WO2020083365A1 - 传输控制方法和装置 - Google Patents

传输控制方法和装置 Download PDF

Info

Publication number
WO2020083365A1
WO2020083365A1 PCT/CN2019/113239 CN2019113239W WO2020083365A1 WO 2020083365 A1 WO2020083365 A1 WO 2020083365A1 CN 2019113239 W CN2019113239 W CN 2019113239W WO 2020083365 A1 WO2020083365 A1 WO 2020083365A1
Authority
WO
WIPO (PCT)
Prior art keywords
access network
network device
message
downlink
wireless access
Prior art date
Application number
PCT/CN2019/113239
Other languages
English (en)
French (fr)
Inventor
卓义斌
朱元萍
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19876662.8A priority Critical patent/EP3860061B1/en
Priority to BR112021007665-4A priority patent/BR112021007665A2/pt
Publication of WO2020083365A1 publication Critical patent/WO2020083365A1/zh
Priority to US17/238,767 priority patent/US20210243636A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations

Definitions

  • This application relates to the field of communication technology, and in particular, to a transmission control method and device.
  • the relay networking technology provides a relay networking architecture.
  • the relay networking architecture includes a donor base station (donorgNodeB, DgNB), one or more relay nodes, and one or more terminal devices.
  • the relay nodes directly Or indirectly connected to the host base station through other relay nodes, the terminal equipment is connected to the host base station or relay node through the wireless air interface; in the relay network architecture, there is a clear hierarchical relationship, and each relay node will provide backhaul
  • the serving node is regarded as the parent node, and the relay networking architecture includes multi-level hierarchical relationships, and each level may be called each hop.
  • the present application provides a transmission control method and device, which can know the congestion on the link to prevent data loss or delay in receiving data.
  • the present application provides a transmission control method, including:
  • the first wireless access network device generates a first message
  • the first radio access network device sends the first message to a second radio access network device, where the first message includes at least one reporting granularity, corresponding to each reporting granularity in the at least one reporting granularity Downlink status information;
  • the first wireless access network device is a relay node in a wireless relay communication system
  • the second wireless access network device is the first wireless access network device in the wireless relay communication system Parent node or host base station.
  • the first radio access network device feeds back the downlink status information to the second radio access network device, so that the parent node or the host base station of the first radio access network device can timely learn the downlink buffer status of the first radio access network device Information, to know the congestion status of the downlink buffer, so that the parent node or the host base station of the first wireless access network device can timely control and process the downlink, complete the flow control processing in the IAB scenario, and effectively avoid link interruption Downstream congestion caused by factors can prevent packet loss and delay of downstream data and ensure that terminal devices receive data in a timely manner.
  • the reporting granularity is one or more of the following: a terminal device, a bearer service of a terminal device, a relay node, and a bearer service of a relay node;
  • the one relay node is a wireless access network device that sends the first message, or a child node of the wireless access network device that sends the first message, or a wireless connection that the terminal device accesses Network access equipment. Since the overhead of different reporting granularities is different, the first radio access network device can determine the available reporting granularity according to the resource size allocated for the first message.
  • the downlink state information includes at least one state value, or an index value of each state value in at least one state value;
  • the state value is any one of the following: remaining amount of downlink buffer, downlink buffer occupancy ratio, expected downlink transmission rate, congestion level, downlink buffer status difference, and downlink buffer amount combination;
  • the downlink buffer status difference value is the difference between the status value and the status value reported by the first radio access network device last time, and the combination of the downlink buffer capacity includes the total downlink buffer capacity and the current downlink buffer capacity .
  • the downlink state information includes an index value of each state value in at least one state value
  • the first message also includes first indication information, where the first indication information is used to indicate the mapping relationship between the index value and the status value; or, the method further includes: the first wireless interface
  • the network access device sends the first indication information to the second wireless access network device.
  • the mapping relationship is provided to indicate the correspondence between the status value and the index value.
  • the method further includes:
  • the first wireless access network device receives a second message sent by the second wireless access network device, where the second message includes a reporting method and / or the reporting granularity.
  • the second message is any one of the following: a radio resource control RRC message, an F1 interface message, and an appropriate Matching messages.
  • the second message is a MAC CE message or an adaptation layer message .
  • the reporting method is one or more of the following: the value characterized by the downlink status information is greater than a first preset threshold, and the value characterized by the downlink status information is less than the first Two preset thresholds and preset time points;
  • the preset time point can be adjusted when the value represented by the downlink status information meets the preset condition.
  • the first message is any one of the following: a radio resource control RRC message, an F1 interface message, and an appropriate Matching messages.
  • the first message is a MAC CE message or an adaptation layer message .
  • the reporting granularity is a reporting granularity identifier
  • Each reporting granularity identifier and the downstream status information corresponding to each reporting granularity identifier in the first message are arranged in sequence, and each reporting granularity identifier is adjacent to the downstream status information corresponding to each reporting granularity identifier; or, the After the at least one reporting granularity identifier in the first message is sequentially arranged, each of the downlink status information is sequentially arranged.
  • the first wireless access network device sending the first message to the second wireless access network device includes:
  • the first wireless access network device sends the first message to the second wireless access network device according to a preset logical channel priority order, where the preset logical channel priority order is used to indicate Describe the priority order of the MAC and CE and other logical channels corresponding to the first message.
  • the first message can be sent to the second wireless access network device according to the priority order set in the logical channel priority order, to ensure that the first message can be sent out in time.
  • the method further includes:
  • the first wireless access network device determines the first according to at least one of a route management type, a cache management type, and a size of a transmission resource allocated by the first wireless access network device to the first message The reporting granularity corresponding to the message.
  • the method further includes:
  • the first radio access network device receives second indication information sent by the second radio access network device, where the second indication information is used to instruct the first radio access network device to switch links. Thereby reducing congestion on the downlink and preventing packet loss and delay of downlink data.
  • the present application provides a transmission control method, including:
  • the second wireless access network device receives a first message sent by the first wireless network device, where the first message includes at least one reporting granularity and downlink status information corresponding to each reporting granularity in the at least one reporting granularity;
  • the first wireless access network device is a relay node in a wireless relay communication system
  • the second wireless access network device is the first wireless access network device in the wireless relay communication system Parent node or host base station.
  • the first radio access network device feeds back the downlink status information to the second radio access network device, so that the parent node or the host base station of the first radio access network device can timely learn the downlink buffer status of the first radio access network device Information, to know the congestion status of the downlink buffer, so that the parent node or the host base station of the first wireless access network device can timely control and process the downlink, complete the flow control processing in the IAB scenario, and effectively avoid link interruption Downstream congestion caused by factors can prevent packet loss and delay of downstream data and ensure that terminal devices receive data in a timely manner.
  • the reporting granularity is one or more of the following: a terminal device, a bearer service of a terminal device, a relay node, and a bearer service of a relay node;
  • the one relay node is a wireless access network device that sends the first message, or a child node of the wireless access network device that sends the first message, or a wireless connection that the terminal device accesses Network access equipment.
  • the downlink state information includes at least one state value, or an index value of each state value in at least one state value;
  • the state value is any one of the following: remaining amount of downlink buffer, downlink buffer occupancy ratio, expected downlink transmission rate, congestion level, downlink buffer status difference, and downlink buffer amount combination;
  • the downlink buffer status difference value is the difference between the status value and the status value reported by the first radio access network device last time, and the combination of the downlink buffer capacity includes the total downlink buffer capacity and the current downlink buffer capacity .
  • the downlink state information includes an index value of each state value in at least one state value
  • the first message also includes first indication information, where the first indication information is used to indicate the mapping relationship between the index value and the status value; or, the method further includes: the second wireless interface The network access device receives the first indication information sent by the first wireless access network device.
  • the method further includes:
  • the second radio access network device sends a second message to the first radio access network device, where the second message includes a reporting method and / or the reporting granularity.
  • the second message is any one of the following: a radio resource control RRC message, an F1 interface message, and an appropriate Matching messages.
  • the second message is a MAC CE message or an adaptation layer message .
  • the reporting method is one or more of the following: the value characterized by the downlink status information is greater than a first preset threshold, and the value characterized by the downlink status information is less than the first Two preset thresholds and preset time points;
  • the preset time point can be adjusted when the value represented by the downlink status information meets the preset condition.
  • the first message is any one of the following: a radio resource control RRC message, an F1 interface message, and an appropriate Matching messages.
  • the first message is a MAC CE message or an adaptation layer message .
  • the reporting granularity is a reporting granularity identifier
  • Each reporting granularity identifier and the downstream status information corresponding to each reporting granularity identifier in the first message are arranged in sequence, and each reporting granularity identifier is adjacent to the downstream status information corresponding to each reporting granularity identifier; or, the After the at least one reporting granularity identifier in the first message is sequentially arranged, each of the downlink status information is sequentially arranged.
  • the method further includes:
  • the second radio access network device sends second indication information to the first radio access network device, where the second indication information is used to instruct the first radio access network device to switch links;
  • the second radio access network device reduces the downlink transmission rate of the first radio access network device
  • the second wireless access network device allocates time-frequency resources to the first wireless access network device.
  • the present application provides a communication device, which is applied to a first wireless access network device and includes:
  • the processing unit is used to generate the first message
  • a sending unit configured to send the first message to a second radio access network device, where the first message includes at least one reporting granularity and downlink status information corresponding to each reporting granularity in the at least one reporting granularity ;
  • the first wireless access network device is a relay node in a wireless relay communication system
  • the second wireless access network device is the first wireless access network device in the wireless relay communication system Parent node or host base station.
  • the first radio access network device feeds back the downlink status information to the second radio access network device, so that the parent node or the host base station of the first radio access network device can timely learn the downlink buffer status of the first radio access network device Information, to know the congestion status of the downlink buffer, so that the parent node or the host base station of the first wireless access network device can timely control and process the downlink, complete the flow control processing in the IAB scenario, and effectively avoid link interruption Downstream congestion caused by factors can prevent packet loss and delay of downstream data and ensure that terminal devices receive data in a timely manner.
  • the reporting granularity is one or more of the following: a terminal device, a bearer service of a terminal device, a relay node, and a bearer service of a relay node;
  • the one relay node is a wireless access network device that sends the first message, or a child node of the wireless access network device that sends the first message, or a wireless connection that the terminal device accesses Network access equipment.
  • the downlink state information includes at least one state value, or an index value of each state value in at least one state value;
  • the state value is any one of the following: remaining amount of downlink buffer, downlink buffer occupancy ratio, expected downlink transmission rate, congestion level, downlink buffer status difference, and downlink buffer amount combination;
  • the downlink buffer status difference value is the difference between the status value and the status value reported by the first radio access network device last time, and the combination of the downlink buffer capacity includes the total downlink buffer capacity and the current downlink buffer capacity .
  • the downlink state information includes an index value of each state value in at least one state value
  • the first message further includes first indication information, where the first indication information is used to indicate the mapping relationship between the index value and the status value; or, the sending unit is further used to send the second The wireless access network device sends the first indication information.
  • the device further includes:
  • the receiving unit is configured to receive a second message sent by the second wireless access network device, where the second message includes a reporting method and / or the reporting granularity.
  • the second message is any one of the following: a radio resource control RRC message, an F1 interface message, and an appropriate Matching messages.
  • the second message is a MAC CE message or an adaptation layer message .
  • the reporting method is one or more of the following: the value characterized by the downlink status information is greater than a first preset threshold, and the value characterized by the downlink status information is less than the first Two preset thresholds and preset time points;
  • the preset time point can be adjusted when the value represented by the downlink status information meets the preset condition.
  • the first message is any one of the following: a radio resource control RRC message, an F1 interface message, and an appropriate Matching messages.
  • the first message is a MAC CE message or an adaptation layer message.
  • the reporting granularity is a reporting granularity identifier
  • Each reporting granularity identifier and the downstream status information corresponding to each reporting granularity identifier in the first message are arranged in sequence, and each reporting granularity identifier is adjacent to the downstream status information corresponding to each reporting granularity identifier; or, the After the at least one reporting granularity identifier in the first message is sequentially arranged, each of the downlink status information is sequentially arranged.
  • the sending unit is specifically configured to:
  • processing unit is further used to:
  • the reporting granularity corresponding to the first message is determined according to at least one of a route management type, a cache management type, and a size of transmission resources allocated by the first radio access network device to the first message.
  • the receiving unit is used to:
  • the present application provides a communication device, which is applied to a second wireless access network device and includes:
  • a receiving unit configured to receive a first message sent by a first wireless network device, where the first message includes at least one reporting granularity and downlink status information corresponding to each of the at least one reporting granularity;
  • the first wireless access network device is a relay node in a wireless relay communication system
  • the second wireless access network device is the first wireless access network device in the wireless relay communication system Parent node or host base station.
  • the first radio access network device feeds back the downlink status information to the second radio access network device, so that the parent node or the host base station of the first radio access network device can timely learn the downlink buffer status of the first radio access network device Information, to know the congestion status of the downlink buffer, so that the parent node or the host base station of the first wireless access network device can timely control and process the downlink, complete the flow control processing in the IAB scenario, and effectively avoid link interruption Downstream congestion caused by factors can prevent packet loss and delay of downstream data and ensure that terminal devices receive data in a timely manner.
  • the reporting granularity is one or more of the following: a terminal device, a bearer service of a terminal device, a relay node, and a bearer service of a relay node;
  • the one relay node is a wireless access network device that sends the first message, or a child node of the wireless access network device that sends the first message, or a wireless connection that the terminal device accesses Network access equipment.
  • the downlink state information includes at least one state value, or an index value of each state value in at least one state value;
  • the state value is any one of the following: remaining amount of downlink buffer, downlink buffer occupancy ratio, expected downlink transmission rate, congestion level, downlink buffer status difference, and downlink buffer amount combination;
  • the downlink buffer status difference value is the difference between the status value and the status value reported by the first radio access network device last time, and the combination of the downlink buffer capacity includes the total downlink buffer capacity and the current downlink buffer capacity .
  • the downlink state information includes an index value of each state value in at least one state value
  • the first message further includes first indication information, where the first indication information is used to indicate a mapping relationship between an index value and a status value; or, the receiving unit is further used to receive the first The first indication information sent by the wireless access network device.
  • the device further includes:
  • the sending unit is configured to send a second message to the first wireless access network device, where the second message includes a reporting method and / or the reporting granularity.
  • the second message is any one of the following: a radio resource control RRC message, an F1 interface message, and an appropriate Matching messages.
  • the second message is a MAC CE message or an adaptation layer message .
  • the reporting method is one or more of the following: the value characterized by the downlink status information is greater than a first preset threshold, and the value characterized by the downlink status information is less than the first Two preset thresholds and preset time points;
  • the preset time point can be adjusted when the value represented by the downlink status information meets the preset condition.
  • the first message is any one of the following: a radio resource control RRC message, an F1 interface message, and an appropriate Matching messages.
  • the first message is a MAC CE message or an adaptation layer message .
  • the reporting granularity is a reporting granularity identifier
  • Each reporting granularity identifier and the downstream status information corresponding to each reporting granularity identifier in the first message are arranged in sequence, and each reporting granularity identifier is adjacent to the downstream status information corresponding to each reporting granularity identifier; or, the After the at least one reporting granularity identifier in the first message is sequentially arranged, each of the downlink status information is sequentially arranged.
  • the device further includes:
  • a sending unit configured to send second indication information to the first wireless access network device, where the second indication information is used to instruct the first wireless access network device to switch links;
  • the apparatus further includes: a processing unit, configured to reduce the downlink transmission rate of the first wireless access network device;
  • the processing unit is further configured to allocate time-frequency resources to the first wireless access network device.
  • a communication apparatus which is applied to a first radio access network device or a second radio access network device, and is used to perform a method in any possible implementation manner in any one of the above aspects.
  • the apparatus includes a unit for performing the method in any possible implementation manner of any one of the above aspects.
  • another communication apparatus is provided, which is applied to a first radio access network device or a second radio access network device.
  • the device includes: a transceiver, a memory, and a processor.
  • the transceiver, the memory and the processor communicate with each other through an internal connection path, the memory is used to store instructions, the processor is used to execute the instructions stored in the memory to control the transceiver to receive signals, and control the transceiver to send signals And when the processor executes the instructions stored in the memory, the communication device is caused to execute the method in any possible implementation manner of any one of the above aspects.
  • a computer program product comprising: computer program code, which, when the computer program code is executed by a computer, causes the computer to execute the method in the above aspects.
  • a computer-readable medium for storing a computer program, the computer program including instructions for performing the method in the above aspects.
  • a chip including a processor, for calling and running instructions stored in the memory from a memory, so that a communication device mounted with the chip executes the method in the above aspects.
  • another chip including: an input interface, an output interface, a processor, and a memory.
  • the input interface, the output interface, the processor, and the memory are connected by an internal connection path, and the processing
  • the device is used to execute the code in the memory, and when the code is executed, the communication device on which the chip is mounted is used to execute the method in the above aspects.
  • FIG. 1a is a schematic diagram of a communication system applied in an embodiment of this application.
  • FIG. 1b is a schematic diagram of another communication system applied in an embodiment of the present application.
  • 1c is a schematic diagram of another communication system applied in an embodiment of the present application.
  • FIG. 1d is a schematic diagram of another communication system applied in an embodiment of the present application.
  • FIG. 1e is a schematic diagram of another communication system applied in an embodiment of the present application.
  • FIG. 1f is a schematic diagram of another communication system applied in an embodiment of the present application.
  • FIG. 1g is a schematic diagram of another communication system applied in an embodiment of the present application.
  • FIG. 1h is a schematic diagram of another communication system applied in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another communication system applied in an embodiment of the present application.
  • FIG. 3 shows a schematic flowchart of a transmission control method according to an embodiment of the present application
  • FIG. 5a shows a schematic structural diagram 1 of a first message according to an embodiment of the present application
  • 5b shows a second schematic structural diagram of a first message according to an embodiment of the present application
  • 5c shows a schematic structural diagram 3 of a first message according to an embodiment of the present application.
  • FIG. 6 shows a logical channel sequence diagram of the logical channel priority sequence of the embodiment of the present application
  • FIG. 7 shows a schematic flowchart of yet another transmission control method according to an embodiment of the present application.
  • FIG. 8 shows a communication apparatus 800 applied to a first wireless access network device provided by an embodiment of the present application
  • FIG. 9 shows a communication device 900 provided in an embodiment of the present application and applied to a second wireless access network device
  • FIG. 10 shows a communication device 1000 provided in an embodiment of the present application and applied to a first wireless access network device
  • FIG. 11 shows a communication apparatus 1100 applied to a second wireless access network device provided by an embodiment of the present application.
  • the fifth-generation mobile communication system has imposed stricter requirements on all performance indicators of the network. For example, the capacity index has been increased by a factor of 1,000, wider coverage requirements, ultra-high reliability and ultra-low latency.
  • the capacity index has been increased by a factor of 1,000, wider coverage requirements, ultra-high reliability and ultra-low latency.
  • the use of high-frequency small station networking is becoming more and more popular. The high-frequency carrier propagation characteristics are poor, the attenuation due to occlusion is severe, and the coverage is not wide. Therefore, a large number of densely deployed small stations are required.
  • 5G introduces integrated access and backhaul (IAB) technology, its access link (AL) and backhaul link (backhaul link, BL) adopts wireless transmission scheme, which can avoid fiber deployment.
  • IAB integrated access and backhaul
  • AL access link
  • BL backhaul link
  • a node that supports integrated access and backhaul is called a wireless backhaul node, and the wireless backhaul node may also be called a relay node (RN) or an IAB node (IAB node) or wireless access.
  • RN relay node
  • IAB node IAB node
  • the IAB node can provide wireless access services for terminal devices.
  • the service data of the terminal device is transmitted by the IAB node to the host node through a wireless backhaul link.
  • the host node is also called IAB host (IAB donor) or host base station (donor gNodeB , DgNB).
  • the host base station may be an access network element with complete base station functions or a centralized unit
  • the host base station is connected to the core network element serving the terminal device through a wired link, for example, to the 5G core network (5G core (5GC), and provides a wireless backhaul function for the IAB node.
  • 5G core 5G core
  • An IAB node can include the functions of DU and mobile terminal (MT); among them, the function of MT mainly refers to the function of the mobile terminal, which terminates the Uu interface of the return link to the IAB host or other IAB nodes
  • the wireless interface layer; the function of the DU mainly refers to the access function for the terminal device or node served by the IAB node, that is, the function of the Uu interface; for example, the DU can provide wireless connection for the terminal device or the next-level IAB node Function.
  • IAB nodes can support multiple connections
  • multi-connectivity to cope with abnormalities that may occur in the backhaul link, for example, abnormalities such as link interruption or blockage and load fluctuations, and improve the reliability of transmission.
  • the above multi-connection may specifically be dual connectivity (DC), or may be more than two connections, which is not limited in the embodiment of the present application.
  • the IAB network supports multi-hop and multi-connection networking, therefore, there may be multiple transmission paths between the terminal device and the host base station.
  • On a path there is a certain hierarchical relationship between the IAB nodes and between the IAB node and the host base station serving the IAB node.
  • each IAB node regards the node that provides the backhaul service as the parent Nodes, accordingly, each IAB node can be regarded as a child node of its parent node.
  • the parent node of an IAB node is the next hop node of the IAB node on the uplink or the previous hop node of the downlink
  • the child node of an IAB node is the uplink node of the IAB node. The previous hop node on the link or the next hop node on the downlink.
  • Uplink next hop node (also called parent node): a node that provides wireless backhaul link resources.
  • Uplink last hop node also called child node: a node that uses the return link resource to transmit data to the network, or receives data from the network, where the network is on the core network or other access network Network, such as Internet, private network, etc.
  • An access link refers to a wireless link used by a terminal device to communicate with a node that provides access services (for example, an IAB node, a donor node, a donor base station, or a donor DU), including uplink transmission And the downlink transmission link.
  • the uplink transmission on the access link is also referred to as the uplink transmission of the access link, and the downlink transmission is also referred to as the downlink transmission of the access link.
  • the backhaul link refers to the wireless link used by a node to communicate with its parent node, including the uplink and downlink transmission links.
  • the uplink transmission on the backhaul link is also called the uplink transmission of the backhaul link, and the downlink transmission is also called the downlink transmission of the backhaul link.
  • the nodes include but are not limited to the aforementioned IAB nodes.
  • Path The entire route from the sending node to the receiving node.
  • the path consists of at least one link.
  • the link represents the connection between adjacent nodes.
  • F1 interface message the interface information between the CU and the DU; in the IAB scenario, the CU only exists in the host base station, and the relay node is considered to be a DU, and the CU can relay to the interface information between the CU and the DU The node sends configuration information.
  • Adaptation layer message the information carried in the adaptation layer; in the IAB protocol architecture, there will be an adaptation layer on each DU. By carrying information in the adaptation layer, it can be completed between different IAB nodes Information interaction.
  • FIG. 1a is a schematic diagram of a communication system applied in an embodiment of the present application
  • FIG. 1b is another communication system applied in an embodiment of the present application
  • 1c is a schematic diagram of another communication system applied in the embodiment of the present application
  • FIG. 1d is a schematic diagram of another communication system applied in the embodiment of the present application
  • FIG. 1e is another kind of communication applied in the embodiment of the present application.
  • FIG. 1f is a schematic diagram of another communication system applied in the embodiment of the present application
  • FIG. 1g is a schematic diagram of another communication system applied in the embodiment of the present application
  • FIG. 1h is another application system of the embodiment of the present application. Schematic diagram of another communication system.
  • the communication systems applicable to the embodiments of the present application include but are not limited to: narrow-band Internet of Things (NB-IoT) system, wireless local area network (WLAN) system, LTE system, The next-generation 5G mobile communication system or the communication system after 5G, such as new radio (NR) and device-to-device (D2D) communication systems.
  • NB-IoT narrow-band Internet of Things
  • WLAN wireless local area network
  • LTE Long-band Internet of Things
  • NR new radio
  • D2D device-to-device
  • each radio access network device regards the radio access network device providing the backhaul service as the parent node.
  • the communication system shown in FIG. 1a is an IAB system; the IAB system includes a host base station, IAB node 01, IAB node 02, and terminal equipment served by the IAB node 02; the parent node of IAB node 01 As the host base station, IAB node 01 is also the parent node of IAB node 02; this application refers to IAB node 01 as the next hop node of IAB node 02 in the upstream direction.
  • the uplink data packets of the terminal equipment served by IAB node 02 will be transmitted to the home base station via IAB node 02 and IAB node 01 in turn, and then sent by the home base station to the mobile gateway device.
  • the home base station sends the uplink data table to the 5G network
  • the user plane function entity (UPF) of the user the downlink data packet will be received by the host base station from the mobile gateway device, and then sent to the terminal device through IAB node 01 and IAB node 02 in sequence.
  • FIG. 1a there is an available path for data transmission between the terminal device and the host base station: terminal device ⁇ ⁇ IAB node 02 ⁇ ⁇ IAB node 01 ⁇ ⁇ host base station.
  • the communication system shown in FIG. 1b is another IAB system;
  • the IAB system includes a host base station, IAB node 01, IAB node 02, IAB node 03, and IAB node 02 and IAB node 03. Terminal equipment;
  • the parent node of IAB node 01 is the host base station, the parent node of IAB node 02 is the host base station;
  • IAB node 01 is the parent node of IAB node 03, and IAB node 02 is the parent node of IAB node 03. Therefore, IAB node 03 has two parent nodes.
  • IAB node 03 includes two next-hop nodes on the uplink, and the uplink data packet that needs to be sent via IAB node 03 can be transmitted to the host base station through two paths.
  • IAB node 01 is also called the first next hop node of IAB node 03 in the upstream direction
  • IAB node 02 is also called the second next hop node of IAB node 03 in the upstream direction.
  • the uplink data packet of the terminal device can be transmitted to the home base station through one or more IAB nodes, and then sent by the home base station to the mobile gateway device, and the downlink data packet will be received by the home base station from the mobile gateway device, and then sent to the IAB node Terminal Equipment.
  • path 1 terminal device ⁇ ⁇ IAB node 03 ⁇ ⁇ IAB node 01 ⁇ ⁇ host base station
  • path 2 terminal device ⁇ ⁇ IAB Node 03 ⁇ ⁇ IAB node 02 ⁇ ⁇ host base station.
  • the communication system shown in FIG. 1c is another IAB system;
  • the IAB system includes a host base station, IAB node 01, IAB node 02, and terminal devices served by IAB node 01 and IAB node 02;
  • IAB The parent node of node 01 is the host base station, and the parent node of IAB node 02 is the host base station.
  • the uplink data packet of the terminal device can be transmitted to the home base station through one or more IAB nodes, and then sent by the home base station to the mobile gateway device, and the downlink data packet will be received by the home base station from the mobile gateway device, and then sent to the IAB node Terminal Equipment.
  • path 1 terminal device ⁇ ⁇ IAB node 01 ⁇ ⁇ host base station
  • path 2 terminal device ⁇ ⁇ IAB node 02 ⁇ ⁇ host Base station.
  • the communication system shown in FIG. 1d is another IAB system;
  • the IAB system includes a host base station, IAB node 01, IAB node 02, IAB node 03, and IAB node 01 and IAB node 02. Terminal equipment;
  • the parent node of IAB node 03 is the host base station;
  • IAB node 03 is the parent node of IAB node 02, and IAB node 03 is also the parent node of IAB node 01.
  • the uplink data packet of the terminal device can be transmitted to the home base station through one or more IAB nodes, and then sent by the home base station to the mobile gateway device, and the downlink data packet will be received by the home base station from the mobile gateway device, and then sent to the IAB node Terminal Equipment.
  • path 1 terminal device ⁇ ⁇ IAB node 02 ⁇ ⁇ IAB node 03 ⁇ ⁇ host base station
  • path 2 terminal device ⁇ ⁇ IAB Node 01 ⁇ ⁇ IAB node 03 ⁇ ⁇ host base station.
  • the communication system shown in FIG. 1e is another IAB system; the IAB system includes a host base station, IAB node 01, and terminal equipment served by IAB node 01; the parent node of IAB node 01 is the host base station .
  • the uplink data packet of the terminal device can be transmitted to the home base station through one or more IAB nodes, and then sent by the home base station to the mobile gateway device, and the downlink data packet will be received by the home base station from the mobile gateway device, and then sent to the IAB node Terminal Equipment.
  • path 1 terminal device ⁇ ⁇ host base station
  • path 2 terminal device ⁇ ⁇ IAB node 01 ⁇ ⁇ host base station.
  • the communication system shown in FIG. 1f is another IAB system;
  • the IAB system includes a host base station, IAB node 01, IAB node 02, IAB node 03, and IAB node 03 and IAB node 02. Terminal equipment;
  • the parent node of IAB node 01 is the host base station, the parent node of IAB node 02 is the host base station;
  • IAB node 01 is the parent node of IAB node 03.
  • the uplink data packet of the terminal device can be transmitted to the home base station through one or more IAB nodes, and then sent by the home base station to the mobile gateway device, and the downlink data packet will be received by the home base station from the mobile gateway device, and then sent to the IAB node Terminal Equipment.
  • path 1 terminal device ⁇ ⁇ IAB node 02 ⁇ ⁇ host base station
  • path 2 terminal device ⁇ ⁇ IAB node 03 ⁇ ⁇ IAB Node 01 ⁇ ⁇ host base station.
  • the communication system shown in FIG. 1g is another IAB system;
  • the IAB system includes a host base station, IAB node 01, IAB node 02, IAB node 03, IAB node 04, and IAB node 04.
  • Terminal equipment the parent node of IAB node 01 is the host base station;
  • IAB node 01 is the parent node of IAB node 02, and
  • IAB node 01 is the parent node of IAB node 03;
  • IAB node 02 is the parent node of IAB node 04, IAB node 03 is the parent node of IAB node 04.
  • the uplink data packet of the terminal device can be transmitted to the home base station through one or more IAB nodes, and then sent by the home base station to the mobile gateway device, and the downlink data packet will be received by the home base station from the mobile gateway device, and then sent to the IAB node Terminal Equipment.
  • IAB node Terminal Equipment there are two available paths for data transmission between the terminal device and the host base station, path 1: terminal device ⁇ ⁇ IAB node 04 ⁇ ⁇ IAB node 02 ⁇ ⁇ IAB node 01 ⁇ ⁇ host base station, path 2: Terminal equipment ⁇ ⁇ IAB node 04 ⁇ ⁇ IAB node 03 ⁇ ⁇ IAB node 01 ⁇ ⁇ host base station.
  • the communication system shown in FIG. 1h is another IAB system;
  • the IAB system includes a host base station, IAB node 01, IAB node 02, IAB node 03, IAB node 04, IAB node 05, and IAB Terminal device 1 and terminal device 2 served by node 04;
  • the parent node of IAB node 05 is the host base station;
  • IAB node 05 is the parent node of IAB node 01;
  • IAB node 01 is the parent node of IAB node 02;
  • IAB node 02 is IAB
  • the parent node of node 03, IAB node 02 is the parent node of IAB node 04.
  • the uplink data packet of the terminal device can be transmitted to the home base station through one or more IAB nodes, and then sent by the home base station to the mobile gateway device, and the downlink data packet will be received by the home base station from the mobile gateway device, and then sent to the IAB node Terminal Equipment.
  • terminal device 1 there are two available paths for data transmission between terminal device 1 and the host base station: terminal device 1 ⁇ ⁇ IAB node 03 ⁇ ⁇ IAB node 02 ⁇ ⁇ IAB node 01 ⁇ ⁇ IAB node 05 ⁇ ⁇ host base station ; There are two available paths for data transmission between terminal equipment 2 and the host base station: terminal equipment 2 ⁇ ⁇ IAB node 03 ⁇ ⁇ IAB node 02 ⁇ ⁇ IAB node 01 ⁇ ⁇ IAB node 05 ⁇ ⁇ host base station.
  • the IAB network shown in Figures 1a-1h is just an example.
  • the host node and the IAB node under another host node Form a dual connection to provide services for terminal equipment, etc., no longer list them here.
  • FIG. 2 is a schematic diagram of another communication system applied in an embodiment of the present application.
  • the communication system includes a core network device, a radio access network device, and at least one terminal device.
  • the terminal device is connected to the wireless access network device in a wireless manner
  • the wireless access network device is connected to the core network device in a wireless or wired manner.
  • the core network device and the wireless access network device may be independent and different physical devices, or they may integrate the functions of the core network device and the logical function of the wireless access network device on the same physical device, or may be a physical device It integrates the functions of part of the core network equipment and part of the functions of the wireless access network equipment.
  • the terminal device may be fixed or mobile. Fig.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in Fig. 2.
  • the embodiments of the present application do not limit the number of core network devices, wireless access network devices, and terminal devices included in the communication system.
  • the communication system shown in FIGS. 1a-2 is also a wireless relay communication system.
  • the wireless access network device is an access device in which the terminal device accesses the wireless relay communication system in a wireless manner
  • the wireless access network device may include, but is not limited to: a base station NodeB, an evolved base station eNodeB, and 5G wireless
  • the specific technology adopted by the embodiments of the present application to the wireless access network equipment such as the base station in the communication system, the base station in the future wireless relay communication system, or the access node in the wireless network (wireless-fidelity, WiFi) system, etc.
  • the specific equipment shape is not limited.
  • the terminal device may also be called a terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), or the like.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (virtual reality, VR) terminal devices, augmented reality (augmented reality, AR) terminal devices, industrial control (industrial control) ), Wireless terminals in self-driving, self-driving, wireless terminals in remote surgery, wireless terminals in smart grids, and wireless in transportation safety Terminals, wireless terminals in smart cities (smart cities), wireless terminals in smart homes (smart homes), etc.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • wireless access network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water; it can also be deployed on airplanes, balloons and artificial satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the wireless access network device and the terminal device.
  • the embodiments of the present application may be applicable to downlink signal transmission, uplink signal transmission, and device-to-device (D2D) signal transmission.
  • the sending device is a wireless access network device
  • the corresponding receiving device is a terminal device.
  • the sending device is a terminal device
  • the corresponding receiving device is a wireless access network device.
  • D2D signal transmission the sending device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the embodiments of the present application do not limit the signal transmission direction.
  • the communication between the radio access network device and the terminal device and between the terminal device and the terminal device can be through licensed spectrum (licensed spectrum) or unlicensed spectrum (unlicensed spectrum). Spectrum and unlicensed spectrum for communication.
  • Communication between the wireless access network equipment and the terminal equipment and between the terminal equipment and the terminal equipment can be carried out through the spectrum below 6 gigahertz (GHz), can also be carried out through the spectrum above 6GHz, and can also be used simultaneously below 6GHz To communicate with the spectrum above 6GHz.
  • GHz gigahertz
  • the spectrum resources used between the radio access network device and the terminal device are not limited.
  • the downlink data transmission of each hop is scheduled by the IAB node itself, that is, the base station (or DU) in each IAB node schedules the MT part of the child node to achieve downlink data transmission.
  • the base station (or DU) in IAB node 01 schedules the MT in IAB node 02 for downlink data transmission
  • the base station (or DU) in IAB node 02 schedules the MT in IAB node 04 for downlink data transmission .
  • IAB node 01 cannot sense the downlink buffer status of the base station (or DU) in IAB node 02, and IAB node 01 will continue to report to IAB node 02 Sending downlink data, which in turn causes congestion in the downlink buffer of the base station (or DU) in the IAB node 02. Continued congestion will further cause data to be discarded over time and cause packet loss.
  • the uplink data transmission of each hop is scheduled by the parent node, that is, the base station (or DU) in each IAB node schedules the MT part of the child node to achieve uplink data transmission.
  • the base station (or DU) in IAB node 01 schedules the MT in IAB node 02 for uplink data transmission
  • the base station (or DU) in IAB node 02 schedules the MT in IAB node 04 for uplink data transmission.
  • the transmission performance of the data packet on the corresponding routing path will be affected, especially the delay performance.
  • IAB node 02 can reduce / stop the upstream scheduling of IAB node 04 to solve the problem of IAB node 02. Congestion problem, but at this time the delay performance of the upstream data packet on the corresponding routing path will be affected, and the experiment for some low-latency demand services will not be satisfied.
  • FIG. 3 shows a schematic flowchart of a transmission control method according to an embodiment of the present application.
  • the method can be applied to the communication systems shown in FIGS. 1a-2, but the embodiments of the present application are not limited thereto.
  • the wireless relay communication system in the embodiment of the present application includes a wireless access network device and a host base station, and the wireless access network device has multiple next-hop nodes on the downlink.
  • the first radio access network device generates a first message.
  • the first radio access network device sends a first message to the second radio access network device, where the first message includes at least one reporting granularity and downlink status information corresponding to each of the at least one reporting granularity.
  • the first wireless access network device is a relay node in a wireless relay communication system
  • the second wireless access network device is a parent node or host base station of the first wireless access network device in the wireless relay communication system.
  • the reporting granularity is one or more of the following: a terminal device, a bearer service of a terminal device, a relay node, and a bearer service of a relay node; wherein, a relay node is The wireless access network device of a message, or the child node of the wireless access network device sending the first message, or the wireless access network device accessed by the terminal device.
  • the downlink state information includes at least one state value, or an index value of each state value in the at least one state value; the state value is any one of the following: the remaining amount of the downlink buffer, the downlink buffer occupation Ratio, expected downlink transmission rate, congestion level, downlink buffer status difference, and downlink buffer amount combination; the downlink buffer status difference is the difference between the status value and the status value last reported by the first radio access network device,
  • the combination of downlink buffers includes the total downlink buffer and the current downlink buffer.
  • the first wireless access network device is a relay node in the wireless relay communication system
  • the second wireless access network device is the host base station in the wireless relay communication system.
  • a radio access network device can be directly connected to the host base station, or connected to the host base station through one or more other relay nodes; during the communication process, the first radio access network device can generate the first message in real time.
  • a message includes N reporting granularities and downlink status information corresponding to each of the N reporting granularities, where N is a positive integer greater than or equal to 1; then, the first radio access network device will generate the first A message is sent to the second radio access network device serving as the host base station.
  • the first wireless access network device and the second wireless access network device are a relay node in the wireless relay communication system, and the second wireless access network device is the first wireless access The parent node of the network device; during the communication process, the first wireless access network device can generate the first message in real time.
  • the first message includes N reporting granularities, and each of the N reporting granularities corresponds to Downlink status information, where N is a positive integer greater than or equal to 1; then, the first radio access network device sends the generated first message to the second radio access network device that is the parent node.
  • the first wireless access network device is in a congested state, or the first wireless access network device is about to be congested.
  • the downlink status information corresponding to each reported granularity may be M status values, where M is a positive integer greater than or equal to 1.
  • the first radio access network device can determine any one of the following as a status value: the remaining amount of the downlink buffer (buffer), the downlink buffer occupancy ratio, the expected downlink transmission rate, the congestion level, the downlink buffer status difference, the downlink Buffer volume combination; where the desired downlink transmission rate refers to the transmission rate at which the second radio access network device wishes to receive data from the downlink direction, and it can also be considered that the second radio access network device wants its parent node to schedule downlink Data transmission rate; congestion level refers to the level corresponding to the current data congestion degree of the first radio access network device; the downlink buffer status difference refers to the current status value and the first radio access network device last reported The difference between the status values of the, for example, the downlink buffer status difference is between the remaining amount of the current downlink buffer of the first radio access network device and the remaining amount of the downlink buffer reported by the first radio access network device
  • the first wireless access network device needs to perform quantization processing for each state value, so that each state value can have an index value under different values; the first wireless access network device is The mapping relationship between the index value and the corresponding state value is pre-configured, or the second radio access network device sends the mapping relationship between the index value and the corresponding state value to the first radio access network device.
  • a mapping relationship is configured / preconfigured for the remaining amount of the downlink cache.
  • the representation form may be a mapping table, which includes different values of the remaining amount of the downlink cache and corresponds to each value. Index value; configure / pre-configure a mapping relationship for the downlink buffer occupancy ratio.
  • the representation form may be a mapping table, which includes different values of the downlink buffer occupancy ratio, corresponding to each value Index value of the configuration; a mapping relationship is configured / pre-configured for the downlink cache state difference.
  • the representation form may be a mapping table, which includes different values of the downlink cache state difference and each The index value corresponding to the value;
  • a mapping table is configured / preconfigured for the remaining amount of the downlink buffer, and the mapping table includes different value intervals of the remaining amount of the downlink buffer and the index value corresponding to each value interval. Among them, the index value can also be This is called the remaining amount of quantized downlink buffer.
  • the above reporting granularity may be any one or more of the following types: downlink state information of a terminal device, downlink state information of a bearer service of a terminal device, downlink state information of a relay node, and a relay A node's downlink status information carrying services.
  • the terminal device refers to the terminal device served by the wireless access network device in the wireless relay communication system; the downlink state information may also be referred to as downlink cache state information.
  • the above one relay node may be a wireless access network device sending the first message; or, the above one relay node may be a child node of the wireless access network device sending the first message; or, the above one relay node may be Connected to the wireless access network device accessed by the terminal device in the wireless relay communication system.
  • the first radio access network device sets a buffer for downlink transmission data for each terminal device, and one downlink status information is the first radio
  • the downlink state information of one terminal device in the access network device for example, the downlink state information of the terminal device 1, and the downlink state information of the terminal device 2.
  • the reporting granularity is the downlink status information of a bearer service of a terminal device. Since each terminal device usually has multiple bearer services, each bearer service is directed to a service requirement or multiple similar service requirements.
  • the first radio access network device sets a buffer of downlink transmission data for each bearer service of each terminal device, and then obtains a downlink state information for a bearer service of a terminal device in the first radio access network device
  • the downlink status information for example, the downlink status information of the bearer service 1 of the terminal device 1, and the downlink status information of the bearer service 1 of the terminal device 2.
  • the first radio access network device sets a buffer for downlink transmission data for each relay node, and one downlink status information is the first radio access network device
  • the downlink status information of one relay node in the relay node for example, the downlink status information of the relay node 1 and the downlink status information of the relay node 2.
  • the reporting granularity is the downlink status information of a bearer service of a relay node. Since each relay node usually has multiple bearer services, each bearer service is directed to the needs of one service or multiple similar services.
  • the first radio access network device sets a buffer for downlink transmission data for each bearer service of each relay node, and then obtains a downlink state information for a relay node in the first radio access network device A downlink status information carrying a service service, for example, the downlink status information of the relay service 1 carrying the service 1, and the downlink status information of the relay node 2 carrying the service 1.
  • one downlink status information is the downlink state information of the wireless access network device sending the first message
  • one downlink status information is the downlink status information of the first radio access network device; for example, taking FIG. 1h as an example, the relay node 01 has a congestion in its downlink cache, which can be determined to be between relay node 01 and relay node 02 If congestion occurs in the downlink buffer, the relay node 01 sends the downlink status information to the relay node 05 as the downlink status information of the relay node 01.
  • the reporting granularity is a downlink status information of a relay node carrying services, and when the one relay node in the reporting granularity is a wireless access network device sending a first message, a downlink status information is sending The downlink status information of a bearer service of the wireless access network device of the first message.
  • the downlink buffer of the relay node 01 is congested, and it can be determined that the downlink buffer between the relay node 01 and the relay node 02 appears If congestion occurs, the relay node 01 sends the downlink state information to the relay node 05 as the downlink state information of the relay node 01 carrying the service 1.
  • one downlink state information is a child node of the first wireless access network device Downlink status information; for example, taking Figure 1h as an example, the downlink buffer of relay node 02 is congested.
  • relay node 02 has two child nodes, namely relay node 03 and relay node 04 At this time, it can be determined that the downlink buffer between the relay node 02 and the relay node 03 is congested, and the relay node 02 sends the downlink status information to the relay node 01 as the downlink status information corresponding to the relay node 03.
  • the reporting granularity is a downlink status information of a relay node carrying services, and when a relay node in the reporting granularity is a child node of the wireless access network device sending the first message, a downlink status information is A message of the downlink state information of the child node of the wireless access network device carrying services.
  • the relay node 02 has a congested downlink buffer.
  • the relay node 02 For the relay node 02, the relay node 02 has two Child nodes, namely relay node 03 and relay node 04, at this time it can be determined that the downstream buffer between relay node 02 and relay node 03 is congested, and it is determined that the bearer service 1 of relay node 03 is congested Then, the relay node 02 sends the downlink status information to the relay node 01 as the downlink status information corresponding to the bearer service 1 of the relay node 03.
  • the relay node 01 when a relay node in the reporting granularity is connected to a wireless access network device accessed by a terminal device in a wireless relay communication system, taking FIG. 1h as an example, the downlink cache of relay node 01 Congestion occurs, but for the relay node 01, the relay node 01 can only perceive that the data is sent to the access relay node 03 according to the target node information of the routing table, then the relay node 01 reports to the relay node 05 It is the downlink state information of the relay node 03 in the relay node 01.
  • the reporting granularity is a downlink status information of a relay node carrying services, and when a relay node in the reporting granularity is a wireless access network device connected to a terminal device in a wireless relay communication system,
  • One downlink status information is the downlink status information of the bearer service of the wireless access network device connected to the terminal device connected to the wireless relay communication system.
  • the relay node 01 has a congested downlink buffer.
  • the relay node 01 For the relay node 01, if it can be determined that the downlink buffer sent to the relay node 03 is congested, and it is determined that the bearer service 1 sent to the relay node 03 is congested, the relay node 01 sends a request to the relay node 05 Sending the downlink status information is the downlink status information corresponding to the bearer service 1 of the relay node 03.
  • the bearer service refers to a collection of services with specific quality of service (QoS) attributes.
  • the bearer service is a bearer of packet data convergence protocol (packet data convergence protocol, PDCP)
  • the service or, the bearer service is a specific data flow, or the bearer service is one or more data packets belonging to a flow (for example, a slice of data flow), or the bearer service is the radio link control layer (radio link control, RLC) layer corresponding to a logical channel transmission.
  • the bearer service can be identified by the bearer service identifier. In different scenarios, the bearer service identifier can be different.
  • the bearer service refers to the bearer service corresponding to the PDCP, for example, the bearer service is data radio bearer (DRB), the bearer service ID refers to the same PDCP bearer service ID; if the bearer service refers to the For services on the RLC backhaul channel (RLC) or RLC bearer services, the bearer service identifier refers to the RLC channel identifier or RLC bearer service identifier; if the bearer service refers to media access For services on the logical channel of the medium access control (MAC), the bearer service identifier refers to the logical channel identifier (LCID).
  • DRB data radio bearer
  • the bearer service ID refers to the same PDCP bearer service ID
  • the bearer service identifier refers to the RLC channel identifier or RLC bearer service identifier
  • the bearer service identifier refers to media access For services on the logical channel of the medium access control (MAC), the bearer service identifier refers to the
  • the first message is sent to the second wireless access network device through the first wireless access network device, and the first message includes at least one reporting granularity and a downlink corresponding to each of the at least one reporting granularity.
  • Status information the second wireless access network device is a parent node or a home base station of the first wireless access network device in the wireless relay communication system.
  • the first radio access network device feeds back the downlink status information to the second radio access network device, so that the parent node or the host base station of the first radio access network device can timely learn the downlink buffer status of the first radio access network device Information, to know the congestion status of the downlink cache, so that the parent node or the host base station of the first radio access network device can control and process the downlink in a timely manner, complete the flow control processing in the IAB scenario, and effectively avoid link interruption, etc.
  • Downstream congestion caused by factors can prevent packet loss and delay of downstream data and ensure that terminal devices receive data in a timely manner.
  • FIG. 4 shows a schematic flowchart of another transmission control method according to an embodiment of the present application.
  • the method can be applied to the communication systems shown in FIGS. 1a-2, but the embodiments of the present application are not limited thereto.
  • the wireless relay communication system in the embodiment of the present application includes a wireless access network device and a host base station, and the wireless access network device has multiple next-hop nodes on the downlink.
  • the first radio access network device sends first indication information to the second radio access network device, where the first The indication information is used to indicate the mapping relationship between the index value and the status value.
  • the first message further includes first indication information.
  • the first radio access network device may first send first indication information to the second radio access network device, where the first indication information is used to indicate the mapping relationship between the index value and the status value; or, step S204 In the first message, the first indication information is also included. Then, the second radio access network device can determine the mapping relationship currently used by the first radio access network device according to the first indication information; further in step S205, the second radio access network device receives the first message After that, the second radio access network device may determine the index value corresponding to the status value according to the mapping relationship.
  • the mapping relationship may be one mapping table or multiple mapping tables. Due to the large amount of traffic carried by the return link of the relay node, the existing 38321 mapping table cannot meet the requirements of the scenario; and in multi-hop links, the traffic volume of links with different hop counts is larger, Furthermore, multiple mapping tables need to be defined to be applied to scenarios with different business volumes. In this embodiment, multiple mapping tables can be added to record the mapping between the index value and the status value in the backhaul link with different hop counts in the relay network, or only by adding one mapping table. It is used to record the mapping between the index value and the status value in the return link of the relay network.
  • the first radio access network device may send the first indication through the second radio access network device Information, the first indication information is used to indicate the mapping relationship between the index value and the status value, for example, the first indication information is used to indicate that one of a variety of mapping relationships is used between the index value and the status value Species.
  • Table 2 is an example of the mapping table in this embodiment, and Table 2 shows the mapping between 32 types of cache size levels corresponding to the 5-bit cache size field.
  • Index is the index value, which also represents the above-mentioned cache size field
  • BS value is the state value of the downlink state (buffer size, BS), which also represents the above-mentioned cache size level.
  • the buffer size field is not limited to 5 bits.
  • This step may be performed before step S204.
  • this step may be performed before step S202, or may be performed after step S202, or may be performed after step 203.
  • the second radio access network device sends a second message to the first radio access network device, where the second message includes a reporting method and / or reporting granularity.
  • the first wireless access network device is a relay node in a wireless relay communication system
  • the second wireless access network device is a parent node or host base station of the first wireless access network device in the wireless relay communication system.
  • the second message is any one of the following: a radio resource control RRC message, an F1 interface message, and an adaptation layer message.
  • the second message is a MAC CE message or an adaptation layer message.
  • the reporting method is one or more of the following: the value characterized by the downlink state information is greater than the first preset threshold, the value characterized by the downlink state information is less than the second preset threshold, and the preset time Point; wherein, the preset time point can be adjusted when the value represented by the downlink status information meets the preset condition.
  • the first wireless access network device is a relay node in the wireless relay communication system
  • the second wireless access network device is the host base station in the wireless relay communication system.
  • a radio access network device can be directly connected to the host base station or indirectly connected to the host base station through one or more relay nodes; or, in a wireless relay communication system, the first radio access network device and the second radio
  • the access network device is a relay node in the wireless relay communication system
  • the second wireless access network device is the parent node of the first wireless access network device.
  • the second radio access network device indicates the reporting manner and / or reporting granularity of the downlink state information of the first radio access network device.
  • scenario 1 the first wireless access network device is a relay node in the wireless relay communication system
  • the second wireless access network device is the host base station in the wireless relay communication system
  • the first wireless access The network device and the host base station may be directly connected, or may be indirectly connected to the host base station through one or more relay nodes; then the second radio access network device sends an RRC message, an F1 interface message to the first radio access network device, Any one of the adaptation layer messages to indicate the reporting method and / or reporting granularity to the first radio access network device.
  • Scenario 2 In the wireless relay communication system, the first wireless access network device and the second wireless access network device are both a relay node in the wireless relay communication system, and the second wireless access network device is the first wireless The parent node of the access network device; then the second wireless access network device sends a MAC CE message or an adaptation layer message to the first wireless access network device to indicate the reporting method and / or to the first wireless access network device Report granularity.
  • Sending the configuration information of the reporting granularity to the first wireless access network device through the second wireless access network device may indicate the reporting granularity used when the first wireless access network device sends the downlink status information, and the second wireless access network device
  • the network access device can determine the reporting granularity corresponding to the downlink status information.
  • the second radio access network device may indicate that the first radio access network device may use the reporting granularity, for example, the downlink status information reported by the first radio access network device is based on a terminal device or a relay A node, or, may use two reporting granularities of a terminal device and a relay node.
  • the downlink status information reported by the first wireless access network device is based on a bearer service of a relay node, or a bearer service of a terminal device, or based on a child node of the wireless access network device sending the first message , Or use one of the above multiple reporting granularities.
  • the first radio access network device when the second radio access network device configures the above reporting granularity for the first radio access network device, the first radio access network device may be determined according to the reporting capability of the first radio access network device The reporting granularity used. For example, the first radio access network device sends the management type of the downlink data cache of the first radio access network device to the second radio access network device, where the management type of the downlink data cache is whether to share the cache, and whether to share Cache refers to whether the downlink transmission data of the first radio access network device and different sub-nodes or terminal devices share a data storage cache.
  • the second radio access network device may determine that the first access network device supports one of the terminal devices The reporting granularity of the downlink status information of the bearer service; when the management type of the downlink data cache is that the downlink data of different terminal devices is independently stored in the downlink cache and the downlink data of different bearer services of the same terminal device is shared in the downlink cache, The second radio access network device may determine that the first access network device does not support the reporting granularity of a terminal device carrying downlink status information of a service, but determines that the first access network device supports the reporting granularity of a terminal device downlink status information When the management type of the downlink data cache is that the downlink data of different bearer services of different relay nodes is independently stored in the downlink cache, the second radio access network device may determine that the first access network device supports one bearer of one relay node The reporting granularity of the downlink status
  • the reporting granularity sent by the second wireless access network device to the first wireless access network device may be a reporting granularity identifier.
  • the second wireless access network device may send the reporting granularity to the first wireless access network device
  • the index value corresponding to the type, each reporting granularity is in one-to-one correspondence with each index value; when the second wireless access network device indicates that the first wireless access network device can adopt multiple reporting granularities, the second wireless The access network device may use bitmap to indicate the first wireless access network device. For example, bitmap11001 indicates that the first wireless access network device may use the first, second, and fifth reporting granularities. Each bit and each bit in the bitmap One reporting granularity is one-to-one correspondence.
  • the reporting method sent by the second wireless access network device to the first wireless access network device may indicate the reporting method used when the first wireless access network device sends the downlink status information.
  • the reporting method may be an event-triggered method or a periodic reporting method.
  • the second wireless access network device may instruct the first wireless access network device to use one or more of the following reporting methods: required
  • the value characterized by the reported downlink status information is greater than the first preset threshold, and the value characterized by the downlink status information to be reported is less than the second preset threshold, time point; and, at the preset time point in the downlink state When the value represented by the information meets the preset condition, the above time point can be adjusted.
  • the second radio access network device configures an event trigger threshold for downlink state information. For example, if the reporting method is that the downlink buffer occupancy ratio is greater than or equal to the preset threshold, the first wireless access network device, when determining that the downlink buffer occupancy ratio is greater than or equal to the preset threshold, sends a report to the second wireless access network The device sends the first message; or, the reporting method is that the remaining amount of the downlink buffer is less than or equal to the preset threshold, when the first radio access network device determines that the remaining amount of the downlink buffer is less than or equal to the preset threshold , Send the first message to the second wireless access network device.
  • the reporting method is that the downlink buffer occupancy ratio is greater than or equal to the preset threshold
  • the first wireless access network device when determining that the downlink buffer occupancy ratio is greater than or equal to the preset threshold, sends a report to the second wireless access network The device sends the first message; or, the reporting method is that the remaining amount of the downlink buffer is less than or equal to the prese
  • the second radio access network device configures a reporting period for the downlink status information, so that the first radio access network device sends the first message to the second radio access network device according to the time point indicated by the reporting period. For example, if the reporting method is to set a timer, the first wireless access network device determines that the timer times out, and determines to send the first message to the second wireless access network device, and the first wireless access network device After reporting the first message, the timer is reset.
  • the second radio access network device configures a reporting method that combines the event trigger threshold and the reporting period for the downlink status information.
  • the first radio access network device may determine whether to reset the reporting period according to the event triggering threshold.
  • the two reporting methods of the event triggering threshold and the reporting period are independently decoupled, and at this time, the next periodic reporting opportunity is on The time domain interval of a periodic reporting opportunity is the configured reporting period, and the time indicated by the reporting period will not be reset.
  • the first radio access network device may reset the time point indicated by the reporting period according to the event triggered by the event trigger threshold; or, the first radio access network device may affect the event trigger threshold During the reporting period, the time point indicated by the reporting period is adjusted according to the event triggered by the event trigger threshold, that is, the time interval of the next periodic reporting opportunity at the last periodic reporting opportunity or event triggered reporting opportunity is the configured reporting cycle.
  • the second radio access network device instructs the first radio access network device to send the first message to the second radio access network device every 10 milliseconds, then the first radio access network device respectively at the 10th millisecond and the 20th Milliseconds and 30th milliseconds respectively send the first message to the second radio access network device; at this time, the first radio access network device determines that the downlink buffer occupancy ratio is greater than or equal to the preset threshold at the 35th millisecond, then The first wireless access network device determines to adjust the time point indicated by the reporting period, the first wireless access network device determines that the timer is reset to zero, and then re-times, the first wireless access network device may be between the 45th millisecond and the 55th millisecond When sending the first message to the second wireless access network device respectively, the reporting cycle interval at this time is still 10 milliseconds.
  • the first radio access network device determines the reporting granularity corresponding to the first message according to at least one of the route management type, the cache management type, and the size of the transmission resource allocated by the first radio access network device to the first message.
  • the first wireless access network device may send the first message to the second wireless access network device according to the reporting granularity indicated by the second wireless access network device in S202.
  • the first wireless The access network equipment needs to consider the current situation in order to select an appropriate reporting granularity.
  • the second wireless access network device indicates multiple reporting granularities that the first wireless access network device can select
  • which reporting granularity the first wireless access network device specifically selects may be based on the route management type and cache
  • the management type is determined by at least one of the size of the transmission resource allocated by the first radio access network device for the first message.
  • the first wireless access network device may use the reporting granularity based on the child node of the wireless access network device that sent the first message to perform downlink Reporting of status information.
  • the first wireless access network device may use the reporting granularity based on one terminal device to perform downlink status information Of the report.
  • the first wireless access network device may adopt a relay node
  • the reporting granularity is used to report downlink status information.
  • the first access network device supports the reporting granularity of the downlink status information of a bearer service of a terminal device; when the downlink data When the management type of the cache is that the downlink data of different terminal devices is independently stored in the downlink cache and the downlink data of different bearer services of the same terminal device is shared and cached in the downlink cache, the first access network device does not support one of the terminal devices The reporting granularity of the downlink status information of the bearer service, but the reporting granularity of the downlink status information of a terminal device is supported; An access network device supports the reporting granularity of the downlink status information of a relay node carrying a service; when the management type of the downlink data cache is that the downlink data of different relay nodes is independently stored in the downlink cache and the same relay node's The downlink data of different bearer services When the shared cache line buffer, the first
  • the first radio access network device can determine the available reporting granularity according to the resource size allocated for the first message. For example, when the transmission resources used to transmit downlink status information are not sufficient to transmit all fine-grained downlink status information, or when the number of remaining padding bits in the uplink scheduling resources is insufficient to transmit all fine-grained downlink status information At this time, the first radio access network device may use a relatively coarse granularity for reporting the downlink status information.
  • the first radio access network device may be based on the current number of remaining resources and the supported reporting granularity type, Select a reporting granularity with a coarser granularity; if the remaining transmission resources are not sufficient to transmit all types of downlink status information supported by the reporting granularity, the first radio access network device selects a reporting granularity it supports, Report part of the downlink status information, and report the downlink status information to be transmitted as much as possible according to the size of the remaining resources.
  • the first radio access network device generates a first message.
  • step S101 in FIG. 3 Exemplarily, for this step, reference may be made to step S101 in FIG. 3, and details are not described again.
  • the first radio access network device sends a first message to the second radio access network device, where the first message includes at least one reporting granularity and downlink status information corresponding to each reporting granularity in the at least one reporting granularity.
  • the first message is any one of the following: a radio resource control RRC message, an F1 interface message, and an adaptation layer message.
  • the first message is a MAC CE message or an adaptation layer message.
  • the reporting granularity is a reporting granularity identifier; each reporting granularity identifier and the downstream status information corresponding to each reporting granularity identifier in the first message are sequentially arranged, and each reporting granularity identifier and each reporting The downlink status information corresponding to the granularity identifier is adjacent to each other; or, after at least one reported granularity identifier in the first message is sequentially arranged, each downlink state information is sequentially arranged.
  • step S205 includes:
  • the first radio access network device sends a first message to the second radio access network device according to a preset logical channel priority order, where the preset logical channel priority order is used to indicate the MAC corresponding to the first message Priority order with other logical channels.
  • the first wireless access network device when the first wireless access network device sends the first message to the second wireless access network device, scenario 1: the first wireless access network device is a relay node in the wireless relay communication system, the first 2.
  • the wireless access network device is the host base station in the wireless relay communication system.
  • the first wireless access network device and the host base station may be directly connected or indirectly connected to the host base station through one or more relay nodes;
  • a radio access network device sends any one of an RRC message, an F1 interface message, and an adaptation layer message to the second radio access network device to send the first message to the second radio access network device.
  • Scenario 2 In the wireless relay communication system, the first wireless access network device and the second wireless access network device are both a relay node in the wireless relay communication system, and the second wireless access network device is the first wireless The parent node of the access network device; then the first wireless access network device sends a MAC message or an adaptation layer message to the second wireless access network device to send the first message to the second wireless access network device.
  • the reporting granularity of the first radio access network device sending to the second radio access network device may be a reporting granularity identifier.
  • the reporting granularity identifier may be a terminal equipment identifier and a relay node identifier, where the terminal equipment identifier is, for example, an international mobile subscriber identity (IMSI), a cell radio network temporary identifier (cell radio network temporary identity) , C-RNTI), international mobile equipment identity (IMEI), temporary mobile equipment identity (temporary mobile subscriber identity, TMSI), terminal equipment network protocol (internet protocol, IP) address, and relay node identity such as It is the cell ID (cell ID), relay node (relay node, RN) ID, IAB node DU ID, IAB node MT ID, E-UTRAN cell global ID (E-UTRAN cell global identifier (ECGI), NR NR cell global identifier (NCGI), IP address of the IAB node, IP address of the DU of the IAB node
  • IMSI
  • the reporting granularity identifier when the reporting granularity is the bearer service, the reporting granularity identifier may be the terminal device identifier and the terminal device's bearer service identifier, or the reporting granularity identifier may be the relay node identifier and the relay node's bearer service identifier.
  • each report granularity identifier and the downlink status information corresponding to each report granularity identifier may use multiple arrangement formats.
  • each reporting granularity identifier and the downstream status information corresponding to each reporting granularity identifier in the first message are sequentially arranged, and each reporting granularity identifier is adjacent to the downstream status information corresponding to each reporting granularity identifier.
  • FIG. 5a shows a schematic structural diagram 1 of a first message according to an embodiment of the present application.
  • each report granularity identifier and the downlink state information corresponding to each report granularity identifier are adjacent to each other, and then belong to
  • the reporting granularity identifiers and downlink status information of different reporting granularities are arranged in sequence, for example, the downstream status information corresponding to the reporting granularity identifier 1, the reporting granularity identifier 1, the downstream granularity information corresponding to the reporting granularity identifier 2, and the reporting granularity identifier 2 are sequentially arranged 2 ...., the reporting granularity identifier N, and the downstream status information N corresponding to the reporting granularity identifier N; each line in FIG.
  • 5a is an Octi, i is a positive integer greater than or equal to 1 and less than or equal to n, and n and N are positive integers;
  • reserved bits reserved bits are used for filling, for example, the reserved bits are set to 0.
  • FIG. 5b shows a schematic structural diagram 2 of the first message according to an embodiment of the present application.
  • each report granularity identifier and the downlink state information corresponding to each report granularity identifier are adjacent to each other, and then belong to
  • the reporting granularity identifier and the downlink status information of different reporting granularities are arranged in sequence, wherein the reporting granularity identifier includes the relay node identifier and the bearer service identifier of the relay node.
  • the relay node ID 1, the bearer service ID 1 of the relay node 1, the downlink status information 1, the relay node ID 2, the bearer service ID 2 of the relay node 2, the downlink status information 2, the relay node are sequentially arranged Identifier N-1, bearer service identifier N-1 of relay node N-1, downlink status information N-1, ..., relay node identifier N, bearer service identifier N of relay node N, downlink status information N;
  • Each line in 5b is an Octi, i is a positive integer greater than or equal to 1 and less than or equal to n, and n and N are positive integers; in Figure 5b, if the last byte is not filled, the reserved bits are used to fill , For example, the reserved bit is set to 0.
  • At least one reporting granularity identifier in the first message is sequentially arranged, and each downlink state information is sequentially arranged.
  • FIG. 5c shows a schematic diagram 3 of the structure of the first message in the embodiment of the present application.
  • each downlink status information is sequentially arranged, for example, in order.
  • Arranged are the reporting granularity identifier 1, the reporting granularity identifier 2, ..., the reporting granularity identifier N-1, the reporting granularity identifier N, the reporting granularity identifier 1 corresponding to the downlink status information 1, the reporting granularity identifier 2 corresponding to the downlink status information 2, ..., Downlink status information N corresponding to the reporting granularity identifier N; each row in FIG.
  • 5c has an Octi, i is a positive integer greater than or equal to 1 and less than or equal to n, and n and N are positive integers; After the information, the number of reported granularity identifiers is equal to the number of downlink status information and corresponds one-to-one. In FIG. 5c, if the last byte is not filled, the reserved bits are used for filling, for example, the reserved bit is set to 0.
  • the number of bits occupied by reporting the granularity identifier and the downlink status information in FIG. 5a, FIG. 5b, and FIG. 5c is only an example, and is not limited in this application.
  • the protocol layer / interface where the first wireless access network device reports is any one or a combination of the following: MAC CE or MAC header, adaptation layer (adaption layer), F1, RRC, X2 / Xn port signaling .
  • the first wireless access network device when the first message is a MAC CE message, the first wireless access network device sends the reporting granularity and downlink status information to the second wireless access network device in the form of a MAC CE message.
  • the logical channel priority (logical channel priority) (LCP) sequence is adjusted.
  • the first radio access network device sends the reporting granularity and downlink status information to the second radio access network device in the form of a MAC message. Therefore, a MAC is required to be added, and the MAC is related to the first message.
  • a logical channel identifier for the newly added MAC CE.
  • the newly added MAC CE priority can be placed in the padding buffer status report ( buffer, status, report (BSR) before the MAC of the BSR); thus, the obtained logical channel priority order can indicate the priority order of the MAC and the other logical channels corresponding to the first message; in step S205, the first The wireless access network device sends the information indicating the reporting granularity and downlink status information to the second wireless access network device according to the logical channel priority order in which MAC is added MAC CE message.
  • BSR padding buffer status report
  • FIG. 6 shows a logical channel order diagram of the logical channel priority order of the embodiment of the present application.
  • the priority order is logical channel 1, the logical channel of the MAC corresponding to the first message in order , Logical channel 2, logical channel 3.
  • the second wireless access network device sends second indication information to the first wireless access network device, where the second indication information is used to instruct the first wireless access network device to switch links.
  • the second wireless access network device may send second indication information to the first wireless access network device, thereby instructing the first wireless access network device Switch the link; or, the second radio access network device reduces the downlink transmission rate to the first radio access network device; or, the second radio access network device allocates time-frequency resources to the first radio access network device, and Assign more time-frequency resources to the first radio access network device.
  • the second radio access network device may increase the downlink transmission rate of the first radio access network device; or, the second radio access network device may decrease to Time-frequency resources allocated by the first radio access network device.
  • the first message is sent to the second wireless access network device through the first wireless access network device, and the first message includes at least one reporting granularity and a downlink corresponding to each of the at least one reporting granularity.
  • Status information the second wireless access network device is the parent node or host base station of the first wireless access network device in the wireless relay communication system; then, the second wireless access network device instructs the first wireless access network device to switch chains Or, the second radio access network device reduces the downlink transmission rate of the first radio access network device, or the second radio access network device allocates time-frequency resources to the first radio access network device.
  • the first radio access network device feeds back the downlink status information to the second radio access network device in real time, so that the parent node or the host base station of the first radio access network device can timely learn the downlink status and the downlink cache.
  • Congestion status so that the parent node or host base station of the first radio access network device can timely control and process the downlink, complete the flow control processing in the IAB scenario, and effectively avoid the downlink congestion caused by factors such as link interruption , It can prevent the packet loss and delay of downlink data, and ensure that the terminal equipment receives the data in time.
  • a mapping relationship is provided to indicate the correspondence between the status value and the index value.
  • FIG. 7 shows a schematic flowchart of another transmission control method according to an embodiment of the present application
  • FIG. 3 shows a schematic flowchart of a transmission control method according to an embodiment of the present application.
  • the method can be applied to the communication systems shown in FIGS. 1a-2, but the embodiments of the present application are not limited thereto.
  • the wireless relay communication system in the embodiment of the present application includes a wireless access network device and a host base station, and the wireless access network device has one or more previous hop nodes on the uplink.
  • the second radio access network device sends first indication information to the first radio access network device, where the first The indication information is used to indicate the mapping relationship between the index value and the status value.
  • the first message further includes first indication information.
  • the second wireless access network device sends a second message to the first wireless access network device, where the second message includes a reporting method and / or reporting granularity.
  • the first wireless access network device is a relay node or terminal device in the wireless relay communication system
  • the second wireless access network device is the parent node or host of the first wireless access network device in the wireless relay communication system Base station.
  • the second radio access network device determines the reporting granularity corresponding to the first message according to at least one of the route management type, the cache management type, and the size of the transmission resource allocated by the second radio access network device to the first message.
  • the second radio access network device generates a first message.
  • the second radio access network device sends a first message to the first radio access network device, where the first message includes at least one reporting granularity and uplink status information corresponding to each reporting granularity in the at least one reporting granularity.
  • the first wireless access network device sends third indication information to the second wireless access network device, where the third indication information is used to instruct the second wireless access network device to switch links.
  • the first message is sent to the first wireless access network device through the second wireless access network device, the first message includes at least one reporting granularity, and an uplink corresponding to each reporting granularity in the at least one reporting granularity Status information;
  • the second radio access network device is the parent node or host base station of the first radio access network device.
  • the second wireless access network device feeds back the upstream status information to the first wireless access network device in real time, so that the child nodes of the second wireless access network device can learn the upstream status and the upstream buffer congestion status in a timely manner, In this way, the child nodes of the second radio access network device can control and process the uplink in a timely manner, complete the flow control processing in the IAB scenario, effectively avoid the uplink congestion caused by factors such as link interruption, and prevent the uplink data from Packet loss and delay, to ensure that the host base station receives data in time, and to solve the upstream data delay requirements.
  • FIG. 8 shows a communication apparatus 800 applied to a first wireless access network device provided by an embodiment of the present application.
  • the apparatus 800 may be a relay node in a wireless relay communication system or a chip in the relay node.
  • the device 800 includes a processing unit 810, a sending unit 820, and a receiving unit 830.
  • the apparatus 800 is used to execute various processes and steps corresponding to the first radio access network device in the method shown in FIG. 3, FIG. 4, or 7.
  • the processing unit 810 is configured to generate a first message. At this time, the processing unit 810 may perform step S101 in FIG. 3 and step S204 in FIG. 4.
  • the sending unit 820 is configured to send a first message to the second radio access network device, where the first message includes at least one reporting granularity and downlink status information corresponding to each reporting granularity in the at least one reporting granularity; wherein, the first The wireless access network device is a relay node in the wireless relay communication system, and the second wireless access network device is the parent node or host base station of the first wireless access network device in the wireless relay communication system.
  • the sending unit 820 may perform step S102 in FIG. 3 and step S205 in FIG. 4.
  • the receiving unit 830 is configured to receive the first message sent by the second wireless access network device, where the first message includes at least one reporting granularity and uplink status information corresponding to each of the at least one reporting granularity; this At this time, the receiving unit 830 may perform step S305 in 7.
  • the reporting granularity is one or more of the following: a terminal device, a bearer service of a terminal device, a relay node, and a bearer service of a relay node; wherein, a relay node is The wireless access network device of a message, or the child node of the wireless access network device sending the first message, or the wireless access network device accessed by the terminal device.
  • the downlink state information includes at least one state value, or an index value of each state value in the at least one state value; the state value is any one of the following: the remaining amount of the downlink buffer, the downlink buffer occupation Ratio, expected downlink transmission rate, congestion level, downlink buffer status difference, and downlink buffer amount combination; the downlink buffer status difference is the difference between the status value and the status value last reported by the first radio access network device,
  • the combination of downlink buffers includes the total downlink buffer and the current downlink buffer.
  • the first message when the downlink status information includes the index value of each of the at least one status value; the first message also includes first indication information, where the first indication information is used to indicate the index value and The mapping relationship between the status values; or, the sending unit 820 is further configured to send the first indication information to the second radio access network device. At this time, the sending unit 820 may perform step S201 in FIG. 4. Or, when the uplink status information includes the index value of each of the at least one status value; the first message also includes first indication information, where the first indication information is used to indicate the index value and the status value Or, the receiving unit 830 is further configured to receive the first indication information sent by the second wireless access network device. At this time, the receiving unit 830 may execute step S301 in FIG. 7.
  • the receiving unit 830 is configured to receive a second message sent by the second wireless access network device, where the second message includes a reporting method and / or reporting granularity. At this time, the receiving unit 830 may execute step S202 in FIG. 4 and step S302 in FIG. 7.
  • the second message is any one of the following: RRC message, F1 interface message, and adaptation layer message.
  • the second message is a MAC CE message or an adaptation layer message.
  • the reporting method is one or more of the following: the value characterized by the downlink state information is greater than the first preset threshold, the value characterized by the downlink state information is less than the second preset threshold, and the preset time Point; wherein, the preset time point can be adjusted when the value represented by the downlink status information meets the preset condition.
  • the first message is any one of the following: a radio resource control RRC message, an F1 interface message, and an adaptation layer message.
  • the first message is a MAC CE message or an adaptation layer message.
  • the reporting granularity is the reporting granularity identifier; each reporting granularity identifier and the downstream status information corresponding to each reporting granularity identifier in the first message are arranged in sequence, and each reporting granularity identifier and each reporting granularity identifier correspond to the downstream The status information is adjacent; or, after at least one reporting granularity identifier in the first message is sequentially arranged, each downlink status information is sequentially arranged.
  • the sending unit 820 is, for example, used to send the first message to the second wireless access network device according to a preset logical channel priority order,
  • the preset logical channel priority order is used to indicate the priority order of the MAC corresponding to the first message and other logical channels.
  • the sending unit 820 may perform step S205 in FIG. 4.
  • the processing unit 810 is further configured to: according to at least one of the routing management type, the cache management type, and the size of the transmission resource allocated by the first radio access network device to the first message, determine the corresponding Report granularity. At this time, the processing unit 810 may perform step S203 in FIG. 4.
  • the receiving unit 830 is configured to: receive second indication information sent by the second wireless access network device, where the second indication information is used to instruct the first wireless access network device to switch links; at this time, receive The unit 830 may perform step S206 in FIG. 4.
  • the sending unit 820 is configured to send third indication information to the second wireless access network device, where the third indication information is used to instruct the second wireless access network device to switch links; the sending unit 820 may execute FIG. 7 Step S306 in
  • the device 800 here is embodied in the form of a functional unit.
  • the term "unit” here may refer to an application specific integrated circuit (application specific integrated circuit, ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor or a group) for executing one or more software or firmware programs Processor, etc.) and memory, merge logic, and / or other suitable components that support the described functions.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a proprietary processor or a group
  • memory merge logic, and / or other suitable components that support the described functions.
  • the apparatus 800 may be specifically a device without the first wireless access network in the foregoing embodiment, and the apparatus 800 may be used to perform the above-described method embodiment with the first wireless access
  • the various processes and / or steps corresponding to the network device are not repeated here in order to avoid repetition.
  • the apparatus 800 of each of the above solutions has a function of implementing the corresponding steps performed by the first radio access network device in the above method; the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the sending unit may be replaced by a transmitter, the receiving unit may be replaced by a receiver, and other units, such as a determination unit, may be replaced by a processor, and each method may be executed separately.
  • the device in FIG. 8 may also be a chip or a chip system, for example, a system on chip (SoC).
  • the receiving unit and the sending unit may be the transceiver circuit of the chip, which is not limited herein.
  • the apparatus 900 may be a relay node in a wireless relay communication system, or may be a chip in the relay node.
  • the second radio access network device may be a host base station or a chip in the host base station.
  • the device 900 includes a processing unit 910, a sending unit 920, and a receiving unit 930.
  • the apparatus 900 is used to execute various processes and steps corresponding to the second radio access network device in the method shown in FIG. 3, FIG. 4, or 7.
  • the receiving unit 930 is configured to receive a first message sent by the first wireless network device, where the first message includes at least one reporting granularity and downlink status information corresponding to each reporting granularity in the at least one reporting granularity; wherein, the first wireless The access network device is a relay node in the wireless relay communication system, and the second wireless access network device is the parent node or host base station of the first wireless access network device in the wireless relay communication system. At this time, the receiving unit 930 may perform step S102 in FIG. 3 and step S205 in FIG. 4.
  • the processing unit 910 is configured to determine the reporting granularity corresponding to the first message according to at least one of the route management type, the cache management type, and the size of the transmission resource allocated by the second radio access network device to the first message; First message; at this time, the processing unit 910 may perform steps S303 and S304 in FIG. 7.
  • the sending unit 920 is configured to send a first message to the first wireless network device, where the first message includes at least one reporting granularity and uplink status information corresponding to each reporting granularity in the at least one reporting granularity. At this time, the sending unit 920 may perform step S305 in FIG. 7.
  • the reporting granularity is one or more of the following: a terminal device, a bearer service of a terminal device, a relay node, and a bearer service of a relay node; wherein, a relay node is The wireless access network device of a message, or the child node of the wireless access network device sending the first message, or the wireless access network device accessed by the terminal device.
  • the downlink state information includes at least one state value, or an index value of each state value in the at least one state value; the state value is any one of the following: the remaining amount of the downlink buffer, the downlink buffer occupation Ratio, expected downlink transmission rate, congestion level, downlink buffer status difference, and downlink buffer amount combination; the downlink buffer status difference is the difference between the status value and the status value last reported by the first radio access network device,
  • the combination of downlink buffers includes the total downlink buffer and the current downlink buffer.
  • the receiving unit 930 is further configured to receive the first indication information sent by the first wireless access network device.
  • the receiving unit 930 may perform step S201 in FIG. 4.
  • the uplink status information includes the index value of each of the at least one status value
  • the first message also includes first indication information, where the first indication information is used to indicate the index value and the status value Mapping relationship; or, the sending unit 920 is configured to send the first indication information to the first wireless access network device.
  • the sending unit 920 may perform step S301 in FIG. 7.
  • the sending unit 920 is configured to send a second message to the first wireless access network device, where the second message includes a reporting method and / or reporting granularity.
  • the sending unit 920 may execute step S202 in FIG. 4 and step S302 in FIG. 7.
  • the second message is any one of the following: RRC message, F1 interface message, and adaptation layer message.
  • the second message is a MAC CE message or an adaptation layer message.
  • the reporting method is one or more of the following: the value characterized by the downlink state information is greater than the first preset threshold, the value characterized by the downlink state information is less than the second preset threshold, and the preset time Point; wherein, the preset time point can be adjusted when the value represented by the downlink status information meets the preset condition.
  • the first message is any one of the following: a radio resource control RRC message, an F1 interface message, and an adaptation layer message.
  • the first message is a MAC CE message or an adaptation layer message.
  • the reporting granularity is the reporting granularity identifier; each reporting granularity identifier and the downstream status information corresponding to each reporting granularity identifier in the first message are arranged in sequence, and each reporting granularity identifier and each reporting granularity identifier correspond to the downstream The status information is adjacent; or, after at least one reporting granularity identifier in the first message is sequentially arranged, each downlink status information is sequentially arranged.
  • the sending unit 920 is configured to send second indication information to the first wireless access network device, where the second indication information is used to instruct the first wireless access network device to switch links; at this time, the sending unit 920 Step S206 in FIG. 4 may be performed.
  • the processing unit 910 is configured to reduce the downlink transmission rate of the first wireless access network device.
  • the processing unit 910 is further configured to allocate time-frequency resources to the first wireless access network device.
  • the receiving unit 930 is configured to receive third indication information sent by the first wireless access network device, where the third indication information is used to instruct the second wireless access network device to switch links; at this time, the receiving unit 930 may Step S306 of FIG. 7 is performed.
  • the device 900 here is embodied in the form of a functional unit.
  • the term "unit” here may refer to an ASIC, an electronic circuit, a processor (such as a shared processor, a dedicated processor, or a group processor, etc.) and a memory, merged logic circuits, and a program for executing one or more software or firmware programs. / Or other suitable components that support the described function.
  • the apparatus 900 may specifically be a device without the first wireless access network in the foregoing embodiment, and the apparatus 900 may be used to perform the above-described method embodiment with the second wireless access
  • the various processes and / or steps corresponding to the network device are not repeated here in order to avoid repetition.
  • the apparatus 900 of the above solutions has a function of implementing the corresponding steps performed by the first radio access network device in the above method; the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the sending unit may be replaced by a transmitter, the receiving unit may be replaced by a receiver, and other units, such as a determination unit, may be replaced by a processor, and each method may be executed separately.
  • the device in FIG. 9 may also be a chip or a chip system, for example, a system on chip.
  • the receiving unit and the sending unit may be the transceiver circuit of the chip, which is not limited herein.
  • the devices in FIG. 8 and FIG. 9 may also be a chip or a chip system, for example, a system on chip (SoC).
  • the receiving unit and the sending unit may be the transceiver circuit of the chip, which is not limited herein.
  • FIG. 10 shows a communication apparatus 1000 applied to a first wireless access network device provided by an embodiment of the present application.
  • the device 1000 includes a processor 1010, a transceiver 1020, and a memory 1030.
  • the processor 1010, the transceiver 1020 and the memory 1030 communicate with each other through an internal connection path
  • the memory 1030 is used to store instructions
  • the processor 1010 is used to execute the instructions stored in the memory 1030, to control the transceiver 1020 to receive signals and send signal.
  • the apparatus 1000 is used to execute various processes and steps corresponding to the first radio access network device in the above method.
  • the processor 1010 is configured to execute step S101 in FIG. 3, step S203 in FIG. 4, and step S204 in FIG. 4.
  • the transceiver 1020 is used to perform step S202 in FIG. 4 and step S206 in FIG. 4; to perform step S302 in FIG. 7, step S305 in FIG. 7 and step S301 in FIG. 7; Step S102, step S205 in FIG. 4, step S201 in FIG. 4; used to execute step S306 in FIG. 7.
  • the apparatus 1000 may specifically be the first wireless access network device in the foregoing embodiment, and may be used to perform various steps and / or processes corresponding to the first wireless access network device in the foregoing method embodiment.
  • the memory 1030 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory can also store device type information.
  • the processor 1010 may be used to execute the instructions stored in the memory, and when the processor 1010 executes the instructions stored in the memory, the processor 1010 is used to execute the above method embodiment corresponding to the first radio access network device.
  • the processor of the above device may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integrated Circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • FIG. 11 shows a communication apparatus 1100 applied to a second wireless access network device provided by an embodiment of the present application.
  • the device 1100 includes a processor 1110, a transceiver 1120, and a memory 1130.
  • the processor 1110, the transceiver 1120 and the memory 1130 communicate with each other through an internal connection path
  • the memory 1130 is used to store instructions
  • the processor 1110 is used to execute the instructions stored in the memory 1130 to control the transceiver 1120 to receive signals and send signal.
  • the apparatus 1100 is used to execute various processes and steps corresponding to the second radio access network device in the foregoing method.
  • the transceiver 1130 is used to perform step S202 in FIG. 4 and step S206 in FIG. 4; to perform step S302 in FIG. 7, step S305 in FIG. 7 and step S301 in FIG. 7; and to execute FIG. 3 Step S102, step S205 in FIG. 4, step S201 in FIG. 4; used to execute step S306 in FIG. 7.
  • the processor 1110 is used to execute steps S303 and S304 in FIG. 7.
  • the apparatus 1110 may specifically be the second wireless access network device in the foregoing embodiments, and may be used to perform various steps and / or processes corresponding to the second wireless access network device in the foregoing method embodiments.
  • the memory 1130 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory can also store device type information.
  • the processor 1110 may be used to execute the instructions stored in the memory, and when the processor 1110 executes the instructions stored in the memory, the processor 1110 is used to execute the above method embodiment corresponding to the second radio access network device.
  • the processor of the above device may be a CPU, and the processor may also be other general-purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), and field programmable gates.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly implemented and completed by a hardware processor, or may be implemented and completed by a combination of hardware and software units in the processor.
  • the software unit may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor executes the instructions in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, they are not described in detail here.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And / or” describing the relationship of related objects, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists alone, A and B exist at the same time, B exists alone, where A, B can be singular or plural.
  • the character "/” generally indicates that the related object is a "or” relationship.
  • “At least one of the following” or a similar expression refers to any combination of these items, including any combination of single items or plural items.
  • At least one (a) of a, b, or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c may be single or multiple.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections through some interfaces, devices, or units, and may also be electrical, mechanical, or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or software function unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology, or all or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium
  • several instructions are included to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输控制方法和装置,其中,该方法包括:第一无线接入网设备向第二无线接入网设备发送第一消息,第一消息中包括至少一个上报粒度、与至少一个上报粒度中的每一个上报粒度对应的下行状态信息;第二无线接入网设备为无线中继通信系统中第一无线接入网设备的父节点或宿主基站。第一无线接入网设备的父节点或宿主基站可以及时的获知下行的状态,获知下行的缓存的拥塞状态,以使得第一无线接入网设备的父节点或宿主基站可以及时的对下行进行控制和处理,完成IAB场景中流控处理,有效的避免因链路中断等因素所引起的下行拥塞情况,可以防止下行数据的丢包和延迟,保证终端设备及时接收到数据。

Description

传输控制方法和装置
本申请要求于2018年10月25日提交中国专利局、申请号为201811249705.1、申请名称为“传输控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及传输控制方法和装置。
背景技术
随着通信技术的发展,中继组网技术得到广泛应用和发展。在中继组网技术中提供了中继组网架构,中继组网架构中包括宿主基站(donor gNodeB,DgNB)、一个或多个中继节点、一个或多个终端设备,中继节点直接或通过其他中继节点间接连接至宿主基站,终端设备通过无线空口与宿主基站或中继节点连接;在中继组网架构中具有明确的层级关系,每一个中继节点将为其提供回传服务的节点视为父节点,中继组网架构中包括多级层级关系,每一级可以称为每一跳。
现有技术中,在中继组网架构中,在某一跳上的下行的链路发生拥塞的时候,会导致数据在下行发送节点的下行缓存中发生拥塞,进而导致终端设备无法及时接收到数据。
如何防止出现数据丢失或接收数据延迟的问题,这是一个需要解决的问题。
发明内容
本申请提供了一种传输控制方法和装置,可以获知链路上的拥塞,防止出现数据丢失或接收数据延迟。
第一方面,本申请提供一种传输控制方法,包括:
第一无线接入网设备生成第一消息;
所述第一无线接入网设备向第二无线接入网设备发送所述第一消息,所述第一消息中包括至少一个上报粒度、与所述至少一个上报粒度中的每一个上报粒度对应的下行状态信息;
其中,所述第一无线接入网设备为无线中继通信系统中的中继节点,所述第二无线接入网设备为所述无线中继通信系统中所述第一无线接入网设备的父节点或宿主基站。
通过第一无线接入网设备向第二无线接入网设备反馈下行状态信息,使得第一无线接入网设备的父节点或宿主基站可以及时的获知第一无线接入网设备的下行缓存状态信息,获知下行的缓存的拥塞状态,以使得第一无线接入网设备的父节点或宿主基站可以及时的对下行进行控制和处理,完成IAB场景中流控处理,有效的避免因链路中断等因素所引起的下行拥塞情况,可以防止下行数据的丢包和延迟,保证终端设备 及时接收到数据。
在可选的一种实施方式中,所述上报粒度为以下的一种或多种:一个终端设备、一个终端设备的一个承载业务、一个中继节点、一个中继节点的一个承载业务;
其中,所述一个中继节点为发送所述第一消息的无线接入网设备、或者发送所述第一消息的无线接入网设备的子节点、或者所述终端设备所接入的无线接入网设备。由于不同的上报粒度的开销不同,从而第一无线接入网设备可以根据为第一消息分配的资源大小,确定出可以使用的上报粒度。
在可选的一种实施方式中,所述下行状态信息包括至少一种状态值、或者至少一种状态值中的每一种状态值的索引值;
所述状态值为以下中的任意一种:下行缓存的剩余量、下行缓存占用比、期望的下行传输速率、拥塞级别、下行缓存状态差值、下行缓存量组合;
所述下行缓存状态差值为所述状态值与所述第一无线接入网设备上次上报的状态值之间的差值,所述下行缓存量组合包括下行缓存总量和当前下行缓存量。
在可选的一种实施方式中,所述下行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下;
所述第一消息中还包括第一指示信息,其中,所述第一指示信息用于指示索引值与状态值之间的映射关系;或者,所述方法,还包括:所述第一无线接入网设备向所述第二无线接入网设备发送所述第一指示信息。通过提供映射关系,以指示出状态值与索引值之间的对应关系。
在可选的一种实施方式中,所述方法,还包括:
所述第一无线接入网设备接收所述第二无线接入网设备发送的第二消息,其中,所述第二消息中包括上报方式和/或所述上报粒度。
在可选的一种实施方式中,所述第二无线接入网设备为宿主基站的情况下,所述第二消息为以下中的任一种:无线资源控制RRC消息、F1接口消息、适配层消息。
在可选的一种实施方式中,所述第二无线接入网设备为所述第一无线接入网设备的父节点的情况下,所述第二消息为MAC CE消息或适配层消息。
在可选的一种实施方式中,上报方式为以下的一种或多种:所述下行状态信息所表征的数值大于第一预设门限值,所述下行状态信息所表征的数值小于第二预设门限值,预设时间点;
其中,所述预设时间点在所述下行状态信息所表征的数值符合预设条件时可被调整。
在可选的一种实施方式中,所述第二无线接入网设备为宿主基站的情况下,所述第一消息为以下中任一种:无线资源控制RRC消息、F1接口消息、和适配层消息。
在可选的一种实施方式中,所述第二无线接入网设备为所述第一无线接入网设备的父节点的情况下,所述第一消息为MAC CE消息或适配层消息。
在可选的一种实施方式中,所述上报粒度为上报粒度标识;
所述第一消息中的每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息依次排列,且每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息相邻;或者,所述第一消息中所述至少一个上报粒度标识被依次排列之后每一个所述下行状 态信息被依次排列。
在可选的一种实施方式中,在所述第一消息为MAC CE消息的情况下,所述第一无线接入网设备向第二无线接入网设备发送所述第一消息,包括:
第一无线接入网设备根据预设的逻辑信道优先级顺序,向所述第二无线接入网设备发送所述第一消息,其中,所述预设的逻辑信道优先级顺序用于指示所述第一消息对应的MAC CE与其他逻辑信道的优先级次序。通过上述逻辑信道优先级顺序,可以根据逻辑信道优先级顺序所设置的优先级次序,将第一消息发送至第二无线接入网设备,保证第一消息可以及时发送出去。
在可选的一种实施方式中,所述方法,还包括:
所述第一无线接入网设备根据路由管理类型、缓存管理类型、所述第一无线接入网设备为所述第一消息分配的传输资源的大小中的至少一种,确定所述第一消息对应的上报粒度。
在可选的一种实施方式中,所述方法,还包括:
所述第一无线接入网设备接收所述第二无线接入网设备发送的第二指示信息,其中,所述第二指示信息用于指示所述第一无线接入网设备切换链路。从而减少下行链路上的拥塞,可以防止下行数据的丢包和延迟。
第二方面,本申请提供一种传输控制方法,包括:
第二无线接入网设备接收第一无线网络设备发送的第一消息,所述第一消息中包括至少一个上报粒度、与所述至少一个上报粒度中的每一个上报粒度对应的下行状态信息;
其中,所述第一无线接入网设备为无线中继通信系统中的中继节点,所述第二无线接入网设备为所述无线中继通信系统中所述第一无线接入网设备的父节点或宿主基站。
通过第一无线接入网设备向第二无线接入网设备反馈下行状态信息,使得第一无线接入网设备的父节点或宿主基站可以及时的获知第一无线接入网设备的下行缓存状态信息,获知下行的缓存的拥塞状态,以使得第一无线接入网设备的父节点或宿主基站可以及时的对下行进行控制和处理,完成IAB场景中流控处理,有效的避免因链路中断等因素所引起的下行拥塞情况,可以防止下行数据的丢包和延迟,保证终端设备及时接收到数据。
在可选的一种实施方式中,所述上报粒度为以下的一种或多种:一个终端设备、一个终端设备的一个承载业务、一个中继节点、一个中继节点的一个承载业务;
其中,所述一个中继节点为发送所述第一消息的无线接入网设备、或者发送所述第一消息的无线接入网设备的子节点、或者所述终端设备所接入的无线接入网设备。
在可选的一种实施方式中,所述下行状态信息包括至少一种状态值、或者至少一种状态值中的每一种状态值的索引值;
所述状态值为以下中的任意一种:下行缓存的剩余量、下行缓存占用比、期望的下行传输速率、拥塞级别、下行缓存状态差值、下行缓存量组合;
所述下行缓存状态差值为所述状态值与所述第一无线接入网设备上次上报的状态值之间的差值,所述下行缓存量组合包括下行缓存总量和当前下行缓存量。
在可选的一种实施方式中,所述下行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下;
所述第一消息中还包括第一指示信息,其中,所述第一指示信息用于指示索引值与状态值之间的映射关系;或者,所述方法,还包括:所述第二无线接入网设备接收所述第一无线接入网设备发送的所述第一指示信息。
在可选的一种实施方式中,所述方法,还包括:
所述第二无线接入网设备向所述第一无线接入网设备发送第二消息,其中,所述第二消息中包括上报方式和/或所述上报粒度。
在可选的一种实施方式中,所述第二无线接入网设备为宿主基站的情况下,所述第二消息为以下中的任一种:无线资源控制RRC消息、F1接口消息、适配层消息。
在可选的一种实施方式中,所述第二无线接入网设备为所述第一无线接入网设备的父节点的情况下,所述第二消息为MAC CE消息或适配层消息。
在可选的一种实施方式中,上报方式为以下的一种或多种:所述下行状态信息所表征的数值大于第一预设门限值,所述下行状态信息所表征的数值小于第二预设门限值,预设时间点;
其中,所述预设时间点在所述下行状态信息所表征的数值符合预设条件时可被调整。
在可选的一种实施方式中,所述第二无线接入网设备为宿主基站的情况下,所述第一消息为以下中任一种:无线资源控制RRC消息、F1接口消息、和适配层消息。
在可选的一种实施方式中,所述第二无线接入网设备为所述第一无线接入网设备的父节点的情况下,所述第一消息为MAC CE消息或适配层消息。
在可选的一种实施方式中,所述上报粒度为上报粒度标识;
所述第一消息中的每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息依次排列,且每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息相邻;或者,所述第一消息中所述至少一个上报粒度标识被依次排列之后每一个所述下行状态信息被依次排列。
在可选的一种实施方式中,所述方法,还包括:
所述第二无线接入网设备向所述第一无线接入网设备发送第二指示信息,其中,所述第二指示信息用于指示所述第一无线接入网设备切换链路;
或者,所述第二无线接入网设备减少所述第一无线接入网设备的下行传输速率;
或者,所述第二无线接入网设备为所述第一无线接入网设备分配时频资源。
第三方面,本申请提供一种通信装置,应用于第一无线接入网设备,包括:
处理单元,用于生成第一消息;
发送单元,用于向第二无线接入网设备发送所述第一消息,所述第一消息中包括至少一个上报粒度、与所述至少一个上报粒度中的每一个上报粒度对应的下行状态信息;
其中,所述第一无线接入网设备为无线中继通信系统中的中继节点,所述第二无线接入网设备为所述无线中继通信系统中所述第一无线接入网设备的父节点或宿主基站。
通过第一无线接入网设备向第二无线接入网设备反馈下行状态信息,使得第一无线接入网设备的父节点或宿主基站可以及时的获知第一无线接入网设备的下行缓存状态信息,获知下行的缓存的拥塞状态,以使得第一无线接入网设备的父节点或宿主基站可以及时的对下行进行控制和处理,完成IAB场景中流控处理,有效的避免因链路中断等因素所引起的下行拥塞情况,可以防止下行数据的丢包和延迟,保证终端设备及时接收到数据。
在可选的一种实施方式中,所述上报粒度为以下的一种或多种:一个终端设备、一个终端设备的一个承载业务、一个中继节点、一个中继节点的一个承载业务;
其中,所述一个中继节点为发送所述第一消息的无线接入网设备、或者发送所述第一消息的无线接入网设备的子节点、或者所述终端设备所接入的无线接入网设备。
在可选的一种实施方式中,所述下行状态信息包括至少一种状态值、或者至少一种状态值中的每一种状态值的索引值;
所述状态值为以下中的任意一种:下行缓存的剩余量、下行缓存占用比、期望的下行传输速率、拥塞级别、下行缓存状态差值、下行缓存量组合;
所述下行缓存状态差值为所述状态值与所述第一无线接入网设备上次上报的状态值之间的差值,所述下行缓存量组合包括下行缓存总量和当前下行缓存量。
在可选的一种实施方式中,所述下行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下;
所述第一消息中还包括第一指示信息,其中,所述第一指示信息用于指示索引值与状态值之间的映射关系;或者,所述发送单元,还用于向所述第二无线接入网设备发送所述第一指示信息。
在可选的一种实施方式中,所述装置,还包括:
接收单元,用于接收所述第二无线接入网设备发送的第二消息,其中,所述第二消息中包括上报方式和/或所述上报粒度。
在可选的一种实施方式中,所述第二无线接入网设备为宿主基站的情况下,所述第二消息为以下中的任一种:无线资源控制RRC消息、F1接口消息、适配层消息。
在可选的一种实施方式中,所述第二无线接入网设备为所述第一无线接入网设备的父节点的情况下,所述第二消息为MAC CE消息或适配层消息。
在可选的一种实施方式中,上报方式为以下的一种或多种:所述下行状态信息所表征的数值大于第一预设门限值,所述下行状态信息所表征的数值小于第二预设门限值,预设时间点;
其中,所述预设时间点在所述下行状态信息所表征的数值符合预设条件时可被调整。
在可选的一种实施方式中,所述第二无线接入网设备为宿主基站的情况下,所述第一消息为以下中任一种:无线资源控制RRC消息、F1接口消息、和适配层消息。
在可选的一种实施方式中,述第二无线接入网设备为所述第一无线接入网设备的父节点的情况下,所述第一消息为MAC CE消息或适配层消息。
在可选的一种实施方式中,所述上报粒度为上报粒度标识;
所述第一消息中的每一个上报粒度标识和每一个上报粒度标识对应的下行状态信 息依次排列,且每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息相邻;或者,所述第一消息中所述至少一个上报粒度标识被依次排列之后每一个所述下行状态信息被依次排列。
在可选的一种实施方式中,在所述第一消息为MAC CE消息的情况下,所述发送单元,具体用于:
根据预设的逻辑信道优先级顺序,向所述第二无线接入网设备发送所述第一消息,其中,所述预设的逻辑信道优先级顺序用于指示所述第一消息对应的MAC CE与其他逻辑信道的优先级次序。
在可选的一种实施方式中,所述处理单元,还用于:
根据路由管理类型、缓存管理类型、所述第一无线接入网设备为所述第一消息分配的传输资源的大小中的至少一种,确定所述第一消息对应的上报粒度。
在可选的一种实施方式中,接收单元,用于:
接收所述第二无线接入网设备发送的第二指示信息,其中,所述第二指示信息用于指示所述第一无线接入网设备切换链路。
第四方面,本申请提供一种通信装置,应用于第二无线接入网设备,包括:
接收单元,用于接收第一无线网络设备发送的第一消息,所述第一消息中包括至少一个上报粒度、与所述至少一个上报粒度中的每一个上报粒度对应的下行状态信息;
其中,所述第一无线接入网设备为无线中继通信系统中的中继节点,所述第二无线接入网设备为所述无线中继通信系统中所述第一无线接入网设备的父节点或宿主基站。
通过第一无线接入网设备向第二无线接入网设备反馈下行状态信息,使得第一无线接入网设备的父节点或宿主基站可以及时的获知第一无线接入网设备的下行缓存状态信息,获知下行的缓存的拥塞状态,以使得第一无线接入网设备的父节点或宿主基站可以及时的对下行进行控制和处理,完成IAB场景中流控处理,有效的避免因链路中断等因素所引起的下行拥塞情况,可以防止下行数据的丢包和延迟,保证终端设备及时接收到数据。
在可选的一种实施方式中,所述上报粒度为以下的一种或多种:一个终端设备、一个终端设备的一个承载业务、一个中继节点、一个中继节点的一个承载业务;
其中,所述一个中继节点为发送所述第一消息的无线接入网设备、或者发送所述第一消息的无线接入网设备的子节点、或者所述终端设备所接入的无线接入网设备。
在可选的一种实施方式中,所述下行状态信息包括至少一种状态值、或者至少一种状态值中的每一种状态值的索引值;
所述状态值为以下中的任意一种:下行缓存的剩余量、下行缓存占用比、期望的下行传输速率、拥塞级别、下行缓存状态差值、下行缓存量组合;
所述下行缓存状态差值为所述状态值与所述第一无线接入网设备上次上报的状态值之间的差值,所述下行缓存量组合包括下行缓存总量和当前下行缓存量。
在可选的一种实施方式中,所述下行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下;
所述第一消息中还包括第一指示信息,其中,所述第一指示信息用于指示索引值 与状态值之间的映射关系;或者,所述接收单元,还用于接收所述第一无线接入网设备发送的所述第一指示信息。
在可选的一种实施方式中,所述装置,还包括:
发送单元,用于向所述第一无线接入网设备发送第二消息,其中,所述第二消息中包括上报方式和/或所述上报粒度。
在可选的一种实施方式中,所述第二无线接入网设备为宿主基站的情况下,所述第二消息为以下中的任一种:无线资源控制RRC消息、F1接口消息、适配层消息。
在可选的一种实施方式中,所述第二无线接入网设备为所述第一无线接入网设备的父节点的情况下,所述第二消息为MAC CE消息或适配层消息。
在可选的一种实施方式中,上报方式为以下的一种或多种:所述下行状态信息所表征的数值大于第一预设门限值,所述下行状态信息所表征的数值小于第二预设门限值,预设时间点;
其中,所述预设时间点在所述下行状态信息所表征的数值符合预设条件时可被调整。
在可选的一种实施方式中,所述第二无线接入网设备为宿主基站的情况下,所述第一消息为以下中任一种:无线资源控制RRC消息、F1接口消息、和适配层消息。
在可选的一种实施方式中,所述第二无线接入网设备为所述第一无线接入网设备的父节点的情况下,所述第一消息为MAC CE消息或适配层消息。
在可选的一种实施方式中,所述上报粒度为上报粒度标识;
所述第一消息中的每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息依次排列,且每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息相邻;或者,所述第一消息中所述至少一个上报粒度标识被依次排列之后每一个所述下行状态信息被依次排列。
在可选的一种实施方式中,所述装置,还包括:
发送单元,用于向所述第一无线接入网设备发送第二指示信息,其中,所述第二指示信息用于指示所述第一无线接入网设备切换链路;
或者,所述装置,还包括:处理单元,用于减少所述第一无线接入网设备的下行传输速率;
或者,所述处理单元,还用于为所述第一无线接入网设备分配时频资源。
第五方面,提供了一种通信装置,应用于第一无线接入网设备或第二无线接入网设备,用于执行上述任一方面中任意可能的实现方式中的方法。示例性地,该装置包括用于执行上述任一方面中的任一种可能的实现方式中的方法的单元。
第六方面,提供了另一种通信装置,应用于第一无线接入网设备或第二无线接入网设备,该装置包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器接收信号,并控制收发器发送信号,并且当该处理器执行该存储器存储的指令时,使得该通信装置执行上述任一方面中的任一种可能的实现方式中的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序 代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述各方面中的方法。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述各方面中的方法的指令。
第九方面,提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信装置执行上述各方面中的方法。
第十方面,提供另一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,使得安装有所述芯片的通信装置用于执行上述各方面中的方法。
附图说明
图1a为本申请实施例应用的一种通信系统的示意图;
图1b为本申请实施例应用的另一种通信系统的示意图;
图1c为本申请实施例应用的又一种通信系统的示意图;
图1d为本申请实施例应用的再一种通信系统的示意图;
图1e为本申请实施例应用的其他一种通信系统的示意图;
图1f为本申请实施例应用的其他又一种通信系统的示意图;
图1g为本申请实施例应用的其他再一种通信系统的示意图;
图1h为本申请实施例应用的其他再一种通信系统的示意图;
图2为本申请实施例应用的其他另一种通信系统的示意图;
图3示出了本申请实施例的一种传输控制方法的示意性流程图;
图4示出了本申请实施例的另一种传输控制方法的示意性流程图;
图5a示出了本申请实施例的第一消息的结构示意图一;
图5b示出了本申请实施例的第一消息的结构示意图二;
图5c示出了本申请实施例的第一消息的结构示意图三;
图6示出了本申请实施例的逻辑信道优先级顺序的逻辑信道次序图;
图7示出了本申请实施例的又一种传输控制方法的示意性流程图;
图8示出了本申请实施例提供的应用于第一无线接入网设备的通信装置800;
图9示出了本申请实施例提供的应用于第二无线接入网设备的通信装置900;
图10示出了本申请实施例提供的应用于第一无线接入网设备的通信装置1000;
图11示出了本申请实施例提供的应用于第二无线接入网设备的通信装置1100。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请中所有节点、消息的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息的名称,相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。
相较于第四代移动通信系统,第五代移动通信系统(5th-generation,5G)针对网络各项性能指标,全方位得都提出了更严苛的要求。例如,容量指标提升1000倍,更广的覆盖需求、超高可靠超低时延等。一方面,考虑到高频载波频率资源丰富,在热点区域,为满足5G超高容量需求,利用高频小站组网愈发流行。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而需要大量密集部署小站,相应地,为这些大量密集部署的小站提供光纤回传的代价很高,施工难度大,因此需要经济便捷的回传方案;另一方面,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入和回传方案。
为了进一步降低部署成本,提高部署灵活性,5G引入了接入回传一体化(integrated access and backhaul,IAB)技术,其接入链路(access link,AL)和回传链路(backhaul link,BL)皆采用无线传输方案,可以避免光纤部署。
本申请将支持一体化的接入和回传的节点称为无线回传节点,该无线回传节点又可以称为中继节点(relay node,RN)或IAB节点(IAB node)或无线接入网设备。为便于描述,下面以IAB节点为例进行说明。IAB节点可以为终端设备提供无线接入服务,该终端设备的业务数据由IAB节点通过无线回传链路连接到宿主节点传输,宿主节点又称为IAB宿主(IAB donor)或者宿主基站(donor gNodeB,DgNB)。示例性地,宿主基站可以是一个具有完整基站功能的接入网网元,也可以是集中式单元
(centralized unit,CU)和分布式单元(distributed unit,DU)分离形态的接入网网元。宿主基站通过有线链路连接到为终端设备服务的核心网网元,例如,连接到5G核心网(5G core,5GC),并为IAB节点提供无线回传功能。一个IAB节点可以包括DU和移动终端(mobile termination,MT)的功能;其中,MT的功能主要指的是类似于移动终端的功能,终结到IAB宿主或其他IAB节点的回传链路的Uu接口的无线接口层;DU的功能主要指的是为IAB节点所服务的终端设备或节点提供接入功能,即Uu接口的功能;例如,DU可以为终端设备或下一级的IAB节点提供无线连接的功能。
考虑到业务传输可靠性的需求,可以使IAB节点支持多连接
(multi-connectivity),以应对回传链路可能发生的异常情况,例如,链路的中断或阻塞(blockage)及负载波动等异常,提高传输的可靠性保障。上述多连接具体可以为双连接(dual connectivity,DC),也可以为两个以上的连接,本申请实施例对此不作限定。
IAB网络支持多跳和多连接组网,因此,在终端设备和宿主基站之间可能存在多条传输路径。在一条路径上,IAB节点之间以及IAB节点和为IAB节点提供服务的宿主基站有确定的层级关系,在本申请实施例中,每个IAB节点将为其提供回传服务的节点视为父节点,相应地,每个IAB节点可视为其父节点的子节点。换句话说,一个IAB节点的父节点为该IAB节点在上行链路上的下一跳节点或其下行链路上的上一跳节点,一个IAB节点的子节点为该IAB节点在上行链路上的上一跳节点或其下行链路上的下一跳节点。
为描述方便,下面定义本申请中用到的基本术语。
上行链路的下一跳节点(又称父节点):提供无线回传链路资源的节点。
上行链路的上一跳节点(又称子节点):使用回传链路资源向网络进行数据传输, 或者接收来自网络的数据的节点,这里的网络为核心网或者其他接入网之上的网络,如因特网、专网等。
接入链路:接入链路是指终端设备和为它提供接入服务的节点(例如,IAB节点、宿主节点、宿主基站或者宿主DU)进行通信时所使用的无线链路,包括上行传输和下行传输的链路。接入链路上的上行传输也被称为接入链路的上行传输,下行传输也被称为接入链路的下行传输。
回传链路:回传链路是指某个节点和它的父节点进行通信时所使用的无线链路,包括上行传输和下行传输的链路。回传链路上的上行传输也被称为回传链路的上行传输,下行传输也被称为回传链路的下行传输。其中的节点包括但不限于前述IAB节点。
路径(path):从发送节点至接收节点的全程路由,路径由至少一段链路(link)组成,在本申请中,链路表示相邻节点之间的连接。
F1接口消息:为CU和DU之间的接口信息;在IAB场景中,CU只存在于宿主基站,而中继节点被认为是一个DU,CU可以通过CU和DU之间的接口信息向中继节点发送配置信息。
适配层消息:为适配层中携带的信息;在IAB的协议架构里,每个DU上都会有一个适配层,通过在适配层中携带信息,可以实现在不同IAB节点之间完成信息的交互。
为了更好地理解本申请实施例的用于无线回传网络的数据传输方法和装置,下面先对本申请实施例应用的通信系统进行描述。请参阅图1a、图1b、图1c、图1d、图1e、图1f,图1a为本申请实施例应用的一种通信系统的示意图,图1b为本申请实施例应用的另一种通信系统的示意图,图1c为本申请实施例应用的又一种通信系统的示意图,图1d为本申请实施例应用的再一种通信系统的示意图,图1e为本申请实施例应用的其他一种通信系统的示意图,图1f为本申请实施例应用的其他又一种通信系统的示意图,图1g为本申请实施例应用的其他再一种通信系统的示意图,图1h为本申请实施例应用的其他再一种通信系统的示意图。
需要说明的是,本申请实施例适用的通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、LTE系统、下一代5G移动通信系统或者5G之后的通信系统,如新空口(now radio,NR)、设备到设备(device to device,D2D)通信系统。
无线接入网设备和宿主基站之间有明确的层级关系,每一个无线接入网设备将为其提供回传服务的无线接入网设备视为父节点。
如图1a所示,图1a所示的通信系统为一个IAB系统;该IAB系统包括一个宿主基站、IAB节点01、IAB节点02以及该IAB节点02所服务的终端设备;IAB节点01的父节点为宿主基站,IAB节点01又为IAB节点02的父节点;本申请将IAB节点01又称为IAB节点02在上行方向上的下一跳节点。IAB节点02所服务终端设备的上行数据包,将依次经由IAB节点02、IAB节点01传输至宿主基站,再由宿主基站发送至移动网关设备,例如,宿主基站将上行数据表发送给5G网络中的用户平面功能实体(user plane function,UPF);下行数据包将由宿主基站从移动网关设备处接收后,依次通过IAB节点01、IAB节点02发送给终端设备。在图1a中,终端设备和宿主基站之间的数据传输有一条可用的路径:终端设备←→IAB节点02←→IAB节点01←→ 宿主基站。
如图1b所示,图1b所示的通信系统为另一个IAB系统;该IAB系统包括一个宿主基站、IAB节点01、IAB节点02、IAB节点03、以及IAB节点02和IAB节点03所服务的终端设备;IAB节点01的父节点为宿主基站,IAB节点02的父节点为宿主基站;IAB节点01为IAB节点03的父节点,IAB节点02为IAB节点03的父节点。因此,IAB节点03具有两个父节点。换句话说,IAB节点03在上行链路上包括两个下一跳节点,需经由IAB节点03发送的上行数据包可以通过两条路径传输至宿主基站。本申请将IAB节点01又称为IAB节点03在上行方向上的第一下一跳节点,将IAB节点02又称为IAB节点03在上行方向上的第二下一跳节点。终端设备的上行数据包可以经一个或多个IAB节点传输至宿主基站之后,再由宿主基站发送至移动网关设备,下行数据包将由宿主基站从移动网关设备处接收后,再通过IAB节点发送至终端设备。在图1b中,终端设备和宿主基站之间的数据传输有两条可用的路径,路径1:终端设备←→IAB节点03←→IAB节点01←→宿主基站,路径2:终端设备←→IAB节点03←→IAB节点02←→宿主基站。
如图1c所示,图1c所示的通信系统为又一个IAB系统;该IAB系统包括一个宿主基站、IAB节点01、IAB节点02、以及IAB节点01和IAB节点02所服务的终端设备;IAB节点01的父节点为宿主基站,IAB节点02的父节点为宿主基站。终端设备的上行数据包可以经一个或多个IAB节点传输至宿主基站之后,再由宿主基站发送至移动网关设备,下行数据包将由宿主基站从移动网关设备处接收后,再通过IAB节点发送至终端设备。在图1c中,终端设备和宿主基站之间的数据传输有两条可用的路径,路径1:终端设备←→IAB节点01←→宿主基站,路径2:终端设备←→IAB节点02←→宿主基站。
如图1d所示,图1d所示的通信系统为再一个IAB系统;该IAB系统包括一个宿主基站、IAB节点01、IAB节点02、IAB节点03、以及IAB节点01和IAB节点02所服务的终端设备;IAB节点03的父节点为宿主基站;IAB节点03为IAB节点02的父节点,IAB节点03又为IAB节点01的父节点。终端设备的上行数据包可以经一个或多个IAB节点传输至宿主基站之后,再由宿主基站发送至移动网关设备,下行数据包将由宿主基站从移动网关设备处接收后,再通过IAB节点发送至终端设备。在图1d中,终端设备和宿主基站之间的数据传输有两条可用的路径,路径1:终端设备←→IAB节点02←→IAB节点03←→宿主基站,路径2:终端设备←→IAB节点01←→IAB节点03←→宿主基站。
如图1e所示,图1e所示的通信系统为其他一个IAB系统;该IAB系统包括一个宿主基站、IAB节点01、以及IAB节点01所服务的终端设备;IAB节点01的父节点为宿主基站。终端设备的上行数据包可以经一个或多个IAB节点传输至宿主基站之后,再由宿主基站发送至移动网关设备,下行数据包将由宿主基站从移动网关设备处接收后,再通过IAB节点发送至终端设备。在图1e中,终端设备和宿主基站之间的数据传输有两条可用的路径,路径1:终端设备←→宿主基站,路径2:终端设备←→IAB节点01←→宿主基站。
如图1f所示,图1f所示的通信系统为其他又一个IAB系统;该IAB系统包括一 个宿主基站、IAB节点01、IAB节点02、IAB节点03、以及IAB节点03和IAB节点02所服务的终端设备;IAB节点01的父节点为宿主基站,IAB节点02的父节点为宿主基站;IAB节点01为IAB节点03的父节点。终端设备的上行数据包可以经一个或多个IAB节点传输至宿主基站之后,再由宿主基站发送至移动网关设备,下行数据包将由宿主基站从移动网关设备处接收后,再通过IAB节点发送至终端设备。在图1f中,终端设备和宿主基站之间的数据传输有两条可用的路径,路径1:终端设备←→IAB节点02←→宿主基站,路径2:终端设备←→IAB节点03←→IAB节点01←→宿主基站。
如图1g所示,图1g所示的通信系统为其他再一个IAB系统;该IAB系统包括一个宿主基站、IAB节点01、IAB节点02、IAB节点03、IAB节点04、以及IAB节点04所服务的终端设备;IAB节点01的父节点为宿主基站;IAB节点01为IAB节点02的父节点,IAB节点01又为IAB节点03的父节点;IAB节点02为IAB节点04的父节点,IAB节点03为IAB节点04的父节点。终端设备的上行数据包可以经一个或多个IAB节点传输至宿主基站之后,再由宿主基站发送至移动网关设备,下行数据包将由宿主基站从移动网关设备处接收后,再通过IAB节点发送至终端设备。在图1g中,终端设备和宿主基站之间的数据传输有两条可用的路径,路径1:终端设备←→IAB节点04←→IAB节点02←→IAB节点01←→宿主基站,路径2:终端设备←→IAB节点04←→IAB节点03←→IAB节点01←→宿主基站。
如图1h所示,图1h所示的通信系统为其他再一个IAB系统;该IAB系统包括一个宿主基站、IAB节点01、IAB节点02、IAB节点03、IAB节点04、IAB节点05、以及IAB节点04所服务的终端设备1和终端设备2;IAB节点05的父节点为宿主基站;IAB节点05为IAB节点01的父节点;IAB节点01为IAB节点02的父节点;IAB节点02为IAB节点03的父节点,IAB节点02又为IAB节点04的父节点。终端设备的上行数据包可以经一个或多个IAB节点传输至宿主基站之后,再由宿主基站发送至移动网关设备,下行数据包将由宿主基站从移动网关设备处接收后,再通过IAB节点发送至终端设备。在图1h中,终端设备1和宿主基站之间的数据传输有两条可用的路径:终端设备1←→IAB节点03←→IAB节点02←→IAB节点01←→IAB节点05←→宿主基站;终端设备2和宿主基站之间的数据传输有两条可用的路径:终端设备2←→IAB节点03←→IAB节点02←→IAB节点01←→IAB节点05←→宿主基站。
图1a-图1h所示的IAB网络仅仅是示例性的,在多跳和多连接结合的IAB场景中,还有更多其他的可能性,例如,宿主节点和另一宿主节点下的IAB节点组成双连接为终端设备提供服务等等,此处不再一一列举。
图2为本申请实施例应用的其他另一种通信系统的示意图,如图2所示,该通信系统包括核心网设备、无线接入网设备和至少一个终端设备。在本申请中,终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图2只是示意图,该通信系统中还可 以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图2中未画出。本申请的实施例对该通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
图1a-图2所示出的通信系统,也成为无线中继通信系统。
应理解,无线接入网设备是终端设备通过无线方式接入到无线中继通信系统中的接入设备,无线接入网设备可以包括但不限于:基站NodeB、演进型基站eNodeB、5G无线中继通信系统中的基站、未来无线中继通信系统中的基站或无线网(wireless-fidelity,WiFi)系统中的接入节点等,本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
应理解,终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
应理解,无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对无线接入网设备和终端设备的应用场景不做限定。
应理解,本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是无线接入网设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是无线接入网设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例对信号的传输方向不做限定。
应理解,无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。在本申请中,对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
现在,在下行数据传输的过程中,每一跳的下行数据传输由IAB节点自身调度完成,即每个IAB节点中的基站(或DU)调度子节点的MT部分,以实现下行数据传输。以图1g为例,IAB节点01中的基站(或DU)调度IAB节点02中的MT进行下行数据传输,IAB节点02的中的基站(或DU)调度IAB节点04中的MT进行下行数据传输。但是当某一跳的IAB节点在下行方向发生阻塞(congestion)或堵塞(blockage)时,将造成IAB节点中的基站(或DU)在下行方向上发生缓存(buffer)拥塞的问题,并 且并有可能导致数据的丢包。例如,当IAB节点02与IAB节点04的下行方向上发生拥塞的时候,IAB节点01不能够感知IAB节点02中的基站(或DU)的下行缓存状态,IAB节点01还会持续向IAB节点02发送下行数据,进而造成IAB节点02中的基站(或DU)的下行缓存出现拥塞,持续的拥塞将进一步导致数据超时丢弃从而造成丢包。
现在,在下行数据传输的过程中,每一跳的上行数据传输由父节点调度完成,也就是说每个IAB节点中的基站(或DU)调度子节点的MT部分,以实现上行数据传输。以图1g为例,IAB节点01的中的基站(或DU)调度IAB节点02中的MT进行上行数据传输,IAB节点02的中的基站(或DU)调度IAB节点04中的MT进行上行数据传输。但是当某一跳的IAB节点在上行方向发生阻塞(congestion)或堵塞(blockage)时,将造成对应的路由路径上的数据包的传输性能受到影响,尤其是对时延性能造成影响。例如,当IAB节点02与IAB节点01的上行方向发生拥塞时,数据将会堆积在IAB节点02中,此时IAB节点02可以通过减少/停止对IAB节点04进行上行调度去解决IAB节点02的拥塞问题,但此时对应的路由路径上的上行数据包的时延性能将会收到影响,对于一些低时延需求业务其实验将无法得到满足。
从而,现有技术中,在中继组网架构中,在某一跳上的链路发生拥塞时,将会导致数据发生丢包或其时延要求无法满足。如何使得中继组网架构中节点获知链路上的拥塞,以防止出现数据丢包或接收数据时延要求无法满足的问题,这是一个需要解决的问题。
图3示出了本申请实施例的一种传输控制方法的示意性流程图。该方法可以应用于图1a-图2所示的通信系统,但本申请实施例不限于此。本申请实施例的无线中继通信系统包括无线接入网设备和宿主基站,无线接入网设备在下行链路上具有多个下一跳节点。
S101,第一无线接入网设备生成第一消息。
S102,第一无线接入网设备向第二无线接入网设备发送第一消息,第一消息中包括至少一个上报粒度、与至少一个上报粒度中的每一个上报粒度对应的下行状态信息。
其中,第一无线接入网设备为无线中继通信系统中的中继节点,第二无线接入网设备为无线中继通信系统中第一无线接入网设备的父节点或宿主基站。
可选的,上报粒度为以下的一种或多种:一个终端设备、一个终端设备的一个承载业务、一个中继节点、一个中继节点的一个承载业务;其中,一个中继节点为发送第一消息的无线接入网设备、或者发送第一消息的无线接入网设备的子节点、或者终端设备所接入的无线接入网设备。
可选的,下行状态信息包括至少一种状态值、或者至少一种状态值中的每一种状态值的索引值;状态值为以下中的任意一种:下行缓存的剩余量、下行缓存占用比、期望的下行传输速率、拥塞级别、下行缓存状态差值、下行缓存量组合;下行缓存状态差值为状态值与第一无线接入网设备上次上报的状态值之间的差值,下行缓存量组合包括下行缓存总量和当前下行缓存量。
示例性地,无线中继通信系统中,第一无线接入网设备为无线中继通信系统中的一个中继节点,第二无线接入网设备为无线中继通信系统中的宿主基站,第一无线接入网设备与宿主基站可以直接连接,或通过一个或多个其他中继节点与宿主基站相连; 在通信的过程中,第一无线接入网设备可以实时的生成第一消息,第一消息中包括有N个上报粒度、N个上报粒度中的每一个上报粒度对应的下行状态信息,其中,N为大于等于1的正整数;然后,第一无线接入网设备将生成的第一消息发送给作为宿主基站的第二无线接入网设备。
或者,无线中继通信系统中,第一无线接入网设备、第二无线接入网设备为无线中继通信系统中的一个中继节点,第二无线接入网设备为第一无线接入网设备的父节点;在通信的过程中,第一无线接入网设备可以实时的生成第一消息,第一消息中包括有N个上报粒度、N个上报粒度中的每一个上报粒度对应的下行状态信息,其中,N为大于等于1的正整数;然后,第一无线接入网设备将生成的第一消息发送给作为父节点的第二无线接入网设备。
其中,第一无线接入网设备处于发生拥塞的状态,或者第一无线接入网设备即将发生发生拥塞。
与每一个上报粒度对应的下行状态信息可以是M个状态值,M为大于等于1的正整数。第一无线接入网设备可以确定出以下的任意一种作为一个状态值:下行缓存(buffer)的剩余量、下行缓存占用比、期望的下行传输速率、拥塞级别、下行缓存状态差值、下行缓存量组合;其中,期望的下行传输速率指的是第二无线接入网设备希望从下行方向上接收数据的传输速率,同时也可以认为是第二无线接入网设备希望其父节点调度下行数据传输的速率;拥塞级别指的是第一无线接入网设备当前的数据拥塞程度所对应的级别;下行缓存状态差值指的是当前的状态值与第一无线接入网设备上次上报的状态值之间的差值,例如,下行缓存状态差值为第一无线接入网设备当前的下行缓存的剩余量与第一无线接入网设备上次上报的下行缓存的剩余量之间的差值,或者下行缓存状态差值为第一无线接入网设备当前下行缓存量与第一无线接入网设备上一次上报的下行缓存量之间的差值;下行缓存量组合包括第一无线接入网设备的下行缓存总量和第一无线接入网设备的当前下行缓存量。
在一些实施例中,第一无线接入网设备需要为每一种状态值进行量化处理,使得每一种状态值在不同取值下可以具有一个索引值;第一无线接入网设备中被预配置有索引值与相应状态值之间的映射关系,或者,第二无线接入网设备将索引值与相应状态值之间的映射关系发送给第一无线接入网设备。例如,为下行缓存的剩余量配置/预配置一个映射关系,示例性的,其表现形式可以是一种映射表,映射表中包括下行缓存的剩余量的不同取值、与每一个取值对应的索引值;为下行缓存占用比配置/预配置一个映射关系,示例性的,其表现形式可以是一种映射表,映射表中包括下行缓存占用比的不同取值、与每一个取值对应的索引值;为下行缓存状态差值配置/预配置一个映射关系,示例性的,其表现形式可以是一种映射表,映射表中包括下行缓存状态差值的不同取值、与每一个取值对应的索引值;
举例来说,为下行缓存的剩余量配置/预配置一个映射表,映射表中包括下行缓存的剩余量的不同取值区间、与每一个取值区间对应的索引值,其中,索引值也可以称为量化后的下行缓存的剩余量。
表1下行缓存的剩余量的映射表
下行缓存的剩余量 量化后的下行缓存的剩余量
0<剩余量<A 1
A<=剩余量<B 2
B<=剩余量<C 3
上述上报粒度可以是以下几种类型中的任意一种或多种:一个终端设备的下行状态信息、一个终端设备的一个承载业务的下行状态信息、一个中继节点的下行状态信息、一个中继节点的一个承载业务的下行状态信息。其中,终端设备指的是无线中继通信系统中无线接入网设备所服务的终端设备;下行状态信息,也可以称为下行缓存状态信息。上述一个中继节点可以为发送第一消息的无线接入网设备;或者,上述一个中继节点可以为发送第一消息的无线接入网设备的子节点;或者,上述一个中继节点可以为连接到无线中继通信系统中的终端设备所接入的无线接入网设备。
举例来说,上报粒度是一个终端设备的下行状态信息的情况下,所述第一无线接入网设备为每一个终端设备设置了下行发送数据的缓存,一个下行状态信息为所述第一无线接入网设备中一个终端设备的下行状态信息,例如,终端设备1的下行状态信息,终端设备2的下行状态信息。上报粒度是一个终端设备的一个承载业务的下行状态信息的情况下,由于每一个终端设备通常具有多个承载业务,每一个承载业务针对于一个业务的需求或多个相近的业务需求,所述第一无线接入网设备为每一个终端设备的每一个承载业务设置了下行发送数据的缓存,则得到一个下行状态信息为所述第一无线接入网设备中一个终端设备的一个承载业务的下行状态信息,例如,终端设备1的承载业务1的下行状态信息,终端设备2的承载业务1的下行状态信息。上报粒度是一个中继节点的下行状态信息的情况下,上述第一无线接入网设备为每一个中继节点设置了下行发送数据的缓存,一个下行状态信息为上述第一无线接入网设备中一个中继节点的下行状态信息,例如,中继节点1的下行状态信息,中继节点2的下行状态信息。上报粒度是一个中继节点的一个承载业务的下行状态信息的情况下,由于每一个中继节点通常具有多个承载业务,每一个承载业务针对于一个业务的需求或多个相近的业务需求,所述第一无线接入网设备为每一个中继节点的每一个承载业务设置了下行发送数据的缓存,则得到一个下行状态信息为所述第一无线接入网设备中一个中继节点的一个承载业务业务的下行状态信息,例如,中继节点1的承载业务1的下行状态信息,中继节点2的承载业务1的下行状态信息。
举例来说,上报粒度中的一个中继节点是发送第一消息的无线接入网设备的情况下,一个下行状态信息为发送第一消息的无线接入网设备的下行状态信息,本实施例中,一个下行状态信息为第一无线接入网设备的下行状态信息;例如,以图1h为例,中继节点01下行缓存出现拥塞,可以确定是中继节点01与中继节点02之间下行缓存出现拥塞,则中继节点01向中继节点05发送下行状态信息为中继节点01的下行状态信息。上报粒度是一个中继节点的一个承载业务的下行状态信息时,且当所述上报粒度中的所述一个中继节点是发送第一消息的无线接入网设备时,一个下行状态信息为发送第一消息的无线接入网设备的一个承载业务的下行状态信息,以图1h为例,中继节点01下行缓存出现拥塞,可以确定是中继节点01与中继节点02之间下行缓存出现拥塞,则中继节点01向中继节点05发送下行状态信息为中继节点01的承载业务1的下行状态信息。
举例来说,上报粒度中的一个中继节点是发送第一消息的无线接入网设备的子节点的情况下,本实施例中,一个下行状态信息为第一无线接入网设备的子节点的下行状态信息;例如,以图1h为例,中继节点02下行缓存出现拥塞,对于中继节点02来说,中继节点02具有两个子节点,分别为中继节点03和中继节点04,此时可以确定是中继节点02与中继节点03之间下行缓存出现拥塞,则中继节点02向中继节点01发送下行状态信息为与中继节点03对应的下行状态信息。上报粒度是一个中继节点的一个承载业务的下行状态信息时,且当上报粒度中的一个中继节点是发送第一消息的无线接入网设备的子节点时,一个下行状态信息为发送第一消息的无线接入网设备的子节点的承载业务的下行状态信息,例如,以图1h为例,中继节点02下行缓存出现拥塞,对于中继节点02来说,中继节点02具有两个子节点,分别为中继节点03和中继节点04,此时可以确定是中继节点02与中继节点03之间下行缓存出现拥塞,且确定是中继节点03的承载业务1上出现拥塞,则中继节点02向中继节点01发送下行状态信息为与中继节点03的承载业务1对应的下行状态信息。
举例来说,上报粒度中的一个中继节点是连接到无线中继通信系统中的终端设备所接入的无线接入网设备的情况下,以图1h为例,中继节点01的下行缓存出现拥塞,但是对于中继节点01来说,中继节点01根据路由表的目标节点信息只能够感知数据是发送给接入中继节点03的,则中继节点01向中继节点05上报的是在中继节点01中中继节点03的下行状态信息。上报粒度是一个中继节点的一个承载业务的下行状态信息时,且当上报粒度中的一个中继节点是连接到无线中继通信系统中的终端设备所接入的无线接入网设备时,一个下行状态信息为连接到无线中继通信系统中的终端设备所接入的无线接入网设备的承载业务的下行状态信息,例如,以图1h为例,中继节点01下行缓存出现拥塞,对于中继节点01来说,若可以确定是发送给中继节点03的下行缓存出现拥塞,且确定是发送给中继节点03的承载业务1上出现拥塞,则中继节点01向中继节点05发送下行状态信息为与中继节点03的承载业务1对应的下行状态信息。
在本申请中,示例性的,承载业务指的是具有特定服务质量(quality of service,QoS)属性的业务的集合,例如,承载业务是分组数据汇聚协议(packet data convergence protocol,PDCP)的承载业务,或者,承载业务是某个特定的数据流,或者,承载业务是属于某个流的一个或多个数据包(例如某个切片的数据流),或者,承载业务是无线链路控制层(radio link control,RLC)层的某一个逻辑信道所对应的传输。并且,承载业务可以通过承载业务标识来进行识别,不同场景下,承载业务标识可以不同。例如,若承载业务指的是对应PDCP的承载业务,例如承载业务为数据无线承载(data radio bearer,DRB),则承载业务标识指的是PDCP的承载业务标识相同;若承载业务指的是回传链路信道(RLC backhaul channel,RLC)上的业务或RLC承载(RLC bearer)业务,则承载业务标识指的是RLC信道(channel)标识或RLC承载业务标识;若承载业务指的是媒体接入控制层(medium access control,MAC)的逻辑信道上的业务,则承载业务标识指的是逻辑信道标识(logic channel identifier,LCID)。本申请对承载业务标识不做具体限定。
本实施例中,通过第一无线接入网设备向第二无线接入网设备发送第一消息,第 一消息中包括至少一个上报粒度、与至少一个上报粒度中的每一个上报粒度对应的下行状态信息;第二无线接入网设备为无线中继通信系统中第一无线接入网设备的父节点或宿主基站。从而第一无线接入网设备向第二无线接入网设备反馈下行状态信息,使得第一无线接入网设备的父节点或宿主基站可以及时的获知第一无线接入网设备的下行缓存状态信息,获知下行的缓存的拥塞状态,以使得第一无线接入网设备的父节点或宿主基站可以及时的对下行进行控制和处理,完成IAB场景中流控处理,有效的避免因链路中断等因素所引起的下行拥塞情况,可以防止下行数据的丢包和延迟,保证终端设备及时接收到数据。
图4示出了本申请实施例的另一种传输控制方法的示意性流程图。该方法可以应用于图1a-图2所示的通信系统,但本申请实施例不限于此。本申请实施例的无线中继通信系统包括无线接入网设备和宿主基站,无线接入网设备在下行链路上具有多个下一跳节点。
S201,下行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下,第一无线接入网设备向第二无线接入网设备发送第一指示信息,其中,第一指示信息用于指示索引值与状态值之间的映射关系。或者,下行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下,在步骤S204中,第一消息中还包括第一指示信息。
示例性地,第一无线接入网设备可以首先向第二无线接入网设备发送第一指示信息,该第一指示信息用于指示索引值与状态值之间的映射关系;或者,步骤S204中,第一消息中还包括第一指示信息。然后,第二无线接入网设备就可以根据第一指示信息确定出第一无线接入网设备当前所使用的映射关系;进而在步骤S205中,第二无线接入网设备接收到第一消息之后,第二无线接入网设备可以根据映射关系确定出与状态值对应的索引值。
在本申请中,映射关系可以是一张映射表或者多张映射表。由于中继节点的回传链路所承载的业务量较大,现有38321的映射表无法符合场景的需求;并且在多跳链路中,不同跳数的链路的业务量差距较大,进而需要定义多张映射表以应用到不同业务量大小的场景。在本实施例中,可以通过增加多张映射表以用于记录中继网络中不同跳数的回传链路中索引值与状态值之间的映射,或者将仅通过增加一张映射表以用于记录中继网络的回传链路中索引值与状态值之间的映射。由于在协议中存在多种缓存大小域(buffer size field)与缓存大小水平(buffer size levels)之间的映射关系,第一无线接入网设备可以通过第二无线接入网设备发送第一指示信息,该第一指示信息用于指示索引值与状态值之间的映射关系,示例性的,该第一指示信息用于指示索引值与状态值之间使用的是多种映射关系中的一种。
举例来说,表2为本实施例的映射表的示例,表2示出的5比特的缓存大小域对应的32种缓存大小水平之间的映射情况。表2中,Index为索引值,也代表着上述的缓存大小域,BS value为下行状态(buffer size,BS)的状态值,也代表着上述的缓存大小水平。且缓存大小域不仅仅局限于5比特。
表2本实施例的映射表的示例
Figure PCTCN2019113239-appb-000001
本步骤可以在步骤S204之前执行,示例性的,本步骤可以在步骤S202之前执行,或者可以在步骤S202之后执行,或者可以在步骤203之后执行。
S202,第二无线接入网设备向第一无线接入网设备发送第二消息,其中,第二消息中包括上报方式和/或上报粒度。其中,第一无线接入网设备为无线中继通信系统中的中继节点,第二无线接入网设备为无线中继通信系统中第一无线接入网设备的父节点或宿主基站。
可选的,第二无线接入网设备为宿主基站的情况下,第二消息为以下中的任一种:无线资源控制RRC消息、F1接口消息、适配层消息。
可选的,第二无线接入网设备为第一无线接入网设备的父节点的情况下,第二消息为MAC CE消息或适配层消息。
可选的,上报方式为以下的一种或多种:下行状态信息所表征的数值大于第一预设门限值,下行状态信息所表征的数值小于第二预设门限值,预设时间点;其中,预设时间点在下行状态信息所表征的数值符合预设条件时可被调整。
示例性地,无线中继通信系统中,第一无线接入网设备为无线中继通信系统中的一个中继节点,第二无线接入网设备为无线中继通信系统中的宿主基站,第一无线接入网设备与宿主基站可以直接连接,也可以通过其他一个或多个中继节点与宿主基站间接连接;或者,无线中继通信系统中,第一无线接入网设备、第二无线接入网设备都为无线中继通信系统中的一个中继节点,第二无线接入网设备为第一无线接入网设备的父节点。
第二无线接入网设备指示出第一无线接入网设备的下行状态信息的上报方式和/或上报粒度。示例性的,场景一:第一无线接入网设备为无线中继通信系统中的一个中继节点,第二无线接入网设备为无线中继通信系统中的宿主基站,第一无线接入网设备与宿主基站可以直接连接,也可以通过其他一个或多个中继节点与宿主基站间接连接;则第二无线接入网设备向第一无线接入网设备发送RRC消息、F1接口消息、适配层消息中的任意一种,以向第一无线接入网设备指示出上报方式和/或上报粒度。场景二:无线中继通信系统中,第一无线接入网设备、第二无线接入网设备都为无线中继通信系统中的一个中继节点,第二无线接入网设备为第一无线接入网设备的父节点;则第二无线接入网设备向第一无线接入网设备发送MAC CE消息或适配层消息,以向第一无线接入网设备指示出上报方式和/或上报粒度。
上报粒度的类型的介绍可以参见图3所示实施例中的介绍,不再赘述。通过第二 无线接入网设备向第一无线接入网设备发送上报粒度的配置信息,可以指示出第一无线接入网设备发送下行状态信息时所采用的上报粒度,并且,第二无线接入网设备可以确定出下行状态信息对应的上报粒度。
举例来说,第二无线接入网设备可以指示出第一无线接入网设备可以采用上报粒度,例如,第一无线接入网设备上报的下行状态信息是基于一个终端设备或基于一个中继节点,或者,可以采用一个终端设备、一个中继节点这两种上报粒度。例如,第一无线接入网设备上报的下行状态信息是基于一个中继节点的一个承载业务、或者基于一个终端设备的一个承载业务、或者基于发送第一消息的无线接入网设备的子节点,或者采用以上多种上报粒度中的某几种。
并且,在本申请中,第二无线接入网设备为第一无线接入网设备配置上述上报粒度的时候,可以根据第一无线接入网设备上报能力确定出第一无线接入网设备可以采用的上报粒度。例如,第一无线接入网设备向第二无线接入网设备发送第一无线接入网设备的下行数据缓存的管理类型,其中,下行数据缓存的管理类型为是否共享缓存,其中,是否共享缓存,指的是第一无线接入网设备与不同子节点或终端设备的下行传输数据是否共享数据存储缓存。举例来说,当下行数据缓存的管理类型为不同终端设备的不同承载业务的下行数据在下行缓存独立存储时,第二无线接入网设备可以确定第一接入网设备支持一个终端设备的一个承载业务的下行状态信息的上报粒度;当下行数据缓存的管理类型为不同终端设备的下行数据在下行缓存中独立存储、且同一终端设备的不同承载业务的下行数据在下行缓存中共享缓存时,第二无线接入网设备可以确定第一接入网设备不支持一个终端设备的一个承载业务的下行状态信息的上报粒度,但确定第一接入网设备支持一个终端设备下行状态信息的上报粒度;当下行数据缓存的管理类型为不同中继节点的不同承载业务的下行数据在下行缓存独立存储时,第二无线接入网设备可以确定第一接入网设备支持一个中继节点的一个承载业务的下行状态信息的上报粒度;当下行数据缓存的管理类型为不同中继节点的下行数据在下行缓存中独立存储、且同一中继节点的不同承载业务的下行数据在下行缓存中共享缓存时,第二无线接入网设备可以确定第一接入网设备不支持一个中继节点的一个承载业务的下行状态信息的上报粒度,但确定第一接入网设备支持一个中继节点的下行状态信息的上报粒度。
在本申请中,第二无线接入网设备向第一无线接入网设备发送的上报粒度可以是上报粒度标识。举例来说,当第二无线接入网设备指示第一无线接入网设备可以仅采用一种上报粒度的时候,第二无线接入网设备可以向第一无线接入网设备发送上报粒度的类型对应的索引值,每一种上报粒度与每一个索引值是一一对应的;当当第二无线接入网设备指示第一无线接入网设备可以采用多种上报粒度的时候,第二无线接入网设备可以采用bitmap的方式指示第一无线接入网设备,例如,bitmap 11001表示第一无线接入网设备可以采用第1、2、5种上报粒度,bitmap中的每一位与每一种上报粒度是一一对应的。
关于上报方式,通过第二无线接入网设备向第一无线接入网设备发送上报方式,可以指示出第一无线接入网设备发送下行状态信息时所采用的上报方式。其中,上报方式可以是事件触发的方式或周期性上报的方式,示例性的,第二无线接入网设备可 以指示第一无线接入网设备采用以下上报方式中的一种或多种:需要上报的下行状态信息所表征的数值大于第一预设门限值、需要上报的下行状态信息所表征的数值小于第二预设门限值、时间点;并且,在预设时间点在下行状态信息所表征的数值符合预设条件时,可以调整上述时间点。
举例来说,第二无线接入网设备为下行状态信息配置事件触发门限。例如,上报方式为下行缓存占用比大于或等于预设门限值,则第一无线接入网设备在确定下行缓存占用比大于或等于预设门限值的时候,向第二无线接入网设备发送第一消息;或者,上报方式为下行缓存的剩余量小于或等于预设门限值,则第一无线接入网设备在确定下行缓存的剩余量小于或等于预设门限值的时候,向第二无线接入网设备发送第一消息。
举例来说,第二无线接入网设备为下行状态信息配置上报周期,使得第一无线接入网设备根据上报周期所指示的时间点,向第二无线接入网设备发送第一消息。例如,上报方式为设置一个定时器(timer),则第一无线接入网设备在确定定时器超时,确定向第二无线接入网设备发送第一消息,并且,第一无线接入网设备上报了第一消息之后,将定时器重置。
举例来说,第二无线接入网设备为下行状态信息配置事件触发门限与上报周期结合的上报方式。并且,当第二无线接入网设备为下行状态信息配置事件触发门限与上报周期的时候,第一无线接入网设备可以确定是否根据事件触发门限重置上报周期。示例性的,第一无线接入网设备在确定事件触发门限不影响上报周期的时候,事件触发门限与上报周期这两种上报方式独立解耦工作,此时,下一次周期性上报机会在上一次周期性上报机会的时域间隔为所配置的上报周期,不会去重置上报周期所指示的时间点。第一无线接入网设备在事件触发门限影响上报周期的时候,可以根据事件触发门限所触发的事件重置上报周期所指示的时间点;或者,第一无线接入网设备在事件触发门限影响上报周期的时候,根据事件触发门限所触发的事件调整上报周期所指示的时间点,即下一次周期性上报机会在上一次周期性上报机会或事件触发上报机会的时域间隔为所配置的上报周期。例如,第二无线接入网设备指示第一无线接入网设备每隔10毫秒向第二无线接入网设备发送第一消息,则第一无线接入网设备分别在第10毫秒、第20毫秒、第30毫秒分别向第二无线接入网设备发送第一消息;此时,第一无线接入网设备在第35毫秒的时候确定下行缓存占用比大于或等于预设门限值,则第一无线接入网设备确定调整上报周期所指示的时间点,第一无线接入网设备确定定时器归零,然后重新计时,第一无线接入网设备可以在第45毫秒、第55毫秒的时候分别向第二无线接入网设备发送第一消息,此时的上报周期的间隔依然是10毫秒。
S203,第一无线接入网设备根据路由管理类型、缓存管理类型、第一无线接入网设备为第一消息分配的传输资源的大小中的至少一种,确定第一消息对应的上报粒度。
示例性地,第一无线接入网设备可以根据S202中第二无线接入网设备所指示的上报粒度,向第二无线接入网设备发送第一消息,在这一过程中,第一无线接入网设备需要考虑当前的状况,以选择出合适的上报粒度。示例性的,第二无线接入网设备指示第一无线接入网设备可以选择的多种上报粒度的时候,第一无线接入网设备具体选择何种上报粒度,可以根据路由管理类型、缓存管理类型、第一无线接入网设备为第 一消息分配的传输资源的大小中的至少一种而确定。
举例来说,当第一无线接入网设备采用基于路径信息的路由管理时,第一无线接入网设备可以采用基于发送第一消息的无线接入网设备的子节点的上报粒度,进行下行状态信息的上报。当第一无线接入网设备采用基于目标节点地址的路由管理,且终端设备为路由表信息的目标节点时,第一无线接入网设备可以采用基于一个终端设备的上报粒度,进行下行状态信息的上报。当第一无线接入网设备采用基于目标节点地址的路由管理,且终端设备所接入的中继节点为路由表信息的目标节点时,第一无线接入网设备可以采用基于一个中继节点的上报粒度,进行下行状态信息的上报。
当下行数据缓存的管理类型为不同终端设备的不同承载业务的下行数据在下行缓存独立存储时,第一接入网设备支持一个终端设备的一个承载业务的下行状态信息的上报粒度;当下行数据缓存的管理类型为不同终端设备的下行数据在下行缓存中独立存储、且同一终端设备的不同承载业务的下行数据在下行缓存中共享缓存时,第一接入网设备不支持一个终端设备的一个承载业务的下行状态信息的上报粒度,但支持一个终端设备的下行状态信息的上报粒度;当下行数据缓存的管理类型为不同中继节点的不同承载业务的下行数据在下行缓存独立存储时,第一接入网设备支持一个中继节点的一个承载业务的下行状态信息的上报粒度;当下行数据缓存的管理类型为不同中继节点的下行数据在下行缓存中独立存储、且同一中继节点的不同承载业务的下行数据在下行缓存中共享缓存时,第一接入网设备不支持一个中继节点的一个承载业务的下行状态信息的上报粒度,但支持一个中继节点的下行状态信息的上报粒度。
由于不同的上报粒度的开销不同,从而第一无线接入网设备可以根据为第一消息分配的资源大小,确定出可以使用的上报粒度。例如,当用于传输下行状态信息的传输资源不足以传输所有的细粒度的下行状态信息的时候,或当上行调度资源中的剩余填充(padding)比特数不足以传输所有细粒度的下行状态信息的时候,第一无线接入网设备可以使用一种相对更粗粒度的上报粒度进行下行状态信息上报。例如,当用于传输下行状态信息的传输资源不足以传输所有终端设备的所有承载业务的下行状态信息时,第一无线接入网设备可以根据当前的剩余资源数量以及所支持的上报粒度类型,选择一种粒度更粗的上报粒度;若剩余传输资源不足以传输其所支持的所有类型的上报粒度的下行状态信息时,则第一无线接入网设备选择一种其所支持的上报粒度,对部分的下行状态信息进行上报,并根据剩余资源的大小尽可能的上报所要传输的下行状态信息。
S204,第一无线接入网设备生成第一消息。
示例性地,本步骤可以参见图3的步骤S101,不再赘述。
S205,第一无线接入网设备向第二无线接入网设备发送第一消息,第一消息中包括至少一个上报粒度、与至少一个上报粒度中的每一个上报粒度对应的下行状态信息。
可选的,第二无线接入网设备为宿主基站的情况下,第一消息为以下中任一种:无线资源控制RRC消息、F1接口消息、和适配层消息。
可选的,第二无线接入网设备为第一无线接入网设备的父节点的情况下,第一消息为MAC CE消息或适配层消息。
可选的,在步骤S205中,上报粒度为上报粒度标识;第一消息中的每一个上报粒 度标识和每一个上报粒度标识对应的下行状态信息依次排列,且每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息相邻;或者,第一消息中至少一个上报粒度标识被依次排列之后每一个下行状态信息被依次排列。
可选的,在第一消息为MAC CE消息的情况下,步骤S205,示例性的,包括:
第一无线接入网设备根据预设的逻辑信道优先级顺序,向第二无线接入网设备发送第一消息,其中,预设的逻辑信道优先级顺序用于指示第一消息对应的MAC CE与其他逻辑信道的优先级次序。
示例性地,第一无线接入网设备向第二无线接入网设备发送第一消息的时候,场景一:第一无线接入网设备为无线中继通信系统中的一个中继节点,第二无线接入网设备为无线中继通信系统中的宿主基站,第一无线接入网设备与宿主基站可以直接连接,也可以通过其他一个或多个中继节点与宿主基站间接连接;则第一无线接入网设备向第二无线接入网设备发送RRC消息、F1接口消息、适配层消息中的任意一种,以向第二无线接入网设备发送第一消息。场景二:无线中继通信系统中,第一无线接入网设备、第二无线接入网设备都为无线中继通信系统中的一个中继节点,第二无线接入网设备为第一无线接入网设备的父节点;则第一无线接入网设备向第二无线接入网设备发送MAC CE消息或适配层消息,以向第二无线接入网设备发送第一消息。
在本申请中,第一无线接入网设备向第二无线接入网设备发送上报粒度可以是上报粒度标识。在申请中,上报粒度标识可以是终端设备标识,中继节点标识,其中,终端设备标识例如是国际移动用户识别码(international mobile subscriber identity,IMSI)、小区无线网络临时标识(cell radio network temporary identity,C-RNTI)、国际移动设备标识(international mobile equipment identity,IMEI)、临时移动设备标识(temporary mobile subscriber identity,TMSI)、终端设备的网络协议(internet protocol,IP)地址,中继节点标识例如是小区标识(cell ID)、中继节点(relay node,RN)的标识、IAB节点的DU标识、IAB节点的MT标识、E-UTRAN小区全球标识(E-UTRAN cell global identifier,ECGI)、NR小区全球标识(NR cell global identifier,NCGI)、IAB节点的IP地址、IAB节点的DU的IP地址、IAB节点的MT的IP地址、CU为IAB节点适配层分配的标识。在本申请中,上报粒度为承载业务的时候,上报粒度标识可以是终端设备标识和终端设备的承载业务标识,或者,上报粒度标识可以是中继节点标识和中继节点的承载业务标识。
在第一消息中,每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息可以采用多种排列格式。
第一种格式,第一消息中的每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息依次排列,且每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息相邻。
举例来说,图5a示出了本申请实施例的第一消息的结构示意图一,如图5a所示,每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息相邻,然后归属于不同的上报粒度的上报粒度标识和下行状态信息依次排列,例如,依次排列有上报粒度标识1、上报粒度标识1对应的下行状态信息1、上报粒度标识2、上报粒度标识2对应的下行状态信息2、…、上报粒度标识N、上报粒度标识N对应的下行状态信息N; 图5a中每一行为一个Oct i,i为大于等于1小于等于n的正整数,n、N都是正整数;在图5a中,若最后一个字节未补齐,则用预留比特(reserved bits)进行补齐,例如预留比特置为0。
举例来说,图5b示出了本申请实施例的第一消息的结构示意图二,如图5b所示,每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息相邻,然后归属于不同的上报粒度的上报粒度标识和下行状态信息依次排列,其中,上报粒度标识包括了中继节点标识和中继节点的承载业务标识。例如,依次排列有中继节点标识1、中继节点1的承载业务标识1、下行状态信息1、中继节点标识2、中继节点2的承载业务标识2、下行状态信息2、中继节点标识N-1、中继节点N-1的承载业务标识N-1、下行状态信息N-1、…、中继节点标识N、中继节点N的承载业务标识N、下行状态信息N;图5b中每一行为一个Oct i,i为大于等于1小于等于n的正整数,n、N都是正整数;在图5b中,若最后一个字节未补齐,则用预留比特进行补齐,例如预留比特置为0。
第二种格式,第一消息中至少一个上报粒度标识被依次排列之后每一个下行状态信息被依次排列。
举例来说,图5c示出了本申请实施例的第一消息的结构示意图三,如图5c所示,每一个上报粒度标识被依次排列之后,每一个下行状态信息被依次排列,例如,依次排列有上报粒度标识1、上报粒度标识2、…、上报粒度标识N-1、上报粒度标识N、上报粒度标识1对应的下行状态信息1、上报粒度标识2对应的下行状态信息2、…、上报粒度标识N对应的下行状态信息N;图5c中每一行为一个Oct i,i为大于等于1小于等于n的正整数,n、N都是正整数;所有的上报粒度标识在前,下行状态信息在后,上报粒度标识的数量与下行状态信息的数量相等并一一对应。在图5c中,若最后一个字节未补齐,则用预留比特进行补齐,例如预留比特置为0。
在图5a、图5b、图5c中上报粒度标识和下行状态信息占用的比特数仅是一种示例,本申请不做限制。
本申请中,第一无线接入网设备上报所在协议层/接口为以下任意一种或其组合:MAC CE or MAC header、适配层(adaption layer)、F1、RRC、X2/Xn口信令。
在本申请中,在第一消息为MAC CE消息的情况下,第一无线接入网设备以MAC CE消息的形式将上报粒度和下行状态信息发送给第二无线接入网设备,则需要对逻辑信道优先级(logical channel prioritization,LCP)顺序进行调整。示例性的,第一无线接入网设备以MAC CE消息的形式将上报粒度和下行状态信息发送给第二无线接入网设备,因此需要增加一种MAC CE,该MAC CE与第一消息相对应,同时为该新增的MAC CE定义一个逻辑信道标识,由于引入了一个新的MAC CE,在逻辑信道优先级过程中,需要定义新引入的MAC CE在上行传输时与其他逻辑信道之间的优先顺序,例如,将新增的MAC CE放到现有的逻辑信道优先级顺序中的某一个位置上,一个示例中,可以将新增的MAC CE优先级置于除padding缓冲状态报告(buffer status report,BSR)之外的BSR的MAC CE之前;从而,得到的逻辑信道优先级顺序可以指示出第一消息对应的MAC CE与其他逻辑信道的优先级次序;在步骤S205中,第一无线接入网设备根据增加了MAC CE的逻辑信道优先级顺序,向第二无线接入网设备发送用于指示上报粒 度和下行状态信息的MAC CE消息。举例来说,图6示出了本申请实施例的逻辑信道优先级顺序的逻辑信道次序图,如图6所示,优先级次序依次为逻辑信道1、第一消息对应的MAC CE的逻辑信道、逻辑信道2、逻辑信道3。
S206,第二无线接入网设备向第一无线接入网设备发送第二指示信息,其中,第二指示信息用于指示第一无线接入网设备切换链路。
示例性地,在第二无线接入网设备接收到下行状态信息之后,第二无线接入网设备可以向第一无线接入网设备发送第二指示信息,进而指示第一无线接入网设备切换链路;或者,第二无线接入网设备降低对第一无线接入网设备的下行传输速率;或者,第二无线接入网设备为第一无线接入网设备分配时频资源,进而为第一无线接入网设备分配更多的时频资源。
在下行状态信息表征第一无线接入网设备没有发生拥塞的时候,第二无线接入网设备可以增加第一无线接入网设备的下行传输速率;或者,第二无线接入网设备减少为第一无线接入网设备分配的时频资源。
本实施例中,通过第一无线接入网设备向第二无线接入网设备发送第一消息,第一消息中包括至少一个上报粒度、与至少一个上报粒度中的每一个上报粒度对应的下行状态信息;第二无线接入网设备为无线中继通信系统中第一无线接入网设备的父节点或宿主基站;然后,第二无线接入网设备指示第一无线接入网设备切换链路,或者,第二无线接入网设备减少第一无线接入网设备的下行传输速率,或者,第二无线接入网设备为第一无线接入网设备分配时频资源。从而第一无线接入网设备实时的向第二无线接入网设备反馈下行状态信息,使得第一无线接入网设备的父节点或宿主基站可以及时的获知下行的状态,获知下行的缓存的拥塞状态,以使得第一无线接入网设备的父节点或宿主基站可以及时的对下行进行控制和处理,完成IAB场景中流控处理,有效的避免因链路中断等因素所引起的下行拥塞情况,可以防止下行数据的丢包和延迟,保证终端设备及时接收到数据。并且,提供了映射关系,以指示出状态值与索引值之间的对应关系。
图7示出了本申请实施例的又一种传输控制方法的示意性流程图,图3示出了本申请实施例的一种传输控制方法的示意性流程图。该方法可以应用于图1a-图2所示的通信系统,但本申请实施例不限于此。本申请实施例的无线中继通信系统包括无线接入网设备和宿主基站,无线接入网设备在上行链路上具有一个或多个上一跳节点。
S301,上行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下,第二无线接入网设备向第一无线接入网设备发送第一指示信息,其中,第一指示信息用于指示索引值与状态值之间的映射关系。或者,上行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下,在步骤S304中,第一消息中还包括第一指示信息。
S302,第二无线接入网设备向第一无线接入网设备发送第二消息,其中,第二消息中包括上报方式和/或上报粒度。其中,第一无线接入网设备为无线中继通信系统中的中继节点或终端设备,第二无线接入网设备为无线中继通信系统中第一无线接入网设备的父节点或宿主基站。
S303,第二无线接入网设备根据路由管理类型、缓存管理类型、第二无线接入网设备为第一消息分配的传输资源的大小中的至少一种,确定第一消息对应的上报粒度。
S304,第二无线接入网设备生成第一消息。
S305,第二无线接入网设备向第一无线接入网设备发送第一消息,第一消息中包括至少一个上报粒度、与至少一个上报粒度中的每一个上报粒度对应的上行状态信息。
S306,第一无线接入网设备向第二无线接入网设备发送第三指示信息,其中,第三指示信息用于指示第二无线接入网设备切换链路。
示例性地,对于上行状态信息,可以参见图3-图4所示出的方法,不再赘述。
本实施例中,通过第二无线接入网设备向第一无线接入网设备发送第一消息,第一消息中包括至少一个上报粒度、与至少一个上报粒度中的每一个上报粒度对应的上行状态信息;第二无线接入网设备为第一无线接入网设备的父节点或宿主基站。从而第二无线接入网设备实时的向第一无线接入网设备反馈上行状态信息,使得第二无线接入网设备的子节点可以及时的获知上行的状态,获知上行的缓存的拥塞状态,以使得第二无线接入网设备的子节点可以及时的对上行进行控制和处理,完成IAB场景中流控处理,有效的避免因链路中断等因素所引起的上行拥塞情况,可以防止上行数据的丢包和延迟,保证宿主基站及时接收到数据,解决上行数据时延需求。
上文中结合图3-图7,详细描述了根据本申请实施例的传输控制方法,下面将结合图8-图9,详细描述根据本申请实施例的通信装置。
图8示出了本申请实施例提供的应用于第一无线接入网设备的通信装置800,该装置800可以是无线中继通信系统中的中继节点,也可以为中继节点中的芯片。该装置800包括:处理单元810、发送单元820和接收单元830。
在一种可能的实现方式中,装置800用于执行图3、或图4、或7所示方法中第一无线接入网设备对应的各个流程和步骤。
处理单元810,用于生成第一消息。此时,处理单元810可以执行图3中的步骤S101、图4中的步骤S204。
发送单元820,用于向第二无线接入网设备发送第一消息,第一消息中包括至少一个上报粒度、与至少一个上报粒度中的每一个上报粒度对应的下行状态信息;其中,第一无线接入网设备为无线中继通信系统中的中继节点,第二无线接入网设备为无线中继通信系统中第一无线接入网设备的父节点或宿主基站。此时,发送单元820可以执行图3中的步骤S102、图4中的步骤S205。
或者,接收单元830,用于接收第二无线接入网设备发送的第一消息,第一消息中包括至少一个上报粒度、与至少一个上报粒度中的每一个上报粒度对应的上行状态信息;此时,接收单元830可以执行7中的步骤S305。
可选的,上报粒度为以下的一种或多种:一个终端设备、一个终端设备的一个承载业务、一个中继节点、一个中继节点的一个承载业务;其中,一个中继节点为发送第一消息的无线接入网设备、或者发送第一消息的无线接入网设备的子节点、或者终端设备所接入的无线接入网设备。
可选的,下行状态信息包括至少一种状态值、或者至少一种状态值中的每一种状 态值的索引值;状态值为以下中的任意一种:下行缓存的剩余量、下行缓存占用比、期望的下行传输速率、拥塞级别、下行缓存状态差值、下行缓存量组合;下行缓存状态差值为状态值与第一无线接入网设备上次上报的状态值之间的差值,下行缓存量组合包括下行缓存总量和当前下行缓存量。
可选的,下行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下;第一消息中还包括第一指示信息,其中,第一指示信息用于指示索引值与状态值之间的映射关系;或者,发送单元820,还用于向第二无线接入网设备发送第一指示信息,此时,发送单元820可以执行图4中的步骤S201。或者,上行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下;第一消息中还包括第一指示信息,其中,第一指示信息用于指示索引值与状态值之间的映射关系;或者,接收单元830,还用于接收第二无线接入网设备发送的第一指示信息,此时,接收单元830可以执行图7中的步骤S301。
可选的,接收单元830,用于接收第二无线接入网设备发送的第二消息,其中,第二消息中包括上报方式和/或上报粒度。此时,接收单元830可以执行图4中的步骤S202、图7的步骤S302。
可选的,第二无线接入网设备为宿主基站的情况下,第二消息为以下中的任一种:RRC消息、F1接口消息、适配层消息。
可选的,第二无线接入网设备为第一无线接入网设备的父节点的情况下,第二消息为MAC CE消息或适配层消息。
可选的,上报方式为以下的一种或多种:下行状态信息所表征的数值大于第一预设门限值,下行状态信息所表征的数值小于第二预设门限值,预设时间点;其中,预设时间点在下行状态信息所表征的数值符合预设条件时可被调整。
可选的,第二无线接入网设备为宿主基站的情况下,第一消息为以下中任一种:无线资源控制RRC消息、F1接口消息、和适配层消息。
可选的,第二无线接入网设备为第一无线接入网设备的父节点的情况下,第一消息为MAC CE消息或适配层消息。
可选的,上报粒度为上报粒度标识;第一消息中的每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息依次排列,且每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息相邻;或者,第一消息中至少一个上报粒度标识被依次排列之后每一个下行状态信息被依次排列。
可选的,在第一消息为MAC CE消息的情况下,发送单元820,示例性的,用于:根据预设的逻辑信道优先级顺序,向第二无线接入网设备发送第一消息,其中,预设的逻辑信道优先级顺序用于指示第一消息对应的MAC CE与其他逻辑信道的优先级次序。此时,发送单元820可以执行图4中的步骤S205。
可选的,处理单元810,还用于:根据路由管理类型、缓存管理类型、第一无线接入网设备为第一消息分配的传输资源的大小中的至少一种,确定第一消息对应的上报粒度。此时,处理单元810可以执行图4中的步骤S203。
可选的,接收单元830,用于:接收第二无线接入网设备发送的第二指示信息,其中,第二指示信息用于指示第一无线接入网设备切换链路;此时,接收单元830可 以执行图4中的步骤S206。或者,发送单元820,用于:向第二无线接入网设备发送第三指示信息,其中,第三指示信息用于指示第二无线接入网设备切换链路;发送单元820可以执行图7中的步骤S306。
示例性的,这里的装置800以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置800可以具体为上述实施例中的无第一无线接入网设备,装置800可以用于执行上述方法实施例中与第一无线接入网设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置800具有实现上述方法中第一无线接入网设备执行的相应步骤的功能;功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块;例如发送单元可以由发射机替代,接收单元可以由接收机替代,其它单元,如确定单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
在本申请的实施例,图8中的装置也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,接收单元和发送单元可以是该芯片的收发电路,在此不做限定。
图9示出了本申请实施例提供的应用于第二无线接入网设备的通信装置900,该装置900可以是无线中继通信系统中的中继节点,也可以为中继节点中的芯片,第二无线接入网设备可以是宿主基站,也可以是宿主基站中的芯片。该装置900包括:处理单元910、发送单元920和接收单元930。
在一种可能的实现方式中,装置900用于执行图3、或图4、或7所示方法中第二无线接入网设备对应的各个流程和步骤。
接收单元930,用于接收第一无线网络设备发送的第一消息,第一消息中包括至少一个上报粒度、与至少一个上报粒度中的每一个上报粒度对应的下行状态信息;其中,第一无线接入网设备为无线中继通信系统中的中继节点,第二无线接入网设备为无线中继通信系统中第一无线接入网设备的父节点或宿主基站。此时,接收单元930可以执行图3中的步骤S102、图4中的步骤S205。
或者,处理单元910,用于根据路由管理类型、缓存管理类型、第二无线接入网设备为第一消息分配的传输资源的大小中的至少一种,确定第一消息对应的上报粒度;生成第一消息;此时,处理单元910可以执行图7中的步骤S303、S304。发送单元920,用于向第一无线网络设备发送第一消息,第一消息中包括至少一个上报粒度、与至少一个上报粒度中的每一个上报粒度对应的上行状态信息。此时,发送单元920可以执行图7中的步骤S305。
可选的,上报粒度为以下的一种或多种:一个终端设备、一个终端设备的一个承载业务、一个中继节点、一个中继节点的一个承载业务;其中,一个中继节点为发送第一消息的无线接入网设备、或者发送第一消息的无线接入网设备的子节点、或者终 端设备所接入的无线接入网设备。
可选的,下行状态信息包括至少一种状态值、或者至少一种状态值中的每一种状态值的索引值;状态值为以下中的任意一种:下行缓存的剩余量、下行缓存占用比、期望的下行传输速率、拥塞级别、下行缓存状态差值、下行缓存量组合;下行缓存状态差值为状态值与第一无线接入网设备上次上报的状态值之间的差值,下行缓存量组合包括下行缓存总量和当前下行缓存量。
可选的,下行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下;第一消息中还包括第一指示信息,其中,第一指示信息用于指示索引值与状态值之间的映射关系;或者,接收单元930,还用于接收第一无线接入网设备发送的第一指示信息,此时,接收单元930可以执行图4中的步骤S201。或者,上行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下;第一消息中还包括第一指示信息,其中,第一指示信息用于指示索引值与状态值之间的映射关系;或者,发送单元920,用于向第一无线接入网设备发送的第一指示信息,此时,发送单元920可以执行图7中的步骤S301。
可选的,发送单元920,用于向第一无线接入网设备发送第二消息,其中,第二消息中包括上报方式和/或上报粒度。此时,发送单元920可以执行图4中的步骤S202、图7的步骤S302。
可选的,第二无线接入网设备为宿主基站的情况下,第二消息为以下中的任一种:RRC消息、F1接口消息、适配层消息。
可选的,第二无线接入网设备为第一无线接入网设备的父节点的情况下,第二消息为MAC CE消息或适配层消息。
可选的,上报方式为以下的一种或多种:下行状态信息所表征的数值大于第一预设门限值,下行状态信息所表征的数值小于第二预设门限值,预设时间点;其中,预设时间点在下行状态信息所表征的数值符合预设条件时可被调整。
可选的,第二无线接入网设备为宿主基站的情况下,第一消息为以下中任一种:无线资源控制RRC消息、F1接口消息、和适配层消息。
可选的,第二无线接入网设备为第一无线接入网设备的父节点的情况下,第一消息为MAC CE消息或适配层消息。
可选的,上报粒度为上报粒度标识;第一消息中的每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息依次排列,且每一个上报粒度标识和每一个上报粒度标识对应的下行状态信息相邻;或者,第一消息中至少一个上报粒度标识被依次排列之后每一个下行状态信息被依次排列。
可选的,发送单元920,用于向第一无线接入网设备发送第二指示信息,其中,第二指示信息用于指示第一无线接入网设备切换链路;此时,发送单元920可以执行图4中的步骤S206。或者,处理单元910,用于减少第一无线接入网设备的下行传输速率。或者,处理单元910,还用于为第一无线接入网设备分配时频资源。或者,接收单元930,用于接收第一无线接入网设备发送的第三指示信息,其中,第三指示信息用于指示第二无线接入网设备切换链路;此时,接收单元930可以执行图7的步骤S306。
示例性的,这里的装置900以功能单元的形式体现。这里的术语“单元”可以指ASIC、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置900可以具体为上述实施例中的无第一无线接入网设备,装置900可以用于执行上述方法实施例中与第二无线接入网设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置900具有实现上述方法中第一无线接入网设备执行的相应步骤的功能;功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块;例如发送单元可以由发射机替代,接收单元可以由接收机替代,其它单元,如确定单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
在本申请的实施例,图9中的装置也可以是芯片或者芯片系统,例如:片上系统。对应的,接收单元和发送单元可以是该芯片的收发电路,在此不做限定。
在本申请的实施例,图8和图9中的装置也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,接收单元和发送单元可以是该芯片的收发电路,在此不做限定。
图10示出了本申请实施例提供的应用于第一无线接入网设备的通信装置1000。该装置1000包括处理器1010、收发器1020和存储器1030。其中,处理器1010、收发器1020和存储器1030通过内部连接通路互相通信,该存储器1030用于存储指令,该处理器1010用于执行该存储器1030存储的指令,以控制收发器1020接收信号和发送信号。
在一种可能的实现方式中,装置1000用于执行上述方法中第一无线接入网设备对应的各个流程和步骤。
处理器1010用于执行图3中的步骤S101、图4中的步骤S203、图4中的步骤S204。
收发器1020用于执行图4中的步骤S202、图4中的步骤S206;用于执行图7中的步骤S302、图7中的步骤S305、图7中的步骤S301;用于执行图3中的步骤S102、图4中的步骤S205、图4中的步骤S201;用于执行图7中的步骤S306。
示例性的,装置1000可以具体为上述实施例中的第一无线接入网设备,并且可以用于执行上述方法实施例中与第一无线接入网设备对应的各个步骤和/或流程。可选地,该存储器1030可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器1010可以用于执行存储器中存储的指令,并且当该处理器1010执行存储器中存储的指令时,该处理器1010用于执行上述与第一无线接入网设备对应的方法实施例的各个步骤和/或流程。
示例性的,在本申请实施例中,上述装置的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器 也可以是任何常规的处理器等。
图11示出了本申请实施例提供的应用于第二无线接入网设备的通信装置1100。该装置1100包括处理器1110、收发器1120和存储器1130。其中,处理器1110、收发器1120和存储器1130通过内部连接通路互相通信,该存储器1130用于存储指令,该处理器1110用于执行该存储器1130存储的指令,以控制收发器1120接收信号和发送信号。
在一种可能的实现方式中,装置1100用于执行上述方法中第二无线接入网设备对应的各个流程和步骤。
收发器1130用于执行图4中的步骤S202、图4中的步骤S206;用于执行图7中的步骤S302、图7中的步骤S305、图7中的步骤S301;用于执行图3中的步骤S102、图4中的步骤S205、图4中的步骤S201;用于执行图7中的步骤S306。
处理器1110用于执行图7中的步骤S303、S304。
示例性的,装置1110可以具体为上述实施例中的第二无线接入网设备,并且可以用于执行上述方法实施例中与第二无线接入网设备对应的各个步骤和/或流程。可选地,该存储器1130可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器1110可以用于执行存储器中存储的指令,并且当该处理器1110执行存储器中存储的指令时,该处理器1110用于执行上述与第二无线接入网设备对应的方法实施例的各个步骤和/或流程。
示例性的,在本申请实施例中,上述装置的处理器可以是CPU,该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步 骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种传输控制方法,其特征在于,包括:
    第一无线接入网设备生成第一消息;
    所述第一无线接入网设备向第二无线接入网设备发送所述第一消息,所述第一消息中包括至少一个上报粒度、与所述至少一个上报粒度中的每一个上报粒度对应的下行状态信息;
    其中,所述第一无线接入网设备为无线中继通信系统中的中继节点,所述第二无线接入网设备为所述无线中继通信系统中所述第一无线接入网设备的父节点或宿主基站。
  2. 根据权利要求1所述的方法,其特征在于,所述下行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下;
    所述第一消息中还包括第一指示信息,其中,所述第一指示信息用于指示索引值与状态值之间的映射关系;或者,所述方法,还包括:所述第一无线接入网设备向所述第二无线接入网设备发送所述第一指示信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法,还包括:
    所述第一无线接入网设备接收所述第二无线接入网设备发送的第二消息,其中,所述第二消息中包括上报方式和/或所述上报粒度。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,在所述第一消息为MAC CE消息的情况下,所述第一无线接入网设备向第二无线接入网设备发送所述第一消息,包括:
    第一无线接入网设备根据预设的逻辑信道优先级顺序,向所述第二无线接入网设备发送所述第一消息,其中,所述预设的逻辑信道优先级顺序用于指示所述第一消息对应的MAC CE与其他逻辑信道的优先级次序。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法,还包括:
    所述第一无线接入网设备根据路由管理类型、缓存管理类型、所述第一无线接入网设备为所述第一消息分配的传输资源的大小中的至少一种,确定所述第一消息对应的上报粒度。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法,还包括:
    所述第一无线接入网设备接收所述第二无线接入网设备发送的第二指示信息,其中,所述第二指示信息用于指示所述第一无线接入网设备切换链路。
  7. 一种传输控制方法,其特征在于,包括:
    第二无线接入网设备接收第一无线网络设备发送的第一消息,所述第一消息中包括至少一个上报粒度、与所述至少一个上报粒度中的每一个上报粒度对应的下行状态信息;
    其中,所述第一无线接入网设备为无线中继通信系统中的中继节点,所述第二无线接入网设备为所述无线中继通信系统中所述第一无线接入网设备的父节点或宿主基站。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述上报粒度为以下的一 种或多种:一个终端设备、一个终端设备的一个承载业务、一个中继节点、一个中继节点的一个承载业务;
    其中,所述一个中继节点为发送所述第一消息的无线接入网设备、或者发送所述第一消息的无线接入网设备的子节点、或者所述终端设备所接入的无线接入网设备。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述下行状态信息包括至少一种状态值、或者至少一种状态值中的每一种状态值的索引值;
    所述状态值为以下中的任意一种:下行缓存的剩余量、下行缓存占用比、期望的下行传输速率、拥塞级别、下行缓存状态差值、下行缓存量组合;
    所述下行缓存状态差值为所述状态值与所述第一无线接入网设备上次上报的状态值之间的差值,所述下行缓存量组合包括下行缓存总量和当前下行缓存量。
  10. 根据权利要求9所述的方法,其特征在于,所述下行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下;
    所述第一消息中还包括第一指示信息,其中,所述第一指示信息用于指示索引值与状态值之间的映射关系;或者,所述方法,还包括:所述第二无线接入网设备接收所述第一无线接入网设备发送的所述第一指示信息。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,所述方法,还包括:
    所述第二无线接入网设备向所述第一无线接入网设备发送第二消息,其中,所述第二消息中包括上报方式和/或所述上报粒度。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,上报方式为以下的一种或多种:所述下行状态信息所表征的数值大于第一预设门限值,所述下行状态信息所表征的数值小于第二预设门限值,预设时间点;
    其中,所述预设时间点在所述下行状态信息所表征的数值符合预设条件时可被调整。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述第二无线接入网设备为宿主基站的情况下,所述第一消息为以下中任一种:无线资源控制RRC消息、F1接口消息、和适配层消息。
  14. 根据权利要求1-12任一项所述的方法,其特征在于,所述第二无线接入网设备为所述第一无线接入网设备的父节点的情况下,所述第一消息为MAC CE消息或适配层消息。
  15. 根据权利要求7-14任一项所述的方法,其特征在于,所述方法,还包括:
    所述第二无线接入网设备向所述第一无线接入网设备发送第二指示信息,其中,所述第二指示信息用于指示所述第一无线接入网设备切换链路;
    或者,所述第二无线接入网设备减少所述第一无线接入网设备的下行传输速率;
    或者,所述第二无线接入网设备为所述第一无线接入网设备分配时频资源。
  16. 一种通信装置,应用于第一无线接入网设备,其特征在于,包括:
    处理单元,用于生成第一消息;
    发送单元,用于向第二无线接入网设备发送所述第一消息,所述第一消息中包括至少一个上报粒度、与所述至少一个上报粒度中的每一个上报粒度对应的下行状态信息;
    其中,所述第一无线接入网设备为无线中继通信系统中的中继节点,所述第二无线接入网设备为所述无线中继通信系统中所述第一无线接入网设备的父节点或宿主基站。
  17. 根据权利要求16所述的装置,其特征在于,所述下行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下;
    所述第一消息中还包括第一指示信息,其中,所述第一指示信息用于指示索引值与状态值之间的映射关系;或者,所述发送单元,还用于向所述第二无线接入网设备发送所述第一指示信息。
  18. 根据权利要求16或17所述的装置,其特征在于,所述装置,还包括:
    接收单元,用于接收所述第二无线接入网设备发送的第二消息,其中,所述第二消息中包括上报方式和/或所述上报粒度。
  19. 根据权利要求16-18任一项所述的装置,其特征在于,在所述第一消息为MAC CE消息的情况下,所述发送单元,具体用于:
    根据预设的逻辑信道优先级顺序,向所述第二无线接入网设备发送所述第一消息,其中,所述预设的逻辑信道优先级顺序用于指示所述第一消息对应的MAC CE与其他逻辑信道的优先级次序。
  20. 根据权利要求16-19任一项所述的装置,其特征在于,所述处理单元,还用于:
    根据路由管理类型、缓存管理类型、所述第一无线接入网设备为所述第一消息分配的传输资源的大小中的至少一种,确定所述第一消息对应的上报粒度。
  21. 根据权利要求16-20任一项所述的装置,其特征在于,接收单元,用于:
    接收所述第二无线接入网设备发送的第二指示信息,其中,所述第二指示信息用于指示所述第一无线接入网设备切换链路。
  22. 一种通信装置,应用于第二无线接入网设备,其特征在于,包括:
    接收单元,用于接收第一无线网络设备发送的第一消息,所述第一消息中包括至少一个上报粒度、与所述至少一个上报粒度中的每一个上报粒度对应的下行状态信息;
    其中,所述第一无线接入网设备为无线中继通信系统中的中继节点,所述第二无线接入网设备为所述无线中继通信系统中所述第一无线接入网设备的父节点或宿主基站。
  23. 根据权利要求16-22任一项所述的装置,其特征在于,所述上报粒度为以下的一种或多种:一个终端设备、一个终端设备的一个承载业务、一个中继节点、一个中继节点的一个承载业务;
    其中,所述一个中继节点为发送所述第一消息的无线接入网设备、或者发送所述第一消息的无线接入网设备的子节点、或者所述终端设备所接入的无线接入网设备。
  24. 根据权利要求16-23任一项所述的装置,其特征在于,所述下行状态信息包括至少一种状态值、或者至少一种状态值中的每一种状态值的索引值;
    所述状态值为以下中的任意一种:下行缓存的剩余量、下行缓存占用比、期望的下行传输速率、拥塞级别、下行缓存状态差值、下行缓存量组合;
    所述下行缓存状态差值为所述状态值与所述第一无线接入网设备上次上报的状态 值之间的差值,所述下行缓存量组合包括下行缓存总量和当前下行缓存量。
  25. 根据权利要求24所述的装置,其特征在于,所述下行状态信息包括至少一种状态值中的每一种状态值的索引值的情况下;
    所述第一消息中还包括第一指示信息,其中,所述第一指示信息用于指示索引值与状态值之间的映射关系;或者,应用于第二无线接入网设备的接收单元,还用于接收所述第一无线接入网设备发送的所述第一指示信息。
  26. 根据权利要求22-25任一项所述的装置,其特征在于,所述装置,还包括:
    发送单元,用于向所述第一无线接入网设备发送第二消息,其中,所述第二消息中包括上报方式和/或所述上报粒度。
  27. 根据权利要求16-26任一项所述的装置,其特征在于,上报方式为以下的一种或多种:所述下行状态信息所表征的数值大于第一预设门限值,所述下行状态信息所表征的数值小于第二预设门限值,预设时间点;
    其中,所述预设时间点在所述下行状态信息所表征的数值符合预设条件时可被调整。
  28. 根据权利要求16-27任一项所述的装置,其特征在于,所述第二无线接入网设备为宿主基站的情况下,所述第一消息为以下中任一种:无线资源控制RRC消息、F1接口消息、和适配层消息。
  29. 根据权利要求16-27任一项所述的装置,其特征在于,所述第二无线接入网设备为所述第一无线接入网设备的父节点的情况下,所述第一消息为MAC CE消息或适配层消息。
  30. 根据权利要求22-29任一项所述的装置,其特征在于,所述装置,还包括:
    发送单元,用于向所述第一无线接入网设备发送第二指示信息,其中,所述第二指示信息用于指示所述第一无线接入网设备切换链路;
    或者,所述装置,还包括:处理单元,用于减少所述第一无线接入网设备的下行传输速率;
    或者,所述处理单元,还用于为所述第一无线接入网设备分配时频资源。
PCT/CN2019/113239 2018-10-25 2019-10-25 传输控制方法和装置 WO2020083365A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19876662.8A EP3860061B1 (en) 2018-10-25 2019-10-25 Transmission control method and device
BR112021007665-4A BR112021007665A2 (pt) 2018-10-25 2019-10-25 método de controle de comunicação, aparelho e meio de armazenamento legível por computador
US17/238,767 US20210243636A1 (en) 2018-10-25 2021-04-23 Communication Control Method And Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811249705.1 2018-10-25
CN201811249705.1A CN111107010B (zh) 2018-10-25 2018-10-25 传输控制方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/238,767 Continuation US20210243636A1 (en) 2018-10-25 2021-04-23 Communication Control Method And Apparatus

Publications (1)

Publication Number Publication Date
WO2020083365A1 true WO2020083365A1 (zh) 2020-04-30

Family

ID=70330913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113239 WO2020083365A1 (zh) 2018-10-25 2019-10-25 传输控制方法和装置

Country Status (5)

Country Link
US (1) US20210243636A1 (zh)
EP (1) EP3860061B1 (zh)
CN (1) CN111107010B (zh)
BR (1) BR112021007665A2 (zh)
WO (1) WO2020083365A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11445429B2 (en) * 2018-11-12 2022-09-13 Qualcomm Incorporated Resource utilization based event triggering in wireless communications
CN113747607A (zh) * 2020-05-27 2021-12-03 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN113905418A (zh) * 2020-06-22 2022-01-07 大唐移动通信设备有限公司 一种流量控制方法及设备
US11856418B2 (en) * 2021-04-22 2023-12-26 Qualcomm Incorporated Techniques for downlink forwarding in wireless communications systems
JPWO2023068258A1 (zh) * 2021-10-19 2023-04-27
WO2024097064A1 (en) * 2022-11-02 2024-05-10 Ofinno, Llc Base station user plane congestion control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100322144A1 (en) * 2009-06-18 2010-12-23 Electronics And Telecommunications Research Institute Data transmission method in communication system and relay apparatus performing the same
CN101998495A (zh) * 2009-08-26 2011-03-30 中兴通讯股份有限公司 一种上报空中接口拥塞情况的方法及中继节点
CN103098507A (zh) * 2010-04-02 2013-05-08 交互数字专利控股公司 用于支持经由中继节点的通信的方法和设备
WO2017139211A1 (en) * 2016-02-08 2017-08-17 Sprint Spectrum Lp Traffic management of wireless devices attached to a relay node
WO2018175817A1 (en) * 2017-03-23 2018-09-27 Intel Corporation Advanced radio resource management in next-gen multi-hop relaying cellular network

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6567416B1 (en) * 1997-10-14 2003-05-20 Lucent Technologies Inc. Method for access control in a multiple access system for communications networks
US7206850B2 (en) * 2000-01-31 2007-04-17 Passology Co., Ltd. Communication system, relay device, service providing device, relaying method, service providing method and program product
US7388882B2 (en) * 2003-08-04 2008-06-17 Lucent Technologies Inc. Method for dynamically reconfiguring wireless network capacity
CN101998700B (zh) * 2009-08-13 2015-04-01 中兴通讯股份有限公司 中继网络中参与中继的基站获取状态信息的方法及系统
CN102065483B (zh) * 2009-11-18 2013-12-04 华为技术有限公司 流量控制方法、装置
US9572088B2 (en) * 2010-03-28 2017-02-14 Lg Electronics Inc. Method for transceiving accessible cell information of a relay node in a wireless communication system, and device for same
US20130100820A1 (en) * 2011-10-19 2013-04-25 Qualcomm Incororated Maintaining a user equipment in a shared channel state in a wireless communications system
US10142882B2 (en) * 2011-12-29 2018-11-27 Thomson Licensing Network gateway and a method for transmitting packets of a data stream
US20130182586A1 (en) * 2012-01-18 2013-07-18 Qualcomm Incorporated Obtaining communication session initiation information in a wireless communications system
US9538394B2 (en) * 2012-02-24 2017-01-03 Tejas Networks Limited Method for bearer signalling management
US10477608B2 (en) * 2016-09-29 2019-11-12 Futurewei Technologies, Inc. System and method for network access using a relay
US10264612B2 (en) * 2017-03-15 2019-04-16 Qualcomm Incorporated Discovery of controller function for wireless backhaul using cellular radio access technology
US10849085B2 (en) * 2017-10-09 2020-11-24 Qualcomm Incorporated Timing and frame structure in an integrated access backhaul (IAB) network
CN110366206A (zh) * 2018-03-26 2019-10-22 华为技术有限公司 一种信息传输方法和装置
US20200037200A1 (en) * 2018-07-25 2020-01-30 Lg Electronics Inc. Method and apparatus for transmitting buffer status reporting by relay node in wireless communication system
US11758432B2 (en) * 2018-08-09 2023-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced end to end flow control for multi-hop integrated access backhaul (IAB) networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100322144A1 (en) * 2009-06-18 2010-12-23 Electronics And Telecommunications Research Institute Data transmission method in communication system and relay apparatus performing the same
CN101998495A (zh) * 2009-08-26 2011-03-30 中兴通讯股份有限公司 一种上报空中接口拥塞情况的方法及中继节点
CN103098507A (zh) * 2010-04-02 2013-05-08 交互数字专利控股公司 用于支持经由中继节点的通信的方法和设备
WO2017139211A1 (en) * 2016-02-08 2017-08-17 Sprint Spectrum Lp Traffic management of wireless devices attached to a relay node
WO2018175817A1 (en) * 2017-03-23 2018-09-27 Intel Corporation Advanced radio resource management in next-gen multi-hop relaying cellular network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3860061A4

Also Published As

Publication number Publication date
CN111107010B (zh) 2022-11-25
US20210243636A1 (en) 2021-08-05
BR112021007665A2 (pt) 2021-07-27
CN111107010A (zh) 2020-05-05
EP3860061A1 (en) 2021-08-04
EP3860061A4 (en) 2021-12-15
EP3860061B1 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
WO2020083365A1 (zh) 传输控制方法和装置
WO2020038172A1 (zh) 一种流量控制的方法及装置
CN111586749B (zh) 一种下行缓存状态反馈方法及装置
CN111107634B (zh) 用于无线回传网络的数据传输方法和装置
CN110636555B (zh) 一种数据调度的方法及装置
US20130003650A1 (en) Method, base station and relay node for uplink transmission
US11496923B2 (en) Data transmission method and apparatus used in wireless backhaul network
CN110035449B (zh) 一种数据量报告的发送方法和装置
WO2020199829A1 (zh) 一种缓冲区状态报告传输方法及装置
WO2019214135A1 (zh) 通信方法和设备
CN110581778A (zh) 一种路由方法、bsr的生成方法、装置和存储介质
WO2020221296A1 (zh) 数据传输的方法和装置
CN103814596A (zh) 传输数据的方法、装置和系统
US20220232593A1 (en) Communication control method
US20230261732A1 (en) Methods, wireless communications networks and infrastructure equipment
WO2021204278A1 (zh) 一种流量控制方法和装置
US20240015580A1 (en) Communication control method
CN111328140A (zh) 侧链通信方法和装置
US11343749B2 (en) Methods, wireless communications networks and infrastructure equipment
CN116017727A (zh) 传输bsr的方法及装置
CN113796026A (zh) 用于无线电链路流量控制的方法及设备
WO2021026935A1 (zh) 一种确定逻辑信道组之间关联的方法、装置以及系统
WO2019214074A1 (zh) 通信方法和终端
JP2009182522A (ja) ネットワークシステム、ノード、パケットフォワーディング方法、プログラム及び記録媒体
US20240080710A1 (en) Communication control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021007665

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019876662

Country of ref document: EP

Effective date: 20210430

ENP Entry into the national phase

Ref document number: 112021007665

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210422