magnetization direction of each magnet.
  • FIG. 18 schematically illustrates a state in which the magnetic power transmission structure according to the modification is viewed along the axial direction.
  • FIG. 19 is a partial cross-sectional view schematically illustrating the magnetic power transmission structure according to the modification.
  • FIG. 20 is a partial cross-sectional view schematically illustrating the magnetic power transmission structure according to the modification.
  • FIG. 21 is a partial cross-sectional view schematically illustrating the magnetic power transmission structure according to the modification.
  • FIG. 22A illustrates an example of the shape of the concave portion of the convex unit.
  • FIG. 22B illustrates an example of the shape of the concave portion of the convex unit.
  • FIG. 23 illustrates an example of the shape of each magnet.
  • this embodiment an embodiment according to one aspect of the present invention (hereinafter, also referred to as “this embodiment”) will be described with reference to the drawings.
  • the present embodiment described below is merely an example of the present invention in all respects.
  • Various modifications or changes may be made without departing from the scope of the present invention. That is, in implementing the present invention, a specific configuration according to the embodiment may be appropriately adopted. Note that, in the following description, for convenience of description, the description will be given based on the orientation in the drawing.
  • FIG. 1 is an exploded view schematically illustrating a magnetic power transmission structure 1 according to this embodiment.
  • FIG. 2 is a perspective view schematically illustrating the magnetic power transmission structure 1 according to this embodiment.
  • FIG. 3 schematically illustrates a cross section along the axial direction of the magnetic power transmission structure 1 according to this embodiment.
  • FIG. 4 is a partially cutaway perspective sectional view schematically illustrating the magnetic power transmission structure 1 according to the present embodiment.
  • the magnetic power transmission structure 1 has a shaft 31 and penetrates in the axial direction with a shaft member 3 extending along the axial direction (the left-right direction in FIG. 3).
  • the tubular member 2 has a hollow portion 21, and the shaft member 3 is inserted into the hollow portion 21.
  • the tubular member 2 corresponds to the nut of the magnetic screw mechanism, and the shaft member 3 corresponds to the screw of the magnetic screw mechanism. Accordingly, the magnetic power transmission structure 1 according to the present embodiment can be used as a magnetic screw that converts rotational movement into translational movement.
  • each component will be described.
  • the shaft member 3 includes a main body portion 30 extending in the axial direction and formed in a cylindrical shape.
  • the main body portion 30 is solid and includes a shaft 31 passing through the center and an outer peripheral surface 32 that is an outer surface.
  • the shaft member 3 has the shaft 31 and the outer peripheral surface 32 and is configured to extend along the axial direction.
  • the outer peripheral surface 32 of the shaft member 3 is provided with a ridge 33 that projects radially outward of the shaft 31 and that is formed spirally around the axis.
  • “Around the axis” refers to the rotation direction (circumferential direction) about the axis 31.
  • the radial direction refers to the direction of a plane perpendicular to the axial direction (that is, the direction of the radius of the circle centering on the axis 31).
  • the spiral shape broadly includes a shape that can be drawn by translating in the axial direction while rotating around the axis. That is, the spiral shape refers to a shape in which a point on a tangent line parallel to the axis 31 shifts in either direction when rotated around the axis.
  • the number of the protrusions 33 of the shaft member 3 is one.
  • the protrusion 33 continuously extends from one end to the other end in the axial direction.
  • the axial range in which the protrusion 33 is provided may be appropriately determined according to the embodiment.
  • FIG. 3 in the range where the protrusions 33 are provided on the outer peripheral surface 32 of the shaft member 3, there are provided recesses 35 arranged between the protrusions 33 in the axial direction.
  • the shapes and dimensions of the protrusions 33 and the recesses 35 may not be particularly limited and may be appropriately determined according to the embodiment.
  • the protrusion 33 is formed in a rectangular cross section.
  • Such a shaft member 3 can be manufactured using a magnetic material.
  • a soft magnetic material electromagnetically soft iron, silicon steel, amorphous magnetic alloy, etc.
  • carbon steel or the like can be used as a magnetic material.
  • a manufacturing method for example, a columnar magnetic material is prepared, and the outer peripheral surface of the prepared magnetic material is appropriately cut, so that the shaft member 3 having the protrusions 33 can be manufactured.
  • a known ball screw may be used for the shaft member 3. Thereby, the manufacturing cost of the magnetic power transmission structure 1 can be suppressed.
  • FIG. 5 schematically illustrates a state in which the tubular member 2 according to the present embodiment is viewed along the axial direction.
  • the tubular member 2 includes a cylindrical main body portion 20 extending along the axial direction.
  • the main body portion 20 includes a hollow portion 21 penetrating in the axial direction and an inner peripheral surface 22 that is an inner surface adjacent to the hollow portion 21.
  • the tubular member 2 is configured to have the hollow portion 21 and the inner peripheral surface 22.
  • the inner peripheral surface 22 of the tubular member 2 is provided with a plurality of convex units 23, a plurality of groove portions 24, and a plurality of magnets 25.
  • two convex units 23, two groove portions 24, and two magnets 25 are provided.
  • the respective convex units 23 are arranged around the axis so as to be separated from each other.
  • Each groove 24 is arranged between a pair of convex units 23 adjacent to each other around the axis.
  • Each magnet 25 is arranged in each groove 24 so as to be adjacent to each convex unit 23 around the axis.
  • Each convex unit 23 has a base portion formed in an arc shape and extending along the axial direction, and a plurality of convex portions 231 projecting radially inward from the inner surface (inner peripheral surface) of the base portion. Is included.
  • the number of the convex portions 231 is not particularly limited and may be appropriately selected according to the embodiment.
  • the convex portions 231 are arranged apart from each other in the axial direction.
  • the protrusions 231 are arranged so as to correspond to the axial arrangement of the protrusions 33 of the shaft member 3. That is, the interval between the convex portions 231 in the axial direction matches the interval between the protrusions 33 in the axial direction.
  • the inner surface of the base of each convex unit 23 is further provided with a concave portion 232 arranged between the convex portions 231 in the axial direction.
  • the shapes and dimensions of the convex portions 231 and the concave portions 232 may not be particularly limited and may be appropriately determined according to the embodiment. As shown in FIG. 3, in the present embodiment, the cross section of each convex portion 231 along the axial direction is formed in a rectangular shape. On the other hand, the cross section of each groove 24 is formed in an arc shape. Further, as shown in FIG. 5, the shape of each convex portion 231 when viewed along the axial direction is formed in an arc shape.
  • each of the protrusions 231 may be spirally formed around the axis so as to correspond to the protrusion 33 of the shaft member 3, or may be formed to extend along the axis.
  • the axial dimension of each convex unit 23 may be appropriately determined according to the embodiment, and may or may not be the same as the axial dimension of the main body portion 20 of the tubular member 2. Good. For example, each convex unit 23 may be formed shorter than the main body 20 in the axial direction.
  • Each convex unit 23 is formed using a magnetic material. Similar to the shaft member 3, as the material of each convex unit 23, for example, a soft magnetic material, carbon steel or the like can be used as a magnetic material. Each convex unit 23 can be manufactured by appropriately cutting a magnetic material. In the present embodiment, each convex unit 23 is integrally formed on the inner peripheral surface 22 of the main body portion 20 of the tubular member 2.
  • each magnet 25 extends in the axial direction and is arranged in each groove 24 formed between the convex units 23.
  • the cross section of each magnet 25 perpendicular to the axial direction is formed in an arc shape of approximately 90 degrees.
  • the cross section of each convex unit 23 is formed in an arc shape having an angle of approximately 90 degrees or slightly smaller than 90 degrees, so that the cross section of each groove portion 24 is the same as each magnet 25 or each magnet 25. It is formed in an arc shape having an angle slightly larger than 25.
  • each magnet 25 is formed in each groove 24 so as to be adjacent to each convex unit 23 around the axis.
  • each magnet 25 may be appropriately determined according to the embodiment, and may or may not match the axial dimension of the main body portion 20 of the tubular member 2. Good.
  • each magnet 25 may be formed to be shorter than the main body 20 in the axial direction.
  • Each magnet 25 includes an inner curved surface 251 facing the inner side in the radial direction and facing the protrusion 33 of the shaft member 3, and an outer curved surface 252 facing the inner curved surface 251. Further, each magnet 25 faces the first side surface 255 and the first side surface 255 that face one of the pair of convex units 23 adjacent to each other around the axis, and faces the other of the pair of convex units 23.
  • the second side surface 256 is included.
  • Each curved surface (251, 252) is smooth and each side surface (255, 256) is flat. That is, in this embodiment, unlike the respective convex units 23, the inner curved surface 251 is not provided with a convex portion.
  • the inner curved surface 251 is magnetized to the first magnetic pole
  • the outer curved surface 252 is magnetized to the second magnetic pole opposite to the first magnetic pole. That is, when the inner curved surface 251 is magnetized to the N pole, the outer curved surface 252 is magnetized to the S pole, and when the inner curved surface 251 is magnetized to the S pole, the outer curved surface 252 is magnetized to the N pole. Be magnetized. In both cases, the operating principle of the magnetic power transmission structure 1 is the same. Therefore, hereinafter, for convenience of description, it is assumed that the inner curved surface 251 is magnetized to the S pole and the outer curved surface 252 is magnetized to the N pole, and the description of the other case will be appropriately omitted.
  • the inner curved surface 251 is an example of the “first surface” in the present invention
  • the outer curved surface 252 is an example of the “second surface” in the present invention.
  • Each magnet 25 may be a permanent magnet or an electromagnet formed of a coil. Further, each magnet 25 may be skew-magnetized.
  • Such a tubular member 2 can be manufactured, for example, as follows. That is, a columnar magnetic material for forming the main body 20 is prepared. Like the shaft member 3, the magnetic material to be prepared may be a soft magnetic material, carbon steel, or the like. Next, the prepared magnetic material is appropriately processed to form each convex unit 23 and each groove 24 in the main body 20 together with the hollow portion 21. On the surface of the portion of each convex unit 23, the teeth forming each convex portion 231 are carved by cutting or the like. Then, each magnet 25 is prepared, and each prepared magnet 25 is arranged in each groove 24. Thereby, the tubular member 2 can be manufactured.
  • the inner diameter of the hollow portion 21 of the tubular member 2 including the convex units 23 and the magnets 25 is set to be slightly larger than the outer diameter of the shaft member 3 including the protrusions 33.
  • the shaft member 3 is inserted into the hollow portion 21 without the protrusions 231 of the tubular member 2 and the magnets 25 interfering with the protrusions 33 of the shaft member 3, and the protrusion units 23 and the magnets 25 are inserted.
  • the protrusions 33 can be arranged radially inward.
  • the axial length of the tubular member 2 is set to be shorter than the axial length of the shaft member 3. Therefore, in the present embodiment, as illustrated in FIGS. 1 to 4, when the shaft member 3 is inserted into the tubular member 2, the shaft member 3 is attached to the shaft member 3 from both sides of the opening of the tubular member 2. The both ends are arranged so as to project.
  • each groove portion 24 is slightly larger than each magnet 25, so that a gap is formed between each side surface (255, 256) of each magnet 25 and each convex unit 23. It is provided.
  • the dimension of each groove 24 is not limited to such an example, and may be appropriately determined according to the embodiment.
  • the grooves 24 and the magnets 25 may be formed to have substantially the same size so that there is almost no gap between the side surfaces (255, 256) and the convex units 23.
  • FIG. 6 is a partial cross-sectional perspective view for explaining the operation principle of the magnetic power transmission structure 1 according to this embodiment.
  • FIG. 7 is a development view for explaining the operation principle of the magnetic power transmission structure 1 according to this embodiment.
  • FIG. 8 schematically illustrates a state in which the magnetic power transmission structure 1 according to the present embodiment is viewed along the axial direction.
  • 9A is a partial cross-sectional view taken along the line A1-A1 of FIG. 9B is a partial cross-sectional view taken along the line B1-B1 of FIG.
  • the tubular member 2 is fixed so as not to be rotatable about the axis and capable of translation in the axial direction
  • the shaft member 3 is rotatable about the axis and translated in the axial direction. It is assumed to be fixed to be impossible.
  • each convex portion 231 formed on each convex unit 23 of the tubular member 2 faces the ridge 33 of the shaft member 3.
  • the body portion 20 can function as a back yoke (magnetic shield) by being made of a magnetic material.
  • the magnetic flux that has entered each convex portion 231 is emitted from each convex unit 23 and enters the protrusion 33 of the shaft member 3.
  • the magnetic flux that has entered the ridge 33 reaches the portion facing each magnet 25 through the ridge 33 and / or via the shaft, and from this portion, the inside of each magnet 25 magnetized to the S pole. It is emitted toward the curved surface 251.
  • each convex unit 25 and each magnet 25 are arranged adjacent to each other on the inner peripheral surface 22 of the tubular member 2, so that each convex unit 25 becomes a consequent pole.
  • the magnetic flux emitted from each magnet 25 passes through the tubular member 2 (main body portion 20), each convex unit 23 (convex portion 231), and the shaft member 3 (protruding ridge 33) in this order, and then returns to each magnet 25.
  • a return magnetic circuit is formed. As shown in FIG. 7, by this magnetic circuit, the surface of each protrusion 231 acts as an N pole, whereas the portion of the ridge 33 facing each protrusion 231 acts as an S pole. Further, the portion of the ridge 33 facing each magnet 25 acts as an N pole.
  • the magnetic circuit is formed in the same manner as the above although the direction of the magnetic flux is opposite.
  • a magnetic attractive force acts between each convex portion 231 of the tubular member 2 and the protrusion 33 of the shaft member 3.
  • the tubular member 2 and the shaft member 3 constitute a magnetic screw mechanism.
  • the protrusions 33 of the shaft member 3 are formed in a spiral shape, so that the shaft member 3 has an axial direction (left and right direction in FIG. 9A) with respect to the tubular member 2.
  • the protrusion 33 is formed in a right spiral. Therefore, in the example of FIG. 9A, the protrusion 33 translates to the right.
  • the ridge 33 of the shaft member 3 moves so as to be displaced in the axial direction with respect to each convex portion 231 of the tubular member 2.
  • the attractive force of each magnet 25 acts so as to maintain the positional relationship between the protrusion 33 and each convex portion 231.
  • the tubular member 2 translates in the axial direction by the amount of translation of the protrusion 33. That is, in the example of FIG. 9A, the tubular member 2 translates to the right so as to follow the translation of the ridge 33 to the right.
  • the tubular member 2 can be translated in the axial direction by rotating the shaft member 3.
  • the rotation direction of the shaft member 3 may not be limited to the counterclockwise direction.
  • the shaft member 3 may be rotated clockwise.
  • the ridge 33 translates leftward, and the tubular member 2 follows the translation of the ridge 33 and translates leftward. That is, the moving direction of the tubular member 2 can be determined by the rotation direction of the shaft member 3.
  • the tubular member 2 is fixed so as not to rotate around the axis, and the shaft member 3 is rotatably fixed to the shaft split.
  • the fixed state of the tubular member 2 and the shaft member 3 may not be limited to such an example.
  • the tubular member 2 may be fixed rotatably around the axis, and the shaft member 3 may be fixed non-rotatably around the axis. In this case, by rotating the tubular member 2 around the axis, the positional relationship between the tubular member 2 and the shaft member 3 can be shifted in the translational direction (axial direction).
  • FIG. 10 schematically illustrates an example of the configuration of the actuator 100 using the magnetic power transmission structure 1 according to this embodiment.
  • the actuator 100 includes a flat plate-shaped base plate 101, and three rectangular fixing members 102 to 104 are arranged side by side in the axial direction on the base plate 101.
  • One end of the shaft member 3 is rotatably fixed to the fixed member 102 via a bearing 105.
  • the shaft member 3 is also rotatably fixed to each fixing member (103, 104) arranged on the other end side.
  • a rotary motor 111 is attached to the other end of the shaft member 3, and a coupling 106 is attached so as to sandwich the rotary motor 111 and the fixed member 104.
  • the shaft member 3 is fixed rotatably and non-translatably.
  • the tubular member 2 is arranged between the pair of fixing members (102, 103).
  • a linear guide 107 extending along the axial direction is provided on the surface of the base plate 101, and the bottom surface of the tubular member 2 is attached to the linear guide 107.
  • the tubular member 2 is fixed so as not to rotate and to translate.
  • four output shafts 112 extending ahead of the fixing member 102 are attached to the surface of the tubular member 2 on the one end side, and a rod end 113 is attached to the tip of the output shaft 112. There is.
  • the output shaft 112 and the rod end 113 form an output shaft.
  • the rotary motor 111 is an example of a “rotating device” and rotates the shaft member 3 clockwise or counterclockwise.
  • a commercially available rotary motor may be used as the rotary motor 111.
  • a rotation sensor 117 for measuring the rotation amount of the rotation motor 111 is attached to the rotation shaft of the rotation motor 111 so that the inclination of the shaft member 3 can be specified.
  • the type of rotation sensor 117 may not be particularly limited and may be appropriately selected according to the embodiment.
  • a known rotary encoder may be used for the rotation sensor 117.
  • the inclination of the shaft member 3 means the rotation angle of the shaft member 3, that is, the angle around the axis of the shaft member 3 with respect to the tubular member 2. In the example of FIG.
  • the rotation sensor 117 is attached to the other end of the shaft member 3.
  • the rotation sensor 117 may be attached to the bearing 105 so as to be arranged near one end of the shaft member 3, for example.
  • a measurement error may occur due to the reduction gear (not shown) attached to the rotation motor 111.
  • the rotation sensor 117 is attached to the bearing 105, the rotation of the shaft member 3 can be directly measured. Therefore, the rotation amount of the shaft member 3 by the rotation motor 111 can be accurately measured.
  • a position sensor 116 is attached to the base plate 101 so that the position of the tubular member 2 with respect to the shaft member 3 can be specified.
  • the position sensor 116 may be attached to the tubular member 2, for example.
  • a known linear encoder may be used for this position sensor 116.
  • the type of position sensor 116 is not particularly limited, and may be appropriately selected according to the embodiment.
  • This actuator 100 can operate as follows. That is, by driving the rotation motor 111, the shaft member 3 can be rotated clockwise or counterclockwise. Then, according to the rotation of the shaft member 3, the tubular member 2 can be translated in the axial direction as described above. Therefore, in the actuator 100 according to the present embodiment, by driving the rotary motor 111, the output shaft formed of the output shaft 112 and the rod end 113 can be translated.
  • FIG. 11 schematically illustrates the hardware configuration of the control device 9 according to the present embodiment.
  • the control device 9 includes a control unit 91 and a control unit 91 that include a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • the computer is electrically connected to a storage unit 92 that stores a program 921 to be executed and the like, and an external interface 93 for connecting to an external device.
  • the external interface is described as “external I / F”.
  • the control device 9 stores, in the storage unit 92, correspondence data 922 indicating the relationship between the position z of the tubular member 2, the inclination ⁇ of the shaft member 3, and the output F acting on the tubular member 2. keeping.
  • FIG. 12A shows the relationship between the position z of the tubular member 2 and the output F when the inclination ⁇ of the shaft member 3 is constant.
  • FIG. 12B shows a relationship between the inclination ⁇ of the shaft member 3 and the output F when the position z of the tubular member 2 is constant.
  • FIG. 12C shows an example of the correspondence data 922.
  • the shaft member 3 is tilted at the inclination ⁇ and the tubular member 2 is arranged at the position za. Then, while keeping the inclination ⁇ of the shaft member 3 constant, the tubular member 2 is moved at predetermined intervals, and the force acting on the tubular member 2 is measured as the output F. As a result, data showing the relationship between the position z of the tubular member 2 and the output F as illustrated in FIG. 12A can be obtained.
  • FIG. 12A at the position za, when the shaft member 3 is tilted at the angle ⁇ , each convex portion 231 of the tubular member 2 and the protrusion 33 of the shaft member 3 face each other. The position of the tubular member 2 is shown. Further, L indicates the interval between the ridges adjacent to each other in the axial direction of the protrusion 33.
  • the tubular member 2 is placed at the position z and the shaft member 3 is tilted at the inclination ⁇ a. Then, while the position z of the tubular member 2 is kept constant, the shaft member 3 is tilted at every predetermined angle, and the force acting on the tubular member 2 is measured as the output F. As a result, data showing the relationship between the inclination ⁇ of the shaft member 3 and the output F as illustrated in FIG. 12B can be obtained.
  • the inclination ⁇ a is set such that when the tubular member 2 is at the position z, the convex portions 231 of the tubular member 2 and the protrusions 33 of the shaft member 3 face each other. The inclination of the member 3 is shown.
  • correspondence data 922 showing the relationship between the position z of the tubular member 2 and the inclination ⁇ of the shaft member 3 and the output F illustrated in FIG. 12C. Can be obtained. It should be noted that such correspondence data 922 may be given as an approximate function, or may be given as tabular data.
  • control device 9 is connected to the rotation motor 111, the position sensor 116, and the rotation sensor 117 via each external interface 93. Therefore, the control device 9 can acquire the values of the position z of the tubular member 2 and the inclination ⁇ of the shaft member 3 based on the outputs of the position sensor 116 and the rotation sensor 117. Then, the control device 9 refers to the correspondence data 922, identifies the output F of the actuator 100 to be driven based on the values of the position z of the tubular member 2 and the inclination ⁇ of the shaft member 3, and determines the output F as the output F.
  • the rotation motor 111 is driven at the corresponding rotation direction and speed (PWM input). Thereby, the control device 9 can control the operation of the actuator 100.
  • PWM input the control device 9 can control the operation of the actuator 100.
  • control device 9 may be a general-purpose information processing device such as a desktop PC (Personal Computer) or a tablet PC, as well as an information processing device designed specifically for the provided service. Further, the control device 9 may be configured by one or a plurality of information processing devices.
  • FIG. 13 schematically illustrates an example of the software configuration of the control device 9 according to this embodiment.
  • the control unit 91 of the control device 9 loads the program 921 stored in the storage unit 92 into the RAM. Then, the control unit 91 interprets and executes the program 921 loaded in the RAM by the CPU to control each component. Accordingly, the control device 9 operates as a computer including the position control unit 911 and the force control unit 912 as a software module.
  • the position control unit 911 controls the operation of the actuator 100 so as to move the tubular member 2 to the desired position z target .
  • the force control unit 912 controls the operation of the actuator 100 so that the desired output F target is obtained from the tubular member 2.
  • all of these software modules are realized by a general-purpose CPU has been described. However, some or all of these software modules may be implemented by one or more dedicated processors. Further, regarding the software configuration of the control device 9, depending on the embodiment, omission, replacement, and addition of software modules may be appropriately performed. Each software module will be described in detail in an operation example described later.
  • control device 9 controls the operation of the actuator 100 by the following three methods.
  • FIG. 14 illustrates an example of a method of controlling the position of the tubular member 2 by the control device 9.
  • the control device 9 controls the operation of the actuator 100 only by the information of the position z of the tubular member 2 obtained by the position sensor 116.
  • control unit 91 of the control device 9 operates as the position control unit 911 and acquires the value of the position z of the tubular member 2 based on the output of the position sensor 116. Further, the control unit 91 receives the value of the desired position z target of the tubular member 2.
  • the value of the desired position z target may be acquired as appropriate.
  • the value of the desired position z target may be obtained by an input from another computer, or a desired operation algorithm (for example, when the external force acts on the output shaft, the position of the tubular member 2 is kept constant). It may be obtained by calculating according to
  • control unit 91 based on the difference between the value of the desired position z target and the value of the position z acquired from the position sensor 116, a rotation motor for moving the tubular member 2 to the desired position z target.
  • the rotation direction of 111 is specified.
  • the control unit 91 gives the rotation motor 111 a command to drive the specified rotation direction at a predetermined speed.
  • the predetermined speed for driving the rotary motor 111 may be arbitrary.
  • the control unit 91 may give a command to the rotary motor 111 to drive at a speed according to the magnitude of the difference between the value of the desired position z target and the value of the position z acquired from the position sensor 116.
  • the control unit 91 gives the rotation motor 111 a command to drive at a constant speed regardless of the magnitude of the difference between the desired position z target value and the position z value acquired from the position sensor 116. May be.
  • the actuator 100 is controlled so that the tubular member 2 moves to the desired position z target .
  • the control device 9 does not use the output of the rotation sensor 117. Therefore, when adopting this control method, the rotation sensor 117 may be omitted.
  • FIG. 15 illustrates an example of a method of controlling the force of the actuator 100 by the control device 9.
  • the control device 9 acquires the information of the position z of the tubular member 2 from the position sensor 116, and acquires the information of the inclination ⁇ of the shaft member 3 from the rotation sensor 117. Then, the control device 9 controls the operation of the actuator 100 based on these pieces of information (output) so that the force F generated on the tubular member 2 (output shaft) of the actuator 100 has a desired value.
  • control unit 91 of the control device 9 operates as the force control unit 912 and acquires the value of the position z of the tubular member 2 based on the output of the position sensor 116. Further, the control unit 91 acquires the value of the inclination ⁇ of the shaft member 3 based on the output of the rotation sensor 117. Further, the control unit 91 receives the value of the desired force F target generated by the tubular member 2 (output shaft).
  • the value of the desired force F target may be acquired as appropriate.
  • the value of the desired force F target may be obtained by input from another computer, or a desired operation algorithm (for example, the tubular member 2 may be operated like a spring, that is, an external force may be applied to the output shaft).
  • the control unit 91 refers to the correspondence data 922, and according to the value of the position z of the tubular member 2 and the value of the inclination ⁇ of the shaft member 3 acquired from the position sensor 116, the tubular member 2 is obtained.
  • the value of the force F generated on the (output shaft) is specified.
  • the control unit 91 causes the tubular member 2 (output shaft) to obtain the desired force based on the difference between the value of the force F generated on the tubular member 2 (output shaft) and the value of the desired force F target .
  • the rotation direction and speed of the rotary motor 111 are determined so as to generate the force F target .
  • the control unit 91 gives the rotation motor 111 a command to drive in the determined rotation direction and speed.
  • the actuator 100 is controlled so that the desired force F target is obtained via the output shaft.
  • FIG. 16 illustrates an example of a method of controlling the position and force of the tubular member 2 by the control device 9.
  • the control device 9 acquires information on the position z of the tubular member 2 from the position sensor 116, and acquires information on the inclination ⁇ of the shaft member 3 from the rotation sensor 117. Then, the control device 9 of the actuator 100 moves the tubular member 2 (output shaft) to the desired position z target in a state where the desired force F target is obtained, based on these pieces of information (output). Control movements.
  • control unit 91 of the control device 9 acquires the value of the position z of the tubular member 2 based on the output of the position sensor 116. Further, the control unit 91 acquires the value of the inclination ⁇ of the shaft member 3 based on the output of the rotation sensor 117.
  • control unit 91 operates as the position control unit 911 and receives the value of the desired position z target of the tubular member 2.
  • the value of the desired position z target may be appropriately acquired as described above.
  • control unit 91 based on the difference between the value of the desired position z target and the value of the position z acquired from the position sensor 116, the value of the desired force F target generated in the tubular member 2 (output shaft). To decide.
  • the method of determining the value of the desired force F target may be appropriately selected according to the embodiment.
  • the control unit 91 may determine the value of the desired force F target so that the tubular member 2 (output shaft) operates like a spring.
  • the control section 91 applies a force in the direction of the original position (desired position z target ) according to the difference in the values of the position.
  • the value of the desired force F target may be determined to be generated.
  • the control unit 91 may fix the value of the desired force F target to a constant value.
  • the control unit 91 operates as the force control unit 912, and by referring to the correspondence data 922, the value of the position z of the tubular member 2 and the value of the inclination ⁇ of the shaft member 3 acquired from the position sensor 116. According to, the value of the force F generated in the tubular member 2 (output shaft) is specified. Further, the control unit 91 causes the tubular member 2 (output shaft) to obtain the desired force based on the difference between the value of the force F generated on the tubular member 2 (output shaft) and the value of the desired force F target . The rotation direction and speed of the rotary motor 111 are determined so as to generate the force F target .
  • the control unit 91 gives the rotation motor 111 a command to drive in the determined rotation direction and speed.
  • the actuator 100 is controlled to move the tubular member 2 (output shaft) to the desired position z target in a state where the desired force F target is obtained.
  • the rotation sensor 117 is attached to the shaft member 3 in FIGS. 15 and 16.
  • the position of the rotation sensor 117 is not limited to such an example, and may be attached to the rear end of the rotation motor 111 as in FIG. 10 or may be attached to the bearing 105.
  • the magnets 25 for forming the magnetic circuit are not arranged on the outer side in the radial direction of the convex units 23, and the convex units 23 are not arranged. It is arranged so as to be adjacent to 23 around the axis. Therefore, the influence of the dimensional error of each magnet 25 can be prevented from affecting the dimensional accuracy of the distance between each convex portion 231 of each convex unit 23 and the protrusion 33 of the shaft member 3. That is, it is possible to manage the dimensional error of the distance between each convex portion 231 of each convex unit 23 and the ridge 33 of the shaft member 3 without considering the influence of the dimensional error of each magnet 25.
  • either the convex unit 23 or the magnet 25 may be arranged on the radially outer side when viewed from the shaft member 3, instead of arranging both the convex unit 23 and the magnet 25. It is possible to reduce the number of parts.
  • each convex unit 23 is formed integrally with the inner peripheral surface 22 of the tubular member 2, so that the number of parts can be further suppressed.
  • the magnetic power transmission structure 1 can be configured with four parts, namely the tubular member 2 having the two convex units 23 formed on the inner peripheral surface 22, the two magnets 25, and the shaft member 3. it can. Therefore, according to the present embodiment, it is possible to provide a magnetic screw mechanism having a simpler structure and easy to control the dimensional accuracy. As a result, it is possible to mass-produce a magnetic screw mechanism that is cheaper and more practical, while suppressing variations in performance.
  • each magnet 25 may be a magnet widely used in rotary motors and the like. Therefore, each magnet 25 can be obtained at low cost.
  • each convex portion 231 is magnetized by each magnet 25 and functions as a magnetic pole.
  • the step of providing the magnetic poles is merely the step of providing the convex portions 231 on the inner peripheral surface of the convex unit 23. Therefore, the magnetic poles formed on the tubular member 2 side, that is, the number of the convex portions 231 can be easily adjusted. Thereby, the magnitude of the output can be appropriately adjusted by the magnetic screw mechanism. Therefore, according to the present embodiment, it is possible to provide a magnetic screw mechanism having excellent productivity and high practicality.
  • the tubular member 2 is provided with two convex units 23, two groove portions 24, and two magnets 25.
  • the numbers of the convex units 23, the groove portions 24, and the magnets 25 provided on the tubular member 2 are not limited to two, and may be three or more.
  • the numbers of the convex units 23, the groove portions 24, and the magnets 25 provided on the tubular member 2 are not limited to a plurality, and may be one.
  • the numbers of the convex units 23 and the magnets 25 do not have to match each other.
  • a plurality of magnets 25 may be arranged in one groove 24.
  • each convex unit 23 is provided with five convex portions 231.
  • the number of the convex portions 231 provided in each convex unit 23 is not limited to such an example, and may be 6 or more, or 4 or less.
  • the number of the convex portions 231 provided in each convex unit 23 may not be plural, and may be one.
  • the main body 30 of the shaft member 3 is solid.
  • the shape of the main body portion 30 may not be limited to such an example.
  • the magnetic flux of each magnet 25 hardly reaches the central portion of the shaft member 3. Therefore, the central portion of the shaft member 3 is a portion that hardly affects the magnetic action. Therefore, the main body portion 30 may be formed into a hollow shape, for example, in a cylindrical shape. As a result, the weight of the shaft member 3 can be reduced with almost no effect on the magnetic action.
  • a non-magnetic material such as a resin material may be filled in the hollow.
  • the number of the protrusions 33 of the shaft member 3 is one.
  • the number of protrusions 33 is not limited to one and may be appropriately selected according to the embodiment.
  • the shaft member 3 may be formed with two or more ridges 33.
  • the protrusions 33 are continuous from one end to the other end in the axial direction.
  • the ridge 33 does not have to be limited to such a shape and may be partially interrupted.
  • the protrusion 33 is formed in the right spiral.
  • the form of the ridge 33 may not be limited to such an example.
  • the ridge 33 may be formed in a left spiral.
  • each convex unit 23 is integrally formed on the inner peripheral surface 22.
  • the form of each convex unit 23 may not be limited to such an example.
  • Each convex unit 23 may be formed separately from the inner peripheral surface 22 of the main body 20. In this case, each convex unit 23 may be appropriately attached to the inner peripheral surface 22 of the main body portion 20.
  • the tubular member 2 may include a fixture for fixing each convex unit 23 in a predetermined position.
  • each convex portion 231 of each convex unit 23 along the axial direction is rectangular.
  • the sectional shape of each convex portion 231 is not limited to the rectangular shape, and may be appropriately selected according to the embodiment.
  • the cross-sectional shape along the axial direction of each convex portion 231 may be, for example, a triangular shape, a trapezoidal shape, or the like. From the viewpoint of ease of processing, the cross-sectional shape of each convex portion 231 along the axial direction is preferably rectangular as in the above embodiment.
  • each convex portion 231 of each convex unit 23 is formed in an arc shape when viewed along the axial direction.
  • the shape of each convex portion 231 viewed from the axial direction is not limited to such an example, and may be appropriately selected according to the embodiment.
  • the shape of each convex portion 231 viewed from the axial direction may be, for example, a trapezoidal shape.
  • the interval between the convex portions 231 in the axial direction matches the interval between the protrusions 33 in the axial direction.
  • the arrangement of the convex portions 231 in the convex unit 23 need not be limited to this example, and may be appropriately determined according to the embodiment.
  • the distance between the protrusions 231 in the axial direction may not match the distance between the protrusions 33 in the axial direction.
  • each magnet 25 is formed in an arc shape having a cross section of approximately 90 degrees.
  • the shape of each magnet 25 may not be limited to such an example.
  • the shape of each magnet 25 may be appropriately determined according to the embodiment as long as the magnetic circuit as described above can be configured.
  • the outer shape of the tubular member 2 is circular.
  • the outer shape of the tubular member 2 is not limited to such an example, and may be appropriately selected according to the embodiment.
  • the inner peripheral surface 22 side and the outer peripheral surface side of the tubular member 2 may have different shapes.
  • a housing or the like may be appropriately provided outside the tubular member 2.
  • the magnetic material is used as an example of the material of each of the tubular member 2 and the shaft member 3.
  • the material of each of the tubular member 2 and the shaft member 3 is not limited to the magnetic material.
  • a non-magnetic material may be used in the portions of the tubular member 2 and the shaft member 3 that have little influence on the configurations of the magnetic circuits.
  • the non-magnetic material may be, for example, a resin material or a non-magnetic metallic material.
  • the resin material include ABS (acrylonitrile butadiene styrene copolymer), PLA (polylactic acid), nylon, polyacetal, PEEK (polyetheretherketone), and PPS (polyphenylene sulfide).
  • the non-magnetic metallic material include copper, stainless steel, and aluminum.
  • each magnet 25 is magnetized to the first magnetic pole, and the outer curved surface 252 is magnetized to the second magnetic pole opposite to the first magnetic pole.
  • the method of performing the magnetization need not be particularly limited. The magnetization of each magnet 25 may be appropriately performed depending on the embodiment.
  • FIG. 17A and 17B exemplify the magnetization direction of each magnet 25.
  • FIG. 17A shows an example in which each magnet 25 is manufactured by radial magnetization.
  • 17B shows an example in which each magnet 25 is manufactured by parallel magnetization.
  • the method of magnetizing the magnets 25 may be either radial magnetization or parallel magnetization.
  • each magnet 25 may be configured by connecting a plurality of parallel magnetized magnets around an axis. As a result, a magnet having an arc-shaped cross section in which the magnetic flux is directed in the normal direction can be manufactured at a pseudo low cost.
  • the rotary motor 111 (rotary motor) is used as a rotating device for rotating the shaft member 3.
  • the type of rotating device is not limited to such an example, and may be appropriately selected according to the embodiment.
  • the rotary motor 111 is attached to the shaft member 3.
  • the shaft member 3 is rotatably and non-translatably fixed, whereas the tubular member 2 is non-rotatably and translatably fixed.
  • the fixing form of the tubular member 2 and the shaft member 3 may not be limited to such an example.
  • One of the tubular member 2 and the shaft member 3 may be fixed rotatably and non-translatably, and the other may be fixed non-rotatably and translatable. Thereby, by rotating either one of the tubular member 2 and the shaft member 3, the output in the translational direction can be obtained from the other.
  • the actuator 100 may be configured so that the tubular member 2 rotates.
  • the tubular member 2 is housed in the housing, and the spacer and the coil are arranged between the housing and the tubular member 2 so that the tubular member 2 rotates in the housing. It may be configured.
  • the actuator 100 may be configured such that one of the tubular member 2 and the shaft member 3 is translated in the axial direction and the rotational movement is taken out from the other.
  • the translation of one of the tubular member 2 and the shaft member 3 may be performed manually, or by a linear motor or a fluid pressure cylinder, for example.
  • the shaft member 3 is floated so that the shaft member 3 is translated by the force of the wave, whereby the tubular member 2 is rotated to generate power. You may do it.
  • the magnetic power transmission structure 1 may be used as an active suspension of an automobile or the like.
  • each magnet 25 is magnetized to the first magnetic pole, and the outer curved surface 252 is magnetized to the second magnetic pole.
  • the magnetizing direction of each magnet 25 is not limited to such an example, and the first side surface 255 is magnetized to the first magnetic pole and the second side surface 256 is magnetized to the second magnetic pole. May be.
  • FIG. 18 schematically illustrates a state in which the magnetic power transmission structure 1A according to the present modification is viewed along the axial direction.
  • the first side surface 255 of each magnet 25A is magnetized to the first magnetic pole
  • the second side surface 256 is magnetized to the second magnetic pole. That is, when the first side surface 255 is magnetized to the N pole, the second side surface 256 is magnetized to the S pole, and when the first side surface 255 is magnetized to the S pole, the second side surface 256. Is magnetized to the N pole. In both cases, the operating principle of the magnetic power transmission structure 1A is the same.
  • first side surface 255 is magnetized to the N pole and the second side surface 256 is magnetized to the S pole, and the description of the other case is appropriately omitted.
  • first side surface 255 is an example of the “first surface” in the present invention
  • second side surface 256 is an example of the “second surface” in the present invention.
  • the positional relationship between the first side surface 255 and the second side surface 256 may be interchanged.
  • the main body portion 20A of the tubular member 2A is made of a non-magnetic material.
  • a resin material for example, a resin material, a non-magnetic metallic material, or the like may be used.
  • examples of the resin material include ABS, PLA, nylon, polyacetal, PEEK, PPS and the like.
  • the non-magnetic metallic material include copper, stainless steel, and aluminum.
  • Each convex unit 23 made of a magnetic material is appropriately attached to the inner peripheral surface of the main body 20A.
  • each magnet 25A is similar to each magnet 25 according to the above-described embodiment, and main body 20A is similar to the main body 20 according to the above-described embodiment.
  • the tubular member 2A according to the present modified example is configured similarly to the tubular member 2 according to the above-described embodiment, and the magnetic power transmission structure 1A in the present modified example is the magnetic power transmission according to the above-described embodiment. It has the same structure as the structure 1.
  • the magnetic power transmission structure 1A is a tubular member 2A having a shaft member 3 extending along the axial direction and a hollow portion 21 penetrating in the axial direction, and the hollow portion 21 has a shaft. And a tubular member 2A into which the member 3 is inserted.
  • the outer peripheral surface 32 of the shaft member 3 is provided with a ridge 33 spirally formed around the axis.
  • the inner peripheral surface 22 of the cylindrical member 2A is provided with a plurality of convex units 23, a plurality of groove portions 24, and a plurality of magnets 25A.
  • Each convex unit 23 includes a convex portion 231 that protrudes inward in the radial direction, and is arranged so as to be spaced around the axis.
  • Each groove 24 is arranged between a pair of convex units 23 adjacent to each other around the axis.
  • Each magnet 25A is arranged in each groove 24, faces the first side surface 255 facing one of the pair of convex units 23, and the first side surface 255, and faces the other of the pair of convex units 23.
  • the second side surface 256 is included.
  • two convex units 23, two groove portions 24, and two magnets 25A are provided.
  • the numbers of the convex units 23, the groove portions 24, and the magnets 25A are not limited to two, and may be three or more.
  • the number of the convex portions 231 provided in each convex unit 23 may be plural or may be one.
  • the convex portions 231 are arranged so as to be separated from each other in the axial direction.
  • the following magnetic circuit is formed in the state where the convex portion 231 of each convex unit 23 of the tubular member 2A faces the protrusion 33 of the shaft member 3. It is formed. That is, as shown in FIG. 18, the magnetic flux emitted from the first side surface 255 of each magnet 25A magnetized to the N pole enters one of the pair of convex units 23 and enters the convex portion 231. To reach. The magnetic flux that has reached the convex portion 231 of the one convex unit 23 is emitted from the one convex unit 23 and enters the protrusion 33 of the shaft member 3.
  • the magnetic flux that has entered the ridge 33 reaches the portion facing the other convex unit 23 through the inside of the ridge 33 and / or via the shaft, and from this portion to the convex portion 231 of the other convex unit 23. It is released toward.
  • the magnetic flux that has entered the convex portion 231 of the other convex unit 23 reaches the second side surface 256 of each magnet 25A magnetized to the S pole via the other convex unit 23.
  • each magnet 25A passes through the convex unit 23 on one side, the shaft member 3 and the convex unit 23 on the other side in this order, and returns to each magnet 25A again.
  • the magnetic circuit is the same as the above although the direction of the magnetic flux is opposite. It is formed.
  • This magnetic circuit operates in the same manner as the above embodiment. Therefore, according to this modification, the cylindrical member 2A and the shaft member 3 constitute a magnetic screw mechanism that operates in the same manner as in the above embodiment.
  • FIG. 19 is a partial cross-sectional view schematically illustrating the magnetic power transmission structure 1B according to this modification.
  • the magnetic power transmission structure 1B according to the present modification is different from the magnetic power transmission structure according to the above-described embodiment except that the cylindrical protection member 7 is arranged between the tubular member 2 and the shaft member 3. It has the same structure as the structure 1.
  • the shape of the protective member 7 is not particularly limited as long as it can be arranged between the convex portion 231 of the tubular member 2 and the protrusion 33 of the shaft member 3, and is appropriately selected according to the embodiment. May be done. Further, as the material of the protective member 7, for example, aluminum, aluminum alloy, magnesium alloy, engineering plastic, or the like may be used.
  • FIG. 20 is a partial cross-sectional view schematically illustrating a magnetic power transmission structure 1C according to another modification.
  • the non-magnetic material 81 is filled in the recesses 232 provided between the adjacent projections 231 in the axial direction of each projection unit 23.
  • the non-magnetic material 81 may be filled also in this gap.
  • the non-magnetic material 82 is filled in the recesses 35 provided between the protrusions 33 in the axial direction of the outer peripheral surface 32 of the shaft member 3. Except for these points, the magnetic power transmission structure 1C has the same configuration as the magnetic power transmission structure 1 according to the above-described embodiment.
  • Each non-magnetic material (81, 82) may be any material that does not adversely affect the magnetic circuit formed between the tubular member 2 and the shaft member 3, and is, for example, a resin material or a non-magnetic metallic material. May be Examples of the resin material include ABS, PLA, nylon, polyacetal, PEEK, PPS and the like. Examples of the non-magnetic metallic material include copper, stainless steel, and aluminum.
  • each non-magnetic material (81, 82) softened by heating is poured into each recess (232, 35), and each non-magnetic material (81, 82) poured is cooled and solidified to form each recess ( 232, 35) may be filled with each non-magnetic material (81, 82).
  • each non-magnetic material (81, 82) having the same shape as each recess (232, 35) and fitting each formed non-magnetic material (81, 82) into each recess (232, 35).
  • the recesses (232, 35) may be filled with the non-magnetic material (81, 82).
  • each non-magnetic material (81, 82) it is preferable to fill each non-magnetic material (81, 82) so that the inner peripheral surface 22 of the tubular member 2 and the outer peripheral surface 32 of the shaft member 3 are flush with each other. That is, each of the recesses (232, 35) is arranged such that the surface of the non-magnetic material 81 is flush with the surface of each convex portion 231 and the surface of the non-magnetic material 82 is flush with the surface of the protrusion 33. It is preferably filled with a non-magnetic material (81, 82). When a gap is provided between each convex unit 23 and each magnet 25, the nonmagnetic material 81 is also filled in this gap so that the inner peripheral surface 22 of the tubular member 2 is flush. preferable.
  • the tubular member 2 and the shaft member 3 it is possible to sufficiently suppress the unevenness due to the respective convex portions 231 and the protrusions 33. Therefore, it is possible to prevent at least one of the protrusions 231 and the protrusions 33 from being damaged due to the contact between the protrusions 231 and the protrusions 33.
  • each non-magnetic material (81, 82) may be filled so that each convex portion 231 and the protrusion 33 are embedded. Accordingly, in the tubular member 2 and the shaft member 3, the projections and depressions 231 and the projections 33 can be eliminated, so that at least one of the projections 231 and the projections 33 can be reliably prevented from being damaged. it can.
  • the form using the non-magnetic material is not limited to such an example, and may be appropriately changed according to the embodiment.
  • either one of the non-magnetic materials (81, 82) may be omitted.
  • the nonmagnetic material 81 may be filled in the gap.
  • the inner peripheral surface 22 of the tubular member 2 may be filled with the non-magnetic material 81 so that the surface of each magnet 25 and the surface of each convex portion 231 are flush with each other.
  • FIG. 21 is a partial cross-sectional view schematically illustrating the configuration of a magnetic power transmission structure 1D according to another modification.
  • the magnetic power transmission structure 1D according to this modification has the same configuration as the magnetic power transmission structure 1 according to the above-described embodiment, except that the magnetic power transmission structure 1D further includes a first covering member 85 and a second covering member 86. is doing.
  • the first covering member 85 and the second covering member 86 are each formed in a cylindrical shape.
  • the outer diameter of the first covering member 85 is substantially the same as the inner diameter of the portion of the tubular member 2 including the convex portions 231.
  • the first covering member 85 is arranged radially inward of the inner peripheral surface 22 of the tubular member 2, and covers the shaft member 3 with each convex unit 23.
  • the inner diameter of the second covering member 86 is almost the same as the outer diameter of the portion of the shaft member 3 including the protrusions 33, and the outer diameter of the second covering member 86 is slightly larger than the inner diameter of the first covering member 85. It is getting smaller.
  • the second covering member 86 is arranged radially outside the outer peripheral surface 32 of the shaft member 3 and covers the tubular member 2 with the ridge 33.
  • each covering member (85, 86) may be a material which does not adversely affect the magnetic circuit formed between the tubular member 2 and the shaft member 3, like the non-magnetic material (81, 82).
  • a resin material or a non-magnetic metallic material may be used.
  • the same resin material or metal material as the non-magnetic material (81, 82) may be used for each covering member (85, 86).
  • the size and shape of each covering member (85, 86) may be appropriately determined according to the embodiment, and may be formed in a sheet shape, for example.
  • the form in which the covering member is used is not limited to such an example, and may be appropriately changed according to the embodiment.
  • one of the covering members (85, 86) may be omitted.
  • the non-magnetic material may be applied to the omitted one of the covering members (85, 86).
  • the form using this covering member may be applied together with the form using the above-mentioned non-magnetic material.
  • each non-magnetic material (81, 82) and each covering member (85, 86) can act as a reinforcing member for the tubular member 2 and the shaft member 3, respectively. This can alleviate the stress concentration in the recesses (232, 35), so that the strength of the tubular member 2 and the shaft member 3 against the force of bending the shaft can be increased.
  • each of the magnetic power transmission structures (1C, 1D) can be used in a scene requiring cleaning such as transportation of food or medicine.
  • the unevenness due to the respective projections 231 and the protrusions 33 is reduced to perform steam sterilization on the inner peripheral surface 22 of the tubular member 2 and the outer peripheral surface 32 of the shaft member 3. Will be able to. Thereby, the sterility of the tubular member 2 and the shaft member 3 can be improved.
  • each non-magnetic material (81, 82) and each covering member (85, 86) By using a material such as stainless steel for each non-magnetic material (81, 82) and each covering member (85, 86), it is possible to suppress the generation of rust due to the cleaning and steam sterilization.
  • the exposed portions In the magnetic power transmission structure 1C, when the protrusions 231 and the protrusions 33 are exposed from the nonmagnetic materials (81, 82), the exposed portions may be plated. As a result, it is possible to suppress the generation of rust on each convex portion 231 and the protrusion 33.
  • the convex unit 23 having the convex portions 231 can be manufactured by cutting the magnetic material curved in an arc shape so as to form the concave portions 232.
  • the shape of each recess 232 may not be particularly limited and may be appropriately selected according to the embodiment.
  • FIG. 22A and 22B schematically illustrate an example of the shape of each recess 232.
  • the convex unit 23E illustrated in FIG. 22A and the convex unit 23F illustrated in FIG. 22B have the same configuration as the convex unit 23 according to the above-described embodiment, except that the shapes of the respective concave portions 232 are different. ing.
  • each concave portion 232 of the convex unit 23E is formed so that the bottom surface becomes flat.
  • Each concave portion 232 of the convex unit 23E can be easily formed by wire electric discharge machining.
  • each concave portion 232 of the convex unit 23F is formed so that the bottom surface is curved according to the curve of the convex unit 23F.
  • Each concave portion 232 of the convex unit 23F can be formed by, for example, a circular cutting machine adapted to the maximum cutting diameter. From the viewpoint of manufacturing cost, the shape of each recess 232 is preferably flat as illustrated in FIG. 22A.
  • the inner curved surface 251 of each magnet 25 is formed smoothly.
  • the shape of the inner curved surface 251 of each magnet 25 is not limited to such an example, and may be appropriately selected according to the embodiment.
  • the inner curved surface 251 of each magnet 25 may be provided with a convex portion that protrudes inward in the radial direction, similarly to each convex unit 23.
  • FIG. 23 schematically illustrates a magnet 25G according to this modification.
  • the magnet 25G has the same configuration as each magnet 25 according to the above-described embodiment, except that the inner curved surface 251 includes a convex portion 258 that projects inward in the radial direction.
  • the magnet 25G can be used as a substitute for each of the magnets 25.
  • the inner curved surface 251 is provided with a plurality of convex portions 258. Accordingly, the inner curved surface 251 is further provided with a concave portion 259 arranged between the adjacent convex portions 258 in the axial direction. Similar to the modification, the recess 259 may be filled with a non-magnetic material.
  • the number of protrusions 258 is not particularly limited and may be appropriately selected according to the embodiment. Moreover, the number of the convex portions 258 may not be plural, and may be one.
  • the convex portions 258 are arranged apart from each other in the axial direction.
  • the protrusions 258 may be arranged so as to correspond to the axial arrangement of the protrusions 33 of the shaft member 3. That is, the interval between the protrusions 258 in the axial direction may match the interval between the protrusions 33 in the axial direction.
  • the interval of the protrusions 258 in the axial direction need not be limited to such an example, and may not be the same as the interval of the protrusions 33 in the axial direction.
  • the shapes and dimensions of the convex portions 258 and the concave portions 259 may be set similarly to the convex portions 231 and the concave portions 232 of the convex unit 23.
  • Each convex portion 258 may be formed in a spiral shape around the axis so as to correspond to the protrusion 33 of the shaft member 3, or may be formed to extend along the axis. According to this modification, by providing the convex portion 258 on the inner curved surface 251 of the magnet 25G, it is easy to form a magnetic circuit between the magnet 25G and the protrusion 33 of the shaft member 3, and a magnetic screw having a higher output can be obtained.
  • the mechanism can be configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Transmission Devices (AREA)

Abstract

A magnetic power transmission structure according to one aspect of the present invention is provided with a shaft member extending along an axial direction, and a cylindrical member having a hollow part passing through in the axial direction and an inner peripheral surface, the shaft member being inserted into the hollow part. Provided to an outer peripheral surface of the shaft member is a protuberance that protrudes diametrically outward and that is formed encircling the axis in a spiral formation. Provided to the inner peripheral surface of the cylindrical member are: a protruding unit that includes a protrusion protruding diametrically inward; and a magnet that is arranged so as to be adjacent to the protruding unit while encircling the axis, and that includes a first surface facing the protuberance and a second surface facing the first surface. The first surface of the magnet is magnetized to a first magnetic pole, and the second surface of the magnet is magnetized to a second magnetic pole opposite to the first magnetic pole.

Description

磁気式動力伝達構造体Magnetic power transmission structure
 本発明は、磁気式動力伝達構造体の技術に関する。 The present invention relates to the technology of a magnetic power transmission structure.
 従来、回転運動を並進運動に変換する機構として送りネジ機構が知られている。送りネジ機構は、対象物の駆動及び位置決めに不可欠な機械的要素であり、様々な用途で広く利用されている。一般的な送りネジ機構は、ネジとナットとを備えており、いずれか一方を回転させると他方が推進するように構成される。 ▽ Conventionally, the feed screw mechanism is known as a mechanism that converts rotational motion into translational motion. The lead screw mechanism is a mechanical element indispensable for driving and positioning an object, and is widely used in various applications. A general feed screw mechanism includes a screw and a nut, and is configured such that when either one is rotated, the other is propelled.
 工作機械では、ネジ軸とナットとの間にボールを挿入することにより、摩擦を低減し効率を高めたボールネジ機構がよく利用されており、近年では、このボールネジ機構とモータとを組み合わせたロボット用のアクチュエータも開発されている。しかしながら、一般的な送りネジ機構及びボールネジ機構は、接触力によって動力を伝達するため、振動及び騒音の発生、摩擦による発熱などの問題点を有している。 Machine tools often use a ball screw mechanism that reduces friction and improves efficiency by inserting a ball between the screw shaft and nut. In recent years, robots that combine this ball screw mechanism and a motor have been used. Actuators have also been developed. However, since a general feed screw mechanism and a ball screw mechanism transmit power by a contact force, they have problems such as generation of vibration and noise and heat generation due to friction.
 この問題点に対して、磁力を用いて動力を伝達する磁気ネジ機構が提案されている。磁気ネジ機構では、磁力を用いることにより、ネジとナットとの間で動力を非接触に伝達することができる。すなわち、動力を伝達する際に、ネジとナットとの間で摩擦が発生しないようにすることができる。そのため、磁気ネジ機構によれば、上記問題点を解決し、動力の伝達効率の向上、及び高速駆動の実現が可能となる。 To solve this problem, a magnetic screw mechanism that transmits power using magnetic force has been proposed. In the magnetic screw mechanism, power can be transmitted in a non-contact manner between the screw and the nut by using magnetic force. That is, it is possible to prevent friction between the screw and the nut when transmitting power. Therefore, according to the magnetic screw mechanism, it is possible to solve the above problems, improve the power transmission efficiency, and realize high-speed driving.
 また、この磁気ネジ機構は、磁気の特性により、バネのような柔軟性を外力に対して有している。そのため、磁気ネジ機構によれば、過負荷時には脱調することで、接触時の安全性を確保することができる。このことから、近年、人と共存して作業する次世代産業用ロボット及びサービスロボットの駆動源としての応用が特に期待されている。 Also, this magnetic screw mechanism has the flexibility of an external force against the external force due to its magnetic properties. Therefore, according to the magnetic screw mechanism, it is possible to ensure safety at the time of contact by performing step-out at the time of overload. Therefore, in recent years, it is particularly expected to be applied as a drive source for the next-generation industrial robots and service robots that work together with humans.
特開2016-025700号広報Publication of JP-A-2016-025700 特開平11-031615号公報Japanese Patent Laid-Open No. 11-031615 国際公開第2018/092906号International Publication No. 2018/092906
 特許文献1には、上記磁気ネジ機構の一例として、磁気ナットと磁気ネジとで構成される磁気ネジアクチュエータが提案されている。この磁気ネジアクチュエータでは、異なる極性の2条の螺旋状の磁極を有する磁気ネジが用いられているが、このような螺旋状に着磁された磁気ネジを作製するのは困難である。また、磁気ナットの中間回転子は、S極及びN極の磁極が交互に多数配置された環状体となっており、個々の磁極は、径方向に着磁された磁石片により形成されている。そのため、中間回転子を構成するために多数の磁石片を用いることになり、製造コストが高くなってしまう。これらの理由により、特許文献1で提案されている磁気ネジ機構は生産性に乏しいという問題点があった。 Patent Document 1 proposes a magnetic screw actuator including a magnetic nut and a magnetic screw as an example of the magnetic screw mechanism. In this magnetic screw actuator, a magnetic screw having two spiral magnetic poles of different polarities is used, but it is difficult to manufacture such a spirally magnetized magnetic screw. Further, the intermediate rotor of the magnetic nut is an annular body in which a large number of magnetic poles of S poles and N poles are alternately arranged, and each magnetic pole is formed by a magnet piece magnetized in the radial direction. . Therefore, a large number of magnet pieces are used to form the intermediate rotor, which increases the manufacturing cost. For these reasons, the magnetic screw mechanism proposed in Patent Document 1 has a problem of poor productivity.
 一方、特許文献2には、複数のリング状の磁石と内周面にネジ山を形成した継鉄とで磁気ナットを構成する方法が提案されている。この方法によれば、多数の磁石片を用いなくても磁気ナットを作製することができるため、磁気ネジ機構の製造コストを抑えることができる。しかしながら、特許文献2で提案される方法では、複数のリンク状の磁石を軸方向に間隔を空けて配置し、隣接する磁石の間に継鉄を配置している。そのため、磁気シールドとして、磁気ネジの径方向外側にバックヨークを配置したとすると、各磁石とバックヨークとの間で閉じた磁気回路が形成されてしまい、ネジ軸側で磁石の磁力が作用し難くなり、磁気ネジ機構の推力が落ちてしまう。また、継鉄の加工精度に比べて磁石の加工精度は低いため、隣接する継鉄との間でずれが生じてしまい、ネジ軸のネジ山と各継鉄のネジ山とを精度よく対応させるのが困難であった。これらの理由から、特許文献2で提案されている磁気ネジ機構は実用性に乏しいという問題点があった。 On the other hand, Patent Document 2 proposes a method of forming a magnetic nut with a plurality of ring-shaped magnets and a yoke with a thread formed on the inner peripheral surface. According to this method, the magnetic nut can be manufactured without using many magnet pieces, so that the manufacturing cost of the magnetic screw mechanism can be suppressed. However, in the method proposed in Patent Document 2, a plurality of link-shaped magnets are arranged at intervals in the axial direction, and a yoke is arranged between adjacent magnets. Therefore, if a back yoke is arranged outside the radial direction of the magnetic screw as a magnetic shield, a closed magnetic circuit is formed between each magnet and the back yoke, and the magnetic force of the magnet acts on the screw shaft side. It becomes difficult and the thrust of the magnetic screw mechanism drops. Further, since the machining accuracy of the magnet is lower than the machining accuracy of the yoke, there is a gap between the adjacent yokes, and the screw threads of the screw shaft correspond to the screw threads of each yoke with high accuracy. Was difficult. For these reasons, the magnetic screw mechanism proposed in Patent Document 2 has a problem of poor practicality.
 これらに対して、特許文献3では、軸周りに分割されて配置される複数の磁石、及び各磁石に対応して径方向内側にそれぞれ配置される複数の磁極部材により構成される筒状部材と、筒状部材の中空部に挿入されるシャフト部材と、を備える磁気式動力伝達構造体が提案されている。具体的に、当該磁気式動力伝達構造体では、複数の磁石は、径方向内側がN極となる磁石と径方向内側がS極となる磁石とを含んでおり、各磁極部材の径方向内側の面には、着磁する磁石に応じて、異なる螺旋上に沿う突出部が設けられる。シャフト部材の外周面には、それぞれの螺旋に応じた螺旋状の突条が設けられる。当該磁気式動力伝達構造体は、筒状部材及びシャフト部材のいずれか一方を回転させることにより、各突出部と各突条との位置関係を並進方向にずらして、並進方向の磁力を生じさせ、これにより、他方を並進させることができる。 On the other hand, in Patent Document 3, a cylindrical member configured by a plurality of magnets that are arranged so as to be divided around the axis and a plurality of magnetic pole members that are respectively arranged inside in the radial direction corresponding to each magnet, A magnetic power transmission structure including a shaft member that is inserted into the hollow portion of the tubular member has been proposed. Specifically, in the magnetic power transmission structure, the plurality of magnets include a magnet having an N pole on the inner side in the radial direction and a magnet having an S pole on the inner side in the radial direction. The surface of is provided with protrusions along different spirals depending on the magnet to be magnetized. On the outer peripheral surface of the shaft member, a spiral ridge corresponding to each spiral is provided. In the magnetic power transmission structure, by rotating either one of the tubular member and the shaft member, the positional relationship between each protrusion and each ridge is shifted in the translational direction to generate a magnetic force in the translational direction. , Which allows the other to be translated.
 当該磁気式動力伝達構造体では、軸周りに分割して配置された各磁石により各磁極部材を着磁することで、各磁極部材の突出部を磁極として利用できるようにしている。そのため、1つの磁石で複数の磁極を形成することができ、個々の磁極に応じて磁石を用意しなくてもよい。また、各磁極部材を適宜加工して突出部を形成することにより、各磁極部材に磁極を容易に設けることができる。したがって、特許文献3によれば、形成する磁極の数に対して利用する磁石の数を少なくすることができ、かつ、各磁極を容易に形成することができるため、生産性の高い磁気ネジ機構を提供することができる。加えて、当該磁気式動力伝達構造体では、各磁石と各磁極部材とを、軸方向に並べるのではなく、径方向に配置しているため、特許文献2で生じるような磁石によるネジ山のずれを生じないようにすることができる。また、筒状部材の径方向外側にバックヨークを配置しても、各磁石とバックヨークとの間で閉じた磁気回路は生じず、各磁極部材を含む磁気回路が形成されるため、磁気ネジ機構の推力は低下しない。したがって、特許文献3によれば、実用性の高い磁気ネジ機構を提供することができる。 In the magnetic power transmission structure, the magnetic pole members are magnetized by the magnets divided around the shaft so that the protrusions of the magnetic pole members can be used as magnetic poles. Therefore, one magnet can form a plurality of magnetic poles, and it is not necessary to prepare a magnet for each magnetic pole. Further, by appropriately processing each magnetic pole member to form the protrusion, the magnetic pole can be easily provided on each magnetic pole member. Therefore, according to Patent Document 3, since the number of magnets to be used can be reduced with respect to the number of magnetic poles to be formed and each magnetic pole can be easily formed, the magnetic screw mechanism with high productivity can be obtained. Can be provided. In addition, in the magnetic power transmission structure, the magnets and the magnetic pole members are arranged not in the axial direction but in the radial direction. The deviation can be prevented. Further, even if the back yoke is arranged on the outer side in the radial direction of the tubular member, a closed magnetic circuit does not occur between each magnet and the back yoke, and a magnetic circuit including each magnetic pole member is formed. The thrust of the mechanism does not decrease. Therefore, according to Patent Document 3, it is possible to provide a highly practical magnetic screw mechanism.
 しかしながら、本件発明者らは、特許文献3で提案される磁気ネジ機構には、次のような問題点があることを見出した。すなわち、筒状部材において、各磁極部材を着磁するために、各磁極部材の径方向外側に各磁石が配置される。この磁石の加工精度は、磁極部材の材料(例えば、電磁軟鉄、ケイ素鋼、アモルファス磁性合金等)に比べて低く、一例では、各磁石の間で凡そ0.1mm程度のずれが生じてしまう。そのため、各磁極部材を精度よく製造しても、各磁石の寸法誤差に影響を受けて、各磁極部材の軸周りの配置にずれが生じやすくなってしまう。よって、各磁極部材の各突出部とシャフト部材の各突条との間の距離の寸法精度を管理するのが困難であるという問題点がある。これに起因して、磁気ネジ機構の性能にばらつきが生じやすくなってしまう可能性がある。加えて、利用する磁石の数が比較的に増えやすい傾向にあるため、部品点数が増加しやすいという問題点がある。 However, the present inventors have found that the magnetic screw mechanism proposed in Patent Document 3 has the following problems. That is, in the tubular member, in order to magnetize each magnetic pole member, each magnet is arranged on the outer side in the radial direction of each magnetic pole member. The machining accuracy of this magnet is lower than that of the material of the magnetic pole member (for example, electromagnetic soft iron, silicon steel, amorphous magnetic alloy, etc.), and in one example, a deviation of about 0.1 mm occurs between the magnets. Therefore, even if each magnetic pole member is manufactured with high precision, the positional deviation of each magnetic pole member around the axis is likely to be affected by the dimensional error of each magnet. Therefore, it is difficult to control the dimensional accuracy of the distance between each protrusion of each magnetic pole member and each protrusion of the shaft member. Due to this, the performance of the magnetic screw mechanism may easily vary. In addition, since the number of magnets used tends to increase relatively, there is a problem that the number of parts tends to increase.
 本発明は、一側面では、このような事情を鑑みてなされたものであり、その目的は、よりシンプルな構造で寸法精度の管理しやすい磁気ネジ機構を提供することである。 In one aspect, the present invention has been made in view of such circumstances, and an object thereof is to provide a magnetic screw mechanism having a simpler structure and easy to manage dimensional accuracy.
 本発明は、上述した課題を解決するために、以下の構成を採用する。 The present invention adopts the following configurations in order to solve the above problems.
 すなわち、本発明の一側面に係る磁気式動力伝達構造体は、軸及び外周面を有し、軸方向に沿って延びるシャフト部材と、前記軸方向に貫通する中空部及び内周面を有する筒状部材であって、前記中空部に前記シャフト部材が挿入される、筒状部材と、を備え、前記シャフト部材の前記外周面には、前記軸の径方向外側に突出する突条であって、前記軸周りに螺旋状に形成された突条が設けられ、前記筒状部材の前記内周面には、前記径方向内側に突出する凸部を含む凸ユニットと、前記凸ユニットと前記軸周りに隣り合うように配置され、前記突条と対面する第1面及び前記第1面に対向する第2面を含む磁石と、が設けられ、前記磁石の前記第1面は、第1の磁極に着磁され、前記磁石の前記第2面は、前記第1の磁極とは反対の第2の磁極に着磁される。 That is, a magnetic power transmission structure according to one aspect of the present invention has a shaft member and an outer peripheral surface, a shaft member extending along the axial direction, and a cylinder having a hollow portion penetrating in the axial direction and an inner peripheral surface. A tubular member, into which the shaft member is inserted in the hollow portion, wherein the outer peripheral surface of the shaft member is a ridge protruding outward in the radial direction of the shaft. A protruding unit provided with a spiral formed around the shaft, the inner peripheral surface of the tubular member including a protruding unit protruding inward in the radial direction, the protruding unit and the shaft. A magnet including a first surface facing the ridge and a second surface facing the first surface, the magnet being disposed so as to be adjacent to each other around the ridge, and the first surface of the magnet is a first surface. Is magnetized to a magnetic pole, and the second surface of the magnet has a second surface opposite to the first magnetic pole. It is magnetized to the magnetic pole.
 上記構成では、軸方向に延びるシャフト部材の外周面は、径方向外側に突出する突条であって、軸周りに螺旋状に形成された突条を備えている。一方、シャフト部材が挿入される筒状部材の内周面は、径方向内側に突出する凸部を含む凸ユニットと、凸ユニットと軸周りに隣り合うように配置され、シャフト部材の突条と対面する第1面及び第1面に対向する第2面を含む磁石とを備えている。磁石の第1面は、第1の磁極に着磁され、第2面は、第1の磁極とは反対の第2の磁極に着磁される。つまり、第1面がN極に着磁される場合には、第2面はS極に着磁され、第1面がS極に着磁される場合には、第2面はN極に着磁される。 In the above configuration, the outer peripheral surface of the shaft member extending in the axial direction is a ridge protruding outward in the radial direction, and is provided with a ridge formed in a spiral shape around the axis. On the other hand, the inner peripheral surface of the tubular member into which the shaft member is inserted is disposed so as to be adjacent to the convex unit including the convex portion protruding inward in the radial direction and the convex unit around the axis, and And a magnet including a first surface facing the first surface and a second surface facing the first surface. The first surface of the magnet is magnetized to the first magnetic pole, and the second surface is magnetized to the second magnetic pole opposite to the first magnetic pole. That is, when the first surface is magnetized to the N pole, the second surface is magnetized to the S pole, and when the first surface is magnetized to the S pole, the second surface is magnetized to the N pole. Be magnetized.
 これにより、上記構成では、シャフト部材の突条は螺旋状に形成されているため、筒状部材及びシャフト部材のいずれか一方を回転させることにより、シャフト部材の突条を並進方向(すなわち、軸方向)にずらすことができる。また、筒状部材の凸部とシャフト部材の突条とが対面している部分で、磁石からでた磁束が、シャフト部材(突条)、凸ユニット(凸部)、及び筒状部材を通過して磁石に戻る磁気回路が形成される(磁束の向きは、各面の極性による)。すなわち、筒状部材の内周面に、凸ユニット及び磁石が隣り合うように配置されることで、凸ユニットがコンシクエントポールとなり、シャフト部材、磁石、凸ユニット、及び筒状部材において磁気回路を形成する。この磁気回路により、筒状部材の凸部とシャフト部材の突条とが互いに引き合う磁力が発生する。したがって、筒状部材及びシャフト部材のいずれか一方を回転させることで、シャフト部材の突条を筒状部材に対して並進方向にずらしたときに、筒状部材の凸部がシャフト部材の突条に対面した状態を維持するように、他方を移動させることができる。例えば、シャフト部材を回転させた場合には、シャフト部材の突条のずれに追従するように筒状部材を並進方向に移動させることができる。そのため、上記構成に係る磁気式動力伝達構造体は、磁気ネジ機構として動作することができる。 Accordingly, in the above-described configuration, since the protrusion of the shaft member is formed in a spiral shape, the protrusion of the shaft member is translated in the translational direction (that is, the shaft by rotating either one of the tubular member and the shaft member). Direction). Further, the magnetic flux generated from the magnet passes through the shaft member (projection), the convex unit (projection), and the tubular member at the portion where the convex portion of the tubular member and the projecting strip of the shaft member face each other. Then, a magnetic circuit that returns to the magnet is formed (the direction of the magnetic flux depends on the polarity of each surface). That is, by arranging the convex unit and the magnet adjacent to each other on the inner peripheral surface of the tubular member, the convex unit serves as a consequent pole, and the magnetic circuit is formed in the shaft member, the magnet, the convex unit, and the tubular member. Form. Due to this magnetic circuit, a magnetic force is generated in which the convex portion of the tubular member and the ridge of the shaft member attract each other. Therefore, when one of the tubular member and the shaft member is rotated to shift the projection of the shaft member in the translational direction with respect to the tubular member, the convex portion of the tubular member causes the projection of the shaft member to project. The other can be moved so as to maintain the state of facing each other. For example, when the shaft member is rotated, the tubular member can be moved in the translational direction so as to follow the deviation of the protrusion of the shaft member. Therefore, the magnetic power transmission structure according to the above configuration can operate as a magnetic screw mechanism.
 そして、上記構成に係る磁気式動力伝達構造体では、磁気回路を形成するための磁石は、凸ユニットの径方向外側には配置されず、凸ユニットと軸周りに隣り合うように配置される。そのため、磁石の寸法誤差の影響が、凸ユニット(筒状部材)の凸部とシャフト部材の突条との間の距離の寸法精度に及ぶのを避けることができる。つまり、上記構成によれば、磁石の寸法誤差を無視して、凸ユニットの凸部とシャフト部材の突条との間の距離の寸法精度を管理することができる。加えて、上記構成では、シャフト部材から見て径方向外側には、凸ユニット及び磁石の両方を配置するのではなく、凸ユニット及び磁石のいずれかが配置されればよいため、部品点数を抑えることができる。したがって、上記構成によれば、よりシンプルな構造で寸法精度の管理しやすい磁気ネジ機構を提供することができる。これにより、より安価で実用性の高い磁気ネジ機構を性能のバラツキを抑えた上で量産することができる。 In the magnetic power transmission structure according to the above configuration, the magnet for forming the magnetic circuit is not arranged radially outside the convex unit, but is arranged adjacent to the convex unit around the axis. Therefore, the influence of the dimensional error of the magnet can be prevented from affecting the dimensional accuracy of the distance between the convex portion of the convex unit (cylindrical member) and the protrusion of the shaft member. That is, according to the above configuration, the dimensional accuracy of the distance between the convex portion of the convex unit and the ridge of the shaft member can be controlled while ignoring the dimensional error of the magnet. In addition, in the above-described configuration, it is sufficient to dispose either the convex unit or the magnet on the outer side in the radial direction when viewed from the shaft member, rather than disposing both the convex unit and the magnet. be able to. Therefore, according to the above configuration, it is possible to provide a magnetic screw mechanism having a simpler structure and easy to control the dimensional accuracy. As a result, it is possible to mass-produce a magnetic screw mechanism that is cheaper and has high practicality while suppressing variations in performance.
 なお、「軸周り」は、軸を中心とした回転方向(周方向)を指す。また、「径方向」は、軸方向に垂直な面の方向(すなわち、軸を中心とした円の半径の方向)を指す。「螺旋状」とは、軸周りに回転させながら軸方向に並進することで描くことが可能な形状を広く含む。すなわち、「螺旋状」とは、軸周りに回転させたときに、軸と平行の接線上の点がいずれかの方向にずれる形状を指す。「磁石」は、永久磁石であってもよいし、コイルにより形成される電磁石であってもよい。磁石は、スキュー着磁されていてもよい。シャフト部材の突条は、1条であってもよいし、2条以上であってもよい。シャフト部材の突条の数は、特に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。筒状部材の少なくとも磁束の通過する部分(凸ユニットを含む)及びシャフト部材の少なくとも磁束の通過する部分は、磁性のある材料(以下、「磁性材料」とも記載する)で構成される。 Note that "around the axis" refers to the rotation direction (circumferential direction) around the axis. Further, the “radial direction” refers to the direction of a plane perpendicular to the axial direction (that is, the direction of the radius of the circle centered on the axis). The term “spiral” broadly includes shapes that can be drawn by translating in the axial direction while rotating around the axis. That is, “spiral” refers to a shape in which a point on a tangent line parallel to the axis shifts in either direction when rotated around the axis. The "magnet" may be a permanent magnet or an electromagnet formed by a coil. The magnet may be skew magnetized. The number of protrusions of the shaft member may be one, or two or more. The number of ridges of the shaft member may not be particularly limited and may be appropriately selected according to the embodiment. At least a portion of the tubular member through which the magnetic flux passes (including the convex unit) and at least a portion of the shaft member through which the magnetic flux passes are made of a magnetic material (hereinafter, also referred to as “magnetic material”).
 上記一側面に係る磁気式動力伝達構造体において、前記凸ユニットの前記凸部は、複数設けられてよく、前記凸ユニットの前記複数の凸部は、前記軸方向に離間して配置されてよい。当該構成によれば、より高出力の磁気ネジ機構を提供することができる。なお、凸ユニットの各凸部は、シャフト部材の突条の軸方向の並びに対応するように配置されてもよい。つまり、軸方向における凸部の間隔は、軸方向における突条の間隔と一致させてもよい。ただし、凸ユニットにおける凸部の並びは、このような例に限定されなくてもよく、軸方向における凸部の間隔は、軸方向における突条の間隔と一致していなくてもよい。凸ユニットにおける凸部の数は、特に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。 In the magnetic power transmission structure according to the one aspect, a plurality of the convex portions of the convex unit may be provided, and the plurality of convex portions of the convex unit may be arranged apart from each other in the axial direction. . With this configuration, it is possible to provide a magnetic screw mechanism with higher output. The respective convex portions of the convex unit may be arranged so as to correspond to the axial arrangement of the protrusions of the shaft member. That is, the interval between the protrusions in the axial direction may match the interval between the protrusions in the axial direction. However, the arrangement of the protrusions in the protrusion unit is not limited to this example, and the interval between the protrusions in the axial direction does not have to match the interval between the protrusions in the axial direction. The number of convex portions in the convex unit is not particularly limited and may be appropriately selected according to the embodiment.
 上記一側面に係る磁気式動力伝達構造体において、前記凸ユニットは、前記軸方向に隣接する凸部の間に設けられる凹部を有してもよく、前記凸ユニットの前記凹部には、非磁性材料が充填されていてもよい。当該構成によれば、凸ユニットの凸部の破損を抑制することができる。 In the magnetic power transmission structure according to the one aspect, the convex unit may have a concave portion provided between the convex portions adjacent to each other in the axial direction, and the concave portion of the convex unit has a non-magnetic portion. The material may be filled. According to this configuration, it is possible to suppress damage to the convex portion of the convex unit.
 上記一側面に係る磁気式動力伝達構造体において、前記凸ユニットは、前記筒状部材の前記内周面に一体形成されていてもよい。当該構成によれば、部品点数を更に抑えることができるため、更にシンプルな構造の磁気ネジ機構を提供することができる。 In the magnetic power transmission structure according to the one aspect, the convex unit may be integrally formed on the inner peripheral surface of the tubular member. According to this configuration, the number of parts can be further suppressed, and thus a magnetic screw mechanism having a simpler structure can be provided.
 上記一側面に係る磁気式動力伝達構造体において、前記磁石の前記第1面は、前記径方向内側に突出する凸部を含んでもよい。当該構成によれば、より高出力の磁気ネジ機構を提供することができる。 In the magnetic power transmission structure according to the one aspect, the first surface of the magnet may include a convex portion that protrudes inward in the radial direction. With this configuration, it is possible to provide a magnetic screw mechanism with higher output.
 上記一側面に係る磁気式動力伝達構造体において、前記磁石の前記凸部は、複数設けられてよく、前記磁石の前記複数の凸部は、前記軸方向に離間して配置されてもよい。当該構成によれば、より高出力の磁気ネジ機構を提供することができる。なお、磁石の各凸部は、シャフト部材の突条の軸方向の並びに対応するように配置されてもよい。つまり、軸方向における凸部の間隔は、軸方向における突条の間隔と一致させてもよい。ただし、磁石における凸部の並びは、このような例に限定されなくてもよく、軸方向における凸部の間隔は、軸方向における突条の間隔と一致していなくてもよい。磁石における凸部の数は、特に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。 In the magnetic power transmission structure according to the above aspect, a plurality of the convex portions of the magnet may be provided, and the plurality of convex portions of the magnet may be arranged apart from each other in the axial direction. With this configuration, it is possible to provide a magnetic screw mechanism with higher output. In addition, each convex part of a magnet may be arrange | positioned so that it may correspond in the axial direction of the protrusion of a shaft member. That is, the interval between the protrusions in the axial direction may match the interval between the protrusions in the axial direction. However, the arrangement of the protrusions in the magnet may not be limited to such an example, and the interval between the protrusions in the axial direction may not match the interval between the protrusions in the axial direction. The number of convex portions in the magnet may not be particularly limited and may be appropriately selected according to the embodiment.
 上記一側面に係る磁気式動力伝達構造体において、前記凸ユニットは、複数設けられてよく、前記磁石は、複数設けられてよく、前記各凸ユニットは、前記軸周りに離間して配置されてよく、前記筒状部材の前記内周面には、前記軸周りに隣接する一対の前記凸ユニットの間にそれぞれ配置された複数の溝部が更に設けられてよく、前記各磁石は、前記各溝部に配置されてもよい。当該構成によれば、より高出力の磁気ネジ機構を提供することができる。 In the magnetic power transmission structure according to the one aspect, a plurality of the convex units may be provided, a plurality of the magnets may be provided, and the respective convex units are arranged with a space around the axis. Well, the inner peripheral surface of the tubular member may further be provided with a plurality of groove portions respectively arranged between the pair of convex units adjacent to each other around the axis, and each magnet may be provided with each groove portion. May be located at. With this configuration, it is possible to provide a magnetic screw mechanism with higher output.
 上記一側面に係る磁気式動力伝達構造体において、前記シャフト部材の前記外周面には、前記軸方向における前記突条の間に配置される凹部が設けられてよく、前記シャフト部材の前記凹部には、非磁性材料が充填されてよい。当該構成によれば、非磁性材料を凹部に充填することで、シャフト部材の突条が破損する可能性を低減することができる。 In the magnetic power transmission structure according to the one aspect, the outer peripheral surface of the shaft member may be provided with a recessed portion arranged between the protrusions in the axial direction, and the recessed portion of the shaft member may be provided. May be filled with a non-magnetic material. According to this configuration, by filling the concave portion with the non-magnetic material, it is possible to reduce the possibility that the protrusion of the shaft member will be damaged.
 上記一側面に係る磁気式動力伝達構造体は、前記筒状部材の前記内周面より径方向内側に配置され、前記筒状部材の前記凸ユニットを被覆する第1被覆部材を更に備えてもよい。当該構成によれば、シャフト部材の突条に対して凸ユニットの凸部を第1被覆部材で被覆することで、シャフト部材の突条と凸ユニットの凸部との接触を抑制することができる。そのため、凸ユニットの凸部が破損する可能性を低減することができる。 The magnetic power transmission structure according to the one aspect further includes a first covering member that is arranged radially inward of the inner peripheral surface of the tubular member and that covers the convex unit of the tubular member. Good. According to this configuration, the protrusion of the convex unit is covered with the first covering member with respect to the protrusion of the shaft member, so that contact between the protrusion of the shaft member and the protrusion of the convex unit can be suppressed. . Therefore, it is possible to reduce the possibility that the convex portion of the convex unit is damaged.
 上記一側面に係る磁気式動力伝達構造体は、前記シャフト部材の前記外周面より径方向外側に配置され、前記シャフト部材の前記突条を被覆する第2被覆部材を更に備えてもよい。当該構成によれば、凸ユニットの凸部に対してシャフト部材の突条を第2被覆部材で被覆することで、シャフト部材の突条と凸ユニットの凸部との接触を抑制することができる。そのため、シャフト部材の突条が破損する可能性を低減することができる。 The magnetic power transmission structure according to the one aspect may further include a second covering member that is arranged radially outside the outer peripheral surface of the shaft member and that covers the protrusion of the shaft member. According to this structure, the protrusion of the shaft unit is covered with the second coating member on the protrusion of the convex unit, so that contact between the protrusion of the shaft member and the protrusion of the convex unit can be suppressed. . Therefore, it is possible to reduce the possibility that the protrusion of the shaft member will be damaged.
 また、本発明の一側面に係る磁気式動力伝達構造体は、軸及び外周面を有し、軸方向に沿って延びるシャフト部材と、前記軸方向に貫通する中空部及び内周面を有する筒状部材であって、前記中空部に前記シャフト部材が挿入される、筒状部材と、を備え、前記シャフト部材の前記外周面には、前記軸の径方向外側に突出する突条であって、前記軸周りに螺旋状に形成された突条が設けられ、前記筒状部材の前記内周面には、前記径方向内側に突出する凸部をそれぞれ含み、前記軸周りに離間して配置される複数の凸ユニットと、前記軸周りに隣接する一対の前記凸ユニットの間にそれぞれ配置された複数の溝部と、前記各溝部にそれぞれ配置され、前記一対の凸ユニットのうちの一方と対面する第1面、及び前記第1面に対向し、前記一対の凸ユニットのうちの他方と対面する第2面をそれぞれ含む複数の磁石と、が設けられ、前記各磁石の前記第1面は、第1の磁極に着磁され、前記各磁石の前記第2面は、前記第1の磁極とは反対の第2の磁極に着磁される。当該構成に係る磁気式動力伝達構造体では、隣接する凸ユニットの間に各磁石が配置される。これにより、各凸ユニットの凸部がシャフト部材の突条に対面している間、各磁石からでた磁束が、一方の凸ユニット(凸部)、シャフト部材(突条)、他方の凸ユニット(凸部)を通過して各磁石に戻る磁気回路が形成される(磁束の向きは、各面の極性による)。この磁気回路の構成の点を除き、当該構成に係る磁気式動力伝達構造体は、上記構成に係る磁気式動力伝達構造体と同様に動作し、かつ作用効果を得ることができる。よって、当該構成によれば、よりシンプルな構造で寸法精度の管理しやすい磁気ネジ機構を提供することができる。 A magnetic power transmission structure according to one aspect of the present invention has a shaft and an outer peripheral surface, a shaft member extending along the axial direction, and a cylinder having a hollow portion and an inner peripheral surface penetrating in the axial direction. A tubular member, into which the shaft member is inserted in the hollow portion, wherein the outer peripheral surface of the shaft member is a ridge protruding outward in the radial direction of the shaft. A protrusion formed in a spiral shape around the axis is provided, and the inner peripheral surface of the tubular member includes protrusions protruding inward in the radial direction, and arranged apart from each other around the axis. A plurality of convex units, a plurality of groove portions respectively disposed between the pair of convex units adjacent to each other around the axis, and arranged in each of the groove portions, and face one of the pair of convex units And a first surface facing the first surface, A plurality of magnets each including a second surface facing the other of the convex units of the above-mentioned convex unit, the first surface of each magnet being magnetized to a first magnetic pole, and the first surface of each magnet being The two surfaces are magnetized by a second magnetic pole which is opposite to the first magnetic pole. In the magnetic power transmission structure according to this configuration, each magnet is arranged between the adjacent convex units. As a result, while the convex portion of each convex unit faces the protrusion of the shaft member, the magnetic flux generated from each magnet causes one convex unit (convex portion), the shaft member (protrusion), and the other convex unit. A magnetic circuit is formed that passes through the (convex portion) and returns to each magnet (the direction of the magnetic flux depends on the polarity of each surface). Except for the configuration of the magnetic circuit, the magnetic power transmission structure according to the present configuration operates in the same manner as the magnetic power transmission structure according to the above configuration, and the effects can be obtained. Therefore, according to the said structure, a magnetic screw mechanism with a simpler structure and whose dimensional accuracy is easy to manage can be provided.
 上記一側面に係る磁気式動力伝達構造体において、前記各凸ユニットの前記凸部は、複数設けられてよく、前記各凸ユニットの前記複数の凸部は、前記軸方向に離間して配置されてよい。当該構成によれば、より高出力の磁気ネジ機構を提供することができる。なお、各凸ユニットの凸部の並び及び数については、上記構成と同様であってよい。 In the magnetic power transmission structure according to the one aspect, a plurality of the convex portions of each convex unit may be provided, and the plurality of convex portions of each convex unit are arranged apart from each other in the axial direction. You may With this configuration, it is possible to provide a magnetic screw mechanism with higher output. Note that the arrangement and number of the convex portions of each convex unit may be the same as in the above configuration.
 また、本発明の一側面に係るアクチュエータは、上記いずれかの形態に係る磁気式動力伝達構造体と、前記磁気式動力伝達構造体の前記筒状部材又は前記シャフト部材を回転させる回転装置と、を備える。当該構成によれば、よりシンプルな構造で寸法精度の管理しやすい磁気ネジ機構を利用したアクチュエータを提供することができる。 Further, an actuator according to one aspect of the present invention, a magnetic power transmission structure according to any one of the above, a rotating device for rotating the tubular member or the shaft member of the magnetic power transmission structure, Equipped with. With this configuration, it is possible to provide an actuator that uses a magnetic screw mechanism that has a simpler structure and whose dimensional accuracy is easy to control.
 上記一側面に係るアクチュエータは、前記筒状部材の位置を測定可能に構成された位置センサと、制御装置と、を更に備えてもよく、前記制御装置は、前記位置センサにより得られる前記筒状部材の位置の情報に基づいて、前記筒状部材が所望の位置に移動するように前記回転装置を駆動してもよい。当該構成によれば、アクチュエータの位置制御を行うことができる。 The actuator according to the one aspect may further include a position sensor configured to be able to measure the position of the tubular member, and a control device, wherein the control device is the tubular device obtained by the position sensor. The rotating device may be driven so that the tubular member moves to a desired position based on the information on the position of the member. According to this configuration, it is possible to control the position of the actuator.
 上記一側面に係るアクチュエータは、前記筒状部材の位置を測定可能に構成された位置センサと、前記シャフト部材の傾きを測定可能に構成された回転センサと、制御装置と、を更に備えてもよく、前記制御装置は、前記位置センサにより得られる前記筒状部材の位置の情報及び前記回転センサにより得られる前記シャフト部材の傾きの情報に基づいて、前記筒状部材で所望の力が発生するように前記回転装置を駆動してもよい。当該構成によれば、アクチュエータの出力制御を行うことができる。なお、シャフト部材の傾きとは、シャフト部材の回転角度、すなわち、筒状部材に対するシャフト部材の軸周りの角度のことである。 The actuator according to the one aspect further includes a position sensor configured to measure the position of the tubular member, a rotation sensor configured to measure the inclination of the shaft member, and a control device. Often, the control device generates a desired force in the tubular member based on information on the position of the tubular member obtained by the position sensor and information on the inclination of the shaft member obtained by the rotation sensor. Thus, the rotating device may be driven. With this configuration, output control of the actuator can be performed. The inclination of the shaft member means the rotation angle of the shaft member, that is, the angle around the axis of the shaft member with respect to the tubular member.
 上記一側面に係るアクチュエータは、前記筒状部材の位置を測定可能に構成された位置センサと、前記シャフト部材の傾きを測定可能に構成された回転センサと、制御装置と、を更に備えてもよく、前記制御装置は、前記位置センサにより得られる前記筒状部材の位置の情報及び前記回転センサにより得られる前記シャフト部材の傾きの情報に基づいて、所望の力が得られる状態で前記筒状部材を所望の位置に移動させるように前記回転装置を駆動してもよい。当該構成によれば、アクチュエータの出力制御を行うことができる。 The actuator according to the one aspect further includes a position sensor configured to measure the position of the tubular member, a rotation sensor configured to measure the inclination of the shaft member, and a control device. Often, the control device is configured such that the tubular force is obtained in a state in which a desired force is obtained, based on information on the position of the tubular member obtained by the position sensor and information on the inclination of the shaft member obtained by the rotation sensor. The rotating device may be driven to move the member to a desired position. With this configuration, output control of the actuator can be performed.
 本発明によれば、よりシンプルな構造で寸法精度の管理しやすい磁気ネジ機構を提供することができる。 According to the present invention, it is possible to provide a magnetic screw mechanism having a simpler structure and easy to control dimensional accuracy.
図1は、実施の形態に係る磁気式動力伝達構造体を模式的に例示する分解図である。FIG. 1 is an exploded view schematically illustrating a magnetic power transmission structure according to an embodiment. 図2は、実施の形態に係る磁気式動力伝達構造体を模式的に例示する斜視図である。FIG. 2 is a perspective view schematically illustrating the magnetic power transmission structure according to the embodiment. 図3は、実施の形態に係る磁気式動力伝達構造体の軸方向に沿う断面を模式的に例示する断面図である。FIG. 3 is a cross-sectional view schematically illustrating a cross section along the axial direction of the magnetic power transmission structure according to the embodiment. 図4は、実施の形態に係る磁気式動力伝達構造体を模式的に例示する一部切り欠き斜視断面図である。FIG. 4 is a partially cutaway perspective sectional view schematically illustrating the magnetic power transmission structure according to the embodiment. 図5は、実施の形態に係る磁気式動力伝達構造体の筒状部材を軸方向に沿って見た様子を模式的に例示する。FIG. 5 schematically illustrates a state in which the tubular member of the magnetic power transmission structure according to the embodiment is viewed along the axial direction. 図6は、実施の形態に係る磁気式動力伝達構造体の動作原理を説明するための部分断面斜視図である。FIG. 6 is a partial cross-sectional perspective view for explaining the operation principle of the magnetic power transmission structure according to the embodiment. 図7は、実施の形態に係る磁気式動力伝達構造体の動作原理を説明するための展開図である。FIG. 7 is a development view for explaining the operation principle of the magnetic power transmission structure according to the embodiment. 図8は、実施の形態に係る磁気式動力伝達構造体の動作原理を説明するための図であって、磁気式動力伝達構造体を軸方向に沿って見た様子を模式的に例示する図である。FIG. 8 is a diagram for explaining the operation principle of the magnetic power transmission structure according to the embodiment, and is a diagram schematically illustrating a state in which the magnetic power transmission structure is viewed along the axial direction. Is. 図9Aは、図8のA1-A1線の部分断面図である。9A is a partial cross-sectional view taken along the line A1-A1 of FIG. 図9Bは、図8のB1-B1線の部分断面図である。9B is a partial cross-sectional view taken along the line B1-B1 of FIG. 図10は、実施の形態に係るアクチュエータを模式的に例示する。FIG. 10 schematically illustrates the actuator according to the embodiment. 図11は、実施の形態に係る制御装置のハードウェア構成を模式的に例示する。FIG. 11 schematically illustrates the hardware configuration of the control device according to the embodiment. 図12Aは、シャフト部材の傾きが一定の場合における筒状部材の位置と出力との関係を例示する。FIG. 12A illustrates the relationship between the position of the cylindrical member and the output when the inclination of the shaft member is constant. 図12Bは、筒状部材の位置が一定である場合におけるシャフト部材の傾きと出力との関係を例示する。FIG. 12B illustrates the relationship between the inclination of the shaft member and the output when the position of the tubular member is constant. 図12Cは、実施の形態に係る対応関係データの一例を例示する。FIG. 12C illustrates an example of correspondence data according to the embodiment. 図13は、実施の形態に係る制御装置のソフトウェア構成を模式的に例示する。FIG. 13 schematically illustrates a software configuration of the control device according to the embodiment. 図14は、実施の形態に係る制御装置によるアクチュエータの制御の一例を例示する。FIG. 14 illustrates an example of control of the actuator by the control device according to the embodiment. 図15は、実施の形態に係る制御装置によるアクチュエータの制御の一例を例示する。FIG. 15 illustrates an example of actuator control by the control device according to the embodiment. 図16は、実施の形態に係る制御装置によるアクチュエータの制御の一例を例示する。FIG. 16 illustrates an example of actuator control performed by the control device according to the embodiment. 図17Aは、各磁石の着磁方向の一例を例示する。FIG. 17A illustrates an example of the magnetization direction of each magnet. 図17Bは、各磁石の着磁方向の一例を例示する。FIG. 17B illustrates an example of the magnetization direction of each magnet. 図18は、変形例に係る磁気式動力伝達構造体を軸方向に沿って見た様子を模式的に例示する。FIG. 18 schematically illustrates a state in which the magnetic power transmission structure according to the modification is viewed along the axial direction. 図19は、変形例に係る磁気式動力伝達構造体を模式的に例示する部分断面図である。FIG. 19 is a partial cross-sectional view schematically illustrating the magnetic power transmission structure according to the modification. 図20は、変形例に係る磁気式動力伝達構造体を模式的に例示する部分断面図である。FIG. 20 is a partial cross-sectional view schematically illustrating the magnetic power transmission structure according to the modification. 図21は、変形例に係る磁気式動力伝達構造体を模式的に例示する部分断面図である。FIG. 21 is a partial cross-sectional view schematically illustrating the magnetic power transmission structure according to the modification. 図22Aは、凸ユニットの凹部の形状の一例を例示する。FIG. 22A illustrates an example of the shape of the concave portion of the convex unit. 図22Bは、凸ユニットの凹部の形状の一例を例示する。FIG. 22B illustrates an example of the shape of the concave portion of the convex unit. 図23は、各磁石の形状の一例を例示する。FIG. 23 illustrates an example of the shape of each magnet.
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。ただし、以下で説明する本実施形態は、あらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良又は変形が行われてもよい。つまり、本発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。なお、以下の説明では、説明の便宜のため、図面内の向きを基準として説明を行う。 Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “this embodiment”) will be described with reference to the drawings. However, the present embodiment described below is merely an example of the present invention in all respects. Various modifications or changes may be made without departing from the scope of the present invention. That is, in implementing the present invention, a specific configuration according to the embodiment may be appropriately adopted. Note that, in the following description, for convenience of description, the description will be given based on the orientation in the drawing.
 §1 構成例
 まず、図1~図4を用いて、本実施形態に係る磁気式動力伝達構造体1の構成について説明する。図1は、本実施形態に係る磁気式動力伝達構造体1を模式的に例示する分解図である。図2は、本実施形態に係る磁気式動力伝達構造体1を模式的に例示する斜視図である。図3は、本実施形態に係る磁気式動力伝達構造体1の軸方向に沿う断面を模式的に例示する。図4は、本実施形態に係る磁気式動力伝達構造体1を模式的に例示する一部切り欠き斜視断面図である。
§1 Configuration Example First, the configuration of the magnetic power transmission structure 1 according to the present embodiment will be described with reference to FIGS. 1 to 4. FIG. 1 is an exploded view schematically illustrating a magnetic power transmission structure 1 according to this embodiment. FIG. 2 is a perspective view schematically illustrating the magnetic power transmission structure 1 according to this embodiment. FIG. 3 schematically illustrates a cross section along the axial direction of the magnetic power transmission structure 1 according to this embodiment. FIG. 4 is a partially cutaway perspective sectional view schematically illustrating the magnetic power transmission structure 1 according to the present embodiment.
 各図に示されるとおり、本実施形態に係る磁気式動力伝達構造体1は、軸31を有し、軸方向(図3の左右方向)に沿って延びるシャフト部材3と、軸方向に貫通する中空部21を有し、この中空部21にシャフト部材3が挿入される、筒状部材2と、を備えている。筒状部材2は、磁気ネジ機構のナットに対応しており、シャフト部材3は、磁気ネジ機構のネジに対応している。これにより、本実施形態に係る磁気式動力伝達構造体1は、回転運動を並進運動に変換する磁気ネジとして利用することができる。以下、各構成要素について説明する。 As shown in each drawing, the magnetic power transmission structure 1 according to the present embodiment has a shaft 31 and penetrates in the axial direction with a shaft member 3 extending along the axial direction (the left-right direction in FIG. 3). The tubular member 2 has a hollow portion 21, and the shaft member 3 is inserted into the hollow portion 21. The tubular member 2 corresponds to the nut of the magnetic screw mechanism, and the shaft member 3 corresponds to the screw of the magnetic screw mechanism. Accordingly, the magnetic power transmission structure 1 according to the present embodiment can be used as a magnetic screw that converts rotational movement into translational movement. Hereinafter, each component will be described.
 [シャフト部材]
 まず、シャフト部材3について説明する。本実施形態では、シャフト部材3は、軸方向に沿って延び、円柱状に形成された本体部30を備えている。この本体部30は、中実に構成されており、中心を通る軸31と、外側の面である外周面32と、を備えている。これにより、本実施形態では、シャフト部材3は、軸31及び外周面32を有し、軸方向に沿って延びるように構成されている。
[Shaft member]
First, the shaft member 3 will be described. In this embodiment, the shaft member 3 includes a main body portion 30 extending in the axial direction and formed in a cylindrical shape. The main body portion 30 is solid and includes a shaft 31 passing through the center and an outer peripheral surface 32 that is an outer surface. Thus, in the present embodiment, the shaft member 3 has the shaft 31 and the outer peripheral surface 32 and is configured to extend along the axial direction.
 シャフト部材3の外周面32には、軸31の径方向外側に突出する突条33であって、軸周りに螺旋状に形成された突条33が設けられている。軸周りとは、軸31を中心とした回転方向(周方向)を指す。また、径方向は、軸方向に垂直な面の方向(すなわち、軸31を中心とした円の半径の方向)を指す。螺旋状とは、軸周りに回転させながら軸方向に並進することで描くことが可能な形状を広く含む。すなわち、螺旋状とは、軸周りに回転させたときに、軸31と平行の接線上の点がいずれかの方向にずれる形状を指す。 The outer peripheral surface 32 of the shaft member 3 is provided with a ridge 33 that projects radially outward of the shaft 31 and that is formed spirally around the axis. "Around the axis" refers to the rotation direction (circumferential direction) about the axis 31. The radial direction refers to the direction of a plane perpendicular to the axial direction (that is, the direction of the radius of the circle centering on the axis 31). The spiral shape broadly includes a shape that can be drawn by translating in the axial direction while rotating around the axis. That is, the spiral shape refers to a shape in which a point on a tangent line parallel to the axis 31 shifts in either direction when rotated around the axis.
 各図に示されるとおり、本実施形態では、シャフト部材3の突条33は1条である。また、本実施形態では、突条33は、軸方向の一端部から他端部まで連続的に延びている。この突条33の設けられる軸方向の範囲は、実施の形態に応じて適宜決定されてよい。図3に示されるとおり、シャフト部材3の外周面32における突条33の設けられる範囲には、軸方向における突条33の間に配置される凹部35が設けられる。突条33及び凹部35それぞれの形状及び寸法は、特に限定されなくてもよく、実施の形態に応じて適宜決定されてよい。本実施形態では、突条33は、断面矩形状に形成されている。 As shown in each drawing, in this embodiment, the number of the protrusions 33 of the shaft member 3 is one. In addition, in the present embodiment, the protrusion 33 continuously extends from one end to the other end in the axial direction. The axial range in which the protrusion 33 is provided may be appropriately determined according to the embodiment. As shown in FIG. 3, in the range where the protrusions 33 are provided on the outer peripheral surface 32 of the shaft member 3, there are provided recesses 35 arranged between the protrusions 33 in the axial direction. The shapes and dimensions of the protrusions 33 and the recesses 35 may not be particularly limited and may be appropriately determined according to the embodiment. In the present embodiment, the protrusion 33 is formed in a rectangular cross section.
 このようなシャフト部材3は、磁性材料を用いて作製することができる。シャフト部材3の材料には、磁性材料として、例えば、軟磁性材料(電磁軟鉄、ケイ素鋼、アモルファス磁性合金等)、炭素鋼等を用いることができる。作製方法の一例として、例えば、円柱状の磁性材料を用意し、用意した磁性材料の外周面を適宜切削加工等することで、突条33を有するシャフト部材3を作製することができる。このシャフト部材3には、公知のボールねじが利用されてもよい。これにより、磁気式動力伝達構造体1の製造コストを抑えることができる。 Such a shaft member 3 can be manufactured using a magnetic material. As the material of the shaft member 3, for example, a soft magnetic material (electromagnetic soft iron, silicon steel, amorphous magnetic alloy, etc.), carbon steel or the like can be used as a magnetic material. As an example of a manufacturing method, for example, a columnar magnetic material is prepared, and the outer peripheral surface of the prepared magnetic material is appropriately cut, so that the shaft member 3 having the protrusions 33 can be manufactured. A known ball screw may be used for the shaft member 3. Thereby, the manufacturing cost of the magnetic power transmission structure 1 can be suppressed.
 [筒状部材]
 次に、図5を更に用いて、筒状部材2について説明する。図5は、本実施形態に係る筒状部材2を軸方向に沿って見た様子を模式的に例示する。
[Cylindrical member]
Next, the tubular member 2 will be described with further reference to FIG. FIG. 5 schematically illustrates a state in which the tubular member 2 according to the present embodiment is viewed along the axial direction.
 各図に示されるとおり、本実施形態に係る筒状部材2は、軸方向に沿って延びる円筒状の本体部20を備えている。この本体部20は、軸方向に貫通する中空部21及び中空部21に隣接する内側の面である内周面22を備えている。これにより、本実施形態では、筒状部材2は、中空部21及び内周面22を有するように構成されている。 As shown in each drawing, the tubular member 2 according to the present embodiment includes a cylindrical main body portion 20 extending along the axial direction. The main body portion 20 includes a hollow portion 21 penetrating in the axial direction and an inner peripheral surface 22 that is an inner surface adjacent to the hollow portion 21. Thereby, in this embodiment, the tubular member 2 is configured to have the hollow portion 21 and the inner peripheral surface 22.
 本実施形態では、筒状部材2の内周面22には、複数の凸ユニット23、複数の溝部24、及び複数の磁石25が設けられる。各図により示される例では、凸ユニット23、溝部24、及び磁石25はそれぞれ、2つずつ設けられている。各凸ユニット23は、軸周りに離間して配置される。各溝部24は、軸周りに隣接する一対の凸ユニット23の間に配置される。各磁石25は、各凸ユニット23と軸周りに隣り合うように各溝部24に配置される。 In the present embodiment, the inner peripheral surface 22 of the tubular member 2 is provided with a plurality of convex units 23, a plurality of groove portions 24, and a plurality of magnets 25. In the example shown by each figure, two convex units 23, two groove portions 24, and two magnets 25 are provided. The respective convex units 23 are arranged around the axis so as to be separated from each other. Each groove 24 is arranged between a pair of convex units 23 adjacent to each other around the axis. Each magnet 25 is arranged in each groove 24 so as to be adjacent to each convex unit 23 around the axis.
 (凸ユニット)
 各凸ユニット23は、軸方向に沿って延び、円弧状に形成された基部を有しており、この基部の内側の面(内周面)からそれぞれ径方向内側に突出する複数の凸部231を含んでいる。凸部231の数は、特に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。
(Convex unit)
Each convex unit 23 has a base portion formed in an arc shape and extending along the axial direction, and a plurality of convex portions 231 projecting radially inward from the inner surface (inner peripheral surface) of the base portion. Is included. The number of the convex portions 231 is not particularly limited and may be appropriately selected according to the embodiment.
 本実施形態では、各凸部231は、軸方向に離間して配置されている。図3に示されるとおり、本実施形態では、各凸部231は、シャフト部材3の突条33の軸方向の並びに対応するように配置されている。つまり、軸方向における凸部231の間隔は、軸方向における突条33の間隔と一致している。各凸ユニット23の基部の内側の面には、更に、軸方向における凸部231の間に配置される凹部232が設けられる。 In the present embodiment, the convex portions 231 are arranged apart from each other in the axial direction. As shown in FIG. 3, in the present embodiment, the protrusions 231 are arranged so as to correspond to the axial arrangement of the protrusions 33 of the shaft member 3. That is, the interval between the convex portions 231 in the axial direction matches the interval between the protrusions 33 in the axial direction. The inner surface of the base of each convex unit 23 is further provided with a concave portion 232 arranged between the convex portions 231 in the axial direction.
 各凸部231及び各凹部232の形状及び寸法は、特に限定されなくてもよく、実施の形態に応じて適宜決定されてよい。図3に示されるとおり、本実施形態では、各凸部231の軸方向に沿う断面は、矩形状に形成されている。一方、各溝部24の断面は、円弧状に形成されている。また、図5に示されるとおり、軸方向に沿って見た場合における各凸部231の形状は、円弧状に形成されている。 The shapes and dimensions of the convex portions 231 and the concave portions 232 may not be particularly limited and may be appropriately determined according to the embodiment. As shown in FIG. 3, in the present embodiment, the cross section of each convex portion 231 along the axial direction is formed in a rectangular shape. On the other hand, the cross section of each groove 24 is formed in an arc shape. Further, as shown in FIG. 5, the shape of each convex portion 231 when viewed along the axial direction is formed in an arc shape.
 各凸部231は、シャフト部材3の突条33に対応するように、軸周りに螺旋状に形成されてもよいし、あるいは、軸周りに沿って延びるように形成されてもよい。各凸ユニット23の軸方向の寸法は、実施の形態に応じて適宜決定されてよく、筒状部材2の本体部20の軸方向の寸法と一致していてもよいし、一致していなくてもよい。例えば、軸方向において、各凸ユニット23は、本体部20よりも短く形成されてもよい。 Each of the protrusions 231 may be spirally formed around the axis so as to correspond to the protrusion 33 of the shaft member 3, or may be formed to extend along the axis. The axial dimension of each convex unit 23 may be appropriately determined according to the embodiment, and may or may not be the same as the axial dimension of the main body portion 20 of the tubular member 2. Good. For example, each convex unit 23 may be formed shorter than the main body 20 in the axial direction.
 各凸ユニット23は、磁性材料を用いて形成される。上記シャフト部材3と同様に、各凸ユニット23の材料には、磁性材料として、例えば、軟磁性材料、炭素鋼等を用いることができる。各凸ユニット23は、磁性材料を適宜切削加工等することで作製することができる。本実施形態では、各凸ユニット23は、筒状部材2の本体部20の内周面22に一体形成されている。 Each convex unit 23 is formed using a magnetic material. Similar to the shaft member 3, as the material of each convex unit 23, for example, a soft magnetic material, carbon steel or the like can be used as a magnetic material. Each convex unit 23 can be manufactured by appropriately cutting a magnetic material. In the present embodiment, each convex unit 23 is integrally formed on the inner peripheral surface 22 of the main body portion 20 of the tubular member 2.
 (磁石)
 一方、各磁石25は、軸方向に沿って延びており、凸ユニット23の間に形成された各溝部24に配置される。図5に示されるとおり、各磁石25の軸方向に垂直な断面は、略90度の円弧状に形成されている。これに対応して、各凸ユニット23の断面が、略90度又は90度よりやや小さい角度を有する円弧状に形成されることで、各溝部24の断面は、各磁石25と同じ又は各磁石25よりもやや大きな角度を有する円弧状に形成されている。これにより、各磁石25は、各凸ユニット23に軸周りに隣り合うように各溝部24に配置可能に形成されている。各磁石25の軸方向の寸法は、実施の形態に応じて適宜決定されてよく、筒状部材2の本体部20の軸方向の寸法と一致していてもよいし、一致していなくてもよい。例えば、軸方向において、各磁石25は、本体部20よりも短く形成されてよい。
(magnet)
On the other hand, each magnet 25 extends in the axial direction and is arranged in each groove 24 formed between the convex units 23. As shown in FIG. 5, the cross section of each magnet 25 perpendicular to the axial direction is formed in an arc shape of approximately 90 degrees. Correspondingly, the cross section of each convex unit 23 is formed in an arc shape having an angle of approximately 90 degrees or slightly smaller than 90 degrees, so that the cross section of each groove portion 24 is the same as each magnet 25 or each magnet 25. It is formed in an arc shape having an angle slightly larger than 25. As a result, each magnet 25 is formed in each groove 24 so as to be adjacent to each convex unit 23 around the axis. The axial dimension of each magnet 25 may be appropriately determined according to the embodiment, and may or may not match the axial dimension of the main body portion 20 of the tubular member 2. Good. For example, each magnet 25 may be formed to be shorter than the main body 20 in the axial direction.
 各磁石25は、径方向内側を向き、シャフト部材3の突条33と対面する内側曲面251、内側曲面251に対向する外側曲面252を含んでいる。更に、各磁石25は、軸周りに隣接する一対の凸ユニット23のうちの一方と対面する第1側面255、及び第1側面255に対向し、一対の凸ユニット23のうちの他方と対面する第2側面256を含んでいる。各曲面(251、252)は滑らかであり、各側面(255、256)は平らである。つまり、本実施形態では、内側曲面251には、各凸ユニット23と異なり、凸部は設けられていない。 Each magnet 25 includes an inner curved surface 251 facing the inner side in the radial direction and facing the protrusion 33 of the shaft member 3, and an outer curved surface 252 facing the inner curved surface 251. Further, each magnet 25 faces the first side surface 255 and the first side surface 255 that face one of the pair of convex units 23 adjacent to each other around the axis, and faces the other of the pair of convex units 23. The second side surface 256 is included. Each curved surface (251, 252) is smooth and each side surface (255, 256) is flat. That is, in this embodiment, unlike the respective convex units 23, the inner curved surface 251 is not provided with a convex portion.
 本実施形態では、内側曲面251は、第1の磁極に着磁され、外側曲面252は、第1の磁極とは反対の第2の磁極に着磁される。つまり、内側曲面251がN極に着磁される場合には、外側曲面252はS極に着磁され、内側曲面251がS極に着磁される場合には、外側曲面252はN極に着磁される。どちらの場合でも、磁気式動力伝達構造体1の動作原理は同じである。そのため、以下では、説明の便宜のため、内側曲面251がS極に着磁されており、外側曲面252がN極に着磁されていると想定し、他方の場合の説明を適宜省略する。内側曲面251は、本発明の「第1面」の一例であり、外側曲面252は、本発明の「第2面」の一例である。各磁石25は、永久磁石であってもよいし、コイルにより形成される電磁石であってもよい。また、各磁石25は、スキュー着磁されていてもよい。 In the present embodiment, the inner curved surface 251 is magnetized to the first magnetic pole, and the outer curved surface 252 is magnetized to the second magnetic pole opposite to the first magnetic pole. That is, when the inner curved surface 251 is magnetized to the N pole, the outer curved surface 252 is magnetized to the S pole, and when the inner curved surface 251 is magnetized to the S pole, the outer curved surface 252 is magnetized to the N pole. Be magnetized. In both cases, the operating principle of the magnetic power transmission structure 1 is the same. Therefore, hereinafter, for convenience of description, it is assumed that the inner curved surface 251 is magnetized to the S pole and the outer curved surface 252 is magnetized to the N pole, and the description of the other case will be appropriately omitted. The inner curved surface 251 is an example of the “first surface” in the present invention, and the outer curved surface 252 is an example of the “second surface” in the present invention. Each magnet 25 may be a permanent magnet or an electromagnet formed of a coil. Further, each magnet 25 may be skew-magnetized.
 (作製方法)
 このような筒状部材2は、例えば、次のようにして作製することができる。すなわち、本体部20を構成するための円柱状の磁性材料を用意する。用意する磁性材料は、上記シャフト部材3と同様に、軟磁性材料、炭素鋼等であってよい。次に、用意した磁性材料を適宜加工することで、中空部21と共に各凸ユニット23及び各溝部24を本体部20に形成する。各凸ユニット23の部分の面には、切削加工等により、各凸部231を構成する歯を刻む。そして、各磁石25を用意し、用意した各磁石25を各溝部24に配置する。これにより、上記筒状部材2を作製することができる。
(Production method)
Such a tubular member 2 can be manufactured, for example, as follows. That is, a columnar magnetic material for forming the main body 20 is prepared. Like the shaft member 3, the magnetic material to be prepared may be a soft magnetic material, carbon steel, or the like. Next, the prepared magnetic material is appropriately processed to form each convex unit 23 and each groove 24 in the main body 20 together with the hollow portion 21. On the surface of the portion of each convex unit 23, the teeth forming each convex portion 231 are carved by cutting or the like. Then, each magnet 25 is prepared, and each prepared magnet 25 is arranged in each groove 24. Thereby, the tubular member 2 can be manufactured.
 本実施形態では、各凸ユニット23及び各磁石25を含む筒状部材2の中空部21の内径は、突条33を含むシャフト部材3の外径よりもやや大きくなるように設定される。これにより、筒状部材2の各凸部231及び各磁石25にシャフト部材3の突条33が干渉することなく、シャフト部材3を中空部21に挿入し、各凸ユニット23及び各磁石25の径方向内側に突条33を配置することができる。 In the present embodiment, the inner diameter of the hollow portion 21 of the tubular member 2 including the convex units 23 and the magnets 25 is set to be slightly larger than the outer diameter of the shaft member 3 including the protrusions 33. As a result, the shaft member 3 is inserted into the hollow portion 21 without the protrusions 231 of the tubular member 2 and the magnets 25 interfering with the protrusions 33 of the shaft member 3, and the protrusion units 23 and the magnets 25 are inserted. The protrusions 33 can be arranged radially inward.
 また、本実施形態では、筒状部材2の軸方向の長さは、シャフト部材3の軸方向の長さよりも短くなるように設定される。そのため、本実施形態では、図1~図4に例示されるとおり、シャフト部材3を筒状部材2に挿入したときに、シャフト部材3は、筒状部材2の開口部両側からシャフト部材3の両端部が突出するように配置される。 Also, in the present embodiment, the axial length of the tubular member 2 is set to be shorter than the axial length of the shaft member 3. Therefore, in the present embodiment, as illustrated in FIGS. 1 to 4, when the shaft member 3 is inserted into the tubular member 2, the shaft member 3 is attached to the shaft member 3 from both sides of the opening of the tubular member 2. The both ends are arranged so as to project.
 なお、図5により示される例では、各溝部24が各磁石25よりやや大きくなっており、これにより、各磁石25の各側面(255、256)と各凸ユニット23との間には隙間が設けられている。ただし、各溝部24の寸法は、このような例に限定されなくてもよく、実施の形態に応じて適宜決定されてよい。例えば、各溝部24と各磁石25とをほぼ同じ寸法で形成することで、各側面(255、256)と各凸ユニット23との間に隙間がほぼ生じないようにしてもよい。 In the example shown in FIG. 5, each groove portion 24 is slightly larger than each magnet 25, so that a gap is formed between each side surface (255, 256) of each magnet 25 and each convex unit 23. It is provided. However, the dimension of each groove 24 is not limited to such an example, and may be appropriately determined according to the embodiment. For example, the grooves 24 and the magnets 25 may be formed to have substantially the same size so that there is almost no gap between the side surfaces (255, 256) and the convex units 23.
 §2 動作例
 次に、図6~図8、図9A及び図9Bを用いて、本実施形態に係る磁気式動力伝達構造体1の動作例について説明する。図6は、本実施形態に係る磁気式動力伝達構造体1の動作原理を説明するための部分断面斜視図である。図7は、本実施形態に係る磁気式動力伝達構造体1の動作原理を説明するための展開図である。図8は、本実施形態に係る磁気式動力伝達構造体1を軸方向に沿って見た様子を模式的に例示する。図9Aは、図8のA1-A1線の部分断面図である。図9Bは、図8のB1-B1線の部分断面図である。本動作例では、説明の便宜上、筒状部材2は、軸周りに回転不能でかつ軸方向に並進可能に固定されているとし、シャフト部材3は、軸周りに回転可能でかつ軸方向に並進不能に固定されていると想定する。
§2 Operation Example Next, an operation example of the magnetic power transmission structure 1 according to the present embodiment will be described with reference to FIGS. 6 to 8, 9A and 9B. FIG. 6 is a partial cross-sectional perspective view for explaining the operation principle of the magnetic power transmission structure 1 according to this embodiment. FIG. 7 is a development view for explaining the operation principle of the magnetic power transmission structure 1 according to this embodiment. FIG. 8 schematically illustrates a state in which the magnetic power transmission structure 1 according to the present embodiment is viewed along the axial direction. 9A is a partial cross-sectional view taken along the line A1-A1 of FIG. 9B is a partial cross-sectional view taken along the line B1-B1 of FIG. In this operation example, for convenience of description, the tubular member 2 is fixed so as not to be rotatable about the axis and capable of translation in the axial direction, and the shaft member 3 is rotatable about the axis and translated in the axial direction. It is assumed to be fixed to be impossible.
 各図により示される場面では、筒状部材2の各凸ユニット23に形成された各凸部231は、シャフト部材3の突条33と対面している。この状態では、N極に着磁されている各磁石25の外側曲面252から出た磁束は、本体部20を経由して各凸ユニット23の各凸部231に進入する。本体部20は、磁性材料で形成されることで、バックヨーク(磁気シールド)として機能することができる。各凸部231に進入した磁束は、各凸ユニット23から放出され、シャフト部材3の突条33に進入する。突条33に進入した磁束は、突条33内又は/及び軸体を経由して、各磁石25と対面する部分まで到達し、この部分から、S極に着磁された各磁石25の内側曲面251に向けて放出される。 In the scenes shown in each drawing, each convex portion 231 formed on each convex unit 23 of the tubular member 2 faces the ridge 33 of the shaft member 3. In this state, the magnetic flux emitted from the outer curved surface 252 of each magnet 25 magnetized to the N pole enters each convex portion 231 of each convex unit 23 via the main body portion 20. The body portion 20 can function as a back yoke (magnetic shield) by being made of a magnetic material. The magnetic flux that has entered each convex portion 231 is emitted from each convex unit 23 and enters the protrusion 33 of the shaft member 3. The magnetic flux that has entered the ridge 33 reaches the portion facing each magnet 25 through the ridge 33 and / or via the shaft, and from this portion, the inside of each magnet 25 magnetized to the S pole. It is emitted toward the curved surface 251.
 つまり、本実施形態では、筒状部材2の内周面22において、各凸ユニット25及び各磁石25が隣り合うように配置されることで、各凸ユニット25がコンシクエントポールとなる。各磁石25から放出された磁束が、筒状部材2(本体部20)、各凸ユニット23(凸部231)、及びシャフト部材3(突条33)の順で通過し、再び各磁石25に戻る磁気回路が形成される。図7に示されるとおり、この磁気回路により、各凸部231の表面がN極として作用するのに対して、突条33の各凸部231と対面する部分がS極として作用する。また、突条33の各磁石25と対面する部分がN極として作用する。内側曲面251がN極に着磁され、外側曲面252がS極に着磁されている場合にも、磁束の向きが反対であるものの、上記と同じように磁気回路が形成される。これにより、本実施形態では、筒状部材2の各凸部231とシャフト部材3の突条33との間で磁気による引力が作用する。こうして、筒状部材2及びシャフト部材3により、磁気ネジ機構が構成される。 That is, in the present embodiment, each convex unit 25 and each magnet 25 are arranged adjacent to each other on the inner peripheral surface 22 of the tubular member 2, so that each convex unit 25 becomes a consequent pole. The magnetic flux emitted from each magnet 25 passes through the tubular member 2 (main body portion 20), each convex unit 23 (convex portion 231), and the shaft member 3 (protruding ridge 33) in this order, and then returns to each magnet 25. A return magnetic circuit is formed. As shown in FIG. 7, by this magnetic circuit, the surface of each protrusion 231 acts as an N pole, whereas the portion of the ridge 33 facing each protrusion 231 acts as an S pole. Further, the portion of the ridge 33 facing each magnet 25 acts as an N pole. Even when the inner curved surface 251 is magnetized to the N pole and the outer curved surface 252 is magnetized to the S pole, the magnetic circuit is formed in the same manner as the above although the direction of the magnetic flux is opposite. As a result, in the present embodiment, a magnetic attractive force acts between each convex portion 231 of the tubular member 2 and the protrusion 33 of the shaft member 3. Thus, the tubular member 2 and the shaft member 3 constitute a magnetic screw mechanism.
 この状態で、シャフト部材3を反時計回りに回転させると、シャフト部材3の突条33は、螺旋状に形成されているため、筒状部材2に対して軸方向(図9Aの左右方向)に並進する。本実施形態では、突条33は、右螺旋に形成されている。そのため、図9Aの例では、突条33は、右方向に並進する。これにより、シャフト部材3の突条33は、筒状部材2の各凸部231に対して軸方向にずれるように移動する。この移動に対して、各磁石25による上記引力は、突条33と各凸部231との位置関係を維持するように作用する。そのため、この磁力の作用を超えた負荷がかからない限りは、筒状部材2は、突条33の並進した分だけ軸方向に並進する。つまり、図9Aの例では、突条33の右方向の並進に追従するように、筒状部材2は、右方向に並進する。 In this state, when the shaft member 3 is rotated counterclockwise, the protrusions 33 of the shaft member 3 are formed in a spiral shape, so that the shaft member 3 has an axial direction (left and right direction in FIG. 9A) with respect to the tubular member 2. Translate to. In this embodiment, the protrusion 33 is formed in a right spiral. Therefore, in the example of FIG. 9A, the protrusion 33 translates to the right. As a result, the ridge 33 of the shaft member 3 moves so as to be displaced in the axial direction with respect to each convex portion 231 of the tubular member 2. With respect to this movement, the attractive force of each magnet 25 acts so as to maintain the positional relationship between the protrusion 33 and each convex portion 231. Therefore, unless a load exceeding the action of this magnetic force is applied, the tubular member 2 translates in the axial direction by the amount of translation of the protrusion 33. That is, in the example of FIG. 9A, the tubular member 2 translates to the right so as to follow the translation of the ridge 33 to the right.
 以上の作用により、本実施形態に係る磁気式動力伝達構造体1は、シャフト部材3を回転させることで、筒状部材2を軸方向に並進させることができる。なお、シャフト部材3の回転方向は反時計回りに限定されなくてもよい。シャフト部材3は時計回りに回転させてもよい。シャフト部材3を時計回りに回転させた場合、図9Aの例では、突条33は左方向に並進し、筒状部材2は、この突条33の並進に追従して左方向に並進する。つまり、シャフト部材3の回転方向により、筒状部材2の移動方向を決定することができる。 With the above operation, in the magnetic power transmission structure 1 according to the present embodiment, the tubular member 2 can be translated in the axial direction by rotating the shaft member 3. The rotation direction of the shaft member 3 may not be limited to the counterclockwise direction. The shaft member 3 may be rotated clockwise. When the shaft member 3 is rotated clockwise, in the example of FIG. 9A, the ridge 33 translates leftward, and the tubular member 2 follows the translation of the ridge 33 and translates leftward. That is, the moving direction of the tubular member 2 can be determined by the rotation direction of the shaft member 3.
 また、上記動作例では、筒状部材2は軸周りに回転不能に固定されており、シャフト部材3は軸割に回転可能に固定されていると仮定した。しかしながら、筒状部材2及びシャフト部材3の固定状態はこのような例に限定されなくてもよい。筒状部材2が、軸周りに回転可能に固定され、シャフト部材3が軸周りに回転不能に固定されてもよい。この場合、筒状部材2を軸周りに回転させることで、筒状部材2及びシャフト部材3の位置関係を並進方向(軸方向)にずらすことができる。 Also, in the above operation example, it is assumed that the tubular member 2 is fixed so as not to rotate around the axis, and the shaft member 3 is rotatably fixed to the shaft split. However, the fixed state of the tubular member 2 and the shaft member 3 may not be limited to such an example. The tubular member 2 may be fixed rotatably around the axis, and the shaft member 3 may be fixed non-rotatably around the axis. In this case, by rotating the tubular member 2 around the axis, the positional relationship between the tubular member 2 and the shaft member 3 can be shifted in the translational direction (axial direction).
 §3 使用例
 次に、図10を用いて、本実施形態に係る磁気式動力伝達構造体1の使用例として、上記の磁気式動力伝達構造体1を用いたアクチュエータについて説明する。図10は、本実施形態に係る磁気式動力伝達構造体1を用いたアクチュエータ100の構成の一例を模式的に例示する。
§3 Example of Use Next, as an example of use of the magnetic power transmission structure 1 according to the present embodiment, an actuator using the magnetic power transmission structure 1 will be described with reference to FIG. 10. FIG. 10 schematically illustrates an example of the configuration of the actuator 100 using the magnetic power transmission structure 1 according to this embodiment.
 本実施形態では、アクチュエータ100は、平板状のベースプレート101を備えており、このベースプレート101には、矩形状の3つの固定部材102~104が軸方向に並んで配置されている。シャフト部材3の一端部は、軸受け105を介して固定部材102に回転可能に固定されている。また、シャフト部材3は、他端部側に配置された各固定部材(103、104)にも回転可能に固定されている。シャフト部材3の他端部には回転モータ111が取り付けられており、かつこの回転モータ111と固定部材104を挟むようにカップリング106が取り付けられている。これにより、シャフト部材3は、回転可能にかつ並進不能に固定されている。 In the present embodiment, the actuator 100 includes a flat plate-shaped base plate 101, and three rectangular fixing members 102 to 104 are arranged side by side in the axial direction on the base plate 101. One end of the shaft member 3 is rotatably fixed to the fixed member 102 via a bearing 105. The shaft member 3 is also rotatably fixed to each fixing member (103, 104) arranged on the other end side. A rotary motor 111 is attached to the other end of the shaft member 3, and a coupling 106 is attached so as to sandwich the rotary motor 111 and the fixed member 104. Thereby, the shaft member 3 is fixed rotatably and non-translatably.
 一方、筒状部材2は、一対の固定部材(102、103)の間に配置されている。ベースプレート101の面には、軸方向に沿って延びるリニアガイド107が設けられており、筒状部材2の底面は、このリニアガイド107に取り付けられている。これにより、筒状部材2は、回転不能にかつ並進可能に固定されている。また、筒状部材2の一端部側の面には、固定部材102よりも先に延びる4つの出力用シャフト112が取り付けられており、出力用シャフト112の先端にはロッドエンド113が取り付けられている。出力用シャフト112及びロッドエンド113により出力軸が構成されている。 On the other hand, the tubular member 2 is arranged between the pair of fixing members (102, 103). A linear guide 107 extending along the axial direction is provided on the surface of the base plate 101, and the bottom surface of the tubular member 2 is attached to the linear guide 107. As a result, the tubular member 2 is fixed so as not to rotate and to translate. Further, four output shafts 112 extending ahead of the fixing member 102 are attached to the surface of the tubular member 2 on the one end side, and a rod end 113 is attached to the tip of the output shaft 112. There is. The output shaft 112 and the rod end 113 form an output shaft.
 回転モータ111は、「回転装置」の一例であり、シャフト部材3を時計回り又は反時計回りに回転させる。回転モータ111には、市販の回転型モータが用いられてよい。この回転モータ111の回転軸には、シャフト部材3の傾きを特定可能なように、回転モータ111の回転量を測定する回転センサ117が取り付けられている。回転センサ117の種類は、特に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。回転センサ117には、例えば、公知のロータリエンコーダが用いられてよい。なお、シャフト部材3の傾きとは、シャフト部材3の回転角度、すなわち、筒状部材2に対するシャフト部材3の軸周りの角度のことである。図10の例では、回転センサ117は、シャフト部材3の他端部に取り付けられている。ただし、回転センサ117の配置は、このような例に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。回転センサ117は、例えば、シャフト部材3の一端部の近傍に配置されるように、軸受け105に取り付けられてもよい。回転センサ117を回転モータ111の後端に取り付けた場合、回転モータ111に付属する減速機(不図示)の分だけ計測誤差が生じる可能性がある。これに対して、回転センサ117を軸受け105に取り付けた場合には、シャフト部材3の回転を直接的に計測することができる。そのため、回転モータ111によるシャフト部材3の回転量を正確に計測することができる。 The rotary motor 111 is an example of a “rotating device” and rotates the shaft member 3 clockwise or counterclockwise. A commercially available rotary motor may be used as the rotary motor 111. A rotation sensor 117 for measuring the rotation amount of the rotation motor 111 is attached to the rotation shaft of the rotation motor 111 so that the inclination of the shaft member 3 can be specified. The type of rotation sensor 117 may not be particularly limited and may be appropriately selected according to the embodiment. For the rotation sensor 117, for example, a known rotary encoder may be used. The inclination of the shaft member 3 means the rotation angle of the shaft member 3, that is, the angle around the axis of the shaft member 3 with respect to the tubular member 2. In the example of FIG. 10, the rotation sensor 117 is attached to the other end of the shaft member 3. However, the arrangement of the rotation sensor 117 is not limited to such an example, and may be appropriately selected according to the embodiment. The rotation sensor 117 may be attached to the bearing 105 so as to be arranged near one end of the shaft member 3, for example. When the rotation sensor 117 is attached to the rear end of the rotation motor 111, a measurement error may occur due to the reduction gear (not shown) attached to the rotation motor 111. On the other hand, when the rotation sensor 117 is attached to the bearing 105, the rotation of the shaft member 3 can be directly measured. Therefore, the rotation amount of the shaft member 3 by the rotation motor 111 can be accurately measured.
 また、ベースプレート101には、シャフト部材3に対する筒状部材2の位置を特定可能なように、位置センサ116が取り付けられている。ただし、位置センサ116の配置は、このような例に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。位置センサ116は、例えば、筒状部材2に取り付けられてもよい。この位置センサ116には、例えば、公知のリニアエンコーダが用いられてよい。位置センサ116の種類は、特に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。 A position sensor 116 is attached to the base plate 101 so that the position of the tubular member 2 with respect to the shaft member 3 can be specified. However, the arrangement of the position sensor 116 is not limited to such an example, and may be appropriately selected according to the embodiment. The position sensor 116 may be attached to the tubular member 2, for example. For this position sensor 116, for example, a known linear encoder may be used. The type of position sensor 116 is not particularly limited, and may be appropriately selected according to the embodiment.
 このアクチュエータ100は、次のように動作することができる。すなわち、回転モータ111を駆動することにより、シャフト部材3を時計回り又は反時計回りに回転させることができる。そして、このシャフト部材3の回転に応じて、上記のとおり、筒状部材2を軸方向に並進させることができる。したがって、本実施形態に係るアクチュエータ100では、回転モータ111を駆動することによって、出力用シャフト112及びロッドエンド113で構成された出力軸を並進させることができる。 This actuator 100 can operate as follows. That is, by driving the rotation motor 111, the shaft member 3 can be rotated clockwise or counterclockwise. Then, according to the rotation of the shaft member 3, the tubular member 2 can be translated in the axial direction as described above. Therefore, in the actuator 100 according to the present embodiment, by driving the rotary motor 111, the output shaft formed of the output shaft 112 and the rod end 113 can be translated.
 [制御装置]
 (ハードウェア構成)
 次に、図11を用いて、上記のようなアクチュエータ100の動作を制御するための制御装置の一例について説明する。図11は、本実施形態に係る制御装置9のハードウェア構成を模式的に例示する。
[Control device]
(Hardware configuration)
Next, an example of the control device for controlling the operation of the actuator 100 as described above will be described with reference to FIG. FIG. 11 schematically illustrates the hardware configuration of the control device 9 according to the present embodiment.
 図11に例示されるように、本実施形態に係る制御装置9は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含む制御部91、制御部91で実行されるプログラム921等を記憶する記憶部92、及び外部装置と接続するための外部インタフェース93が電気的に接続されたコンピュータである。ただし、図11では、外部インタフェースを「外部I/F」と記載している。 As illustrated in FIG. 11, the control device 9 according to the present embodiment includes a control unit 91 and a control unit 91 that include a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. The computer is electrically connected to a storage unit 92 that stores a program 921 to be executed and the like, and an external interface 93 for connecting to an external device. However, in FIG. 11, the external interface is described as “external I / F”.
 上記磁気式動力伝達構造体1では、シャフト部材3に対する筒状部材2の位置とシャフト部材3の傾きとが定まれば、シャフト部材3の突条33と筒状部材2の各凸ユニット23における各凸部231との位置関係が定まるため、筒状部材2に作用する推進方向の力(以下、「出力」とも記載する)が定まる。そこで、本実施形態に係る制御装置9は、筒状部材2の位置z及びシャフト部材3の傾きθと筒状部材2に作用する出力Fとの関係を示す対応関係データ922を記憶部92に保持している。 In the magnetic power transmission structure 1 described above, when the position of the tubular member 2 with respect to the shaft member 3 and the inclination of the shaft member 3 are determined, the protrusion 33 of the shaft member 3 and each convex unit 23 of the tubular member 2 are formed. Since the positional relationship with each convex portion 231 is determined, the force in the propulsion direction that acts on the tubular member 2 (hereinafter also referred to as “output”) is determined. Therefore, the control device 9 according to the present embodiment stores, in the storage unit 92, correspondence data 922 indicating the relationship between the position z of the tubular member 2, the inclination θ of the shaft member 3, and the output F acting on the tubular member 2. keeping.
 ここで、図12A~図12Cを用いて、対応関係データ922について説明する。図12Aは、シャフト部材3の傾きθが一定である場合における筒状部材2の位置zと出力Fとの関係を示している。また、図12Bは、筒状部材2の位置zが一定である場合におけるシャフト部材3の傾きθと出力Fとの関係を示している。更に、図12Cは、対応関係データ922の一例を示す。 Here, the correspondence data 922 will be described with reference to FIGS. 12A to 12C. FIG. 12A shows the relationship between the position z of the tubular member 2 and the output F when the inclination θ of the shaft member 3 is constant. Further, FIG. 12B shows a relationship between the inclination θ of the shaft member 3 and the output F when the position z of the tubular member 2 is constant. Further, FIG. 12C shows an example of the correspondence data 922.
 例えば、アクチュエータ100を作製した後に、シャフト部材3を傾きθに傾けて、筒状部材2を位置zaに配置する。そして、シャフト部材3の傾きθを一定に保持したまま、この筒状部材2を所定間隔毎に移動させて、筒状部材2に作用する力を出力Fとして測定する。これにより、図12Aに例示されるような筒状部材2の位置zと出力Fとの関係を示すデータを得ることができる。なお、図12Aの例では、位置zaは、シャフト部材3が傾きθに傾いているときに、筒状部材2の各凸部231とシャフト部材3の突条33とが対面状態にあるような筒状部材2の位置を示している。また、Lは、突条33の軸方向に隣接する山の間隔を示している。 For example, after the actuator 100 is manufactured, the shaft member 3 is tilted at the inclination θ and the tubular member 2 is arranged at the position za. Then, while keeping the inclination θ of the shaft member 3 constant, the tubular member 2 is moved at predetermined intervals, and the force acting on the tubular member 2 is measured as the output F. As a result, data showing the relationship between the position z of the tubular member 2 and the output F as illustrated in FIG. 12A can be obtained. In the example of FIG. 12A, at the position za, when the shaft member 3 is tilted at the angle θ, each convex portion 231 of the tubular member 2 and the protrusion 33 of the shaft member 3 face each other. The position of the tubular member 2 is shown. Further, L indicates the interval between the ridges adjacent to each other in the axial direction of the protrusion 33.
 同様に、アクチュエータ100を作製した後に、筒状部材2を位置zに配置して、シャフト部材3を傾きθaに傾ける。そして、筒状部材2の位置zを一定に保持したまま、シャフト部材3を所定角度毎に傾けて、筒状部材2に作用する力を出力Fとして測定する。これにより、図12Bに例示されるようなシャフト部材3の傾きθと出力Fとの関係を示すデータを得ることができる。なお、図12Bの例では、傾きθaは、筒状部材2が位置zにあるときに、筒状部材2の各凸部231とシャフト部材3の突条33とが対面状態にあるようなシャフト部材3の傾きを示している。 Similarly, after the actuator 100 is manufactured, the tubular member 2 is placed at the position z and the shaft member 3 is tilted at the inclination θa. Then, while the position z of the tubular member 2 is kept constant, the shaft member 3 is tilted at every predetermined angle, and the force acting on the tubular member 2 is measured as the output F. As a result, data showing the relationship between the inclination θ of the shaft member 3 and the output F as illustrated in FIG. 12B can be obtained. In the example of FIG. 12B, the inclination θa is set such that when the tubular member 2 is at the position z, the convex portions 231 of the tubular member 2 and the protrusions 33 of the shaft member 3 face each other. The inclination of the member 3 is shown.
 そして、図12A及び図12Bに示されるようなデータを得ることにより、図12Cに例示される筒状部材2の位置z及びシャフト部材3の傾きθと出力Fとの関係を示す対応関係データ922を得ることができる。なお、このような対応関係データ922は、近似関数で与えられてもよいし、テーブル形式のデータで与えられてもよい。 Then, by obtaining the data as shown in FIGS. 12A and 12B, correspondence data 922 showing the relationship between the position z of the tubular member 2 and the inclination θ of the shaft member 3 and the output F illustrated in FIG. 12C. Can be obtained. It should be noted that such correspondence data 922 may be given as an approximate function, or may be given as tabular data.
 また、本実施形態に係る制御装置9は、各外部インタフェース93を介して、回転モータ111、位置センサ116、及び回転センサ117に接続している。そのため、制御装置9は、位置センサ116及び回転センサ117の出力により、筒状部材2の位置z及びシャフト部材3の傾きθの値を取得することができる。そして、制御装置9は、対応関係データ922を参照し、筒状部材2の位置z及びシャフト部材3の傾きθの値に基づいて、駆動するアクチュエータ100の出力Fを特定し、この出力Fに応じた回転方向及び速度(PWM入力)で回転モータ111を駆動する。これにより、制御装置9は、アクチュエータ100の動作を制御することができる。具体的な制御方法に関しては、後述する制御例で詳細に説明する。 Further, the control device 9 according to the present embodiment is connected to the rotation motor 111, the position sensor 116, and the rotation sensor 117 via each external interface 93. Therefore, the control device 9 can acquire the values of the position z of the tubular member 2 and the inclination θ of the shaft member 3 based on the outputs of the position sensor 116 and the rotation sensor 117. Then, the control device 9 refers to the correspondence data 922, identifies the output F of the actuator 100 to be driven based on the values of the position z of the tubular member 2 and the inclination θ of the shaft member 3, and determines the output F as the output F. The rotation motor 111 is driven at the corresponding rotation direction and speed (PWM input). Thereby, the control device 9 can control the operation of the actuator 100. A specific control method will be described in detail in a control example described later.
 なお、制御装置9の具体的なハードウェア構成に関して、実施の形態に応じて、適宜、構成要素の省略、置換、及び追加が可能である。また、制御装置9は、提供されるサービス専用に設計された情報処理装置の他、デスクトップ型PC(Personal Computer)、タブレットPC等の汎用の情報処理装置であってもよい。更に、制御装置9は、1又は複数台の情報処理装置により構成されてよい。 The specific hardware configuration of the control device 9 may be omitted, replaced, or added as appropriate depending on the embodiment. The control device 9 may be a general-purpose information processing device such as a desktop PC (Personal Computer) or a tablet PC, as well as an information processing device designed specifically for the provided service. Further, the control device 9 may be configured by one or a plurality of information processing devices.
 (ソフトウェア構成)
 次に、図13を用いて、本実施形態に係る制御装置9のソフトウェア構成の一例について説明する。図13は、本実施形態に係る制御装置9のソフトウェア構成の一例を模式的に例示する。本実施形態では、制御装置9の制御部91が、記憶部92に記憶されたプログラム921をRAMに展開する。そして、制御部91は、RAMに展開されたプログラム921をCPUにより解釈及び実行して、各構成要素を制御する。これにより、制御装置9は、ソフトウェアモジュールとして位置制御部911及び力制御部912を備えるコンピュータとして動作する。
(Software configuration)
Next, an example of the software configuration of the control device 9 according to the present embodiment will be described with reference to FIG. FIG. 13 schematically illustrates an example of the software configuration of the control device 9 according to this embodiment. In the present embodiment, the control unit 91 of the control device 9 loads the program 921 stored in the storage unit 92 into the RAM. Then, the control unit 91 interprets and executes the program 921 loaded in the RAM by the CPU to control each component. Accordingly, the control device 9 operates as a computer including the position control unit 911 and the force control unit 912 as a software module.
 位置制御部911は、筒状部材2を所望の位置ztargetに移動させるようにアクチュエータ100の動作を制御する。一方、力制御部912は、筒状部材2から所望の出力Ftargetが得られるようにアクチュエータ100の動作を制御する。なお、本実施形態では、これらのソフトウェアモジュールがいずれも汎用のCPUによって実現される例を説明している。しかしながら、これらのソフトウェアモジュールの一部又は全部が、1又は複数の専用のプロセッサにより実現されてもよい。また、制御装置9のソフトウェア構成に関して、実施形態に応じて、適宜、ソフトウェアモジュールの省略、置換、及び追加が行われてもよい。各ソフトウェアモジュールに関しては後述する動作例で詳細に説明する。 The position control unit 911 controls the operation of the actuator 100 so as to move the tubular member 2 to the desired position z target . On the other hand, the force control unit 912 controls the operation of the actuator 100 so that the desired output F target is obtained from the tubular member 2. In this embodiment, an example in which all of these software modules are realized by a general-purpose CPU has been described. However, some or all of these software modules may be implemented by one or more dedicated processors. Further, regarding the software configuration of the control device 9, depending on the embodiment, omission, replacement, and addition of software modules may be appropriately performed. Each software module will be described in detail in an operation example described later.
 (制御例)
 次に、本実施形態に係る制御装置9によるアクチュエータ100の動作制御の一例について説明する。制御装置9は、以下の3つの方法で、アクチュエータ100の動作を制御する。
(Example of control)
Next, an example of operation control of the actuator 100 by the control device 9 according to the present embodiment will be described. The control device 9 controls the operation of the actuator 100 by the following three methods.
 (1)位置制御
 まず、図14を用いて、制御装置9による筒状部材2(出力軸)の位置制御の一例について説明する。図14は、制御装置9による筒状部材2の位置制御の方法の一例を例示する。図14の例では、制御装置9は、位置センサ116により得られる筒状部材2の位置zの情報のみで、アクチュエータ100の動作を制御する。
(1) Position Control First, an example of position control of the tubular member 2 (output shaft) by the control device 9 will be described with reference to FIG. FIG. 14 illustrates an example of a method of controlling the position of the tubular member 2 by the control device 9. In the example of FIG. 14, the control device 9 controls the operation of the actuator 100 only by the information of the position z of the tubular member 2 obtained by the position sensor 116.
 具体的には、制御装置9の制御部91は、位置制御部911として動作して、位置センサ116の出力に基づいて、筒状部材2の位置zの値を取得する。また、制御部91は、筒状部材2の所望の位置ztargetの値を受け付ける。所望の位置ztargetの値は、適宜取得されてよい。例えば、所望の位置ztargetの値は、他のコンピュータからの入力により得られてもよいし、所望の動作アルゴリズム(例えば、出力軸に外力が作用したときに、筒状部材2の位置を一定に保つ)に従って算出することにより得られてもよい。 Specifically, the control unit 91 of the control device 9 operates as the position control unit 911 and acquires the value of the position z of the tubular member 2 based on the output of the position sensor 116. Further, the control unit 91 receives the value of the desired position z target of the tubular member 2. The value of the desired position z target may be acquired as appropriate. For example, the value of the desired position z target may be obtained by an input from another computer, or a desired operation algorithm (for example, when the external force acts on the output shaft, the position of the tubular member 2 is kept constant). It may be obtained by calculating according to
 続いて、制御部91は、所望の位置ztargetの値と位置センサ116から取得した位置zの値との差分に基づいて、筒状部材2を所望の位置ztargetに移動させるための回転モータ111の回転方向を特定する。そして、制御部91は、特定した回転方向に所定の速度で駆動する指令を回転モータ111に与える。 Subsequently, the control unit 91, based on the difference between the value of the desired position z target and the value of the position z acquired from the position sensor 116, a rotation motor for moving the tubular member 2 to the desired position z target. The rotation direction of 111 is specified. Then, the control unit 91 gives the rotation motor 111 a command to drive the specified rotation direction at a predetermined speed.
 回転モータ111を駆動する所定の速度は、任意であってよい。例えば、制御部91は、所望の位置ztargetの値と位置センサ116から取得した位置zの値との差分の大きさに応じた速度で駆動する指令を回転モータ111に与えてもよい。また、例えば、制御部91は、所望の位置ztargetの値と位置センサ116から取得した位置zの値との差分の大きさとは無関係に、一定の速度で駆動する指令を回転モータ111に与えてもよい。 The predetermined speed for driving the rotary motor 111 may be arbitrary. For example, the control unit 91 may give a command to the rotary motor 111 to drive at a speed according to the magnitude of the difference between the value of the desired position z target and the value of the position z acquired from the position sensor 116. Further, for example, the control unit 91 gives the rotation motor 111 a command to drive at a constant speed regardless of the magnitude of the difference between the desired position z target value and the position z value acquired from the position sensor 116. May be.
 これにより、アクチュエータ100は、筒状部材2が所望の位置ztargetに移動するように制御される。なお、本制御を行う場合、制御装置9は、回転センサ117の出力を利用しない。そのため、この制御方法を採用する場合には、回転センサ117は省略されてもよい。 Accordingly, the actuator 100 is controlled so that the tubular member 2 moves to the desired position z target . When performing this control, the control device 9 does not use the output of the rotation sensor 117. Therefore, when adopting this control method, the rotation sensor 117 may be omitted.
 (2)力制御
 次に、図15を用いて、制御装置9によるアクチュエータ100の力制御の一例について説明する。図15は、制御装置9によるアクチュエータ100の力制御の方法の一例を例示する。図15の例では、制御装置9は、筒状部材2の位置zの情報を位置センサ116から取得し、シャフト部材3の傾きθの情報を回転センサ117から取得する。そして、制御装置9は、これらの情報(出力)に基づいて、アクチュエータ100の筒状部材2(出力軸)に発生する力Fが所望の値になるように、アクチュエータ100の動作を制御する。
(2) Force Control Next, an example of force control of the actuator 100 by the control device 9 will be described with reference to FIG. FIG. 15 illustrates an example of a method of controlling the force of the actuator 100 by the control device 9. In the example of FIG. 15, the control device 9 acquires the information of the position z of the tubular member 2 from the position sensor 116, and acquires the information of the inclination θ of the shaft member 3 from the rotation sensor 117. Then, the control device 9 controls the operation of the actuator 100 based on these pieces of information (output) so that the force F generated on the tubular member 2 (output shaft) of the actuator 100 has a desired value.
 具体的には、制御装置9の制御部91は、力制御部912として動作して、位置センサ116の出力に基づいて、筒状部材2の位置zの値を取得する。また、制御部91は、回転センサ117の出力に基づいて、シャフト部材3の傾きθの値を取得する。更に、制御部91は、筒状部材2(出力軸)で発生させる所望の力Ftargetの値を受け付ける。所望の力Ftargetの値は、適宜取得されてよい。例えば、所望の力Ftargetの値は、他のコンピュータからの入力により得られてもよいし、所望の動作アルゴリズム(例えば、筒状部材2をバネのように動作させる。すなわち、出力軸に外力が作用し、筒状部材2が変位したときに、元の位置の方向に変位量に応じた力を筒状部材2に発生させる。)に従って算出することにより得られてもよい。 Specifically, the control unit 91 of the control device 9 operates as the force control unit 912 and acquires the value of the position z of the tubular member 2 based on the output of the position sensor 116. Further, the control unit 91 acquires the value of the inclination θ of the shaft member 3 based on the output of the rotation sensor 117. Further, the control unit 91 receives the value of the desired force F target generated by the tubular member 2 (output shaft). The value of the desired force F target may be acquired as appropriate. For example, the value of the desired force F target may be obtained by input from another computer, or a desired operation algorithm (for example, the tubular member 2 may be operated like a spring, that is, an external force may be applied to the output shaft). When the tubular member 2 is displaced due to the action of, the force corresponding to the amount of displacement is generated in the tubular member 2 in the direction of the original position.).
 続いて、制御部91は、対応関係データ922を参照することで、位置センサ116から取得した筒状部材2の位置zの値及びシャフト部材3の傾きθの値に応じて、筒状部材2(出力軸)で発生している力Fの値を特定する。更に、制御部91は、筒状部材2(出力軸)で発生している力Fの値と所望の力Ftargetの値との差分に基づいて、筒状部材2(出力軸)で所望の力Ftargetを発生させるように、回転モータ111の回転方向と速度とを決定する。そして、制御部91は、決定した回転方向及び速度で駆動する指令を回転モータ111に与える。これにより、アクチュエータ100は、出力軸を介して所望の力Ftargetが得られるように制御される。 Subsequently, the control unit 91 refers to the correspondence data 922, and according to the value of the position z of the tubular member 2 and the value of the inclination θ of the shaft member 3 acquired from the position sensor 116, the tubular member 2 is obtained. The value of the force F generated on the (output shaft) is specified. Further, the control unit 91 causes the tubular member 2 (output shaft) to obtain the desired force based on the difference between the value of the force F generated on the tubular member 2 (output shaft) and the value of the desired force F target . The rotation direction and speed of the rotary motor 111 are determined so as to generate the force F target . Then, the control unit 91 gives the rotation motor 111 a command to drive in the determined rotation direction and speed. As a result, the actuator 100 is controlled so that the desired force F target is obtained via the output shaft.
 (3)位置及び力制御
 次に、図16を用いて、制御装置9による筒状部材2(出力軸)の位置及び力制御の一例について説明する。図16は、制御装置9による筒状部材2の位置及び力制御の方法の一例を例示する。図16の例では、制御装置9は、筒状部材2の位置zの情報を位置センサ116から取得し、シャフト部材3の傾きθの情報を回転センサ117から取得する。そして、制御装置9は、これらの情報(出力)に基づいて、所望の力Ftargetが得られる状態で筒状部材2(出力軸)を所望の位置ztargetに移動させるように、アクチュエータ100の動作を制御する。
(3) Position and Force Control Next, an example of the position and force control of the tubular member 2 (output shaft) by the control device 9 will be described with reference to FIG. FIG. 16 illustrates an example of a method of controlling the position and force of the tubular member 2 by the control device 9. In the example of FIG. 16, the control device 9 acquires information on the position z of the tubular member 2 from the position sensor 116, and acquires information on the inclination θ of the shaft member 3 from the rotation sensor 117. Then, the control device 9 of the actuator 100 moves the tubular member 2 (output shaft) to the desired position z target in a state where the desired force F target is obtained, based on these pieces of information (output). Control movements.
 具体的には、制御装置9の制御部91は、位置センサ116の出力に基づいて、筒状部材2の位置zの値を取得する。また、制御部91は、回転センサ117の出力に基づいて、シャフト部材3の傾きθの値を取得する。 Specifically, the control unit 91 of the control device 9 acquires the value of the position z of the tubular member 2 based on the output of the position sensor 116. Further, the control unit 91 acquires the value of the inclination θ of the shaft member 3 based on the output of the rotation sensor 117.
 次に、制御部91は、位置制御部911として動作して、筒状部材2の所望の位置ztargetの値を受け付ける。所望の位置ztargetの値は、上記のとおり、適宜取得されてよい。そして、制御部91は、所望の位置ztargetの値と位置センサ116から取得した位置zの値との差分に基づいて、筒状部材2(出力軸)で発生させる所望の力Ftargetの値を決定する。 Next, the control unit 91 operates as the position control unit 911 and receives the value of the desired position z target of the tubular member 2. The value of the desired position z target may be appropriately acquired as described above. Then, the control unit 91, based on the difference between the value of the desired position z target and the value of the position z acquired from the position sensor 116, the value of the desired force F target generated in the tubular member 2 (output shaft). To decide.
 所望の力Ftargetの値の決定方法は、実施の形態に応じて適宜選択されてよい。例えば、制御部91は、筒状部材2(出力軸)をバネのように動作させるように、所望の力Ftargetの値を決定してもよい。換言すると、制御部91は、出力軸に外力が作用し、筒状部材2が変位したときに、元の位置(所望の位置ztarget)の方向に上記位置の値の差分に応じた力を発生させるように、所望の力Ftargetの値を決定してもよい。また、例えば、制御部91は、所望の力Ftargetの値を一定の値に固定してもよい。 The method of determining the value of the desired force F target may be appropriately selected according to the embodiment. For example, the control unit 91 may determine the value of the desired force F target so that the tubular member 2 (output shaft) operates like a spring. In other words, when an external force acts on the output shaft and the tubular member 2 is displaced, the control section 91 applies a force in the direction of the original position (desired position z target ) according to the difference in the values of the position. The value of the desired force F target may be determined to be generated. Further, for example, the control unit 91 may fix the value of the desired force F target to a constant value.
 続いて、制御部91は、力制御部912として動作し、対応関係データ922を参照することで、位置センサ116から取得した筒状部材2の位置zの値及びシャフト部材3の傾きθの値に応じて、筒状部材2(出力軸)で発生している力Fの値を特定する。更に、制御部91は、筒状部材2(出力軸)で発生している力Fの値と所望の力Ftargetの値との差分に基づいて、筒状部材2(出力軸)で所望の力Ftargetを発生させるように、回転モータ111の回転方向と速度とを決定する。そして、制御部91は、決定した回転方向及び速度で駆動する指令を回転モータ111に与える。これにより、アクチュエータ100は、所望の力Ftargetが得られる状態で筒状部材2(出力軸)を所望の位置ztargetに移動させるように制御される。なお、説明の便宜上、上記図15及び図16では、回転センサ117は、シャフト部材3に取り付けられている。しかしながら、回転センサ117の位置は、このような例に限定されなくてもよく、図10と同様に回転モータ111の後端部に取り付けられてもよいし、軸受け105に取り付けられてもよい。 Subsequently, the control unit 91 operates as the force control unit 912, and by referring to the correspondence data 922, the value of the position z of the tubular member 2 and the value of the inclination θ of the shaft member 3 acquired from the position sensor 116. According to, the value of the force F generated in the tubular member 2 (output shaft) is specified. Further, the control unit 91 causes the tubular member 2 (output shaft) to obtain the desired force based on the difference between the value of the force F generated on the tubular member 2 (output shaft) and the value of the desired force F target . The rotation direction and speed of the rotary motor 111 are determined so as to generate the force F target . Then, the control unit 91 gives the rotation motor 111 a command to drive in the determined rotation direction and speed. As a result, the actuator 100 is controlled to move the tubular member 2 (output shaft) to the desired position z target in a state where the desired force F target is obtained. For convenience of description, the rotation sensor 117 is attached to the shaft member 3 in FIGS. 15 and 16. However, the position of the rotation sensor 117 is not limited to such an example, and may be attached to the rear end of the rotation motor 111 as in FIG. 10 or may be attached to the bearing 105.
 §4 特徴
 以上のとおり、本実施形態に係る磁気式動力伝達構造体1では、磁気回路を形成するための各磁石25は、各凸ユニット23の径方向外側には配置されず、各凸ユニット23と軸周りに隣り合うように配置される。そのため、各磁石25の寸法誤差の影響が、各凸ユニット23の各凸部231とシャフト部材3の突条33との間の距離の寸法精度に及ぶのを避けることができる。つまり、各磁石25の寸法誤差の影響を考慮することなく、各凸ユニット23の各凸部231とシャフト部材3の突条33との間の距離の寸法誤差を管理することができる。加えて、本実施形態では、シャフト部材3から見て径方向外側に、凸ユニット23及び磁石25の両方を配置するのではなく、凸ユニット23及び磁石25のいずれかが配置されればよいため、部品点数を抑えることができる。本実施形態では、各凸ユニット23を筒状部材2の内周面22に一体形成することで、更に部品点数を抑えることができる。具体的には、内周面22に2つの凸ユニット23の形成された筒状部材2、2つの磁石25、及びシャフト部材3の4つの部品で磁気式動力伝達構造体1を構成することができる。したがって、本実施形態によれば、よりシンプルな構造で寸法精度の管理しやすい磁気ネジ機構を提供することができる。これにより、より安価で実用性に富んだ磁気ネジ機構を性能のバラツキを抑えた上で量産することができる。
§4 Features As described above, in the magnetic power transmission structure 1 according to the present embodiment, the magnets 25 for forming the magnetic circuit are not arranged on the outer side in the radial direction of the convex units 23, and the convex units 23 are not arranged. It is arranged so as to be adjacent to 23 around the axis. Therefore, the influence of the dimensional error of each magnet 25 can be prevented from affecting the dimensional accuracy of the distance between each convex portion 231 of each convex unit 23 and the protrusion 33 of the shaft member 3. That is, it is possible to manage the dimensional error of the distance between each convex portion 231 of each convex unit 23 and the ridge 33 of the shaft member 3 without considering the influence of the dimensional error of each magnet 25. In addition, in the present embodiment, either the convex unit 23 or the magnet 25 may be arranged on the radially outer side when viewed from the shaft member 3, instead of arranging both the convex unit 23 and the magnet 25. It is possible to reduce the number of parts. In the present embodiment, each convex unit 23 is formed integrally with the inner peripheral surface 22 of the tubular member 2, so that the number of parts can be further suppressed. Specifically, the magnetic power transmission structure 1 can be configured with four parts, namely the tubular member 2 having the two convex units 23 formed on the inner peripheral surface 22, the two magnets 25, and the shaft member 3. it can. Therefore, according to the present embodiment, it is possible to provide a magnetic screw mechanism having a simpler structure and easy to control the dimensional accuracy. As a result, it is possible to mass-produce a magnetic screw mechanism that is cheaper and more practical, while suppressing variations in performance.
 なお、本実施形態では、各磁石25には、回転型モータ等に広く利用されている磁石を利用することができる。そのため、各磁石25は安価に入手することができる。また、各凸ユニット23において、各凸部231は、各磁石25により着磁され、磁極として機能する。この磁極を設けるための工程は、凸ユニット23の内周面に各凸部231を設ける工程に過ぎない。そのため、筒状部材2側に形成する磁極、すなわち、凸部231の数は容易に調整することができる。これにより、磁気ネジ機構により出力の大きさを適宜調節することができる。したがって、本実施形態によれば、生産性に優れ、かつ実用性の高い磁気ネジ機構を提供することができる。 In the present embodiment, each magnet 25 may be a magnet widely used in rotary motors and the like. Therefore, each magnet 25 can be obtained at low cost. Further, in each convex unit 23, each convex portion 231 is magnetized by each magnet 25 and functions as a magnetic pole. The step of providing the magnetic poles is merely the step of providing the convex portions 231 on the inner peripheral surface of the convex unit 23. Therefore, the magnetic poles formed on the tubular member 2 side, that is, the number of the convex portions 231 can be easily adjusted. Thereby, the magnitude of the output can be appropriately adjusted by the magnetic screw mechanism. Therefore, according to the present embodiment, it is possible to provide a magnetic screw mechanism having excellent productivity and high practicality.
 §5 変形例
 以上、本発明の実施形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。また、上記磁気式動力伝達構造体1の各構成要素に関して、実施の形態に応じて、適宜、構成要素の省略、置換、及び追加が行われてもよい。上記磁気式動力伝達構造体1の各構成要素の形状及び寸法は、実施の形態に応じて、適宜設定されてもよい。例えば、以下の変更が可能である。なお、以下の変形例は適宜組み合わせ可能である。また、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略した。
§5 Modifications Although the embodiments of the present invention have been described in detail above, the above description is merely an example of the present invention in all respects. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention. Moreover, regarding each component of the magnetic power transmission structure 1, the component may be appropriately omitted, replaced, or added depending on the embodiment. The shape and size of each component of the magnetic power transmission structure 1 may be appropriately set according to the embodiment. For example, the following changes are possible. The following modifications can be combined as appropriate. Further, in the following, the same reference numerals are used for the same constituent elements as those in the above-described embodiment, and the description of the same points as those in the above-described embodiment is appropriately omitted.
 <5.1>
 上記実施形態では、筒状部材2には、凸ユニット23、溝部24、及び磁石25がそれぞれ2つずつ設けられている。しかしながら、筒状部材2に設けられる凸ユニット23、溝部24、及び磁石25の数は、2つに限られなくてもよく、3つ以上であってもよい。また、筒状部材2に設けられる凸ユニット23、溝部24、及び磁石25の数は、複数に限られなくてもよく、1つであってもよい。更に、上記の磁気回路を形成可能であれば、凸ユニット23及び磁石25の数は互いに一致していなくてもよい。例えば、1つの溝部24に複数の磁石25が配置されてもよい。
<5.1>
In the above embodiment, the tubular member 2 is provided with two convex units 23, two groove portions 24, and two magnets 25. However, the numbers of the convex units 23, the groove portions 24, and the magnets 25 provided on the tubular member 2 are not limited to two, and may be three or more. Further, the numbers of the convex units 23, the groove portions 24, and the magnets 25 provided on the tubular member 2 are not limited to a plurality, and may be one. Further, if the above magnetic circuit can be formed, the numbers of the convex units 23 and the magnets 25 do not have to match each other. For example, a plurality of magnets 25 may be arranged in one groove 24.
 また、上記実施では、各凸ユニット23の内側の面には、複数の凸部231が設けられている。図9Aにより示される例では、各凸ユニット23には、5つの凸部231が設けられている。しかしながら、各凸ユニット23に設けられる凸部231の数は、このような例に限定されなくてもよく、6つ以上であってもよいし、4つ以下であってもよい。また、各凸ユニット23に設けられる凸部231の数は、複数でなくてもよく、1つであってもよい。 In addition, in the above implementation, a plurality of convex portions 231 are provided on the inner surface of each convex unit 23. In the example shown in FIG. 9A, each convex unit 23 is provided with five convex portions 231. However, the number of the convex portions 231 provided in each convex unit 23 is not limited to such an example, and may be 6 or more, or 4 or less. Moreover, the number of the convex portions 231 provided in each convex unit 23 may not be plural, and may be one.
 <5.2>
 上記実施形態に係る磁気式動力伝達構造体1の各構成要素の形状及び寸法は、実施の形態に応じて適宜変更されてよい。
<5.2>
The shape and size of each component of the magnetic power transmission structure 1 according to the above-described embodiment may be appropriately changed according to the embodiment.
 例えば、上記実施形態では、シャフト部材3の本体部30は中実に構成されている。しかしながら、本体部30の形状は、このような例に限定されなくてもよい。各磁石25の磁束は、シャフト部材3の中心部分までは殆ど到達しない。そのため、シャフト部材3の中心部分は、上記磁気の作用には殆ど影響を与えない部分である。そこで、本体部30は、中空となるように、例えば、円筒状に形成されてもよい。これにより、上記磁気の作用に殆ど影響を与えることなく、シャフト部材3を軽量化することができる。なお、強度の観点から、シャフト部材3の本体部30を中空に形成した場合、樹脂材料等の非磁性材料をその中空部に充填してもよい。 For example, in the above embodiment, the main body 30 of the shaft member 3 is solid. However, the shape of the main body portion 30 may not be limited to such an example. The magnetic flux of each magnet 25 hardly reaches the central portion of the shaft member 3. Therefore, the central portion of the shaft member 3 is a portion that hardly affects the magnetic action. Therefore, the main body portion 30 may be formed into a hollow shape, for example, in a cylindrical shape. As a result, the weight of the shaft member 3 can be reduced with almost no effect on the magnetic action. From the viewpoint of strength, when the main body 30 of the shaft member 3 is formed hollow, a non-magnetic material such as a resin material may be filled in the hollow.
 また、上記実施形態では、シャフト部材3の突条33は1条である。しかしながら、突条33の数は、1条に限られなくてもよく、実施の形態に応じて適宜選択されてよい。例えば、シャフト部材3には、2条以上の突条33が形成されてもよい。 Further, in the above embodiment, the number of the protrusions 33 of the shaft member 3 is one. However, the number of protrusions 33 is not limited to one and may be appropriately selected according to the embodiment. For example, the shaft member 3 may be formed with two or more ridges 33.
 また、上記実施形態では、突条33は、軸方向の一端部から他端部まで連続している。しかしながら、突条33は、このような形状に限定されなくてもよく、部分的に途切れていてもよい。更に、上記実施形態では、突条33は、右螺旋に形成されている。しかしながら、突条33の形態は、このような例に限定されなくてもよい。突条33は、左螺旋に形成されてもよい。 Further, in the above embodiment, the protrusions 33 are continuous from one end to the other end in the axial direction. However, the ridge 33 does not have to be limited to such a shape and may be partially interrupted. Further, in the above embodiment, the protrusion 33 is formed in the right spiral. However, the form of the ridge 33 may not be limited to such an example. The ridge 33 may be formed in a left spiral.
 また、上記実施形態では、各凸ユニット23は、内周面22に一体形成されている。しかしながら、各凸ユニット23の形態は、このような例に限定されなくてもよい。各凸ユニット23は、本体部20の内周面22と別体に形成されてもよい。この場合、各凸ユニット23は、本体部20の内周面22に適宜取り付けられてよい。例えば、筒状部材2は、各凸ユニット23を所定の位置に固定するための固定具を備えてもよい。 Further, in the above-described embodiment, each convex unit 23 is integrally formed on the inner peripheral surface 22. However, the form of each convex unit 23 may not be limited to such an example. Each convex unit 23 may be formed separately from the inner peripheral surface 22 of the main body 20. In this case, each convex unit 23 may be appropriately attached to the inner peripheral surface 22 of the main body portion 20. For example, the tubular member 2 may include a fixture for fixing each convex unit 23 in a predetermined position.
 また、上記実施形態では、各凸ユニット23の各凸部231の軸方向に沿う断面形状は矩形状である。しかしながら、各凸部231の断面形状は、矩形状に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。各凸部231の軸方向に沿う断面形状は、例えば、三角形状、台形状等であってよい。なお、加工のしやすさの観点から、各凸部231の軸方向に沿う断面形状は、上記実施形態のとおり、矩形状であるのが好ましい。 Also, in the above-described embodiment, the cross-sectional shape of each convex portion 231 of each convex unit 23 along the axial direction is rectangular. However, the sectional shape of each convex portion 231 is not limited to the rectangular shape, and may be appropriately selected according to the embodiment. The cross-sectional shape along the axial direction of each convex portion 231 may be, for example, a triangular shape, a trapezoidal shape, or the like. From the viewpoint of ease of processing, the cross-sectional shape of each convex portion 231 along the axial direction is preferably rectangular as in the above embodiment.
 また、上記実施形態では、各凸ユニット23の各凸部231は、軸方向に沿って見た場合に、円弧状に形成されている。しかしながら、各凸部231の軸方向から見た形状は、このような例に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。各凸部231の軸方向から見た形状は、例えば、台形状等であってもよい。 Further, in the above-described embodiment, each convex portion 231 of each convex unit 23 is formed in an arc shape when viewed along the axial direction. However, the shape of each convex portion 231 viewed from the axial direction is not limited to such an example, and may be appropriately selected according to the embodiment. The shape of each convex portion 231 viewed from the axial direction may be, for example, a trapezoidal shape.
 また、上記実施形態では、軸方向における凸部231の間隔は、軸方向における突条33の間隔と一致している。しかしながら、凸ユニット23における凸部231の並びは、このような例に限定されなくてもよく、実施の形態に応じて適宜決定されてよい。軸方向における凸部231の間隔は、軸方向における突条33の間隔と一致していなくてもよい。 Further, in the above-described embodiment, the interval between the convex portions 231 in the axial direction matches the interval between the protrusions 33 in the axial direction. However, the arrangement of the convex portions 231 in the convex unit 23 need not be limited to this example, and may be appropriately determined according to the embodiment. The distance between the protrusions 231 in the axial direction may not match the distance between the protrusions 33 in the axial direction.
 また、上記実施形態では、各磁石25は、略90度の断面円弧状に形成されている。しかしながら、各磁石25の形状は、このような例に限定されなくてもよい。上記のような磁気回路を構成可能であれば、各磁石25の形状は、実施の形態に応じて適宜決定されてよい。 Further, in the above embodiment, each magnet 25 is formed in an arc shape having a cross section of approximately 90 degrees. However, the shape of each magnet 25 may not be limited to such an example. The shape of each magnet 25 may be appropriately determined according to the embodiment as long as the magnetic circuit as described above can be configured.
 また、上記実施形態では、筒状部材2の外形は円形状に形成されている。しかしながら、筒状部材2の外形は、このような例に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。筒状部材2の内周面22側と外周面側とで形状が相違していてもよい。更に、筒状部材2の外側には、ハウジング等を適宜設けてもよい。 Further, in the above embodiment, the outer shape of the tubular member 2 is circular. However, the outer shape of the tubular member 2 is not limited to such an example, and may be appropriately selected according to the embodiment. The inner peripheral surface 22 side and the outer peripheral surface side of the tubular member 2 may have different shapes. Further, a housing or the like may be appropriately provided outside the tubular member 2.
 <5.3>
 上記実施形態では、筒状部材2及びシャフト部材3それぞれの材料の一例として磁性材料を挙げた。しかしながら、筒状部材2及びシャフト部材3それぞれの材料は磁性材料に限られなくてもよい。例えば、筒状部材2及びシャフト部材3それぞれの磁気回路の構成に影響の少ない部分には非磁性材料が用いられてよい。
<5.3>
In the above embodiment, the magnetic material is used as an example of the material of each of the tubular member 2 and the shaft member 3. However, the material of each of the tubular member 2 and the shaft member 3 is not limited to the magnetic material. For example, a non-magnetic material may be used in the portions of the tubular member 2 and the shaft member 3 that have little influence on the configurations of the magnetic circuits.
 非磁性材料は、例えば、樹脂材料、非磁性体の金属材料であってよい。樹脂材料として、例えば、ABS(acrylonitrile butadiene styrene copolymer)、PLA(polylactic acid)、ナイロン、ポリアセタール、PEEK(polyetheretherketone)、PPS(polyphenylenesulfide)等を挙げることができる。非磁性体の金属材料として、例えば、銅、ステンレス、アルミニウム等を挙げることができる。 The non-magnetic material may be, for example, a resin material or a non-magnetic metallic material. Examples of the resin material include ABS (acrylonitrile butadiene styrene copolymer), PLA (polylactic acid), nylon, polyacetal, PEEK (polyetheretherketone), and PPS (polyphenylene sulfide). Examples of the non-magnetic metallic material include copper, stainless steel, and aluminum.
 <5.4>
 また、上記実施形態では、各磁石25の内側曲面251は、第1の磁極に着磁され、外側曲面252は、第1の磁極とは反対の第2の磁極に着磁される。この着磁を行う方法は、特に限定されなくてもよい。各磁石25の着磁は、実施の形態に応じて適宜行われてもよい。
<5.4>
In the above embodiment, the inner curved surface 251 of each magnet 25 is magnetized to the first magnetic pole, and the outer curved surface 252 is magnetized to the second magnetic pole opposite to the first magnetic pole. The method of performing the magnetization need not be particularly limited. The magnetization of each magnet 25 may be appropriately performed depending on the embodiment.
 図17A及び図17Bは、各磁石25の着磁方向の一例を例示する。図17Aは、各磁石25をラジアル着磁により作製した例を示す。また、図17Bは、各磁石25をパラレル着磁により作製した例を示す。各磁石25を着磁する方法は、このラジアル着磁及びパラレル着磁のいずれであってもよい。 17A and 17B exemplify the magnetization direction of each magnet 25. FIG. 17A shows an example in which each magnet 25 is manufactured by radial magnetization. 17B shows an example in which each magnet 25 is manufactured by parallel magnetization. The method of magnetizing the magnets 25 may be either radial magnetization or parallel magnetization.
 ただし、図17Aに示されるようなラジアル着磁によって、法線方向に磁束が向くような断面円弧状の磁石を正確に作製するのは比較的に困難である。そのため、作製コストを抑える観点からは、図17Bに示されるパラレル着磁により各磁石25を作製するのが好ましい。この場合、それぞれパラレル着磁された複数の磁石を軸周りに連結して、各磁石25を構成してもよい。これにより、法線方向に磁束が向く断面円弧状の磁石を疑似的に安価で作製することができる。 However, it is relatively difficult to accurately manufacture a magnet having an arcuate cross section in which the magnetic flux is directed in the normal direction by radial magnetization as shown in FIG. 17A. Therefore, from the viewpoint of suppressing the manufacturing cost, it is preferable to manufacture each magnet 25 by parallel magnetization as shown in FIG. 17B. In this case, each magnet 25 may be configured by connecting a plurality of parallel magnetized magnets around an axis. As a result, a magnet having an arc-shaped cross section in which the magnetic flux is directed in the normal direction can be manufactured at a pseudo low cost.
 <5.5>
 上記実施形態に係るアクチュエータ100では、シャフト部材3を回転させるための回転装置として、回転モータ111(回転型モータ)が利用されている。しかしながら、回転装置の種類は、このような例に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。
<5.5>
In the actuator 100 according to the above-described embodiment, the rotary motor 111 (rotary motor) is used as a rotating device for rotating the shaft member 3. However, the type of rotating device is not limited to such an example, and may be appropriately selected according to the embodiment.
 また、上記実施形態では、シャフト部材3に回転モータ111が取り付けられている。そして、シャフト部材3が回転可能にかつ並進不能に固定されるのに対して、筒状部材2が回転不能にかつ並進可能に固定されている。しかしながら、筒状部材2及びシャフト部材3の固定形態は、このような例に限定されなくてもよい。筒状部材2及びシャフト部材3のいずれか一方を回転可能にかつ並進不能に固定し、他方を回転不能にかつ並進可能に固定するようにしてよい。これにより、筒状部材2及びシャフト部材3のいずれか一方を回転させることで、他方から並進方向の出力を得ることができる。 Further, in the above embodiment, the rotary motor 111 is attached to the shaft member 3. The shaft member 3 is rotatably and non-translatably fixed, whereas the tubular member 2 is non-rotatably and translatably fixed. However, the fixing form of the tubular member 2 and the shaft member 3 may not be limited to such an example. One of the tubular member 2 and the shaft member 3 may be fixed rotatably and non-translatably, and the other may be fixed non-rotatably and translatable. Thereby, by rotating either one of the tubular member 2 and the shaft member 3, the output in the translational direction can be obtained from the other.
 例えば、筒状部材2に回転モータ111を取り付けることで、アクチュエータ100は、筒状部材2が回転するように構成されてもよい。また、回転型モータのように、筒状部材2をハウジング内に収容し、ハウジングと筒状部材2との間にスペーサ及びコイルを配置して、ハウジング内で筒状部材2が回転するように構成されてもよい。 For example, by attaching the rotary motor 111 to the tubular member 2, the actuator 100 may be configured so that the tubular member 2 rotates. Further, like the rotary motor, the tubular member 2 is housed in the housing, and the spacer and the coil are arranged between the housing and the tubular member 2 so that the tubular member 2 rotates in the housing. It may be configured.
 また、例えば、アクチュエータ100は、筒状部材2及びシャフト部材3のいずれか一方を軸方向に並進させて、他方から回転運動を取り出すように構成されてもよい。筒状部材2及びシャフト部材3のいずれか一方の並進は、例えば、手動により行われてもよいし、リニアモータ、流体圧シリンダにより行われてもよい。また、回転運動を取り出すように構成する例として、シャフト部材3に浮きを付けて、波の力でシャフト部材3を並進運動させるようにし、これによって、筒状部材2を回転させて発電を行うようにしてもよい。更に、自動車等のアクティブサスペンションとして磁気式動力伝達構造体1を利用してもよい。 Further, for example, the actuator 100 may be configured such that one of the tubular member 2 and the shaft member 3 is translated in the axial direction and the rotational movement is taken out from the other. The translation of one of the tubular member 2 and the shaft member 3 may be performed manually, or by a linear motor or a fluid pressure cylinder, for example. In addition, as an example of a configuration in which the rotational movement is taken out, the shaft member 3 is floated so that the shaft member 3 is translated by the force of the wave, whereby the tubular member 2 is rotated to generate power. You may do it. Further, the magnetic power transmission structure 1 may be used as an active suspension of an automobile or the like.
 <5.6>
 上記実施形態では、各磁石25の内側曲面251が第1の磁極に着磁され、外側曲面252が第2の磁極に着磁されている。しかしながら、各磁石25の着磁方向は、このような例に限定されなくてもよく、第1側面255が第1の磁極に着磁され、第2側面256が第2の磁極に着磁されてもよい。
<5.6>
In the above embodiment, the inner curved surface 251 of each magnet 25 is magnetized to the first magnetic pole, and the outer curved surface 252 is magnetized to the second magnetic pole. However, the magnetizing direction of each magnet 25 is not limited to such an example, and the first side surface 255 is magnetized to the first magnetic pole and the second side surface 256 is magnetized to the second magnetic pole. May be.
 図18は、本変形例に係る磁気式動力伝達構造体1Aを軸方向に沿って見た様子を模式的に例示する。本変形例では、各磁石25Aは、第1側面255が第1の磁極に着磁され、第2側面256が第2の磁極に着磁される。つまり、第1側面255がN極に着磁される場合には、第2側面256はS極に着磁され、第1側面255がS極に着磁される場合には、第2側面256はN極に着磁される。どちらの場合でも、磁気式動力伝達構造体1Aの動作原理は同じである。そのため、以下では、説明の便宜のため、第1側面255がN極に着磁され、第2側面256がS極に着磁されていると想定し、他方の場合の説明を適宜省略する。本変形例では、第1側面255が、本発明の「第1面」の一例であり、第2側面256が、本発明の「第2面」の一例である。第1側面255と第2側面256との位置関係は入れ替わってもよい。 FIG. 18 schematically illustrates a state in which the magnetic power transmission structure 1A according to the present modification is viewed along the axial direction. In this modification, the first side surface 255 of each magnet 25A is magnetized to the first magnetic pole, and the second side surface 256 is magnetized to the second magnetic pole. That is, when the first side surface 255 is magnetized to the N pole, the second side surface 256 is magnetized to the S pole, and when the first side surface 255 is magnetized to the S pole, the second side surface 256. Is magnetized to the N pole. In both cases, the operating principle of the magnetic power transmission structure 1A is the same. Therefore, hereinafter, for convenience of description, it is assumed that the first side surface 255 is magnetized to the N pole and the second side surface 256 is magnetized to the S pole, and the description of the other case is appropriately omitted. In this modification, the first side surface 255 is an example of the “first surface” in the present invention, and the second side surface 256 is an example of the “second surface” in the present invention. The positional relationship between the first side surface 255 and the second side surface 256 may be interchanged.
 また、本変形例では、筒状部材2Aの本体部20Aは、非磁性材料により形成される。本体部20Aの材料には、非磁性材料として、例えば、樹脂材料、非磁性体の金属材料等が用いられてよい。上記のとおり、樹脂材料として、例えば、ABS、PLA、ナイロン、ポリアセタール、PEEK、PPS等を挙げることができる。非磁性体の金属材料として、例えば、銅、ステンレス、アルミニウム等を挙げることができる。この本体部20Aの内周面に、磁性材料で形成された各凸ユニット23が適宜取り付けられる。 Further, in this modification, the main body portion 20A of the tubular member 2A is made of a non-magnetic material. As the material of the main body portion 20A, as the non-magnetic material, for example, a resin material, a non-magnetic metallic material, or the like may be used. As described above, examples of the resin material include ABS, PLA, nylon, polyacetal, PEEK, PPS and the like. Examples of the non-magnetic metallic material include copper, stainless steel, and aluminum. Each convex unit 23 made of a magnetic material is appropriately attached to the inner peripheral surface of the main body 20A.
 これらの点を除き、各磁石25Aは、上記実施形態に係る各磁石25と同様であり、本体部20Aは、上記実施形態に係る本体部20と同様である。また、本変形例に係る筒状部材2Aは、上記実施形態に係る筒状部材2と同様に構成され、本変形例に磁気式動力伝達構造体1Aは、上記実施形態に係る磁気式動力伝達構造体1と同様の構成を有する。 Except for these points, each magnet 25A is similar to each magnet 25 according to the above-described embodiment, and main body 20A is similar to the main body 20 according to the above-described embodiment. Further, the tubular member 2A according to the present modified example is configured similarly to the tubular member 2 according to the above-described embodiment, and the magnetic power transmission structure 1A in the present modified example is the magnetic power transmission according to the above-described embodiment. It has the same structure as the structure 1.
 すなわち、本変形例に係る磁気式動力伝達構造体1Aは、軸方向に沿って延びるシャフト部材3と、軸方向に貫通する中空部21を有する筒状部材2Aであって、中空部21にシャフト部材3が挿入される、筒状部材2Aと、を備える。シャフト部材3の外周面32には、軸周りに螺旋状に形成された突条33が設けられている。一方、筒状部材2Aの内周面22には、複数の凸ユニット23と、複数の溝部24と、複数の磁石25Aと、が設けられている。各凸ユニット23は、径方向内側に突出する凸部231を含み、軸周りに離間して配置される。各溝部24は、軸周りに隣接する一対の凸ユニット23の間に配置される。各磁石25Aは、各溝部24に配置され、一対の凸ユニット23のうちの一方と対面する第1側面255、及び第1側面255に対向し、一対の凸ユニット23のうちの他方と対面する第2側面256を含む。 That is, the magnetic power transmission structure 1A according to the present modification is a tubular member 2A having a shaft member 3 extending along the axial direction and a hollow portion 21 penetrating in the axial direction, and the hollow portion 21 has a shaft. And a tubular member 2A into which the member 3 is inserted. The outer peripheral surface 32 of the shaft member 3 is provided with a ridge 33 spirally formed around the axis. On the other hand, the inner peripheral surface 22 of the cylindrical member 2A is provided with a plurality of convex units 23, a plurality of groove portions 24, and a plurality of magnets 25A. Each convex unit 23 includes a convex portion 231 that protrudes inward in the radial direction, and is arranged so as to be spaced around the axis. Each groove 24 is arranged between a pair of convex units 23 adjacent to each other around the axis. Each magnet 25A is arranged in each groove 24, faces the first side surface 255 facing one of the pair of convex units 23, and the first side surface 255, and faces the other of the pair of convex units 23. The second side surface 256 is included.
 図18の例では、凸ユニット23、溝部24、及び磁石25Aはそれぞれ、2つずつ設けられている。ただし、凸ユニット23、溝部24、及び磁石25Aの数は、2つに限られなくてもよく、3つ以上であってもよい。また、各凸ユニット23に設けられる凸部231の数は、複数であってもよいし、1つであってもよい。各凸ユニット23に複数の凸部231が設けられる場合、各凸部231は、軸方向に離間して配置される。 In the example of FIG. 18, two convex units 23, two groove portions 24, and two magnets 25A are provided. However, the numbers of the convex units 23, the groove portions 24, and the magnets 25A are not limited to two, and may be three or more. Further, the number of the convex portions 231 provided in each convex unit 23 may be plural or may be one. When each convex unit 23 is provided with a plurality of convex portions 231, the convex portions 231 are arranged so as to be separated from each other in the axial direction.
 本変形例に係る磁気式動力伝達構造体1Aでは、筒状部材2Aの各凸ユニット23の凸部231がシャフト部材3の突条33と対面している状態で、次のような磁気回路が形成される。すなわち、図18に示されるとおり、N極に着磁されている各磁石25Aの第1側面255から放出された磁束は、一対の凸ユニット23のうちの一方に進入して、凸部231に到達する。一方の凸ユニット23の凸部231に到達した磁束は、当該一方の凸ユニット23から放出され、シャフト部材3の突条33に進入する。突条33に進入した磁束は、突条33内又は/及び軸体を経由して、他方の凸ユニット23と対面する部分まで到達し、この部分から、他方の凸ユニット23の凸部231に向けて放出される。他方の凸ユニット23の凸部231に進入した磁束は、当該他方の凸ユニット23を経由して、S極に着磁されている各磁石25Aの第2側面256に到達する。 In the magnetic power transmission structure 1A according to this modification, the following magnetic circuit is formed in the state where the convex portion 231 of each convex unit 23 of the tubular member 2A faces the protrusion 33 of the shaft member 3. It is formed. That is, as shown in FIG. 18, the magnetic flux emitted from the first side surface 255 of each magnet 25A magnetized to the N pole enters one of the pair of convex units 23 and enters the convex portion 231. To reach. The magnetic flux that has reached the convex portion 231 of the one convex unit 23 is emitted from the one convex unit 23 and enters the protrusion 33 of the shaft member 3. The magnetic flux that has entered the ridge 33 reaches the portion facing the other convex unit 23 through the inside of the ridge 33 and / or via the shaft, and from this portion to the convex portion 231 of the other convex unit 23. It is released toward. The magnetic flux that has entered the convex portion 231 of the other convex unit 23 reaches the second side surface 256 of each magnet 25A magnetized to the S pole via the other convex unit 23.
 これにより、本変形例では、各磁石25Aから放出された磁束が、一方の凸ユニット23、シャフト部材3、及び他方の凸ユニット23の順で通過し、再び各磁石25Aに戻る磁気回路が形成される。各磁石25Aの第1側面255がS極に着磁され、第2側面256がN極に着磁されている場合にも、磁束の向きが反対であるものの、上記と同じように磁気回路が形成される。この磁気回路は、上記実施形態と同様に作用する。そのため、本変形例によれば、筒状部材2A及びシャフト部材3により、上記実施形態と同様に動作する磁気ネジ機構が構成される。 As a result, in the present modification, the magnetic flux emitted from each magnet 25A passes through the convex unit 23 on one side, the shaft member 3 and the convex unit 23 on the other side in this order, and returns to each magnet 25A again. To be done. Even when the first side surface 255 of each magnet 25A is magnetized to the S pole and the second side surface 256 is magnetized to the N pole, the magnetic circuit is the same as the above although the direction of the magnetic flux is opposite. It is formed. This magnetic circuit operates in the same manner as the above embodiment. Therefore, according to this modification, the cylindrical member 2A and the shaft member 3 constitute a magnetic screw mechanism that operates in the same manner as in the above embodiment.
 なお、本変形例では、各磁石25Aの各側面(255、256)と各凸ユニット23との間を磁束が通る。そのため、各側面(255、256)と各凸ユニット23との間に隙間が形成されると、この隙間の磁気抵抗により、形成される磁気回路による磁力が弱くなってしまう。そのため、この隙間を比較的に小さくする、あるいは、各溝部24と各磁石25Aとの形状を同じにし、各側面(255、256)と各凸ユニット23との間には隙間が形成されないようにするのが好ましい。 In this modification, magnetic flux passes between each side surface (255, 256) of each magnet 25A and each convex unit 23. Therefore, when a gap is formed between each side surface (255, 256) and each convex unit 23, the magnetic resistance of the gap weakens the magnetic force of the magnetic circuit formed. Therefore, the gap is made relatively small, or the grooves 24 and the magnets 25A have the same shape so that no gap is formed between each side surface (255, 256) and each convex unit 23. Preferably.
 <5.7>
 上記実施形態では、筒状部材2とシャフト部材3との間には、その他の部材は配置されていない。そのため、各凸ユニット23の各凸部231とシャフト部材3の突条33とが接触してしまい、いずれか又は両方が破損してしまう可能性がある。これを防止するため、筒状部材2とシャフト部材3との間に、この接触を抑制するための部材を配置してもよい。
<5.7>
In the above embodiment, no other member is arranged between the tubular member 2 and the shaft member 3. Therefore, the convex portions 231 of the convex units 23 may come into contact with the protrusions 33 of the shaft member 3, and either or both may be damaged. In order to prevent this, a member for suppressing this contact may be arranged between the tubular member 2 and the shaft member 3.
 図19は、本変形例に係る磁気式動力伝達構造体1Bを模式的に例示する部分断面図である。本変形例に係る磁気式動力伝達構造体1Bは、筒状部材2とシャフト部材3との間に、円筒状の保護部材7が配置される点を除き、上記実施形態に係る磁気式動力伝達構造体1と同様の構成を有している。この保護部材7の形状は、筒状部材2の凸部231とシャフト部材3の突条33との間に配置可能であれば、特に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。また、保護部材7の材料には、例えば、アルミニウム、アルミニウム合金、マグネシウム合金、エンジニアリングプラスチック等が用いられてもよい。 FIG. 19 is a partial cross-sectional view schematically illustrating the magnetic power transmission structure 1B according to this modification. The magnetic power transmission structure 1B according to the present modification is different from the magnetic power transmission structure according to the above-described embodiment except that the cylindrical protection member 7 is arranged between the tubular member 2 and the shaft member 3. It has the same structure as the structure 1. The shape of the protective member 7 is not particularly limited as long as it can be arranged between the convex portion 231 of the tubular member 2 and the protrusion 33 of the shaft member 3, and is appropriately selected according to the embodiment. May be done. Further, as the material of the protective member 7, for example, aluminum, aluminum alloy, magnesium alloy, engineering plastic, or the like may be used.
 図20は、その他の変形例に係る磁気式動力伝達構造体1Cを模式的に例示する部分断面図である。本変形例に係る磁気式動力伝達構造体1Cでは、各凸ユニット23の軸方向において隣接する凸部231の間に設けられる凹部232に非磁性材料81が充填されている。各凸ユニット23と各磁石25との間に隙間が設けられる場合、非磁性材料81は、この隙間にも充填されてよい。また、シャフト部材3の外周面32の軸方向における突条33の間に設けられる凹部35に非磁性材料82が充填されている。これらの点を除き、磁気式動力伝達構造体1Cは、上記実施形態に係る磁気式動力伝達構造体1と同様の構成を有している。 FIG. 20 is a partial cross-sectional view schematically illustrating a magnetic power transmission structure 1C according to another modification. In the magnetic power transmission structure 1C according to the present modification, the non-magnetic material 81 is filled in the recesses 232 provided between the adjacent projections 231 in the axial direction of each projection unit 23. When a gap is provided between each convex unit 23 and each magnet 25, the non-magnetic material 81 may be filled also in this gap. Further, the non-magnetic material 82 is filled in the recesses 35 provided between the protrusions 33 in the axial direction of the outer peripheral surface 32 of the shaft member 3. Except for these points, the magnetic power transmission structure 1C has the same configuration as the magnetic power transmission structure 1 according to the above-described embodiment.
 各非磁性材料(81、82)は、筒状部材2とシャフト部材3との間に形成される磁気回路に悪影響を及ぼさない材料であればよく、例えば、樹脂材料、非磁性体の金属材料であってよい。樹脂材料として、例えば、ABS、PLA、ナイロン、ポリアセタール、PEEK、PPS等を挙げることができる。非磁性体の金属材料として、例えば、銅、ステンレス、アルミニウム等を挙げることができる。 Each non-magnetic material (81, 82) may be any material that does not adversely affect the magnetic circuit formed between the tubular member 2 and the shaft member 3, and is, for example, a resin material or a non-magnetic metallic material. May be Examples of the resin material include ABS, PLA, nylon, polyacetal, PEEK, PPS and the like. Examples of the non-magnetic metallic material include copper, stainless steel, and aluminum.
 各凹部(232、35)に各非磁性材料(81、82)を充填する方法は、実施の形態に応じて適宜選択されてよい。例えば、加熱することで軟化した各非磁性材料(81、82)を各凹部(232、35)に流し込み、流し込んだ各非磁性材料(81、82)を冷やして固化させることで、各凹部(232、35)に各非磁性材料(81、82)を充填してもよい。また、各凹部(232、35)と同形状の各非磁性材料(81、82)を形成し、形成した各非磁性材料(81、82)を各凹部(232、35)に嵌め込むことで、各凹部(232、35)に各非磁性材料(81、82)を充填してもよい。 The method of filling each recess (232, 35) with each non-magnetic material (81, 82) may be appropriately selected according to the embodiment. For example, each non-magnetic material (81, 82) softened by heating is poured into each recess (232, 35), and each non-magnetic material (81, 82) poured is cooled and solidified to form each recess ( 232, 35) may be filled with each non-magnetic material (81, 82). Further, by forming each non-magnetic material (81, 82) having the same shape as each recess (232, 35) and fitting each formed non-magnetic material (81, 82) into each recess (232, 35). The recesses (232, 35) may be filled with the non-magnetic material (81, 82).
 このとき、筒状部材2の内周面22及びシャフト部材3の外周面32が面一になるように、各非磁性材料(81、82)を充填するのが好ましい。つまり、非磁性材料81の面が各凸部231の面と面一になり、非磁性材料82の面が突条33の面と面一になるように、各凹部(232、35)に各非磁性材料(81、82)を充填するのが好ましい。各凸ユニット23と各磁石25との間に隙間が設けられる場合、非磁性材料81は、筒状部材2の内周面22が面一になるように、この隙間にも充填されるのが好ましい。これにより、筒状部材2及びシャフト部材3において、各凸部231及び突条33による凹凸を十分に抑えることができる。そのため、各凸部231と突条33とが接触することによる、各凸部231及び突条33の少なくとも一方の破損を防止することができる。 At this time, it is preferable to fill each non-magnetic material (81, 82) so that the inner peripheral surface 22 of the tubular member 2 and the outer peripheral surface 32 of the shaft member 3 are flush with each other. That is, each of the recesses (232, 35) is arranged such that the surface of the non-magnetic material 81 is flush with the surface of each convex portion 231 and the surface of the non-magnetic material 82 is flush with the surface of the protrusion 33. It is preferably filled with a non-magnetic material (81, 82). When a gap is provided between each convex unit 23 and each magnet 25, the nonmagnetic material 81 is also filled in this gap so that the inner peripheral surface 22 of the tubular member 2 is flush. preferable. Thereby, in the tubular member 2 and the shaft member 3, it is possible to sufficiently suppress the unevenness due to the respective convex portions 231 and the protrusions 33. Therefore, it is possible to prevent at least one of the protrusions 231 and the protrusions 33 from being damaged due to the contact between the protrusions 231 and the protrusions 33.
 また、各凸部231及び突条33が埋設されるように、各非磁性材料(81、82)を充填してもよい。これにより、筒状部材2及びシャフト部材3において、各凸部231及び突条33による凹凸を無くすことができるため、各凸部231及び突条33の少なくとも一方の破損を確実に防止することができる。 Further, each non-magnetic material (81, 82) may be filled so that each convex portion 231 and the protrusion 33 are embedded. Accordingly, in the tubular member 2 and the shaft member 3, the projections and depressions 231 and the projections 33 can be eliminated, so that at least one of the projections 231 and the projections 33 can be reliably prevented from being damaged. it can.
 なお、非磁性材料を用いる形態は、このような例に限定されなくてもよく、実施の形態に応じて適宜変更されてよい。例えば、非磁性材料(81、82)のうちいずれか一方は省略されてもよい。周方向(軸周り)において隣接する凸ユニット23と磁石25との間に隙間が存在する場合、非磁性材料81をこの隙間に充填してもよい。更に、各磁石25の面と各凸部231の面とが面一になるように、筒状部材2の内周面22に非磁性材料81を充填してもよい。 Note that the form using the non-magnetic material is not limited to such an example, and may be appropriately changed according to the embodiment. For example, either one of the non-magnetic materials (81, 82) may be omitted. When a gap exists between the magnet 25 and the convex unit 23 adjacent to each other in the circumferential direction (around the axis), the nonmagnetic material 81 may be filled in the gap. Further, the inner peripheral surface 22 of the tubular member 2 may be filled with the non-magnetic material 81 so that the surface of each magnet 25 and the surface of each convex portion 231 are flush with each other.
 図21は、その他の変形例に係る磁気式動力伝達構造体1Dの構成を模式的に例示する部分断面図である。本変形例に係る磁気式動力伝達構造体1Dは、第1被覆部材85及び第2被覆部材86を更に備える点を除き、上記実施形態に係る磁気式動力伝達構造体1と同様の構成を有している。 FIG. 21 is a partial cross-sectional view schematically illustrating the configuration of a magnetic power transmission structure 1D according to another modification. The magnetic power transmission structure 1D according to this modification has the same configuration as the magnetic power transmission structure 1 according to the above-described embodiment, except that the magnetic power transmission structure 1D further includes a first covering member 85 and a second covering member 86. is doing.
 第1被覆部材85及び第2被覆部材86はそれぞれ円筒状に形成されている。第1被覆部材85の外径は、筒状部材2の各凸部231を含む部分の内径とほぼ同じである。これにより、第1被覆部材85は、筒状部材2の内周面22よりも径方向内側に配置され、シャフト部材3に対して各凸ユニット23を被覆する。一方、第2被覆部材86の内径は、シャフト部材3の突条33を含む部分の外径とほぼ同じであり、第2被覆部材86の外径は、第1被覆部材85の内径よりもやや小さくなっている。これにより、第2被覆部材86は、シャフト部材3の外周面32よりも径方向外側に配置され、筒状部材2に対して突条33を被覆する。 The first covering member 85 and the second covering member 86 are each formed in a cylindrical shape. The outer diameter of the first covering member 85 is substantially the same as the inner diameter of the portion of the tubular member 2 including the convex portions 231. As a result, the first covering member 85 is arranged radially inward of the inner peripheral surface 22 of the tubular member 2, and covers the shaft member 3 with each convex unit 23. On the other hand, the inner diameter of the second covering member 86 is almost the same as the outer diameter of the portion of the shaft member 3 including the protrusions 33, and the outer diameter of the second covering member 86 is slightly larger than the inner diameter of the first covering member 85. It is getting smaller. As a result, the second covering member 86 is arranged radially outside the outer peripheral surface 32 of the shaft member 3 and covers the tubular member 2 with the ridge 33.
 各被覆部材(85、86)の材料は、上記各非磁性材料(81、82)と同様、筒状部材2とシャフト部材3との間に形成される磁気回路に悪影響を及ぼさない材料であればよく、例えば、樹脂材料、非磁性体の金属材料であってよい。各被覆部材(85、86)には、上記各非磁性材料(81、82)と同様の樹脂材料又は金属材料が用いられてよい。また、各被覆部材(85、86)の寸法及び形状は、実施の形態に応じて適宜決定されてよく、例えば、シート状に形成されてもよい。 The material of each covering member (85, 86) may be a material which does not adversely affect the magnetic circuit formed between the tubular member 2 and the shaft member 3, like the non-magnetic material (81, 82). For example, a resin material or a non-magnetic metallic material may be used. The same resin material or metal material as the non-magnetic material (81, 82) may be used for each covering member (85, 86). The size and shape of each covering member (85, 86) may be appropriately determined according to the embodiment, and may be formed in a sheet shape, for example.
 なお、被覆部材を用いる形態は、このような例に限定されなくてもよく、実施の形態に応じて適宜変更されてよい。例えば、被覆部材(85、86)のうちいずれか一方は省略されてもよい。被覆部材(85、86)のうちの省略した方には、上記非磁性材料の充填を適用してもよい。また、この被覆部材を用いる形態は、上記非磁性材料を用いる形態と共に適用されてもよい。 The form in which the covering member is used is not limited to such an example, and may be appropriately changed according to the embodiment. For example, one of the covering members (85, 86) may be omitted. The non-magnetic material may be applied to the omitted one of the covering members (85, 86). The form using this covering member may be applied together with the form using the above-mentioned non-magnetic material.
 図20及び図21により例示される各変形例によれば、各凸部231及び突条33が破損する可能性を低減することができる。更に、各変形例によれば、次のような作用効果を得ることができる。すなわち、各非磁性材料(81、82)及び各被覆部材(85、86)をそれぞれ、筒状部材2及びシャフト部材3それぞれの補強材として作用させることができる。これにより、各凹部(232、35)に応力が集中するのを緩和することができるため、軸を曲げようとする力に対する筒状部材2及びシャフト部材3の強度を高めることができる。 According to the modified examples illustrated in FIGS. 20 and 21, it is possible to reduce the possibility that the protrusions 231 and the protrusions 33 will be damaged. Furthermore, according to each modification, the following operational effects can be obtained. That is, each non-magnetic material (81, 82) and each covering member (85, 86) can act as a reinforcing member for the tubular member 2 and the shaft member 3, respectively. This can alleviate the stress concentration in the recesses (232, 35), so that the strength of the tubular member 2 and the shaft member 3 against the force of bending the shaft can be increased.
 また、筒状部材2及びシャフト部材3において、各凸部231及び突条33による凹凸を低減することにより、筒状部材2の内周面22及びシャフト部材3の外周面32の洗浄が容易になる。そのため、上記各磁気式動力伝達構造体(1C、1D)は、食品又は医薬品の搬送等の洗浄を要する場面で利用可能である。 Further, in the tubular member 2 and the shaft member 3, by reducing the unevenness due to the respective convex portions 231 and the protrusions 33, the inner peripheral surface 22 of the tubular member 2 and the outer peripheral surface 32 of the shaft member 3 can be easily cleaned. Become. Therefore, each of the magnetic power transmission structures (1C, 1D) can be used in a scene requiring cleaning such as transportation of food or medicine.
 更に、筒状部材2及びシャフト部材3において、各凸部231及び突条33による凹凸を低減することにより、筒状部材2の内周面22及びシャフト部材3の外周面32の蒸気滅菌を行うことができるようになる。これによって、筒状部材2及びシャフト部材3の滅菌性を高めることができる。 Further, in the tubular member 2 and the shaft member 3, the unevenness due to the respective projections 231 and the protrusions 33 is reduced to perform steam sterilization on the inner peripheral surface 22 of the tubular member 2 and the outer peripheral surface 32 of the shaft member 3. Will be able to. Thereby, the sterility of the tubular member 2 and the shaft member 3 can be improved.
 なお、各非磁性材料(81、82)及び各被覆部材(85、86)にステンレス等の材料を用いることで、上記洗浄及び蒸気滅菌によるさびの発生を抑制することができる。また、上記磁気式動力伝達構造体1Cにおいて、各凸部231及び突条33が各非磁性材料(81、82)から露出する場合、この露出する部分にめっきを施してもよい。これにより、各凸部231及び突条33にさびが発生するのを抑制することができる。 By using a material such as stainless steel for each non-magnetic material (81, 82) and each covering member (85, 86), it is possible to suppress the generation of rust due to the cleaning and steam sterilization. In the magnetic power transmission structure 1C, when the protrusions 231 and the protrusions 33 are exposed from the nonmagnetic materials (81, 82), the exposed portions may be plated. As a result, it is possible to suppress the generation of rust on each convex portion 231 and the protrusion 33.
 <5.8>
 上記実施形態では、円弧状に湾曲した磁性材料を、各凹部232を形成するように切削することで、各凸部231を有する各凸ユニット23を作製することができる。このとき、各凹部232の形状は、特に限定されなくてもよく、実施の形態に応じて適宜選択されてもよい。
<5.8>
In the above embodiment, the convex unit 23 having the convex portions 231 can be manufactured by cutting the magnetic material curved in an arc shape so as to form the concave portions 232. At this time, the shape of each recess 232 may not be particularly limited and may be appropriately selected according to the embodiment.
 図22A及び図22Bは、各凹部232の形状の一例を模式的に例示する。図22Aで例示される凸ユニット23E及び図22Bで例示される凸ユニット23Fは、各凹部232の形状が相違している点を除き、上記実施形態に係る凸ユニット23と同様の構成を有している。 22A and 22B schematically illustrate an example of the shape of each recess 232. The convex unit 23E illustrated in FIG. 22A and the convex unit 23F illustrated in FIG. 22B have the same configuration as the convex unit 23 according to the above-described embodiment, except that the shapes of the respective concave portions 232 are different. ing.
 図22Aの例では、凸ユニット23Eの各凹部232は、底面が平らになるように形成されている。このような凸ユニット23Eの各凹部232は、ワイヤ放電加工により容易に形成することができる。一方、図22Bの例では、凸ユニット23Fの各凹部232は、凸ユニット23Fの湾曲に応じて底面が湾曲するように形成されている。このような凸ユニット23Fの各凹部232は、例えば、最大切削径に合わせた円形の切削機により形成することができる。製造コストの観点からは、各凹部232の形状は、図22Aで例示されるように平らに形成されるのが好ましい。 In the example of FIG. 22A, each concave portion 232 of the convex unit 23E is formed so that the bottom surface becomes flat. Each concave portion 232 of the convex unit 23E can be easily formed by wire electric discharge machining. On the other hand, in the example of FIG. 22B, each concave portion 232 of the convex unit 23F is formed so that the bottom surface is curved according to the curve of the convex unit 23F. Each concave portion 232 of the convex unit 23F can be formed by, for example, a circular cutting machine adapted to the maximum cutting diameter. From the viewpoint of manufacturing cost, the shape of each recess 232 is preferably flat as illustrated in FIG. 22A.
 <5.9>
 上記実施形態では、各磁石25の内側曲面251は滑らかに形成されている。しかしながら、各磁石25の内側曲面251の形状は、このような例に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。各磁石25の内側曲面251には、各凸ユニット23と同様に、径方向内側に突出する凸部が設けられてもよい。
<5.9>
In the above embodiment, the inner curved surface 251 of each magnet 25 is formed smoothly. However, the shape of the inner curved surface 251 of each magnet 25 is not limited to such an example, and may be appropriately selected according to the embodiment. The inner curved surface 251 of each magnet 25 may be provided with a convex portion that protrudes inward in the radial direction, similarly to each convex unit 23.
 図23は、本変形例に係る磁石25Gを模式的に例示する。磁石25Gは、内側曲面251が、径方向内側に突出する凸部258を含む点を除き、上記実施形態に係る各磁石25と同様の構成を有する。磁石25Gは、上記各磁石25の代わりとして利用することができる。 FIG. 23 schematically illustrates a magnet 25G according to this modification. The magnet 25G has the same configuration as each magnet 25 according to the above-described embodiment, except that the inner curved surface 251 includes a convex portion 258 that projects inward in the radial direction. The magnet 25G can be used as a substitute for each of the magnets 25.
 本変形例では、内側曲面251には、複数の凸部258が設けられている。これに応じて、内側曲面251には、更に、軸方向における隣接する凸部258の間に配置される凹部259が設けられている。上記変形例と同様に、この凹部259には、非磁性材料が充填されてもよい。なお、凸部258の数は、特に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。また、凸部258の数は、複数でなくてもよく、1つであってもよい。 In this modification, the inner curved surface 251 is provided with a plurality of convex portions 258. Accordingly, the inner curved surface 251 is further provided with a concave portion 259 arranged between the adjacent convex portions 258 in the axial direction. Similar to the modification, the recess 259 may be filled with a non-magnetic material. The number of protrusions 258 is not particularly limited and may be appropriately selected according to the embodiment. Moreover, the number of the convex portions 258 may not be plural, and may be one.
 各凸部258は、軸方向に離間して配置されている。各凸部258は、シャフト部材3の突条33の軸方向の並びに対応するように配置されてよい。つまり、軸方向における凸部258の間隔は、軸方向における突条33の間隔と一致していてもよい。ただし、軸方向における凸部258の間隔は、このような例に限定されなくてもよく、軸方向における突条33の間隔と一致していなくてもよい。 The convex portions 258 are arranged apart from each other in the axial direction. The protrusions 258 may be arranged so as to correspond to the axial arrangement of the protrusions 33 of the shaft member 3. That is, the interval between the protrusions 258 in the axial direction may match the interval between the protrusions 33 in the axial direction. However, the interval of the protrusions 258 in the axial direction need not be limited to such an example, and may not be the same as the interval of the protrusions 33 in the axial direction.
 各凸部258及び各凹部259の形状及び寸法は、凸ユニット23の各凸部231及び各凹部232と同様に設定されてよい。各凸部258は、シャフト部材3の突条33に対応するように、軸周りに螺旋状に形成されてもよいし、あるいは、軸周りに沿って延びるように形成されてもよい。本変形例によれば、磁石25Gの内側曲面251に凸部258を設けることで、磁石25Gとシャフト部材3の突条33との間で磁気回路を形成しやすくし、より高出力の磁気ネジ機構を構成することができる。 The shapes and dimensions of the convex portions 258 and the concave portions 259 may be set similarly to the convex portions 231 and the concave portions 232 of the convex unit 23. Each convex portion 258 may be formed in a spiral shape around the axis so as to correspond to the protrusion 33 of the shaft member 3, or may be formed to extend along the axis. According to this modification, by providing the convex portion 258 on the inner curved surface 251 of the magnet 25G, it is easy to form a magnetic circuit between the magnet 25G and the protrusion 33 of the shaft member 3, and a magnetic screw having a higher output can be obtained. The mechanism can be configured.
 1…磁気式動力伝達構造体、
 2…筒状部材、20…本体部、
 21…中空部、22…内周面、
 23…凸ユニット、231…凸部、232…凹部、
 24…溝部、
 25…磁石、251…内側曲面、252…外側曲面、
 255…第1側面、256…第2側面、
 3…シャフト部材、
 31…軸、32…外周面、
 33…突条、35…凹部、
 100…アクチュエータ、
 101…ベースプレート、
 102・103・104…固定部材、
 105…軸受け、106…カップリング、
 107…リニアガイド、
 111…回転モータ、
 112…出力用シャフト、113…ロッドエンド、
 116…位置センサ、117…回転センサ、
 9…制御装置、
 91…制御部、911…位置制御部、912…力制御部、
 92…記憶部、921…プログラム、922…対応関係データ、
 93…外部インタフェース
1 ... Magnetic power transmission structure,
2 ... Cylindrical member, 20 ... Main body,
21 ... Hollow part, 22 ... Inner peripheral surface,
23 ... convex unit, 231, ... convex portion, 232 ... concave portion,
24 ... groove,
25 ... Magnet, 251 ... Inner curved surface, 252 ... Outer curved surface,
255 ... 1st side surface, 256 ... 2nd side surface,
3 ... Shaft member,
31 ... Shaft, 32 ... Outer peripheral surface,
33 ... ridge, 35 ... recess,
100 ... actuator,
101 ... base plate,
102, 103, 104 ... fixing member,
105 ... Bearing, 106 ... Coupling,
107 ... Linear guide,
111 ... rotary motor,
112 ... Output shaft, 113 ... Rod end,
116 ... Position sensor, 117 ... Rotation sensor,
9 ... Control device,
91 ... Control unit, 911 ... Position control unit, 912 ... Force control unit,
92 ... storage unit, 921 ... program, 922 ... correspondence data,
93 ... External interface

Claims (12)

  1.  軸及び外周面を有し、軸方向に沿って延びるシャフト部材と、
     前記軸方向に貫通する中空部及び内周面を有する筒状部材であって、前記中空部に前記シャフト部材が挿入される、筒状部材と、
    を備え、
     前記シャフト部材の前記外周面には、前記軸の径方向外側に突出する突条であって、前記軸周りに螺旋状に形成された突条が設けられ、
     前記筒状部材の前記内周面には、前記径方向内側に突出する凸部を含む凸ユニットと、前記凸ユニットと前記軸周りに隣り合うように配置され、前記突条と対面する第1面及び前記第1面に対向する第2面を含む磁石と、が設けられ、
     前記磁石の前記第1面は、第1の磁極に着磁され、
     前記磁石の前記第2面は、前記第1の磁極とは反対の第2の磁極に着磁される、
    磁気式動力伝達構造体。
    A shaft member having an axis and an outer peripheral surface and extending along the axial direction;
    A tubular member having a hollow portion and an inner peripheral surface penetrating in the axial direction, wherein the shaft member is inserted into the hollow portion, and a tubular member,
    Equipped with
    The outer peripheral surface of the shaft member is provided with a ridge that protrudes outward in the radial direction of the shaft, the ridge being formed in a spiral shape around the shaft,
    On the inner peripheral surface of the tubular member, a convex unit including a convex portion that protrudes inward in the radial direction, a convex unit that is arranged adjacent to the convex unit around the axis, and faces the protrusion. A magnet including a surface and a second surface facing the first surface,
    The first surface of the magnet is magnetized to a first magnetic pole,
    The second surface of the magnet is magnetized to a second magnetic pole opposite to the first magnetic pole,
    Magnetic power transmission structure.
  2.  前記凸ユニットの前記凸部は、複数設けられ、
     前記凸ユニットの前記複数の凸部は、前記軸方向に離間して配置される、
    請求項1に記載の磁気式動力伝達構造体。
    A plurality of the convex portions of the convex unit are provided,
    The plurality of convex portions of the convex unit are arranged apart from each other in the axial direction,
    The magnetic power transmission structure according to claim 1.
  3.  前記凸ユニットは、前記軸方向に隣接する凸部の間に設けられる凹部を有し、
     前記凸ユニットの前記凹部には、非磁性材料が充填されている、
    請求項2に記載の磁気式動力伝達構造体。
    The convex unit has a concave portion provided between the convex portions adjacent to each other in the axial direction,
    The concave portion of the convex unit is filled with a non-magnetic material,
    The magnetic power transmission structure according to claim 2.
  4.  前記凸ユニットは、前記筒状部材の前記内周面に一体形成されている、
    請求項1から3のいずれか1項に記載の磁気式動力伝達構造体。
    The convex unit is integrally formed on the inner peripheral surface of the tubular member,
    The magnetic power transmission structure according to any one of claims 1 to 3.
  5.  前記磁石の前記第1面は、前記径方向内側に突出する凸部を含む、
    請求項1から4のいずれか1項に記載の磁気式動力伝達構造体。
    The first surface of the magnet includes a convex portion protruding inward in the radial direction.
    The magnetic power transmission structure according to any one of claims 1 to 4.
  6.  前記磁石の前記凸部は、複数設けられ、
     前記磁石の前記複数の凸部は、前記軸方向に離間して配置される、
    請求項5に記載の磁気式動力伝達構造体。
    A plurality of the convex portions of the magnet are provided,
    The plurality of convex portions of the magnet are arranged apart from each other in the axial direction,
    The magnetic power transmission structure according to claim 5.
  7.  前記凸ユニットは、複数設けられ、
     前記磁石は、複数設けられ、
     前記各凸ユニットは、前記軸周りに離間して配置され、
     前記筒状部材の前記内周面には、前記軸周りに隣接する一対の前記凸ユニットの間にそれぞれ配置された複数の溝部が更に設けられ、
     前記各磁石は、前記各溝部に配置される、
    請求項1から6のいずれか1項に記載の磁気式動力伝達構造体。
    The convex unit is provided in plural,
    A plurality of the magnets are provided,
    The respective convex units are arranged with a space around the axis,
    The inner peripheral surface of the tubular member is further provided with a plurality of groove portions respectively arranged between the pair of convex units adjacent to each other around the axis,
    The magnets are arranged in the groove portions,
    The magnetic power transmission structure according to any one of claims 1 to 6.
  8.  前記シャフト部材の前記外周面には、前記軸方向における前記突条の間に配置される凹部が設けられ、
     前記シャフト部材の前記凹部には、非磁性材料が充填されている、
    請求項1から7のいずれか1項に記載の磁気式動力伝達構造体。
    The outer peripheral surface of the shaft member is provided with a concave portion arranged between the protrusions in the axial direction,
    The recess of the shaft member is filled with a non-magnetic material,
    The magnetic power transmission structure according to any one of claims 1 to 7.
  9.  前記筒状部材の前記内周面より径方向内側に配置され、前記筒状部材の前記凸ユニットを被覆する第1被覆部材を更に備える、
    請求項1から8のいずれか1項に記載の磁気式動力伝達構造体。
    Further comprising a first covering member which is arranged radially inward of the inner peripheral surface of the tubular member and which covers the convex unit of the tubular member,
    The magnetic power transmission structure according to any one of claims 1 to 8.
  10.  前記シャフト部材の前記外周面より径方向外側に配置され、前記シャフト部材の前記突条を被覆する第2被覆部材を更に備える、
    請求項1から9のいずれか1項に記載の磁気式動力伝達構造体。
    Further comprising a second covering member that is arranged radially outside the outer peripheral surface of the shaft member and that covers the protrusion of the shaft member.
    The magnetic power transmission structure according to any one of claims 1 to 9.
  11.  軸及び外周面を有し、軸方向に沿って延びるシャフト部材と、
     前記軸方向に貫通する中空部及び内周面を有する筒状部材であって、前記中空部に前記シャフト部材が挿入される、筒状部材と、
    を備え、
     前記シャフト部材の前記外周面には、前記軸の径方向外側に突出する突条であって、前記軸周りに螺旋状に形成された突条が設けられ、
     前記筒状部材の前記内周面には、前記径方向内側に突出する凸部をそれぞれ含み、前記軸周りに離間して配置される複数の凸ユニットと、前記軸周りに隣接する一対の前記凸ユニットの間にそれぞれ配置された複数の溝部と、前記各溝部にそれぞれ配置され、前記一対の凸ユニットのうちの一方と対面する第1面、及び前記第1面に対向し、前記一対の凸ユニットのうちの他方と対面する第2面をそれぞれ含む複数の磁石と、が設けられ、
     前記各磁石の前記第1面は、第1の磁極に着磁され、
     前記各磁石の前記第2面は、前記第1の磁極とは反対の第2の磁極に着磁される、
    磁気式動力伝達構造体。
    A shaft member having an axis and an outer peripheral surface and extending along the axial direction;
    A tubular member having a hollow portion and an inner peripheral surface penetrating in the axial direction, wherein the shaft member is inserted into the hollow portion, and a tubular member,
    Equipped with
    The outer peripheral surface of the shaft member is provided with a ridge that protrudes outward in the radial direction of the shaft, the ridge being formed in a spiral shape around the shaft,
    The inner peripheral surface of the tubular member includes a plurality of convex units that respectively include convex portions that project inward in the radial direction and are spaced apart from each other around the axis, and a pair of the convex units that are adjacent to each other around the axis. A plurality of groove portions respectively arranged between the convex units, a first surface arranged in each of the groove portions and facing one of the pair of convex units, and facing the first surface, A plurality of magnets each including a second surface facing the other of the convex units,
    The first surface of each magnet is magnetized to a first magnetic pole,
    The second surface of each magnet is magnetized to a second magnetic pole opposite to the first magnetic pole,
    Magnetic power transmission structure.
  12.  前記各凸ユニットの前記凸部は、複数設けられ、
     前記各凸ユニットの前記複数の凸部は、前記軸方向に離間して配置される、
    請求項11に記載の磁気式動力伝達構造体。
    A plurality of the convex portions of each convex unit are provided,
    The plurality of protrusions of each of the protrusion units are arranged to be separated in the axial direction,
    The magnetic power transmission structure according to claim 11.
PCT/JP2019/040626 2018-10-26 2019-10-16 Magnetic power transmission structure WO2020085162A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553224A JP7349160B2 (en) 2018-10-26 2019-10-16 Magnetic power transmission structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018202245 2018-10-26
JP2018-202245 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020085162A1 true WO2020085162A1 (en) 2020-04-30

Family

ID=70331925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040626 WO2020085162A1 (en) 2018-10-26 2019-10-16 Magnetic power transmission structure

Country Status (2)

Country Link
JP (1) JP7349160B2 (en)
WO (1) WO2020085162A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176850A (en) * 1987-06-11 1989-07-13 Nippon Denso Co Ltd Motion converting method and device therefor
JPH09280341A (en) * 1996-04-08 1997-10-28 Ckd Corp Rotation transmission device
JP2000074171A (en) * 1998-06-15 2000-03-07 Smc Corp Actuator
WO2018092906A1 (en) * 2016-11-21 2018-05-24 国立大学法人大阪大学 Magnetic power transmission structure and actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176850A (en) * 1987-06-11 1989-07-13 Nippon Denso Co Ltd Motion converting method and device therefor
JPH09280341A (en) * 1996-04-08 1997-10-28 Ckd Corp Rotation transmission device
JP2000074171A (en) * 1998-06-15 2000-03-07 Smc Corp Actuator
WO2018092906A1 (en) * 2016-11-21 2018-05-24 国立大学法人大阪大学 Magnetic power transmission structure and actuator

Also Published As

Publication number Publication date
JP7349160B2 (en) 2023-09-22
JPWO2020085162A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US7649290B2 (en) Bearing bush and compound movement using the same
US8860261B2 (en) Actuator
JP4860623B2 (en) Micro actuator
US9103423B2 (en) Linear actuator
KR101819005B1 (en) Motor
JP2011155827A (en) Linear and rotary compound actuator system
JP2011114921A (en) Electric actuator
KR20140133816A (en) Actuator, stator, motor, rotary-linear motion conversion mechanism and linear actuator
US6879150B2 (en) Magnetic position sensor
JP2007209159A (en) Composite drive motor and composite drive unit
WO2020085162A1 (en) Magnetic power transmission structure
JPH10150759A (en) Linear actuator
JP6214384B2 (en) Electric actuator
WO2018092906A1 (en) Magnetic power transmission structure and actuator
JP2012196021A (en) Linear actuator
JP6668954B2 (en) Eddy current type reduction gear
JP2007292511A (en) Position detector and motor for use in electric power steering
KR20160033630A (en) Direct acting rotation actuator
US8004137B2 (en) Electromechanical transformer
JP4870595B2 (en) Magnetic power transmission device
JP2005253186A (en) Spiral linear motor
JP2006275068A (en) Actuator
JPH11351348A (en) Electric actuator
JP2004045080A (en) Position detecting structure for linear motion rotating shaft, and linear motion rotating device for mounting electronic parts
JP6224670B2 (en) Linear actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553224

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875639

Country of ref document: EP

Kind code of ref document: A1