WO2020084534A1 - Matriz dual flexível de base celulósica para integração de electrónica e microfluídica - Google Patents

Matriz dual flexível de base celulósica para integração de electrónica e microfluídica Download PDF

Info

Publication number
WO2020084534A1
WO2020084534A1 PCT/IB2019/059085 IB2019059085W WO2020084534A1 WO 2020084534 A1 WO2020084534 A1 WO 2020084534A1 IB 2019059085 W IB2019059085 W IB 2019059085W WO 2020084534 A1 WO2020084534 A1 WO 2020084534A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
layer
cellulosic
cellulose
paper
Prior art date
Application number
PCT/IB2019/059085
Other languages
English (en)
French (fr)
Inventor
Antonio Paulo MENDES DE SOUSA
Elvira Maria Correia Fortunato
Jorge Filipe DA SILVA PEDROSA
Luís Miguel NUNES PEREIRA
Paula Cristina DE OLIVEIRA RODRIGUES PINTO
Ricardo Jorge ALVES RAMOS RODRIGUES
Rodrigo FERRÃO PAIVA MARTINS
Original Assignee
Raiz - Instituto De Investigação Da Floresta E Papel
The Navigator Company, S.A.
Faculdade De Ciências E Tecnologia Universidade Nova De Lisboa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raiz - Instituto De Investigação Da Floresta E Papel, The Navigator Company, S.A., Faculdade De Ciências E Tecnologia Universidade Nova De Lisboa filed Critical Raiz - Instituto De Investigação Da Floresta E Papel
Priority to EP19818248.7A priority Critical patent/EP3872257B1/en
Publication of WO2020084534A1 publication Critical patent/WO2020084534A1/pt

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/32Multi-ply with materials applied between the sheets
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/38Multi-ply at least one of the sheets having a fibrous composition differing from that of other sheets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application is in the area of double layer and double structure cellulosic matrices for simultaneous incorporation of microfluidics and electronics components, for the production of sensors and associated electronics, with application in the medical, pharmaceutical, food, packaging and packaging areas. distribution, environmental and safety, agricultural, environmental and veterinary, among others.
  • Microfluidics and printed electronics are two techniques that allow the development of intelligent detection platforms based on cellulosic matrices.
  • Different components can be printed to form intelligent integrated systems, from batteries, memory systems and active systems (transistors, diodes, logic circuits, display elements) or passive (resistors, capacitors and
  • the inks used in printed electronics applications are electrically active materials, with conductive, semiconductor, luminescent, electrochemical or electrophoretic properties, and which can be constitutionally organic or inorganic.
  • the inks used depend on the final application and the printing and sintering / decomposition technique applied ⁇ .
  • organic semiconductor inks used in printed electronics we have, for example, those consisting of conductive polymers poly (3,4-ethylenedioxythiophene) / poly (styrene-sulfonate) (PEDOT / PSS) and polyaniline (PAni).
  • conductive polymers poly (3,4-ethylenedioxythiophene) / poly (styrene-sulfonate) (PEDOT / PSS) and polyaniline (PAni).
  • Inorganic nanomaterials are also applied in the production of printed electronics, namely through inks made up of metallic nanoparticles (NP) of gold (Au), silver (Ag), palladium (Pd), copper (Cu), tin (Sn) and nickel ( Ni).
  • NP metallic nanoparticles
  • Conductive transparent nanotints consisting of tin and indium oxide (ITO), zinc and aluminum oxide (AZO) and zinc and gallium oxide (GZO) are also found.
  • Carbon-based inks are also used, in particular consisting of graphite or graphene particles.
  • the cellulosic substrates developed will also serve as a support base for the production of other devices using physical film growth techniques, such as sputtering or atomic layer deposition, among others.
  • Microfluidics refers to the handling and processing of fluid volumes in the order of micro or nanoliters. It uses systems and devices of reduced dimensions where channels with millimeter geometries are implemented through which fluids are conducted to the zones to the target zones, where chemical reactions and / or reading occur.
  • Analytical microfluidic structures with paper support were first developed in 2007, and are constituted by networks of hydrophilic microchannels and / or hdrdroblocks associated with analytical devices .
  • the cellulosic matrix to be used in these applications depends on the manufacturing processes and the area of application. Whatman brand filter paper is the most commonly used in microfluidics applications, with well-characterized parameters of porosity, flow rate and particle retention ⁇ . Evans et al also describes the use of Whatman paper that is modified by immersing it in a suspension containing modified silica nanoparticles, which are inserted in the cellulose structure and serve to support an improvement in the intensity and uniformity of the color emitted by the detection device applied to the Whatman paper.
  • Nitrocellulose membranes have favorable characteristics for these applications, such as smoothness and a reproducible liquid flow through the paper. The attractiveness of nitrocellulose is related to its ability to bind irreversibly and hydrophobically to proteins by absorption.
  • Coated papers incorporating, for example, inorganic fillers can also be used for the printing of electronically cuttings. According to Arena et al. , the non-degradability and the relative smoothness of coated papers allows their use as substrates in the production of sensors that use, for example, carbon nanotubes as electrodes.
  • This paper has at least two resin-based coatings.
  • Paper detection devices can be used in the most diverse applications.
  • Point-of-Care allow the detection of different analytes for diagnosis, such as glucose, uric acid, proteins, nitrates, ketones, cholesterol and nucleic acids [13 '. Ge et al. it also demonstrated how paper-based microfluidic devices, and through the paper folding technique, can be used in the detection of cancer biomarkers.
  • Food quality control is another area of application for these devices, from production to packaging.
  • Paper sensors can be applied in the production of intelligent packaging capable of monitoring the quality of food (avoiding waste due to the establishment of validity periods by statistical methods).
  • PT103999B [19] describes a cellulosic material based on cellulosic fibers as a physical support and storage medium or inducer of electrical charges in transistors, using active or organic semiconductor oxides.
  • the invention aims at obtaining electronic field effect devices with memory effect.
  • the document PT103998 [20] and the respective patent family (1997) refers to the procedure to use natural, synthetic cellulosic material or mixture of both simultaneously as physical and dielectric support for the design of field effect devices and optoelectronic devices.
  • US8773747B2 G2 ll describes an electrochromic device consisting of layers of electrodes and a cellulosic base material impregnated with a solution / dispersion containing electrochromic, electrolytic agents and counter electrodes.
  • the device is presented as of simpler construction, faster and more economical, reducing the number of depositions necessary to achieve the same electrochromic function.
  • the document KR20100116433 G221 describes a flexible cellulosic paper transistor, consisting of nanotubes and with applications in living bodies such as humans and animals.
  • 0 document describes a microfluidic device on a cellulosic substrate modified to increase its hydrophobicity, through the reaction of cellulosic fibers with hydrophobic compounds, for example, through silanization and acylation reactions.
  • W02017040947A1 [25] describes a device that includes a substrate comprising a cellulose matrix that provides an interconnected porous structure, a hydrophobic barrier arranged through the thickness of the substrate to define at least one porous channel in the volume of the cellulose matrix and a material electrically conductive.
  • the electrically conductive material is arranged within the volume of the porous channel to coat at least a portion of the cellulose matrix.
  • the new and disruptive concept presented in this invention also provides pulp and paper companies with the possibility of diversifying the products they make available to consumers, making cellulose evolve from a commodity (cellulosic pulp for printing and writing paper) to a product with high degree of specialization, through an economically advantageous solution and with exceptional technical characteristics capable of serving the quality standards required by the respective regulatory authorities.
  • PT103999B Process creation and use of paper based on natural pulp fibers, synthetic fibers or mixtures thereof as a physical support medium and store electrical charges in field-effect transistors with memory self-sustaining without using oxides.
  • PT103998B Procedure for the use of natural cellulosic material, synthetic material or mixed natural and synthetic material, simultaneously as physical and dielectric support in self-sustainable field effect electronic and optoelectronic devices.
  • US8773747B2 Electrochromic device and method for producing same.
  • KR20100116433 Flexible cellulose paper transistor with covalently bonded nanotubes
  • the invention disclosed here consists of a flexible, cellulosic-based matrix, of double layer and double structure, of renewable and biodegradable origin, light and miniaturized, capable of simultaneously integrating microfluidic functions as well as electronic and electrochemical components.
  • the process of producing the cellulosic matrix disclosed herein is also described in this invention.
  • One of the layers produced from processed cellulosic fibers has the level of porosity and hydrophilic affinity suitable for the flow of fluids, guaranteeing the functionality of microfluidics.
  • a second layer, also constituted by processed cellulosic fibers includes cellulosic materials produced at micro- and / or nanoscale, that is, micro and / or cellulose nanofibrils and at least one inorganic pigment. This layer must have the appropriate level of compaction and surface smoothness in order to guarantee the printing and integration of electronic and electrochemical devices and circuits ( Figure 1).
  • the double layer cellulosic matrix layer for incorporating microfluidic systems has Bendtsen permeability values between 1500 and 3000 ml / min, more preferably between 2600 and 2700 ml / min.
  • the double layer cellulosic matrix layer for incorporating microfluidic systems (first layer) consists of cellulosic fibers.
  • the double layer cellulosic matrix layer for printing electronic circuits has a Bendtsen roughness between 0 and 150 mL / min, more preferably between 30 and 50 mL / min, for in addition to high compaction, whose pores in the structure are smaller than 100 nm.
  • the double layer cellulosic matrix layer for printing electronic circuits (second layer) consists of cellulosic fibers, at least one inorganic pigment and cellulose micro and / or nanofibrils.
  • the double-layer cellulosic matrix layer for printing and integrating electronic circuits (second layer) consists of cellulosic fibers, at least one inorganic pigment and cellulose micro and / or nanofibrils, more preferably , and in% w / w, 30% cellulosic fibers, 50% at least inorganic pigment and 20% cellulose micro and nanofibrils.
  • the double layer cellulosic matrix is produced through the steps that involve the preparation of the first layer of the double layer cellulosic matrix, for incorporation of microfluidic systems, by refining pulp consisting of cellulosic fibers and forming a sheet (matrix) from the resulting cellulosic paste using sheet forming means; preparation of the second layer of the double layer cellulosic matrix for the integration of electronic components, by refining pulp consisting of cellulosic fibers, by mixing the resulting pulp with at least one inorganic pigment and cellulose micro and / or nanofibrils, and forming a sheet ( matrix) from the resulting mixture using leaf forming means; depositing the first layer previously prepared on top of the second layer, and pressing the resulting cellulosic matrix with subsequent drying.
  • the developed matrix is able to incorporate a barrier of processed cellulosic fibers, at the micro and / or nanoscale, that is, micro and / or cellulose nanofibrils, and possibly chemically modified from in order to present hydrophobic characteristics, between the two layers of the double layer cellulosic matrix.
  • a barrier of processed cellulosic fibers at the micro and / or nanoscale, that is, micro and / or cellulose nanofibrils, and possibly chemically modified from in order to present hydrophobic characteristics, between the two layers of the double layer cellulosic matrix.
  • the final biodegradability of the sensors produced based on the developed cellulosic matrix is further guaranteed with the incorporation of printing inks based on compatible (organic and or inorganic) materials, which are non-polluting and recyclable.
  • the double layer cellulosic matrix is used in the production of systems detection, configuring a pioneering paper application. These may have as privileged targets the health, pharmaceutical and food sectors, but not only, namely the sectors of safety and environmental monitoring, as for example in the regulation of air / water quality.
  • the double layer cellulosic matrix disclosed here can thus be used in research and genetic analysis laboratories, which have somehow evolved from laboratory methodologies to Point of Care tests, benefiting from recent technological advances. Many laboratories and clinics for diagnostic or forensic analysis require low cost and simple systems, with the possibility of detection in small samples in a fast and reliable way.
  • the matrix described in this document is thus used in the production of intelligent detection systems, which include the microfluidic component / or sensors and the interface electronics necessary for communication for applications in the medical, pharmaceutical, food, safety, agricultural, veterinary, environmental sectors and packaging and distribution, among others.
  • FIGURES Figure 1. Schematic representation of the flexible, cellulosic-based, double-layer matrix for simultaneous integration of electronics and microfluidics, described in this document.
  • Figure 3. SEM images with 100 times magnification of the 0R, 5R and 15R matrices.
  • Figure 7. SEM images with 100 and 500 times magnification of the first and second layer of the double layer cellulosic matrix 15R_DCt4.
  • Figure 8. Resistances of the double layer cellulosic matrix 15R_DCt4 and a commercial printed printing paper, referred to as Office, with printed layers of PEDOT: PSS.
  • Figure 9. Microfluidic channels on a) Office paper and b) on the first layer of the double layer cellulosic matrix 15R-DCt4.
  • Figure 10 Faces of the double layer cellulosic matrix 15R_DCt4, demonstrating how the microfluidic channels are diffused by the thickness of the matrix until they reach the cellulosic layer for printing electronic / electrochromic components (second layer of the double layer cellulosic matrix).
  • FIG. 1 Schematic of the architecture of the printed transistors.
  • Porosity is a critical parameter to be controlled in microfluidic applications: high density (low porosity) can make it difficult from the formation of channels to the displacement of the fluid itself, but high porosity can also be an inconvenience due to the uncontrolled diffusion of hydrophobic materials .
  • Another important feature is the chemical stability so as not to interfere with the detection process, changing, for example, the pH of a solution to be tested. Additionally, and from the point of view of printing electronic and electrochemical components, attention should be focused on the flat and highly compact cellulosic layer, in addition to the roughness obtained for the matrix.
  • the thickness of the different cellulosic layers and matrices developed in this invention were measured using an L&W micrometer, using the method described in the ISO standard 534. Bendtsen's roughness and permeability values were measured using the Bendtsen method, ISO 5636-3: 2013 and ISO 8791-2 standards, respectively, and using the L&W Bendtsen Tester equipment.
  • Kraft process or sulphate
  • white liquor which essentially consists of sodium hydroxide (NaOH) and sodium sulfide (Na2S).
  • cellulosic matrices for incorporating microfluidic systems on its surface were produced using bleached Eucalyptus globulus Kraft cellulose pulp with 3 different refining levels (0; 500; 1500; 1800 rotations in refiner) PFI), identified with the designation 0R, 5R, 15R, 18R.
  • the refining level of the slurry suspensions was determined using the Schopper-Riegler method, following the ISO 5267-1: 1999 standard.
  • round sheets (matrices) of isotropic structure (fibers distributed at random) were made in static formers. After forming the matrices, they were placed on stainless steel plates and subjected to a drying process by pressing and left to finish drying in a conditioned room.
  • the 15R matrix (bleached pulp refined to 1500 PFI rotations) was selected as a reference for the first layer, for the integration of microfluidic channels, of the new flexible cellulosic base matrix, for the simultaneous integration of electronics and microfluidics, shown in this invention.
  • the production process of this first layer is the same as previously mentioned for the production of the 15R matrix, but interrupting the cycle after the formation of the sheets, where they are removed from the former and placed on the side for later finishing with the second layer.
  • the second layer of the flexible cellulose-based matrix must be able to guarantee functional levels of smoothness / roughness and compactness when applied over porous matrices for microfluidics in order to allow the deposition of electrical and electrochemical components, as well as the necessary conductive and resistive lines.
  • Four formulations were tested, shown in Figure 5.
  • this second matrix In the production of this second matrix, the components of each formulation are pre-mixed before adding the resulting mixture to the sheet former. Similarly to what was described for the production of the first layer, the process was also interrupted after the matrix formation step. After forming the second layer, the first layer previously prepared layer was applied on top of it and subjected to a pressing step for 5 minutes with subsequent drying in a conditioned room (23 ° C, 50% relative humidity).
  • the double layer matrix with the reference 15R_DCt4 was selected for application tests of microfluidics and electronics components.
  • the appearance of the two layers was also verified by scanning electron spectroscopy ( Figure 7), it being possible to verify that the second layer has a less porous structure, when compared to the first layer made up solely of cellulose fibers, according to the desired for the applications concerned.
  • the double layer cellulosic matrix was tested in terms of the formation of microfluidic channels and the deposition of electronic devices, necessary for its use in detection systems in the most different sectors, such as health, food, and the environment, among others. others.
  • Active layers of the conductive polymer PED0T PSS - Poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate) were applied by inkjet printing on the double layer cellulosic matrix 15R_DCt4, and also on a commercial printed printing paper, referred to as Office.
  • the electrical resistance of PEDOT_PSS printed on the selected die and sheet using the four-point technique in Van der Pauw geometry . The results are shown in Figure 8. The formation of a printed printed film is possible with Office paper and with the matrix 15R-DCT4.
  • the electrical resistance of the printed circuits on the sheet is half when compared to that obtained on Office paper, which suggests a better quality of the printed PED0T: PSS film, demonstrating how feasible one of the possible applications of the developed matrices, namely in the production of electrochemical biosensor platforms, since the PED0T: PSS polymer is widely used in biological electromechanical interfaces .
  • a capillarity test was performed by printing a selected pattern of microfluidic channels and adding 5pL of dye in ultrapure water, on Office paper (a) and in the selected double layer matrix 15R-DCt4 (b), as shown in Figure 9.
  • the first layer of the 15-DCt4 matrix that is, for the application of microfluidic systems, presents results superior to those of Office paper, namely with regard to the speed and distance reached for a liquid volume of 5pL.
  • the microfluidic channels printed on the porous layer that is, on the first layer of the double layer cellulosic matrix, for application of microfluidics, are diffused by the thickness of the double layer cellulosic matrix 15R_DCt4 until they reach the second layer of the matrix, formulated for printing electronic components.
  • the liquid added to the cellulosic microfluidic layer is also directed through the microfluidic channels formed through the double layer matrix to the second layer of the matrix. This is shown in Figure 10.
  • Transistors were also printed on the second layer of the developed double layer matrix, 15R_DCt4.
  • the transistors have an interdigital configuration, using carbon source, drain and gate electrodes and a ZnO semiconductor layer, with all layers printed by screen printing.
  • the device is then terminated through an electrolytic membrane that joins the semiconductor to the gate electrode. 0
  • the architecture of the transistors is shown in Figure 11.
  • the transistors were characterized in a probe station where voltage values between -0.5 and 2.5 V were applied to the gate electrode, the current between the source and drain being monitored, thus obtaining the transfer (or input) curves. These present the correct and expected behavior in terms of drain current and on / off ratio.
  • a ten-fold scale-up of the total area of the developed double layer cellulosic matrix was carried out, producing an anisotropic fibrous matrix with preferential fiber orientation.
  • the pilot unit includes a dynamic trainer that allows the production of cellulosic matrices from a suspension of cellulosic pulp.
  • the structures can be produced by adjusting the orientation of the fibers (machine direction or transversal direction) and variations of consolidation of the matrix by pressing.
  • the scale-up of the double layer matrix was carried out in the dynamic trainer, adopting the reference 15R_DCt4_FD.
  • the matrix 15R_DCt4_FD resulting from the scale-up, presents an increase of roughness (in the second layer) of 45 mL / min, without negative impact on the impression of transistors.
  • the matrix conditions necessary for the simultaneous implementation of microfluidic and electronic components were thus replicated.
  • This test simulates an offset printing and measures the ability of a paper to resist material tearing off its surface during the printing process by the tension created by the ink.
  • a paint film of known thickness (8 pm) is applied on a rubber roller (hardness 65 shore A).
  • the rubber roller with the ink is then pressed against the sample to be tested (650 N of force) and the ink is transferred under acceleration (terminal speed of 1 m / s).
  • the force exerted by the ink is greater than the cohesive force on the surface of the paper, the material is pulled out, damaging the surface.
  • the sensor consisting of interdigital carbon electrodes and a sensitive layer of PED0T: PSS works by changing the resistivity of the polymer when subjected to different pH levels. In this sense, buffer solutions with a pH of 3 to 10 were used, which were injected into the microfluidic channels in order to reach the sensitive layer. The sensors were monitored continuously under chronoamperometry, starting the measurement of the current with approximately 60 seconds in the dry state, the addition of pH solution and another 240 seconds for stabilization.
  • Figure 13 represents the flexible cellulose-based matrix, double layer, integrating electronic and microfluidic components, in a test carried out to measure the pH of a solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Esta invenção consiste numa matriz, de origem renovável e biodegradável, flexível, leve e miniaturizada, de base celulósica, de dupla camada e dupla estrutura de diferente grau de compacticidade, capaz de simultaneamente integrar funções de microfluídica bem como componentes electrónicos e electroquímicos. Uma das camadas da matriz celulósica de dupla camada é constituída por uma estrutura porosa, com poros e afinidade hidrófila adequados ao escoamento de fluídos, garantindo a funcionalidade de microfluídica. A segunda camada da matriz celulósica de dupla camada apresenta uma estrutura de elevado grau de compactidade, traduzido por um nível adequado de lisura superficial de forma a garantir a impressão e integração de dispositivos e circuitos electrónicos, de forma contínua. A matriz apresentada tem como uso a sua aplicação na produção de sensores nos mais diversos segmentos, nomeadamente nas áreas médica, farmacêutica, alimentar, de embalagens e de distribuição, de segurança, agrícola, ambiental e veterinária.

Description

TITULO DA INVENÇÃO
Matriz dual flexivel de base celulósica para integração de electrónica e microfluidica
DOMÍNIO TÉCNICO
O presente pedido insere-se na área das matrizes celulósicas de dupla camada e dupla estrutura para incorporação simultânea de componentes de microfluidica e de electrónica, para produção de sensores e electrónica associada, com aplicação nas áreas médica, farmacêutica, alimentar, de embalagens e de distribuição, ambiental e de segurança, agricola, ambiental e veterinária, entre outros.
TÉCNICA ANTERIOR
Atualmente os produtos de base celulósica podem evoluir para produtos especializados de forma a responderem às exigências dos consumidores, quer do ponto de vista tecnológico como na vertente ambiental. Atribuir a produtos de base celulósica a capacidade de interação com o utilizador, através de funcionalidades que permitam a sua especialização inteligente, leva ao desenvolvimento de um conjunto de novos produtos de elevado valor acrescentado^. A celulose surge assim como um material polimérico flexivel, leve e resistente, de baixo custo, biodegradável e reciclável, ideal para o desenvolvimento de plataformas móveis, de detecção, simples, de baixo custo relativo, de resposta rápida, de tamanho reduzido, e que permitem diminuir o volume da amostra necessário para a detecção. Possíveis mercados de aplicação são encontrados na indústria farmacêutica, médica, alimentar, ambiental e de segurança, entre outros.
Microfluidica e electrónica impressas são duas técnicas que permitem o desenvolvimento de plataformas de detecção inteligentes com base em matrizes celulósicas.
Aplicações de electrónica impressa são atualmente obtidas através de técnicas de produção bem definidas, como flexografia, impressão serigráfica, serigrafia rotativa, revestimento por imersão ("deep coating") , jato de tinta e rmpressão off-set
Figure imgf000004_0001
, ou mesmo rndução por laser
Figure imgf000004_0002
em substratos que vão desde tecidos, papel, vidro e metal a plásticos^ .
Diferentes componentes podem ser impressos para constituir sistemas integrados inteligentes, desde baterias, sistemas de memória e sistemas ativos (transístores, diodos, circuitos lógicos, elementos de visualização ( display elements) ) ou passivos (resistências, condensadores e
G5I
condutores )
As tintas usadas em aplicações de electrónica impressa, chamadas de tintas funcionais, são materiais electricamente ativos, com propriedades condutoras, semicondutoras , luminescentes, eletroquimicas ou electroforéticas, e que podem ser constitucionalmente orgânicas ou inorgânicas. As tintas usadas dependem da aplicação final e da técnica de impressão e sinterização/decomposição aplicada^.
Como exemplo de tintas orgânicas semicondutoras usadas em electrónica impressa temos, por exemplo, as constituídas pelos polímeros condutores poli (3,4- etilenodioxitiofeno) /poli (estireno-sulfonato) (PEDOT/PSS) e polianilina (PAni) .
Nanomateriais inorgânicos são também aplicados na produção de electrónica impressa, nomeadamente através de tintas compostas por nanoparticulas (NP) metálicas de ouro (Au), prata (Ag) , paládio (Pd) , cobre (Cu) , estanho (Sn) e niquel (Ni) . Nanotintas condutoras transparentes constituídas por óxido de indio e estanho (ITO) , óxido de zinco e aluminio (AZO) e óxido de zinco e gálio (GZO) são também encontradas. Tintas à base de carbono são também usadas, nomeadamente constituídas por partículas de grafite ou grafeno^ .
Para além das técnicas de impressão, os substratos celulósicos desenvolvidos também servirão como base de suporte à produção de outros dispositivos usando técnicas de crescimento fisicas de filmes, como pulverização catódica ou deposição por camadas atómicas, entre outras.
A microfluidica refere-se à manipulação e ao processamento de volumes de fluidos na ordem dos micro ou nanolitros. Utiliza sistemas e dispositivos de dimensões reduzidas onde são implementados canais com geometrias milimétricas através dos quais fluidos são conduzidos até às zonas às zonas alvo, onde ocorrem reações quimicas e/ou leitura. Estruturas analíticas de microfluidica com suporte em papel foram primeiramente desenvolvidas em 2007, e são constituídas por redes de microcanais hidrofilicos e/ou hrdrofobrcos assocrados a dispositivos analíticos
Figure imgf000005_0001
.
Diferentes técnicas são atualmente usadas para a produção de dispositivos de microfluidica em papel, nomeadamente fotolitografia, deposição de polidimetilsiloxano (PDMS) , impressão a jato, tratamento por plasma, corte de papel e impressão a cera .
A matriz celulósica a ser usada nestas aplicações depende dos processos de fabrico e da área de aplicação. O papel de filtro da marca Whatman é o mais comummente usado em aplicações de microfluidica, com parâmetros bem caracterizados de porosidade, velocidade do fluxo e retenção de partículas^ . Evans et al
Figure imgf000005_0002
descreve também o uso de um papel Whatman que é modificado através da sua imersão numa suspensão contendo nanoparticulas de silica modificadas, que se inserem na estrutura da celulose e servem de suporte a uma melhoria da intensidade e uniformidade da cor emitida pelo dispositivo de detecção aplicado ao papel Whatman. Membranas de nitrocelulose apresentam caracteristicas favoráveis para estas aplicações, como lisura e um fluxo de liquido reproduzível através do papel. A atratividade da nitrocelulose relaciona-se com a sua capacidade para se ligar irreversivelmente e hidrofóbicamente a proteínas por absorção. No entanto, foi registado que a velocidade das ceras na nitrocelulose é mais baixa quando comparada com a velocidade observada no papel de filtro[11]. Papéis revestidos incorporando, por exemplo, cargas inorgânicas, podem também ser usados para a impressão de crrcurtos electronrcos . Segundo Arena et al . , a não degradabilidade e a lisura relativa dos papéis revestidos permite o seu uso como substratos na produção de sensores que usam, por exemplo, nanotubos de carbono como eléctrodos .
Para além do papel de filtro comercial Whatman, o Grupo Felix Schoeller disponibiliza comercialmente o papel de elevada lisura e especialmente desenvolvido para electrónica impressa, o P_E : SMART paper type 3
(https : //felix- schoeller . com/fileadmin/content/documents/downloads/pe_smar t_Type3.pdf [Acedido: 18-Jun-2019] ) . Este papel apresenta pelo menos dois revestimentos à base de resinas.
Dispositivos de detecção em papel podem ser usados nas mais diversas aplicações. Na área de diagnósticos médicos, dispositivos chamados de Point-of-Care permitem a detecção de diferentes analitos para diagnóstico, como glucose, ácido úrico, proteínas, nitratos, cetonas, colesterol e ácidos nucleicos[13'. Ge et al . demonstrou ainda como dispositivos microfluidicos à base de papel, e através da técnica de dobragem de papel (paper folding) , podem ser usados na detecção de biomarcadores de cancro.
0 controlo da qualidade dos alimentos é outra área de aplicação destes dispositivos, desde a sua produção até à sua embalagem. Sensores de papel podem ser aplicados na produção de embalagens inteligentes capazes de monitorizar a qualidade dos alimentos (evitando o desperdício por estabelecimento de prazos de validade por métodos estatísticos) . Como exemplos, temos ainda o uso destes dispositivos de detecção em suporte em papel para a detecção de etanol e pesticidas em alimentos[15' 16] .
Estes dispositivos têm também aplicação nas áreas da monitorização ambiental, nomeadamente na detecção de metais pesados e outros poluentes. A detecção de ouro e ferro em resrduos rndustrrars para recuperação
Figure imgf000007_0001
, e a detecção de toxinas em agua para consumo Gΐ8ΐ são alguns exemplos de aplicação em controlo ambiental de sensores de papel.
0 documento PT103999B[19] descreve um material celulósico à base de fibras celulósicas como suporte fisico e meio armazenador ou indutor de cargas elétricas em transístores, usando óxidos semicondutores ativos ou orgânicos. A invenção visa a obtenção de dispositivos electrónicos de efeito de campo com efeito de memória.
0 documento PT103998[20], e respetiva familia de patentes (Rússia, 2495516, Austrália, 2009239685, Japão, 5734177, México, MX/a/2010/010225, Coreia do Sul, 10-1553089) refere-se ao procedimento para utilizar material celulósico natural, sintético ou mistura de ambos simultaneamente como suporte fisico e dielétrico para conceção de dispositivos de efeito de campo e dispositivos optoelectrónicos .
0 documento US8773747B2 G2 ll descreve um dispositivo electrocrómico constituído por camadas de eléctrodos e por um material de base celulósica impregnado de uma solução/dispersão contendo agentes electrocrómicos, electroliticos e contra-eléctrodos . 0 dispositivo é apresentado como de construção mais simples, mais rápida e económica, diminuindo o número de deposições necessárias para atingir a mesma função electrocrómica .
0 documento KR20100116433 G221 descreve um transrstor de papel celulósico, flexivel, constituído por nanotubos e com aplicações em corpos vivos como humanos e animais.
0 documento
Figure imgf000007_0002
descreve um dispositivo de microfluidica em substrato celulósico modificado para aumentar a sua hidrofobicidade, através da reação das fibras celulósicas com compostos hidrofóbicos, por exemplo, através de reações de silanização e de acilação.
O artigo de Jenkis et al.[24', mostra a impressão de linhas de microfluidica e de eléctrodos de prata em membranas de nitrocelulose .
O documento W02017040947A1[25] descreve um dispositivo que inclui um substrato compreendendo uma matriz de celulose que proporciona uma estrutura porosa interligada, uma barreira hidrofóbica disposta através da espessura do substrato para definir pelo menos um canal poroso no volume da matriz de celulose e um material electricamente condutor. 0 material electricamente condutor está disposto dentro do volume do canal poroso para revestir pelo menos uma porção da matriz de celulose.
Resumidamente, os dispositivos de detecção com base em papel atuais necessitam da incorporação de funcionalidades de microfluidica e de electrónica, exploradas em suportes específicos e distintos.
É assim necessário o desenvolvimento de um sistema integrado de detecção, à base de celulose, constituído por um único material, permitindo uma diminuição dos custos da sua produção, ao ser possivel que esta decorra numa única unidade industrial, a partir da mesma matéria-prima, e sem alterações substanciais a um processo comum de produção de pasta e de papel. É também necessário que a solução desenvolvida não exija a incorporação de aditivos e de revestimentos de origem fóssil para o seu funcionamento adequado. 0 uso destes aditivos dificultará a reciclabilidade e /ou a biodegradabilidade de sistemas de detecção à base de celulose.
Não existe assim, no estado da arte, qualquer referência à existência ou ao desenvolvimento de uma solução tecnológica baseada numa matriz celulósica flexivel única, em camadas, que permita, em simultâneo, a aplicação funcional de microfluidica e de circuitos electrónicos de forma a obter um sensor e respetiva electrónica integrada, de origem renovável, biodegradável, passível, por exemplo, de ser incinerado, e com índices de reciclabilidade semelhantes aos apresentados pelo papel de impressão e escrita, e que permite uma redução de custos na produção de dispositivos de detecção. Tal problema é resolvido pela matriz flexivel única, de base celulósica, de dupla camada e dupla estrutura de diferente grau de compacticidade, para integração de electrónica, eletroquimica e microfluidica, divulgada neste documento. O conceito novo e disruptivo apresentado nesta invenção permite ainda dotar as empresas de pasta e papel com a possibilidade de diversificação dos produtos que disponibilizam aos consumidores, fazendo evoluir a celulose de uma commodity (pasta celulósica para papel de impressão e escrita) para um produto com elevado grau de especialização, através de uma solução vantajosa do ponto de vista económico e com caracteristicas técnicas excecionais capazes de servirem os padrões de qualidade exigíveis pelas respetivas entidades reguladoras.
Referências
[1] Pedro Barquinha, Rodrigo Martins, Luis Pereira, Elvira Fortunato, Transparent Semiconductors : From Materials to
Devices. West Sussex: Wiley & Sons (March 2012), ISBN 9780470683736.
[2] José Tiago Carvalho, Viorel Dubceac, Paul Grey, Inês
Cunha, Elvira Fortunato, Rodrigo Martins, Andre Clausner, Ehrenfried Zschech, Luis Pereira, Fully Printed Zinc Oxide Electrolyte-Gated Transistors on Paper, Nanomaterials, 2019, 9(2), 169.
[3] Ruquan Ye, Dustin K. James, James M. Tour, Laser-Induced Graphene : From Discovery to Translation, Advance Materials, 2019, 31, 1803621.
[4] Joanna Izdebska, Sabu Thomas, Printing on Polymers: Fundamentais and Applications, Ist Edition, Plastics Design Library, Editor: William Andrew, 2015. [5] Diana Gregor-Svetec, Chapter 8 - Intelligent Packaging, Nanomaterials for Food Packaging Materials, Processing Technologies, and Safety Issues Micro and Nano Technologies, Editor: Elsevier, 2018.
[6] Wei Wu, Inorganic nanomaterials for printed electronics: a review, Nanoscale, 2017, 9(22), 7342.
[7] Yanyan Xia, Jin Si, Zhiyang Li, Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review, Biosensors and Bioelectronics, 2016, 77, 774.
[8] Temsiri Songjaroen, Wijitar Dungchai, Orawon Chailapakul, Wanida Laiwattanapaisal, Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping, Talanta, 2011, 85 (5), 2587.
[9] Maowei Dou, Sharma Timilsina Sanjay, Merwan Benhabib,
Feng Xu, Xiu Jun Li, Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms, Talanta, 2015, 145,
43.
[10] Elizabeth Evans, Ellen Flavia Moreira Gabriel, Tomas E. Benavidez, Wendell Karlos Tomazelli Coltrob, Carlos D. Garcia, Modification of microfluidic paper-based devices with silica nanoparticles, Analyst, 2014, 139(21), 5560.
[11] Yao Lu, Weiwei Shi, Jianhua Qin, Bingcheng Lin,
Fabrication and Characterization of Paper-Based
Microfluidics Prepared in Nitrocellulose Membrane By Wax Printing, Analytical Chemistry, 2009, 82(1), 329.
[12] A Arena, Nicola Donato, Giuseppe Saitta, Giovanni Neri, Flexible ethanol sensors on glossy paper substrates operating at room temperature, Sensors and Actuators B Chemical, 2010, 145(1), 488.
[13] Devi Liana, Burkhard Raguse, J. Justin Gooding, Edith Chow, Recent Advances in Paper-Based Sensors, Sensors (Basel) , 2012, 12(9), 11505. [14] Lei Ge, Shoumei Wang, Xianrang Song, Shenguang Gea,
Jinghua Yu, 3D origami-based multifunction-integrated immunodevice : low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device, Lab Chip . , 2012, 12(17), 3150.
[15] Zhihong Nie, Frédérique Deiss, Xinyu Liu, Ozge Akbulut, George M. Whitesides, Integration of paper-based microfluidic devices with commercial electrochemical readers, Lab Chip., 2010, 10(22), 3163.
[16] S. M. Zakir Hossain, Roger E. Luckham, Meghan J. McFadden John D. Brennan, Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples, Analytical Chemistry, 2009, 81 (
21), 9055.
[17] Amara Apilux, Wijitar Dungchai, Weena Siangproh, Narong Praphairaksit, Charles S. Henry, Orawon Chailapakul, Lab- on-paper with dual electrochemical/colorimetric detection for simultaneous determínatíon of gold and iron, Analytical Chemistry, 2010, 82(5), 1727. [18] Libing Wang, Wei Chen, Dinghua Xu, Bong Sup Shim, Yingyue Zhu, Fengxia Sun, Liqiang Liu, Chifang Peng, Zhengyu Jin, Chuanlai Xu, Nicholas A. Kotov, Simpler rapidf sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA, Nano Letters, 2009, 9(12), 4147.
[19] PT103999B - Process creation and use of paper based on natural pulp fibers, synthetic fibers or mixtures thereof as a physical support médium and store electrical charges in field-effect transistors with memory self-sustaining without using oxides.
[20] PT103998B - Procedure for the use of natural cellulosic material, synthetic material or mixed natural and synthetic material, simultaneously as physical and dielectric support in self-sustainable field effect electronic and optoelectronic devices. [21] US8773747B2 - Electrochromic device and method for producing same. [22] KR20100116433 - Flexible cellulose paper transístor with covalently bonded nanotubes
[23] WO2013181656A1 - Microfluidic devices formed from hydrophobic paper
[24] Gareth Jenkins, Yang Wang, Ye Lei Xie, Qiong Wu, Wei
Huang, Linghai Wang, Xin Yang, Printed electronics integrated with paper-based microfluidics : new methodologies for next-generation health care, Microfluidics and Nanofluidics, Microfluid Nanofluid, 2015,19(2), 251.
[25] W02017040947A1 - Co-fabrication of paper electronics and microfluidics .
[26] L.J. van der Pauw, A method of measuring specific resistivity and hall effect of discs of arbitrary shape, Semiconductor Devices: Pioneering Papers, 1991, 174. [27] Tom J. Zajdel, Moshe Baruch, Gábor Méhes, Eleni
Stavrinidou, Magnus Berggren, Michel M. Maharbiz, Daniel T. Simon, Caroline M. Ajo-Franklin, PEDOT : PSS-based Multilayer Bacterial-Composite Films for Bioelectronics, Scientific Reports, 2018, 8, 1529.
RESUMO DA INVENÇÃO
A invenção aqui divulgada consiste numa matriz, flexível, de base celulósica, de dupla camada e dupla estrutura, de origem renovável e biodegradável, leve e miniaturizada, capaz de simultaneamente integrar funções de microfluídica bem como componentes electrónicos e electroquímicos . O processo de produção da matriz celulósica aqui divulgada é também descrito nesta invenção. Uma das camadas produzida a partir de fibras celulósicas processadas possui o nivel de porosidade e afinidade hidrófila adequados ao escoamento de fluidos, garantindo a funcionalidade de microfluidica . Uma segunda camada, também constituida por fibras celulósicas processadas, inclui materiais celulósicos produzidos à micro- e/ou nano-escala, isto é micro e/ou nanofibrilas de celulose e ainda pelo menos um pigmento inorgânico. Esta camada terá de possuir o nivel adequado de compactação e de lisura superficial de forma a garantir a impressão e integração de dispositivos e circuitos electrónicos e electroquimicos (Figura 1) .
Numa forma preferencial desta invenção, a camada da matriz celulósica de dupla camada para incorporação de sistemas de microfluidica (primeira camada) apresenta valores de permeabilidade de Bendtsen entre 1500 e 3000 mL/min, mais preferencialmente entre 2600 e 2700 mL/min.
Numa outra forma preferencial desta invenção a camada da matriz celulósica de dupla camada para incorporação de sistemas de microfluidica (primeira camada) é constituida por fibras celulósicas.
Numa forma preferencial da invenção divulgada neste documento, a camada da matriz celulósica de dupla camada para impressão de circuitos electrónicos (segunda camada) apresenta uma rugosidade de Bendtsen entre 0 e 150 mL/min, mais preferencialmente entre 30 e 50 mL/min, para além de uma elevada compactação, cujos poros na estrutura apresentam dimensões inferiores aos 100 nm.
Numa forma preferencial da invenção divulgada neste documento, a camada da matriz celulósica de dupla camada para impressão de circuitos electrónicos (segunda camada) é constituida por fibras celulósicas, pelo menos um pigmento inorgânico e micro e/ou nanofibrilas de celulose.
Numa forma preferencial da invenção divulgada neste documento, a camada da matriz celulósica de dupla camada para impressão e integração de circuitos electrónicos (segunda camada) é constituida por fibras celulósicas, pelo menos um pigmento inorgânico e micro e/ou nanofibrilas de celulose, mais preferencialmente, e em % m/m, 30% de fibras celulósicas, 50 % de pelo menos pigmento inorgânico e 20 % de micro e nanofibrilas de celulose. Numa forma de realização da invenção divulgada neste documento, a matriz celulósica de dupla camada é produzida através dos passos que envolvem a preparação da primeira camada da matriz celulósica de dupla camada, para incorporação de sistemas de microfluidica, ao refinar pasta constituida por fibras celulósicas e formação de uma folha (matriz) a partir da pasta celulósica resultante usando meios de formação de folhas; preparação da segunda camada da matriz celulósica de dupla camada para integração de componentes electrónicos, ao refinar pasta constituida por fibras celulósicas, ao misturar a pasta resultante com pelo menos um pigmento inorgânico e micro e/ou nanofibrilas de celulose, e formação de uma folha (matriz) a partir da mistura resultante usando meios de formação de folhas; deposição da primeira camada previamente preparada no topo da segunda camada, e prensagem da matriz celulósica resultante com posterior secagem da mesma.
Numa forma de realização da invenção, e de acordo com a aplicação final, a matriz desenvolvida consegue incorporar ainda uma barreira de fibras celulósicas processadas, à micro e/ou nanoescala, isto é micro e/ou nanofibrilas de celulose, e possivelmente modificadas quimicamente de modo a apresentarem caracteristicas hidrofóbicas, entre as duas camadas da matriz celulósica de dupla camada. Tal permite, de acordo com a aplicação, a seleção e formação de zonas seladas na matriz de dupla camada permitindo a retenção do fluido a ser inserido, para análise, na camada de microfluidica . É assim mantido o conceito apresentado com esta invenção de uma matriz celulósica de dupla camada, para integração de sistemas de microfluidica e electrónica, com base na mesma matéria-prima, isto é, material celulósico. A incorporação desta barreira ocorre aquando da deposição da primeira camada celulósica no topo da segunda camada .
A biodegradabilidade final dos sensores produzidos tendo como base a matriz celulósica desenvolvida é ainda garantida com a incorporação de tintas de impressão à base de materiais (orgânicos e ou inorgânicos) compativeis, não poluentes e recicláveis.
Numa forma de realização da presente invenção a matriz celulósica de dupla camada é usada na produção de sistemas de detecção, configurando uma aplicação pioneira do papel. Estes poderão ter como alvos privilegiados os sectores da saúde, farmacêutico e alimentar, mas não só, nomeadamente os sectores da segurança e monitorização ambiental, como por exemplo na regularização da qualidade do ar/água.
A matriz celulósica de dupla camada aqui divulgada pode assim ser usada em laboratórios de investigação e de análises genéticas, que têm francamente evoluído de metodologias laboratoriais para testes Point of Care, beneficiando de avanços tecnológicos recentes. Muitos laboratórios e clínicas de diagnóstico ou análise forense exigem sistemas de baixo custo e simples, com a possibilidade de detecção em pequenas amostras de uma forma célere e fiável.
Temos também como exemplos, a aplicação na indústria de embalagens e de distribuição, em que estes dispositivos poderão ser adoptados para informar o consumidor sobre a qualidade de alimentos (ex. carne, bebidas); e no sectores agrícola e veterinária, para detecção de agentes patogénicos ou condições ambientais desfavoráveis.
A matriz descrita neste documento é assim utilizada na produção de sistemas de detecção inteligentes, que incluem a componente microfluídica /ou sensores e a eletrónica de interface necessária para comunicação para aplicações aos sectores médico, farmacêutico, alimentar, de segurança, agrícola, veterinária, ambiental e de embalagens e distribuição, entre outros.
BREVE DESCRIÇÃO DAS FIGURAS Figura 1. Representação esquemática da matriz flexível, de base celulósica, de dupla camada, para integração simultânea de electrónica e microfluídica, descrita neste documento . Figura 2. Caracterização das matrizes celulósicas para incorporação de sistemas de microfluídica (primeira camada da matriz celulósica de dupla camada) no que diz respeito a valores médios de grau de refinação, espessura, rugosidade de Bendtsen e permeabilidade de Bendtsen. Figura 3. Imagens SEM com ampliação de 100 vezes das matrizes 0R, 5R e 15R. Figura 4. Imagem SEM-EDS da composição das matrizes 0R, 5R e 15R.
Figura 5. Formulações usadas para a produção de matrizes celulósicas para incorporação de componentes electrónicos / electroquimicos (segunda camada da matriz celulósica de dupla camada) .
Figura 6. Valores médios de espessura, rugosidade e permeabilidade de Bendtsen para as matrizes celulósicas de dupla camada desenvolvidas.
Figura 7. Imagens SEM com ampliação de 100 e 500 vezes da primeira e segunda camada da matriz celulósica de dupla camada 15R_DCt4. Figura 8. Resistências da matriz celulósica de dupla camada 15R_DCt4 e de um papel comercial de impressão escrita, referenciado como Office, com camadas impressas de PEDOT : PSS . Figura 9. Canais de microfluidica no a) papel Office e b) na primeira camada da matriz celulósica de dupla camada 15R- DCt4.
Figura 10. Faces da matriz celulósica de dupla camada 15R_DCt4, demonstrando como os canais de microfluidica são difundidos pela espessura da matriz até atingirem a camada celulósica para impressão de componentes electrónicos / electrocrómicos (segunda camada da matriz celulósica de dupla camada) .
Figura 11. Esquema da arquitetura dos transístores impressos .
Figura 12. Valores médios de espessura, rugosidade e permeabilidade de Bendtsen: comparação entre as matrizes celulósicas de dupla camada 15R_DCt4 e de aumento de escala 15R_DCt4_FD . Figura 13. Face da segunda camada da matriz celulósica de dupla camada com um sensor de elétrodos interdigitais de carbono e camada sensitiva de PED0T:PSS impressos e com os poços/canais de microfluidica difundidos através da espessura da matriz celulósica de dupla camada.
DESCRIÇÃO PORMENORIZADA DA INVENÇÃO E DESCRIÇÃO DE MODO DE REALIZAÇÃO
São aqui apresentados, nesta invenção, requisitos técnicos para matrizes celulósicas necessários para a implementação simultânea de componentes electrónicos e de sistemas de microfluidica, que permitam o transporte direcionado de fluidos necessário para aplicações em microfluidica, considerando a velocidade de transporte de fluidos e alterações de pH destes após passagem pelas matrizes celulósicas, e a implementação de componentes electrónicos ativos (transístores de efeito de campo) e passivos (resistências, linhas de condução e condensadores) para aplicações de electrónica impressa.
Temos assim as propriedades de espessura, porosidade, rugosidade/lisura superficial, pureza das fibras (conteúdo em aditivos), área superficial da matriz, e permeabilidade ao ar e a liquidos . A porosidade é um parâmetro critico a controlar em aplicações de microfluidica : alta densidade (baixa porosidade) pode dificultar desde a formação dos canais ao próprio deslocamento do fluido, mas a alta porosidade também pode ser um inconveniente devido à difusão não controlada dos materiais de hidrofobização . Outra caracteristica importante é a estabilidade quimica de modo a não interferir no processo de detecção, alterando, por exemplo, o pH de uma solução a ser testada. Adicionalmente, e do ponto de vista da impressão de componentes electrónicos e eletroquimicos, a atenção deverá estar centrada na camada celulósica plana e de elevada compacticidade, para além da rugosidade obtida para a matriz .
A espessura das diferentes camadas e matrizes celulósicas desenvolvidas nesta invenção foram medidas através de um L&W micrometer, através do método descrito na norma ISO 534. Por sua vez , valores de rugosidade e de permeabilidade de Bendtsen foram medidos através do método de Bendtsen, normas ISO 5636-3:2013 e ISO 8791-2 respetivamente, e usando o equipamento L&W Bendtsen Tester.
Exemplo 1
a) Desenvolvimento de uma matriz fibrosa isotrópica flexivel de base celulósica de dupla camada para integração simultânea de electrónica e microfluídica
Um dos processos industriais mais comummente usado para a produção de pasta celulósica é o processo Kraft, ou ao sulfato, em que aparas de madeira são tratadas com uma lixivia de cozimento (lixivia branca) , sendo esta constituida essencialmente por hidróxido de sódio (NaOH) e sulfureto de sódio (Na2S) .
Para este exemplo de uma forma de realização desta invenção, matrizes celulósicas para incorporação de sistemas de microfluidica sobre a sua superficie foram produzidas usando pasta celulósica de Eucalyptus globulus Kraft branqueada com 3 niveis distintos de refinação (0; 500; 1500; 1800 rotações em refinador PFI), identificadas com a designação de 0R, 5R, 15R, 18R.
O nivel de refinação das suspensões de pasta foi determinado através do método de Schopper-Riegler, seguindo a norma ISO 5267-1:1999.
Para cada grau de refinação foram feitas folhas (matrizes) redondas de estrutura isotrópica (fibras distribuidas aleatoriamente) em formadores estáticos. Após formação das matrizes, estas foram colocadas sobre chapas de inox e sujeitas a um processo de secagem por prensagem e deixadas posteriormente a acabar de secar em sala condicionada.
A caracterização destas matrizes encontra-se na Figura 2, no que diz respeito a valores de espessura, rugosidade de Bendtsen e permeabilidade de Bendtsen.
A pureza destas matrizes foi analisada através de análises por Microscopia Electrónica de Varrimento (SEM) à face mais lisa com ampliação de 100 vezes. A Figura 3 apresenta as imagens obtidas. A análise complementar por Espectroscopia de Energia Dispersiva (EDS) confirmou que estas matrizes são compostas apenas por fibras celulósicas visto que apenas se encontrou carbono e oxigénio como pode ser verificado na Figura 4. Estes dados demostram a pureza das amostras, também de elevada relevância para a aplicação de microfluidica .
De entre as matrizes desenvolvidas, a matriz 15R (pasta branqueada refinada a 1500 rotações PFI) foi selecionada como referência para a primeira camada, para integração de canais de microfluidica, da nova matriz flexivel de base celulósica, de dupla camada, para integração simultânea de electrónica e microfluidica, apresentada nesta invenção. O processo de produção desta primeira camada é igual ao já anteriormente referido para produção da matriz 15R, mas interrompendo o ciclo após a formação das folhas, onde as mesmas são retiradas do formador e colocadas de lado para posterior acabamento com a segunda camada.
A segunda camada da matriz flexivel de base celulósica, de dupla camada, para integração simultânea de electrónica e microfluidica, terá de ser capaz de garantir niveis funcionais de lisura / rugosidade e de compactidade quando aplicadas sobre as matrizes porosas para microfluidica de modo a permitir a deposição dos componentes elétricos e eletroquimicos, bem como das linhas condutoras e resistivas necessárias. Foram testadas 4 formulações, apresentadas na Figura 5.
Na produção desta segunda matriz foi usada pasta celulósica de Eucalyptus globulus Kraft branqueada refinada a 3000 rotações PFI, como pigmento inorgânico o carbonato de cálcio precipitado (PCC) com um tamanho médio de particula de 2,8 pm e celulose microfibrilada (MFC) . Carbonato de cálcio precipitado é um aditivo comum aos processos industriais de produção de pasta e papel.
Na produção desta segunda matriz, os componentes de cada formulação são pré-misturados antes da adição da mistura resultante ao formador de folhas. De igual modo ao que foi descrito para a produção da primeira camada, também para esta o processo foi interrompido após a etapa de formação da matriz. Após formação da segunda camada, a primeira camada previamente preparada foi aplicada no topo desta e sujeitas a uma etapa de prensagem durante 5 minutos com posterior secagem em sala de ambiente condicionado (23°C, 50% de humidade relativa) .
As quatro novas matrizes compostas foram também caracterizadas e os valores médios obtidos apresentados na Figura 6.
De seguida a matriz de dupla camada com a referência 15R_DCt4 foi selecionada para testes de aplicação de microfluidica e componentes de electrónica. 0 aspeto das duas camadas foi ainda verificado por espectroscopia electrónica de varrimento (Figura 7), sendo possivel verificar que a segunda camada apresenta uma estrutura menos porosa, quando comparada com a primeira camada constituida unicamente por fibras de celulose, de acordo com o desejado para as aplicações em causa.
b) Testes de validação da matriz flexível de base celulósica, de dupla camada, para integração simultânea de electrónica e microfluidica
A matriz celulósica de dupla camada foi testada nas vertentes de formação de canais de microfluidica e deposição de dispositivos electrónicos, necessários para o seu uso em sistemas de detecção nos mais diferentes sectores como, por exemplo, da saúde, alimentar, e do ambiente, entre outros.
Foi utilizada a tecnologia de impressão a tinta sólida à base de cera da Xerox Corporation, permitindo criar na matriz celulósica de dupla camada 15R_DCt4 linhas que serão posteriormente difundidas através da espessura da matriz de dupla camada de forma a criar barreiras hidrófobas capazes de delimitar canais hidrófilos, assim como zonas de teste e zonas de deposição de amostras.
Camadas ativas do polimero condutor PED0T:PSS - Poly(3,4- ethylenedioxythiophene) -poly ( styrenesulfonate) foram aplicadas por impressão inkjet na matriz celulósica de dupla camada 15R_DCt4, e também num papel comercial de impressão escrita, referenciado como Office. Para aferir a qualidade da impressão das camadas, foi medida a resistência eléctrica do PEDOT_PSS impressos na matriz e folha selecionadas, através da técnica de quatro pontas em geometria Van der Pauw
Figure imgf000021_0001
. Os resultados encontram-se na Figura 8. A formação de um filme impresso condutor é possivel com o papel Office e com a matriz 15R-DCT4. No caso desta última, a resistência eléctrica dos circuitos impressos na folha é metade quando comparada com a obtida no papel Office, o que sugere uma melhor qualidade do filme de PED0T:PSS impresso, demonstrando como exequivel uma das possiveis aplicações das matrizes desenvolvidas, nomeadamente na produção de plataformas de biossensores eletroquimicos, uma vez que, o polimero PED0T:PSS é amplamente usado em rnterfaces biologico-eletromcas
Figure imgf000021_0002
.
Um teste de capilaridade foi feito através da impressão de um padrão selecionado de canais de microfluidica e adição de 5pL de corante em água ultrapura, num papel Office (a) e na matriz dupla camada selecionada 15R-DCt4 (b) , como representado na Figura 9. A primeira camada da matriz 15- DCt4, isto é, para aplicação de sistemas de microfluidica, apresenta resultados superiores aos do papel Office, nomeadamente no que diz respeito a velocidade e distância alcançada para um volume de liquido de 5pL.
Como acima mencionado, os canais de microfluidica impressos na camada porosa, isto é, na primeira camada da matriz celulósica de dupla camada, para aplicação de microfluidica, são difundidos pela espessura da matriz celulósica de dupla camada 15R_DCt4 até atingirem a segunda camada da matriz, formulada para impressão de componentes electrónicos . 0 liquido adicionado à camada celulósica para microfluidica é também direcionado pelos canais de microfluidica formados através da matriz de dupla camada para a segunda camada da matriz. Tal é demonstrado na Figura 10.
Transístores foram também impressos na segunda camada da matriz de dupla camada desenvolvida, 15R_DCt4. Os transístores possuem uma configuração interdigital, recorrendo a elétrodos de fonte, dreno e gate de carbono e camada semicondutora de ZnO, sendo todas as camadas impressas por impressão serigráfica ( screen printing) . 0 dispositivo é então terminado através de uma membrana eletrolitica que une o semicondutor ao elétrodo de porta. 0 esquema da arquitetura dos transístores está representado na Figura 11.
Os transístores foram caracterizados numa probe station onde valores de tensão entre -0.5 e 2.5 V foram aplicados no elétrodo de porta, sendo monitorizada a corrente entre a fonte e dreno, sendo obtidas assim as curvas de transferência (ou entrada) . Estas apresentam o comportamento correto e esperado em termos de corrente de dreno e razão on/off.
Exemplo 2
a) Scale-up (aumento de escala) da matriz flexível de base celulósica, de dupla camada, para integração simultânea de electrónica e microfluídica
Foi realizado um aumento de escala ( scale-up) de dez vezes da área total da matriz celulósica de dupla camada desenvolvida, sendo produzida uma matriz fibrosa anisotrópica com orientação preferencial de fibras.
A unidade piloto inclui um formador dinâmico que permite a produção de matrizes celulósicas a partir de uma suspensão de pasta celulósica. As estruturas podem ser produzidas ajustando a orientação das fibras (sentido máquina ou sentido transversal) e variações de consolidação da matriz por prensagem. Foi assim levado a cabo no formador dinâmico o scale-up da matriz de dupla camada, adotando-se a referência 15R_DCt4_FD.
No scale-up da matriz foi criada uma primeira camada de gramagem 60 g/m2 (100% fibra celulósica branqueada de
Eucalyptus globulus refinada a 1500 rotações PFI) e diretamente sobre esta foi depositada a segunda camada com uma gramagem de 50 g/m2 (30% m/m fibra celulósica branqueada de Eucalyptus globulus refinada a 3000 rotações PFI + 50 % m/m carbonato de cálcio precipitado + 20 % m/m celulose microfibrilada) . Após formação da estrutura, a mesma foi sujeita a um ciclo de prensagem a 2, 4 e 3 x 5 bar com posterior secagem a 60°C. Os resultados da caracterização da matriz produzida são apresentados na Figura 12. A matriz 15R_DCt4_FD, resultante do scale-up, apresenta um aumento de rugosidade (na segunda camada) de 45 mL/min, sem impacte negativo na impressão de transistores . Foram assim replicados as condições da matriz necessárias para a implementação simultânea de componentes de microfluidica e electrónica .
No sentido de comparar o desempenho da matriz produzida em termos de resistência superficial e de qualidade de impressão, foi efetuado um ensaio de linting (efeito de perda de material da superficie do papel) usando o aparelho AIC2-5T2000 da IGT .
Este ensaio simula uma impressão do tipo offset e mede a capacidade de um papel em resistir ao arrancamento de material da sua superficie durante o processo de impressão por ação da tensão criada pela tinta. Para execução do ensaio é aplicado um filme de tinta de espessura conhecida (8 pm) sobre um rolo de borracha (dureza 65 shore A) . 0 rolo de borracha com a tinta é então pressionado contra a amostra a testar (650 N de força) e a tinta é transferida sob aceleração (velocidade terminal de 1 m/s) . Quando a força exercida pela tinta é superior à força de coesão da superficie do papel, o material é arrancado danificando a superficie .
Foi observado que a qualidade final da superficie após transferência da tinta é claramente superior na matriz 15R_DCt4_FD em relação a um papel de impressão e escrita comercial, Office, apresentando ainda a vantagem de permitir a aplicação de sistemas de microfluidica na primeira camada da matriz.
b) Descrição do funcionamento da matriz flexivel de base celulósica, de dupla camada, para integração simultânea de electrónica e microfluidica
É de seguida ilustrada uma das formas possiveis de funcionamento da matriz desenvolvida, nomeadamente na detecção de pH. Foram usados elétrodos interdigitais de carbono e uma camada sensitiva de PED0T:PSS. 0 processo de produção dos sensores começa com a impressão do padrão dos canais/poços circulares de cera na primeira camada da matriz celulósica, ou seja, desenvolvida para aplicação de microfluidica . A matriz é aquecida a 140°C para difundir os poços/canais de cera ao longo da sua espessura de dupla camada. Posteriormente, os componentes sensitivos são impressos, na segunda camada, usando uma impressora jato de tinta .
0 sensor constituído por elétrodos interdigitais de carbono e camada sensitiva de PED0T:PSS funciona através da mudança da resistividade do polimero quando sujeito a diferentes niveis de pH. Nesse sentido, foram usadas soluções tampão com pH de 3 a 10, que foram injetadas nos canais de microfluidica de modo a atingirem a camada sensitiva. Os sensores foram monitorizados continuamente sob cronoamperometria, iniciando-se a medição da corrente com aproximadamente 60 segundos no estado seco, a adição de solução de pH e outros 240 segundos para estabilização.
A Figura 13 representa a matriz flexivel de base celulósica, de dupla camada, integrando componentes de electrónica e de microfluidica, num teste levado a cabo para a medição do pH de uma solução.

Claims

REIVINDICAÇÕES
Reivindicação 1. Matriz flexível de base celulósica para integração simultânea de electrónica, eletroquímica e microfluídica, caracterizada por compreender uma primeira camada constituída por fibras celulósicas e uma segunda camada constituída por fibras celulósicas, pelo menos um pigmento inorgânico e micro e/ou nanofibrilas de celulose.
Reivindicação 2. Matriz de acordo com a reivindicação n.°l caracterizada por a referida primeira camada apresentar uma permeabilidade de Bendtsen entre 1500 e 3000 mL/min, de preferência entre 2600 e 2700 mL/min.
Reivindicação 3. Matriz de acordo com a reivindicação n.°l caracterizada por a referida segunda camada apresentar uma rugosidade de Bendtsen entre 0 e 150 mL/min, de preferência entre 30 e 50 mL/min.
Reivindicação 4. Matriz de acordo com qualquer uma das reivindicações anteriores caracterizada por a referida segunda camada ser constituída por 30% (m/m) de fibras celulósicas, 50% (m/m) de pelo menos um pigmento inorgânico e 20% (m/m) de micro e/ou nanofibrilas de celulose. Reivindicação 5. Matriz de acordo com qualquer uma das reivindicações anteriores caracterizada por a referida segunda camada possuir poros com dimensões inferiores a 100 nm. Reivindicação 6. Matriz de acordo com qualquer uma das reivindicações anteriores caracterizada por incluir uma barreira de micro e/ou nanofibrilas de celulose entre a primeira e a segunda camada. Reivindicação 7. Processo de produção da matriz descrita nas reivindicações anteriores caracterizado por compreender os seguintes passos: a) Preparação da primeira camada:
- refinação de pasta de fibras celulósicas;
- formação de uma matriz a partir da mistura
resultante; b) Preparação da segunda camada:
- refinação de pasta de fibras celulósicas;
- mistura da pasta resultante com pelo menos um pigmento inorgânico e micro e/ou nanofibrilas de celulose;
- formação de uma matriz a partir da mistura
resultante; c) Deposição da primeira camada no topo da segunda camada; d) Prensagem da matriz resultante com posterior secagem da mesma.
Reivindicação 8. Processo, de acordo com a reivindicação n.° 7, caracterizado por incluir um passo de incorporação de uma barreira de micro e/ou nanofibrilas de celulose entre as duas camadas da matriz aquando da deposição da primeira camada celulósica no topo da segunda camada.
Reivindicação 9. Uso da matriz descrita nas reivindicações n.° 1 a 6 caracterizado por ser utilizada na produção de sistemas de detecção inteligentes, que incluem a componente microfluidica /ou sensores e a electrónica de interface necessária para comunicação para aplicações aos sectores médico, farmacêutico, alimentar, de segurança, agricola, veterinária, ambiental e de embalagens e distribuição.
PCT/IB2019/059085 2018-10-24 2019-10-23 Matriz dual flexível de base celulósica para integração de electrónica e microfluídica WO2020084534A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19818248.7A EP3872257B1 (en) 2018-10-24 2019-10-23 Dual flexible cellulose-based matrix for electronics and microfluidics integration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT115111 2018-10-24
PT115111A PT115111B (pt) 2018-10-24 2018-10-24 Matriz dual flexível de base celulósica para integração de electrónica e microfluídica

Publications (1)

Publication Number Publication Date
WO2020084534A1 true WO2020084534A1 (pt) 2020-04-30

Family

ID=68848326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/059085 WO2020084534A1 (pt) 2018-10-24 2019-10-23 Matriz dual flexível de base celulósica para integração de electrónica e microfluídica

Country Status (3)

Country Link
EP (1) EP3872257B1 (pt)
PT (1) PT115111B (pt)
WO (1) WO2020084534A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111691220A (zh) * 2020-06-23 2020-09-22 杭州特种纸业有限公司 一种体外生命检测材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4393590A1 (en) * 2022-12-30 2024-07-03 Tecnalia Research and Innovation Cellulose and nanocellulose based bioinks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936032A1 (en) * 2006-12-18 2008-06-25 Akzo Nobel N.V. Method of producing a paper product
US20120080156A1 (en) * 2010-10-01 2012-04-05 Fpinnovations Cellulose-reinforced high mineral content products and methods of making the same
WO2018002815A1 (en) * 2016-07-01 2018-01-04 Stora Enso Oyj A method for the production of a film comprising microfibrillated cellulose and a film comprising microfibrillated cellulose

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936032A1 (en) * 2006-12-18 2008-06-25 Akzo Nobel N.V. Method of producing a paper product
US20120080156A1 (en) * 2010-10-01 2012-04-05 Fpinnovations Cellulose-reinforced high mineral content products and methods of making the same
WO2018002815A1 (en) * 2016-07-01 2018-01-04 Stora Enso Oyj A method for the production of a film comprising microfibrillated cellulose and a film comprising microfibrillated cellulose

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEVI D. LIANA ET AL: "Recent Advances in Paper-Based Sensors", SENSORS, vol. 12, no. 12, 24 August 2012 (2012-08-24), pages 11505 - 11526, XP055236777, DOI: 10.3390/s120911505 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111691220A (zh) * 2020-06-23 2020-09-22 杭州特种纸业有限公司 一种体外生命检测材料及其制备方法

Also Published As

Publication number Publication date
PT115111B (pt) 2021-08-04
EP3872257B1 (en) 2024-02-28
EP3872257A1 (en) 2021-09-01
PT115111A (pt) 2020-07-23
EP3872257C0 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
Mahadeva et al. Paper as a platform for sensing applications and other devices: a review
Ihalainen et al. Influence of surface properties of coated papers on printed electronics
Li et al. Pen-on-paper strategy for point-of-care testing: Rapid prototyping of fully written microfluidic biosensor
Ruecha et al. Fully inkjet-printed paper-based potentiometric ion-sensing devices
Mani et al. Fabricating paper based devices using correction pens
Barras et al. Printable cellulose-based electroconductive composites for sensing elements in paper electronics
Li et al. Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors
EP2300165B1 (en) Method of fabricating microfluidic systems
WO2020084534A1 (pt) Matriz dual flexível de base celulósica para integração de electrónica e microfluídica
Sundriyal et al. Inkjet-printed sensors on flexible substrates
Ihalainen et al. An impedimetric study of DNA hybridization on paper-supported inkjet-printed gold electrodes
Wu et al. Towards practical application of paper based printed circuits: capillarity effectively enhances conductivity of the thermoplastic electrically conductive adhesives
Dossi et al. Rapid Prototyping of Sensors and Conductive Elements by Day‐to‐Day Writing Tools and Emerging Manufacturing Technologies
US8349131B1 (en) Method for the manufacture of smart paper and smart wood microfibers
US20180237602A1 (en) A transparent or semi-transparent nanostructured latex film for flexible and semi-transparent electronics for monitoring and manipulating cellular processes
Zhang et al. Controlling the spreading of nanoliter-scale droplets on the fibers of fabrics for enhancing image quality and ink utilization
Charbaji et al. Zinculose: A new fibrous material with embedded zinc particles
Bollström Paper for printed electronics and functionality
MX2012003706A (es) Microsistemas serigrafiados funcionales.
Aguado et al. A broad overview on innovative functionalized paper solutions
Rincón-Iglesias et al. Water-based 2D printing of magnetically active cellulose derivative nanocomposites
Shim et al. Development of fast resettable gravimetric aromatic gas sensors using quartz crystal microbalance
Guselnikova et al. Multiresponsive wettability switching on polymer surface: Effect of surface chemistry and/or morphology tuning
Yao et al. Facial fabrication of paper-based flexible electronics with flash foam stamp lithography
Trouillon et al. Paper‐Based Polymer Electrodes for Bioanalysis and Electrochemistry of Neurotransmitters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019818248

Country of ref document: EP

Effective date: 20210525