WO2020085124A1 - Contact detection device - Google Patents

Contact detection device Download PDF

Info

Publication number
WO2020085124A1
WO2020085124A1 PCT/JP2019/040231 JP2019040231W WO2020085124A1 WO 2020085124 A1 WO2020085124 A1 WO 2020085124A1 JP 2019040231 W JP2019040231 W JP 2019040231W WO 2020085124 A1 WO2020085124 A1 WO 2020085124A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
foam
sensor
base material
air
Prior art date
Application number
PCT/JP2019/040231
Other languages
French (fr)
Japanese (ja)
Inventor
大介 森
嘉宏 中坊
竜一 黒瀬
Original Assignee
株式会社三重ロボット外装技術研究所
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三重ロボット外装技術研究所, 国立研究開発法人産業技術総合研究所 filed Critical 株式会社三重ロボット外装技術研究所
Publication of WO2020085124A1 publication Critical patent/WO2020085124A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/02Measuring force or stress, in general by hydraulic or pneumatic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention comprises a base material formed in a specific shape and a foam formed in a specific shape by foaming synthetic resin, and forming a volume constituent on one side or both sides between the base material and the foam.
  • the present invention relates to a contact detection device that detects a change in the physical quantity of the volume structure with a sensor.
  • Patent Documents 1 and 2 disclose a technique for increasing the adhesive force between a foamed synthetic resin molded body and a cushion sheet.
  • foamable synthetic resins are used as raw materials for formally forming prototypes, this technology has not been realized for small-volume production.
  • a foamed synthetic resin molding such as foamed polystyrene is fragile, and the surface cannot be ground to a predetermined shape, and the surface cannot be smoothed with a good appearance.
  • a vent hole in the expandable synthetic resin filling the vent hole depends on the thickness of the remaining expandable synthetic resin, but only a skilled person can efficiently perform molding. Further, if the vent hole is filled up, there is a slight difference in the weight balance of the foamed synthetic resin molded body, and depending on the purpose, it may be necessary to adjust the weight balance.
  • Patent Document 3 and Patent Document 4 the above problems are solved, and a foamed synthetic resin material is used as a base material, and a specific shape is carved out to increase the thickness of the coated surface as a highly elastic molded body. Without having to obtain a good-looking, inexpensive foam synthetic resin molded body.
  • the contact sensor is used in Patent Document 3 and Patent Document 4, it is necessary to apply a metal electrode, a conductive paint or the like on the surface, and the use is limited to the one whose conductor is a conductor.
  • a commercially available pressure sensitive switch is used, the pressure sensitive switch itself at the portion receiving the pressing force operates, but the pressure cannot be detected at the portion where no other pressure sensitive switch is provided.
  • the pressure-sensitive switch cannot be formed three-dimensionally because the insulating substrate (sheet) cannot be freely deformed.
  • mass-produced popular sensors such as contact sensors and pressure-sensitive switches are inexpensive, but non-mass-produced sensors are expensive.
  • a pressure sensor using a change in capacitance or a strain gauge is available at a low price.
  • the present inventors have invented the contact detection device disclosed in Patent Document 5. That is, a base material formed in a specific shape and one foam synthetic resin material or foam rubber material covering the base material, or foam formed by forming a foam synthetic resin material or foam rubber material in a specific shape.
  • a body a predetermined volume forming body formed on one or both sides of the base material and the foam facing each other, and a space maintaining material having an open cell structure disposed in the volume forming body; Reinforcing layer forming the volume construct that prevents compressed air in the volume construct and the space maintaining material from leaking to the outside air from the substrate and / or the foam; and one side of the base and the foam.
  • a sensor that detects the pressing force applied from both sides from the outside as a physical change amount of the volume component and the space maintaining material formed by the reinforcing layer, and the on time of the on / off output from the sensor. Or off time
  • the length is used as a detection output
  • the base material formed in the specific shape and one foam synthetic resin material or foam rubber material that covers the base material, or the foam synthetic resin material or foam rubber material has a specific shape.
  • an output circuit embedded in a corner formed by the foam formed in This makes it possible to detect the pressure applied to a wide range, and it is possible to perform construction with either a two-dimensional planar configuration or a three-dimensional three-dimensional configuration, and it is possible to apply pressure from outside the prescribed level or more. It became a contact detection device that can detect pressure.
  • the volume structure needs to be divided. Therefore, as the volume of the volume structure increases, the detection error of the sensor increases.
  • the responsiveness of the sensor is to be made uniform, it is necessary to make the volume of the volume forming body uniform, and there is a problem that efficient mounting cannot be performed.
  • the first invention detects an external force applied to a contact detection device (system) such as a robot as a physical change amount of the volume constituent body, and further, a sensor is provided. It is possible to reduce the detection error of the physical change amount to be detected and improve the responsiveness of the sensor.
  • the second invention is to provide a contact detection device capable of determining whether the sensor itself is normal or abnormal by comparing the initial operation of the sensor with the operation before and after the zero-cross point after the air flow is stopped. It is what
  • the contact detection device comprises a foam body formed in a planar shape for covering a base material formed in a specific shape, and a volume constituent body in which the base material and / or the foam body are formed.
  • a sensor such as an air volume sensor, which is formed so that air does not leak easily and detects a change in external force (pressing force) applied to the volume component as a physical change amount formed in the volume component.
  • the predetermined volume forming body formed on the base material and / or the foam body has a uniform volume of the volume forming body and a sensor determines an abnormality.
  • the base material formed in the specific shape is a coating of a robot including a doll robot, a coating of a housing of various devices, and is generally formed of an aluminum plate, a stainless plate, an iron plate, a copper plate, or the like.
  • synthetic resin although foamed synthetic resin is also used, it is mainly formed by injection molding or the like.
  • Most of the substrates formed by this injection molding are composed of one block of thermoplastic resin material.
  • a thermoplastic resin material formed by adhering a thermoplastic resin material to a specific shape may be used.
  • the thermoplastic resin material may be a solid type resin or a foam, as long as it has hardness such that the volume change of the volume component appears.
  • this base material is covered with a self-propelled automatic production device such as a robot, and the foamed material is provided on the base material so as to be fail-safe compatible.
  • the foamed synthetic resin material used as the foam may be either a closed cell in which existing internal cells are not connected to each other or an open cell in which existing internal cells are connected to each other. In any case, it is sufficient that the air of the closed volume structure is formed so as not to easily leak to the outside air.
  • the foam is formed by covering the base material with one or a plurality of foam synthetic resin materials adhered to form a specific shape. Usually, the foam is configured to cover the foam from the outside.
  • the said volume structure may form a reinforcement layer on one side or both sides between the said base material and the said foam.
  • This reinforcing layer makes it difficult for air to leak from the base material and / or the foam to the outside air. For that purpose, it is made difficult for air to pass through by the reinforcing layer.
  • One of the reinforcing layers is a skin layer cooled by a mold formed by an injection molding mold or a film layer and a coating layer formed of another material for reducing air leakage. When the air in the volume forming body is compressed by an external pressure (external pressure), it is desirable to provide a reinforcing layer so that a part of the compressed air does not leak from the volume forming body.
  • the reinforcing layer can be selected by combining some of a filling agent, a filling agent, an undercoating agent, an overcoating agent, and a finishing agent.
  • the skin layer formed by a mold for forming the foam is formed in a specific shape by laminating and adhering one sheet of synthetic resin foam material or foam rubber material that covers the base material, or laminating and adhering a plurality of sheets. It can also be a foam.
  • the volume constituting body may have a hollow inside, or may be constituted by an elastic body made of the foam formed of the reinforcing layer.
  • the above-mentioned formation of the reinforcing layer may be a two-dimensional surface treatment or a three-dimensional (three-dimensional) treatment.
  • the three-dimensional reinforcing layer enables strength and densification of the volume construct rather than strength of the reinforcing layer only.
  • the reinforcement may be a synthetic resin sheet.
  • the volume constituent formed so that air does not leak easily does not mean a state in which air does not leak at all, but even if air leaks, it does not reach the extent that it changes the characteristics of the sensor. means.
  • the reinforcing layer is not limited to the one having no air leakage at all, and may have some leakage. It is also possible to manufacture a completely leak-free material and form a leak path having a specific diameter therein.
  • the present invention requires the characteristics of external pressing force applied to the volume component and its recovery.
  • a physical change amount such as a contact pressure, an atmospheric pressure, a change in pressure or the like is changed as a strain amount or a change in capacitance. It measures the amount of physical change detected as changes in air pressure, air flow, air flow velocity, air amount, and the like.
  • a commercially available micro flow sensor D6F-V03A1; made by OMRON
  • MEMS flow sensor MEMS air flow sensor
  • flow velocity sensor flow velocity sensor
  • one or two or more sensors are assigned to two or more planar volume components in a predetermined volume component formed on the base material and the foam, and The signal is compared to determine an abnormality.
  • the abnormality is determined by allocating the sensors to the two or more planar volume constructs by determining the external force applied to the volume constructs as the physical change amount of the volume constructs.
  • It is detected and compared with a plurality of histories to obtain a normal / abnormal binary signal as the signal detection output. For example, both integral values that return to the original after the air has come out due to an external force are constant. If they are compared and do not match, it is determined that there is some abnormality.
  • air is generated from a foam body formed in a planar shape that covers a base material formed in a specific shape, and a volume constituent body in which the base material or the foam body is formed.
  • a sensor that is formed so as not to leak easily and that detects a change in external pressing force applied to the volume component as an amount of physical change formed in the volume component, and is guided to the outside air.
  • a predetermined volume component formed on the material and / or the foam is assigned a sensor with the volume component having a uniform volume, and when the sensor is operating, the sensor operates normally and the sensor malfunctions. The operation is determined.
  • the base material formed in the above-mentioned specific shape is generally formed of an aluminum plate, a stainless plate, an iron plate, a copper plate, or the like for coating a robot such as a doll robot or a housing for various devices. is there.
  • synthetic resin although foamed synthetic resin is also used, it is mainly formed by injection molding or the like.
  • Most of the base material 1 formed by this injection molding is composed of one block of thermoplastic resin material.
  • a thermoplastic resin material formed by adhering a thermoplastic resin material to a specific shape may be used.
  • the thermoplastic resin material may be a solid type resin or a foam, as long as it has hardness such that the volume change of the volume component appears.
  • this base material is covered with a self-propelled automatic production device such as a robot, and the foamed material is provided on the base material so as to be fail-safe compatible.
  • the foamed synthetic resin material used as the foam may be either a closed cell in which existing internal cells are not connected to each other or an open cell in which existing internal cells are connected to each other. In any case, it is sufficient if the air of the volume forming body is formed so as not to easily leak to the outside air.
  • the foam is formed by covering the base material with one or a plurality of foam synthetic resin materials adhered to form a specific shape. Usually, the foam is configured to cover the foam from the outside.
  • the base material is, for example, a self-propelled automatic production device such as a robot that is covered, and the foam is provided on the base material so as to be fail-safe compatible.
  • the said volume structure may form a reinforcement layer on one side or both sides between the said base material and the said foam.
  • This reinforcing layer makes it difficult for air to leak from the base material and / or the foam to the outside air. For that purpose, it is made difficult for air to pass through by the reinforcing layer.
  • One of the reinforcing layers is a skin layer cooled by a mold formed by an injection molding mold or a film layer and a coating layer formed of another material for reducing air leakage. When the air in the volume forming body is compressed by the pressure (external pressure) from the outside, it is desirable to provide a reinforcing layer so that a part of the compressed air does not leak out from the volume forming body.
  • the reinforcing layer can be selected by combining some of a filling agent, a filling agent, an undercoating agent, an overcoating agent, and a finishing agent.
  • the skin layer formed by a mold for forming the foam is formed in a specific shape by laminating and adhering one sheet of synthetic resin foam material or foam rubber material that covers the base material, or laminating and adhering a plurality of sheets. It can also be a foam.
  • the volume constituting body may have a hollow inside, or may be constituted by an elastic body made of the foam formed of the reinforcing layer.
  • the above-mentioned formation of the reinforcing layer may be a two-dimensional surface treatment or a three-dimensional (three-dimensional) treatment.
  • the three-dimensional reinforcing layer enables strength and densification of the volume construct rather than strength of the reinforcing layer only.
  • the reinforcement may be a synthetic resin sheet.
  • the volume constituent formed so that air does not leak easily does not mean a state in which air does not leak at all, but even if air leaks, it does not reach the extent that it changes the characteristics of the sensor. means.
  • the reinforcing layer is not limited to the one having no air leakage at all, and may have some leakage. It is also possible to manufacture a completely leak-free material and form a leak path having a specific diameter therein.
  • the present invention requires the characteristics of external pressing force applied to the volume component and its recovery.
  • a change in contact pressure, atmospheric pressure, pressure or the like is physically detected as a change in strain amount or capacitance.
  • the physical quantity of change is detected by detecting the variable quantity as the air pressure, the flow of air, the flow velocity of air, the change of the air quantity, and the like.
  • a commercially available microflow sensor that causes a flow of air which is called “MEMS flow sensor”, “MEMS air flow sensor”, or “flow velocity sensor”, can be used.
  • MEMS flow sensor MEMS air flow sensor
  • flow velocity sensor a commercially available microflow sensor that causes a flow of air
  • a sensor is assigned to two or more planar volumetric structures formed in the base material and the foam, and a sensor is assigned to one or more planar volumetric structures at power-on or at a predetermined date and time.
  • An abnormality is determined by comparing the signals of the rotation sensors.
  • the sensor is assigned to the two or more planar volume constructs to determine an abnormality in that the pressing force from the outside applied to the volume constructs is determined by the physical force of the volume constructs.
  • the amount of change includes a sensor for detecting air pressure, the flow of air, the velocity of air, a change in the amount of air, and the like. Specifically, the pressing force from the outside applied to the volume structure is applied to the physical structure of the volume structure.
  • a dynamic change amount It is detected as a dynamic change amount and compared with a plurality of histories to obtain a normal / abnormal binary signal as a signal detection output. For example, a method of confirming a quadratic function curve by sampling may be used. Further, both integrated values that return to the original value after the air has come out by the external force are constant. If they are compared and do not match, it is determined that there is some abnormality.
  • the change in the external force applied to the volume component of the contact detection device according to the invention of claim 3 integrates the detection signals of the sensor around the zero-cross point where the air flow is stopped, and the air flow is stopped to cause a flow.
  • the history before and after the change is compared.
  • an external force is applied to the volume component, and the change in the pressing force is a change in the air flow.
  • the history before and after the zero-cross point at which the air flow is stopped and the flow changes are In principle, the integrated values of 1 and 2 match, so that the detection of abnormality of the contact detection device and the detection of abnormality of the sensor forming the contact detection device are performed.
  • a threshold is set for the amplitude of the air movement amount and the sensor abnormality is detected by the integral value. is there. Since the detection signal of the sensor is set as the time for sampling and holding and the history before and after that is compared, the integrated value becomes substantially constant by the first and first discharge of air and the subsequent inhalation. This means that there is a leak in the volume structure, and at this time, it is possible to judge whether the sensor is normal or abnormal by the sum of the number of sensors in consideration of the polarity.
  • the abnormality is detected by the first sensor operation, and regarding other abnormalities, the air is detected. It is to be detected after the flow is stopped.
  • the system abnormality of the contact detection device is performed depending on whether the abnormal amplitude of the detection signal of the sensor is equal to or larger than a predetermined threshold value, and the abnormality of the sensor is calculated by integration for a predetermined time from the zero cross point.
  • a foam formed by forming a foamed synthetic resin material or a foamed rubber material that covers the base material into a specific shape has at least a ridgeline on the design surface side of 5 to 30 ⁇ (diameter. mm) for chamfering.
  • the ridgeline of 5 to 30 ⁇ on the design surface side shows a drag force when the ridgeline is smaller than 5 ⁇ , and the designability cannot be maintained when the ridgeline exceeds 30 ⁇ . Therefore, the chamfering of the ridgeline on the design surface side of the foam body at 5 to 30 ⁇ means that the ridgeline with respect to an external force may be applied to the volume constituent body or the foam body inside the volume constituent body. Does not repel, so it can be detected even if the external force is small. Further, variations in error with respect to external force are reduced, and the characteristics are stabilized.
  • the contact detection device of the invention according to claim 1 is a base material formed in a specific shape, a foam body formed by forming a foamed synthetic resin material or a foamed rubber material covering the base material in a specific shape, Air is less likely to leak from the base material and / or the foam to the outside air, and a predetermined volume forming body formed on the base material and the foam facing each other, and an external pressing force applied to the volume forming body.
  • a sensor for detecting a change in the volume as a physical change amount formed in the volume constituent, and the predetermined volume constituent formed in the base material and / or the foam is substantially the volume constituent.
  • a sensor is assigned as a uniform volume to determine an abnormality.
  • each volume constituent is Since the volume is uniform, the sensor output obtained as each abnormal output is substantially uniform. Therefore, it is possible to manufacture a uniform one with a fixed resistor or an IC circuit.
  • the physical change amount from the base material and / or the foam body the physical change amount in the volume constituent which is made difficult to leak is detected, and therefore, the pressure applied to a wide range is detected.
  • the construction can be performed with a two-dimensional planar structure or a three-dimensional three-dimensional structure, and a predetermined pressure can be detected from the outside.
  • the sensor that detects as a physical change of the volume structure, the external force applied to the volume structure, by the sensor as a physical change amount of the volume structure to detect the normal volume structure. It is detected as the applied contact pressure.
  • the volume construct is formed as two or more planar volume constructs, there is no large difference in the output of the sensor.
  • the external force that rises or falls gently and the sudden rise in a short time It is possible to discriminate the contact in a short time by monitoring the external force applied to the. That is, since the sensor for detecting the physical change amount of the volume structure of the present invention is attached to the substantially uniform volume structure, normality / abnormality of the sensor itself is detected in order to detect the physical change amount. It is possible to determine, and in particular, it is possible to determine whether or not the air flow sensor abnormality has occurred at the timing immediately before the contact, which is unknown at what time the next activation occurs.
  • the contact detection device wherein a base material formed in a specific shape, a foam body formed by forming a foamed synthetic resin material or a foam rubber material covering the base material in a specific plurality of shapes, and the base material.
  • the material and / or the foam makes it difficult for air to leak to the outside air, and a predetermined volume forming body formed on the base material and the foam facing each other, and an external pressing force applied to the volume forming body.
  • a sensor is assigned as a volume, and when the sensor is operating, a normal operation of the contact detection device and an abnormal operation of the sensor constituting the contact detection device are determined.
  • the physical change amount from the base material and / or the foam body the physical change amount in the volume constituent which is made difficult to leak is detected, and therefore, the pressure applied to a wide range is detected.
  • the construction can be performed with a two-dimensional planar structure or a three-dimensional three-dimensional structure, and a predetermined pressure can be detected from the outside.
  • a sensor that detects as a physical change of the volume component the pressing force from the outside applied to the volume component is detected by the sensor as a physical change amount of the volume component, the normal It is detected as the contact pressure applied to the volume component.
  • the volume construct is formed as two or more planar volume constructs, there is no large difference in the output of the sensor.
  • the external force that rises or falls gently and the sudden rise in a short time It is possible to discriminate the contact in a short time by monitoring the external force applied to the. That is, since the sensor for detecting the physical change amount of the volume structure of the present invention is attached to the substantially uniform volume structure, normality / abnormality of the sensor itself is detected in order to detect the physical change amount. It is possible to determine, and in particular, it is possible to determine whether or not the air flow sensor abnormality has occurred at the timing immediately before the contact, which is unknown at what time the next activation occurs.
  • the change of the external force applied to the volume component of the contact detection device according to the invention of claim 3 integrates the detection signal of the sensor before the zero-cross point where the air flow is stopped, and the air flow is stopped and the flow is changed. Since the history before and after the change is compared, in addition to the effect according to claim 2, if an abnormal value appears in the sensor output during the time until the air flow is stopped, it is regarded as an abnormality of the contact detection device. , The history before and after the zero crossing point where the air flow stops and the flow changes, when the integrated values of the two differ, when the integrated value of the time until the air flow of the air flow differs, the sensor side It is judged as abnormal.
  • the contact detection device system
  • abnormality detection of the sensor constituting the contact detection device by one operation of the contact detection device.
  • the history before and after the zero-cross point at which the air flow stops and the flow changes, and since the integrated values of the two theoretically match, an abnormality in the contact detection device is detected, and a contact detection device is configured.
  • This is to detect an abnormality of the sensor.
  • the system abnormality as the contact detection device needs to be detected early and stopped. Therefore, a threshold is set for the amplitude, and the abnormality of the sensor is detected by integration.
  • the foamed body formed by forming the foamed synthetic resin material or the foamed rubber material covering the base material into a specific shape has at least a ridgeline on the design surface side chamfered by 5 to 30 ⁇ .
  • the chamfering of the ridgeline on the design surface side of the foam body at 5 to 30 ⁇ is effective against external force regardless of whether the volume constituent body or the foam body is filled with the foam body. Since the ridgeline is deformable and does not repel partially, it is possible to detect even if the external force is small. Further, variations in the error with respect to the detection value obtained by detecting the external force are reduced, and the characteristics are stabilized.
  • FIG. 1 is an exemplary perspective view of a base material formed in a specific shape of the contact detection device according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory view of a cross section of the contact detection device according to Embodiment 1 of the present invention in which a base material and a foam are mounted.
  • FIG. 3 is a cross-sectional explanatory diagram illustrating the structure of the contact detection device according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of an example of the space maintaining material used in the contact detection device according to the second embodiment of the present invention.
  • 5A and 5B are explanatory views of an example of the space maintaining material used in the contact detection device according to the third embodiment of the present invention, in which FIG.
  • FIG. 5A is a sectional view
  • FIG. 5B is a perspective view of a conceptual view of an air volume sensor
  • FIG. FIG. 4 is a perspective view of a ridgeline on the design surface side.
  • 6A and 6B are explanatory views of an example of the space maintaining material used in the contact detection device according to the third embodiment of the present invention, in which FIG. 6A is a conceptual view seen from a plane, and FIG. , (C) are conceptual views of the volume constructing body as seen from a plane.
  • FIG. 7 is a circuit diagram of the contact detection device showing the handling of comparison for comparing the history records according to the embodiment of the present invention.
  • FIG. 8 is a flowchart of a doll robot to which the contact detection device according to the embodiment of the present invention is attached.
  • FIG. 9 is an overall perspective view of a doll robot to which the contact detection device according to the embodiment of the present invention is attached.
  • FIG. 10 is an overall perspective view of the inside of the chest of the doll robot to which the contact detection device according to the embodiment of the present invention is attached.
  • FIG. 11 is a perspective view of a main part of the contact detection device according to the embodiment of the present invention when the outside of the chest of the doll robot is pressed.
  • the base material 1 used in the contact detection device according to the embodiment of the present invention is used on the exterior side of a robot 40 including a doll (human) robot and an industrial robot shown in FIG.
  • the protector corresponds to the outer skin of the robot 40 itself.
  • the base material 1 of this embodiment is made of, for example, a solid type or foamable thermoplastic resin material. Before cutting the base material 1, it is formed into a substantially semi-cylindrical shape with the size of the flange portion 2 secured for bonding. That is, the exposed base material side reinforcing surfaces 1a, 1b, 1c, 1d of the base material 1 form the volume constituent body 4 which is cut only on one side in view of the facing foam body 10. .
  • the volume component 4 formed by cutting can be formed on only one of the base material 1 and the foam body 10, or on both the base material 1 and the foam body 10.
  • the flange portion 2 of the base material 1 and the foam-side reinforcing surfaces 10e, 10f, 10g on the inner surface of the foam 10 are bonded with an adhesive to form the base-side reinforcing surfaces 1a, 1b, 1c, 1d and
  • the foaming side reinforcing surfaces 10e, 10f, and 10g on the inner surface ensure sealing performance.
  • a coating film that is, a filling agent, a filling agent, an undercoat, on the flange portion 2 of the base material side reinforcing surface 1a, 1b, 1c, 1d of the base material 1 and the foam side reinforcing surface 10e, 10f, 10g of the foam body 10.
  • a reinforcing layer selected by combining some of the agents, the overcoating agents, and the finishing agents is formed.
  • This reinforcing layer is treated so that the air in the volume constructing body 4 does not leak.
  • the reinforcing layer of the present embodiment is, for example, a skin layer formed by a mold forming a foam, and one sheet of synthetic resin material or foamed rubber covering the base material 1 is used.
  • the material or the foam 10 formed by laminating and adhering a plurality of sheets into a specific shape may be used, and high-density treatment may be performed so that air in the volume constituent body 4 does not leak.
  • the openings of the base material 1 and the openings of the foam 10 may be joined together.
  • a coating film may be applied on the surface.
  • the base material 1 is a synthetic resin material formed in a specific shape.
  • a solid type synthetic resin such as an aluminum plate, a stainless plate, an iron plate, or a copper plate is used. It can also be formed as a foamed synthetic resin material.
  • the base material side reinforcing surfaces 1a, 1b, 1c, 1 d1 and 1 d2 that oppose the foam side reinforcing surfaces 10e, 10f, 10g, 10 d1 and 10 d2 are cut only on one side when viewed from the facing foam body 10.
  • the formed volume structure 4 is formed.
  • the foam 10 side may be cut, or both sides of the base material 1 and the foam 10 may be cut.
  • the volume component 4 may be formed on one side or both sides of the base material 1 and the foam 10 which face each other.
  • the thickness of the volume component 4 is usually about 3 to 20 mm.
  • the design surface means only the exposed surface.
  • the volume component 4 formed between the base material 1 and the foam 10 is a space in which the volume component 4 itself is closed. Therefore, when pressure is applied to the foam 10 from the outside, a depression is generated in accordance with the applied pressure, and the volume of the volume component 4 changes, causing a pressure change. Since the volume change of the volume constructing body 4 becomes air pressure and enters the sensor SEN, the sensor SEN detects the pressure (external force) applied to the foam 10. When a commercially available micro flow sensor (D6F-V03A1; made by OMRON) is used as the sensor SEN, it is necessary to form an air flow in the sensor SEN. Therefore, the flow of air is generated from the auxiliary space 20 to the outside so that the volume of the volume component 4 changes.
  • D6F-V03A1 a commercially available micro flow sensor
  • the restoring force of the volume component 4 causes the sensor SEN to pass the zero cross point of the detected value.
  • the external force applied to the volumetric structure 4 is not applied by the sensor SEN, but after that, it may be described only the sensor SEN itself.
  • the foam 10 used in the contact detection device of the present embodiment has a hardness such that the volume change of the volume component 4 appears, and in particular, the foam 10 is independent in which existing internal bubbles are not connected to each other. It may be either a foamed body or an open-celled body in which existing internal bubbles are connected to each other. However, in order to reduce the leakage of air, an extremely soft and restorative closed-cell body is preferable, and the foaming ratio of these foams 10 is about 10 to 40 times.
  • the sponge hardness is preferably in the range of 10 to 40 (JIS-k-6243), and normally, the sponge hardness of 15 to 45 is more preferable, and it may be slightly changed depending on the structure.
  • a rubber glue non-toluene can (Marusue Oil Industry)
  • a rubber glue bond GSEN0X7 (Konishi Co., Ltd.)
  • the rubber type adhesive is bond (GSEN0X7 (Konishi Co., Ltd.), and cyclohexane, n-heptane, and acetone are the main components. is there.
  • the thickness of the adhesive should be as thin as possible so that its presence cannot be visually recognized, and only the adhesive function can be maintained.
  • an adhesive made of the same synthetic resin as the base material 1 such as polyethylene can also be used.
  • the base material 1 for covering the robot 40 and the housing for various devices is generally formed of an aluminum plate, a stainless plate, an iron plate, a copper plate or the like.
  • synthetic resin although foamed synthetic resin is also used, it is mainly formed by injection molding or the like. Most of the base material 1 formed by this injection molding is composed of one block of thermoplastic resin material, but in the contact detection device of the present embodiment, one block base material formed by injection molding or the like. An example will be described.
  • the base material 1 in which a foamed synthetic resin material is formed in a specific shape and the base material 1 in which one solid type synthetic resin material or a plurality of solid type synthetic resin plates are formed in a specific shape
  • the basic structure is the same as that formed by injection molding or the like.
  • foam synthetic resin material used in the present embodiment examples include polyurethane (PUR), polystyrene (PS), polyolefin (mainly polyethylene (PE) and polypropylene (PP)), phenol resin (PF), polychlorinated Foamed resin such as vinyl (PVC), urea resin (UF), silicone (SI), polyimide (PI), melamine resin (MF) can be used, and open cells or internal cells in which internal cells are connected to each other. It is possible to use closed cells that are not connected to each other. However, in order to form the volume constituent body 4 in which air does not easily leak to the outside air from the foam 10 and the base material 1, it is preferable to use a closed cell body in which internal cells are not connected.
  • the base material 1 is made of the same material as that of the foamed body 10 and is subjected to the same treatment as the box-shaped inner frame 6 corresponding thereto.
  • the periphery of the base material 1 is cut to form base material side reinforcing surfaces 1a, 1b, 1c, 1 d1 and 1 d2 .
  • Foam side reinforcing surface 10a of the foam 10, 10b, 10c, 10 d1 , 10 d2 and the inner surface of the foamed side reinforcing surface 10e, 10f, the 10 g, the inner frame 6 of a box type to be described later is formed as a stereoscopic configuration ing.
  • a box-shaped inner frame 6 described later is three-dimensionally formed. It is configured.
  • the foam-side reinforcing surface 10a of the foam 10, 10b, 10c, 10 d1 , 10 d2 and the foamed side reinforcing surface 10e of the inner surface, 10f, the 10 g, of the substrate 1 the substrate side reinforcing surface 1a, 1b , 1c, 1 d1 , 1 d2 and the base material side reinforcing surfaces 1e, 1f, 1g, the box-shaped inner frame 6 described later may be formed as a two-dimensional structure.
  • the box-shaped inner frame 6 may be a 0.5-2 mm-thick disc or a square base plate for joining the sensor SEN to the back inner surface side of the base material side reinforcing surface 1a of the base material 1.
  • the box-shaped inner frame 6 is a box formed by injection molding, which guides air pressure to the inlet of the sensor SEN via the guide passage 5 at a stable installation position. Is accurately transmitted to the sensor SEN.
  • the box shape of the inner frame 6 is a rectangular frame so that the inner frame 6 does not move in the horizontal direction and the vertical direction, and it is easy to obtain a change when an external force is applied.
  • a flat plate sealing plate (sponge) 8 made of an open-cell body of a foamed synthetic resin material is arranged on the opening side of the inner frame 6.
  • the space formed by the inner frame 6 and the flat plate sealing plate 8 is an auxiliary space 20. This auxiliary space 20 may temporarily absorb the volume change and pressure change of the volume component 4, or may be a completely independent space.
  • the inner frame 6 in the shape of a rectangular box may be made of a metal plate or a metal.
  • the auxiliary space 20 is formed by the flat plate sealing plate 8 made of an open-cell body made of a foamed synthetic resin material, the air pressed from the volume forming body 4 is guided to the inlet of the sensor SEN via the guide path 5. Flowing. At this time, the substantial air pressure in the auxiliary space 20 is maintained at atmospheric pressure. However, at this time, since the auxiliary space 20 is strained by the atmospheric pressure and the external pressure, in principle, the pressure is higher than the outside air. Therefore, through the flat plate sealing plate 8 made of open cells, Air at the inlet of the sensor SEN can be leaked.
  • the volume constructing body 4 introduces the outside air through the guide passage 5 and the sensor SEN for the insufficient air amount.
  • the auxiliary space 20 formed from the flat plate sealing plate 8 is formed of an open-cell body of a foamed synthetic resin material, and is formed so as to have an atmospheric pressure.
  • the sensor SEN uses an air volume sensor described later. The method of use is the same whether it is a pressure sensor or a commercially available microflow sensor (D6F-V03A1; made by OMRON) that detects the flow of air. At this time, it is necessary to configure so that the air flows from the volume constructing body 4 to the auxiliary space 20.
  • the sensor SEN used here detects the pressure of the volume component 4 formed by the reinforcing layer (not shown) so that air is unlikely to leak to the outside air.
  • This sensor SEN can be used as long as it is a commercially available sensor having a built-in strain cage, a sensor SEN for detecting via a diaphragm, a sensor using a piezo effect element, or a capacitance type sensor.
  • "SMC compact air pressure sensor PSE440A” is used as the sensor SEN used in the present embodiment.
  • the relationship between the input pressure and the output voltage V is substantially proportional and sensitive.
  • the output of the sensor SEN is composed of two power supply lines and one output signal line OUT, which is a total of three, and is used as a danger signal of the robot 40 to stop suddenly in this embodiment.
  • the foam 10 is a foamed thermoplastic resin, and main synthetic resin raw materials are polyurethane (PUR), polystyrene (PS), and polyolefin (mainly polyethylene (PE) and polypropylene (PP)), and others. Also, phenol resin (PF), polyvinyl chloride (PVC), urea resin (UF), silicone (SI), polyimide (PI), melamine resin (MF), etc. can be foamed and used.
  • PF polyurethane
  • PVC polyvinyl chloride
  • UF urea resin
  • SI silicone
  • PI polyimide
  • MF melamine resin
  • the foaming rate does not matter, but there is a case where the elasticity is maintained depending on the purpose of use, but the foaming rate is limited to finish hard.
  • a box-shaped inner frame 6 is arranged on the inner surface of the base material 1 on the base material side reinforcing surface 1e by bonding with an adhesive.
  • the inner frame 6 joins the sensor SEN having a characteristic that the output is proportional to the external force, and applies the pressure of the volume component 4 to the inlet of the guide passage 5 that guides air from the volume component 4.
  • the auxiliary space 20 is preferably at atmospheric pressure.
  • the output of the sensor SEN is input to the microprocessor 30 via the lead wire L and, if necessary, a connector or the like.
  • two or more sensors SEN can be arranged in one auxiliary space 20.
  • An air flow rate (liter / second) sensor SEN for detecting a change in pressure as a physical change amount formed by the volume constituent body 4 is provided, and the predetermined volume constituent body 4 formed on the base material 1 and the foam body 10 is Abnormalities can be determined by assigning the sensors SEN to two or more planar volume structures 4.
  • the foamed body 10 formed by forming the foamed synthetic resin material or the foamed rubber material covering the base material 1 into one or more planar shapes makes it difficult for air to leak from the base material 1 and / or the foamed material 10 to the outside air. For this reason, a coating film for preventing air leakage may be applied or thin films may be joined to provide a hermetic property.
  • a predetermined volume forming body 4 formed on the base material 1 and the foam 10 facing each other is constituted. That is, the volume component 4 does not need to be formed in a complete space, and the substrate 1 and / or the foam 10 may be inside.
  • the sensor SEN detects a change in the area of the foam 10 caused by the foam 10.
  • the base material 1 of the present embodiment is a protector such as a human body used for the robot 40 and an outer skin, and as shown in FIG.
  • a high-density foam side reinforcing surface 10a, 10b, 10c, 10d1 , 10d2 and a foam side reinforcing surface 10e, 10f, 10g foamed body 10 provided with a flat plate sealing plate for closing the opening of the base material 1 8 is arranged with double-sided tape or the like.
  • the reinforcing layer 4d is provided with a guide path 5 that guides air to the sensor SEN. When an external force deforms the foamed body 10, the guide path 5 allows air to pass through the sensor SEN and discharge paths 5a and 5b shown in FIG.
  • the lead wire L is composed of two power supply lines for the sensor SEN and one output signal line OUT, which is a total of three, and is directly connected to this power supply and a computer (not shown). The signal line is processed as shown in FIG.
  • FIGS. 1 to 3 may be configured as shown in the embodiment of FIG.
  • the base material 1 is substantially U-shaped, and the opening side thereof is the robot 40 side. Further, the base material 1 has a structure that is not easily deformed.
  • the foam 10 filled in the volume constructing body 4 is provided on the outer periphery thereof.
  • the outer foam side reinforcing surface 10a to prevent leakage of air from the design surface, 10b, 10c, 10 d1, 10 d2, inner foam side reinforcing surface 10e, 10f, A foam 10 having a weight of 10 g is formed.
  • the foam 10 is also outside the foam side reinforcing planes 10a, 10b, the 10c, 10 d1, the 10 d2 giving an external force, the air of a predetermined volume structure 4 is discharged.
  • the discharge of the air in the volume forming body 4 is stopped, and when the external force is released, the air inside becomes lean and the air is introduced into the guide path 5 from the outside.
  • the integrated value from when external force is applied to when external force is stopped is the external force after external force is stopped. Is constant with the integral value until is released.
  • the volume structure 4 is surrounded by the outer foam-side reinforcing surfaces 10a, 10b, 10c, 10d1 and 10d2 and the inner foam-side reinforcing surfaces 10e, 10f and 10g, the air from the foam 10 is exposed to the outside air. It is hard to leak and shows stable characteristics.
  • the foam-side reinforcing surfaces 10e, 10f, and 10g on the inside of the foam 10 of the base material 1 to the base material 1, it becomes difficult for air to leak from the foam 10 to the outside air and becomes stable. Not what you need.
  • the outer surface of the foam 10 may be formed as a film having a high density as in the embodiment of FIG.
  • the base material 1 has a structure in which the design surface side of the substantially rectangular parallelepiped is not easily deformed and is on the robot 40 side.
  • the foam 10 housed in the volume forming body 4 is provided on the outer periphery thereof.
  • the foamed side reinforcing surface 10a to prevent leakage of air, 10b, 10c, 10 d1, 10 d2 foam 10 forming the is formed from the design surface.
  • a decorative layer 15 which is a coating film of a design paint may be provided on the foam side reinforcing surfaces 10a, 10b, 10c, 10d1 and 10d2 in the embodiment of FIGS. 3 to 6. .
  • the foam 10 is also, given the foam side reinforcing surface 10a consisting of a coating film or coating film or the like, 10b, 10c, 10 d1, the 10 d2 external force, air of a predetermined volume structure 4 is discharged.
  • the discharge of the air in the volume forming body 4 is stopped, and when the external force is released, the air inside becomes lean and the air is introduced into the guide path 5 from the outside.
  • the integrated value from when external force is applied to when external force is stopped is the external force after external force is stopped.
  • the integral value until is released is constant.
  • the volume construction 4 the blowing side reinforcing surface 10a, 10b, 10c, 10 d1, 10 d2 and blowing side reinforcing surface 10e, 10f, so that surrounds at 10 g, made air from the foam 10 is less likely to leak to the outside air stable Shows the characteristics.
  • the guide path 5 through which air is introduced is preferably assembled so as to be aligned with the guide hole 14 shown in FIG.
  • the magnitude of the output of the sensor SEN depends on the volume of the volume constructing body 4. Therefore, the plurality of volume components 4 arranged on the plane of the robot 40 may be divided into the volume components 4 -1 , 4 -2 , 4 -3 . However, in order to arrange the volume components 4 that are uniform with respect to the robot 40, the same characteristics are selected as the sensor SEN, and as shown in FIG. 6A, each volume component 4 -1 , 4 -2 , 4 is selected. It is desirable that the volume of -3 be the same.
  • the sensor SEN is divided into three volume constituents 4 -1 , 4 -2 , 4 -3, and one volume constituent 4 -1 , 4 -2 , 4 -3 has two sensors SEN21, SEN24 or If two sensors SEN22, SEN25 and two sensors SEN23, SEN26 are provided, the sum of the integrated values of the two sensors SEN21, SEN24 of the both, the sum of the integrated values of the two sensors SEN22, SEN25, the two sensors The sum of the integrated values of the sensors SEN23 and SEN26 is output.
  • One volume construction 4 -1, 4 -2, 4 in the case of using two or more sensors SEN in any one of -3, each one of the volume construction 4 -1 or volume construction 4 - 2 or the volume component 4 -3 , when using two or more sensors SEN, the sum of the integrated values when the sum of each sensor SEN applies the external force and when the external force stops, the external force stops It is the same as the sum of integral values from the moment when the external force is released until the external force is released. Since the time from the stop of the external force to the release of the external force is a very long time up to the equilibrium point, the integration is normally completed when the change becomes small. Alternatively, it is set to a time when the external force is detected and the external force is stopped.
  • the abnormality of the robot 40 is detected when the total sum of the integrated values of the sensor SEN reaches a predetermined value, or the abnormality of the robot 40 is detected when the output of the sensor SEN reaches a predetermined amplitude. Detected as abnormal. Further, the abnormality of the sensor SEN itself means that when the change of the sum of the integrated values of the sensor SEN is stopped once and then the polarity of the sensor SEN becomes opposite and the sum of the integrated values of the sensor SEN reaches a predetermined value, the sensor SEN itself It is obtained by discriminating the abnormality of.
  • Each of the volume components 4 -1 , 4 -2 , 4 -3 has one sensor SEN11, SEN12, SEN13, or two or more sensors SEN21, SEN22, SEN23, SEN24, SEN25, SEN26. May be provided. Both, the volume construction 4 -1, 4 -2, 4 when there is the magnitude -3, it becomes necessary to modify their output by the potentiometer or fixed resistor. Therefore, it is desirable that the volume constituent members 4-1 , 4-2 and 4-3 are made of the same material and have the same volume. Of course, the gain can be adjusted, but it is desirable to minimize it and configure the circuit with a fixed resistor.
  • the volume construction 4 -1, 4 -2 if the uniform volume of 4 -3, adjustment of the gain is uniquely determined.
  • the volumes of the volume components 4 -1 , 4 -2 , 4 -3 are uniform, when the foam-side reinforcing surface 10a and the foam-side reinforcing surface 10a are continuous, the foam-side reinforcing surface 10a.
  • the ridge line 10h formed by the foam-side reinforcing surface 10a and the foam-side reinforcing surface 10a does not easily deform the foam body 10 even when a vertical downward force is applied from above.
  • the robot 40 equipped with the contact detection device according to the embodiment of the present invention has general-purpose hardware and software installed therein.
  • 9 is a perspective view of the main part of FIG. 9 showing the appearance of the chest 41 and the shoulder 42 of the robot 40.
  • the corner (corner) 45 of FIG. 10 forms a space in two dimensions or three dimensions, and the microprocessor 30 arranged at a position apart from the sensor SEN may be attached thereto.
  • a battery may be arranged there, if necessary.
  • a flexible film is bonded onto a flat plate sealing plate 8 (not shown) to form a base material 1 (robot 40) and a foam 10 covering the base material 1 (robot 40).
  • the sensor SEN is bonded to the plate-shaped body 46 having holes in a solid type plate.
  • the robot 40 of the present embodiment secures a volume on the inside of the chest 41 by a foam synthetic resin material plate of an open cell (not shown), and the space between the robot 40 and the foam 10 covering the base material 1 (robot 40).
  • the volume constructing body 4 is formed in the above, and further, air for closing the volume constructing body 4 is not passed, and the pressure is applied only to the sensor SEN.
  • the base material 1 (robot 40) is metal, the sensor SEN is fixed.
  • the lead wire stopper 39 is a wire stopper for the lead wire L.
  • the volume constituent 4 concentrates on the formed portion having low mechanical strength, and the volume constituent 4 changes in volume, which can be detected by the sensor SEN.
  • the ridgeline 10h by chamfering at least the ridgeline 10h on the design surface side with 5 to 30 ⁇ (diameter mm), the ridgeline 10h smaller than 5 ⁇ exhibits a drag force, and when the ridgeline 10h exceeds 30 ⁇ . The design cannot be maintained.
  • the chamfering of the ridgeline 10h on the design surface side of the foam body at 5 to 30 ⁇ does not apply external force to the volume constituent body 4 or the volume constituent body 4 containing the foam body.
  • the ridgeline 10h does not repel, it can be detected even if the external force is small. Further, variations in error with respect to external force are reduced, and the characteristics are stabilized.
  • the external force applied to the chest 41 of the robot 40 can be detected.
  • the contact of the shoulder portion 42 is not detected in the robot 40 of the present embodiment, but as shown in FIG. 10, even if it is not provided on the whole, it operates when stress (strain) is partially applied. There was found. Therefore, on one side or both sides between the base material 1 and the foam body 10, the volume constituent body 4 in which the air from the base material 1 and the foam material 10 does not easily leak to the outside air is formed, and the volume constituent body 4 is formed by the output of the sensor SEN.
  • a pressing force is applied to either the base material 1 or the foam body 10, and the existence of a factor that changes the volume of the volume forming body 4 is grasped, and the base material 1 and the foaming material are foamed. It is determined that a human body or the like has come into contact with one or both sides of the body 10.
  • the substrate 1 formed in a specific shape is one foam synthetic resin material or foam rubber material, or a foam synthetic resin material or foam rubber material obtained by laminating and bonding a plurality of sheets.
  • it can be a part of the robot 40 as in the present embodiment. Therefore, since the base material 1 and the foam 10 can be made of materials having the same characteristics, the base material 1 and the foam 10 facing each other are made of the same material, and weight reduction and processing are facilitated. It is also possible to use a sheet that does not expand and contract, that is, that does not expand and contract, whereby the use of the base material 1 can be expanded.
  • the volume component 4 is formed of a breathable synthetic resin material plate on the inner surface of which a lattice shape, a square shape, a shark pattern, a circular dot, and a checkerboard are punched or alternately punched to form an elastic member. It accommodates the body. Therefore, the volume constructing body 4 is formed by punching or forming one of a lattice shape, a square shape, a shark pattern, a circular polka dot shape, and a checkerboard shape on the inner surface with a foamed synthetic resin material plate having elasticity and breathability.
  • the sensor SEN introduces the pressure of air into the inflow port. Therefore, air is passed through the guide path 5 to the inflow port, and the volume change is detected by the abnormal amplitude detection circuit section 31 of the sensor SEN of the microprocessor 30 whether the amplitude is equal to or larger than a predetermined threshold value Vt. That is, when the abnormal amplitude detection circuit unit 31 detects an amplitude equal to or larger than the predetermined threshold value Vt, the integration circuit unit 32 before the zero-cross point starts integration. The input of the abnormal amplitude detection circuit unit 31 waits until the amplitude becomes zero in the zero cross point detection circuit unit 33, and then stops the integration of the integration circuit unit 32. The output of the abnormal amplitude detection circuit unit 31 becomes a stop signal for the robot 40.
  • the zero cross point means the equilibrium of the volume component 4 which is an external force.
  • the comparison circuit unit 35 compares the value integrated by the integration circuit unit 32 before the zero-cross point with the value of the integration circuit unit 34 that has obtained the integrated value for the predetermined time after the detection of the zero-cross point, and When the integrating circuit unit 34 is smaller than the value of the integrating circuit unit 32, it is determined that the sensor SEN is abnormal. If the abnormal amplitude detection circuit unit 31 is larger than a predetermined value and the amplitude is larger than a predetermined threshold, it is determined that the robot system is abnormal.
  • the LED 16 is an output of the abnormal amplitude detection circuit section 31 to indicate that the system is abnormal by lighting.
  • the LED 17 displays the abnormality of the sensor SEN by the output of the comparison circuit section 35.
  • the abnormal amplitude detection circuit unit 31 of the sensor SEN of the microprocessor 30 detects an amplitude equal to or larger than the predetermined threshold value Vt, the peak value of the amplitude is detected, and the integration circuit unit 32 before the zero cross point performs integration.
  • the input of the abnormal amplitude detection circuit unit 31 stops the integration of the integration circuit unit 32 after the zero cross point detection circuit unit 33 waits until the amplitude becomes zero.
  • the integration circuit section 32 before the zero-cross point is started to be integrated, and when the detection of the zero-cross point is completed, the integration value of a predetermined time is integrated by the integration circuit section 34 for a predetermined period.
  • the comparison circuit unit 35 compares the value integrated by the integration circuit unit 32 before the zero-cross point with the value of the integration circuit unit 34 that has obtained the integrated value for the predetermined time after the detection of the zero-cross point, and the integration circuit unit for the predetermined time period is compared. When 34 is smaller than the value of the integration circuit section 32, it is determined that the sensor SEN is abnormal. If the abnormal amplitude detection circuit unit 31 is larger than a predetermined value and the amplitude is larger than a predetermined threshold, it is determined that the robot system is abnormal.
  • the logic is programmed such that the integral value when an external force is applied is equal to the integral value when the external force is released. Since the responsiveness of the contact detection device of this embodiment is not good as it is, the integrated value when an external force is applied is set to the magnitude of the signal.
  • this routine is to turn on the target robot 40 or the like, or turn on another power source before the power is turned on and repeatedly operate.
  • initialization is performed in step S1.
  • step S2 it is determined whether the output of the sensor SEN is greater than or equal to the threshold value Vt, and if it is not greater than or equal to the threshold value Vt, steps S1 and S2 are repeatedly executed.
  • the system abnormality of the robot 40 is output in step S3.
  • the output may stop the mechanical device.
  • the system abnormality of the robot 40 detected by the sensor SEN is displayed in step S4, the counter D is incremented by "1" in step S5, "+1" is added to the value of the system abnormality counter D, and the result is recorded. indicate.
  • step S7 the integral ⁇ f (x) dx is repeatedly calculated until a predetermined time has elapsed.
  • the calculation of the integral ⁇ f (y) dy is started in step S8, and the integral ⁇ f (y) dy is started until the predetermined time passes in step S9. Is repeatedly calculated.
  • step S10 the integrated value ⁇ f (x) dx and the integrated value ⁇ f (y) dy are compared, and when the difference is larger than a predetermined threshold value, the sensor SEN operation is irreversible. Of the sensor SEN is determined in step S11. In step S12, the counter C is incremented by "1" so as to be recorded, and it is recorded and displayed.
  • the contact detection device of the present embodiment is formed by forming the base material 1 formed in a specific shape and the foamed synthetic resin material or foamed rubber material covering the base material 1 in a specific shape.
  • the body 10 a predetermined volume forming body 4 formed on the base material 1 and the foam 10 facing each other, and a sensor SEN for detecting an external pressing force applied to the volume forming body 4 as a physical change amount.
  • the predetermined volume forming body 4 provided on the base material 1 and / or the foam 10 determines the abnormality by allocating a sensor with the volume forming body 4 as a uniform volume.
  • the contact detection device includes a base material 1 formed in a specific shape facing each other, a specific volume configuration body 4 covering the base material 1 formed in the specific shape, and a volume configuration body 4.
  • a predetermined sensor formed on the base material 1 and / or the foam 10 is provided with a sensor SEN for detecting the applied pressing force from the outside as a physical change amount of the volume component 4 formed by the volume component 4.
  • the volume constructing body 4 assigns the sensor SEN with the volume constructing body 4 as a uniform volume, and determines the normal operation of the SEN and the abnormal operation of the sensor SEN when the sensor SEN operates.
  • the contact detection device of the present embodiment is a foam formed by forming a base material 1 formed in a specific plane shape and a foam synthetic resin material or foam rubber material covering the base material 1 in a plurality of specific plane shapes. Air is prevented from leaking from the body 10 and the base material 1 and / or the foam body 10 to the outside air, and the predetermined volume forming body 4 formed on the opposing base material 1 and the foam body 10 is added to the volume forming body 4. And a sensor SEN for detecting a change in the pressing force from the outside as a physical change amount formed in the volume component 4, and a predetermined volume component 4 formed in the base material 1 and / or the foam 10.
  • the predetermined volume constituents 4 formed on the base material 1 and / or the foam 10 determine the abnormality by allocating the sensor SEN with the volume constituents 4 having a substantially uniform volume and determining the abnormality. Since the body 4 has a uniform volume, the sensor output obtained as each abnormal output is substantially uniform. Therefore, it is possible to manufacture a uniform one with a fixed resistor or an IC circuit.
  • the pressure applied in a wide range is detected.
  • the construction can be performed with a two-dimensional planar structure or a three-dimensional three-dimensional structure, and a predetermined pressure can be detected from the outside.
  • the sensor SEN which detects as a physical change of the volume component 4 detects the external force applied to the volume component 4 as the physical change amount of the volume component 4 by the sensor SEN, and the normal volume component 4 is detected. It is detected as the contact pressure applied to.
  • the volume constructing body 4 is formed as two or more planar volume constructing bodies 4, there is no great difference in the output of the sensor SEN, and therefore, an external force that rises or falls smoothly and a short external force. It is possible to discriminate the contact in a short time by monitoring the external force rapidly applied to the time. That is, since the sensor SEN for detecting the physical change amount of the volume structure 4 of the present invention is attached to the substantially uniform volume structure 4, the sensor itself is normally operated toward the detection of the physical change amount. -Abnormality can be determined, and in particular, it is possible to determine whether or not a sensor abnormality has occurred at the timing immediately before the contact, which is not known when the next startup will occur.
  • the change in the pressing force applied to the volume structure 4 from the outside is performed by sampling and holding the detection signal of the sensor SEN before and after the air flow is stopped, and comparing the history before and after the air flow is stopped and the flow is changed. Therefore, if an abnormal value appears in the sensor output during the time until the air flow stops, it is regarded as an abnormality in the output of the contact detection device, and the air flow is stopped before and after the zero cross point where the flow changes.
  • the history is determined as an abnormality on the sensor side when the integrated values of the two differ, and when the integrated values of the time until the air flow stops differ. Therefore, it is possible to detect the abnormality of the system and the abnormality of the sensor SEN by one operation of the contact detection device.
  • the volume constituents 4 are arranged such that the volume constituents 4 rise in parallel with each other in order to minimize the joint area between the volume constituents 4, there is no undulation on the design surface side, and therefore external force is applied to the design surface. Since it can be detected as a vertical input, external force can be efficiently processed. Therefore, the change in the pressing force applied from the outside to the volume structure 4 is the time for sampling and holding the detection signal of the sensor SEN before and after the air flow is stopped, and the history before and after that is compared. Since the integrated value becomes substantially constant by the first discharge of air and the subsequent intake, when it is not constant, it means that there is a leak in the volume component. It is possible to determine whether the number is normal or abnormal based on the sum.
  • the abnormality is detected by the first sensor operation, and regarding other abnormalities, the air is detected. It is to be detected after the flow is stopped.
  • a fan having a different structure is arranged in the volume component 4, and the volume component 4 is set to have predetermined physical variables such as air pressure, air flow, air flow velocity, and air amount change.
  • the amount of physical change can be measured.
  • a fan (not shown) is attached, the number of parts increases, and it becomes necessary to manage the air volume of the fan.
  • the number of parts does not increase.

Abstract

In order to make it possible to reduce error in detection of an amount of physical variation by a sensor for detecting an amount of physical variation of a volume component and to improve responsiveness of the sensor, the present invention comprises: a substrate 1 formed in a specific shape; a foamed body 10 obtained by forming a foamed synthetic resin material or a foamed rubber material in a plurality of specific planar shapes, the foamed body 10 covering the substrate 1; a predetermined volume component 4 formed on the facing substrate 1 and foamed body 10, the volume component 4 making air less prone to leak to the outside air from the substrate 1 and/or the foamed body 10; and a sensor SEN for detecting a variation in pressure from the outside applied to the volume component 4 as an amount of physical variation formed by the volume component 4; predetermined volume components 4 formed on the substrate 1 and/or the foamed body 10 all having a uniform volume, and the sensor SEN being allocated to determine an abnormality.

Description

接触検出装置Contact detection device
 本発明は、特定の形状に形成された基材と、発泡合成樹脂で特定の形状とした発泡体からなり、前記基材と前記発泡体との間の片側または両側に容積構成体を形成し、その容積構成体の物理量の変化をセンサによって検出する接触検出装置に関するものである。 The present invention comprises a base material formed in a specific shape and a foam formed in a specific shape by foaming synthetic resin, and forming a volume constituent on one side or both sides between the base material and the foam. The present invention relates to a contact detection device that detects a change in the physical quantity of the volume structure with a sensor.
 一般に、特許文献1及び特許文献2では、発泡合成樹脂成型体とクッションシートとの接着力を強くする技術を開示している。ところが、形式的に試作品を形成する原材料として発泡性合成樹脂が使用されているものの、少量生産品にこの技術は実現されていない。例えば、発泡ポリスチレンのような発泡合成樹脂成型体は、脆く、表面を削って所定の形状に仕上げ、かつ、表面を見栄え良く平滑化することができなかった。
 そして、発泡性合成樹脂にベントホールと呼ばれる穴が存在すると、当該ベントホールを穴埋めするには、残余の発泡性合成樹脂の厚みによって左右されるが熟練者でないと効率良く成型できない。また、ベントホールを穴埋めすると発泡合成樹脂成型体の重量バランスに微妙な違いが出て、使途によっては、その重量バランスの調整が必要な場合がでてくる。
Generally, Patent Documents 1 and 2 disclose a technique for increasing the adhesive force between a foamed synthetic resin molded body and a cushion sheet. However, although foamable synthetic resins are used as raw materials for formally forming prototypes, this technology has not been realized for small-volume production. For example, a foamed synthetic resin molding such as foamed polystyrene is fragile, and the surface cannot be ground to a predetermined shape, and the surface cannot be smoothed with a good appearance.
If there is a hole called a vent hole in the expandable synthetic resin, filling the vent hole depends on the thickness of the remaining expandable synthetic resin, but only a skilled person can efficiently perform molding. Further, if the vent hole is filled up, there is a slight difference in the weight balance of the foamed synthetic resin molded body, and depending on the purpose, it may be necessary to adjust the weight balance.
 更に、特許文献3及び特許文献4は、上記問題点を解消し、基材として発泡合成樹脂材料を用いて、特定の形状を削り出して弾性に富む成型体として、塗装面の厚みを厚くすることなく、見栄えの良い、廉価な発泡合成樹脂成型体を得ている。しかし、特許文献3及び特許文献4が接触センサを用いるとなると、表面に金属電極、導電性塗料等を塗布する必要性があり、相手が導電体のものに使用が限られる。
 また、市販の感圧スイッチを用いると、押圧力を受けている部位の感圧スイッチ自身は作動するが、他の感圧スイッチが配設されていない箇所の圧力検出ができなかった。また、感圧スイッチはその絶縁基板(シート)の変形が自在にならないので立体的に形成することができなかった。
 しかし、接触センサ、感圧スイッチ等の量産化されている普及型センサは廉価であるが、量産化されていないセンサは高価である。例えば、静電容量の変化または歪ゲージを使用した圧力センサ等は廉価に供給されている。
Further, in Patent Document 3 and Patent Document 4, the above problems are solved, and a foamed synthetic resin material is used as a base material, and a specific shape is carved out to increase the thickness of the coated surface as a highly elastic molded body. Without having to obtain a good-looking, inexpensive foam synthetic resin molded body. However, when the contact sensor is used in Patent Document 3 and Patent Document 4, it is necessary to apply a metal electrode, a conductive paint or the like on the surface, and the use is limited to the one whose conductor is a conductor.
Further, when a commercially available pressure sensitive switch is used, the pressure sensitive switch itself at the portion receiving the pressing force operates, but the pressure cannot be detected at the portion where no other pressure sensitive switch is provided. Further, the pressure-sensitive switch cannot be formed three-dimensionally because the insulating substrate (sheet) cannot be freely deformed.
However, mass-produced popular sensors such as contact sensors and pressure-sensitive switches are inexpensive, but non-mass-produced sensors are expensive. For example, a pressure sensor using a change in capacitance or a strain gauge is available at a low price.
 そこで、本発明者らは特許文献5に掲載の接触検出装置を発明した。
 即ち、特定の形状に形成された基材と、前記基材を被覆する1枚の発泡合成樹脂材料または発泡ゴム材料、または発泡合成樹脂材料または発泡ゴム材料を特定の形状に形成してなる発泡体と、対向する前記基材と前記発泡体の片側または両側に形成された所定の容積構成体と、前記容積構成体内に配設された連続気泡構造を有している空間維持材と、前記容積構成体内及び前記空間維持材の圧縮された空気が、前記基材及び/または前記発泡体から外気に漏れ難くした前記容積構成体を形成した補強層と、前記基材と前記発泡体の片側または両側に加えられた外部からの押圧力を、前記補強層で形成した前記容積構成体及び前記空間維持材の物理的変化量として検出するセンサと、前記センサからのオン・オフ出力のオン時間またはオフ時間の長さをもって検出出力とし、前記特定の形状に形成された基材と、前記基材を被覆する1枚の発泡合成樹脂材料または発泡ゴム材料、または発泡合成樹脂材料または発泡ゴム材料を特定の形状に形成してなる前記発泡体が形成するコーナに埋設してなる出力回路を具備するものである。
 これによって、広範な範囲に加えられた圧力を検出することができ、二次元的な平面的構成であっても、三次元的な立体的構成であっても施工でき、所定以上の外部からの圧力を検出できる接触検出装置となった。
Therefore, the present inventors have invented the contact detection device disclosed in Patent Document 5.
That is, a base material formed in a specific shape and one foam synthetic resin material or foam rubber material covering the base material, or foam formed by forming a foam synthetic resin material or foam rubber material in a specific shape. A body, a predetermined volume forming body formed on one or both sides of the base material and the foam facing each other, and a space maintaining material having an open cell structure disposed in the volume forming body; Reinforcing layer forming the volume construct that prevents compressed air in the volume construct and the space maintaining material from leaking to the outside air from the substrate and / or the foam; and one side of the base and the foam. Or, a sensor that detects the pressing force applied from both sides from the outside as a physical change amount of the volume component and the space maintaining material formed by the reinforcing layer, and the on time of the on / off output from the sensor. Or off time The length is used as a detection output, and the base material formed in the specific shape and one foam synthetic resin material or foam rubber material that covers the base material, or the foam synthetic resin material or foam rubber material has a specific shape. And an output circuit embedded in a corner formed by the foam formed in.
This makes it possible to detect the pressure applied to a wide range, and it is possible to perform construction with either a two-dimensional planar configuration or a three-dimensional three-dimensional configuration, and it is possible to apply pressure from outside the prescribed level or more. It became a contact detection device that can detect pressure.
特開2005-125736号公報JP 2005-125736 A 特開2010-236220号公報JP, 2010-236220, A 特許第5547313号Patent No. 5547313 特許第5718401号Patent No. 5718401 特許第6083723号Patent No. 6083723
 しかし、前記容積構成体及び物理的変化量として検出するセンサは、前記容積構成体の体積が大きくなると、それに応じて異常検出信号が緩慢になる。したがって、前記容積構成体は分割する必要がでる。故に、前記容積構成体の体積が大きくなると、センサの検出誤差が大きくなる。単一のロボットに接触センサを取り付けた場合、ロボットが大型化、複雑化すると異常信号を検出し難くなり、外力を加える位置に死角が発生する可能性がある。また、センサの応答性を均一にするとなると、前記容積構成体の体積を均一にする必要があり、効率の良い取り付けができないという問題点があった。 However, with the volume constituent and the sensor that detects the physical change amount, as the volume of the volume constituent increases, the abnormality detection signal becomes slower accordingly. Therefore, the volume structure needs to be divided. Therefore, as the volume of the volume structure increases, the detection error of the sensor increases. When a contact sensor is attached to a single robot, if the robot becomes large and complicated, it becomes difficult to detect an abnormal signal, and a blind spot may occur at a position where an external force is applied. Further, if the responsiveness of the sensor is to be made uniform, it is necessary to make the volume of the volume forming body uniform, and there is a problem that efficient mounting cannot be performed.
 そこで、上記従来の問題点を解消すべく、第1の発明は、ロボット等の接触検出装置(システム)に加えられた外力を、容積構成体の物理的変化量として検出し、しかも、センサが検出する物理的変化量の検出誤差を少なくでき、かつ、センサの応答性を良くするものである。また、第2の発明は、センサの動作の初期と、空気の流れが停止した後のゼロクロス点前後の動作を比較することによって、センサ自体の正常・異常を判別できる接触検出装置の提供を課題とするものである。 Therefore, in order to solve the above-mentioned conventional problems, the first invention detects an external force applied to a contact detection device (system) such as a robot as a physical change amount of the volume constituent body, and further, a sensor is provided. It is possible to reduce the detection error of the physical change amount to be detected and improve the responsiveness of the sensor. The second invention is to provide a contact detection device capable of determining whether the sensor itself is normal or abnormal by comparing the initial operation of the sensor with the operation before and after the zero-cross point after the air flow is stopped. It is what
 請求項1の発明の接触検出装置は、特定の形状に形成された基材を被覆する平面形状に形成してなる発泡体と、それら基材及び/または発泡体が形成される容積構成体から空気が漏れ難くして形成され、前記容積構成体に加えられた外力(押圧力)の変化を、前記容積構成体で形成した物理的変化量として検出する外気に導かれる風量センサ等のセンサとを具備し、前記基材及び/または前記発泡体に形成された所定の容積構成体は、前記容積構成体を均一な体積としてセンサにより異常を判断するものである。
 ここで、上記特定の形状に形成された基材は、人形のロボットを含むロボットの被覆、各種機器のハウジングの被覆で、アルミニウム板、ステンレス板、鉄板、銅板等で形成されるのが一般的である。合成樹脂の場合には発泡合成樹脂も使用されているものの、主に、射出成型等で形成されている。この射出成型で形成した基材の殆どは、1ブロックの熱可塑性樹脂材料から構成される。例えば、熱可塑性樹脂材料を接着した熱可塑性樹脂材料を特定の形状に形成したものであればよい。また、熱可塑性樹脂材料は、ソリッドタイプの樹脂としても、発泡体としてもよく、前記容積構成体の容積変化が出現する硬度を有するものであればよい。この基材は、例えば、ロボット等の自走する自動生産装置に被覆し、その基材に対して前記発泡体を設けフェイルセーフ対応とするものである。
The contact detection device according to the invention of claim 1 comprises a foam body formed in a planar shape for covering a base material formed in a specific shape, and a volume constituent body in which the base material and / or the foam body are formed. A sensor such as an air volume sensor, which is formed so that air does not leak easily and detects a change in external force (pressing force) applied to the volume component as a physical change amount formed in the volume component. The predetermined volume forming body formed on the base material and / or the foam body has a uniform volume of the volume forming body and a sensor determines an abnormality.
Here, the base material formed in the specific shape is a coating of a robot including a doll robot, a coating of a housing of various devices, and is generally formed of an aluminum plate, a stainless plate, an iron plate, a copper plate, or the like. Is. In the case of synthetic resin, although foamed synthetic resin is also used, it is mainly formed by injection molding or the like. Most of the substrates formed by this injection molding are composed of one block of thermoplastic resin material. For example, a thermoplastic resin material formed by adhering a thermoplastic resin material to a specific shape may be used. Further, the thermoplastic resin material may be a solid type resin or a foam, as long as it has hardness such that the volume change of the volume component appears. For example, this base material is covered with a self-propelled automatic production device such as a robot, and the foamed material is provided on the base material so as to be fail-safe compatible.
 上記発泡体として使用する発泡合成樹脂材料は、存在する内部気泡同士が繋がっていない独立気泡体、存在する内部気泡同士が繋がっている連続気泡体の何れであってもよい。何れにせよ、前記閉じられた容積構成体の空気が外気に漏れ難く形成したものであればよい。
 また、上記発泡体は、前記基材を発泡合成樹脂材料の1枚または複数枚接着したもので被覆し、特定の形状に形成するものである。通常、前記発泡体は前記発泡体を外部から被う構成となる。
The foamed synthetic resin material used as the foam may be either a closed cell in which existing internal cells are not connected to each other or an open cell in which existing internal cells are connected to each other. In any case, it is sufficient that the air of the closed volume structure is formed so as not to easily leak to the outside air.
The foam is formed by covering the base material with one or a plurality of foam synthetic resin materials adhered to form a specific shape. Usually, the foam is configured to cover the foam from the outside.
 そして、上記容積構成体は、前記基材及び前記発泡体との間の片側または両側に補強層を形成してもよい。この補強層は、前記基材及び/または前記発泡体から空気が外気に漏れ難くするものである。そのためには、補強層によって空気が通り抜け難くされている。射出成型金型で形成する金型によって冷やされるスキン層または別の材料で形成した空気の漏れを少なくするフィルム層、コーティング層もこの補強層の1つである。
 前記容積構成体内の空気が外部からの圧力(外圧)により圧縮されたとき、その圧縮空気の一部が、前記容積構成体から漏れ出さないように補強層を設けるのが望ましい。この補強層としては、目止め剤、穴埋め剤、下塗り剤、上塗り剤、仕上げ剤のうちの幾つかを組み合わせて選択できる。また、前記発泡体を形成する金型で形成したスキン層を、前記基材を被覆する1枚の発泡合成樹脂材料または発泡ゴム材料、または複数枚を積層接着した特定の形状に形成してなる発泡体とすることもできる。
 勿論、上記容積構成体は、その中が空洞であってもよいし、前記補強層で形成した前記発泡体からなる弾性体で構成してもよい。
And the said volume structure may form a reinforcement layer on one side or both sides between the said base material and the said foam. This reinforcing layer makes it difficult for air to leak from the base material and / or the foam to the outside air. For that purpose, it is made difficult for air to pass through by the reinforcing layer. One of the reinforcing layers is a skin layer cooled by a mold formed by an injection molding mold or a film layer and a coating layer formed of another material for reducing air leakage.
When the air in the volume forming body is compressed by an external pressure (external pressure), it is desirable to provide a reinforcing layer so that a part of the compressed air does not leak from the volume forming body. The reinforcing layer can be selected by combining some of a filling agent, a filling agent, an undercoating agent, an overcoating agent, and a finishing agent. In addition, the skin layer formed by a mold for forming the foam is formed in a specific shape by laminating and adhering one sheet of synthetic resin foam material or foam rubber material that covers the base material, or laminating and adhering a plurality of sheets. It can also be a foam.
Of course, the volume constituting body may have a hollow inside, or may be constituted by an elastic body made of the foam formed of the reinforcing layer.
 更に、前述した補強層の形成は、二次元的な表面的なものでも、三次元的(立体的)な処理でもよい。特に、三次元的な補強層は、前記補強層のみの強度というよりも、前記容積構成体の強度及び緻密化が可能になる。前記補強は合成樹脂シートとすることもできる。
 ここで、空気が漏れ難く形成した容積構成体とは、空気が全く漏れない状態を意味するのではなく、空気が漏れても、それが前記センサの特性を変化する程度には至らないことを意味する。この補強層は、全く空気のリークがないものに限定されるものではなく、多少のリークが生じるものでもよい。また、完全にリークのないものを製造し、そこに特定径のリーク路を形成してもよい。
 特に本発明においては、容積構成体に加えられた外部からの押圧力及びその回復の特性が必要である。
Further, the above-mentioned formation of the reinforcing layer may be a two-dimensional surface treatment or a three-dimensional (three-dimensional) treatment. In particular, the three-dimensional reinforcing layer enables strength and densification of the volume construct rather than strength of the reinforcing layer only. The reinforcement may be a synthetic resin sheet.
Here, the volume constituent formed so that air does not leak easily does not mean a state in which air does not leak at all, but even if air leaks, it does not reach the extent that it changes the characteristics of the sensor. means. The reinforcing layer is not limited to the one having no air leakage at all, and may have some leakage. It is also possible to manufacture a completely leak-free material and form a leak path having a specific diameter therein.
In particular, the present invention requires the characteristics of external pressing force applied to the volume component and its recovery.
 更にまた、上記空気が漏れ難く形成した容積構成体の物理的変化量として検出するセンサとしては、接触圧、気圧、圧力等の変化を歪量または静電容量の変化等として物理的の変量を空気圧、空気の流れ、空気の流速、空気量の変化等として検出する物理的変化量を計測するものである。また、このセンサには、「MEMSフローセンサ」、「MEMS風量センサ」、「流速センサ」と呼ばれている空気の流れを生じさせる市販のマイクロフローセンサ(D6F-V03A1;オムロン製)を使用することができる。原理的には、本発明を実施する場合には、「MEMSフローセンサ」、「MEMS風量センサ」、「流速センサ」等と呼ばれている市販のセンサであれば使用可能であるが、本発明者らは、小型化が必要であったことから、D6F-V03A1(オムロン製)を使用した。また、市販のフローセンサとして、オムロン製品の他に(株)キーエンス、愛知時計電機(株)、(株)山武、ASK(株)の製品も実施したが、原理的には、何れでも実施できることが確認された。 Furthermore, as a sensor for detecting as a physical change amount of the volume component formed so that the air hardly leaks, a physical change amount such as a contact pressure, an atmospheric pressure, a change in pressure or the like is changed as a strain amount or a change in capacitance. It measures the amount of physical change detected as changes in air pressure, air flow, air flow velocity, air amount, and the like. Further, as this sensor, a commercially available micro flow sensor (D6F-V03A1; made by OMRON) called “MEMS flow sensor”, “MEMS air flow sensor”, and “flow velocity sensor” is used. be able to. In principle, when the present invention is carried out, commercially available sensors called “MEMS flow sensor”, “MEMS air flow sensor”, “flow velocity sensor”, etc. can be used. Since they needed to be downsized, they used D6F-V03A1 (manufactured by OMRON). Further, as commercially available flow sensors, products of Keyence Corporation, Aichi Clock Electric Co., Ltd., Yamatake Corporation, and ASK Co., Ltd. were also implemented in addition to OMRON products, but in principle, any of them can be implemented. Was confirmed.
 加えて、前記基材と前記発泡体に形成された所定の容積構成体には、2個以上の平面的な容積構成体に対して1個または2個以上のセンサを割り当て、それらのセンサの信号を比較して異常を判断するものである。
 ここで、上記2個以上の平面的な容積構成体に対してセンサを割り当てて異常を判断するのは、前記容積構成体に加えられた外力を、前記容積構成体の物理的変化量として空気圧、空気の流れ、空気の流速、空気量の変化等として検出するセンサを含み、具体的には、前記容積構成体に加えられた外部からの押圧力を前記容積構成体の物理的変化量として検出し、複数の履歴と比較して、その信号検出出力として正常・異常の2値信号を得る。例えば、外力によって空気が外に出た後、元に戻ってくる両積分値は一定である。それらを比較して一致しないときには、何らかの異常があると判断される。
In addition, one or two or more sensors are assigned to two or more planar volume components in a predetermined volume component formed on the base material and the foam, and The signal is compared to determine an abnormality.
Here, the abnormality is determined by allocating the sensors to the two or more planar volume constructs by determining the external force applied to the volume constructs as the physical change amount of the volume constructs. , A flow of air, a flow velocity of air, a sensor for detecting as a change in the amount of air, etc., specifically, the pressing force from the outside applied to the volume structure as the physical change amount of the volume structure. It is detected and compared with a plurality of histories to obtain a normal / abnormal binary signal as the signal detection output. For example, both integral values that return to the original after the air has come out due to an external force are constant. If they are compared and do not match, it is determined that there is some abnormality.
 請求項2の発明の接触検出装置は、特定の形状に形成された基材を被覆する平面形状に形成してなる発泡体と、それら基材または発泡体が形成される容積構成体から空気が漏れ難くして形成され、前記容積構成体に加えられた外部からの押圧力の変化を、前記容積構成体で形成した物理的変化量として検出する外気に導かれるセンサとを具備し、前記基材及び/または前記発泡体に形成された所定の容積構成体は、前記容積構成体を均一な体積としてセンサを割り当て、かつ、前記センサの動作時には、前記センサの正常な動作及び前記センサの異常動作を判断するものである。
 ここで、上記特定の形状に形成された基材は、人形ロボット等のロボットの被覆、各種機器のハウジングの被覆で、アルミニウム板、ステンレス板、鉄板、銅板等で形成されるのが一般的である。合成樹脂の場合には発泡合成樹脂も使用されているものの、主に、射出成型等で形成されている。この射出成型で形成した基材1の殆どは、1ブロックの熱可塑性樹脂材料から構成される。例えば、熱可塑性樹脂材料を接着した熱可塑性樹脂材料を特定の形状に形成したものであればよい。また、熱可塑性樹脂材料は、ソリッドタイプの樹脂としても、発泡体としてもよく、前記容積構成体の容積変化が出現する硬度を有するものであればよい。この基材は、例えば、ロボット等の自走する自動生産装置に被覆し、その基材に対して前記発泡体を設けフェイルセーフ対応とするものである。
According to the contact detection device of the invention of claim 2, air is generated from a foam body formed in a planar shape that covers a base material formed in a specific shape, and a volume constituent body in which the base material or the foam body is formed. A sensor that is formed so as not to leak easily and that detects a change in external pressing force applied to the volume component as an amount of physical change formed in the volume component, and is guided to the outside air. A predetermined volume component formed on the material and / or the foam is assigned a sensor with the volume component having a uniform volume, and when the sensor is operating, the sensor operates normally and the sensor malfunctions. The operation is determined.
Here, the base material formed in the above-mentioned specific shape is generally formed of an aluminum plate, a stainless plate, an iron plate, a copper plate, or the like for coating a robot such as a doll robot or a housing for various devices. is there. In the case of synthetic resin, although foamed synthetic resin is also used, it is mainly formed by injection molding or the like. Most of the base material 1 formed by this injection molding is composed of one block of thermoplastic resin material. For example, a thermoplastic resin material formed by adhering a thermoplastic resin material to a specific shape may be used. Further, the thermoplastic resin material may be a solid type resin or a foam, as long as it has hardness such that the volume change of the volume component appears. For example, this base material is covered with a self-propelled automatic production device such as a robot, and the foamed material is provided on the base material so as to be fail-safe compatible.
 上記発泡体として使用する発泡合成樹脂材料は、存在する内部気泡同士が繋がっていない独立気泡体、存在する内部気泡同士が繋がっている連続気泡体の何れであってもよい。何れにせよ、前記容積構成体の空気が外気に漏れ難く形成したものであればよい。
 また、上記発泡体は、前記基材を発泡合成樹脂材料の1枚または複数枚接着したもので被覆し、特定の形状に形成するものである。通常、前記発泡体は前記発泡体を外部から被う構成となる。基材は、例えば、ロボット等の自走する自動生産装置に被覆し、その基材に対して前記発泡体を設けフェイルセーフ対応とするものである。
The foamed synthetic resin material used as the foam may be either a closed cell in which existing internal cells are not connected to each other or an open cell in which existing internal cells are connected to each other. In any case, it is sufficient if the air of the volume forming body is formed so as not to easily leak to the outside air.
The foam is formed by covering the base material with one or a plurality of foam synthetic resin materials adhered to form a specific shape. Usually, the foam is configured to cover the foam from the outside. The base material is, for example, a self-propelled automatic production device such as a robot that is covered, and the foam is provided on the base material so as to be fail-safe compatible.
 そして、上記容積構成体は、前記基材及び前記発泡体との間の片側または両側に補強層を形成してもよい。この補強層は、前記基材及び/または前記発泡体から空気が外気に漏れ難くするものである。そのためには、補強層によって空気が通り抜け難くされている。射出成型金型で形成する金型によって冷やされるスキン層または別の材料で形成した空気の漏れを少なくするフィルム層、コーティング層もこの補強層の1つである。
 上記容積構成体内の空気が外部からの圧力(外圧)により圧縮されたとき、その圧縮空気の一部が、前記容積構成体から漏れ出さないように補強層を設けるのが望ましい。この補強層としては、目止め剤、穴埋め剤、下塗り剤、上塗り剤、仕上げ剤のうちの幾つかを組み合わせて選択できる。また、前記発泡体を形成する金型で形成したスキン層を、前記基材を被覆する1枚の発泡合成樹脂材料または発泡ゴム材料、または複数枚を積層接着した特定の形状に形成してなる発泡体とすることもできる。
 勿論、上記容積構成体は、その中が空洞であってもよいし、前記補強層で形成した前記発泡体からなる弾性体で構成してもよい。
And the said volume structure may form a reinforcement layer on one side or both sides between the said base material and the said foam. This reinforcing layer makes it difficult for air to leak from the base material and / or the foam to the outside air. For that purpose, it is made difficult for air to pass through by the reinforcing layer. One of the reinforcing layers is a skin layer cooled by a mold formed by an injection molding mold or a film layer and a coating layer formed of another material for reducing air leakage.
When the air in the volume forming body is compressed by the pressure (external pressure) from the outside, it is desirable to provide a reinforcing layer so that a part of the compressed air does not leak out from the volume forming body. The reinforcing layer can be selected by combining some of a filling agent, a filling agent, an undercoating agent, an overcoating agent, and a finishing agent. In addition, the skin layer formed by a mold for forming the foam is formed in a specific shape by laminating and adhering one sheet of synthetic resin foam material or foam rubber material that covers the base material, or laminating and adhering a plurality of sheets. It can also be a foam.
Of course, the volume constituting body may have a hollow inside, or may be constituted by an elastic body made of the foam formed of the reinforcing layer.
 更に、前述した補強層の形成は、二次元的な表面的なものでも、三次元的(立体的)な処理でもよい。特に、三次元的な補強層は、前記補強層のみの強度というよりも、前記容積構成体の強度及び緻密化が可能になる。前記補強は合成樹脂シートとすることもできる。
 ここで、空気が漏れ難く形成した容積構成体とは、空気が全く漏れない状態を意味するのではなく、空気が漏れても、それが前記センサの特性を変化する程度には至らないことを意味する。この補強層は、全く空気のリークがないものに限定されるものではなく、多少のリークが生じるものでもよい。また、完全にリークのないものを製造し、そこに特定径のリーク路を形成してもよい。
 特に本発明においては、容積構成体に加えられた外部からの押圧力及びその回復の特性が必要である。
Further, the above-mentioned formation of the reinforcing layer may be a two-dimensional surface treatment or a three-dimensional (three-dimensional) treatment. In particular, the three-dimensional reinforcing layer enables strength and densification of the volume construct rather than strength of the reinforcing layer only. The reinforcement may be a synthetic resin sheet.
Here, the volume constituent formed so that air does not leak easily does not mean a state in which air does not leak at all, but even if air leaks, it does not reach the extent that it changes the characteristics of the sensor. means. The reinforcing layer is not limited to the one having no air leakage at all, and may have some leakage. It is also possible to manufacture a completely leak-free material and form a leak path having a specific diameter therein.
In particular, the present invention requires the characteristics of external pressing force applied to the volume component and its recovery.
 更にまた、上記空気が外気に漏れ難く形成した容積構成体の物理的変化量として検出するセンサとしては、接触圧、気圧、圧力等の変化を歪量または静電容量の変化等として物理的の変量を空気圧、空気の流れ、空気の流速、空気量の変化等として検出する物理的変化量を計測するものである。また、このセンサには、「MEMSフローセンサ」、「MEMS風量センサ」、「流速センサ」と呼ばれている空気の流れを生じさせる市販のマイクロフローセンサを使用することもできる。原理的には、本発明を実施する場合には、「MEMSフローセンサ」、「MEMS風量センサ」、「流速センサ」等と呼ばれている市販のセンサであれば使用可能である。 Furthermore, as a sensor for detecting the amount of physical change of the volume component formed so that the air is unlikely to leak to the outside air, a change in contact pressure, atmospheric pressure, pressure or the like is physically detected as a change in strain amount or capacitance. The physical quantity of change is detected by detecting the variable quantity as the air pressure, the flow of air, the flow velocity of air, the change of the air quantity, and the like. Further, as this sensor, a commercially available microflow sensor that causes a flow of air, which is called “MEMS flow sensor”, “MEMS air flow sensor”, or “flow velocity sensor”, can be used. In principle, when the present invention is carried out, commercially available sensors called “MEMS flow sensor”, “MEMS air flow sensor”, “flow velocity sensor”, etc. can be used.
 加えて、前記基材と前記発泡体に形成された所定の容積構成体には、2個以上の平面的な容積構成体に対してセンサを割り当て、かつ、電源投入時または所定の日時に1回センサの信号を比較して異常を判断するものである。
 ここで、上記2個以上の平面的な容積構成体に対してセンサを割り当てて異常を判断するのは、前記容積構成体に加えられた外部からの押圧力を、前記容積構成体の物理的変化量として空気圧、空気の流れ、空気の流速、空気量の変化等として検出するセンサを含み、具体的には、前記容積構成体に加えられた外部からの押圧力を前記容積構成体の物理的変化量として検出し、複数の履歴と比較して、その信号検出出力として正常・異常の2値信号を得る。例えば、サンプリングによって2次関数曲線であることを確認する方法でもよい。また、外力によって空気が外に出た後、元に戻ってくる両積分値は一定である。それらを比較して一致しないときには、何らかの異常があると判断される。
In addition, a sensor is assigned to two or more planar volumetric structures formed in the base material and the foam, and a sensor is assigned to one or more planar volumetric structures at power-on or at a predetermined date and time. An abnormality is determined by comparing the signals of the rotation sensors.
Here, the sensor is assigned to the two or more planar volume constructs to determine an abnormality in that the pressing force from the outside applied to the volume constructs is determined by the physical force of the volume constructs. The amount of change includes a sensor for detecting air pressure, the flow of air, the velocity of air, a change in the amount of air, and the like. Specifically, the pressing force from the outside applied to the volume structure is applied to the physical structure of the volume structure. It is detected as a dynamic change amount and compared with a plurality of histories to obtain a normal / abnormal binary signal as a signal detection output. For example, a method of confirming a quadratic function curve by sampling may be used. Further, both integrated values that return to the original value after the air has come out by the external force are constant. If they are compared and do not match, it is determined that there is some abnormality.
 請求項3の発明の接触検出装置の前記容積構成体に加えられた外力の変化は、空気流が停止したゼロクロス点前後の前記センサの検出信号を積分し、前記空気流が停止して流れが変化する前後の履歴を比較するものである。
 ここで、外力を前記容積構成体に加え、その押圧力の変化は空気流の変化とするものであり、特に、前記空気流が停止して流れが変化するゼロクロス点の前後の履歴は、両者の積分値が原理的には一致することから、接触検出装置の異常の検知と、接触検出装置を構成するセンサの異常の検知とを行うものである。
 しかし、接触検出装置としてのシステム異常は早期に検出して、装置を停止される必要性から、空気の移動量等の振幅に閾値を置き、また、センサの異常は積分値によって検出するものである。センサの検出信号をサンプリングホールドする時間とし、その前後の履歴を比較するものであるから、初回、1回目の空気の排出とその後の吸入によってその積分値は略一定になるから、一定でないときには、前記容積構成体にリークが存在していることであり、このとき、極性を考慮してセンサが何個であっても、その和によって正常、異常の判断を行うことができる。
 前記空気流が停止して流れが変化するゼロクロス点の前後の履歴を比較しているから、漏れ等の異常の場合には、最初のセンサ動作により異常を検出し、他の異常については、空気流が停止した後に検出するものである。なお、接触検出装置のシステム異常は、前記センサの検出信号の異常振幅が所定の閾値以上であるかによって行い、前記センサの異常は、ゼロクロス点から所定の時間の積分によって算出される。
The change in the external force applied to the volume component of the contact detection device according to the invention of claim 3 integrates the detection signals of the sensor around the zero-cross point where the air flow is stopped, and the air flow is stopped to cause a flow. The history before and after the change is compared.
Here, an external force is applied to the volume component, and the change in the pressing force is a change in the air flow. In particular, the history before and after the zero-cross point at which the air flow is stopped and the flow changes are In principle, the integrated values of 1 and 2 match, so that the detection of abnormality of the contact detection device and the detection of abnormality of the sensor forming the contact detection device are performed.
However, since it is necessary to detect the system abnormality as a contact detection device early and stop the device, a threshold is set for the amplitude of the air movement amount and the sensor abnormality is detected by the integral value. is there. Since the detection signal of the sensor is set as the time for sampling and holding and the history before and after that is compared, the integrated value becomes substantially constant by the first and first discharge of air and the subsequent inhalation. This means that there is a leak in the volume structure, and at this time, it is possible to judge whether the sensor is normal or abnormal by the sum of the number of sensors in consideration of the polarity.
Since the history before and after the zero cross point where the air flow stops and the flow changes is compared, in the case of an abnormality such as a leak, the abnormality is detected by the first sensor operation, and regarding other abnormalities, the air is detected. It is to be detected after the flow is stopped. The system abnormality of the contact detection device is performed depending on whether the abnormal amplitude of the detection signal of the sensor is equal to or larger than a predetermined threshold value, and the abnormality of the sensor is calculated by integration for a predetermined time from the zero cross point.
 請求項4の発明の接触検出装置は、前記基材を被覆する発泡合成樹脂材料または発泡ゴム材料を特定の形状に形成してなる発泡体は、少なくとも意匠面側の稜線を5~30φ(直径mm)で面取りするものである。意匠面側の5~30φの稜線は、5φよりも小さいとの稜線は抗力を示し、稜線が30φを超えると意匠性を維持できなくなる。
 したがって、発泡体の意匠面側の稜線を5~30φで面取りすることは、前記容積構成体であっても、前記容積構成体内に発泡体を入れたものであっても、外力に対して稜線が反発しないから、外力が小さくても検出ができる。また、外力に対して、誤差のばらつきが少なくなり、特性が安定化する。
According to a fourth aspect of the present invention, in a contact detection device, a foam formed by forming a foamed synthetic resin material or a foamed rubber material that covers the base material into a specific shape has at least a ridgeline on the design surface side of 5 to 30φ (diameter. mm) for chamfering. The ridgeline of 5 to 30φ on the design surface side shows a drag force when the ridgeline is smaller than 5φ, and the designability cannot be maintained when the ridgeline exceeds 30φ.
Therefore, the chamfering of the ridgeline on the design surface side of the foam body at 5 to 30φ means that the ridgeline with respect to an external force may be applied to the volume constituent body or the foam body inside the volume constituent body. Does not repel, so it can be detected even if the external force is small. Further, variations in error with respect to external force are reduced, and the characteristics are stabilized.
 請求項1の発明の接触検出装置は、特定の形状に形成された基材と、前記基材を被覆する発泡合成樹脂材料または発泡ゴム材料を特定の形状に形成してなる発泡体と、前記基材及び/または前記発泡体から空気が外気に漏れ難くし、対向する前記基材と前記発泡体に形成された所定の容積構成体と、前記容積構成体に加えられた外部からの押圧力の変化を、前記容積構成体で形成した物理的変化量として検出するセンサとを具備し、前記基材及び/または前記発泡体に形成された所定の容積構成体は、前記容積構成体を略均一な体積としてセンサを割り当てて異常を判断するものである。
 したがって、前記基材及び/または前記発泡体に形成された所定の容積構成体は、前記容積構成体を略均一な体積としてセンサを割り当てて異常を判断するものであるから、各容積構成体が均一な体積であるから、各異常出力として得られるセンサ出力は略均一となる。故に、固定抵抗またはIC回路によって均一なものを製造することができる。
The contact detection device of the invention according to claim 1 is a base material formed in a specific shape, a foam body formed by forming a foamed synthetic resin material or a foamed rubber material covering the base material in a specific shape, Air is less likely to leak from the base material and / or the foam to the outside air, and a predetermined volume forming body formed on the base material and the foam facing each other, and an external pressing force applied to the volume forming body. And a sensor for detecting a change in the volume as a physical change amount formed in the volume constituent, and the predetermined volume constituent formed in the base material and / or the foam is substantially the volume constituent. A sensor is assigned as a uniform volume to determine an abnormality.
Therefore, since the predetermined volume constituents formed on the base material and / or the foam are to determine an abnormality by assigning a sensor with the volume constituents as a substantially uniform volume, each volume constituent is Since the volume is uniform, the sensor output obtained as each abnormal output is substantially uniform. Therefore, it is possible to manufacture a uniform one with a fixed resistor or an IC circuit.
 このように、前記基材及び/または前記発泡体から物理的変化量として、漏れ難くした容積構成体内の物理的変量を検出するものであるから、広範な範囲に加えられた圧力を検出することができ、二次元的な平面的構成であっても、三次元的な立体的構成であっても施工でき、外部から所定の圧力を検出できる。
 また、前記容積構成体の物理的変化として検出するセンサは、前記容積構成体に加えられた外力を、前記容積構成体の物理的変化量として前記センサで検出し、通常の前記容積構成体に加えられた接触圧等として検出する。しかし、容積構成体が2個以上の平面的な容積構成体として形成されているから、センサの出力に大きな差異がないことから、なだらかに立ち上がったり、立ち下がったりする外力と、短時間に急激に加わる外力とを区別して監視し、短時間に接触を判別することができる。
 即ち、本願発明の容積構成体の物理的変化量を検出するセンサが、略均一な容積構成体に取り付けられているので、その物理的変化量の検出に向けて、センサ自体の正常・異常を判別でき、殊に、次回の起動時に対して、何時発生するか分からない接触直前のタイミングに風量センサ異常が発生していないかを判別できる。
In this way, as the physical change amount from the base material and / or the foam body, the physical change amount in the volume constituent which is made difficult to leak is detected, and therefore, the pressure applied to a wide range is detected. The construction can be performed with a two-dimensional planar structure or a three-dimensional three-dimensional structure, and a predetermined pressure can be detected from the outside.
Further, the sensor that detects as a physical change of the volume structure, the external force applied to the volume structure, by the sensor as a physical change amount of the volume structure, to detect the normal volume structure. It is detected as the applied contact pressure. However, since the volume construct is formed as two or more planar volume constructs, there is no large difference in the output of the sensor. Therefore, the external force that rises or falls gently and the sudden rise in a short time. It is possible to discriminate the contact in a short time by monitoring the external force applied to the.
That is, since the sensor for detecting the physical change amount of the volume structure of the present invention is attached to the substantially uniform volume structure, normality / abnormality of the sensor itself is detected in order to detect the physical change amount. It is possible to determine, and in particular, it is possible to determine whether or not the air flow sensor abnormality has occurred at the timing immediately before the contact, which is unknown at what time the next activation occurs.
 請求項2の接触検出装置は、特定の形状に形成された基材と、前記基材を被覆する発泡合成樹脂材料または発泡ゴム材料を特定の複数形状に形成してなる発泡体と、前記基材及び/または前記発泡体から空気が外気に漏れ難くし、対向する前記基材と前記発泡体に形成された所定の容積構成体と、前記容積構成体に加えられた外部からの押圧力の変化を、前記容積構成体で形成した物理的変化量として検出するセンサとを具備し、前記基材及び/または前記発泡体に形成された所定の容積構成体は、前記容積構成体を均一な体積としてセンサを割り当て、かつ、前記センサの動作時には、接触検出装置の正常な動作及び接触検出装置を構成する前記センサの異常動作を判断するものである。 The contact detection device according to claim 2, wherein a base material formed in a specific shape, a foam body formed by forming a foamed synthetic resin material or a foam rubber material covering the base material in a specific plurality of shapes, and the base material. The material and / or the foam makes it difficult for air to leak to the outside air, and a predetermined volume forming body formed on the base material and the foam facing each other, and an external pressing force applied to the volume forming body. A sensor for detecting a change as a physical change amount formed in the volume forming body, wherein the predetermined volume forming body formed in the base material and / or the foam body makes the volume forming body uniform. A sensor is assigned as a volume, and when the sensor is operating, a normal operation of the contact detection device and an abnormal operation of the sensor constituting the contact detection device are determined.
 このように、前記基材及び/または前記発泡体から物理的変化量として、漏れ難くした容積構成体内の物理的変量を検出するものであるから、広範な範囲に加えられた圧力を検出することができ、二次元的な平面的構成であっても、三次元的な立体的構成であっても施工でき、外部から所定の圧力を検出できる。
 また、前記容積構成体の物理的変化として検出するセンサは、前記容積構成体に加えられた外部からの押圧力を、前記容積構成体の物理的変化量として前記センサで検出し、通常の前記容積構成体に加えられた接触圧等として検出する。しかし、容積構成体が2個以上の平面的な容積構成体として形成されているから、センサの出力に大きな差異がないことから、なだらかに立ち上がったり、立ち下がったりする外力と、短時間に急激に加わる外力とを区別して監視し、短時間に接触を判別することができる。
 即ち、本願発明の容積構成体の物理的変化量を検出するセンサが、略均一な容積構成体に取り付けられているので、その物理的変化量の検出に向けて、センサ自体の正常・異常を判別でき、殊に、次回の起動時に対して、何時発生するか分からない接触直前のタイミングに風量センサ異常が発生していないかを判別できる。
In this way, as the physical change amount from the base material and / or the foam body, the physical change amount in the volume constituent which is made difficult to leak is detected, and therefore, the pressure applied to a wide range is detected. The construction can be performed with a two-dimensional planar structure or a three-dimensional three-dimensional structure, and a predetermined pressure can be detected from the outside.
Further, a sensor that detects as a physical change of the volume component, the pressing force from the outside applied to the volume component is detected by the sensor as a physical change amount of the volume component, the normal It is detected as the contact pressure applied to the volume component. However, since the volume construct is formed as two or more planar volume constructs, there is no large difference in the output of the sensor. Therefore, the external force that rises or falls gently and the sudden rise in a short time. It is possible to discriminate the contact in a short time by monitoring the external force applied to the.
That is, since the sensor for detecting the physical change amount of the volume structure of the present invention is attached to the substantially uniform volume structure, normality / abnormality of the sensor itself is detected in order to detect the physical change amount. It is possible to determine, and in particular, it is possible to determine whether or not the air flow sensor abnormality has occurred at the timing immediately before the contact, which is unknown at what time the next activation occurs.
 請求項3の発明の接触検出装置の前記容積構成体に加えられた外力の変化は、空気流が停止したゼロクロス点前の前記センサの検出信号を積分し、前記空気流が停止して流れが変化する前後の履歴を比較するものであるから、請求項2に記載の効果に加えて、空気流が停止までの時間にそのセンサ出力に異常値が出れば、それを接触検出装置の異常とし、前記空気流が停止して流れが変化するゼロクロス点の前後の履歴は、両者の積分値が異なるときに、空気流の空気流が停止するまでの時間の積分値が異なるときには、前記センサ側の異常として判断するものである。
 したがって、接触検出装置の1回の動作で接触検出装置としての接触検出装置(システム)の異常検出と、接触検出装置を構成するセンサの異常検出を行うことができる。
 特に、前記空気流が停止して流れが変化するゼロクロス点の前後の履歴は、両者の積分値が原理的には一致することから、接触検出装置の異常の検知と、接触検出装置を構成するセンサの異常の検知とを行うものである。
 しかし、接触検出装置としてのシステム異常は早期に検出して、停止されることを必要とするから、振幅に閾値を置き、また、センサの異常は積分によって検出するものである。
The change of the external force applied to the volume component of the contact detection device according to the invention of claim 3 integrates the detection signal of the sensor before the zero-cross point where the air flow is stopped, and the air flow is stopped and the flow is changed. Since the history before and after the change is compared, in addition to the effect according to claim 2, if an abnormal value appears in the sensor output during the time until the air flow is stopped, it is regarded as an abnormality of the contact detection device. , The history before and after the zero crossing point where the air flow stops and the flow changes, when the integrated values of the two differ, when the integrated value of the time until the air flow of the air flow differs, the sensor side It is judged as abnormal.
Therefore, it is possible to perform abnormality detection of the contact detection device (system) as the contact detection device and abnormality detection of the sensor constituting the contact detection device by one operation of the contact detection device.
In particular, the history before and after the zero-cross point at which the air flow stops and the flow changes, and since the integrated values of the two theoretically match, an abnormality in the contact detection device is detected, and a contact detection device is configured. This is to detect an abnormality of the sensor.
However, the system abnormality as the contact detection device needs to be detected early and stopped. Therefore, a threshold is set for the amplitude, and the abnormality of the sensor is detected by integration.
 請求項4の発明の接触検出装置は、前記基材を被覆する発泡合成樹脂材料または発泡ゴム材料を特定の形状に形成してなる発泡体は、少なくとも意匠面側の稜線を5~30φで面取りするものである。ここで、発泡体の意匠面側の稜線を5~30φで面取りすることは、前記容積構成体であっても、前記容積構成体内に発泡体を入れたものであっても、外力に対して稜線が変形自在であり、部分的に反発しないから、外力が小さくても検出ができる。また、外力を検出した検出値に対して、誤差のばらつきが少なくなり、特性が安定化する。 In the contact detection device according to the invention of claim 4, the foamed body formed by forming the foamed synthetic resin material or the foamed rubber material covering the base material into a specific shape has at least a ridgeline on the design surface side chamfered by 5 to 30φ. To do. Here, the chamfering of the ridgeline on the design surface side of the foam body at 5 to 30φ is effective against external force regardless of whether the volume constituent body or the foam body is filled with the foam body. Since the ridgeline is deformable and does not repel partially, it is possible to detect even if the external force is small. Further, variations in the error with respect to the detection value obtained by detecting the external force are reduced, and the characteristics are stabilized.
図1は本発明の実施の形態1における接触検出装置の特定の形状に形成した基材の例示の斜視図である。FIG. 1 is an exemplary perspective view of a base material formed in a specific shape of the contact detection device according to the first embodiment of the present invention. 図2は本発明の実施の形態1における接触検出装置の基材と発泡体を装着した状態の断面の説明図である。FIG. 2 is an explanatory view of a cross section of the contact detection device according to Embodiment 1 of the present invention in which a base material and a foam are mounted. 図3は本発明の実施の形態1における接触検出装置の構造を説明する断面説明図である。FIG. 3 is a cross-sectional explanatory diagram illustrating the structure of the contact detection device according to the first embodiment of the present invention. 図4は本発明の実施の形態2における接触検出装置で使用する空間維持材の事例の説明図である。FIG. 4 is an explanatory diagram of an example of the space maintaining material used in the contact detection device according to the second embodiment of the present invention. 図5は本発明の実施の形態3における接触検出装置で使用する空間維持材の事例の説明図で、(a)は断面図、(b)は風量センサの概念図の斜視図、(c)は意匠面側の稜線の斜視図である。5A and 5B are explanatory views of an example of the space maintaining material used in the contact detection device according to the third embodiment of the present invention, in which FIG. 5A is a sectional view, FIG. 5B is a perspective view of a conceptual view of an air volume sensor, and FIG. FIG. 4 is a perspective view of a ridgeline on the design surface side. 図6は本発明の実施の形態3における接触検出装置で使用する空間維持材の事例の説明図で、(a)は平面から見た概念図、(b)は平面から見た他の概念図、(c)は平面から見た容積構成体の概念図である。6A and 6B are explanatory views of an example of the space maintaining material used in the contact detection device according to the third embodiment of the present invention, in which FIG. 6A is a conceptual view seen from a plane, and FIG. , (C) are conceptual views of the volume constructing body as seen from a plane. 図7は本発明の実施の形態の履歴を比較する比較の扱いを示す接触検出装置の回路図である。FIG. 7 is a circuit diagram of the contact detection device showing the handling of comparison for comparing the history records according to the embodiment of the present invention. 図8は本発明の実施の形態における接触検出装置を取り付ける人形のロボットのフローチャートである。FIG. 8 is a flowchart of a doll robot to which the contact detection device according to the embodiment of the present invention is attached. 図9は本発明の実施の形態における接触検出装置を取り付ける人形のロボットの全体斜視図である。FIG. 9 is an overall perspective view of a doll robot to which the contact detection device according to the embodiment of the present invention is attached. 図10は本発明の実施の形態における接触検出装置を取り付ける人形のロボットの胸部の内部全体斜視図である。FIG. 10 is an overall perspective view of the inside of the chest of the doll robot to which the contact detection device according to the embodiment of the present invention is attached. 図11は本発明の実施の形態における接触検出装置を人形のロボットの胸部の外側を押圧した場合の要部斜視図である。FIG. 11 is a perspective view of a main part of the contact detection device according to the embodiment of the present invention when the outside of the chest of the doll robot is pressed.
 以下、本発明の実施の形態について、図面に基づいて説明する。なお、本実施の形態において、図示の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。 Embodiments of the present invention will be described below with reference to the drawings. Note that, in the present embodiment, the same symbols and the same symbols shown in the drawings are the same or corresponding functional parts, and therefore, their duplicated description is omitted here.
[実施の形態]
 図1乃至図3において、本発明の実施の形態の接触検出装置で使用する基材1は、図9に示す人形(ひとがた)ロボット、産業用ロボットを含むロボット40の外装側に使用されているプロテクタ、ロボット40自体の外皮に相当する。この実施例の基材1は、例えば、ソリッドタイプまたは発泡性の熱可塑性樹脂材料から構成されている。この基材1の切削加工前は、接着のために確保しているフランジ部2のサイズで略蒲鉾型に形成されている。即ち、基材1の露出している基材側補強面1a,1b,1c,1dは対向する発泡体10からすれば、片側のみに切削加工が行われた容積構成体4を形成している。勿論、切削加工で形成された容積構成体4は、基材1または発泡体10側の一方のみ、或いは基材1及び発泡体10の両方で形成することができる。
[Embodiment]
1 to 3, the base material 1 used in the contact detection device according to the embodiment of the present invention is used on the exterior side of a robot 40 including a doll (human) robot and an industrial robot shown in FIG. The protector corresponds to the outer skin of the robot 40 itself. The base material 1 of this embodiment is made of, for example, a solid type or foamable thermoplastic resin material. Before cutting the base material 1, it is formed into a substantially semi-cylindrical shape with the size of the flange portion 2 secured for bonding. That is, the exposed base material side reinforcing surfaces 1a, 1b, 1c, 1d of the base material 1 form the volume constituent body 4 which is cut only on one side in view of the facing foam body 10. . Of course, the volume component 4 formed by cutting can be formed on only one of the base material 1 and the foam body 10, or on both the base material 1 and the foam body 10.
 なお、基材1のフランジ部2と発泡体10の内表面の発泡側補強面10e,10f,10gとの間は、接着剤で接合し、基材側補強面1a,1b,1c,1d及び内表面の発泡側補強面10e,10f,10gによるシール性を確保している。または、基材1の基材側補強面1a,1b,1c,1dのフランジ部2と発泡体10の発泡側補強面10e,10f,10gにコーティング膜、即ち、目止め剤、穴埋め剤、下塗り剤、上塗り剤、仕上げ剤のうちの幾つかを組み合わせて選択される補強層(高密度層)を形成している。この補強層は、容積構成体4内の空気が漏れないように処理するものである。
 また、具体的には、本実施の形態の補強層は、発泡体を形成する金型で形成したスキン層もその例であり、基材1を被覆する1枚の発泡合成樹脂材料または発泡ゴム材料、または複数枚を積層接着した特定の形状に形成してなる発泡体10とすることもでき、容積構成体4内の空気を漏れることのないように高密度処理を施してもよい。または、基材1の開口及び発泡体10の開口の接合に従って接合してもよい。または、表面にコーティング膜を塗布してもよい。
The flange portion 2 of the base material 1 and the foam- side reinforcing surfaces 10e, 10f, 10g on the inner surface of the foam 10 are bonded with an adhesive to form the base-side reinforcing surfaces 1a, 1b, 1c, 1d and The foaming side reinforcing surfaces 10e, 10f, and 10g on the inner surface ensure sealing performance. Alternatively, a coating film, that is, a filling agent, a filling agent, an undercoat, on the flange portion 2 of the base material side reinforcing surface 1a, 1b, 1c, 1d of the base material 1 and the foam side reinforcing surface 10e, 10f, 10g of the foam body 10. A reinforcing layer (high-density layer) selected by combining some of the agents, the overcoating agents, and the finishing agents is formed. This reinforcing layer is treated so that the air in the volume constructing body 4 does not leak.
Further, specifically, the reinforcing layer of the present embodiment is, for example, a skin layer formed by a mold forming a foam, and one sheet of synthetic resin material or foamed rubber covering the base material 1 is used. The material or the foam 10 formed by laminating and adhering a plurality of sheets into a specific shape may be used, and high-density treatment may be performed so that air in the volume constituent body 4 does not leak. Alternatively, the openings of the base material 1 and the openings of the foam 10 may be joined together. Alternatively, a coating film may be applied on the surface.
 本実施の形態1では、基材1を特定の形状に形成した合成樹脂材料としているが、本発明を実施する場合には、アルミニウム板、ステンレス板、鉄板、銅板等として、ソリッドタイプの合成樹脂、発泡合成樹脂材料として形成することもできる。
 発泡側補強面10e,10f,10g,10d1,10d2と対抗する基材側補強面1a,1b,1c,1d1,1d2は対向する発泡体10からみれば、片側のみに切削加工が行われた容積構成体4を形成している。しかし、本発明を実施する場合は、発泡体10側を切削してもよいし、基材1と発泡体10の両側を切削してもよい。何れにせよ、容積構成体4は対向する基材1と発泡体10の片側または両側に容積構成体4が形成されればよい。容積構成体4の厚みは、通常、3~20mm程度である。なお、意匠面とは、露出側の面のみを云う。
In the first embodiment, the base material 1 is a synthetic resin material formed in a specific shape. However, in the case of implementing the present invention, a solid type synthetic resin such as an aluminum plate, a stainless plate, an iron plate, or a copper plate is used. It can also be formed as a foamed synthetic resin material.
The base material side reinforcing surfaces 1a, 1b, 1c, 1 d1 and 1 d2 that oppose the foam side reinforcing surfaces 10e, 10f, 10g, 10 d1 and 10 d2 are cut only on one side when viewed from the facing foam body 10. The formed volume structure 4 is formed. However, when carrying out the present invention, the foam 10 side may be cut, or both sides of the base material 1 and the foam 10 may be cut. In any case, the volume component 4 may be formed on one side or both sides of the base material 1 and the foam 10 which face each other. The thickness of the volume component 4 is usually about 3 to 20 mm. The design surface means only the exposed surface.
 基材1と発泡体10との間に形成された容積構成体4は、容積構成体4自体が閉じられた空間となっている。したがって、外部から発泡体10に圧力を加えると、その加えた圧力に応じて窪みが生じ、容積構成体4の体積変化が生じ、圧力変化が生じる。容積構成体4の体積変化は空気圧となってセンサSENに入るから、センサSENは発泡体10に加えた圧力(外力)の検出となる。
 なお、センサSENとして、市販のマイクロフローセンサ(D6F-V03A1;オムロン製)を使用する場合には、センサSENに空気の流れを形成する必要がある。したがって、容積構成体4の体積変化が生じるように、補助空間20から外部に空気の流れを発生させる。また、基材1と発泡体10との間に形成された容積構成体4に付与する外力を解放すると、容積構成体4の復元力で、センサSENにはその検出値のゼロクロスポイントを過ぎると逆方向の空気の流れとなる。容積構成体4に付与する外力はセンサSENで付与するものではないが、爾後、センサSEN自体のみの説明とする場合もある。
The volume component 4 formed between the base material 1 and the foam 10 is a space in which the volume component 4 itself is closed. Therefore, when pressure is applied to the foam 10 from the outside, a depression is generated in accordance with the applied pressure, and the volume of the volume component 4 changes, causing a pressure change. Since the volume change of the volume constructing body 4 becomes air pressure and enters the sensor SEN, the sensor SEN detects the pressure (external force) applied to the foam 10.
When a commercially available micro flow sensor (D6F-V03A1; made by OMRON) is used as the sensor SEN, it is necessary to form an air flow in the sensor SEN. Therefore, the flow of air is generated from the auxiliary space 20 to the outside so that the volume of the volume component 4 changes. When the external force applied to the volume component 4 formed between the base material 1 and the foam 10 is released, the restoring force of the volume component 4 causes the sensor SEN to pass the zero cross point of the detected value. The air flows in the opposite direction. The external force applied to the volumetric structure 4 is not applied by the sensor SEN, but after that, it may be described only the sensor SEN itself.
 本実施の形態の接触検出装置で使用する発泡体10は、容積構成体4の容積変化が出現する硬度を有するものであり、特に、発泡体10は、存在する内部気泡同士が繋がっていない独立気泡体、存在する内部気泡同士が繋がっている連続気泡体の何れであってもよい。しかし、空気の漏れを少なくするには、極めて柔らかく、復元性がある独立気泡体が好ましく、これら発泡体10の発泡倍率は10~40倍程度である。スポンジ硬度は10~40(JIS-k-6243)の範囲内が好ましく、通常、スポンジ硬度は15~45がより好適であり、構造によっては多少変化する。 The foam 10 used in the contact detection device of the present embodiment has a hardness such that the volume change of the volume component 4 appears, and in particular, the foam 10 is independent in which existing internal bubbles are not connected to each other. It may be either a foamed body or an open-celled body in which existing internal bubbles are connected to each other. However, in order to reduce the leakage of air, an extremely soft and restorative closed-cell body is preferable, and the foaming ratio of these foams 10 is about 10 to 40 times. The sponge hardness is preferably in the range of 10 to 40 (JIS-k-6243), and normally, the sponge hardness of 15 to 45 is more preferable, and it may be slightly changed depending on the structure.
 発泡体10を複数枚接合する場合には、ゴム系の接着剤として、ゴム糊(ノントルエン缶入り(丸末油業))またはゴム糊であるボンド(GSEN0X7(コニシ(株))を接着する両面に薄く塗り、そして乾燥させ、接着面を対向させて圧縮し接着するとよい。ゴム系の接着剤はボンド(GSEN0X7(コニシ(株))であり、シクロヘキサン、n-ヘプタン、アセトンが主成分である。
 ここで、接着剤の厚みは、その存在が視認できない程度に可能な限り薄くし、接着機能のみが維持できればよい。ここで使用するゴム糊は、基材1と同じポリエチレン等の合成樹脂からなる接着剤も使用できる。
When bonding a plurality of foams 10, a rubber glue (non-toluene can (Marusue Oil Industry)) or a rubber glue bond (GSEN0X7 (Konishi Co., Ltd.)) is used as a rubber adhesive. It is advisable to apply a thin coat on both sides and dry, and then bond by adhering the adhesive sides facing each other.The rubber type adhesive is bond (GSEN0X7 (Konishi Co., Ltd.), and cyclohexane, n-heptane, and acetone are the main components. is there.
Here, the thickness of the adhesive should be as thin as possible so that its presence cannot be visually recognized, and only the adhesive function can be maintained. As the rubber paste used here, an adhesive made of the same synthetic resin as the base material 1 such as polyethylene can also be used.
 次に、本発明の実施の形態における発泡体10について詳述する。
 本発明を実施する場合の基材1は、ロボット40の被覆、各種機器のハウジングの被覆は、アルミニウム板、ステンレス板、鉄板、銅板等で形成されるのが一般的である。合成樹脂の場合には発泡合成樹脂も使用されているものの、主に、射出成型等で形成されている。この射出成型で形成した基材1の殆どは、1ブロックの熱可塑性樹脂材料から構成したものであるが、本実施の形態の接触検出装置では、射出成型等で形成された1ブロックの基材1の事例で説明する。
 勿論、発泡合成樹脂材料を特定の形状に形成した基材1も、1個のソリッドタイプの合成樹脂材料または複数枚のソリッドタイプの合成樹脂板を特定の形状に形成してなる基材1も、基本的構成は射出成型等で形成されたものと同じである。
Next, the foam 10 according to the embodiment of the present invention will be described in detail.
In the case of carrying out the present invention, the base material 1 for covering the robot 40 and the housing for various devices is generally formed of an aluminum plate, a stainless plate, an iron plate, a copper plate or the like. In the case of synthetic resin, although foamed synthetic resin is also used, it is mainly formed by injection molding or the like. Most of the base material 1 formed by this injection molding is composed of one block of thermoplastic resin material, but in the contact detection device of the present embodiment, one block base material formed by injection molding or the like. An example will be described.
Needless to say, the base material 1 in which a foamed synthetic resin material is formed in a specific shape, and the base material 1 in which one solid type synthetic resin material or a plurality of solid type synthetic resin plates are formed in a specific shape The basic structure is the same as that formed by injection molding or the like.
 本実施の形態で使用する発泡合成樹脂材料としては、ポリウレタン(PUR)、ポリスチレン(PS)、ポリオレフィン(主に、ポリエチレン(PE)やポリプロピレン(PP))、また、フェノール樹脂(PF)、ポリ塩化ビニル(PVC)、ユリア樹脂(UF)、シリコーン(SI)、ポリイミド(PI)、メラミン樹脂(MF)等の発泡化した樹脂が使用でき、内部気泡同士が繋がっている連続気泡体または内部気泡同士が繋がっていない独立気泡体の利用が可能である。しかし、発泡体10及び基材1から空気が外気に漏れ難い容積構成体4を形成するには、内部気泡同士が繋がっていない独立気泡体の使用が好ましい。 Examples of the foam synthetic resin material used in the present embodiment include polyurethane (PUR), polystyrene (PS), polyolefin (mainly polyethylene (PE) and polypropylene (PP)), phenol resin (PF), polychlorinated Foamed resin such as vinyl (PVC), urea resin (UF), silicone (SI), polyimide (PI), melamine resin (MF) can be used, and open cells or internal cells in which internal cells are connected to each other. It is possible to use closed cells that are not connected to each other. However, in order to form the volume constituent body 4 in which air does not easily leak to the outside air from the foam 10 and the base material 1, it is preferable to use a closed cell body in which internal cells are not connected.
 本実施の形態では、図3に示すように、基材1は発泡体10と同一材料で、また、それらの対する箱型の内枠6として同一処理をしたものである。基材1の周囲は切削して、基材側補強面1a,1b,1c,1d1,1d2を形成している。発泡体10の発泡側補強面10a,10b,10c,10d1,10d2と内表面の発泡側補強面10e,10f,10gには、後述する箱型の内枠6が立体的構成として形成されている。また、基材1の基材側補強面1a,1b,1c,1d1,1d2と内表面の発泡側補強面1e,1f,1gにも、後述する箱型の内枠6が立体的に構成されている。勿論、発泡体10の発泡側補強面10a,10b,10c,10d1,10d2とその内表面の発泡側補強面10e,10f,10gには、基材1の基材側補強面1a,1b,1c,1d1,1d2と基材側補強面1e,1f,1gにも、後述する箱型の内枠6は二次元的構成として形成してもよい。
 なお、箱型の内枠6は基材1の基材側補強面1aの裏内面側にセンサSENを接合する0.5~2mm厚の円板または正方形のベース板とすることができる。
In the present embodiment, as shown in FIG. 3, the base material 1 is made of the same material as that of the foamed body 10 and is subjected to the same treatment as the box-shaped inner frame 6 corresponding thereto. The periphery of the base material 1 is cut to form base material side reinforcing surfaces 1a, 1b, 1c, 1 d1 and 1 d2 . Foam side reinforcing surface 10a of the foam 10, 10b, 10c, 10 d1 , 10 d2 and the inner surface of the foamed side reinforcing surface 10e, 10f, the 10 g, the inner frame 6 of a box type to be described later is formed as a stereoscopic configuration ing. In addition, on the base material side reinforcing surfaces 1a, 1b, 1c, 1 d1 , 1 d2 of the base material 1 and the foaming side reinforcing surfaces 1e, 1f, 1g of the inner surface, a box-shaped inner frame 6 described later is three-dimensionally formed. It is configured. Of course, the foam-side reinforcing surface 10a of the foam 10, 10b, 10c, 10 d1 , 10 d2 and the foamed side reinforcing surface 10e of the inner surface, 10f, the 10 g, of the substrate 1 the substrate side reinforcing surface 1a, 1b , 1c, 1 d1 , 1 d2 and the base material side reinforcing surfaces 1e, 1f, 1g, the box-shaped inner frame 6 described later may be formed as a two-dimensional structure.
The box-shaped inner frame 6 may be a 0.5-2 mm-thick disc or a square base plate for joining the sensor SEN to the back inner surface side of the base material side reinforcing surface 1a of the base material 1.
 箱型の内枠6は、射出成型で形成した箱であり、安定した据え付け位置によりセンサSENの流入口に案内路5を介して空気圧を導くもので、容積構成体4の容積変化、圧力変化がセンサSENに正確に伝わるようにしている。内枠6が四角枠の箱状になっているのは、水平方向及び垂直方向に内枠6が移動しないようにし、外力が加わったときの変化を得やすくしている。内枠6の開口側には発泡合成樹脂材料の連続気泡体からなる平板封止板(スポンジ)8が配設されている。内枠6と平板封止板8で形成された空間は補助空間20となっている。この補助空間20は、一時的に容積構成体4の容積変化、圧力変化を吸収させてもよいし、全く独立の空間としてもよい。通常、容積構成体4の圧力は変化するが補助空間20は大気圧となるように空気流が形成される。
 したがって、補助空間20は容積構成体4に汚れた空気を導入しないので、センサSENを汚すことがない。なお、四角の箱状になっている内枠6は、金属板または金属を金型加工することもできる。
The box-shaped inner frame 6 is a box formed by injection molding, which guides air pressure to the inlet of the sensor SEN via the guide passage 5 at a stable installation position. Is accurately transmitted to the sensor SEN. The box shape of the inner frame 6 is a rectangular frame so that the inner frame 6 does not move in the horizontal direction and the vertical direction, and it is easy to obtain a change when an external force is applied. On the opening side of the inner frame 6, a flat plate sealing plate (sponge) 8 made of an open-cell body of a foamed synthetic resin material is arranged. The space formed by the inner frame 6 and the flat plate sealing plate 8 is an auxiliary space 20. This auxiliary space 20 may temporarily absorb the volume change and pressure change of the volume component 4, or may be a completely independent space. Normally, an air flow is formed so that the pressure of the volume constructing body 4 changes, but the auxiliary space 20 becomes atmospheric pressure.
Therefore, since the auxiliary space 20 does not introduce dirty air into the volume structure 4, the sensor SEN is not polluted. The inner frame 6 in the shape of a rectangular box may be made of a metal plate or a metal.
 即ち、補助空間20は発泡合成樹脂材料の連続気泡体からなる平板封止板8で形成されているから、容積構成体4から押圧された空気は案内路5を介してセンサSENの流入口に流れる。このとき、補助空間20の略空気圧は大気圧を維持する。しかし、このとき、補助空間20は大気圧と外部圧力の歪を受けているから、原理的には、外気よりも高い圧力となっているので、連続気泡体からなる平板封止板8を通して、センサSENの流入口の空気を漏らすことができる。また、容積構成体4の押圧力を解除すると容積構成体4は不足空気量を案内路5及びセンサSENを介して外気を導入する。このとき、平板封止板8の全面がフィルタになるから、部分的に外部から塵埃を導入したり、目詰まりしたりすることが極端に少なくなる。
 なお、念のため記載するが、平板封止板8から形成された補助空間20は、発泡合成樹脂材料の連続気泡体からなり、大気圧に等しくなるように形成されている。ここでは、センサSENは、後述する風量センサを使用している。
 圧力センサであっても、空気の流れを検出する市販のマイクロフローセンサ(D6F-V03A1;オムロン製)でも使用方法は同じである。このときには、容積構成体4から補助空間20に空気が流れるように構成する必要がある。
That is, since the auxiliary space 20 is formed by the flat plate sealing plate 8 made of an open-cell body made of a foamed synthetic resin material, the air pressed from the volume forming body 4 is guided to the inlet of the sensor SEN via the guide path 5. Flowing. At this time, the substantial air pressure in the auxiliary space 20 is maintained at atmospheric pressure. However, at this time, since the auxiliary space 20 is strained by the atmospheric pressure and the external pressure, in principle, the pressure is higher than the outside air. Therefore, through the flat plate sealing plate 8 made of open cells, Air at the inlet of the sensor SEN can be leaked. Further, when the pressing force of the volume constructing body 4 is released, the volume constructing body 4 introduces the outside air through the guide passage 5 and the sensor SEN for the insufficient air amount. At this time, since the entire surface of the flat plate sealing plate 8 serves as a filter, dust is partially introduced from the outside or clogging is extremely reduced.
Incidentally, as a reminder, the auxiliary space 20 formed from the flat plate sealing plate 8 is formed of an open-cell body of a foamed synthetic resin material, and is formed so as to have an atmospheric pressure. Here, the sensor SEN uses an air volume sensor described later.
The method of use is the same whether it is a pressure sensor or a commercially available microflow sensor (D6F-V03A1; made by OMRON) that detects the flow of air. At this time, it is necessary to configure so that the air flows from the volume constructing body 4 to the auxiliary space 20.
 ここで使用したセンサSENは、図示しない補強層によって空気が外気に漏れ難く形成した容積構成体4の圧力を検出している。このセンサSENは、市販の歪ケージを内蔵するセンサ、ダイヤフラムを介して検出するセンサSEN、ピエゾ効果素子を使用したセンサ、静電容量型のセンサであれば使用可能である。
 本実施の形態で使用したセンサSENは、「SMC小形空気圧用圧力センサPSE440A」を使用した。入力の圧力と出力電圧Vとの関係は略比例関係で感度の良いものである。なお、センサSENの出力は電源線2本、出力信号線OUT1本の計3本からなり、本実施の形態では、ロボット40の危険信号として急停止させる信号として使用している。
The sensor SEN used here detects the pressure of the volume component 4 formed by the reinforcing layer (not shown) so that air is unlikely to leak to the outside air. This sensor SEN can be used as long as it is a commercially available sensor having a built-in strain cage, a sensor SEN for detecting via a diaphragm, a sensor using a piezo effect element, or a capacitance type sensor.
As the sensor SEN used in the present embodiment, "SMC compact air pressure sensor PSE440A" is used. The relationship between the input pressure and the output voltage V is substantially proportional and sensitive. The output of the sensor SEN is composed of two power supply lines and one output signal line OUT, which is a total of three, and is used as a danger signal of the robot 40 to stop suddenly in this embodiment.
 発泡体10は、発泡させた熱可塑性樹脂であり、主な合成樹脂原料は、ポリウレタン(PUR)、ポリスチレン(PS)、ポリオレフィン(主に、ポリエチレン(PE)やポリプロピレン(PP))であり、他にも、フェノール樹脂(PF)、ポリ塩化ビニル(PVC)、ユリア樹脂(UF)、シリコーン(SI)、ポリイミド(PI)、メラミン樹脂(MF)等も発泡化して用いることができる。しかし、発泡体10の表面を加熱することにより硬化させることを前提とすると、80~200℃の範囲内の温度で変形する合成樹脂材料の使用が望ましい。また、本発明を実施する場合には、発泡率を問うものではないが、使途によっては弾性を維持するものの、硬く仕上げるために発泡率の制限を受けるものもある。 The foam 10 is a foamed thermoplastic resin, and main synthetic resin raw materials are polyurethane (PUR), polystyrene (PS), and polyolefin (mainly polyethylene (PE) and polypropylene (PP)), and others. Also, phenol resin (PF), polyvinyl chloride (PVC), urea resin (UF), silicone (SI), polyimide (PI), melamine resin (MF), etc. can be foamed and used. However, on the assumption that the surface of the foam 10 is cured by heating, it is preferable to use a synthetic resin material that deforms at a temperature in the range of 80 to 200 ° C. Further, when the present invention is carried out, the foaming rate does not matter, but there is a case where the elasticity is maintained depending on the purpose of use, but the foaming rate is limited to finish hard.
 基材1の内表面の基材側補強面1eには、箱型の内枠6が接着剤で接合して配設されている。この内枠6は、出力が外力に比例する特性のセンサSENを接合するもので、容積構成体4から空気を導く案内路5の流入口に容積構成体4の圧力を加えている。このとき、容積構成体4の圧力をセンサSENの案内路5の流入口に導くものであるから、補助空間20は大気圧であることが望ましい。センサSENの出力は、リード線Lを介して、必要に応じてコネクタ等を介してマイクロプロセッサ30に入力される。 A box-shaped inner frame 6 is arranged on the inner surface of the base material 1 on the base material side reinforcing surface 1e by bonding with an adhesive. The inner frame 6 joins the sensor SEN having a characteristic that the output is proportional to the external force, and applies the pressure of the volume component 4 to the inlet of the guide passage 5 that guides air from the volume component 4. At this time, since the pressure of the volume constructing body 4 is guided to the inlet of the guide passage 5 of the sensor SEN, the auxiliary space 20 is preferably at atmospheric pressure. The output of the sensor SEN is input to the microprocessor 30 via the lead wire L and, if necessary, a connector or the like.
 上記実施の形態の接触検出装置は、1個の補助空間20にセンサSENを2個以上配設することもできる。
 特定の平面形状に形成された基材1と、その基材1を被覆する発泡合成樹脂材料または発泡ゴム材料を1以上の平面形状に形成してなる発泡体10と、基材1及び/または発泡体10から空気が外気に漏れ難くするコーティング膜を塗布し、対向する基材1と発泡体10に形成された所定の容積構成体4と、容積構成体4に加えられた外部からの押圧力の変化を、容積構成体4で形成した物理的変化量として検出する風量(リットル/秒)センサSENとを具備し、基材1と発泡体10に形成された所定の容積構成体4は、2個以上の平面的な容積構成体4に対してセンサSENを割り当てて異常を判断することができる。
In the contact detection device of the above embodiment, two or more sensors SEN can be arranged in one auxiliary space 20.
A base material 1 formed in a specific plane shape, a foam 10 formed by forming a foamed synthetic resin material or a foamed rubber material covering the base material 1 into one or more plane shapes, the base material 1 and / or A coating film that makes it difficult for air to leak from the foam 10 to the outside air is applied, and a predetermined volume component 4 formed on the base material 1 and the foam 10 facing each other, and an external pressure applied to the volume component 4. An air flow rate (liter / second) sensor SEN for detecting a change in pressure as a physical change amount formed by the volume constituent body 4 is provided, and the predetermined volume constituent body 4 formed on the base material 1 and the foam body 10 is Abnormalities can be determined by assigning the sensors SEN to two or more planar volume structures 4.
 ここで、基材1を被覆する発泡合成樹脂材料または発泡ゴム材料を1以上の平面形状に形成してなる発泡体10は、基材1及び/または発泡体10から空気が外気に漏れ難くするために、空気の漏れを防止するコーティング膜を塗布して、または薄いフィルムを接合して密封性を出してもよい。
 対向する基材1と発泡体10に形成された所定の容積構成体4を構成している。
 即ち、容積構成体4は完全な空間で形成することを必要とするものではなく、基材1及び/または発泡体10が内部に入っていてもよい。センサSENは発泡体10によって発泡体10が面積を変えるとき、その変化を検出するものである。
Here, the foamed body 10 formed by forming the foamed synthetic resin material or the foamed rubber material covering the base material 1 into one or more planar shapes makes it difficult for air to leak from the base material 1 and / or the foamed material 10 to the outside air. For this reason, a coating film for preventing air leakage may be applied or thin films may be joined to provide a hermetic property.
A predetermined volume forming body 4 formed on the base material 1 and the foam 10 facing each other is constituted.
That is, the volume component 4 does not need to be formed in a complete space, and the substrate 1 and / or the foam 10 may be inside. The sensor SEN detects a change in the area of the foam 10 caused by the foam 10.
 詳しくは、図4乃至図6において、本実施の形態の基材1は、ロボット40に使用されている人体等のプロテクタ、外皮であり、図4に示すように、それらの意匠面に空気の漏れを防止する密度の高い発泡側補強面10a,10b,10c,10d1,10d2及び発泡側補強面10e,10f,10gを施した発泡体10、基材1の開口を閉じる平板封止板8が両面テープ等で配設されている。
 補強層4dにはセンサSENに空気を導く案内路5を設けてあり、外力が発泡体10を変形されると、案内路5はセンサSENに空気を通し、図5に示す排出路5a,5b,5c,5dの何れかから排出される。
 したがって、「MEMSフローセンサ」、「MEMS風量センサ」、「流速センサ」と呼ばれている空気の流れを生じさせる市販のマイクロフローセンサ(D6F-V03A1;オムロン製)を使用することもできる。原理的には、本発明を実施する場合には、「MEMSフローセンサ」、「MEMS風量センサ」、「流速センサ」等と呼ばれている市販のセンサであれば使用可能であるが、本発明者らは、小型化が必要であったことから、D6F-V03A1(オムロン製)を使用した。なお、リード線Lは、センサSENの電源線2本と、出力信号線OUT1本の計3本からなり、この電源及び直接図示しないコンピュータに接続される。信号線は、図7のように処理される。
Specifically, in FIGS. 4 to 6, the base material 1 of the present embodiment is a protector such as a human body used for the robot 40 and an outer skin, and as shown in FIG. A high-density foam side reinforcing surface 10a, 10b, 10c, 10d1 , 10d2 and a foam side reinforcing surface 10e, 10f, 10g foamed body 10 provided with a flat plate sealing plate for closing the opening of the base material 1 8 is arranged with double-sided tape or the like.
The reinforcing layer 4d is provided with a guide path 5 that guides air to the sensor SEN. When an external force deforms the foamed body 10, the guide path 5 allows air to pass through the sensor SEN and discharge paths 5a and 5b shown in FIG. , 5c, 5d.
Therefore, it is also possible to use a commercially available micro flow sensor (D6F-V03A1; made by OMRON) called “MEMS flow sensor”, “MEMS air flow sensor”, “flow velocity sensor”. In principle, when the present invention is carried out, commercially available sensors called “MEMS flow sensor”, “MEMS air flow sensor”, “flow velocity sensor”, etc. can be used. Since they needed to be downsized, they used D6F-V03A1 (manufactured by OMRON). The lead wire L is composed of two power supply lines for the sensor SEN and one output signal line OUT, which is a total of three, and is directly connected to this power supply and a computer (not shown). The signal line is processed as shown in FIG.
 また、図1乃至図3は、図4の実施の形態に示すように構成することもできる。
 図4の実施の形態の接触検出装置において、基材1は略コ字状で、その開口側がロボット40側になっている。また、基材1は容易に変形しない構造となっている。
 その外周に容積構成体4に充填した発泡体10を有している。発泡体10が容積構成体4とするために、意匠面から空気の漏れを防止する外側の発泡側補強面10a,10b,10c,10d1,10d2、内側の発泡側補強面10e,10f,10gを形成した発泡体10が形成されている。
 この発泡体10も、外側の発泡側補強面10a,10b,10c,10d1,10d2に外力を与えると、所定の容積構成体4内の空気が排出される。しかし、その外力を停止すると、容積構成体4内の空気の排出が停止され、そして、外力を開放すると、内の空気が希薄になり、外部から空気が案内路5に導入される。センサSENを1台のみ使用した場合、平衡が取れているから、圧力ロスがないと相当すれば、外力を加えるときから外力が停止になるときの積分値は、外力が停止になってから外力が解放されるまでの積分値と一定である。
Further, FIGS. 1 to 3 may be configured as shown in the embodiment of FIG.
In the contact detection device of the embodiment shown in FIG. 4, the base material 1 is substantially U-shaped, and the opening side thereof is the robot 40 side. Further, the base material 1 has a structure that is not easily deformed.
The foam 10 filled in the volume constructing body 4 is provided on the outer periphery thereof. To the foam 10 to the volume construction 4, the outer foam side reinforcing surface 10a to prevent leakage of air from the design surface, 10b, 10c, 10 d1, 10 d2, inner foam side reinforcing surface 10e, 10f, A foam 10 having a weight of 10 g is formed.
The foam 10 is also outside the foam side reinforcing planes 10a, 10b, the 10c, 10 d1, the 10 d2 giving an external force, the air of a predetermined volume structure 4 is discharged. However, when the external force is stopped, the discharge of the air in the volume forming body 4 is stopped, and when the external force is released, the air inside becomes lean and the air is introduced into the guide path 5 from the outside. If only one sensor SEN is used, it is in equilibrium, so if there is no pressure loss, the integrated value from when external force is applied to when external force is stopped is the external force after external force is stopped. Is constant with the integral value until is released.
 このように、特定の形状に形成された基材1と、基材1を被覆する発泡合成樹脂材料または発泡ゴム材料を特定の複数の平面形状に形成してなる発泡体10と、基材1及び/または発泡体から空気が外気に漏れ難くし、対向する基材1と発泡体10に形成された所定の容積構成体4と、容積構成体4に加えられた外部からの押圧力の変化を、容積構成体4で形成した物理的変化量として検出する風量(リットル/秒)センサSENとを具備するものである。特に、容積構成体4は外側の発泡側補強面10a,10b,10c,10d1,10d2、内側の発泡側補強面10e,10f,10gで囲んでいるので、発泡体10から空気が外気に漏れ難くなり安定した特性を示す。
 なお、基材1の発泡体10の内側の発泡側補強面10e,10f,10gは、基材1と接合することにより、発泡体10から空気が外気に漏れ難くなり安定したものとなり、必ずしも、必要とするものではない。
In this way, the base material 1 formed in a specific shape, the foamed body 10 formed by forming the foamed synthetic resin material or the foamed rubber material that covers the base material 1 in a plurality of specific planar shapes, and the base material 1 And / or it is difficult for air to leak from the foam to the outside air, and a predetermined volume component 4 formed on the base material 1 and the foam 10 facing each other, and a change in the pressing force applied to the volume component 4 from the outside. Is provided as an air flow rate (liter / second) sensor SEN for detecting as a physical change amount formed by the volume component 4. In particular, since the volume structure 4 is surrounded by the outer foam- side reinforcing surfaces 10a, 10b, 10c, 10d1 and 10d2 and the inner foam- side reinforcing surfaces 10e, 10f and 10g, the air from the foam 10 is exposed to the outside air. It is hard to leak and shows stable characteristics.
By joining the foam- side reinforcing surfaces 10e, 10f, and 10g on the inside of the foam 10 of the base material 1 to the base material 1, it becomes difficult for air to leak from the foam 10 to the outside air and becomes stable. Not what you need.
 更に、図5の実施の形態のように発泡体10の外表面を密度の高い皮膜として形成することもできる。
 図5の実施の形態における接触検出装置において、基材1は略直方体の意匠面側は容易に変形しない構造とし、ロボット40側になっている。その外周に容積構成体4に格納された発泡体10を有している。発泡体10が容積構成体4に収容されると、意匠面から空気の漏れを防止する発泡側補強面10a,10b,10c,10d1,10d2を形成した発泡体10が形成されている。また、必要に応じて発泡側補強面10a,10b,10c,10d1,10d2には、意匠的な塗料の塗膜である化粧層15を図3乃至図6の実施例に設けてもよい。
 この発泡体10も、コーティング膜またはコーティングフイルム等からなる発泡側補強面10a,10b,10c,10d1,10d2に外力を与えると、所定の容積構成体4内の空気が排出される。しかし、その外力を停止すると、容積構成体4内の空気の排出が停止され、そして、外力を開放すると、内の空気が希薄になり、外部から空気が案内路5に導入される。センサSENを1台のみ使用した場合、平衡が取れているから、圧力ロスがないと相当すれば、外力を加えるときから外力が停止になるときの積分値は、外力が停止になってから外力が解放されるまでの積分値が一定である。
Further, the outer surface of the foam 10 may be formed as a film having a high density as in the embodiment of FIG.
In the contact detection device in the embodiment of FIG. 5, the base material 1 has a structure in which the design surface side of the substantially rectangular parallelepiped is not easily deformed and is on the robot 40 side. The foam 10 housed in the volume forming body 4 is provided on the outer periphery thereof. When the foam 10 is housed in the volume structure 4, the foamed side reinforcing surface 10a to prevent leakage of air, 10b, 10c, 10 d1, 10 d2 foam 10 forming the is formed from the design surface. Further, if necessary, a decorative layer 15 which is a coating film of a design paint may be provided on the foam side reinforcing surfaces 10a, 10b, 10c, 10d1 and 10d2 in the embodiment of FIGS. 3 to 6. .
The foam 10 is also, given the foam side reinforcing surface 10a consisting of a coating film or coating film or the like, 10b, 10c, 10 d1, the 10 d2 external force, air of a predetermined volume structure 4 is discharged. However, when the external force is stopped, the discharge of the air in the volume forming body 4 is stopped, and when the external force is released, the air inside becomes lean and the air is introduced into the guide path 5 from the outside. If only one sensor SEN is used, it is in equilibrium, so if there is no pressure loss, the integrated value from when external force is applied to when external force is stopped is the external force after external force is stopped. The integral value until is released is constant.
 特定の形状に形成された基材1と、基材1を被覆する発泡合成樹脂材料または発泡ゴム材料を特定の複数の平面形状に形成してなる発泡体10と、基材1及び/または発泡体から空気が外気に漏れ難くし、対向する基材1と発泡体10に形成された所定の容積構成体4と、容積構成体4に加えられた外部からの押圧力の変化を、容積構成体4で形成した物理的変化量として検出する風量(リットル/秒)センサSENとを具備するものである。
 特に、容積構成体4は発泡側補強面10a,10b,10c,10d1,10d2及び発泡側補強面10e,10f,10gで囲んでいるので、発泡体10から空気が外気に漏れ難くなり安定した特性を示す。なお、空気が導入される案内路5は、図4に示すガイド孔14に合わせるように、組み当てるのが望ましい。
A base material 1 formed in a specific shape, a foam 10 formed by forming a foamed synthetic resin material or a foamed rubber material that covers the base material 1 into a plurality of specific planar shapes, the base material 1 and / or foaming. Air is less likely to leak to the outside air from the body, and the predetermined volume component 4 formed on the base material 1 and the foam 10 facing each other and the change in the pressing force from the outside applied to the volume component 4 An air volume (liter / second) sensor SEN for detecting the amount of physical change formed by the body 4 is provided.
In particular, the volume construction 4 the blowing side reinforcing surface 10a, 10b, 10c, 10 d1, 10 d2 and blowing side reinforcing surface 10e, 10f, so that surrounds at 10 g, made air from the foam 10 is less likely to leak to the outside air stable Shows the characteristics. The guide path 5 through which air is introduced is preferably assembled so as to be aligned with the guide hole 14 shown in FIG.
 このとき、センサSENの出力の大小は、容積構成体4の容積に左右されることになる。したがって、ロボット40の平面に対して複数配設した容積構成体4は、容積構成体4-1,4-2,4-3と分割してもよい。しかし、ロボット40に対して互いに均一の容積構成体4の配設は、センサSENとして同一特性を選択し、図6(a)のように、各容積構成体4-1,4-2,4-3の配設は同一体積とするのが望ましい。
 センサSENを容積構成体4-1,4-2,4-3と3個に分割し、1個の容積構成体4-1,4-2,4-3に2個のセンサSEN21,SEN24または2個のセンサSEN22,SEN25、2個のセンサSEN23,SEN26を設けると、両者の2個のセンサSEN21,SEN24の積分値の和、2個のセンサSEN22,SEN25の積分値の和、2個のセンサSEN23,SEN26積分値の和となって出力される。
At this time, the magnitude of the output of the sensor SEN depends on the volume of the volume constructing body 4. Therefore, the plurality of volume components 4 arranged on the plane of the robot 40 may be divided into the volume components 4 -1 , 4 -2 , 4 -3 . However, in order to arrange the volume components 4 that are uniform with respect to the robot 40, the same characteristics are selected as the sensor SEN, and as shown in FIG. 6A, each volume component 4 -1 , 4 -2 , 4 is selected. It is desirable that the volume of -3 be the same.
The sensor SEN is divided into three volume constituents 4 -1 , 4 -2 , 4 -3, and one volume constituent 4 -1 , 4 -2 , 4 -3 has two sensors SEN21, SEN24 or If two sensors SEN22, SEN25 and two sensors SEN23, SEN26 are provided, the sum of the integrated values of the two sensors SEN21, SEN24 of the both, the sum of the integrated values of the two sensors SEN22, SEN25, the two sensors The sum of the integrated values of the sensors SEN23 and SEN26 is output.
 1個の容積構成体4-1,4-2,4-3の何れかに2個以上のセンサSENを用いた場合には、各1個の容積構成体4-1または容積構成体4-2、または容積構成体4-3は、2個以上のセンサSENを用いた場合、各センサSENの総和が外力を加えるときから外力が停止になるときの積分値の和、外力が停止になってから外力が解放されるまでの積分値の和と同じである。
 なお、外力が停止になってから外力が解放されるまでの時間は平衡点までの時間であると非常に長くなるので、通常、変化が少なくなった時に積分を終了している。または外力が検出されて外力が停止になる時間に設定される。
 したがって、ロボット40の異常検出はセンサSENの積分値の総和が所定の値になったとき、または、ロボット40の異常検出はセンサSENの出力が所定の振幅に到達としたとき、ロボット40のシステムの異常として検出する。
 また、センサSEN自体の異常は、一旦、センサSENの積分値の和の変化が停止した後に、逆極性になってからセンサSENの積分値の和が所定の値になったとき、センサSEN自体の異常を判別することによって得られる。
One volume construction 4 -1, 4 -2, 4 in the case of using two or more sensors SEN in any one of -3, each one of the volume construction 4 -1 or volume construction 4 - 2 or the volume component 4 -3 , when using two or more sensors SEN, the sum of the integrated values when the sum of each sensor SEN applies the external force and when the external force stops, the external force stops It is the same as the sum of integral values from the moment when the external force is released until the external force is released.
Since the time from the stop of the external force to the release of the external force is a very long time up to the equilibrium point, the integration is normally completed when the change becomes small. Alternatively, it is set to a time when the external force is detected and the external force is stopped.
Therefore, the abnormality of the robot 40 is detected when the total sum of the integrated values of the sensor SEN reaches a predetermined value, or the abnormality of the robot 40 is detected when the output of the sensor SEN reaches a predetermined amplitude. Detected as abnormal.
Further, the abnormality of the sensor SEN itself means that when the change of the sum of the integrated values of the sensor SEN is stopped once and then the polarity of the sensor SEN becomes opposite and the sum of the integrated values of the sensor SEN reaches a predetermined value, the sensor SEN itself It is obtained by discriminating the abnormality of.
 容積構成体4-1,4-2,4-3は、それぞれ1個のセンサSEN11,SEN12,SEN13を配設した場合、または、それぞれ2個以上のSEN21,SEN22,SEN23,SEN24,SEN25,SEN26を配設した場合がある。何れも、容積構成体4-1,4-2,4-3に大小があると、それらの出力をポテンショメータまたは固定抵抗で修正する必要が出てくる。
 したがって、容積構成体4-1,4-2,4-3は同一材料で同一容積に構成されるのが望ましい。勿論、利得の調整はできるが、それは最小限度とし、固定抵抗によって回路を構成するのが望ましい。よって、各容積構成体4-1,4-2,4-3の容積が均一であれば、利得の調整は一義的に決定される。
 ところが、容積構成体4-1,4-2,4-3の容量が均一になっても、発泡側補強面10aと発泡側補強面10aとが2面連続するとき、その発泡側補強面10aと発泡側補強面10aとが形成する稜線10hは、上からの垂直下方外力が加わっても容易に、発泡体10の変形が生じない。
Each of the volume components 4 -1 , 4 -2 , 4 -3 has one sensor SEN11, SEN12, SEN13, or two or more sensors SEN21, SEN22, SEN23, SEN24, SEN25, SEN26. May be provided. Both, the volume construction 4 -1, 4 -2, 4 when there is the magnitude -3, it becomes necessary to modify their output by the potentiometer or fixed resistor.
Therefore, it is desirable that the volume constituent members 4-1 , 4-2 and 4-3 are made of the same material and have the same volume. Of course, the gain can be adjusted, but it is desirable to minimize it and configure the circuit with a fixed resistor. Therefore, the volume construction 4 -1, 4 -2, if the uniform volume of 4 -3, adjustment of the gain is uniquely determined.
However, even if the volumes of the volume components 4 -1 , 4 -2 , 4 -3 are uniform, when the foam-side reinforcing surface 10a and the foam-side reinforcing surface 10a are continuous, the foam-side reinforcing surface 10a. The ridge line 10h formed by the foam-side reinforcing surface 10a and the foam-side reinforcing surface 10a does not easily deform the foam body 10 even when a vertical downward force is applied from above.
 例えば、図9乃至図11において、本発明の実施の形態における接触検出装置を取り付けたロボット40は、内部に汎用のハードウェア及びソフトウェアを搭載している。また、図9の要部斜視図でロボット40の胸部41及び肩部42の外観を示している。図10のコーナ(角)45は、二次元的または三次元的に空間を形成し、そこに、センサSENから離れた位置に配置したマイクロプロセッサ30を取り付けてもよい。また、必要に応じてそこに電池を配設してもよい。平板封止板8(図示しない)の上に可撓性のフィルムを接合させたもので、基材1(ロボット40)とそれを被覆する発泡体10を構成している。 For example, referring to FIGS. 9 to 11, the robot 40 equipped with the contact detection device according to the embodiment of the present invention has general-purpose hardware and software installed therein. 9 is a perspective view of the main part of FIG. 9 showing the appearance of the chest 41 and the shoulder 42 of the robot 40. The corner (corner) 45 of FIG. 10 forms a space in two dimensions or three dimensions, and the microprocessor 30 arranged at a position apart from the sensor SEN may be attached thereto. In addition, a battery may be arranged there, if necessary. A flexible film is bonded onto a flat plate sealing plate 8 (not shown) to form a base material 1 (robot 40) and a foam 10 covering the base material 1 (robot 40).
 本実施の形態では、センサSENはソリッドタイプの板に孔を設けた板状体46に接着させている。特に、本実施の形態のロボット40は、胸部41の内側に、図示しない連続気泡体の発泡合成樹脂材料板で体積を確保し、基材1(ロボット40)を被覆する発泡体10との間に容積構成体4を形成し、更に、容積構成体4を閉じる空気を通過させない、かつ、センサSENのみに圧力が加わるようにしている。結果的に、基材1(ロボット40)が金属であるから、センサSENが固定される。なお、リード線止め39は、リード線Lの配線用止めである。 In the present embodiment, the sensor SEN is bonded to the plate-shaped body 46 having holes in a solid type plate. In particular, the robot 40 of the present embodiment secures a volume on the inside of the chest 41 by a foam synthetic resin material plate of an open cell (not shown), and the space between the robot 40 and the foam 10 covering the base material 1 (robot 40). The volume constructing body 4 is formed in the above, and further, air for closing the volume constructing body 4 is not passed, and the pressure is applied only to the sensor SEN. As a result, since the base material 1 (robot 40) is metal, the sensor SEN is fixed. The lead wire stopper 39 is a wire stopper for the lead wire L.
 ここで、図11のように、ロボット40の胸部41外側のコーナを押圧すると、コーナのみが指と接触しており、そこが窪むように見受けられるが、この窪みによる歪が、容積構成体4を形成した機械的強度の弱い部分に集中し、容積構成体4が体積変化を生じ、それをセンサSENで検出することができる。
 しかし、発明者らの実験によれば、少なくとも意匠面側の稜線10hを5~30φ(直径mm)で面取りすることにより、5φよりも小さい稜線10hは抗力を示し、稜線10hが30φを超えると意匠性を維持できなくなる。したがって、発泡体の意匠面側の稜線10hを5~30φで面取りすることは、容積構成体4であっても、前記容積構成体4内に発泡体を入れたものであっても、外力に対して稜線10hが反発しないから、外力が小さくても検出ができる。また、外力に対して、誤差のばらつきが少なくなり、特性が安定化する。
Here, as shown in FIG. 11, when the corner on the outer side of the chest 41 of the robot 40 is pressed, only the corner is in contact with the finger, and it seems that there is a depression, but the distortion due to this depression causes the volume component 4 to move. The volume constituent 4 concentrates on the formed portion having low mechanical strength, and the volume constituent 4 changes in volume, which can be detected by the sensor SEN.
However, according to experiments by the inventors, by chamfering at least the ridgeline 10h on the design surface side with 5 to 30φ (diameter mm), the ridgeline 10h smaller than 5φ exhibits a drag force, and when the ridgeline 10h exceeds 30φ. The design cannot be maintained. Therefore, the chamfering of the ridgeline 10h on the design surface side of the foam body at 5 to 30φ does not apply external force to the volume constituent body 4 or the volume constituent body 4 containing the foam body. On the other hand, since the ridgeline 10h does not repel, it can be detected even if the external force is small. Further, variations in error with respect to external force are reduced, and the characteristics are stabilized.
 結果的には、ロボット40の胸部41に付与する外力が検出できる。本実施の形態のロボット40には、肩部42の接触を検出していないが、図10に示すように、全体に設けなくても、一部にストレス(歪)が入ると、動作することが判明した。
 したがって、基材1及び発泡体10との間の片側または両側に、基材1及び発泡体10から空気が外気に漏れ難い容積構成体4を形成し、センサSENの出力によって容積構成体4にどれだけの外力が加わったかを判断することにより、基材1及び発泡体10の何れかに押圧力が加わり、容積構成体4の体積が変化した要因の存在を把握し、基材1及び発泡体10との間の片側または両側に人体等が接触したことを判断するものである。
As a result, the external force applied to the chest 41 of the robot 40 can be detected. The contact of the shoulder portion 42 is not detected in the robot 40 of the present embodiment, but as shown in FIG. 10, even if it is not provided on the whole, it operates when stress (strain) is partially applied. There was found.
Therefore, on one side or both sides between the base material 1 and the foam body 10, the volume constituent body 4 in which the air from the base material 1 and the foam material 10 does not easily leak to the outside air is formed, and the volume constituent body 4 is formed by the output of the sensor SEN. By determining how much external force is applied, a pressing force is applied to either the base material 1 or the foam body 10, and the existence of a factor that changes the volume of the volume forming body 4 is grasped, and the base material 1 and the foaming material are foamed. It is determined that a human body or the like has come into contact with one or both sides of the body 10.
 特定の形状に形成された基材1は、1枚の発泡合成樹脂材料または発泡ゴム材料、または複数枚を積層接着した発泡合成樹脂材料または発泡ゴム材料としたものである。または、本実施の形態のように、ロボット40の一部とすることができる。
 したがって、基材1と発泡体10が同じ特性の材料とすることができるので、対向する基材1と発泡体10が同一材料となり軽量化及び加工が容易となる。また、伸縮が自在でない、即ち、伸縮しないシートを使用することもでき、これによって、基材1の用途を広げることができる。
The substrate 1 formed in a specific shape is one foam synthetic resin material or foam rubber material, or a foam synthetic resin material or foam rubber material obtained by laminating and bonding a plurality of sheets. Alternatively, it can be a part of the robot 40 as in the present embodiment.
Therefore, since the base material 1 and the foam 10 can be made of materials having the same characteristics, the base material 1 and the foam 10 facing each other are made of the same material, and weight reduction and processing are facilitated. It is also possible to use a sheet that does not expand and contract, that is, that does not expand and contract, whereby the use of the base material 1 can be expanded.
 また、容積構成体4には、その内面に通気性のある発泡合成樹脂材料板で格子状、4角形状、鮫小紋、円形の水玉、市松を打ち抜き形成し、または交互に打ち抜いて形成した弾性体を収容したものである。
 したがって、容積構成体4は、内面に弾性及び通気性のある発泡合成樹脂材料板で格子状、4角形状、鮫小紋、円形の水玉状、市松状の何れかを打ち抜き形成し、または交互に打ち抜いて形成したものであるから、容積構成体4に何も入らない空間ではなく、自己保持する弾性力等を保持させることができ、容積構成体4の容積変化を得ればよいことから、複雑な三次元空間であっても検出が可能となる。
Further, the volume component 4 is formed of a breathable synthetic resin material plate on the inner surface of which a lattice shape, a square shape, a shark pattern, a circular dot, and a checkerboard are punched or alternately punched to form an elastic member. It accommodates the body.
Therefore, the volume constructing body 4 is formed by punching or forming one of a lattice shape, a square shape, a shark pattern, a circular polka dot shape, and a checkerboard shape on the inner surface with a foamed synthetic resin material plate having elasticity and breathability. Since it is formed by punching, it is not a space in which nothing enters the volume constructing body 4, but it is possible to retain elastic force or the like that self-holds, and it suffices to obtain a volume change of the volume constructing body 4. It is possible to detect even in a complicated three-dimensional space.
 そして、センサSENは、流入口に空気の圧力を導入するものである。したがって、案内路5を介して流入口に空気を通し、その体積変化をマイクロプロセッサ30のセンサSENの異常振幅検出回路部31によって振幅が所定の閾値Vt以上であるか検出する。即ち、異常振幅検出回路部31によって所定の閾値Vt以上の振幅が検出されると、ゼロクロス点前の積分回路部32で積分を開始する。異常振幅検出回路部31の入力は、ゼロクロス点検出回路部33で振幅がゼロになるのを待って積分回路部32の積分を停止する。なお、異常振幅検出回路部31の出力は、ロボット40の停止信号となる。
 ここでゼロクロス点は、外力とする容積構成体4の平衡を意味する。ゼロクロス点の検出を終えると、所定の時間の積分値を所定の間の積分回路部34で積分する。
The sensor SEN introduces the pressure of air into the inflow port. Therefore, air is passed through the guide path 5 to the inflow port, and the volume change is detected by the abnormal amplitude detection circuit section 31 of the sensor SEN of the microprocessor 30 whether the amplitude is equal to or larger than a predetermined threshold value Vt. That is, when the abnormal amplitude detection circuit unit 31 detects an amplitude equal to or larger than the predetermined threshold value Vt, the integration circuit unit 32 before the zero-cross point starts integration. The input of the abnormal amplitude detection circuit unit 31 waits until the amplitude becomes zero in the zero cross point detection circuit unit 33, and then stops the integration of the integration circuit unit 32. The output of the abnormal amplitude detection circuit unit 31 becomes a stop signal for the robot 40.
Here, the zero cross point means the equilibrium of the volume component 4 which is an external force. When the detection of the zero-cross point is completed, the integration value of a predetermined time is integrated by the integration circuit unit 34 for a predetermined time.
 次に、ゼロクロス点前の積分回路部32で積分した値と、ゼロクロス点の検出後の所定時間の積分値を求めた積分回路部34の値を比較回路部35で比較して、所定時間の積分回路部34が積分回路部32の値よりも小さいときには、センサSENの異常と判断する。また、異常振幅検出回路部31が所定の値よりも大きいと振幅が所定の閾値よりも大なとき、ロボットのシステムの異常と判断する。LED16は異常振幅検出回路部31の出力でシステムの異常と点灯表示する。LED17は比較回路部35の出力でセンサSENの異常と点灯表示する。
 即ち、マイクロプロセッサ30のセンサSENの異常振幅検出回路部31によって所定の閾値Vt以上の振幅が検出されると、その振幅のピーク値の検出を行うとともに、ゼロクロス点前の積分回路部32で積分を同時に開始させる。その後、異常振幅検出回路部31の入力は、ゼロクロス点検出回路部33で振幅がゼロになるのを待って積分回路部32の積分を停止させる。同時に、ゼロクロス点前の積分回路部32の積分開始とし、ゼロクロス点の検出を終えると、所定の時間の積分値を所定の間の積分回路部34で積分する。
 ゼロクロス点前の積分回路部32で積分した値と、ゼロクロス点の検出後の所定時間の積分値を求めた積分回路部34の値を比較回路部35で比較して、所定時間の積分回路部34が積分回路部32の値よりも小さいときには、センサSENの異常と判断する。また、異常振幅検出回路部31が所定の値よりも大きいと振幅が所定の閾値よりも大なとき、ロボットのシステムの異常と判断する。
Next, the comparison circuit unit 35 compares the value integrated by the integration circuit unit 32 before the zero-cross point with the value of the integration circuit unit 34 that has obtained the integrated value for the predetermined time after the detection of the zero-cross point, and When the integrating circuit unit 34 is smaller than the value of the integrating circuit unit 32, it is determined that the sensor SEN is abnormal. If the abnormal amplitude detection circuit unit 31 is larger than a predetermined value and the amplitude is larger than a predetermined threshold, it is determined that the robot system is abnormal. The LED 16 is an output of the abnormal amplitude detection circuit section 31 to indicate that the system is abnormal by lighting. The LED 17 displays the abnormality of the sensor SEN by the output of the comparison circuit section 35.
That is, when the abnormal amplitude detection circuit unit 31 of the sensor SEN of the microprocessor 30 detects an amplitude equal to or larger than the predetermined threshold value Vt, the peak value of the amplitude is detected, and the integration circuit unit 32 before the zero cross point performs integration. To start at the same time. After that, the input of the abnormal amplitude detection circuit unit 31 stops the integration of the integration circuit unit 32 after the zero cross point detection circuit unit 33 waits until the amplitude becomes zero. At the same time, the integration circuit section 32 before the zero-cross point is started to be integrated, and when the detection of the zero-cross point is completed, the integration value of a predetermined time is integrated by the integration circuit section 34 for a predetermined period.
The comparison circuit unit 35 compares the value integrated by the integration circuit unit 32 before the zero-cross point with the value of the integration circuit unit 34 that has obtained the integrated value for the predetermined time after the detection of the zero-cross point, and the integration circuit unit for the predetermined time period is compared. When 34 is smaller than the value of the integration circuit section 32, it is determined that the sensor SEN is abnormal. If the abnormal amplitude detection circuit unit 31 is larger than a predetermined value and the amplitude is larger than a predetermined threshold, it is determined that the robot system is abnormal.
 詳しくは、図8に示すフローチャートで説明するが、このフローチャートは、外力を加える場合の積分値は、外力を開放する場合の積分値に等しいことによる論理をプログラム化したものである。このままでは、本実施の形態の接触検出装置の応答性がよくないから、外力を加える場合の積分値を信号の大きさにしている。
 まず、このルーチンは、目的のロボット40等の電源投入またはその電源投入以前に別電源を投入し、繰り返し動作させるものである。まず、マイクロプロセッサ30の電源投入の後、ステップS1で初期設定を行う。ステップS2でセンサSENの出力が、閾値Vt以上であるか判断し、閾値Vt以上でないとき、ステップS1乃至ステップS2を繰り返し実行する。センサSENの出力が、閾値Vt以上のとき、ステップS3でロボット40のシステム異常を出力する。勿論、その出力によって、機械装置を停止させる場合もある。ステップS4でセンサSENの検出したロボット40のシステム異常を表示し、その回数をステップS5のカウンタDに「1」インクリメントし、システム異常のカウンタDの値に「+1」を加算し、それを記録表示する。
The details will be described with reference to the flowchart shown in FIG. 8. In this flowchart, the logic is programmed such that the integral value when an external force is applied is equal to the integral value when the external force is released. Since the responsiveness of the contact detection device of this embodiment is not good as it is, the integrated value when an external force is applied is set to the magnitude of the signal.
First, this routine is to turn on the target robot 40 or the like, or turn on another power source before the power is turned on and repeatedly operate. First, after the microprocessor 30 is powered on, initialization is performed in step S1. In step S2, it is determined whether the output of the sensor SEN is greater than or equal to the threshold value Vt, and if it is not greater than or equal to the threshold value Vt, steps S1 and S2 are repeatedly executed. When the output of the sensor SEN is equal to or higher than the threshold value Vt, the system abnormality of the robot 40 is output in step S3. Of course, the output may stop the mechanical device. The system abnormality of the robot 40 detected by the sensor SEN is displayed in step S4, the counter D is incremented by "1" in step S5, "+1" is added to the value of the system abnormality counter D, and the result is recorded. indicate.
 ステップS6とステップS7でゼロクロス点の通過を検出するまで、ステップS6で振幅が異常値と設定された値以上になると、ロボットの異常出力とし、積分∫f(x)dxの計算を開始し、ステップS7で所定時間経過するまで、積分∫f(x)dxを繰返し計算する。ステップS7でゼロクロス点の通過に見合う所定時間の経過を検出すると、ステップS8で積分∫f(y)dyの計算を開始し、ステップS9で所定時間経過するまで、積分∫∫f(y)dyを繰返し計算する。
 ステップS10で積分値∫f(x)dxと積分値∫f(y)dyとを比較し、所定の閾値よりもその差が大なとき、センサSEN動作が非可逆的であるから、センサSENの異常と判断し、ステップS11でセンサSENの異常と判断する。ステップS12でカウンタCに記録すべく「1」インクリメントし、それを記録表示する。
Until the passage of the zero crossing point is detected in steps S6 and S7, if the amplitude becomes equal to or more than the value set as the abnormal value in step S6, it is regarded as the abnormal output of the robot, and the calculation of integral ∫f (x) dx is started. In step S7, the integral ∫f (x) dx is repeatedly calculated until a predetermined time has elapsed. When the passage of a predetermined time commensurate with the passage of the zero cross point is detected in step S7, the calculation of the integral ∫f (y) dy is started in step S8, and the integral ∫∫f (y) dy is started until the predetermined time passes in step S9. Is repeatedly calculated.
In step S10, the integrated value ∫f (x) dx and the integrated value ∫f (y) dy are compared, and when the difference is larger than a predetermined threshold value, the sensor SEN operation is irreversible. Of the sensor SEN is determined in step S11. In step S12, the counter C is incremented by "1" so as to be recorded, and it is recorded and displayed.
 このように、本実施の形態の接触検出装置は、特定の形状に形成された基材1と、基材1を被覆する発泡合成樹脂材料または発泡ゴム材料を特定の形状に形成してなる発泡体10と、対向する基材1と発泡体10に形成された所定の容積構成体4と、容積構成体4に加えられた外部からの押圧力を物理的変化量として検出するセンサSENとを具備し、基材1及び/または発泡体10に形成された所定の容積構成体4は、容積構成体4を均一な体積としてセンサを割り当てて異常を判断するものである。 As described above, the contact detection device of the present embodiment is formed by forming the base material 1 formed in a specific shape and the foamed synthetic resin material or foamed rubber material covering the base material 1 in a specific shape. The body 10, a predetermined volume forming body 4 formed on the base material 1 and the foam 10 facing each other, and a sensor SEN for detecting an external pressing force applied to the volume forming body 4 as a physical change amount. The predetermined volume forming body 4 provided on the base material 1 and / or the foam 10 determines the abnormality by allocating a sensor with the volume forming body 4 as a uniform volume.
 本実施の形態の接触検出装置は、対向する特定の形状に形成された基材1と、特定の形状に形成された基材1を被覆する特定の容積構成体4と、容積構成体4に加えられた外部からの押圧力を、容積構成体4で形成した容積構成体4の物理的変化量として検出するセンサSENとを具備し、基材1及び/または発泡体10に形成された所定の容積構成体4は、容積構成体4を均一な体積としてセンサSENを割り当て、かつ、センサSENの動作時には、SENの正常な動作及びセンサSENの異常動作を判断するものである。 The contact detection device according to the present embodiment includes a base material 1 formed in a specific shape facing each other, a specific volume configuration body 4 covering the base material 1 formed in the specific shape, and a volume configuration body 4. A predetermined sensor formed on the base material 1 and / or the foam 10 is provided with a sensor SEN for detecting the applied pressing force from the outside as a physical change amount of the volume component 4 formed by the volume component 4. The volume constructing body 4 assigns the sensor SEN with the volume constructing body 4 as a uniform volume, and determines the normal operation of the SEN and the abnormal operation of the sensor SEN when the sensor SEN operates.
 本実施の形態の接触検出装置は、特定の平面形状に形成された基材1と、基材1を被覆する発泡合成樹脂材料または発泡ゴム材料を特定の複数の平面形状に形成してなる発泡体10と、基材1及び/または発泡体10から空気が外気に漏れ難くし、対向する基材1と発泡体10に形成された所定の容積構成体4と、容積構成体4に加えられた外部からの押圧力の変化を、容積構成体4で形成した物理的変化量として検出するセンサSENとを具備し、基材1及び/または発泡体10に形成された所定の容積構成体4は、容積構成体4を略均一な体積としてセンサSENを割り当てて異常を判断するものである。
 したがって、基材1及び/または発泡体10に形成された所定の容積構成体4は、容積構成体4を略均一な体積としてセンサSENを割り当てて異常を判断するものであるから、各容積構成体4が均一な容積であるから、各異常出力として得られるセンサ出力は略均一となる。故に、固定抵抗またはIC回路によって均一なものを製造することができる。
The contact detection device of the present embodiment is a foam formed by forming a base material 1 formed in a specific plane shape and a foam synthetic resin material or foam rubber material covering the base material 1 in a plurality of specific plane shapes. Air is prevented from leaking from the body 10 and the base material 1 and / or the foam body 10 to the outside air, and the predetermined volume forming body 4 formed on the opposing base material 1 and the foam body 10 is added to the volume forming body 4. And a sensor SEN for detecting a change in the pressing force from the outside as a physical change amount formed in the volume component 4, and a predetermined volume component 4 formed in the base material 1 and / or the foam 10. Is for determining an abnormality by assigning a sensor SEN with the volume constructing body 4 having a substantially uniform volume.
Therefore, the predetermined volume constituents 4 formed on the base material 1 and / or the foam 10 determine the abnormality by allocating the sensor SEN with the volume constituents 4 having a substantially uniform volume and determining the abnormality. Since the body 4 has a uniform volume, the sensor output obtained as each abnormal output is substantially uniform. Therefore, it is possible to manufacture a uniform one with a fixed resistor or an IC circuit.
 このように、基材1及び/または発泡体10から物理的変化量として、漏れ難くした容積構成体4内の物理的変量を検出するものであるから、広範な範囲に加えられた圧力を検出することができ、二次元的な平面的構成であっても、三次元的な立体的構成であっても施工でき、外部から所定の圧力を検出できる。
 また、容積構成体4の物理的変化として検出するセンサSENは、容積構成体4に加えられた外力を、容積構成体4の物理的変化量としてセンサSENで検出し、通常の容積構成体4に加えられた接触圧等として検出する。しかし、容積構成体4が2個以上の平面的な容積構成体4として形成されているから、センサSENの出力に大きな差異がないことから、なだらかに立ち上がったり、立ち下がったりする外力と、短時間に急激に加わる外力とを区別して監視し、短時間に接触を判別することができる。
 即ち、本願発明の容積構成体4の物理的変化量を検出するセンサSENが、略均一な容積構成体4に取り付けられているので、その物理的変化量の検出に向けて、センサ自体の正常・異常を判別でき、殊に、次回の起動時に対して、何時発生するか分からない接触直前のタイミングにセンサ異常が発生していないかを判別できる。
As described above, since the physical variation in the volume component 4 that is made difficult to leak is detected as the physical variation from the base material 1 and / or the foam 10, the pressure applied in a wide range is detected. The construction can be performed with a two-dimensional planar structure or a three-dimensional three-dimensional structure, and a predetermined pressure can be detected from the outside.
Further, the sensor SEN which detects as a physical change of the volume component 4 detects the external force applied to the volume component 4 as the physical change amount of the volume component 4 by the sensor SEN, and the normal volume component 4 is detected. It is detected as the contact pressure applied to. However, since the volume constructing body 4 is formed as two or more planar volume constructing bodies 4, there is no great difference in the output of the sensor SEN, and therefore, an external force that rises or falls smoothly and a short external force. It is possible to discriminate the contact in a short time by monitoring the external force rapidly applied to the time.
That is, since the sensor SEN for detecting the physical change amount of the volume structure 4 of the present invention is attached to the substantially uniform volume structure 4, the sensor itself is normally operated toward the detection of the physical change amount. -Abnormality can be determined, and in particular, it is possible to determine whether or not a sensor abnormality has occurred at the timing immediately before the contact, which is not known when the next startup will occur.
 容積構成体4に加えられた外部からの押圧力の変化は、空気流が停止した前後のセンサSENの検出信号をサンプリングホールドし、前記空気流が停止して流れが変化する前後の履歴を比較するものであるから、空気流が停止までの時間にそのセンサ出力に異常値が出れば、それを接触検出装置出力の異常とし、前記空気流が停止して流れが変化するゼロクロス点の前後の履歴は、両者の積分値が異なるときに、空気流の空気流が停止するまでの時間の積分値が異なるときには、前記センサ側の異常として判断するものである。
 したがって、接触検出装置の1回の動作でシステムの異常検出とセンサSENの異常検出を行うことができる。
The change in the pressing force applied to the volume structure 4 from the outside is performed by sampling and holding the detection signal of the sensor SEN before and after the air flow is stopped, and comparing the history before and after the air flow is stopped and the flow is changed. Therefore, if an abnormal value appears in the sensor output during the time until the air flow stops, it is regarded as an abnormality in the output of the contact detection device, and the air flow is stopped before and after the zero cross point where the flow changes. The history is determined as an abnormality on the sensor side when the integrated values of the two differ, and when the integrated values of the time until the air flow stops differ.
Therefore, it is possible to detect the abnormality of the system and the abnormality of the sensor SEN by one operation of the contact detection device.
 容積構成体4相互は、容積構成体4相互の接合面積を最小とすべく、容積構成体4の立ち上がりを平行としたものであるから、意匠面側に起伏がないから、外力を意匠面に垂直な入力として検出できるから、外力を効率よく処理ができる。
 したがって、容積構成体4に加えられた外部からの押圧力の変化は、空気流が停止した前後のセンサSENの検出信号をサンプリングホールドする時間とし、その前後の履歴を比較するものであるから、1回目の空気の排出とその後の吸入によってその積分値は略一定になるから、一定でないときには、前記容積構成体にリークが存在していることであり、このとき、極性を考慮してセンサが何個であっても、その和によって正常、異常の判断を行うことができる。前記空気流が停止して流れが変化するゼロクロス点の前後の履歴を比較しているから、漏れ等の異常の場合には、最初のセンサ動作により異常を検出し、他の異常については、空気流が停止した後に検出するものである。
Since the volume constituents 4 are arranged such that the volume constituents 4 rise in parallel with each other in order to minimize the joint area between the volume constituents 4, there is no undulation on the design surface side, and therefore external force is applied to the design surface. Since it can be detected as a vertical input, external force can be efficiently processed.
Therefore, the change in the pressing force applied from the outside to the volume structure 4 is the time for sampling and holding the detection signal of the sensor SEN before and after the air flow is stopped, and the history before and after that is compared. Since the integrated value becomes substantially constant by the first discharge of air and the subsequent intake, when it is not constant, it means that there is a leak in the volume component. It is possible to determine whether the number is normal or abnormal based on the sum. Since the history before and after the zero cross point where the air flow stops and the flow changes is compared, in the case of an abnormality such as a leak, the abnormality is detected by the first sensor operation, and regarding other abnormalities, the air is detected. It is to be detected after the flow is stopped.
 本発明を実施する場合には、容積構成体4に別構成のファンを配設し、容積構成体4を所定の物理的変量を空気圧、空気の流れ、空気の流速、空気量の変化等として物理的変化量を計測することができる。しかし、図示しないファンを取り付けると部品点数が増加し、ファンの風量等の管理が必要になる。ところが、本実施の形態では、部品点数が増加しなくなる。しかし、ファンによる容積構成体4の物理的変量を空気圧、空気の流れ、空気の流速、空気量の変化等を閾値として設定することもできる。 In the case of implementing the present invention, a fan having a different structure is arranged in the volume component 4, and the volume component 4 is set to have predetermined physical variables such as air pressure, air flow, air flow velocity, and air amount change. The amount of physical change can be measured. However, if a fan (not shown) is attached, the number of parts increases, and it becomes necessary to manage the air volume of the fan. However, in the present embodiment, the number of parts does not increase. However, it is also possible to set the physical variables of the volumetric structure 4 by the fan as thresholds such as air pressure, air flow, air flow velocity, and air amount change.
1   基材
1a,1b,1c,1d1,1d2,1e,1f,1g    基材側補強面
4   容積構成体
10  発泡体
10a,10b,10c,10d1,10d2,10e,10f,10g 発泡側補強面
30  マイクロプロセッサ
31  異常振幅検出回路部
32  ゼロクロス点前の積分回路部
33  ゼロクロス点検出回路部
34  所定時間の積分回路部
35  比較回路部
40  ロボット
SEN センサ
1 Base Material 1a, 1b, 1c, 1 d1 , 1 d2 , 1e, 1f, 1g Base Material Side Reinforcing Surface 4 Volume Composition 10 Foam 10a, 10b, 10c, 10 d1 , 10 d2 , 10e, 10f, 10g Foam Side reinforcement surface 30 Microprocessor 31 Abnormal amplitude detection circuit unit 32 Integral circuit unit before zero cross point 33 Zero cross point detection circuit unit 34 Integral circuit unit for a predetermined time 35 Comparison circuit unit 40 Robot SEN sensor

Claims (4)

  1.  特定の形状に形成された基材と、
     前記基材を被覆する発泡合成樹脂材料または発泡ゴム材料を特定の複数の平面形状に形成してなる発泡体と、
     前記基材及び/または前記発泡体から空気が外気に漏れ難くし、対向する前記基材と前記発泡体に形成された所定の容積構成体と、
     前記容積構成体に加えられた外部からの押圧力の変化を、前記容積構成体で形成した物理的変化量として検出するセンサとを具備し、
     前記基材及び/または前記発泡体に形成された所定の容積構成体は、前記容積構成体を均一な体積としてセンサを割り当てて異常を判断することを特徴とする接触検出装置。
    A base material formed in a specific shape,
    A foam formed by forming a foamed synthetic resin material or a foamed rubber material covering the base material into a plurality of specific plane shapes,
    Air makes it difficult for air to leak from the base material and / or the foam, and the predetermined volume forming body formed on the base material and the foam facing each other,
    A sensor for detecting a change in the pressing force applied to the volume component from the outside as a physical change amount formed in the volume component,
    A contact detection device, wherein a predetermined volume forming body formed on the base material and / or the foam body determines an abnormality by assigning a sensor with the volume forming body having a uniform volume.
  2.  特定の形状に形成された基材と、
     前記基材を被覆する発泡合成樹脂材料または発泡ゴム材料を特定の複数の平面形状に形成してなる発泡体と、
     前記基材及び/または前記発泡体から空気が外気に漏れ難くし、対向する前記基材と前記発泡体に形成された所定の容積構成体と、
     前記容積構成体に加えられた外部からの押圧力の変化を、前記容積構成体で形成した物理的変化量として検出するセンサとを具備し、
     前記基材及び/または前記発泡体に形成された所定の容積構成体は、前記容積構成体を均一な体積としてセンサを割り当て、かつ、前記センサの動作時には、前記センサの正常な動作及び前記センサの異常動作を判断することを特徴とする接触検出装置。
    A base material formed in a specific shape,
    A foam formed by forming a foamed synthetic resin material or a foamed rubber material covering the base material into a plurality of specific plane shapes,
    Air makes it difficult for air to leak from the base material and / or the foam, and the predetermined volume forming body formed on the base material and the foam facing each other,
    A sensor for detecting a change in the pressing force applied to the volume component from the outside as a physical change amount formed in the volume component,
    The predetermined volume component formed on the base material and / or the foam is assigned a sensor with the volume component having a uniform volume, and when the sensor is operating, the normal operation of the sensor and the sensor are performed. A contact detection device characterized by determining abnormal operation of the contact detection device.
  3.  請求項3の発明の接触検出装置の前記容積構成体に加えられた外力の変化は、空気流が停止した前後の前記センサの検出信号をサンプリングし、前記空気流が停止して流れが変化する前後の履歴を比較することを特徴とする請求項2に記載の接触検出装置。 The change in the external force applied to the volume component of the contact detection device according to the third aspect of the invention is to sample the detection signals of the sensor before and after the air flow is stopped, and the air flow is stopped to change the flow. The contact detection device according to claim 2, wherein front and rear histories are compared.
  4.  請求項4の発明の接触検出装置の前記基材を被覆する発泡合成樹脂材料または発泡ゴム材料を特定の形状に形成してなる発泡体は、少なくとも意匠面側の稜線を5~30φ(直径mm)で面取りするものである。 A foam formed by forming a foamed synthetic resin material or a foamed rubber material that covers the base material of the contact detection device according to the invention of claim 4 in a specific shape has at least a ridgeline on the design surface side of 5 to 30φ (diameter mm. ) Is to be chamfered.
PCT/JP2019/040231 2018-10-24 2019-10-11 Contact detection device WO2020085124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018200253A JP6913906B2 (en) 2018-10-24 2018-10-24 Contact detector
JP2018-200253 2018-10-24

Publications (1)

Publication Number Publication Date
WO2020085124A1 true WO2020085124A1 (en) 2020-04-30

Family

ID=70331142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040231 WO2020085124A1 (en) 2018-10-24 2019-10-11 Contact detection device

Country Status (2)

Country Link
JP (1) JP6913906B2 (en)
WO (1) WO2020085124A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021159661A (en) * 2020-04-03 2021-10-11 株式会社大一商会 Game machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325732B2 (en) * 1981-04-10 1988-05-26 Hitachi Ltd
JP2013123773A (en) * 2011-12-15 2013-06-24 Hitachi Ltd Robot device and method of determining state of sensor
US20140069212A1 (en) * 2012-09-11 2014-03-13 SynTouch, LLC Compliant tactile sensor with fluid-filled, sponge-like material
JP2017170595A (en) * 2016-03-25 2017-09-28 セイコーエプソン株式会社 Robot and external force detection device
JP2018040783A (en) * 2016-09-05 2018-03-15 オムロンヘルスケア株式会社 Force detection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6325732B1 (en) * 2017-09-05 2018-05-16 株式会社三重ロボット外装技術研究所 Contact detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325732B2 (en) * 1981-04-10 1988-05-26 Hitachi Ltd
JP2013123773A (en) * 2011-12-15 2013-06-24 Hitachi Ltd Robot device and method of determining state of sensor
US20140069212A1 (en) * 2012-09-11 2014-03-13 SynTouch, LLC Compliant tactile sensor with fluid-filled, sponge-like material
JP2017170595A (en) * 2016-03-25 2017-09-28 セイコーエプソン株式会社 Robot and external force detection device
JP2018040783A (en) * 2016-09-05 2018-03-15 オムロンヘルスケア株式会社 Force detection device

Also Published As

Publication number Publication date
JP6913906B2 (en) 2021-08-04
JP2020067375A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
US10206470B2 (en) Protective case for mobile device
AU2003299263A1 (en) Pressure sensor comprising an elastic sensor layer with a microstructured surface
JP6777759B2 (en) Pressure equilibrium structure for non-porous acoustic membranes
US9852723B2 (en) Acoustic modules
WO2020085124A1 (en) Contact detection device
JP5971638B1 (en) Contact detection device
JP2020504822A (en) Large-scale integration of haptic devices
CN206485284U (en) Control panel for vehicle
JP6325732B1 (en) Contact detection device
JP6083723B1 (en) Contact detection device
JP6854488B2 (en) Contact detector
JP2009020086A (en) Ultrasonic sensor
JP6662776B2 (en) Microfluidic device using valve
JP6867653B6 (en) Contact detector
KR20180005936A (en) Boards for door
JP6352573B1 (en) Contact detection device
JP6671713B1 (en) Contact detection check device
NL2010303C2 (en) Furniture of recycled polyurethane and a panel for such furniture.
JP2531998Y2 (en) Check valve for pump
JP2009262577A (en) Waterproof woodboard material
JP6627846B2 (en) Sensor unit and musical instrument
EP3750705A1 (en) Thin, high-stiffness laminates and articles including the same
JPH053458U (en) Wall material
JPH02153730A (en) Surface material of device requiring heat insulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875231

Country of ref document: EP

Kind code of ref document: A1