WO2020085135A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2020085135A1
WO2020085135A1 PCT/JP2019/040391 JP2019040391W WO2020085135A1 WO 2020085135 A1 WO2020085135 A1 WO 2020085135A1 JP 2019040391 W JP2019040391 W JP 2019040391W WO 2020085135 A1 WO2020085135 A1 WO 2020085135A1
Authority
WO
WIPO (PCT)
Prior art keywords
information processing
elevator
floor
atmospheric pressure
processing device
Prior art date
Application number
PCT/JP2019/040391
Other languages
French (fr)
Japanese (ja)
Inventor
諒 渡辺
遼 高橋
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2020553173A priority Critical patent/JP7347437B2/en
Publication of WO2020085135A1 publication Critical patent/WO2020085135A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators

Definitions

  • the present disclosure relates to an information processing device, an information processing method, and a program.
  • Patent Document 1 discloses an elevator apparatus having an operating device that calculates an altitude from the measured atmospheric pressure and determines a floor number (number) from the altitude by referring to a table stored in advance.
  • the present disclosure provides an information processing device, an information processing method, and a program that can estimate the number of floors of a building that has moved by an elevator.
  • an information processing device is an atmospheric pressure sensor that measures atmospheric pressure, and based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, A detection unit that detects a pressure fluctuation when the elevator straddles the floor of the building, and an estimation unit that estimates the floor number of the floor moved by the elevator based on the pressure fluctuation detected by the detection unit.
  • the information processing method is that the computer detects the pressure fluctuation when the elevator straddles the floor of the building, based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, The number of floors of the floor moved by the elevator is estimated based on the detected pressure fluctuation.
  • a computer based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, a detection unit that detects the pressure fluctuation when the elevator straddles the floor of the building, The estimation unit estimates the number of floors of the floor moved by the elevator based on the pressure fluctuation detected by the detection unit.
  • FIG. 6 is a flowchart showing an example of a processing procedure executed by the information processing apparatus according to the first embodiment. It is a figure which shows the speed change from the movement start of an elevator to a stop. 9 is a flowchart showing an example of a processing procedure executed by the information processing apparatus according to the second embodiment. It is a hardware block diagram which shows an example of the computer which implement
  • FIG. 1 is a diagram illustrating an example of a moving body including the information processing device according to the first embodiment.
  • the mobile body 1 shown in FIG. 1 includes, for example, an autonomous mobile robot.
  • the mobile unit 1 moves on a plurality of floors (floors) 510 of a building 500 by an elevator 600 and delivers parcels to a delivery destination on the floor 510.
  • the moving body 1 has, for example, a storage unit for storing luggage.
  • the building 500 includes, for example, types of apartments, offices, restaurants, inns, factories, warehouses, and the like.
  • the building 500 is, for example, a multi-storey building, and each floor 510 is provided with an apartment house.
  • the building 500 has a plurality of rooms and the like on each floor. Note that the number of floors of the building 500 is not particularly limited.
  • each of a plurality of floors 510 has a floor space.
  • the floor space has an atmospheric pressure corresponding to the height of the floor 510.
  • floors 520 partition between adjacent floors 510 in the vertical direction.
  • the floor 520 is a denser part than the floor space.
  • the elevator 600 includes, for example, a rope type elevator.
  • the elevator 600 uses, for example, the driving force of a hoist installed directly above the hoistway 610 or in the hoistway 610 to raise and lower the balance weight of the car 620 connected by a rope along the guide rail.
  • the moving body 1 gets into the car 620 of the elevator 600 and moves on the floor 510 of the building 500.
  • the mobile body 1 can estimate the number of floors of the floor 510 of the building 500 by detecting the floor display in the car 620 of the elevator 600 with a camera or the like.
  • the moving body 1 uses only the sensor mounted on the moving body 1 without using image information captured by the camera of the building 500, floor information indicating the floor 510 of the building 500, and the like. It is assumed that the floor number of the floor 510 of the building 500 to which the mobile body 1 has moved is estimated.
  • the mobile unit 1 includes an information processing device 10.
  • the information processing device 10 is, for example, a dedicated or general-purpose computer.
  • the information processing device 10 includes an atmospheric pressure sensor 11.
  • the atmospheric pressure sensor 11 measures the atmospheric pressure around the information processing device 10 (moving body 1).
  • the information processing device 10 measures the atmospheric pressure inside the car 620 by the atmospheric pressure sensor 11 when the moving body 1 is being moved up and down by the car 620 of the elevator 600.
  • the information processing device 10 stores the measured atmospheric pressure in time series.
  • FIG. 2 is a diagram showing an example of atmospheric pressure measured when the information processing apparatus 10 according to the first embodiment descends in the elevator 600.
  • a graph G shown in FIG. 2 shows a relationship between atmospheric pressure, time, and the number of floors 510 of the building 500 when the moving body 1 descends from the third floor of the building 500 to the first floor by the elevator 600.
  • the vertical axis represents atmospheric pressure [Pa]
  • the horizontal axis represents time [s]
  • the floor 510 on the horizontal axis indicates the number of floors, and does not indicate the space of the floor 510 or the magnitude of atmospheric pressure.
  • the section T1 shown in FIG. 2 is a section in which the car 620 of the elevator 600 starts moving downward in the vertical direction and accelerates.
  • the information processing device 10 starts descending from the third floor of the building 500 toward the first floor 510.
  • the atmospheric pressure measured by the atmospheric pressure sensor 11 of the information processing device 10 in the car 620 increases in value according to the height of the information processing device 10 (the car 620).
  • the section T2 shown in FIG. 2 is a section in which the car 620 of the elevator 600 that moves downward in the vertical direction moves at a constant speed.
  • the information processing device 10 passes through the floor portion 520 between the third floor and the second floor of the building 500 and then passes through the floor portion 520 between the second floor and the first floor.
  • the atmospheric pressure measured by the atmospheric pressure sensor 11 of the information processing device 10 increases in value according to the height of the information processing device 10, but the pressure fluctuations occur each time the floor portion 520 of the building 500 is passed. Has occurred.
  • the section T3 shown in FIG. 2 is a section in which the car 620 of the elevator 600 decelerates as it approaches the first floor 510 of the building 500.
  • the information processing device 10 has arrived at the first floor of the building 500.
  • the atmospheric pressure measured by the atmospheric pressure sensor 11 of the information processing device 10 becomes constant at a value according to the height of the first floor 510 when the car 620 stops on the first floor 510 of the building 500. .
  • the information processing device 10 has two pressure fluctuations in the atmospheric pressure measured inside the car 620. You can detect what is happening. For example, in the graph G of FIG. 2 that rises with the passage of time, pressure fluctuations occur in two portions P that deviate from the continuous value. Therefore, the information processing apparatus 10 temporarily detects a portion where the atmospheric pressure value deviates as a pressure fluctuation while the detected atmospheric pressure is rising. For example, when the measured fluctuation of the atmospheric pressure is similar to the fluctuation when the floor 520 of the building 500 is passed, the information processing apparatus 10 detects the fluctuation as a pressure fluctuation. Note that the example shown in FIG. 2 shows the measurement results when the car 620 of the elevator 600 moves vertically downward, but the same applies when the car 620 of the elevator 600 moves vertically upward. Fluctuation occurs.
  • FIG. 3 is a diagram for explaining a hypothesis of the principle of pressure fluctuation when the elevator 600 straddles the floor 510 of the building 500.
  • the floor space of the first floor 510 has a volume V 1
  • the floor space of the second floor 510 has a volume V 2 .
  • the inside of the car 620 has a volume V e .
  • the state ST1 is car 620 of the elevator 600 has stopped on the first floor of the floor 510, the interior of the car 620 is in the pressure P e.
  • the car 620 of the elevator 600 passes through the floor portion 520 between the first floor and the second floor, and the inside of the car 620 has a pressure P e ′.
  • the left side of the equation (1) has the volume V 1 of the floor space of the first floor and the volume V 1 of the car 620. It is assumed to be the sum of e .
  • the right side of the equation (1) has the volume V 1 of the floor space of the first floor and the floor space of the second floor. It is assumed to be the sum of the volume V 2 of V and the volume V e of the car 620.
  • the pressure P e is the pressure P e ′. (P e > P e ′). Therefore, it is considered that the cage 620 of the elevator 600 temporarily lowers the internal pressure of the cage 620 in a state where the cage 620 of the elevator 600 passes through the floor portion 520 of the building 500, that is, in a transient state across the floor 510. Therefore, the information processing device 10 of the present disclosure estimates the number of floors of the floor 510 of the building 500 by detecting the pressure fluctuation in which the pressure inside the car 620 of the elevator 600 temporarily drops (changes).
  • the information processing device 10 since the information processing device 10 passes through the floor portion 520 of the building 500 twice, the pressure fluctuation can be detected twice. Therefore, the information processing device 10 estimates that the floor 510 has been moved by two floors. For example, when moving vertically from the third floor of the building 500, the information processing apparatus 10 estimates that the information processing apparatus 10 has moved to the first floor 510 of the building 500.
  • the information processing apparatus 10 detects the pressure fluctuation when the car 620 of the elevator 600 straddles the floor 510 of the building 500, and moves by the elevator 600 based on the pressure fluctuation. Estimate the number of floors 510. Thereby, the information processing apparatus 10 can estimate the number of floors of the floor 510 of the building 500 moved by the elevator 600, only by using the atmospheric pressure sensor 11. Further, since the information processing device 10 does not need to acquire information about the building 500, the present disclosure can be realized without adding a new electronic device configuration or the like to the building 500 side or improving the equipment. You can be realized without adding a new electronic device configuration or the like to the building 500 side or improving the equipment. You can
  • the moving body 1 rides on a car 620 of the elevator 600 with a person heading to a different floor 510.
  • the information processing device 10 estimates the number of floors of the floor 510 at which the car 620 has stopped based on the pressure fluctuation, it is possible to determine whether the floor 510 at which the car 620 has stopped is the destination. it can. As a result, the information processing device 10 can move to the destination floor 510 by the elevator 600 without acquiring information about the number of floors 510 from the outside.
  • FIG. 4 is a diagram illustrating a configuration example of the information processing device 10 according to the first embodiment.
  • FIG. 5 is a diagram showing a configuration example of the atmospheric pressure sensor 11 according to the first embodiment.
  • FIG. 6 is a diagram for explaining an example of the conversion unit 15 according to the first embodiment.
  • the mobile unit 1 includes an information processing device 10 and a drive unit 100.
  • the drive unit 100 drives each drivable portion of the moving body 1.
  • the drive unit 100 drives a moving mechanism that moves the moving body 1.
  • the moving mechanism includes, for example, a mechanism for driving wheels, legs, and the like.
  • the drive unit 100 moves the moving body 1 by being driven by the control of the information processing device 10.
  • the information processing device 10 is, for example, a dedicated or general-purpose computer.
  • the information processing device 10 includes an atmospheric pressure sensor 11, an acceleration sensor 12, a gyro sensor 13, a storage unit 14, a conversion unit 15, a detection unit 16, an estimation unit 17, and an execution unit 18.
  • each processing unit of the detection unit 16, the estimation unit 17, and the execution unit 18 is a program stored in the information processing device 10 by, for example, a CPU (Central Processing Unit) or an MCU (Micro Control Unit). Is implemented by using RAM (Random Access Memory) as a work area. Further, each processing unit may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the atmospheric pressure sensor 11 measures the atmospheric pressure around the information processing device 10.
  • the atmospheric pressure sensor 11 includes, for example, an atmospheric pressure sensor. As shown in FIG. 5, the atmospheric pressure sensor 11 measures the strain generated in the diaphragm 11a by the pressure of the atmospheric pressure with a pressure sensitive element, and converts the measurement result into an electric signal and outputs it.
  • the diaphragm 11a is provided on one surface of the substrate 11b, and the inside thereof is vacuum-sealed.
  • the atmospheric pressure sensor 11 measures the atmospheric pressure from the strain when the atmospheric pressure is applied to the diaphragm 11a.
  • the atmospheric pressure sensor 11 is electrically connected to the conversion unit 15 and outputs the detection result to the conversion unit 15.
  • the acceleration sensor 12 detects the acceleration acting on the information processing device 10. For example, the acceleration sensor 12 detects accelerations in the X-axis direction, the Y-axis direction, and the Z-axis direction. The acceleration sensor 12 is electrically connected to the detection unit 16 and outputs the detection result to the detection unit 16. The detection result of the acceleration sensor 12 is used to detect a trigger such as the start of movement of the car 620 of the elevator 600.
  • the gyro sensor 13 detects the angle and angular velocity of the information processing device 10.
  • the gyro sensor 13 is electrically connected to the detection unit 16 and outputs the detection result to the detection unit 16. Then, the detection unit 16 uses the detection results of the acceleration sensor 12 and the gyro sensor 13 to detect a change in the posture of the information processing device 10.
  • the storage unit 14 stores various data.
  • the storage unit 14 can store data indicating the detection result of the atmospheric pressure sensor 11.
  • the storage unit 14 is electrically connected to the detection unit 16, the estimation unit 17, and the execution unit 18.
  • the storage unit 14 stores, for example, the calibration data 141, the map data 142, and the like.
  • the calibration data 141 includes, for example, data indicating the measurement result of the atmospheric pressure sensor 11 obtained by actually moving the car 620 of the elevator 600 of the building 500 and measuring the car 620.
  • the calibration data 141 is, for example, data indicating the measurement result of the atmospheric pressure corresponding to the building 500 by actually reciprocating in the elevator 600.
  • the calibration data 141 includes, for example, data actually measured by itself, data measured by another information processing device, and the like.
  • the calibration data 141 may be, for example, data in which the relationship between the measurement result and the number of floors 510 is associated.
  • the map data 142 includes map information indicating, for example, a floor map for each floor 510 of the building 500
  • the storage unit 14 is, for example, a RAM, a semiconductor memory device such as a flash memory, a hard disk, an optical disk, or the like.
  • the storage unit 14 may be provided outside the moving body 1. Specifically, the storage unit 14 may be provided in a cloud server connected to the information processing device 10 via a network.
  • the conversion unit 15 decomposes the signal output by the atmospheric pressure sensor 11 into components in a plurality of frequency bands using a well-known wavelet transform.
  • the conversion unit 15 decomposes the signal SG output by the atmospheric pressure sensor 11 into a signal SG1, a signal SG2, and a signal SG3 by wavelet conversion.
  • the vertical axis represents gain [dB] and the horizontal axis represents time [seconds].
  • the signal SG1 is a signal indicating a component of the first frequency band of 0 to 1 F [Hz]. Note that F is an arbitrary frequency.
  • the signal SG2 is a signal indicating a component of the second frequency band of 1F to 2F [Hz].
  • the signal SG3 is a signal indicating a component in the third frequency band of 2F to 3F [Hz].
  • the conversion unit 15 is electrically connected to the detection unit 16 and outputs the converted signal or the like to the detection unit 16.
  • the conversion unit 15 may output the signal output by the atmospheric pressure sensor 11 to the detection unit 16 together with the converted signal.
  • the detection unit 16 detects the pressure fluctuation when the elevator 600 crosses the floor 510 of the building 500, based on the atmospheric pressure inside the car 620 of the elevator 600 measured by the atmospheric pressure sensor 11.
  • the detection unit 16 detects a pressure fluctuation when the elevator 600 crosses the floor 510 of the building 500, based on the detection result of the atmospheric pressure and the calibration data 141 stored in the storage unit 14.
  • the detection unit 16 compares the detection result of atmospheric pressure with the calibration data 141, and detects a portion where the atmospheric pressure temporarily changes as a pressure fluctuation in both. Then, the detection unit 16 has a function of detecting the speed of the elevator 600 based on the detection result of the acceleration sensor 12 and specifying the frequency band in which the pressure fluctuation occurs from the speed. For example, when it is specified that the pressure fluctuation occurs in the signal SG3 of 2F to 3F [Hz] from the speed of the elevator 600, the detection unit 16 detects the pressure fluctuation based on the signal SG3. Then, the detection unit 16 is electrically connected to the estimation unit 17, and outputs the detection result to the estimation unit 17.
  • the detection unit 16 has a function of detecting the start of vertical movement of the car 620 of the elevator 600 based on the detection result of the acceleration sensor 12. For example, when the acceleration sensor 12 detects a predetermined upward acceleration in the vertical direction, the detection unit 16 outputs information indicating that the rising start of the car 620 has been detected to the estimation unit 17.
  • the predetermined acceleration includes, for example, acceleration at the time of starting the movement of the car 620 of the elevator 600. For example, when the acceleration sensor 12 detects a predetermined downward acceleration in the vertical direction, the detection unit 16 outputs information indicating that the descent start of the car 620 has been detected to the estimation unit 17.
  • the detection unit 16 has a function of detecting a vertical movement stop of the car 620 of the elevator 600 based on the detection result of the acceleration sensor 12.
  • the detection unit 16 When detecting the deceleration at the time of stop in the vertical direction based on the detection result of the acceleration sensor 12, for example, the detection unit 16 outputs information indicating that the car 620 has stopped to the estimation unit 17.
  • the estimation unit 17 estimates the number of floors of the floor 510 of the building 500 moved by the elevator 600, based on the pressure fluctuation inside the car 620 of the elevator 600 detected by the detection unit 16.
  • the estimation unit 17 estimates the number of floors of the destination floor 510 by counting the number of times of pressure fluctuations in which the pressure inside the car 620 of the elevator 600 temporarily changes.
  • the estimation unit 17 is electrically connected to the execution unit 18, and outputs the estimation result to the execution unit 18. Note that the estimation unit 17 outputs information indicating that the car 620 of the elevator 600 has passed the floor 520 of the building 500 to the execution unit 18 and the like, for example, when the pressure fluctuation is detected by the detection unit 16. Good.
  • the pressure fluctuation detected by the detection unit 16 by the information processing apparatus 10 may differ depending on the structure of the floor 510 or the elevator 600 having a lot of disturbance. Therefore, the estimation unit 17 compares the pressure fluctuation detected by the detection unit 16 with the pressure fluctuation indicated by the calibration data 141, and if the comparison result satisfies the determination condition, the pressure when the pressure fluctuation crosses the floor 510. It may be determined that there is fluctuation. In other words, the estimation unit 17 can eliminate the influence of noise or the like by using the calibration data 141.
  • the execution unit 18 executes the process used for the map information of the floor number of the floor 510 of the building 500 estimated by the estimation unit 17.
  • the process includes, for example, a process of calculating the route of the mobile unit 1 using the map information, a process of moving the mobile unit 1 to the destination of the mobile unit 1 using the map information, a process of switching the map information used by the mobile unit 1, and the like.
  • the execution unit 18 executes processing by executing the program.
  • the execution unit 18 is electrically connected to the drive unit 100 of the moving body 1.
  • the execution unit 18 controls the drive unit 100 by executing the control program.
  • the execution unit 18 drives the moving mechanism such as the wheels of the moving body 1 so as to move the elevator 600 to the destination on the floor 510.
  • the moving body 1 moves toward the target value on the floor 510 by driving the moving mechanism.
  • the example of the functional configuration of the information processing device 10 according to the present embodiment has been described above.
  • the above-described configuration described with reference to FIG. 4 is merely an example, and the functional configuration of the information processing device 10 according to the present embodiment is not limited to this example.
  • the functional configuration of the information processing apparatus 10 according to the present embodiment can be flexibly modified according to specifications and operation.
  • the information processing device 10 may incorporate the conversion unit 15 into the detection unit 16 as a function of the detection unit 16.
  • the information processing apparatus 10 performs the wavelet conversion on the detection result of the atmospheric pressure sensor 11 by the conversion unit 15, the present invention is not limited to this.
  • the information processing apparatus 10 may have a configuration in which the detection unit 16 detects the pressure fluctuation based on the detection result of the atmospheric pressure sensor 11 without using the conversion unit 15.
  • FIG. 7 is a flowchart showing an example of a processing procedure executed by the information processing apparatus 10 according to the first embodiment.
  • the processing procedure illustrated in FIG. 7 is realized by the information processing device 10 executing a program.
  • the processing procedure shown in FIG. 7 is repeatedly executed by the information processing device 10.
  • the information processing device 10 measures acceleration by the acceleration sensor 12 (step S101). Then, the information processing device 10 determines whether or not the car 620 of the elevator 600 starts moving based on the measurement result of the acceleration (step S102). For example, the information processing device 10 detects an upward or downward acceleration in the vertical direction and determines that the car 620 has started moving when the acceleration satisfies the movement start condition. When the information processing device 10 determines that the car 620 of the elevator 600 has not started moving (No in step S102), the information processing device 10 ends the processing procedure illustrated in FIG. 7. If the information processing device 10 determines that the car 620 of the elevator 600 has started moving (Yes in step S102), the process proceeds to step S103.
  • the information processing device 10 acquires the atmospheric pressure measurement result and the calibration data 141 (step S103). For example, the information processing device 10 acquires the time-series measurement results measured by the atmospheric pressure sensor 11 and acquires the calibration data 141 corresponding to the building 500. Then, the information processing device 10 detects a pressure fluctuation when the elevator 600 crosses the floor 510 (step S104). For example, the information processing device 10 compares the atmospheric pressure during the measured period with the atmospheric pressure indicated by the calibration data 141, and detects a portion that temporarily changes based on the comparison result as a pressure fluctuation. Then, the information processing device 10 stores the detection result in the storage unit 14. The series of processes from step S103 to step S104 corresponds to the processing procedure of the detection unit 16.
  • step S105 the information processing apparatus 10 determines whether or not pressure fluctuation has been detected. For example, the information processing device 10 determines that the pressure fluctuation is detected when the pressure fluctuation is detected by the detection unit 16. When the information processing apparatus 10 determines that the pressure fluctuation is not detected (No in step S105), the elevator 600 has not passed the floor portion 520 of the building 500, and thus the process proceeds to step S107 described below. When the information processing apparatus 10 determines that the pressure fluctuation is detected (Yes in step S105), the elevator 600 has passed through the floor portion 520 of the building 500, and thus the process proceeds to step S106.
  • the information processing device 10 counts the number of times the pressure fluctuation is detected (step S106). For example, the information processing device 10 uses a counter to count the number of pressure fluctuations that have occurred inside the car 620 of the moving elevator 600. Then, the information processing device 10 measures the acceleration by the acceleration sensor 12 (step S107). When the processing of step S107 ends, the information processing apparatus 10 advances the processing to step S108.
  • the information processing apparatus 10 determines whether or not the car 620 of the elevator 600 has stopped based on the acceleration measurement result (step S108). For example, the information processing device 10 detects the speed in the vertical direction upward or downward based on the acceleration, and determines that the car 620 has stopped when the speed satisfies the stop condition. When the information processing device 10 determines that the car 620 of the elevator 600 is not stopped (No in step S108), the process returns to step S103 already described. If the information processing device 10 determines that the car 620 of the elevator 600 has stopped (Yes in step S108), the process proceeds to step S109.
  • the information processing device 10 estimates the number of floors of the floor 510 moved by the elevator 600 based on the number of times pressure fluctuations are detected (step S109). For example, the information processing device 10 estimates the number of floors of the destination floor 510 based on a counter indicating the number of times pressure fluctuations have been detected. For example, when the car 620 of the elevator 600 moves vertically downward from the third floor of the building 500, if the counter indicates 2, the information processing apparatus 10 estimates that the floor number of the destination floor 510 is the first floor. To do. The information processing device 10 stores the information indicating the number of floors of the floor 510 at the start of movement in the storage unit 14 in association with the position information of the moving body 1.
  • the information processing apparatus 10 estimates that the floor 510 of the movement destination is the fifth floor. To do.
  • the information processing device 10 stores the estimation result of estimating the number of floors 510 in the storage unit 14, the process proceeds to step S110.
  • the information processing device 10 executes a process using the map information of the estimated floor number of the floor 510 (step S110). For example, the information processing device 10 extracts the map information of the number of floors 510 from the map data 142 and executes the process of controlling the movement of the mobile body 1 using the map information. As a result, the moving body 1 moves on the floor 510 moved by the elevator 600. When the process of step S110 ends, the information processing device 10 ends the processing procedure illustrated in FIG. 7.
  • step S105 corresponds to the processing procedure of the estimation unit 17.
  • step S110 corresponds to the process of the execution unit 18.
  • the information processing apparatus 10 detects the pressure fluctuation when the car 620 of the elevator 600 crosses the floor 510 of the building 500, and based on the pressure fluctuation and the calibration data 141.
  • the floor number of the floor 510 moved by the elevator 600 is estimated.
  • the information processing apparatus 10 can estimate the number of floors of the floor 510 of the building 500 moved by the elevator 600, based on the pressure fluctuation according to the building 500.
  • the information processing device 10 can improve the estimation accuracy of the number of floors 510 estimated based on the pressure fluctuation.
  • the information processing device 10 detects the start of movement of the elevator 600 in the vertical direction, and starts estimating the number of floors of the floor 510 in response to the start of movement. Accordingly, the information processing device 10 can detect the pressure fluctuation that occurs when the elevator 600 actually moves in the vertical direction. As a result, the information processing apparatus 10 can improve the pressure fluctuation detection accuracy.
  • the information processing device 10 ends the detection of the pressure fluctuation when the movement by the elevator 600 is stopped. As a result, the information processing device 10 does not detect the pressure fluctuation when the movement in the vertical direction by the elevator 600 is completed. As a result, the information processing apparatus 10 can estimate the number of floors of the floor 510 at an appropriate timing when the movement by the elevator 600 is stopped, and thus the estimation accuracy can be further improved.
  • the information processing device 10 performs a process using the map information of the estimated number of floors of the floor 510. As a result, the information processing device 10 can realize processing across the floor 510 of the building 500. As a result, the information processing device 10 can support, control, etc. the mounted mobile body 1 based on the estimated map information of the floor 510.
  • the information processing device 10 according to the second embodiment is, like the first embodiment, an atmospheric pressure sensor 11, an acceleration sensor 12, a gyro sensor 13, a storage unit 14, a conversion unit 15, and a detection unit. 16, an estimation unit 17, and an execution unit 18.
  • the description of the same configuration as the information processing device 10 according to the first embodiment will be omitted.
  • FIG. 8 is a diagram showing a speed change from the start of movement of the elevator 600 to the stop thereof.
  • the elevator 600 transits to the steady section through the acceleration section in which the speed of the car 620 is accelerated.
  • the steady section is a section in which the speed of the car 620 is steady.
  • the elevator 600 makes a transition to a deceleration section in which the speed of the car 620 is decelerated.
  • the atmospheric pressure sensor 11 may have different frequency bands in which pressure fluctuations occur, depending on the speed of the car 620 of the elevator 600.
  • the information processing apparatus 10 according to the second embodiment describes a case where the frequency band referred to by the detection result of the atmospheric pressure sensor 11 is changed according to the speed of the car 620 of the elevator 600.
  • the conversion unit 15 converts the signal SG output from the atmospheric pressure sensor 11 into a first frequency band of 0 to 1F [Hz] and a second frequency band of 1F to 2F [Hz]. It is assumed that the component is decomposed into a component with a third frequency band of 2F to 3F [Hz]. Then, the information processing apparatus 10 analyzes which frequency band of the first frequency band, the second frequency band, and the third frequency band the waveform generated by straddling the floor 510 is output.
  • a pressure fluctuation waveform appears as a component of the pressure fluctuation in the second frequency band.
  • the information processing device 10 detects the pressure fluctuation based on the component of the second frequency band.
  • a pressure fluctuation waveform appears in the component of the pressure fluctuation in the third frequency band.
  • the information processing device 10 detects the pressure fluctuation based on the component of the second frequency band.
  • the detection unit 16 identifies the speed of the car 620 of the elevator 600 based on the detection result of the acceleration sensor 12, estimates the frequency band of the atmospheric pressure in which the pressure fluctuation occurs based on the speed, and determines the atmospheric pressure of the frequency band. The pressure fluctuation is detected based on.
  • the detection unit 16 can suppress the influence of disturbance by detecting the pressure fluctuation based on the frequency band corresponding to the speed of the car 620.
  • FIG. 9 is a flowchart showing an example of a processing procedure executed by the information processing apparatus 10 according to the second embodiment.
  • the processing procedure illustrated in FIG. 9 is realized by the information processing device 10 executing a program.
  • the processing procedure shown in FIG. 9 is repeatedly executed by the information processing device 10.
  • steps S101 to S102 and steps S104 to S110 are the same as steps S101 to S102 and steps S104 to S110 shown in FIG. 7 already described, and therefore only different parts will be described. The description of the same parts will be omitted.
  • step S121 when the information processing device 10 determines that the car 620 of the elevator 600 has started moving (Yes in step S102), the process proceeds to step S121.
  • the information processing device 10 identifies the speed of the car 620 of the elevator 600 based on the measured acceleration (step S121). Then, the information processing device 10 acquires the measurement result of the atmospheric pressure and the calibration data 141 according to the specified speed (step S122). For example, the information processing device 10 acquires the measurement result of the atmospheric pressure in the frequency band corresponding to the speed, and acquires the calibration data 141 corresponding to the building 500. Then, the information processing device 10 detects a pressure fluctuation when the elevator 600 crosses the floor 510 (step S104).
  • the information processing device 10 compares the atmospheric pressure in the frequency band corresponding to the speed in the measured period with the atmospheric pressure indicated by the calibration data 141, and changes the pressure temporarily in the portion that temporarily changes based on the comparison result. To detect as. Then, the information processing device 10 stores the detection result in the storage unit 14. The processing of steps S122 and S104 corresponds to the processing procedure of the detection unit 16. Then, the information processing device 10 executes the series of processes from step S105 to step S110 already described.
  • the information processing apparatus 10 detects the pressure fluctuation based on the result of the wavelet transform of the atmospheric pressure measured by the atmospheric pressure sensor 11. Accordingly, the information processing device 10 can detect the pressure fluctuation based on the measurement result of the frequency band in which the pressure fluctuation easily appears. Further, the information processing device 10 can detect the pressure fluctuation without using the measurement result of the frequency band including the influence of the disturbance. As a result, the information processing apparatus 10 can eliminate the influence of the disturbance included in the measured atmospheric pressure, and thus can further improve the estimation accuracy of the floor number of the floor 510 estimated based on the pressure fluctuation.
  • the information processing apparatus 10 detects the pressure fluctuation based on the measurement result of the atmospheric pressure in the frequency band corresponding to the speed of the car 620 of the elevator 600 and the calibration data 141. Accordingly, the information processing device 10 can detect the pressure fluctuation based on the measurement result of the frequency band suitable for the speed of the car 620 among the measurement results converted into the plurality of frequency bands by the wavelet transform. As a result, the information processing apparatus 10 can improve the detection accuracy of the pressure change when straddling the floor 510 even if the moving state of the car 620 changes.
  • FIG. 10 is a hardware configuration diagram illustrating an example of a computer 1000 that realizes the functions of the information processing device 10.
  • the computer 1000 has a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, a HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input / output interface 1600.
  • the respective units of the computer 1000 are connected by a bus 1050.
  • the CPU 1100 operates based on a program stored in the ROM 1300 or the HDD 1400, and controls each part. For example, the CPU 1100 expands a program stored in the ROM 1300 or the HDD 1400 into the RAM 1200 and executes processing corresponding to various programs.
  • the ROM 1300 stores a boot program such as a BIOS (Basic Input Output System) that is executed by the CPU 1100 when the computer 1000 starts up, a program that depends on the hardware of the computer 1000, and the like.
  • BIOS Basic Input Output System
  • the HDD 1400 is a computer-readable recording medium that non-temporarily records a program executed by the CPU 1100, data used by the program, and the like. Specifically, the HDD 1400 is a recording medium that records an information processing program according to the present disclosure, which is an example of the program data 1450.
  • the communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (for example, the Internet).
  • the CPU 1100 receives data from another device or transmits the data generated by the CPU 1100 to another device via the communication interface 1500.
  • the input / output interface 1600 is an interface for connecting the input / output device 1650 and the computer 1000.
  • the CPU 1100 receives data from an input device such as a keyboard or a mouse via the input / output interface 1600.
  • the CPU 1100 also transmits data to an output device such as a display, a speaker, a printer, etc. via the input / output interface 1600.
  • the input / output interface 1600 may function as a media interface for reading a program or the like recorded in a predetermined recording medium (medium).
  • the medium is, for example, an optical recording medium such as a DVD (Digital Versatile Disc), a magneto-optical recording medium such as an MO (Magneto-Optical disc), a tape medium, a magnetic recording medium, or a semiconductor memory.
  • the CPU 1100 of the computer 1000 executes the program loaded on the RAM 1200 to cause the detection unit 16, the estimation unit 17, the execution unit 18, and the like. Realize the function.
  • the HDD 1400 stores the information processing program according to the present disclosure and the data in the storage unit 120.
  • the CPU 1100 reads the program data 1450 from the HDD 1400 and executes the program data.
  • these programs may be acquired from another device via the external network 1550.
  • the information processing device 10 may be configured to detect the pressure fluctuation when straddling the floor 510 based only on the measurement result of the atmospheric pressure sensor 11.
  • the information processing device 10 has been described as a case where the measurement result of the atmospheric pressure sensor 11 is wavelet-transformed by the conversion unit 15, but the present invention is not limited to this.
  • the information processing device 10 may be configured to electrically connect the detection unit 16 and the atmospheric pressure sensor 11 without using the conversion unit 15.
  • the effects described in the present specification are merely explanatory or exemplifying ones, and are not limiting. That is, the technique according to the present disclosure may have other effects that are apparent to those skilled in the art from the description of the present specification, in addition to or instead of the above effects.
  • each step related to the processing of the information processing apparatus 10 in this specification does not necessarily need to be processed in time series in the order described in the flowchart.
  • the steps related to the processing of the information processing device 10 may be processed in an order different from the order described in the flowchart, or may be processed in parallel.
  • An atmospheric pressure sensor that measures atmospheric pressure, Based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, a detection unit for detecting the pressure fluctuation when the elevator straddles the floor of the building, Based on the pressure fluctuations detected by the detection unit, an estimation unit for estimating the floor number of the floor moved by the elevator, An information processing apparatus including.
  • the information processing apparatus according to (1) or (2), wherein the detection unit detects the pressure fluctuation based on a result of wavelet transforming the atmospheric pressure detected by the atmospheric pressure sensor.
  • the detection unit identifies the speed of the elevator based on the detection result of the acceleration sensor, estimates the frequency band in which the pressure fluctuation occurs based on the speed, and based on the atmospheric pressure of the frequency band.
  • the information processing apparatus according to any one of (1) to (3), which detects pressure fluctuations.
  • the information processing apparatus according to any one of (1) to (4), wherein the detection unit starts detection of the pressure fluctuation when detecting the start of vertical movement of the elevator.

Abstract

An information processing device (10) comprises: an atmospheric pressure sensor (11) that measures atmospheric pressure; a detection unit (16) that detects a pressure fluctuation when an elevator is passing floors of a building, such detection being based on the atmospheric pressure inside the elevator as measured by the atmospheric sensor (11); and an estimation unit (17) that estimates the number of the floor travelled to on the elevator, such estimation being based on the pressure fluctuation detected by the detection unit (16).

Description

情報処理装置、情報処理方法及びプログラムInformation processing apparatus, information processing method, and program
 本開示は、情報処理装置、情報処理方法及びプログラムに関する。 The present disclosure relates to an information processing device, an information processing method, and a program.
 エレベータ装置には、エレベータ装置のかご上に、手動操作によりかごを上下走行させる操作機器を有するものがある。特許文献1には、計測した周囲の気圧から高度を算出し、予め記憶されたテーブルを参照して高度からフロアの階数(番号)を判定する操作機器を有するエレベータ装置が開示されている。 Some elevator devices have an operating device on the car of the elevator device that moves the car up and down by manual operation. Patent Document 1 discloses an elevator apparatus having an operating device that calculates an altitude from the measured atmospheric pressure and determines a floor number (number) from the altitude by referring to a table stored in advance.
特開2015-168502号公報JP, 2015-168502, A
 上記の従来技術では、建物のフロアの高さに関するデータベースを予め用意できていない場合、フロアの階数を気圧に基づいて判定することができない。また、エレベータ装置に搭乗して建物のフロアを自律移動する移動体では、気圧に基づいてフロアの階数を判定する機能を備えさせたいとの要望がある。 In the above-mentioned conventional technology, if the database regarding the height of the floor of the building is not prepared in advance, the number of floors cannot be determined based on the atmospheric pressure. Further, there is a demand for a moving body that autonomously moves on the floor of a building by boarding an elevator apparatus to have a function of determining the number of floors on the basis of atmospheric pressure.
 そこで、本開示では、エレベータで移動した建物のフロアの階数を推定することができる情報処理装置、情報処理方法及びプログラムを提供する。 Therefore, the present disclosure provides an information processing device, an information processing method, and a program that can estimate the number of floors of a building that has moved by an elevator.
 上記の課題を解決するために、本開示に係る一形態の情報処理装置は、大気圧を測定する大気圧センサと、前記大気圧センサによって測定されたエレベータの内部の大気圧に基づいて、当該エレベータが建物のフロアを跨ぐ際の圧力変動を検出する検出部と、前記検出部によって検出された前記圧力変動に基づいて、前記エレベータによって移動した前記フロアの階数を推定する推定部と、を備える。 In order to solve the above problems, an information processing device according to an aspect of the present disclosure is an atmospheric pressure sensor that measures atmospheric pressure, and based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, A detection unit that detects a pressure fluctuation when the elevator straddles the floor of the building, and an estimation unit that estimates the floor number of the floor moved by the elevator based on the pressure fluctuation detected by the detection unit. .
 また、本開示に係る一形態の情報処理方法は、コンピュータが、大気圧センサによって測定されたエレベータの内部の大気圧に基づいて、当該エレベータが建物のフロアを跨ぐ際の圧力変動を検出し、検出された前記圧力変動に基づいて、前記エレベータによって移動した前記フロアの階数を推定する。 Further, the information processing method according to an aspect of the present disclosure is that the computer detects the pressure fluctuation when the elevator straddles the floor of the building, based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, The number of floors of the floor moved by the elevator is estimated based on the detected pressure fluctuation.
 また、本開示に係る一形態のプログラムは、コンピュータを、大気圧センサによって測定されたエレベータの内部の大気圧に基づいて、当該エレベータが建物のフロアを跨ぐ際の圧力変動を検出する検出部、前記検出部によって検出された前記圧力変動に基づいて、前記エレベータによって移動した前記フロアの階数を推定する推定部、として機能させる。 Further, one embodiment of the program according to the present disclosure, a computer, based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, a detection unit that detects the pressure fluctuation when the elevator straddles the floor of the building, The estimation unit estimates the number of floors of the floor moved by the elevator based on the pressure fluctuation detected by the detection unit.
第1の実施形態に係る情報処理装置を備える移動体の一例を示す図である。It is a figure which shows an example of the mobile body provided with the information processing apparatus which concerns on 1st Embodiment. 第1の実施形態に係る情報処理装置がエレベータで下降した場合に測定する大気圧の一例を示す図である。It is a figure which shows an example of the atmospheric pressure measured when the information processing apparatus which concerns on 1st Embodiment descend | falls with an elevator. エレベータが建物のフロアを跨ぐ際の圧力変動の原理の仮説を説明するための図である。It is a figure for demonstrating the hypothesis of the principle of the pressure fluctuation when an elevator straddles the floor of a building. 第1の実施形態に係る情報処理装置の構成例を示す図である。It is a figure which shows the structural example of the information processing apparatus which concerns on 1st Embodiment. 第1の実施形態に係る大気圧センサの構成例を示す図である。It is a figure which shows the structural example of the atmospheric pressure sensor which concerns on 1st Embodiment. 第1の実施形態に係る変換部の一例を説明するための図である。It is a figure for demonstrating an example of the conversion part which concerns on 1st Embodiment. 第1の実施形態に係る情報処理装置が実行する処理手順の一例を示すフローチャートである。6 is a flowchart showing an example of a processing procedure executed by the information processing apparatus according to the first embodiment. エレベータの移動開始から停止までの速度変化を示す図である。It is a figure which shows the speed change from the movement start of an elevator to a stop. 第2の実施形態に係る情報処理装置が実行する処理手順の一例を示すフローチャートである。9 is a flowchart showing an example of a processing procedure executed by the information processing apparatus according to the second embodiment. 情報処理装置の機能を実現するコンピュータの一例を示すハードウェア構成図である。It is a hardware block diagram which shows an example of the computer which implement | achieves the function of an information processing apparatus.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。 Hereinafter, an embodiment of the present disclosure will be described in detail with reference to the drawings. In addition, in each of the following embodiments, the same reference numerals are given to the same portions, and duplicate description will be omitted.
(第1の実施形態)
[第1の実施形態に係る情報処理装置の概要]
 図1は、第1の実施形態に係る情報処理装置を備える移動体の一例を示す図である。図1に示す移動体1は、例えば、自律移動ロボットを含む。図1に示す例では、移動体1は、建物500の複数のフロア(階)510をエレベータ600で移動し、当該フロア510の配達先に荷物を配達する。移動体1は、例えば、荷物を収容する収容部を有している。建物500は、例えば、共同住宅、事務所、料理店、旅館、工場、倉庫等の種類を含む。本実施形態では、建物500は、例えば、複数階建ての建物であり、各フロア510は共同住宅が設けられている。換言すると、建物500は、各フロアに複数の部屋等が設けられている。なお、建物500の階数については、特に限定されるものではない。
(First embodiment)
[Outline of Information Processing Apparatus According to First Embodiment]
FIG. 1 is a diagram illustrating an example of a moving body including the information processing device according to the first embodiment. The mobile body 1 shown in FIG. 1 includes, for example, an autonomous mobile robot. In the example illustrated in FIG. 1, the mobile unit 1 moves on a plurality of floors (floors) 510 of a building 500 by an elevator 600 and delivers parcels to a delivery destination on the floor 510. The moving body 1 has, for example, a storage unit for storing luggage. The building 500 includes, for example, types of apartments, offices, restaurants, inns, factories, warehouses, and the like. In the present embodiment, the building 500 is, for example, a multi-storey building, and each floor 510 is provided with an apartment house. In other words, the building 500 has a plurality of rooms and the like on each floor. Note that the number of floors of the building 500 is not particularly limited.
 建物500は、複数のフロア510の各々がフロア空間を有している。フロア空間は、フロア510の高さに応じた大気圧となっている。建物500は、鉛直方向における隣り合うフロア510同士の間が床部520によって仕切られている。床部520は、フロア空間よりも密な部分となっている。 In the building 500, each of a plurality of floors 510 has a floor space. The floor space has an atmospheric pressure corresponding to the height of the floor 510. In the building 500, floors 520 partition between adjacent floors 510 in the vertical direction. The floor 520 is a denser part than the floor space.
 エレベータ600は、例えば、ロープ式のエレベータを含む。エレベータ600は、例えば、昇降路610の直上や昇降路610内に設置された巻上機の駆動力を用い、ロープで接続されたかご620と釣り合いおもりをガイドレールに沿って上下させる。移動体1は、エレベータ600のかご620内に乗り込んで、建物500のフロア510を移動する。 The elevator 600 includes, for example, a rope type elevator. The elevator 600 uses, for example, the driving force of a hoist installed directly above the hoistway 610 or in the hoistway 610 to raise and lower the balance weight of the car 620 connected by a rope along the guide rail. The moving body 1 gets into the car 620 of the elevator 600 and moves on the floor 510 of the building 500.
 例えば、移動体1は、カメラ等でエレベータ600のかご620内のフロア表示を検出することで、建物500のフロア510の階数を推定することができる。しかし、移動体1が複数の人間とエレベータ600のかご620に搭乗している場合、搭乗している人間、荷物等によってかご620内のフロア表示を検出できない可能性がある。このため、本開示では、移動体1は、建物500のカメラが撮影した画像情報、建物500のフロア510を示すフロア情報等を用いずに、移動体1に搭載されたセンサのみを利用して、移動体1が移動した建物500のフロア510の階数を推定することを前提とする。 For example, the mobile body 1 can estimate the number of floors of the floor 510 of the building 500 by detecting the floor display in the car 620 of the elevator 600 with a camera or the like. However, when the moving body 1 is on board a plurality of people and the car 620 of the elevator 600, there is a possibility that the floor display inside the car 620 cannot be detected depending on the people on board and the luggage. Therefore, in the present disclosure, the moving body 1 uses only the sensor mounted on the moving body 1 without using image information captured by the camera of the building 500, floor information indicating the floor 510 of the building 500, and the like. It is assumed that the floor number of the floor 510 of the building 500 to which the mobile body 1 has moved is estimated.
 移動体1は、情報処理装置10を備える。情報処理装置10は、例えば、専用または汎用コンピュータである。情報処理装置10は、大気圧センサ11を備える。大気圧センサ11は、情報処理装置10(移動体1)の周囲の大気圧を測定する。情報処理装置10は、移動体1がエレベータ600のかご620によって昇降している場合に、かご620の内部の大気圧を大気圧センサ11によって測定する。情報処理装置10は、測定した大気圧を時系列的に記憶する。 The mobile unit 1 includes an information processing device 10. The information processing device 10 is, for example, a dedicated or general-purpose computer. The information processing device 10 includes an atmospheric pressure sensor 11. The atmospheric pressure sensor 11 measures the atmospheric pressure around the information processing device 10 (moving body 1). The information processing device 10 measures the atmospheric pressure inside the car 620 by the atmospheric pressure sensor 11 when the moving body 1 is being moved up and down by the car 620 of the elevator 600. The information processing device 10 stores the measured atmospheric pressure in time series.
 図2は、第1の実施形態に係る情報処理装置10がエレベータ600で下降した場合に測定する大気圧の一例を示す図である。図2に示すグラフGは、移動体1がエレベータ600で建物500の3階から1階に下降した場合の大気圧と時間と建物500のフロア510の階数との関係を示している。図2において、縦軸は大気圧[Pa]を示し、横軸は時間[s]と建物500のフロア510の階数及び床部520とを示している。なお、横軸のフロア510は、階数を示したものであり、フロア510の空間、大気圧の大きさを示したものではない。 FIG. 2 is a diagram showing an example of atmospheric pressure measured when the information processing apparatus 10 according to the first embodiment descends in the elevator 600. A graph G shown in FIG. 2 shows a relationship between atmospheric pressure, time, and the number of floors 510 of the building 500 when the moving body 1 descends from the third floor of the building 500 to the first floor by the elevator 600. In FIG. 2, the vertical axis represents atmospheric pressure [Pa], and the horizontal axis represents time [s], the number of floors 510 of the building 500, and the floor portion 520. The floor 510 on the horizontal axis indicates the number of floors, and does not indicate the space of the floor 510 or the magnitude of atmospheric pressure.
 図2に示す区間T1は、エレベータ600のかご620が鉛直方向における下方へ移動開始して加速する区間である。区間T1において、情報処理装置10は、建物500の3階から1階のフロア510に向かって下降を開始している。この場合、かご620内の情報処理装置10の大気圧センサ11が測定する大気圧は、情報処理装置10(かご620)の高さに応じて値が上昇する。 The section T1 shown in FIG. 2 is a section in which the car 620 of the elevator 600 starts moving downward in the vertical direction and accelerates. In the section T1, the information processing device 10 starts descending from the third floor of the building 500 toward the first floor 510. In this case, the atmospheric pressure measured by the atmospheric pressure sensor 11 of the information processing device 10 in the car 620 increases in value according to the height of the information processing device 10 (the car 620).
 図2に示す区間T2は、鉛直方向の下方へ移動するエレベータ600のかご620が一定の速度で移動する区間である。区間T2において、情報処理装置10は、建物500の3階と2階との間の床部520を通過した後、2階と1階の間の床部520とを通過している。この場合、情報処理装置10の大気圧センサ11が測定する大気圧は、情報処理装置10の高さに応じて値が上昇するが、建物500の床部520を通過するたびに、圧力変動が生じている。 The section T2 shown in FIG. 2 is a section in which the car 620 of the elevator 600 that moves downward in the vertical direction moves at a constant speed. In the section T2, the information processing device 10 passes through the floor portion 520 between the third floor and the second floor of the building 500 and then passes through the floor portion 520 between the second floor and the first floor. In this case, the atmospheric pressure measured by the atmospheric pressure sensor 11 of the information processing device 10 increases in value according to the height of the information processing device 10, but the pressure fluctuations occur each time the floor portion 520 of the building 500 is passed. Has occurred.
 図2に示す区間T3は、エレベータ600のかご620が建物500の1階のフロア510に近付くにしたがって減速する区間である。区間T3において、情報処理装置10は、建物500の1階に到着している。この場合、情報処理装置10の大気圧センサ11が測定する大気圧は、建物500の1階のフロア510でかご620が停止すると、1階のフロア510の高さに応じた値で一定となる。 The section T3 shown in FIG. 2 is a section in which the car 620 of the elevator 600 decelerates as it approaches the first floor 510 of the building 500. In the section T3, the information processing device 10 has arrived at the first floor of the building 500. In this case, the atmospheric pressure measured by the atmospheric pressure sensor 11 of the information processing device 10 becomes constant at a value according to the height of the first floor 510 when the car 620 stops on the first floor 510 of the building 500. .
 図2に示す例では、情報処理装置10は、エレベータ600のかご620が建物500の3階から1階のフロア510に移動する間、かご620の内部で測定した大気圧に圧力変動が2回発生していることを検出できる。例えば、時間の経過に応じて上昇する図2のグラフGは、連続した値から乖離する2箇所の部分Pが圧力変動となっている。このため、情報処理装置10は、検出した大気圧が上昇している状態で、一時的に大気圧の値が外れる部分を圧力変動として検出する。例えば、情報処理装置10は、測定した大気圧の変動が、建物500の床部520を通過時の変動と類似する場合に、当該変動を圧力変動として検出する。なお、図2に示す一例は、エレベータ600のかご620が鉛直方向の下方へ移動する場合の測定結果を示しているが、エレベータ600のかご620が鉛直方向の上方へ移動する場合も同様に圧力変動が発生する。 In the example illustrated in FIG. 2, while the car 620 of the elevator 600 moves from the third floor of the building 500 to the floor 510 of the first floor, the information processing device 10 has two pressure fluctuations in the atmospheric pressure measured inside the car 620. You can detect what is happening. For example, in the graph G of FIG. 2 that rises with the passage of time, pressure fluctuations occur in two portions P that deviate from the continuous value. Therefore, the information processing apparatus 10 temporarily detects a portion where the atmospheric pressure value deviates as a pressure fluctuation while the detected atmospheric pressure is rising. For example, when the measured fluctuation of the atmospheric pressure is similar to the fluctuation when the floor 520 of the building 500 is passed, the information processing apparatus 10 detects the fluctuation as a pressure fluctuation. Note that the example shown in FIG. 2 shows the measurement results when the car 620 of the elevator 600 moves vertically downward, but the same applies when the car 620 of the elevator 600 moves vertically upward. Fluctuation occurs.
 図3は、エレベータ600が建物500のフロア510を跨ぐ際の圧力変動の原理の仮説を説明するための図である。図3に示す状態ST1及び状態ST2は、1階のフロア510のフロア空間が体積V、2階のフロア510のフロア空間が体積Vとなっている。エレベータ600は、かご620の内部が体積Vとなっている。そして、状態ST1は、エレベータ600のかご620が1階のフロア510に停止しており、かご620の内部が圧力Pとなっている。状態ST2は、エレベータ600のかご620が1階と2階の間の床部520を通過しており、かご620の内部が圧力P’なっている。 FIG. 3 is a diagram for explaining a hypothesis of the principle of pressure fluctuation when the elevator 600 straddles the floor 510 of the building 500. In the states ST1 and ST2 shown in FIG. 3, the floor space of the first floor 510 has a volume V 1 , and the floor space of the second floor 510 has a volume V 2 . In the elevator 600, the inside of the car 620 has a volume V e . The state ST1 is car 620 of the elevator 600 has stopped on the first floor of the floor 510, the interior of the car 620 is in the pressure P e. In the state ST2, the car 620 of the elevator 600 passes through the floor portion 520 between the first floor and the second floor, and the inside of the car 620 has a pressure P e ′.
 理想気体の状態方程式(PV=nRT)を利用して、フロア510を跨いだ際の圧力変動の原理を以下に検討する。状態ST1と状態ST2とでは、状態方程式のnRTは、同一であると立式する。なお、nは気体のモル数、Rは気体定数、Tは絶対温度である。そして、状態ST1を左辺と状態ST2を右辺とすると、以下の式(1)を立式できる。
 P(V+V)=P’(V+V+V) ・・・(1)
Using the ideal gas equation of state (PV = nRT), the principle of pressure fluctuation when straddling the floor 510 will be examined below. In the state ST1 and the state ST2, nRT of the state equation is set to be the same. In addition, n is the number of moles of gas, R is a gas constant, and T is an absolute temperature. When the state ST1 is the left side and the state ST2 is the right side, the following equation (1) can be established.
P e (V 1 + V e ) = P e ′ (V 1 + V 2 + V e ) ... (1)
 状態ST1では、1階と2階とのフロア510の間に床部520が存在することで、式(1)の左辺は、体積を1階のフロア空間の体積Vとかご620の体積Vの和と仮定している。状態ST2では、1階と2階とのフロア510にかご620が跨がっていることで、式(1)の右辺は、体積を1階のフロア空間の体積Vと2階のフロア空間の体積Vとかご620の体積Vの和と仮定している。そして、体積(V+V)は、体積(V+V+V)よりも小さいので((V+V)<(V+V+V))、圧力Pは圧力P’よりも大きくなる(P>P’)。このため、エレベータ600のかご620は、建物500の床部520を通過する状態、すなわち、フロア510を跨ぐ過渡状態では、一時的にかご620の内部の圧力が下がるものと考える。よって、本開示の情報処理装置10は、エレベータ600のかご620の内部の圧力が一時的に下がる(変化する)圧力変動を検出することで、建物500のフロア510の階数を推定する。 In the state ST1, since the floor portion 520 exists between the floors 510 of the first floor and the second floor, the left side of the equation (1) has the volume V 1 of the floor space of the first floor and the volume V 1 of the car 620. It is assumed to be the sum of e . In the state ST2, since the car 620 straddles the floors 510 of the first floor and the second floor, the right side of the equation (1) has the volume V 1 of the floor space of the first floor and the floor space of the second floor. It is assumed to be the sum of the volume V 2 of V and the volume V e of the car 620. Since the volume (V 1 + V e ) is smaller than the volume (V 1 + V 2 + V e ) ((V 1 + V e ) <(V 1 + V 2 + V e )), the pressure P e is the pressure P e ′. (P e > P e ′). Therefore, it is considered that the cage 620 of the elevator 600 temporarily lowers the internal pressure of the cage 620 in a state where the cage 620 of the elevator 600 passes through the floor portion 520 of the building 500, that is, in a transient state across the floor 510. Therefore, the information processing device 10 of the present disclosure estimates the number of floors of the floor 510 of the building 500 by detecting the pressure fluctuation in which the pressure inside the car 620 of the elevator 600 temporarily drops (changes).
 図2に示す例では、情報処理装置10は、建物500の床部520を2回通過しているので、2回の圧力変動を検出できる。このため、情報処理装置10は、フロア510を2階分移動したことを推定する。例えば、建物500の3階から鉛直方向の下方へ移動した場合、情報処理装置10は、建物500の1階のフロア510へ移動したと推定する。 In the example shown in FIG. 2, since the information processing device 10 passes through the floor portion 520 of the building 500 twice, the pressure fluctuation can be detected twice. Therefore, the information processing device 10 estimates that the floor 510 has been moved by two floors. For example, when moving vertically from the third floor of the building 500, the information processing apparatus 10 estimates that the information processing apparatus 10 has moved to the first floor 510 of the building 500.
 以上のように、第1の実施形態に係る情報処理装置10は、エレベータ600のかご620が建物500のフロア510を跨ぐ際の圧力変動を検出し、当該圧力変動に基づいてエレベータ600によって移動したフロア510の階数を推定する。これにより、情報処理装置10は、大気圧センサ11を用いるだけで、エレベータ600で移動した建物500のフロア510の階数を推定することができる。また、情報処理装置10は、建物500に関する情報を取得する必要がないので、建物500側に新たな電子機器等の構成を追加したり、設備を改良したりすることなく本開示を実現することができる。 As described above, the information processing apparatus 10 according to the first embodiment detects the pressure fluctuation when the car 620 of the elevator 600 straddles the floor 510 of the building 500, and moves by the elevator 600 based on the pressure fluctuation. Estimate the number of floors 510. Thereby, the information processing apparatus 10 can estimate the number of floors of the floor 510 of the building 500 moved by the elevator 600, only by using the atmospheric pressure sensor 11. Further, since the information processing device 10 does not need to acquire information about the building 500, the present disclosure can be realized without adding a new electronic device configuration or the like to the building 500 side or improving the equipment. You can
 例えば、移動体1が異なるフロア510に向かう人間とエレベータ600のかご620に同乗する場合がある。この場合、情報処理装置10は、圧力変動に基づいてかご620が停止したフロア510の階数を推測しているので、かご620が停止したフロア510が移動先であるか否かを判定することができる。その結果、情報処理装置10は、フロア510の階数に関する情報を外部から取得することなく、移動先のフロア510にエレベータ600で移動することができる。 For example, there is a case where the moving body 1 rides on a car 620 of the elevator 600 with a person heading to a different floor 510. In this case, since the information processing device 10 estimates the number of floors of the floor 510 at which the car 620 has stopped based on the pressure fluctuation, it is possible to determine whether the floor 510 at which the car 620 has stopped is the destination. it can. As a result, the information processing device 10 can move to the destination floor 510 by the elevator 600 without acquiring information about the number of floors 510 from the outside.
[第1の実施形態に係る情報処理装置10の構成例]
 図4は、第1の実施形態に係る情報処理装置10の構成例を示す図である。図5は、第1の実施形態に係る大気圧センサ11の構成例を示す図である。図6は、第1の実施形態に係る変換部15の一例を説明するための図である。
[Configuration Example of Information Processing Device 10 according to First Embodiment]
FIG. 4 is a diagram illustrating a configuration example of the information processing device 10 according to the first embodiment. FIG. 5 is a diagram showing a configuration example of the atmospheric pressure sensor 11 according to the first embodiment. FIG. 6 is a diagram for explaining an example of the conversion unit 15 according to the first embodiment.
 図4に示すように、移動体1は、情報処理装置10と、駆動部100と、を備える。駆動部100は、移動体1の駆動可能な各部位を駆動させる。駆動部100は、移動体1を移動させる移動機構を駆動させる。移動機構は、例えば、車輪、脚等を駆動するための機構を含む。駆動部100は、情報処理装置10の制御によって駆動することで、移動体1を移動させる。そして、情報処理装置10は、例えば、専用または汎用コンピュータである。情報処理装置10は、大気圧センサ11と、加速度センサ12と、ジャイロセンサ13と、記憶部14と、変換部15と、検出部16と、推定部17と、実行部18と、を備える。本実施形態では、検出部16、推定部17及び実行部18の各処理部は、例えば、CPU(Central Processing Unit)やMCU(Micro Control Unit)等によって、情報処理装置10内部に記憶されたプログラムがRAM(Random Access Memory)等を作業領域として実行されることにより実現される。また、各処理部は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の集積回路により実現されてもよい。 As shown in FIG. 4, the mobile unit 1 includes an information processing device 10 and a drive unit 100. The drive unit 100 drives each drivable portion of the moving body 1. The drive unit 100 drives a moving mechanism that moves the moving body 1. The moving mechanism includes, for example, a mechanism for driving wheels, legs, and the like. The drive unit 100 moves the moving body 1 by being driven by the control of the information processing device 10. The information processing device 10 is, for example, a dedicated or general-purpose computer. The information processing device 10 includes an atmospheric pressure sensor 11, an acceleration sensor 12, a gyro sensor 13, a storage unit 14, a conversion unit 15, a detection unit 16, an estimation unit 17, and an execution unit 18. In the present embodiment, each processing unit of the detection unit 16, the estimation unit 17, and the execution unit 18 is a program stored in the information processing device 10 by, for example, a CPU (Central Processing Unit) or an MCU (Micro Control Unit). Is implemented by using RAM (Random Access Memory) as a work area. Further, each processing unit may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
 大気圧センサ11は、情報処理装置10の周囲の大気圧を測定する。大気圧センサ11は、例えば、気圧センサを含む。大気圧センサ11は、図5に示すように、大気圧の圧力によってダイヤフラム11aに生じる歪みを感圧素子で測定し、測定結果を電気信号に変換して出力する。ダイヤフラム11aは、基板11bの一面に設けられており、その内部が真空封止されている。大気圧センサ11は、大気圧がダイヤフラム11aに加わったときの歪みから大気圧を測定する。大気圧センサ11は、変換部15と電気的に接続されており、検出結果を変換部15に出力する。 The atmospheric pressure sensor 11 measures the atmospheric pressure around the information processing device 10. The atmospheric pressure sensor 11 includes, for example, an atmospheric pressure sensor. As shown in FIG. 5, the atmospheric pressure sensor 11 measures the strain generated in the diaphragm 11a by the pressure of the atmospheric pressure with a pressure sensitive element, and converts the measurement result into an electric signal and outputs it. The diaphragm 11a is provided on one surface of the substrate 11b, and the inside thereof is vacuum-sealed. The atmospheric pressure sensor 11 measures the atmospheric pressure from the strain when the atmospheric pressure is applied to the diaphragm 11a. The atmospheric pressure sensor 11 is electrically connected to the conversion unit 15 and outputs the detection result to the conversion unit 15.
 図4に戻り、加速度センサ12は、情報処理装置10に作用する加速度を検出する。例えば、加速度センサ12は、X軸方向、Y軸方向及びZ軸方向の加速度を検出する。加速度センサ12は、検出部16と電気的に接続されており、検出結果を検出部16に出力する。加速度センサ12の検出結果は、エレベータ600のかご620の移動開始等のトリガの検出に用いられる。 Returning to FIG. 4, the acceleration sensor 12 detects the acceleration acting on the information processing device 10. For example, the acceleration sensor 12 detects accelerations in the X-axis direction, the Y-axis direction, and the Z-axis direction. The acceleration sensor 12 is electrically connected to the detection unit 16 and outputs the detection result to the detection unit 16. The detection result of the acceleration sensor 12 is used to detect a trigger such as the start of movement of the car 620 of the elevator 600.
 ジャイロセンサ13は、情報処理装置10の角度及び角速度を検出する。ジャイロセンサ13は、検出部16と電気的に接続されており、検出結果を検出部16に出力する。そして、検出部16は、加速度センサ12及びジャイロセンサ13の検出結果を、情報処理装置10の姿勢の変化等の検出に用いられる。 The gyro sensor 13 detects the angle and angular velocity of the information processing device 10. The gyro sensor 13 is electrically connected to the detection unit 16 and outputs the detection result to the detection unit 16. Then, the detection unit 16 uses the detection results of the acceleration sensor 12 and the gyro sensor 13 to detect a change in the posture of the information processing device 10.
 記憶部14は、各種データを記憶する。例えば、記憶部14は、大気圧センサ11の検出結果を示すデータを記憶できる。記憶部14は、検出部16、推定部17及び実行部18と電気的に接続されている。記憶部14は、例えば、キャリブレーションデータ141、地図データ142等を記憶する。キャリブレーションデータ141は、例えば、建物500のエレベータ600のかご620を移動させ、当該かご620で実際に測定した大気圧センサ11の測定結果を示すデータを含む。キャリブレーションデータ141は、例えば、エレベータ600で実際に往復することで、建物500に対応した大気圧の測定結果を示すデータとなっている。キャリブレーションデータ141は、例えば、自機で実際に測定したデータ、他の情報処理装置が測定したデータ等を含む。キャリブレーションデータ141は、例えば、測定結果とフロア510の階数との関係を紐付けたデータであってもよい。地図データ142は、例えば、建物500のフロア510ごとのフロアマップ等を示す地図情報を含む。 The storage unit 14 stores various data. For example, the storage unit 14 can store data indicating the detection result of the atmospheric pressure sensor 11. The storage unit 14 is electrically connected to the detection unit 16, the estimation unit 17, and the execution unit 18. The storage unit 14 stores, for example, the calibration data 141, the map data 142, and the like. The calibration data 141 includes, for example, data indicating the measurement result of the atmospheric pressure sensor 11 obtained by actually moving the car 620 of the elevator 600 of the building 500 and measuring the car 620. The calibration data 141 is, for example, data indicating the measurement result of the atmospheric pressure corresponding to the building 500 by actually reciprocating in the elevator 600. The calibration data 141 includes, for example, data actually measured by itself, data measured by another information processing device, and the like. The calibration data 141 may be, for example, data in which the relationship between the measurement result and the number of floors 510 is associated. The map data 142 includes map information indicating, for example, a floor map for each floor 510 of the building 500.
 記憶部14は、例えば、RAM、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等である。なお、記憶部14は、移動体1の外部に設けられていてもよい。具体的には、記憶部14は、ネットワークを介して情報処理装置10に接続されたクラウドサーバに設けてもよい。 The storage unit 14 is, for example, a RAM, a semiconductor memory device such as a flash memory, a hard disk, an optical disk, or the like. The storage unit 14 may be provided outside the moving body 1. Specifically, the storage unit 14 may be provided in a cloud server connected to the information processing device 10 via a network.
 変換部15は、大気圧センサ11が出力した信号を、周知のウェーブレット変換を用いて複数の周波数帯域の成分に分解する。本実施形態では、図6に示すように、変換部15は、大気圧センサ11が出力した信号SGをウェーブレット変換により、信号SG1と信号SG2と信号SG3とに分解する。図6において、縦軸はゲイン[dB]を示し、横軸は時間[秒]を示している。信号SG1は、0~1F[Hz]の第1周波数帯域の成分を示す信号である。なお、Fは、任意の周波数である。信号SG2は、1F~2F[Hz]の第2周波数帯域の成分を示す信号である。信号SG3は、2F~3F[Hz]の第3周波数帯域の成分を示す信号である。変換部15は、検出部16と電気的に接続されており、変換した信号等を検出部16に出力する。なお、変換部15は、大気圧センサ11が出力した信号を、変換した信号とともに検出部16に出力してもよい。 The conversion unit 15 decomposes the signal output by the atmospheric pressure sensor 11 into components in a plurality of frequency bands using a well-known wavelet transform. In the present embodiment, as shown in FIG. 6, the conversion unit 15 decomposes the signal SG output by the atmospheric pressure sensor 11 into a signal SG1, a signal SG2, and a signal SG3 by wavelet conversion. In FIG. 6, the vertical axis represents gain [dB] and the horizontal axis represents time [seconds]. The signal SG1 is a signal indicating a component of the first frequency band of 0 to 1 F [Hz]. Note that F is an arbitrary frequency. The signal SG2 is a signal indicating a component of the second frequency band of 1F to 2F [Hz]. The signal SG3 is a signal indicating a component in the third frequency band of 2F to 3F [Hz]. The conversion unit 15 is electrically connected to the detection unit 16 and outputs the converted signal or the like to the detection unit 16. The conversion unit 15 may output the signal output by the atmospheric pressure sensor 11 to the detection unit 16 together with the converted signal.
 検出部16は、大気圧センサ11によって測定されたエレベータ600のかご620の内部の大気圧に基づいて、当該エレベータ600が建物500のフロア510を跨ぐ際の圧力変動を検出する。検出部16は、大気圧の検出結果と記憶部14に記憶しているキャリブレーションデータ141とに基づいて、エレベータ600が建物500のフロア510を跨ぐ際の圧力変動を検出する。 The detection unit 16 detects the pressure fluctuation when the elevator 600 crosses the floor 510 of the building 500, based on the atmospheric pressure inside the car 620 of the elevator 600 measured by the atmospheric pressure sensor 11. The detection unit 16 detects a pressure fluctuation when the elevator 600 crosses the floor 510 of the building 500, based on the detection result of the atmospheric pressure and the calibration data 141 stored in the storage unit 14.
 例えば、検出部16は、大気圧の検出結果とキャリブレーションデータ141とを比較し、双方で大気圧が一時的に変化する部分を圧力変動として検出する。そして、検出部16は、加速度センサ12の検出結果に基づいてエレベータ600の速度を検出し、当該速度から圧力変動が発生する周波数帯域を特定する機能を有する。例えば、検出部16は、エレベータ600の速度から2F~3F[Hz]の信号SG3に圧力変動が発生すると特定した場合、当該信号SG3に基づいて圧力変動を検出する。そして、検出部16は、推定部17と電気的に接続されており、検出結果を推定部17に出力する。 For example, the detection unit 16 compares the detection result of atmospheric pressure with the calibration data 141, and detects a portion where the atmospheric pressure temporarily changes as a pressure fluctuation in both. Then, the detection unit 16 has a function of detecting the speed of the elevator 600 based on the detection result of the acceleration sensor 12 and specifying the frequency band in which the pressure fluctuation occurs from the speed. For example, when it is specified that the pressure fluctuation occurs in the signal SG3 of 2F to 3F [Hz] from the speed of the elevator 600, the detection unit 16 detects the pressure fluctuation based on the signal SG3. Then, the detection unit 16 is electrically connected to the estimation unit 17, and outputs the detection result to the estimation unit 17.
 検出部16は、加速度センサ12の検出結果に基づいてエレベータ600のかご620の鉛直方向における移動開始を検出する機能を有する。検出部16は、例えば、加速度センサ12が鉛直方向の上方への所定の加速度を検出した場合、かご620の上昇開始を検出したことを示す情報を推定部17に出力する。所定の加速度は、例えば、エレベータ600のかご620の移動開始時の加速度等を含む。検出部16は、例えば、加速度センサ12が鉛直方向の下方への所定の加速度を検出した場合、かご620の下降開始を検出したことを示す情報を推定部17に出力する。 The detection unit 16 has a function of detecting the start of vertical movement of the car 620 of the elevator 600 based on the detection result of the acceleration sensor 12. For example, when the acceleration sensor 12 detects a predetermined upward acceleration in the vertical direction, the detection unit 16 outputs information indicating that the rising start of the car 620 has been detected to the estimation unit 17. The predetermined acceleration includes, for example, acceleration at the time of starting the movement of the car 620 of the elevator 600. For example, when the acceleration sensor 12 detects a predetermined downward acceleration in the vertical direction, the detection unit 16 outputs information indicating that the descent start of the car 620 has been detected to the estimation unit 17.
 検出部16は、加速度センサ12の検出結果に基づいてエレベータ600のかご620の鉛直方向における移動停止を検出する機能を有する。検出部16は、例えば、加速度センサ12の検出結果に基づいて鉛直方向における停止時の減速を検出した場合、かご620が停止したことを示す情報を推定部17に出力する。 The detection unit 16 has a function of detecting a vertical movement stop of the car 620 of the elevator 600 based on the detection result of the acceleration sensor 12. When detecting the deceleration at the time of stop in the vertical direction based on the detection result of the acceleration sensor 12, for example, the detection unit 16 outputs information indicating that the car 620 has stopped to the estimation unit 17.
 図4に戻り、推定部17は、検出部16によって検出されたエレベータ600のかご620の内部の圧力変動に基づいて、エレベータ600によって移動した建物500のフロア510の階数を推定する。推定部17は、エレベータ600のかご620の内部の圧力が一時的に変化する圧力変動の発生回数を計数することで、移動先のフロア510の階数を推定する。推定部17は、実行部18と電気的に接続されており、推定結果を実行部18に出力する。なお、推定部17は、例えば、検出部16によって圧力変動が検出された場合に、エレベータ600のかご620が建物500の床部520を通過したことを示す情報を実行部18等に出力してもよい。 Returning to FIG. 4, the estimation unit 17 estimates the number of floors of the floor 510 of the building 500 moved by the elevator 600, based on the pressure fluctuation inside the car 620 of the elevator 600 detected by the detection unit 16. The estimation unit 17 estimates the number of floors of the destination floor 510 by counting the number of times of pressure fluctuations in which the pressure inside the car 620 of the elevator 600 temporarily changes. The estimation unit 17 is electrically connected to the execution unit 18, and outputs the estimation result to the execution unit 18. Note that the estimation unit 17 outputs information indicating that the car 620 of the elevator 600 has passed the floor 520 of the building 500 to the execution unit 18 and the like, for example, when the pressure fluctuation is detected by the detection unit 16. Good.
 例えば、外乱の多いフロア510やエレベータ600の構造等によっては、情報処理装置10が検出部16によって検出する圧力変動に相違が生じる可能性がある。このため、推定部17は、検出部16が検出した圧力変動とキャリブレーションデータ141が示す圧力変動とを比較し、比較結果が判定条件を満たす場合、当該圧力変動がフロア510を跨ぐ際の圧力変動であると判定してもよい。換言すると、推定部17は、キャリブレーションデータ141を用いることで、ノイズ等の影響を排除することができる。 For example, the pressure fluctuation detected by the detection unit 16 by the information processing apparatus 10 may differ depending on the structure of the floor 510 or the elevator 600 having a lot of disturbance. Therefore, the estimation unit 17 compares the pressure fluctuation detected by the detection unit 16 with the pressure fluctuation indicated by the calibration data 141, and if the comparison result satisfies the determination condition, the pressure when the pressure fluctuation crosses the floor 510. It may be determined that there is fluctuation. In other words, the estimation unit 17 can eliminate the influence of noise or the like by using the calibration data 141.
 実行部18は、推定部17によって推定した建物500のフロア510の階数の地図情報に用いた処理を実行する。処理は、例えば、地図情報を用いて移動体1の経路を計算する処理、地図情報を用いて移動体1の目的地に移動させる処理、移動体1が用いる地図情報を切り替える処理、等を含む。実行部18は、プログラムの実行により、処理を実行する。実行部18は、移動体1の駆動部100と電気的に接続されている。実行部18は、制御プログラムを実行することにより、駆動部100を制御する。 The execution unit 18 executes the process used for the map information of the floor number of the floor 510 of the building 500 estimated by the estimation unit 17. The process includes, for example, a process of calculating the route of the mobile unit 1 using the map information, a process of moving the mobile unit 1 to the destination of the mobile unit 1 using the map information, a process of switching the map information used by the mobile unit 1, and the like. . The execution unit 18 executes processing by executing the program. The execution unit 18 is electrically connected to the drive unit 100 of the moving body 1. The execution unit 18 controls the drive unit 100 by executing the control program.
 例えば、実行部18は、エレベータ600からフロア510の目的地に移動させるように、移動体1の車輪等の移動機構を駆動させる。その結果、移動体1は、移動機構の駆動によってフロア510の目的値に向かって移動する。 For example, the execution unit 18 drives the moving mechanism such as the wheels of the moving body 1 so as to move the elevator 600 to the destination on the floor 510. As a result, the moving body 1 moves toward the target value on the floor 510 by driving the moving mechanism.
 以上、本実施形態に係る情報処理装置10の機能構成例について説明した。なお、図4を用いて説明した上記の構成はあくまで一例であり、本実施形態に係る情報処理装置10の機能構成は係る例に限定されない。本実施形態に係る情報処理装置10の機能構成は、仕様や運用に応じて柔軟に変形可能である。 The example of the functional configuration of the information processing device 10 according to the present embodiment has been described above. The above-described configuration described with reference to FIG. 4 is merely an example, and the functional configuration of the information processing device 10 according to the present embodiment is not limited to this example. The functional configuration of the information processing apparatus 10 according to the present embodiment can be flexibly modified according to specifications and operation.
 上記の第1の実施形態では、情報処理装置10は、変換部15と検出部16とを別体とした場合について説明したが、これに限定されない。例えば、情報処理装置10は、変換部15を検出部16の機能として検出部16に組み込んでもよい。また、情報処理装置10は、大気圧センサ11の検出結果を変換部15によってウェーブレット変換しているが、これに限定されない。例えば、情報処理装置10は、変換部15を用いずに、大気圧センサ11の検出結果に基づいて検出部16が圧力変動を検出する構成としてもよい。 In the above first embodiment, the case where the information processing device 10 has the conversion unit 15 and the detection unit 16 as separate bodies has been described, but the present invention is not limited to this. For example, the information processing device 10 may incorporate the conversion unit 15 into the detection unit 16 as a function of the detection unit 16. Further, although the information processing apparatus 10 performs the wavelet conversion on the detection result of the atmospheric pressure sensor 11 by the conversion unit 15, the present invention is not limited to this. For example, the information processing apparatus 10 may have a configuration in which the detection unit 16 detects the pressure fluctuation based on the detection result of the atmospheric pressure sensor 11 without using the conversion unit 15.
[第1の実施形態に係る情報処理装置10の処理手順]
 次に、第1の実施形態に係る情報処理装置10の処理手順の一例について説明する。図7は、第1の実施形態に係る情報処理装置10が実行する処理手順の一例を示すフローチャートである。図7に示す処理手順は、情報処理装置10がプログラムを実行することによって実現される。図7に示す処理手順は、情報処理装置10によって繰り返し実行される。
[Processing Procedure of Information Processing Device 10 According to First Embodiment]
Next, an example of the processing procedure of the information processing apparatus 10 according to the first embodiment will be described. FIG. 7 is a flowchart showing an example of a processing procedure executed by the information processing apparatus 10 according to the first embodiment. The processing procedure illustrated in FIG. 7 is realized by the information processing device 10 executing a program. The processing procedure shown in FIG. 7 is repeatedly executed by the information processing device 10.
 図7に示すように、情報処理装置10は、加速度センサ12によって加速度を測定する(ステップS101)。そして、情報処理装置10は、加速度の測定結果に基づいて、エレベータ600のかご620が移動を開始したか否かを判定する(ステップS102)。例えば、情報処理装置10は、鉛直方向の上方または下方への加速度を検出し、当該加速度が移動開始条件を満たす場合に、かご620が移動を開始したと判定する。情報処理装置10は、エレベータ600のかご620が移動を開始していないと判定した場合(ステップS102でNo)、図7に示す処理手順を終了させる。また、情報処理装置10は、エレベータ600のかご620が移動を開始したと判定した場合(ステップS102でYes)、処理をステップS103に進める。 As shown in FIG. 7, the information processing device 10 measures acceleration by the acceleration sensor 12 (step S101). Then, the information processing device 10 determines whether or not the car 620 of the elevator 600 starts moving based on the measurement result of the acceleration (step S102). For example, the information processing device 10 detects an upward or downward acceleration in the vertical direction and determines that the car 620 has started moving when the acceleration satisfies the movement start condition. When the information processing device 10 determines that the car 620 of the elevator 600 has not started moving (No in step S102), the information processing device 10 ends the processing procedure illustrated in FIG. 7. If the information processing device 10 determines that the car 620 of the elevator 600 has started moving (Yes in step S102), the process proceeds to step S103.
 情報処理装置10は、大気圧の測定結果とキャリブレーションデータ141とを取得する(ステップS103)。例えば、情報処理装置10は、大気圧センサ11によって測定された時系列の測定結果を取得し、建物500に対応したキャリブレーションデータ141を取得する。そして、情報処理装置10は、エレベータ600がフロア510を跨ぐ際の圧力変動を検出する(ステップS104)。例えば、情報処理装置10は、測定された期間における大気圧とキャリブレーションデータ141が示す大気圧とを比較し、比較結果に基づいて一時的に変化する部分を圧力変動として検出する。そして、情報処理装置10は、検出結果を記憶部14に記憶する。ステップS103からステップS104の一連の処理は、検出部16の処理手順に相当する。 The information processing device 10 acquires the atmospheric pressure measurement result and the calibration data 141 (step S103). For example, the information processing device 10 acquires the time-series measurement results measured by the atmospheric pressure sensor 11 and acquires the calibration data 141 corresponding to the building 500. Then, the information processing device 10 detects a pressure fluctuation when the elevator 600 crosses the floor 510 (step S104). For example, the information processing device 10 compares the atmospheric pressure during the measured period with the atmospheric pressure indicated by the calibration data 141, and detects a portion that temporarily changes based on the comparison result as a pressure fluctuation. Then, the information processing device 10 stores the detection result in the storage unit 14. The series of processes from step S103 to step S104 corresponds to the processing procedure of the detection unit 16.
 情報処理装置10は、ステップS104の処理が終了すると、圧力変動を検出したか否かを判定する(ステップS105)。例えば、情報処理装置10は、検出部16によって圧力変動が検出された場合、圧力変動を検出したと判定する。情報処理装置10は、圧力変動を検出していないと判定した場合(ステップS105でNo)、エレベータ600が建物500の床部520を通過していないので、処理を後述するステップS107に進める。また、情報処理装置10は、圧力変動を検出したと判定した場合(ステップS105でYes)、エレベータ600が建物500の床部520を通過しているので、処理をステップS106に進める。 When the processing of step S104 ends, the information processing apparatus 10 determines whether or not pressure fluctuation has been detected (step S105). For example, the information processing device 10 determines that the pressure fluctuation is detected when the pressure fluctuation is detected by the detection unit 16. When the information processing apparatus 10 determines that the pressure fluctuation is not detected (No in step S105), the elevator 600 has not passed the floor portion 520 of the building 500, and thus the process proceeds to step S107 described below. When the information processing apparatus 10 determines that the pressure fluctuation is detected (Yes in step S105), the elevator 600 has passed through the floor portion 520 of the building 500, and thus the process proceeds to step S106.
 情報処理装置10は、圧力変動を検出した回数をカウントする(ステップS106)。例えば、情報処理装置10は、カウンタを用いて、移動しているエレベータ600のかご620の内部で生じた圧力変動の回数をカウントする。そして、情報処理装置10は、加速度センサ12によって加速度を測定する(ステップS107)。情報処理装置10は、ステップS107の処理が終了すると、処理をステップS108に進める。 The information processing device 10 counts the number of times the pressure fluctuation is detected (step S106). For example, the information processing device 10 uses a counter to count the number of pressure fluctuations that have occurred inside the car 620 of the moving elevator 600. Then, the information processing device 10 measures the acceleration by the acceleration sensor 12 (step S107). When the processing of step S107 ends, the information processing apparatus 10 advances the processing to step S108.
 情報処理装置10は、加速度の測定結果に基づいて、エレベータ600のかご620が停止したか否かを判定する(ステップS108)。例えば、情報処理装置10は、加速度に基づいて鉛直方向の上方または下方への速度を検出し、当該速度が停止条件を満たす場合に、かご620が停止したと判定する。情報処理装置10は、エレベータ600のかご620が停止していないと判定した場合(ステップS108でNo)、処理を既に説明したステップS103に戻す。また、情報処理装置10は、エレベータ600のかご620が停止したと判定した場合(ステップS108でYes)、処理をステップS109に進める。 The information processing apparatus 10 determines whether or not the car 620 of the elevator 600 has stopped based on the acceleration measurement result (step S108). For example, the information processing device 10 detects the speed in the vertical direction upward or downward based on the acceleration, and determines that the car 620 has stopped when the speed satisfies the stop condition. When the information processing device 10 determines that the car 620 of the elevator 600 is not stopped (No in step S108), the process returns to step S103 already described. If the information processing device 10 determines that the car 620 of the elevator 600 has stopped (Yes in step S108), the process proceeds to step S109.
 情報処理装置10は、圧力変動を検出した回数に基づいて、エレベータ600によって移動したフロア510の階数を推定する(ステップS109)。例えば、情報処理装置10は、圧力変動を検出した回数を示すカウンタに基づいて、移動先のフロア510の階数を推定する。例えば、エレベータ600のかご620が建物500の3階から鉛直方向の下方に移動した場合、カウンタが2を示していると、情報処理装置10は、移動先のフロア510の階数を1階と推定する。なお、情報処理装置10は、移動開始時のフロア510の階数を示す情報を、移動体1の位置情報に紐付けて記憶部14に記憶している。例えば、エレベータ600のかご620が建物500の3階から鉛直方向の上方に移動した場合、カウンタが2を示していると、情報処理装置10は、移動先のフロア510の階数を5階と推定する。情報処理装置10は、フロア510の階数を推定した推定結果を記憶部14に記憶すると、処理をステップS110に進める。 The information processing device 10 estimates the number of floors of the floor 510 moved by the elevator 600 based on the number of times pressure fluctuations are detected (step S109). For example, the information processing device 10 estimates the number of floors of the destination floor 510 based on a counter indicating the number of times pressure fluctuations have been detected. For example, when the car 620 of the elevator 600 moves vertically downward from the third floor of the building 500, if the counter indicates 2, the information processing apparatus 10 estimates that the floor number of the destination floor 510 is the first floor. To do. The information processing device 10 stores the information indicating the number of floors of the floor 510 at the start of movement in the storage unit 14 in association with the position information of the moving body 1. For example, when the car 620 of the elevator 600 moves vertically upward from the third floor of the building 500, if the counter indicates 2, the information processing apparatus 10 estimates that the floor 510 of the movement destination is the fifth floor. To do. When the information processing device 10 stores the estimation result of estimating the number of floors 510 in the storage unit 14, the process proceeds to step S110.
 情報処理装置10は、推定したフロア510の階数の地図情報を用いた処理を実行する(ステップS110)。例えば、情報処理装置10は、フロア510の階数の地図情報を地図データ142から抽出し、当該地図情報を用いて移動体1の移動を制御する処理を実行する。その結果、移動体1は、エレベータ600で移動したフロア510を移動する。情報処理装置10は、ステップS110の処理が終了すると、図7に示す処理手順を終了させる。 The information processing device 10 executes a process using the map information of the estimated floor number of the floor 510 (step S110). For example, the information processing device 10 extracts the map information of the number of floors 510 from the map data 142 and executes the process of controlling the movement of the mobile body 1 using the map information. As a result, the moving body 1 moves on the floor 510 moved by the elevator 600. When the process of step S110 ends, the information processing device 10 ends the processing procedure illustrated in FIG. 7.
 図7に示す処理手順では、ステップS105からステップS109の一連の処理は、推定部17の処理手順に相当する。ステップS110の処理は、実行部18の処理に相当する。 In the processing procedure shown in FIG. 7, the series of processing from step S105 to step S109 corresponds to the processing procedure of the estimation unit 17. The process of step S110 corresponds to the process of the execution unit 18.
 以上のように、第1の実施形態に係る情報処理装置10は、エレベータ600のかご620が建物500のフロア510を跨ぐ際の圧力変動を検出し、当該圧力変動とキャリブレーションデータ141とに基づいてエレベータ600によって移動したフロア510の階数を推定する。これにより、情報処理装置10は、建物500に応じた圧力変動に基づいて、エレベータ600で移動した建物500のフロア510の階数を推定することができる。その結果、情報処理装置10は、圧力変動に基づいて推定したフロア510の階数の推定精度を向上させることができる。 As described above, the information processing apparatus 10 according to the first embodiment detects the pressure fluctuation when the car 620 of the elevator 600 crosses the floor 510 of the building 500, and based on the pressure fluctuation and the calibration data 141. The floor number of the floor 510 moved by the elevator 600 is estimated. Thereby, the information processing apparatus 10 can estimate the number of floors of the floor 510 of the building 500 moved by the elevator 600, based on the pressure fluctuation according to the building 500. As a result, the information processing device 10 can improve the estimation accuracy of the number of floors 510 estimated based on the pressure fluctuation.
 また、情報処理装置10は、エレベータ600の鉛直方向における移動開始を検出し、当該移動開始に応じてフロア510の階数の推定を開始する。これにより、情報処理装置10は、エレベータ600によって鉛直方向における実際の移動時に発生する圧力変動を検出することができる。その結果、情報処理装置10は、圧力変動の検出精度を向上させることができる。 Further, the information processing device 10 detects the start of movement of the elevator 600 in the vertical direction, and starts estimating the number of floors of the floor 510 in response to the start of movement. Accordingly, the information processing device 10 can detect the pressure fluctuation that occurs when the elevator 600 actually moves in the vertical direction. As a result, the information processing apparatus 10 can improve the pressure fluctuation detection accuracy.
 また、情報処理装置10は、エレベータ600による移動が停止した場合に、圧力変動の検出を終了する。これにより、情報処理装置10は、エレベータ600による鉛直方向における移動が終了すると、圧力変動の検出を行わない。その結果、情報処理装置10は、エレベータ600による移動が停止した適切なタイミングで、フロア510の階数を推定することができるので、推定精度をより一層向上させることができる。 Further, the information processing device 10 ends the detection of the pressure fluctuation when the movement by the elevator 600 is stopped. As a result, the information processing device 10 does not detect the pressure fluctuation when the movement in the vertical direction by the elevator 600 is completed. As a result, the information processing apparatus 10 can estimate the number of floors of the floor 510 at an appropriate timing when the movement by the elevator 600 is stopped, and thus the estimation accuracy can be further improved.
 また、情報処理装置10は、推定したフロア510の階数の地図情報を用いた処理を行う。これにより、情報処理装置10は、建物500のフロア510を跨いだ処理を実現することができる。その結果、情報処理装置10は、搭載された移動体1を、推定したフロア510の地図情報に基づいて支援、制御等を行うことができる。 Further, the information processing device 10 performs a process using the map information of the estimated number of floors of the floor 510. As a result, the information processing device 10 can realize processing across the floor 510 of the building 500. As a result, the information processing device 10 can support, control, etc. the mounted mobile body 1 based on the estimated map information of the floor 510.
 上述の第1の実施形態は一例を示したものであり、種々の変更及び応用が可能である。 The above-described first embodiment is an example, and various modifications and applications are possible.
(第2の実施形態)
[第2の実施形態に係る情報処理装置の概要]
 次に、第2の実施形態について説明する。第2の実施形態に係る情報処理装置10は、第1の実施形態と同様に、大気圧センサ11と、加速度センサ12と、ジャイロセンサ13と、記憶部14と、変換部15と、検出部16と、推定部17と、実行部18と、を備える。なお、第1の実施形態に係る情報処理装置10と同様の構成については、説明を省略する。
(Second embodiment)
[Outline of Information Processing Device According to Second Embodiment]
Next, a second embodiment will be described. The information processing device 10 according to the second embodiment is, like the first embodiment, an atmospheric pressure sensor 11, an acceleration sensor 12, a gyro sensor 13, a storage unit 14, a conversion unit 15, and a detection unit. 16, an estimation unit 17, and an execution unit 18. The description of the same configuration as the information processing device 10 according to the first embodiment will be omitted.
 図8は、エレベータ600の移動開始から停止までの速度変化を示す図である。図8に示すように、エレベータ600は、かご620が移動を開始すると、かご620の速度を加速する加速区間を経て定常区間に遷移する。定常区間は、かご620の速度が定常の区間である。そして、エレベータ600は、かご620が目的のフロア510に近づくと、かご620の速度を減速する減速区間に遷移する。そして、大気圧センサ11は、エレベータ600のかご620の速度に応じて、圧力変動が発生する周波数帯域が異なる場合がある。第2の実施形態に係る情報処理装置10は、エレベータ600のかご620の速度に応じて、大気圧センサ11の検出結果で参照する周波数帯域を変更する場合について説明する。 FIG. 8 is a diagram showing a speed change from the start of movement of the elevator 600 to the stop thereof. As shown in FIG. 8, when the car 620 starts moving, the elevator 600 transits to the steady section through the acceleration section in which the speed of the car 620 is accelerated. The steady section is a section in which the speed of the car 620 is steady. Then, when the car 620 approaches the target floor 510, the elevator 600 makes a transition to a deceleration section in which the speed of the car 620 is decelerated. Then, the atmospheric pressure sensor 11 may have different frequency bands in which pressure fluctuations occur, depending on the speed of the car 620 of the elevator 600. The information processing apparatus 10 according to the second embodiment describes a case where the frequency band referred to by the detection result of the atmospheric pressure sensor 11 is changed according to the speed of the car 620 of the elevator 600.
 変換部15は、図6に示したように、大気圧センサ11が出力した信号SGを、0~1F[Hz]の第1周波数帯域と、1F~2F[Hz]の第2周波数帯域と、2F~3F[Hz]の第3周波数帯域との成分に分解しているとする。そして、情報処理装置10は、第1周波数帯域と第2周波数帯域と第3周波数帯域とのいずれの周波数帯域に、フロア510を跨いだことによって生じた波形が出力されるかを解析する。 As shown in FIG. 6, the conversion unit 15 converts the signal SG output from the atmospheric pressure sensor 11 into a first frequency band of 0 to 1F [Hz] and a second frequency band of 1F to 2F [Hz]. It is assumed that the component is decomposed into a component with a third frequency band of 2F to 3F [Hz]. Then, the information processing apparatus 10 analyzes which frequency band of the first frequency band, the second frequency band, and the third frequency band the waveform generated by straddling the floor 510 is output.
 例えば、かご620の速度が加速区間で床部520を通過した場合、圧力変動が第2周波数帯域の成分に圧力変動の波形が現れる。この場合、情報処理装置10は、かご620の速度が加速区間の場合、第2周波数帯域の成分に基づいて圧力変動を検出する。例えば、かご620の速度が定常区間で床部520を通過した場合、圧力変動が第3周波数帯域の成分に圧力変動の波形が現れる。この場合、情報処理装置10は、かご620の速度が加速区間の場合、第2周波数帯域の成分に基づいて圧力変動を検出する。 For example, when the speed of the car 620 passes through the floor portion 520 in the acceleration section, a pressure fluctuation waveform appears as a component of the pressure fluctuation in the second frequency band. In this case, when the speed of the car 620 is in the acceleration section, the information processing device 10 detects the pressure fluctuation based on the component of the second frequency band. For example, when the speed of the car 620 passes through the floor portion 520 in the steady section, a pressure fluctuation waveform appears in the component of the pressure fluctuation in the third frequency band. In this case, when the speed of the car 620 is in the acceleration section, the information processing device 10 detects the pressure fluctuation based on the component of the second frequency band.
 検出部16は、加速度センサ12の検出結果に基づいてエレベータ600のかご620の速度を特定し、当該速度に基づいて圧力変動が発生する大気圧の周波数帯域を推定し、当該周波数帯域の大気圧に基づいて圧力変動を検出する。検出部16は、かご620の速度に応じた周波数帯域に基づいて圧力変動を検出することで、外乱の影響を抑制することができる。 The detection unit 16 identifies the speed of the car 620 of the elevator 600 based on the detection result of the acceleration sensor 12, estimates the frequency band of the atmospheric pressure in which the pressure fluctuation occurs based on the speed, and determines the atmospheric pressure of the frequency band. The pressure fluctuation is detected based on. The detection unit 16 can suppress the influence of disturbance by detecting the pressure fluctuation based on the frequency band corresponding to the speed of the car 620.
[第2の実施形態に係る情報処理装置10の処理手順]
 次に、第2の実施形態に係る情報処理装置10の処理手順の一例について説明する。図9は、第2の実施形態に係る情報処理装置10が実行する処理手順の一例を示すフローチャートである。図9に示す処理手順は、情報処理装置10がプログラムを実行することによって実現される。図9に示す処理手順は、情報処理装置10によって繰り返し実行される。
[Processing Procedure of Information Processing Device 10 According to Second Embodiment]
Next, an example of a processing procedure of the information processing device 10 according to the second embodiment will be described. FIG. 9 is a flowchart showing an example of a processing procedure executed by the information processing apparatus 10 according to the second embodiment. The processing procedure illustrated in FIG. 9 is realized by the information processing device 10 executing a program. The processing procedure shown in FIG. 9 is repeatedly executed by the information processing device 10.
 図9に示す例では、ステップS101からステップS102及びステップS104からステップS110は、既に説明した図7に示すステップS101からステップS102及びステップS104からステップS110と同一であるため、異なる部分のみを説明し、同一部分の説明は省略する。 In the example shown in FIG. 9, steps S101 to S102 and steps S104 to S110 are the same as steps S101 to S102 and steps S104 to S110 shown in FIG. 7 already described, and therefore only different parts will be described. The description of the same parts will be omitted.
 図9に示すように、情報処理装置10は、エレベータ600のかご620が移動を開始したと判定した場合(ステップS102でYes)、処理をステップS121に進める。情報処理装置10は、測定した加速度に基づいて、エレベータ600のかご620の速度を特定する(ステップS121)。そして、情報処理装置10は、特定した速度に応じた大気圧の測定結果とキャリブレーションデータ141とを取得する(ステップS122)。例えば、情報処理装置10は、速度に応じた周波数帯域の大気圧の測定結果を取得し、建物500に対応したキャリブレーションデータ141を取得する。そして、情報処理装置10は、エレベータ600がフロア510を跨ぐ際の圧力変動を検出する(ステップS104)。例えば、情報処理装置10は、測定された期間における速度に応じた周波数帯域の大気圧とキャリブレーションデータ141が示す大気圧とを比較し、比較結果に基づいて一時的に変化する部分を圧力変動として検出する。そして、情報処理装置10は、検出結果を記憶部14に記憶する。ステップS122及びステップS104の処理は、検出部16の処理手順に相当する。そして、情報処理装置10は、既に説明したステップS105からステップS110の一連の処理を実行する。 As illustrated in FIG. 9, when the information processing device 10 determines that the car 620 of the elevator 600 has started moving (Yes in step S102), the process proceeds to step S121. The information processing device 10 identifies the speed of the car 620 of the elevator 600 based on the measured acceleration (step S121). Then, the information processing device 10 acquires the measurement result of the atmospheric pressure and the calibration data 141 according to the specified speed (step S122). For example, the information processing device 10 acquires the measurement result of the atmospheric pressure in the frequency band corresponding to the speed, and acquires the calibration data 141 corresponding to the building 500. Then, the information processing device 10 detects a pressure fluctuation when the elevator 600 crosses the floor 510 (step S104). For example, the information processing device 10 compares the atmospheric pressure in the frequency band corresponding to the speed in the measured period with the atmospheric pressure indicated by the calibration data 141, and changes the pressure temporarily in the portion that temporarily changes based on the comparison result. To detect as. Then, the information processing device 10 stores the detection result in the storage unit 14. The processing of steps S122 and S104 corresponds to the processing procedure of the detection unit 16. Then, the information processing device 10 executes the series of processes from step S105 to step S110 already described.
 以上のように、第2の実施形態に係る情報処理装置10は、大気圧センサ11によって測定した大気圧をウェーブレット変換した結果に基づいて圧力変動を検出する。これにより、情報処理装置10は、圧力変動が現れやすい周波数帯域の測定結果に基づいて圧力変動を検出することができる。さらに、情報処理装置10は、外乱の影響を含む周波数帯域の測定結果を用いずに、圧力変動を検出することができる。その結果、情報処理装置10は、測定した大気圧に含まれる外乱の影響を排除できるので、圧力変動に基づいて推定したフロア510の階数の推定精度をより一層向上させることができる。 As described above, the information processing apparatus 10 according to the second embodiment detects the pressure fluctuation based on the result of the wavelet transform of the atmospheric pressure measured by the atmospheric pressure sensor 11. Accordingly, the information processing device 10 can detect the pressure fluctuation based on the measurement result of the frequency band in which the pressure fluctuation easily appears. Further, the information processing device 10 can detect the pressure fluctuation without using the measurement result of the frequency band including the influence of the disturbance. As a result, the information processing apparatus 10 can eliminate the influence of the disturbance included in the measured atmospheric pressure, and thus can further improve the estimation accuracy of the floor number of the floor 510 estimated based on the pressure fluctuation.
 また、第2の実施形態に係る情報処理装置10は、エレベータ600のかご620の速度に応じた周波数帯域の大気圧の測定結果とキャリブレーションデータ141とに基づいて圧力変動を検出する。これにより、情報処理装置10は、ウェーブレット変換で複数の周波数帯域に変換した測定結果のうち、かご620の速度に適した周波数帯域の測定結果に基づいて圧力変動を検出することができる。その結果、情報処理装置10は、かご620の移動状態が変化しても、フロア510を跨ぐ際の圧力変化の検出精度を向上させることができる。 Further, the information processing apparatus 10 according to the second embodiment detects the pressure fluctuation based on the measurement result of the atmospheric pressure in the frequency band corresponding to the speed of the car 620 of the elevator 600 and the calibration data 141. Accordingly, the information processing device 10 can detect the pressure fluctuation based on the measurement result of the frequency band suitable for the speed of the car 620 among the measurement results converted into the plurality of frequency bands by the wavelet transform. As a result, the information processing apparatus 10 can improve the detection accuracy of the pressure change when straddling the floor 510 even if the moving state of the car 620 changes.
[ハードウェア構成]
 上述してきた第1及び第2の実施形態に係る情報処理装置10は、例えば図10に示すような構成のコンピュータ1000によって実現される。以下、実施形態に係る情報処理装置10を例に挙げて説明する。図10は、情報処理装置10の機能を実現するコンピュータ1000の一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インターフェイス1500、及び入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
[Hardware configuration]
The information processing apparatus 10 according to the first and second embodiments described above is realized by, for example, a computer 1000 having a configuration shown in FIG. Hereinafter, the information processing apparatus 10 according to the embodiment will be described as an example. FIG. 10 is a hardware configuration diagram illustrating an example of a computer 1000 that realizes the functions of the information processing device 10. The computer 1000 has a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, a HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input / output interface 1600. The respective units of the computer 1000 are connected by a bus 1050.
 CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。 The CPU 1100 operates based on a program stored in the ROM 1300 or the HDD 1400, and controls each part. For example, the CPU 1100 expands a program stored in the ROM 1300 or the HDD 1400 into the RAM 1200 and executes processing corresponding to various programs.
 ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。 The ROM 1300 stores a boot program such as a BIOS (Basic Input Output System) that is executed by the CPU 1100 when the computer 1000 starts up, a program that depends on the hardware of the computer 1000, and the like.
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係る情報処理プログラムを記録する記録媒体である。 The HDD 1400 is a computer-readable recording medium that non-temporarily records a program executed by the CPU 1100, data used by the program, and the like. Specifically, the HDD 1400 is a recording medium that records an information processing program according to the present disclosure, which is an example of the program data 1450.
 通信インターフェイス1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインターフェイスである。例えば、CPU1100は、通信インターフェイス1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。 The communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (for example, the Internet). For example, the CPU 1100 receives data from another device or transmits the data generated by the CPU 1100 to another device via the communication interface 1500.
 入出力インターフェイス1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインターフェイスである。例えば、CPU1100は、入出力インターフェイス1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インターフェイス1600を介して、ディスプレイやスピーカーやプリンタ等の出力デバイスにデータを送信する。また、入出力インターフェイス1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。 The input / output interface 1600 is an interface for connecting the input / output device 1650 and the computer 1000. For example, the CPU 1100 receives data from an input device such as a keyboard or a mouse via the input / output interface 1600. The CPU 1100 also transmits data to an output device such as a display, a speaker, a printer, etc. via the input / output interface 1600. Also, the input / output interface 1600 may function as a media interface for reading a program or the like recorded in a predetermined recording medium (medium). The medium is, for example, an optical recording medium such as a DVD (Digital Versatile Disc), a magneto-optical recording medium such as an MO (Magneto-Optical disc), a tape medium, a magnetic recording medium, or a semiconductor memory.
 例えば、コンピュータ1000が実施形態に係る情報処理装置10として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、検出部16、推定部17、実行部18等の機能を実現する。また、HDD1400には、本開示に係る情報処理プログラムや、記憶部120内のデータが格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。 For example, when the computer 1000 functions as the information processing apparatus 10 according to the embodiment, the CPU 1100 of the computer 1000 executes the program loaded on the RAM 1200 to cause the detection unit 16, the estimation unit 17, the execution unit 18, and the like. Realize the function. Further, the HDD 1400 stores the information processing program according to the present disclosure and the data in the storage unit 120. The CPU 1100 reads the program data 1450 from the HDD 1400 and executes the program data. However, as another example, these programs may be acquired from another device via the external network 1550.
 上記の第1及び第2の本実施形態では、情報処理装置10は、キャリブレーションデータ141を用いる場合について説明したが、これに限定されない。例えば、情報処理装置10は、大気圧センサ11の測定結果のみで、フロア510を跨ぐ際の圧力変動を検出する構成としてもよい。 In the first and second embodiments described above, the case where the information processing apparatus 10 uses the calibration data 141 has been described, but the present invention is not limited to this. For example, the information processing device 10 may be configured to detect the pressure fluctuation when straddling the floor 510 based only on the measurement result of the atmospheric pressure sensor 11.
 上記の第1及び第2の本実施形態では、情報処理装置10は、大気圧センサ11の測定結果を変換部15によってウェーブレット変換する場合について説明したが、これに限定されない。例えば、情報処理装置10は、変換部15を用いずに、検出部16と大気圧センサ11とを電気的に接続する構成としてもよい。 In the first and second embodiments described above, the information processing device 10 has been described as a case where the measurement result of the atmospheric pressure sensor 11 is wavelet-transformed by the conversion unit 15, but the present invention is not limited to this. For example, the information processing device 10 may be configured to electrically connect the detection unit 16 and the atmospheric pressure sensor 11 without using the conversion unit 15.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can conceive various changes or modifications within the scope of the technical idea described in the claims. It is understood that the above also naturally belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Also, the effects described in the present specification are merely explanatory or exemplifying ones, and are not limiting. That is, the technique according to the present disclosure may have other effects that are apparent to those skilled in the art from the description of the present specification, in addition to or instead of the above effects.
 また、コンピュータに内蔵されるCPU、ROMおよびRAMなどのハードウェアに、情報処理装置10が有する構成と同等の機能を発揮させるためのプログラムも作成可能であり、当該プログラムを記録した、コンピュータに読み取り可能な記録媒体も提供され得る。 Further, it is possible to create a program for causing hardware such as a CPU, a ROM, and a RAM built in the computer to exhibit the same function as the configuration of the information processing apparatus 10. Possible recording media may also be provided.
 また、本明細書の情報処理装置10の処理に係る各ステップは、必ずしもフローチャートに記載された順序に沿って時系列に処理される必要はない。例えば、情報処理装置10の処理に係る各ステップは、フローチャートに記載された順序と異なる順序で処理されても、並列的に処理されてもよい。 Also, each step related to the processing of the information processing apparatus 10 in this specification does not necessarily need to be processed in time series in the order described in the flowchart. For example, the steps related to the processing of the information processing device 10 may be processed in an order different from the order described in the flowchart, or may be processed in parallel.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 大気圧を測定する大気圧センサと、
 前記大気圧センサによって測定されたエレベータの内部の大気圧に基づいて、当該エレベータが建物のフロアを跨ぐ際の圧力変動を検出する検出部と、
 前記検出部によって検出された前記圧力変動に基づいて、前記エレベータによって移動した前記フロアの階数を推定する推定部と、
 を備える情報処理装置。
(2)
 前記建物の前記エレベータで過去に測定されたキャリブレーションデータを記憶する記憶部をさらに備え、
 前記検出部は、前記大気圧センサの検出結果と前記記憶部に記憶している前記キャリブレーションデータとに基づいて前記圧力変動を検出する
 前記(1)に記載の情報処理装置。
(3)
 前記検出部は、前記大気圧センサによって検出された大気圧をウェーブレット変換した結果に基づいて前記圧力変動を検出する
 前記(1)または(2)に記載の情報処理装置。
(4)
 加速度センサをさらに備え、
 前記検出部は、前記加速度センサの検出結果に基づいて前記エレベータの速度を特定し、当該速度に基づいて前記圧力変動が発生する周波数帯域を推定し、当該周波数帯域の前記大気圧に基づいて前記圧力変動を検出する
 前記(1)から(3)のいずれかに記載の情報処理装置。
(5)
 前記検出部は、前記エレベータの鉛直方向における移動開始を検出した場合に、前記圧力変動の検出を開始する
 前記(1)から(4)のいずれかに記載の情報処理装置。
(6)
 前記検出部は、前記エレベータの鉛直方向における移動停止を検出した場合に、前記圧力変動の検出を終了する
 前記(5)に記載の情報処理装置。
(7)
 前記推定部によって推定した前記フロアの階数の地図情報を用いた処理を実行する実行部をさらに備える
 前記(1)から(6)のいずれかに記載の情報処理装置。
(8)
 コンピュータが、
 大気圧センサによって測定されたエレベータの内部の大気圧に基づいて、当該エレベータが建物のフロアを跨ぐ際の圧力変動を検出し、
 検出された前記圧力変動に基づいて、前記エレベータによって移動した前記フロアの階数を推定する
 情報処理方法。
(9)
 コンピュータを、
 大気圧センサによって測定されたエレベータの内部の大気圧に基づいて、当該エレベータが建物のフロアを跨ぐ際の圧力変動を検出する検出部と、
 検出部によって検出された前記圧力変動に基づいて、前記エレベータによって移動した前記フロアの階数を推定する推定部、
 として機能させるためのプログラム。
(10)
 情報処理装置と、
 前記情報処理装置によって駆動される駆動部と、を備え、
 前記情報処理装置は、
 大気圧を測定する大気圧センサと、
 前記大気圧センサによって測定されたエレベータの内部の大気圧に基づいて、当該エレベータが建物のフロアを跨ぐ際の圧力変動を検出する検出部と、
 前記検出部によって検出された前記圧力変動に基づいて、前記エレベータによって移動した前記フロアの階数を推定する推定部と、
 を備える移動体。
Note that the following configurations also belong to the technical scope of the present disclosure.
(1)
An atmospheric pressure sensor that measures atmospheric pressure,
Based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, a detection unit for detecting the pressure fluctuation when the elevator straddles the floor of the building,
Based on the pressure fluctuations detected by the detection unit, an estimation unit for estimating the floor number of the floor moved by the elevator,
An information processing apparatus including.
(2)
Further comprising a storage unit for storing calibration data measured in the elevator of the building in the past,
The information processing apparatus according to (1), wherein the detection unit detects the pressure fluctuation based on a detection result of the atmospheric pressure sensor and the calibration data stored in the storage unit.
(3)
The information processing apparatus according to (1) or (2), wherein the detection unit detects the pressure fluctuation based on a result of wavelet transforming the atmospheric pressure detected by the atmospheric pressure sensor.
(4)
Further equipped with an acceleration sensor,
The detection unit identifies the speed of the elevator based on the detection result of the acceleration sensor, estimates the frequency band in which the pressure fluctuation occurs based on the speed, and based on the atmospheric pressure of the frequency band The information processing apparatus according to any one of (1) to (3), which detects pressure fluctuations.
(5)
The information processing apparatus according to any one of (1) to (4), wherein the detection unit starts detection of the pressure fluctuation when detecting the start of vertical movement of the elevator.
(6)
The information processing device according to (5), wherein the detection unit ends the detection of the pressure fluctuation when detecting the movement stop of the elevator in the vertical direction.
(7)
The information processing apparatus according to any one of (1) to (6), further including an execution unit that executes a process using the map information of the floor number of the floor estimated by the estimation unit.
(8)
Computer
Based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, detects the pressure fluctuation when the elevator crosses the floor of the building,
An information processing method for estimating the number of floors of the floor moved by the elevator based on the detected pressure fluctuation.
(9)
Computer,
Based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, a detection unit for detecting the pressure fluctuation when the elevator straddles the floor of the building,
Based on the pressure fluctuations detected by the detection unit, an estimation unit that estimates the number of floors of the floor moved by the elevator,
Program to function as.
(10)
An information processing device,
A drive unit driven by the information processing device,
The information processing device,
An atmospheric pressure sensor that measures atmospheric pressure,
Based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, a detection unit for detecting the pressure fluctuation when the elevator straddles the floor of the building,
Based on the pressure fluctuations detected by the detection unit, an estimation unit for estimating the floor number of the floor moved by the elevator,
A mobile body equipped with.
 1 移動体
 10 情報処理装置
 11 大気圧センサ
 12 加速度センサ
 13 ジャイロセンサ
 14 記憶部
 15 変換部
 16 検出部
 17 推定部
 18 実行部
 100 駆動部
 500 建物
 510 フロア
 520 床部
 600 エレベータ
 620 かご
1 Mobile Object 10 Information Processing Device 11 Atmospheric Pressure Sensor 12 Acceleration Sensor 13 Gyro Sensor 14 Storage Section 15 Conversion Section 16 Detection Section 17 Estimating Section 18 Execution Section 100 Drive Section 500 Building 510 Floor 520 Floor Section 600 Elevator 620 Car

Claims (9)

  1.  大気圧を測定する大気圧センサと、
     前記大気圧センサによって測定されたエレベータの内部の大気圧に基づいて、当該エレベータが建物のフロアを跨ぐ際の圧力変動を検出する検出部と、
     前記検出部によって検出された前記圧力変動に基づいて、前記エレベータによって移動した前記フロアの階数を推定する推定部と、
     を備える情報処理装置。
    An atmospheric pressure sensor that measures atmospheric pressure,
    Based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, a detection unit for detecting the pressure fluctuation when the elevator straddles the floor of the building,
    Based on the pressure fluctuations detected by the detection unit, an estimation unit for estimating the floor number of the floor moved by the elevator,
    An information processing apparatus including.
  2.  前記建物の前記エレベータで過去に測定されたキャリブレーションデータを記憶する記憶部をさらに備え、
     前記検出部は、前記大気圧センサの検出結果と前記記憶部に記憶している前記キャリブレーションデータとに基づいて前記圧力変動を検出する
     請求項1に記載の情報処理装置。
    Further comprising a storage unit for storing calibration data measured in the elevator of the building in the past,
    The information processing apparatus according to claim 1, wherein the detection unit detects the pressure fluctuation based on a detection result of the atmospheric pressure sensor and the calibration data stored in the storage unit.
  3.  前記検出部は、前記大気圧センサによって検出された大気圧をウェーブレット変換した結果に基づいて前記圧力変動を検出する
     請求項1に記載の情報処理装置。
    The information processing apparatus according to claim 1, wherein the detection unit detects the pressure fluctuation based on a result of wavelet transforming the atmospheric pressure detected by the atmospheric pressure sensor.
  4.  加速度センサをさらに備え、
     前記検出部は、前記加速度センサの検出結果に基づいて前記エレベータの速度を特定し、当該速度に基づいて前記圧力変動が発生する周波数帯域を推定し、当該周波数帯域の前記大気圧に基づいて前記圧力変動を検出する
     請求項1に記載の情報処理装置。
    Further equipped with an acceleration sensor,
    The detection unit identifies the speed of the elevator based on the detection result of the acceleration sensor, estimates the frequency band in which the pressure fluctuation occurs based on the speed, and based on the atmospheric pressure of the frequency band The information processing apparatus according to claim 1, wherein pressure fluctuations are detected.
  5.  前記検出部は、前記エレベータの鉛直方向における移動開始を検出した場合に、前記圧力変動の検出を開始する
     請求項1に記載の情報処理装置。
    The information processing apparatus according to claim 1, wherein the detection unit starts detecting the pressure fluctuation when detecting the start of movement of the elevator in the vertical direction.
  6.  前記検出部は、前記エレベータの鉛直方向における移動停止を検出した場合に、前記圧力変動の検出を終了する
     請求項5に記載の情報処理装置。
    The information processing apparatus according to claim 5, wherein the detection unit ends detection of the pressure fluctuation when detecting a movement stop of the elevator in a vertical direction.
  7.  前記推定部によって推定した前記フロアの階数の地図情報を用いた処理を実行する実行部をさらに備える
     請求項1に記載の情報処理装置。
    The information processing apparatus according to claim 1, further comprising an execution unit that executes a process using the map information of the floor number of the floor estimated by the estimation unit.
  8.  コンピュータが、
     大気圧センサによって測定されたエレベータの内部の大気圧に基づいて、当該エレベータが建物のフロアを跨ぐ際の圧力変動を検出し、
     検出された前記圧力変動に基づいて、前記エレベータによって移動した前記フロアの階数を推定する
     情報処理方法。
    Computer
    Based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, detects the pressure fluctuation when the elevator crosses the floor of the building,
    An information processing method for estimating the number of floors of the floor moved by the elevator based on the detected pressure fluctuation.
  9.  コンピュータを、
     大気圧センサによって測定されたエレベータの内部の大気圧に基づいて、当該エレベータが建物のフロアを跨ぐ際の圧力変動を検出する検出部、
     検出部によって検出された前記圧力変動に基づいて、前記エレベータによって移動した前記フロアの階数を推定する推定部、
     として機能させるためのプログラム。
    Computer,
    Based on the atmospheric pressure inside the elevator measured by the atmospheric pressure sensor, the detection unit that detects the pressure fluctuation when the elevator straddles the floor of the building,
    Based on the pressure fluctuations detected by the detection unit, an estimation unit that estimates the number of floors of the floor moved by the elevator,
    Program to function as.
PCT/JP2019/040391 2018-10-23 2019-10-15 Information processing device, information processing method, and program WO2020085135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553173A JP7347437B2 (en) 2018-10-23 2019-10-15 Information processing device, information processing method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-199225 2018-10-23
JP2018199225 2018-10-23

Publications (1)

Publication Number Publication Date
WO2020085135A1 true WO2020085135A1 (en) 2020-04-30

Family

ID=70331952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040391 WO2020085135A1 (en) 2018-10-23 2019-10-15 Information processing device, information processing method, and program

Country Status (2)

Country Link
JP (1) JP7347437B2 (en)
WO (1) WO2020085135A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155666A (en) * 2008-12-26 2010-07-15 Toshiba Elevator Co Ltd Elevator and noise reducing method for elevator
JP2012216984A (en) * 2011-03-31 2012-11-08 Fujitsu Ltd Information processing apparatus, information processing method, information processing program, and electronic apparatus
JP2016109632A (en) * 2014-12-09 2016-06-20 キヤノン株式会社 Information processing device, control method thereof, program, and storage medium
WO2017016937A1 (en) * 2015-07-30 2017-02-02 Inventio Ag Elevator arrangement adapted for determining positions of fixtures at various floors based on pressure measurements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155666A (en) * 2008-12-26 2010-07-15 Toshiba Elevator Co Ltd Elevator and noise reducing method for elevator
JP2012216984A (en) * 2011-03-31 2012-11-08 Fujitsu Ltd Information processing apparatus, information processing method, information processing program, and electronic apparatus
JP2016109632A (en) * 2014-12-09 2016-06-20 キヤノン株式会社 Information processing device, control method thereof, program, and storage medium
WO2017016937A1 (en) * 2015-07-30 2017-02-02 Inventio Ag Elevator arrangement adapted for determining positions of fixtures at various floors based on pressure measurements

Also Published As

Publication number Publication date
JPWO2020085135A1 (en) 2021-09-16
JP7347437B2 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
JP2019507713A (en) Floor monitoring method when robot is in elevator, electronic device, computer storage medium
US9872149B2 (en) Method of estimating position of a device using geographical descriptive data
JP4468224B2 (en) Elevator position detection system and method
US10315885B2 (en) Method for the position detection of an elevator car using an accelerometer and a door sensor
JP6155276B2 (en) Method and apparatus for elevator motion detection
AU2019209249B2 (en) Method and device for determining a mapping of a number of floors to be served by an elevator and for determining relative trip-dependent data of an elevator cabin
US10822199B2 (en) Sensor fusion of acceleration sensor and air pressure sensor information to estimate elevator floor level and position
US11472666B2 (en) Elevator maintenance app matching mechanics position with faults detected
Vanini et al. Adaptive context-agnostic floor transition detection on smart mobile devices
CN109211233B (en) Elevator motion detection and abnormal position parking judgment method based on acceleration sensor
US9771240B2 (en) Inertial measurement unit assisted elevator position calibration
EP3693311B1 (en) Conveyance apparatus location determination using probability
CN110844726A (en) Determining elevator car position using vibration
EP3733583B1 (en) Elevator shaft distributed health level
EP2778709A1 (en) User assisted location method
WO2020085135A1 (en) Information processing device, information processing method, and program
JP6684146B2 (en) Visit confirmation system
JP6415796B1 (en) Dynamic detection device and dynamic detection method
US20200346891A1 (en) Air pressure sensor algorithm to detect elevator direction of motion
JP2019014582A (en) Alarm system
US20120194339A1 (en) Systems and methods for detection of device displacement and tampering
JP2019112172A (en) Elevator control device and elevator control method
EP3984937A1 (en) Elevator system floor height mapping
US20230166944A1 (en) Precise passenger location tracking for elevator access and dispatching
Erdélyi Robust height estimation using the combination of barometer and accelerometer data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553173

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875152

Country of ref document: EP

Kind code of ref document: A1