WO2020082908A1 - 一种led调节方法及电路 - Google Patents

一种led调节方法及电路 Download PDF

Info

Publication number
WO2020082908A1
WO2020082908A1 PCT/CN2019/104521 CN2019104521W WO2020082908A1 WO 2020082908 A1 WO2020082908 A1 WO 2020082908A1 CN 2019104521 W CN2019104521 W CN 2019104521W WO 2020082908 A1 WO2020082908 A1 WO 2020082908A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signal
current
time
frequency current
frequency
Prior art date
Application number
PCT/CN2019/104521
Other languages
English (en)
French (fr)
Inventor
姜德来
梅进光
杨军
徐德飞
Original Assignee
英飞特电子(杭州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821740628.5U external-priority patent/CN209488858U/zh
Priority claimed from CN201811249567.7A external-priority patent/CN109168226A/zh
Application filed by 英飞特电子(杭州)股份有限公司 filed Critical 英飞特电子(杭州)股份有限公司
Publication of WO2020082908A1 publication Critical patent/WO2020082908A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources

Definitions

  • the invention relates to the field of LED control, in particular to an LED adjustment method; and also to an LED adjustment circuit.
  • LED lamp As a new type of lighting device, LED lamp is widely used in the field of lighting due to its high light efficiency, long life and no pollution. Among them, for some applications that need to adjust LED parameters, such as dimming, color temperature, color rendering index, etc., need to use the LED driver to adjust the LED lamp. However, in some lighting occasions, multiple LED light sources are connected in series to form one LED, and the lamp contains multiple LEDs. In order to enable such lamps to have adjustable functions, currently each LED is controlled by multiple LED drivers, each One LED driver is responsible for the LEDs all the way, resulting in higher control costs.
  • the purpose of the present invention is to provide an LED adjustment method, which can control multiple LED loads through the same LED adjustment circuit, and can control the current of each LED load to reach the target value, effectively reduce the control cost, and meet the control needs;
  • Another object of the invention is to provide an LED regulating circuit, which also has the above technical effect.
  • an LED adjustment method including:
  • the current shunt controller outputs a first control signal to the current value controller, respectively, and outputs a plurality of second control signals to the switch tubes connected in series with the plurality of rectifying and filtering circuits; wherein, the first control signal includes the chopping time and Dead time, and the chopping time and the dead time alternately appear; the second control signal corresponds to the switch tube one by one, the timing of each second control signal is different, in any of the chopping During the wave time, there is a second control signal to drive the corresponding switch to turn on, and each of the rectifier and filter circuits is connected to the LED load;
  • the current value controller controls a high-frequency current source to output a high-frequency current during the chopping time according to the first control signal, and adjusts the amplitude of the high-frequency current to a target value; and makes the high-frequency current
  • the source outputs the amplitude of the high-frequency current at the dead time as zero;
  • Each of the switch tubes is turned on or off according to the timing of the corresponding second control signal, so that the rectifier filter circuit is turned on at the corresponding chopping time, and there is a signal whose amplitude is the target value The high-frequency current passes; and each of the rectifying and filtering circuits is turned off during the dead time.
  • the first control signal includes a plurality of chopping times corresponding to each of the rectifying and filtering circuits in one control period, and the dead time equal to the number of the rectifying and filtering circuits ; Wherein, each of the chopping times occurs in turn in accordance with the conduction order of the rectifying and filtering circuit corresponding thereto.
  • each of the switch tubes is cyclically turned on according to the second control signal according to the turn-on sequence of the rectifying and filtering circuit connected in series therewith.
  • the start time of the control signal that drives the switch to be turned on in the second control signal is earlier than the start time of the chopping time in the first control signal
  • the second control signal drives the The end time of the control signal that the switch is on is later than the end time of the chopping time in the first control signal.
  • the current value controller adjusting the amplitude of the high-frequency current to a target value includes:
  • the current value controller collects the current value of the high frequency switch tube in the high frequency current source, and calculates the high frequency according to the current value of the high frequency switch tube and the duty ratio information of the high frequency switch tube Current amplitude;
  • the current value controller compares the amplitude of the high-frequency current with the target value, and adjusts the amplitude of the high-frequency current according to the comparison result to the target value.
  • Optional also includes:
  • the current shunt controller adjusts the amplitude of the high-frequency current and / or the first control signal according to the received adjustment signal to adjust the current value of the rectifier filter circuit.
  • the current shunt controller adjusting the amplitude of the high-frequency current according to the received adjustment signal includes:
  • the current shunt controller sends a modification instruction to the current value controller to modify the target value and adjust the current value of the rectifier filter circuit.
  • the current shunt controller adjusting the first control signal according to the received adjustment signal to adjust the current value of the rectifier filter circuit includes:
  • the current shunt controller adjusts the current value of the rectifier filter circuit by adjusting the width of the chopping time in the first control signal and / or by adjusting the width of the dead time in the first control signal .
  • the present invention also provides an LED regulating circuit, including: a high-frequency current source, a current value controller, a current shunt controller, a preset number of rectifier filter circuits, and each of the rectifier filter circuits correspondingly connected in series The switch tube; wherein, the preset number of rectifying and filtering circuits are connected in parallel with each other and connected to the output terminal of the high-frequency current source; the current shunt controller is connected to the input terminal of the current value controller, and Respectively connected to the control end of the switch tube connected in series with each of the rectifying and filtering circuits; the output end of the current value controller is connected to the control end of the high-frequency switch tube of the high-frequency current source;
  • the current shunt controller is used to output a first control signal to the current value controller and a second control signal to the switch tube corresponding to the rectifier filter circuit in series; wherein, the first control signal includes the chopping time and Dead time, and the chopping time and the dead time alternately appear; the second control signal corresponds to the switch tube, and the timing of each second control signal is different; the rectification filter The circuit is connected to the LED load;
  • the current value controller is configured to control the high-frequency current source to output a high-frequency current during the chopping time according to the first control signal, and adjust the amplitude of the high-frequency current to a target value; and make The amplitude of the high-frequency current source outputting the high-frequency current during the dead time is zero;
  • the switch tube is used to turn on or off according to the timing of the corresponding second control signal, so that the rectifier filter circuit is turned on at the corresponding chopping time, and the amplitude is the target value
  • the high-frequency current flows through; and each of the rectifying and filtering circuits is turned off during the dead time.
  • the high-frequency current source includes:
  • High-frequency switch tube transformer and sampling resistor; wherein the primary winding of the transformer is connected in series with the high-frequency switch tube and the sampling resistor, the secondary winding of the transformer is coupled to the primary winding and has the same name in contrast.
  • the LED adjustment method provided by the present invention includes: a current shunt controller respectively outputs a first control signal to a current value controller, and outputs a plurality of second control signals to a switch tube corresponding to a plurality of rectifying and filtering circuits in series; wherein, The first control signal includes a chopping time and a dead time, and the chopping time and the dead time alternately appear; the second control signal corresponds to the switch tube one by one, each of the second The timing of the control signal is different.
  • the current value control controls the high-frequency current source to output a high-frequency current during the chopping time according to the first control signal, and adjusts the amplitude of the high-frequency current to a target value;
  • the amplitude of the high-frequency current output at the time is zero; each of the switch tubes is turned on or off according to the timing of the corresponding second control signal, so that the rectifying and filtering circuit is at the corresponding chopper Time Turned on, there is a magnitude of the target value of the high frequency current through; and each of said rectifier and filter circuit are turned off in the dead time.
  • the LED adjustment method provided by the present invention uses the current shunt controller to output the first control signal to the current value controller, thereby controlling the high-frequency current source to output high-frequency current during the chopping time.
  • the current shunt controller is used to output second control signals of different timings to the switch tubes of each rectifier filter circuit, and by controlling the conduction state of the switch tubes corresponding to each rectifier filter circuit, one of the rectifier filter circuits is operated at a high frequency current The source output current is turned on during the period, and the corresponding LED load has a high-frequency current with the target value passing through.
  • the LED adjustment method corresponds to the front-stage control signal and the back-stage control signal, that is, the first control signal corresponds to the second control signal, and the high-frequency current output by the high-frequency current source is distributed to each rectifying and filtering circuit in stages to achieve In order to control each LED load through the same LED adjustment circuit and control the current of each LED load to reach the target value, the control cost is effectively reduced and the control needs are met.
  • the LED adjustment circuit provided by the present invention also has the above technical effect.
  • FIG. 1 is a schematic flowchart of an LED adjustment method provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a control signal provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another control signal provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an LED adjustment circuit provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another LED adjustment circuit provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of yet another LED adjustment circuit provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a rectifying and filtering circuit provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of yet another LED adjustment circuit provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of yet another LED adjustment circuit provided by an embodiment of the present invention.
  • the core of the invention is to provide an LED adjustment method, which can control multiple LED loads through the same LED adjustment circuit, and can control the current of each LED load to reach the target value, effectively reduce the control cost, and meet the control needs;
  • Another core of the invention is to provide an LED adjustment circuit, which also has the above technical effects.
  • FIG. 1 is a schematic flowchart of an LED adjustment method according to an embodiment of the present invention.
  • the LED adjustment method includes:
  • the current shunt controller outputs the first control signal to the current value controller, respectively, and outputs a plurality of second control signals to the switch tubes connected in series with the plurality of rectifier filter circuits; wherein, the first control signal includes the chopping time and Dead time, and the chopping time and the dead time alternately appear; the second control signal corresponds to the switch tube one by one, the timing of each second control signal is different, there is a second control signal driving in any chopping time The corresponding switch tube is turned on, and each rectifier filter circuit is connected to the LED load;
  • the current shunt controller outputs the first control signal to the current value controller, and controls the high-frequency current source by controlling the working state of the current value controller.
  • the first control signal is a periodic control signal, and one control cycle includes chopping time and dead time, and the two appear alternately.
  • the current value controller stops working, the amplitude of the high-frequency current output by the high-frequency current source is zero; during the chopping time, the current value controller works normally, and the output amplitude of the high-frequency current source is not zero High frequency current.
  • the current shunt controller outputs second control signals with different timings to the switch tubes connected in series with each rectifier filter circuit, and controls whether the corresponding rectifier filter circuit is turned on by controlling the conduction state of each switch tube, that is, the corresponding Whether the LED load has current is controlled. Specifically, the current shunt controller outputs a plurality of second control signals to the switch tubes connected in series corresponding to the plurality of rectification and filtering circuits, the timing of the second control signals output to different rectification and filtering circuits is different, and in any one of the first During the chopping time of the control signal, a second control signal drives the switch to turn on.
  • the second control signal is a general term for the control signal output by the current shunt controller to each rectifier filter circuit, and is different from the first control signal output by the current shunt controller to the current value controller.
  • the number of second control signals output by the current shunt controller is equal to the number of rectifier filter circuits, and the timing of each second control signal is different, so as to achieve the purpose of turning on one LED load at different time periods.
  • the rectifier and filter circuits are connected to one LED load respectively.
  • FIG. 2 is a schematic diagram of a control signal provided by an embodiment of the present invention.
  • C1 in FIG. 2 is the current shunt controller output to the second A second control signal of a rectifier filter circuit
  • C2 is a second control signal output by the current shunt controller to the second rectifier filter circuit
  • Vc is a first control signal output by the current shunt controller to the current value controller
  • the first The t1 to t5 in the control signal Vc is a control cycle, which includes the first chopping time, the first dead time, the second chopping time, and the second dead time in sequence.
  • the first control signal Vc is at the first chopping time
  • the second control signal C1 is at a high level, which controls the switch connected to the first rectifier filter circuit to be turned on, so that the first rectifier filter circuit is turned on
  • the LED load connected to the first rectifying and filtering circuit has a current passing through, and all the high-frequency current output by the high-frequency current source flows into the first rectifying and filtering circuit.
  • the first control signal Vc is in the first dead time, the amplitude of the high-frequency current output by the high-frequency current source is zero; the second control signal C1 and the second control signal C2 are both low level, control The corresponding switch tube is turned off, each rectifier filter circuit is in a closed state, and no current flows through the LED load.
  • the first control signal Vc is at the second chopping time, the second control signal C2 is at a high level, and the second rectifier filter circuit is controlled to conduct, and the LED load connected to the second rectifier filter circuit has a current passing through , And all the high-frequency current output by the high-frequency current source flows into the second rectifier filter circuit.
  • the first control signal Vc is in the second dead time, and the amplitude of the high-frequency current output by the high-frequency current source is zero; the second control signal C1 and the second control signal C2 are both low level, respectively.
  • the corresponding switch tube is controlled to be turned off, each rectifier filter circuit is in a closed state, and no current flows through the LED load.
  • the first control signal includes a plurality of chopping times corresponding to each rectifying and filtering circuit in a control period, and a dead time equal to the number of rectifying and filtering circuits; wherein, each chopping The wave time appears in turn according to the conduction order of the corresponding rectifying filter circuit.
  • the first control signal Vc includes 2 chopping times and 2 dead time in one control cycle, and the order of appearance of the chopping times corresponds to the rectification The conduction sequence of the filter circuit.
  • the chopping time at which the first control signal Vc first appears is the first chopping time corresponding to the first rectifier filter circuit, and then the second chopping time corresponding to the second rectifier filter circuit; and because of the chopping time The dead time and the dead time appear alternately. Therefore, the first dead time is also included between the first chopping time and the second chopping time; the second dead time is after the second chopping time.
  • one control cycle of the first control signal includes 3 chopping times and 3 dead time.
  • each chopping time is in accordance with the corresponding rectifier filter circuit conduction
  • the order appears, that is, the order of occurrence of each chopping time and dead time of the first control signal is the first chopping time, the first dead time, the second chopping time, the second dead time, and the third chopping Time and third dead time, and cycle back and forth accordingly.
  • each switch tube is cyclically turned on according to the second control signal according to the turn-on sequence of the rectifying and filtering circuit connected in series therewith.
  • the second control signal is used as an auxiliary control signal for turning on the corresponding rectifying and filtering circuit when the chopping time occurs. Therefore, when the first control signal has a chopping time in the order of its corresponding rectifying and filtering circuit, the second control signal also controls the switching tubes in the order of its corresponding rectifying and filtering circuit, so that each switching tube is connected in series with its corresponding The conduction sequence of the rectifier filter circuit is cyclically turned on.
  • the start time of the chopping time in the first control signal output by the current shunt controller can be the same as the start time of the control signal in the second control signal that drives the switch on, and the chopping time in the first control signal
  • the end time is the same as the end time of the control signal that drives the switch to be turned on in the second control signal, that is, the high-frequency current source is controlled to output high-frequency current and the one rectifier filter circuit is controlled to be turned on.
  • the start time of the control signal that drives the switch on in the second control signal output by the current shunt controller may be earlier than the start time of the chopping time in the first control signal that it outputs, and the switch on the second control signal drives the switch
  • the end time of the turned-on control signal is later than the end time of the chopping time in the first control signal it outputs, that is, the first rectifier filter circuit is controlled to be turned on, and then the high-frequency current source is controlled to output the high-frequency current.
  • the start time of the control signal that drives the switch on in the second control signal is earlier than the start time of the chopping time in the first control signal
  • the second control The end time of the control signal driving the switch on in the signal is later than the end time of the chopping time in the first control signal.
  • FIG. 3 is a schematic diagram of another control signal provided by an embodiment of the present invention.
  • the start time of the chopping time in the first control signal output by the current shunt controller is t2
  • the end time is t3.
  • the start time of the control signal that drives the switch to turn on is t1
  • the end time is t4.
  • t1 is less than t2, that is, the start time of the control signal that drives the switch on in the second control signal is earlier than the start time of the chopping time in the first control signal
  • t4 is greater than t3, that is, the drive switch on the second control signal
  • the end time of the turned-on control signal is later than the end time of the chopping time in the first control signal. Therefore, when the high-frequency current source outputs the high-frequency current, there is already a rectifier filter circuit turned on, thereby effectively avoiding the occurrence of an open circuit at the output end of the high-frequency current source.
  • This embodiment takes the second control signal of one rectifier filter circuit as an example.
  • the start time of the control signal signal that drives the switch on in the second control signal is earlier than the chopping time in the first control signal
  • the end time of the control signal that drives the switch to turn on is later than the end time of the chopping time in the first control signal, which is applicable to each rectifier filter circuit.
  • the current value controller controls the high-frequency current source to output high-frequency current during the chopping time according to the first control signal, and adjusts the amplitude of the high-frequency current to the target value; and causes the high-frequency current source to output high frequency during the dead time The amplitude of the current is zero;
  • the current value controller receives and controls the high-frequency current source to output the high-frequency current during the chopping time according to the first control signal output by the current shunt controller.
  • the high-frequency current output by the high-frequency current source is adjusted so that its amplitude reaches the target value within one or more switching cycles.
  • the above-mentioned switching cycle is the switching cycle of the high-frequency switch tube in the high-frequency current source.
  • the current value controller stops working during the dead time, so that the amplitude of the high frequency current output high frequency current during the dead time is zero.
  • the current value controller can directly collect the high-frequency current output by the high-frequency current source, and then adjust the current according to the high-frequency current; or can also directly collect the current of the high-frequency switch tube in the high-frequency current source, and then according to the The current of the high-frequency switch tube indirectly obtains the high-frequency current output by the high-frequency current source and performs current adjustment according to the high-frequency current.
  • the adjustment of the amplitude of the high-frequency current by the current value controller to the target value may include: collecting the current value of the high-frequency switch tube in the high-frequency current source, and according to the current value of the high-frequency switch tube and the high-frequency switch The duty ratio information of the tube is calculated to obtain the amplitude of the high-frequency current; the amplitude of the high-frequency current is compared with the target value, and the amplitude of the high-frequency current is adjusted to the target value according to the comparison result.
  • the manner in which the current value controller adjusts the amplitude of the high-frequency current to the target value is: the current value controller directly collects the current value of the high-frequency switch tube, and further according to the current value of the high-frequency switch tube And the duty ratio information of the high-frequency current switch tube, etc., calculate the amplitude of the high-frequency current actually output by the high-frequency current source, compare the calculated amplitude of the high-frequency current with the target value, and then proceed according to the comparison result Adjust accordingly to control the amplitude of the high-frequency current to the target value in each or several switching cycles.
  • Each switch tube is turned on or off according to the timing of the corresponding second control signal, so that the rectification filter circuit is turned on at the corresponding chopping time, and a high-frequency current with an amplitude of the target value is passed, and each rectifier The filter circuit is turned off during the dead time.
  • each switch tube After receiving the second control signal, each switch tube is turned on in the section corresponding to the control signal that drives the switch tube to be turned on by the second control signal. And because the timing of each second control signal is different, only one second control signal in the same period is the control signal that drives the switch to be turned on during this period. Therefore, each switch tube has only one conduction at the same time period, so that each rectifier filter circuit is only turned on at the chopping time corresponding to the first control signal, that is, the high-frequency current is output from the chopping time. At the same time, only one rectifier filter circuit is turned on, and the corresponding LED load has a high-frequency current with an amplitude value passing through.
  • the LED adjustment method provided by the present invention uses the current shunt controller to output the first control signal to the current value controller, thereby controlling the high-frequency current source to output high-frequency current during the chopping time.
  • the current shunt controller is used to output second control signals of different timings to the switch tubes of each rectifier filter circuit, and by controlling the conduction state of the switch tubes corresponding to each rectifier filter circuit, one of the rectifier filter circuits is operated at a high frequency current The source output current is turned on and the corresponding LED load has current.
  • the LED adjustment method corresponds to the front-stage control signal and the back-stage control signal, that is, the first control signal corresponds to the second control signal, and the high-frequency current output by the high-frequency current source is distributed to each rectifying and filtering circuit in stages to achieve In order to control each LED load through the same LED adjustment circuit and control the current of each LED load to reach the target value, the control cost is effectively reduced and the control needs are met.
  • the LED adjustment method may further include: the current shunt controller adjusts the amplitude of the high-frequency current and / or the first control signal according to the received adjustment signal to adjust the Current value.
  • the current shunt controller may also adjust the amplitude of the high-frequency current and / or the first control signal according to the received adjustment signal, thereby adjusting the current value of the rectifier filter circuit.
  • the dimmer can send an adjustment signal (that is, a dimming signal) to the current shunt controller to adjust it
  • the amplitude of the high-frequency current while some other adjustment requirements may be that only the current of a certain LED load needs to be adjusted, so the dimmer can agree with the current shunt controller in advance, and the dimmer will adjust the LED to be adjusted.
  • the load information and the target current value that the LED needs to adjust are sent to the current shunt controller, and the current shunt controller adjusts the amplitude of the high-frequency current.
  • the current shunt controller adjusting the amplitude of the high-frequency current according to the received adjustment signal may include: the current shunt controller sends a modification instruction to the current value controller to modify the target current value and adjust the rectification The current value of the filter circuit.
  • the target current value set in the current value controller can be modified by sending a modification instruction to the current value controller, so that the current value controller outputs the high frequency of the high-frequency current source according to the modified target current value
  • the current is adjusted to the corresponding amplitude, so as to realize the adjustment of the current value of the rectifier filter circuit.
  • the current shunt controller adjusts the first control signal according to the received adjustment signal to adjust the current value of the rectifier filter circuit, which includes: the current shunt controller adjusts the chopping time in the first control signal And / or adjust the current value of the rectifier filter circuit by adjusting the width of the dead time in the first control signal.
  • the current shunt controller can adjust the width of the chopping time and / or the width of the dead time in the first control signal it outputs, thereby changing the time when the rectifier filter circuit flows current and the time when it does not flow.
  • the ratio of time that is, the average value of the current flowing through the rectifier filter circuit is changed, and then the purpose of adjusting the current value of the rectifier filter circuit is achieved.
  • the conduction state of the switch tube is controlled by the second control signal to control the current value of the rectifier filter circuit.
  • the average current value of the rectifier filter circuit is the amplitude of the high-frequency current and the duty cycle of the current of the rectifier filter circuit The product of the ratio.
  • the current duty ratio of the rectifying and filtering current can be adjusted by adjusting the current value of the rectifying and filtering current.
  • the rectifier filter circuit in this application is a high-frequency filter circuit rather than a low-frequency filter circuit. Therefore, the current of the rectifier filter circuit in this application and the current flowing through the LED load connected thereto are approximately equal, Instead of filtering high-frequency currents to low-frequency currents, harmonics with higher frequencies than high-frequency currents are filtered out.
  • the present invention also provides an LED adjustment circuit.
  • the LED adjustment circuit described below can be cross-referenced with the LED adjustment method described above.
  • FIG. 4 is a schematic diagram of an LED adjustment circuit provided by an embodiment of the present invention.
  • the LED adjustment circuit includes: a high-frequency current source 10, a current value controller 20, and a current shunt controller 30.
  • a preset number of rectifying and filtering circuits 40 and each rectifying and filtering circuit 40 correspond to a series of switch tubes K; wherein, the preset number of rectifying and filtering circuits 40 are connected in parallel with each other and connected to the output end of the high-frequency current source 10; current shunt
  • the controller 30 is connected to the input end of the current value controller 20 and respectively connected to the control end of the switch tube K corresponding to each rectifier filter circuit 40 in series; the output end of the current value controller 20 is connected to the high frequency of the high frequency current source 10 The control end of the switch S is connected.
  • the current shunt controller 30 is used to output a first control signal to the current value controller, respectively, and output a plurality of second control signals to the switch tubes connected in series with the plurality of rectifying and filtering circuits; wherein, the first control signal includes chopping Time and dead time, and the chopping time and the dead time alternately appear; the second control signal corresponds to the switch tube one by one, the timing of each second control signal is different, there is a second control in any chopping time The signal drives the corresponding switch to turn on, and each rectifier filter circuit is connected to the LED load;
  • the current value controller 20 is used to control the high-frequency current source 10 to output high-frequency current during the chopping time according to the first control signal, and adjust the amplitude of the high-frequency current to the target value; and to make the high-frequency current source 10 in the dead zone The amplitude of the time output high-frequency current is zero;
  • the switch K is used to turn on or off according to the timing of the corresponding second control signal, so that the rectifier filter circuit 40 is turned on at the corresponding chopping time, and a high-frequency current with an amplitude of the target value passes; and Each rectifying and filtering circuit 40 is turned off during the dead time.
  • the high-frequency current source 10 is connected to the input voltage and outputs a high-frequency current, and the control end of the high-frequency switch S in the high-frequency current source 10 is connected to the current value controller 20, and the high-frequency switch S receives the current value.
  • the control signal output by the controller 20 is turned on or off, so that the high-frequency current source 10 outputs the corresponding high-frequency current.
  • the receiving current value controller 20 outputs a PWM pulse signal, and the high-frequency switch S is turned on in a section corresponding to a control signal that drives the PWM pulse signal to drive the switch to turn on.
  • the number of high-frequency switch tubes S is allowed to be different.
  • the high-frequency current source 10 is a half-bridge circuit or a push-pull circuit
  • the number of high-frequency switch tubes S in the high-frequency current source 10 is two; if the high-frequency current source 10 is a BUCK circuit, the high-frequency current source 10
  • the number of high-frequency switch tubes S is one.
  • the specific circuit structure of the high-frequency current source 10 can be set according to actual needs, and the present invention does not limit it to this.
  • the output terminal of the current value controller 20 is connected to the control terminal of the high-frequency switch tube S in the high-frequency current source 10, and by adjusting the on and off conditions of the high-frequency switch tube, the high level is adjusted within one or more switching cycles
  • the amplitude of the high-frequency current output by the high-frequency current source 10 reaches the target value.
  • the input terminal of the current value controller 20 is connected to the current shunt controller 30, receives the control of the current shunt controller 30, and controls the high-frequency current source 10 to output at the chopping time according to the first control signal output by the current shunt controller 30 High frequency current.
  • the current value controller adjusting the amplitude of the high-frequency current as the target value reference may be made to the relevant embodiment part of the LED adjustment method described above, which will not be repeated here.
  • the current shunt controller 30 is respectively connected to the control ends of the switch tubes K corresponding to the current value controller 20 and the rectifying and filtering circuits 40. It is used to output a first control signal to the current value controller 20 to control the working state of the current value controller 20, and output a second control signal to each switch tube K to control the conductive state of each switch tube K.
  • first control signal to the current value controller 20 to control the working state of the current value controller 20
  • a second control signal to each switch tube K to control the conductive state of each switch tube K.
  • the rectifying and filtering circuits 40 are connected in parallel with each other and connected to the output end of the high-frequency current source 10, and each rectifying and filtering circuit 40 is connected in series with a switching tube K.
  • Each rectifying and filtering circuit 40 can be connected to one LED load, and if the rectifying and filtering circuit 40 is turned on, the LED load connected to it has a current passing through.
  • each rectifying and filtering circuit 40 The conduction time of each rectifying and filtering circuit 40 is different, and only one rectifying and filtering circuit 40 is turned on at the same time, so the current value of the current flowing through the LED load is equal to the high-frequency current output by the high-frequency current source 10, that is, high All the high-frequency currents output by the frequency current source 10 flow into the same rectifier filter circuit 40, and no current passes through the other rectifier filter circuits 40.
  • the specific number of the rectifying and filtering circuit 40 that is, the specific value of the above-mentioned preset number, is not limited in the present invention, and can be set according to the number of LED loads in practical applications.
  • the LED adjustment circuit through the LED adjustment circuit, multiple LED loads can be controlled to reduce the control cost.
  • the output terminal of the high-frequency current source in the LED adjustment circuit provided by the present invention is not paralleled with an output capacitor, so that the high-frequency current output by the high-frequency current source can be accurately distributed to each rectifying and filtering circuit, which effectively overcomes the filtering due to the output capacitor Defects caused by energy storage that cannot accurately distribute current.
  • the present invention also provides a schematic diagram of a second LED adjustment circuit.
  • FIG. 5 is a schematic diagram of another LED adjustment circuit provided by an embodiment of the present invention.
  • the high-frequency current source 10 includes a high-frequency switch S0, a transformer T1, and a sampling resistor Rs.
  • the primary winding Np of the transformer T1 is connected in series with the high-frequency switch tube S0 and the sampling resistor Rs; the secondary winding Ns of the transformer T1 is coupled to the primary winding Np and has opposite ends of the same name.
  • the current value of the high-frequency switch tube S0 when the current value of the high-frequency switch tube S0 is directly collected for current adjustment, the current value of the high-frequency switch tube S0, that is, the current value of the primary winding Np.
  • the current value to the secondary winding Ns that is, the value of the high-frequency current output by the high-frequency current source 10, and then according to the value of the high-frequency current, the current adjustment is performed by controlling the high-frequency switch S0.
  • the present invention also provides a schematic diagram of a third LED adjusting circuit.
  • FIG. 6 is a schematic diagram of another LED adjustment circuit according to an embodiment of the present invention.
  • the high-frequency current source 10 is implemented by a non-isolated BUCK circuit.
  • the high-frequency current source 10 includes a high-frequency switch S1, a diode D1, and an inductor L, and the cathode of the diode D1 is connected to one end of the high-frequency switch S1 and the inductor L, the anode of the diode D1 is grounded, and the other of the inductor L One end is connected to each rectifying and filtering circuit 40.
  • the current value output by the BUCK circuit that is, the high-frequency current
  • the high-frequency current can be calculated according to the current value of the high-frequency switch tube S1
  • the high-frequency current output by the source 10 is further adjusted according to the value of the high-frequency current by controlling the high-frequency switch S1.
  • FIG. 7 is a schematic diagram of a rectifying and filtering circuit provided by an embodiment of the present invention.
  • the rectifying and filtering circuit 40 may include: a rectifying diode D2 and a filtering capacitor C; wherein, the rectifying diode D2 is connected in series with the filtering capacitor C and in parallel with the LED load.
  • this embodiment performs rectification and filtering by using a rectifier diode D2 and a filter capacitor C connected in series. And the filter capacitor C is connected in parallel with the LED load.
  • the series connection sequence of the rectifier diode D2, the filter capacitor C and the switch tube K is not limited in the present invention. For example, in the direction of the high-frequency current, the rectifier diode D2, the filter capacitor C, and the switch K can be connected in series in this order.
  • FIG. 8 is a schematic diagram of another LED regulating circuit provided by an embodiment of the present invention.
  • the rectifier diodes of each rectifier filter circuit 40 The cathode of D2 is connected to one end of the corresponding switch K, and the other end of the switch K is grounded; the anode of the rectifier diode D2 is connected to one end of the filter capacitor C, and the other end of the filter capacitor C is connected to the output of the high-frequency current source 10 .
  • FIG. 9 is a schematic diagram of yet another LED regulating circuit provided by an embodiment of the present invention.
  • the anode and high frequency of the rectifier diode D2 The output end of the current source 10 is connected, the cathode of the rectifier diode D2 is connected to one end of the corresponding switch tube K, the other end of the switch tube K is connected to one end of the filter capacitor C, and the other end of the filter capacitor C is grounded.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种LED调节方法及电路,该方法包括电流分流控制器分别输出第一控制信号至电流值控制器,输出多个第二控制信号至与多个整流滤波电路对应串接的开关管;其中,第一控制信号包括斩波时间与死区时间且二者交替出现;第二控制信号与开关管一一对应,各第二控制信号的时序不同,在任一斩波时间内,均有一个地儿控制信号驱动对应的开关管导通,各个整流滤波电路均连接LED负载;电流值控制器根据第一控制信号控制高频电流源在斩波时间输出高频电流并调节其幅值为目标值;以及使高频电流源在死区时间输出高频电流的幅值为零;各开关管依照对应的第二控制信号的时序导通或关断,以使整流滤波电路在对应的斩波时间导通,并使各整流滤波电路在死区时间均关断。该方法可以实现通过同一调节电路对多路LED负载进行控制,能够有效降低控制成本,满足控制需要。

Description

一种LED调节方法及电路
本申请要求于2018年10月25日提交至中国专利局、申请号为201821740628.5、实用新型名称为“一种LED调节电路”与2018年10月25日提交至中国专利局、申请号为201811249567.7、发明名称为“一种LED调节方法及电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及LED控制领域,特别涉及一种LED调节方法;还涉及一种LED调节电路。
背景技术
LED灯作为一种新型的照明器件,以其光效高、寿命长、无污染等特点在照明领域被广泛应用。其中,针对一些需要调节LED参数的应用场合,如调光、调色温、调显色指数等,需要利用LED驱动器对LED灯进行调节。然而,在一些照明场合,多个LED光源串联成为一路LED,灯具中包含了多路LED,为了能够使这样的灯具具有可调节功能,目前通过多个LED驱动器分别对各路LED进行控制,每个LED驱动器负责一路LED,从而导致控制成本较高。
因此,如何提供一种LED调节方案,可以实现通过同一调节电路控制多路LED负载,并控制各路LED负载的电流达到目标值,降低控制成本,满足控制需要是本领域技术人员亟待解决的技术问题。
发明内容
本发明的目的是提供一种LED调节方法,可以实现通过同一LED调节电路对多路LED负载进行控制,并可以控制各路LED负载的电流达到目标值,有效降低控制成本,满足控制需要;本发明的另一目的是提供一种LED调节电路,同样具有上述技术效果。
为解决上述技术问题,本发明提供了一种LED调节方法,包括:
电流分流控制器分别输出第一控制信号至电流值控制器,输出多个第 二控制信号至与多个整流滤波电路对应串接的开关管;其中,所述第一控制信号包括斩波时间与死区时间,且所述斩波时间与所述死区时间交替出现;所述第二控制信号与所述开关管一一对应,各所述第二控制信号的时序不同,在任一所述斩波时间内,均有一个所述第二控制信号驱动对应的所述开关管导通,各个所述整流滤波电路均连接LED负载;
所述电流值控制器根据所述第一控制信号控制高频电流源在所述斩波时间输出高频电流,并调节所述高频电流的幅值为目标值;以及使所述高频电流源在所述死区时间输出所述高频电流的幅值为零;
各所述开关管依照对应的所述第二控制信号的时序导通或关断,以使所述整流滤波电路在对应的所述斩波时间导通,有幅值为所述目标值的所述高频电流通过;并使各所述整流滤波电路在所述死区时间均关断。
可选的,所述第一控制信号在一个控制周期内包含与各所述整流滤波电路一一对应的多个所述斩波时间,以及与所述整流滤波电路数量相等的所述死区时间;其中,各所述斩波时间按照与其对应的所述整流滤波电路的导通次序依次出现。
可选的,各所述开关管分别根据所述第二控制信号按照与其对应串接的所述整流滤波电路的导通次序循环导通。
可选的,所述第二控制信号中驱动所述开关管导通的控制信号的开始时刻早于所述第一控制信号中斩波时间的开始时刻,所述第二控制信号中驱动所述开关管导通的控制信号的结束时刻晚于所述第一控制信号中所述斩波时间的结束时刻。
可选的,所述电流值控制器调节所述高频电流的幅值为目标值,包括:
所述电流值控制器采集所述高频电流源中高频开关管的电流值,并根据所述高频开关管的电流值及所述高频开关管的占空比信息计算得到所述高频电流的幅值;
所述电流值控制器比较所述高频电流的幅值与所述目标值的大小,并根据比较结果调节所述高频电流的幅值为所述目标值。
可选的,还包括:
所述电流分流控制器根据接收的调节信号调节所述高频电流的幅值和/或所述第一控制信号,以调节所述整流滤波电路的电流值。
可选的,所述电流分流控制器根据接收的调节信号调节所述高频电流的幅值,包括:
所述电流分流控制器向所述电流值控制器发送修改指令,以修改所述目标值,调节所述整流滤波电路的电流值。
可选的,所述电流分流控制器根据接收的调节信号调节所述第一控制信号以调节所述整流滤波电路的电流值,包括:
所述电流分流控制器通过调节所述第一控制信号中所述斩波时间的宽度和/或通过调节所述第一控制信号中所述死区时间的宽度调节所述整流滤波电路的电流值。
为解决上述技术问题,本发明还提供了一种LED调节电路,包括:高频电流源、电流值控制器、电流分流控制器、预设数量的整流滤波电路及各所述整流滤波电路对应串联的开关管;其中,所述预设数量的整流滤波电路相互并联,且与所述高频电流源的输出端相连;所述电流分流控制器与所述电流值控制器的输入端相连,并分别与各所述整流滤波电路对应串联的所述开关管的控制端相连;所述电流值控制器的输出端与所述高频电流源的高频开关管的控制端相连;
所述电流分流控制器,用于分别输出第一控制信号至电流值控制器,输出第二控制信号至整流滤波电路对应串接的开关管;其中,所述第一控制信号包括斩波时间与死区时间,且所述斩波时间与所述死区时间交替出现;所述第二控制信号与所述开关管一一对应,且各所述第二控制信号的时序不同;所述整流滤波电路连接LED负载;
所述电流值控制器,用于根据所述第一控制信号控制所述高频电流源在所述斩波时间输出高频电流,并调节所述高频电流的幅值为目标值;以及使所述高频电流源在所述死区时间输出所述高频电流的幅值为零;
所述开关管,用于依照对应的所述第二控制信号的时序导通或关断,以使所述整流滤波电路在对应的所述斩波时间导通,有幅值为所述目标值的所述高频电流通过;并使各所述整流滤波电路在所述死区时间均关断。
可选的,所述高频电流源包括:
高频开关管、变压器以及采样电阻;其中,所述变压器的原边绕组与所述高频开关管以及所述采样电阻串联,所述变压器的副边绕组与所述原 边绕组耦合且同名端相反。
本发明所提供的LED调节方法,包括:电流分流控制器分别输出第一控制信号至电流值控制器,输出多个第二控制信号至与多个整流滤波电路对应串接的开关管;其中,所述第一控制信号包括斩波时间与死区时间,且所述斩波时间与所述死区时间交替出现;所述第二控制信号与所述开关管一一对应,各所述第二控制信号的时序不同,在任一所述斩波时间内,均有一个所述第二控制信号驱动对应的所述开关管导通,各个所述整流滤波电路均连接LED负载;所述电流值控制器根据所述第一控制信号控制高频电流源在所述斩波时间输出高频电流,并调节所述高频电流的幅值为目标值;以及使所述高频电流源在所述死区时间输出所述高频电流的幅值为零;各所述开关管依照对应的所述第二控制信号的时序导通或关断,以使所述整流滤波电路在对应的所述斩波时间导通,有幅值为所述目标值的所述高频电流通过;并使各所述整流滤波电路在所述死区时间均关断。
可见,本发明所提供的LED调节方法,利用电流分流控制器向电流值控制器输出第一控制信号,从而控制高频电流源在斩波时间输出高频电流。另外,利用电流分流控制器向各整流滤波电路的开关管输出不同时序的第二控制信号,通过控制各整流滤波电路对应的开关管的导通状态,使其中的一路整流滤波电路在高频电流源输出电流的时段导通,对应的LED负载有幅值为目标值的高频电流通过。该LED调节方法将前级控制信号与后级控制信号相对应,即将第一控制信号与第二控制信号对应,将高频电流源输出的高频电流分时段地分配给各整流滤波电路,实现了通过同一LED调节电路对各路LED负载进行控制,并控制各路LED负载的电流达到目标值,有效降低了控制成本且满足控制需要。
本发明所提供的LED调节电路,同样具有上述技术效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例所提供的LED调节方法的流程示意图;
图2为本发明实施例所提供的一种控制信号的示意图;
图3为本发明实施例所提供的另一种控制信号的示意图;
图4为本发明实施例所提供的一种LED调节电路的示意图;
图5为本发明实施例所提供的另一种LED调节电路的示意图;
图6为本发明实施例所提供的又一种LED调节电路的示意图;
图7为本发明实施例所提供的一种整流滤波电路的示意图;
图8为本发明实施例所提供的再一种LED调节电路的示意图;
图9为本发明实施例所提供的再一种LED调节电路的示意图。
具体实施方式
本发明的核心是提供一种LED调节方法,可以实现通过同一LED调节电路对多路LED负载进行控制,并可以控制各路LED负载的电流达到目标值,有效降低控制成本,满足控制需要;本发明的另一核心是提供一种LED调节电路,同样具有上述技术效果。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明实施例所提供的LED调节方法的流程示意图,参考图1可知,该LED调节方法包括:
S10:电流分流控制器分别输出第一控制信号至电流值控制器,输出多个第二控制信号至与多个整流滤波电路对应串接的开关管;其中,第一控制信号包括斩波时间与死区时间,且斩波时间与死区时间交替出现;第二控制信号与开关管一一对应,各第二控制信号的时序不同,在任一斩波时间内,均有一个第二控制信号驱动对应的开关管导通,各个整流滤波电路均连接LED负载;
具体的,电流分流控制器输出第一控制信号至电流值控制器,通过控 制电流值控制器的工作状态实现对高频电流源的控制。其中,该第一控制信号为周期性控制信号,一个控制周期包含斩波时间与死区时间,且二者交替出现。在死区时间内,电流值控制器停止工作,高频电流源输出的高频电流的幅值为零;在斩波时间内电流值控制器正常工作,高频电流源输出幅值不为零的高频电流。电流分流控制器输出时序不同的第二控制信号至与各整流滤波电路对应串接的开关管,通过控制各开关管的导通状态对相应的整流滤波电路是否导通进行控制,即对相应的LED负载是否有电流通过进行控制。具体而言,电流分流控制器输出多个第二控制信号至与多个整流滤波电路对应串接的开关管,输出至不同整流滤波电路的第二控制信号的时序不同,且在任意一个第一控制信号的斩波时间内均有一个第二控制信号驱动开关管导通。其中,第二控制信号为电流分流控制器输出至各整流滤波电路的控制信号的统称,区别于电流分流控制器输出至电流值控制器的第一控制信号。电流分流控制器输出的第二控制信号的数量与整流滤波电路的数量相等,且各第二控制信号的时序各有不同,从而实现在不同时段分别导通一路LED负载的目的。整流滤波电路均分别连接一路LED负载。
以电流分流控制器输出两路第二控制信号为例:请参考图2,图2为本发明实施例所提供的一种控制信号的示意图,图2中的C1为电流分流控制器输出至第一整流滤波电路的第二控制信号,C2为电流分流控制器输出至第二整流滤波电路的第二控制信号,Vc为电流分流控制器输出至电流值控制器的第一控制信号,且第一控制信号Vc中t1到t5为一个控制周期,顺次包含第一斩波时间、第一死区时间、第二斩波时间和第二死区时间。在t1至t2区间,第一控制信号Vc处于第一斩波时间,第二控制信号C1为高电平,控制连接于第一整流滤波电路的开关管导通,从而第一整流滤波电路导通,该第一整流滤波电路所连接的LED负载有电流通过,且高频电流源输出的高频电流全部流入该第一整流滤波电路。在t2至t3区间,第一控制信号Vc处于第一死区时间,高频电流源输出的高频电流幅值为零;第二控制信号C1与第二控制信号C2均为低电平,控制对应的开关管关断,各整流滤波电路均处于关闭状态,LED负载均没有电流流过。t3至t4区间,第一控制信号Vc处于第二斩波时间,第二控制信号C2为高电平,控制第 二整流滤波电路导通,该第二整流滤波电路所连接的LED负载有电流通过,且高频电流源输出的高频电流全部流入该第二整流滤波电路。在t4至t5区间,第一控制信号Vc处于第二死区时间,高频电流源输出的高频电流幅值为零;第二控制信号C1与第二控制信号C2均为低电平,分别控制对应的开关管关断,各整流滤波电路均处于关闭状态,LED负载均没有电流流过。
在一种具体的实施方式中,第一控制信号在一个控制周期内包含与各整流滤波电路一一对应的多个斩波时间,以及与整流滤波电路数量相等的死区时间;其中,各斩波时间按照与其对应的整流滤波电路的导通次序依次出现。
同样请参考图2,以整流滤波电路为2路为例:第一控制信号Vc在一个控制周期内包含2个斩波时间和2个死区时间,并且,斩波时间的出现次序对应于整流滤波电路的导通次序。具体而言,第一控制信号Vc首先出现的斩波时间为第一路整流滤波电路对应的第一斩波时间,然后为第二整流滤波电路对应的第二斩波时间;而由于斩波时间和死区时间为交替出现,因此,在第一斩波时间和第二斩波时间之间还包含有第一死区时间;第二死区时间则位于第二斩波时间之后。以此类推,当整流滤波电路为3路时,第一控制信号的一个控制周期内包含3个斩波时间和3个死区时间,同样,各斩波时间按照对应的整流滤波电路的导通次序出现,即第一控制信号的各斩波时间与死区时间的出现次序依次为第一斩波时间、第一死区时间、第二斩波时间、第二死区时间、第三斩波时间和第三死区时间,并依此循环往复。
进一步,可选的,各开关管分别根据第二控制信号按照与其对应串接的整流滤波电路的导通次序循环导通。
具体的,第二控制信号作为辅助控制信号,用于在斩波时间出现时导通对应的整流滤波电路。因此,当第一控制信号按照与其对应的整流滤波电路的次序出现斩波时间时,第二控制信号同样按照与其对应的整流滤波电路的次序控制开关管,使各开关管分别按照与其对应串接的整流滤波电路的导通次序循环导通。
其中,电流分流控制器输出的第一控制信号中斩波时间的开始时刻可 以与其输出的第二控制信号中驱动开关管导通的控制信号的开始时刻相同、第一控制信号中斩波时间的结束时刻与第二控制信号中驱动开关管导通的控制信号的结束时刻相同,即控制高频电流源输出高频电流的同时控制一路整流滤波电路导通。或者电流分流控制器输出的第二控制信号中驱动开关管导通的控制信号的开始时刻还可以早于其输出的第一控制信号中斩波时间的开始时刻,第二控制信号中驱动开关管导通的控制信号的结束时刻晚于其输出的第一控制信号中斩波时间的结束时刻,即首先控制一路整流滤波电路导通,然后控制高频电流源输出高频电流。
为确保高频电流源的输出端不发生开路,可选的,第二控制信号中驱动开关管导通的控制信号的开始时刻早于第一控制信号中斩波时间的开始时刻,第二控制信号中驱动开关管导通的控制信号的结束时刻晚于第一控制信号中斩波时间的结束时刻。
具体的,请参考图3,图3为本发明实施例所提供的另一种控制信号的示意图;结合图3,电流分流控制器输出的第一控制信号中斩波时间的开始时刻为t2,结束时刻为t3。电流分流控制器输出的第二控制信号中驱动开关管导通的控制信号的开始时刻为t1,结束时刻为t4。其中,t1小于t2,即第二控制信号中驱动开关管导通的控制信号的开始时刻早于第一控制信号中斩波时间的开始时刻,t4大于t3,即第二控制信号中驱动开关管导通的控制信号的结束时刻晚于第一控制信号中斩波时间的结束时刻。于是,当高频电流源输出高频电流时,已有一路整流滤波电路导通,从而有效避免了高频电流源的输出端发生开路的情况。本实施例以其中的一路整流滤波电路的第二控制信号为例,可以明白的是,第二控制信号中驱动开关管导通的控制信号信号的开始时刻早于第一控制信号中斩波时间的开始时刻,第二控制信号中驱动开关管导通的控制信号的结束时刻晚于第一控制信号中斩波时间的结束时刻适用于各路整流滤波电路。
S20:电流值控制器根据第一控制信号控制高频电流源在斩波时间输出高频电流,并调节高频电流的幅值为目标值;以及使高频电流源在死区时间输出高频电流的幅值为零;
具体的,电流值控制器接收并根据电流分流控制器输出的第一控制信号,控制高频电流源在斩波时间输出高频电流。并对高频电流源输出的高 频电流进行调节,使其幅值在一个或多个开关周期内达到目标值。其中,上述开关周期为高频电流源中高频开关管的开关周期。以及在死区时间电流值控制器停止工作,使高频电流源在死区时间输出高频电流的幅值为零。
其中,电流值控制器可以通过直接采集高频电流源输出的高频电流,进而根据该高频电流进行电流调整;或者还可以通过直接采集高频电流源中高频开关管的电流,进而根据该高频开关管的电流间接得到高频电流源输出的高频电流并根据该高频电流进行电流调整。
为使各路LED负载的电流频率较高,避免产生闪烁问题,于是需要电流分流控制器的控制周期较短,控制频率较高,以达到最优的控制效果。因此,可选的,上述电流值控制器调节高频电流的幅值为目标值可以包括:采集高频电流源中高频开关管的电流值,并根据高频开关管的电流值及高频开关管的占空比信息计算得到高频电流的幅值;比较高频电流的幅值与目标值的大小,并根据比较结果调节高频电流的幅值为目标值。
具体的,本实施例中,电流值控制器调节高频电流的幅值为目标值的方式为:电流值控制器直接采集高频开关管的电流值,进一步根据该高频开关管的电流值以及高频电流开关管的占空比信息等,计算得到高频电流源实际输出的高频电流的幅值,将计算得到的高频电流的幅值与目标值进行比较,进而根据比较结果进行相应的调整,以在每个或数个开关周期内控制高频电流的幅值至目标值。
S30:各开关管依照对应的第二控制信号的时序导通或关断,以使整流滤波电路在对应的斩波时间导通,有幅值为目标值的高频电流通过,并使各整流滤波电路在死区时间均关断。
具体的,各开关管接收第二控制信号后,分别在各自的第二控制信号的驱动开关管导通的控制信号所对应的区段导通。且由于各第二控制信号的时序不同,同一时段只有一路第二控制信号在该时段为驱动开关管导通的控制信号。从而,各开关管在同一时段只有一个导通,进而使各整流滤波电路只有一路在对应于第一控制信号的斩波时间导通,即在高频电流源于斩波时间输出高频电流的同时,只有一路整流滤波电路导通,对应的LED负载有幅值为目标值的高频电流通过。
综上所述,本发明所提供的LED调节方法,利用电流分流控制器向电 流值控制器输出第一控制信号,从而控制高频电流源在斩波时间输出高频电流。另外,利用电流分流控制器向各整流滤波电路的开关管输出不同时序的第二控制信号,通过控制各整流滤波电路对应的开关管的导通状态,使其中的一路整流滤波电路在高频电流源输出电流的时段导通,对应的LED负载有电流通过。该LED调节方法将前级控制信号与后级控制信号相对应,即将第一控制信号与第二控制信号对应,将高频电流源输出的高频电流分时段地分配给各整流滤波电路,实现了通过同一LED调节电路对各路LED负载进行控制,并控制各路LED负载的电流达到目标值,有效降低了控制成本且满足控制需要。
在上述实施例的基础上,可选的,该LED调节方法还可以包括:电流分流控制器根据接收的调节信号调节高频电流的幅值和/或第一控制信号,以调节整流滤波电路的电流值。
具体的,为更好的满足实际应用需求,电流分流控制器还可以根据接收的调节信号调节高频电流的幅值和/或第一控制信号,从而调节整流滤波电路的电流值。以调节高频电流为例,在可调光的照明场合,当需要调节所有LED负载的亮度时,调光器就可以发出调节信号(也即调光信号)给电流分流控制器,使其调节高频电流的幅值;而另一些调节需求可能是,只需要调节某一路LED负载的电流,于是,调光器可以预先与电流分流控制器约定好规则,调光器将所需调整的LED负载的信息以及该路LED所需调整的目标电流值发送给电流分流控制器,由电流分流控制器调节高频电流的幅值。
在一种具体的实施方式中,上述电流分流控制器根据接收的调节信号调节高频电流的幅值可以包括:电流分流控制器向电流值控制器发送修改指令,以修改目标电流值,调节整流滤波电路的电流值。
具体的,可以通过向电流值控制器发送修改指令,对电流值控制器中设定的目标电流值进行修改,使电流值控制器根据修改后的目标电流值将高频电流源输出的高频电流调节至相应的幅值,从而实现对整流滤波电路的电流值的调节。
在另一种具体的实施方式中,上述电流分流控制器根据接收的调节信 号调节第一控制信号以调节整流滤波电路的电流值,包括:电流分流控制器通过调节第一控制信号中斩波时间的宽度和/或通过调节第一控制信号中死区时间的宽度调节整流滤波电路的电流值。
具体的,电流分流控制器可以对其输出的第一控制信号中的斩波时间的宽度和/或死区时间的宽度进行调节,从而改变整流滤波电路流过电流的时间与不流过电流的时间的比值,也即改变整流滤波电路流过电流的平均值,进而达到调节整流滤波电路的电流值的目的。
进一步,由第二控制信号控制开关管的导通状态,从而控制整流滤波电路的电流值可可知,整流滤波电路的平均电流值为高频电流的幅值与该整流滤波电路的电流的占空比的乘积。由此,调节整流滤波电流的电流值的方式,除了可以调节高频电流的幅值外,还可以调节整流滤波电流的电流占空比。
另外,需要说明的是,本申请中的整流滤波电路是高频滤波电路而非低频滤波电路,因此,本申请中整流滤波电路的电流与流过与其连接的LED负载的电流是近似相等的,滤除的是比高频电流的频率更高的谐波,而不是将高频电流滤波为低频电流。
本发明还提供了一种LED调节电路,下文描述的该LED调节电路可以与上文描述的LED调节方法相互对应参照。请参考图4,图4为本发明实施例所提供的一种LED调节电路的示意图,结合图4可知,该LED调节电路包括:高频电流源10、电流值控制器20、电流分流控制器30、预设数量的整流滤波电路40及各整流滤波电路40对应串联的开关管K;其中,预设数量的整流滤波电路40相互并联,且与高频电流源10的输出端相连;电流分流控制器30与电流值控制器20的输入端相连,并分别与各整流滤波电路40对应串联的开关管K的控制端相连;电流值控制器20的输出端与高频电流源10的高频开关管S的控制端相连。
电流分流控制器30,用于分别输出第一控制信号至电流值控制器,输出多个第二控制信号至与多个整流滤波电路对应串接的开关管;其中,第一控制信号包括斩波时间与死区时间,且斩波时间与死区时间交替出现;第二控制信号与开关管一一对应,各第二控制信号的时序不同,在任一斩 波时间内,均有一个第二控制信号驱动对应的开关管导通,各个整流滤波电路均连接LED负载;
电流值控制器20,用于根据第一控制信号控制高频电流源10在斩波时间输出高频电流,并调节高频电流的幅值为目标值;以及使高频电流源10在死区时间输出高频电流的幅值为零;
开关管K,用于依照对应的第二控制信号的时序导通或关断,以使整流滤波电路40在对应的斩波时间导通,有幅值为目标值的高频电流通过;并使各整流滤波电路40在死区时间均关断。
具体的,高频电流源10连接输入电压并输出高频电流,且高频电流源10中的高频开关管S的控制端与电流值控制器20相连,该高频开关管S接收电流值控制器20输出的控制信号导通或关断,进而使高频电流源10输出对应的高频电流。例如,接收电流值控制器20输出PWM脉冲信号,高频开关管S在PWM脉冲信号的驱动开关管导通的控制信号对应的区段导通。其中,针对高频电流源10电路结构不同的情况,高频开关管S的个数允许存在差异。例如,若高频电流源10为半桥电路、推挽电路,则高频电流源10中高频开关管S的个数为两个;若高频电流源10为BUCK电路,则高频电流源10中高频开关管S的个数为一个。当然,对于高频电流源10的具体电路结构可以根据实际需要设置,本发明对此不做唯一限定。
电流值控制器20的输出端与高频电流源10中的高频开关管S的控制端相连,通过控制高频开管的导通与关断情况,在一个或多个开关周期内调节高频电流源10输出的高频电流的幅值达到目标值。同时,电流值控制器20的输入端与电流分流控制器30相连,接受电流分流控制器30的控制,根据电流分流控制器30输出的第一控制信号控制高频电流源10在斩波时间输出高频电流。其中,对于电流值控制器调节高频电流的幅值为目标值的描述可以参照上述LED调节方法的相关实施例部分,在此不再赘述。
电流分流控制器30分别与电流值控制器20与各整流滤波电路40对应的各开关管K的控制端相连。用于向电流值控制器20输出第一控制信号以控制电流值控制器20的工作状态,以及向各开关管K输出第二控制信号,以控制各开关管K的导通状态。关于电流分流控制器输出第一控制信号与第二控制信号进行相关控制的描述同样可以参照上述LED调节方法 的相关实施例部分,在此不做赘述。
各整流滤波电路40相互并联,并连接于高频电流源10的输出端,且各整流滤波电路40分别串接有开关管K。各整流滤波电路40分别可连接一路LED负载,若整流滤波电路40导通,则其所连接的LED负载有电流通过。其中,各整流滤波电路40的导通时间不同,同一时段只有一路整流滤波电路40导通,于是,流经LED负载的电流的电流值与高频电流源10输出的高频电流相等,即高频电流源10输出的高频电流全部流入同一整流滤波电路40,其它整流滤波电路40则没有电流通过。其中,对于整流滤波电路40的具体数量,即对上述预设个数的具体数值,本发明不做唯一限定,根据实际应用中LED负载的数量进行相适应的设置即可。
综上所述,通过该LED调节电路,可对多路LED负载进行控制,降低控制成本。并且,本发明所提供的LED调节电路中高频电流源的输出端未并联输出电容,从而高频电流源输出的高频电流可以精确的分配给各整流滤波电路,有效克服了由于输出电容进行滤波储能而致使电流不能精确分配的缺陷。
在上述实施例的基础上,本发明还提供了第二种LED调节电路的示意图,请参考图5,图5为本发明实施例所提供的另一种LED调节电路的示意图。结合图5可知,本实施例中,高频电流源10包括高频开关管S0,变压器T1以及采样电阻Rs。且变压器T1的原边绕组Np与高频开关管S0以及采样电阻Rs串联后接地;变压器T1的副边绕组Ns与原边绕组Np耦合且同名端相反。
针对高频电流源10为上述电路结构的情况,当采用直接采集高频开关管S0的电流值进行电流调整时,可以根据高频开关管S0的电流值,即根据原边绕组Np的电流值得到副边绕组Ns的电流值即高频电流源10输出的高频电流的数值,进而根据该高频电流的数值,通过控制高频开关管S0进行电流调节。
在上述实施例的基础上,本发明还提供了第三种LED调节电路的示意图。请参考图6,图6为本发明实施例所提供的又一种LED调节电路的示 意图。由图6可知,本实施例中,高频电流源10通过非隔离的BUCK电路实现。具体而言,高频电流源10包括高频开关管S1、二极管D1以及电感L,且二极管D1的阴极与高频开关管S1以及电感L的一端相连,二极管D1的阳极接地,电感L的另一端与各整流滤波电路40相连。
同样,对于采用直接采集高频开关管S1的电流值进行电流调整的方式,对应于本实施例,可以根据高频开关管S1的电流值计算得到该BUCK电路输出的电流值,即高频电流源10输出的高频电流,进而根据该高频电流的数值,通过控制高频开关管S1进行电流调节。
在上述各实施例的基础上,请参考图7,图7为本发明实施例所提供的一种整流滤波电路的示意图。结合图7,整流滤波电路40可以包括:整流二极管D2与滤波电容C;其中,整流二极管D2,与滤波电容C串联,与LED负载并联。
具体的,为简化电路结构,本实施例通过串联的整流二极管D2与滤波电容C进行整流滤波。且滤波电容C与LED负载并联。其中,对于整流二极管D2、滤波电容C以及开关管K的串接顺序,本发明不做唯一限定。例如,沿高频电流的方向,可以依次以整流二极管D2、滤波电容C、开关管K为序进行串联。
在上述实施例的基础上,请参考图8,图8为本发明实施例所提供的再一种LED调节电路的示意图;参考图8可知,本实施例中,各整流滤波电路40的整流二极管D2的阴极与对应的开关管K的一端相连,开关管K的另一端接地;整流二极管D2的阳极与滤波电容C的一端相连,滤波电容C的另一端与高频电流源10的输出端相连。
在上述实施例的基础上,请参考图9,图9为本发明实施例所提供的再一种LED调节电路的示意图;参考图9知,本实施例中,整流二极管D2的阳极与高频电流源10的输出端相连,整流二极管D2的阴极与对应的开关管K的一端相连,开关管K的另一端与滤波电容C的一端相连,滤波电容C的另一端接地。
因为情况复杂,无法一一列举进行阐述,本领域技术人员应能意识到,在本发明提供的实施例的基本原理下结合实际情况可以存在多个例子,在不付出足够的创造性劳动下,应均在本发明的范围内。
说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上对本发明所提供的LED调节方法及LED调节电路进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其它要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (10)

  1. 一种LED调节方法,其特征在于,包括:
    电流分流控制器分别输出第一控制信号至电流值控制器,输出多个第二控制信号至与多个整流滤波电路对应串接的开关管;其中,所述第一控制信号包括斩波时间与死区时间,且所述斩波时间与所述死区时间交替出现;所述第二控制信号与所述开关管一一对应,各所述第二控制信号的时序不同,在任一所述斩波时间内,均有一个所述第二控制信号驱动对应的所述开关管导通,各个所述整流滤波电路均连接LED负载;
    所述电流值控制器根据所述第一控制信号控制高频电流源在所述斩波时间输出高频电流,并调节所述高频电流的幅值为目标值;以及使所述高频电流源在所述死区时间输出所述高频电流的幅值为零;
    各所述开关管依照对应的第二控制信号的时序导通或关断,以使所述整流滤波电路在对应的所述斩波时间导通,有幅值为所述目标值的所述高频电流通过;并使各所述整流滤波电路在所述死区时间均关断。
  2. 根据权利要求1所述的LED调节方法,其特征在于,所述第一控制信号在一个控制周期内包含与各所述整流滤波电路一一对应的多个所述斩波时间,以及与所述整流滤波电路数量相等的所述死区时间;其中,各所述斩波时间按照与其对应的所述整流滤波电路的导通次序依次出现。
  3. 根据权利要求2所述的LED调节方法,其特征在于,各所述开关管分别根据所述第二控制信号按照与其对应串接的所述整流滤波电路的导通次序循环导通。
  4. 根据权利要求1所述的LED调节方法,其特征在于,所述第二控制信号中驱动所述开关管导通的控制信号的开始时刻早于所述第一控制信号中所述斩波时间的开始时刻,所述第二控制信号中驱动所述开关管导通的控制信号的结束时刻晚于所述第一控制信号中所述斩波时间的结束时刻。
  5. 根据权利要求1所述的LED调节方法,其特征在于,所述电流值控制器调节所述高频电流的幅值至目标值,包括:
    所述电流值控制器采集所述高频电流源中高频开关管的电流值,并根据所述高频开关管的电流值及所述高频开关管的占空比信息计算得到所述 高频电流的幅值;
    所述电流值控制器比较所述高频电流的幅值与所述目标值的大小,并根据比较结果调节所述高频电流的幅值为所述目标值。
  6. 根据权利要求1所述的LED调节方法,其特征在于,还包括:
    所述电流分流控制器根据接收的调节信号调节所述高频电流的幅值和/或所述第一控制信号,以调节所述整流滤波电路的电流值。
  7. 根据权利要求6所述的LED调节方法,其特征在于,所述电流分流控制器根据接收的调节信号调节所述高频电流的幅值,包括:
    所述电流分流控制器向所述电流值控制器发送修改指令,以修改所述目标值,调节所述整流滤波电路的电流值。
  8. 根据权利要求6所述的LED调节方法,其特征在于,所述电流分流控制器根据接收的调节信号调节所述第一控制信号,包括:
    所述电流分流控制器通过调节所述第一控制信号中所述斩波时间的宽度和/或通过调节所述第一控制信号中所述死区时间的宽度调节所述整流滤波电路的电流值。
  9. 一种LED调节电路,其特征在于,包括:高频电流源、电流值控制器、电流分流控制器、预设数量的整流滤波电路及各所述整流滤波电路对应串联的开关管;其中,所述预设数量的整流滤波电路相互并联,且与所述高频电流源的输出端相连;所述电流分流控制器与所述电流值控制器的输入端相连,并分别与各所述整流滤波电路对应串联的所述开关管的控制端相连;所述电流值控制器的输出端与所述高频电流源的高频开关管的控制端相连;
    所述电流分流控制器,用于分别输出第一控制信号至电流值控制器,输出多个第二控制信号至与多个整流滤波电路对应串接的开关管;其中,所述第一控制信号包括斩波时间与死区时间,且所述斩波时间与所述死区时间交替出现;所述第二控制信号与所述开关管一一对应,各所述第二控制信号的时序不同,在任一所述斩波时间内,均有一个所述第二控制信号驱动对应的所述开关管导通,各个所述整流滤波电路均连接LED负载;
    所述电流值控制器,用于根据所述第一控制信号控制所述高频电流源在所述斩波时间输出高频电流,并调节所述高频电流的幅值为目标值;以 及使所述高频电流源在所述死区时间输出所述高频电流的幅值为零;
    所述开关管,用于依照对应的所述第二控制信号的时序导通或关断,以使所述整流滤波电路在对应的所述斩波时间导通,有幅值为所述目标值的所述高频电流通过;并使各所述整流滤波电路在所述死区时间均关断。
  10. 根据权利要求9所述的LED调节电路,其特征在于,所述高频电流源包括:
    高频开关管、变压器以及采样电阻;其中,所述变压器的原边绕组与所述高频开关管以及所述采样电阻串联,所述变压器的副边绕组与所述原边绕组耦合且同名端相反。
PCT/CN2019/104521 2018-10-25 2019-09-05 一种led调节方法及电路 WO2020082908A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201821740628.5U CN209488858U (zh) 2018-10-25 2018-10-25 一种led调节电路
CN201811249567.7 2018-10-25
CN201811249567.7A CN109168226A (zh) 2018-10-25 2018-10-25 一种led调节方法及电路
CN201821740628.5 2018-10-25

Publications (1)

Publication Number Publication Date
WO2020082908A1 true WO2020082908A1 (zh) 2020-04-30

Family

ID=70331242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104521 WO2020082908A1 (zh) 2018-10-25 2019-09-05 一种led调节方法及电路

Country Status (1)

Country Link
WO (1) WO2020082908A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130169173A1 (en) * 2011-12-30 2013-07-04 Chengdu Monolithic Power Systems Co., Ltd. Phase-shift dimming circuit for led controller and the method thereof
CN103458578A (zh) * 2013-08-27 2013-12-18 青岛海信电器股份有限公司 发光二极管驱动系统、方法及显示装置
CN106413188A (zh) * 2016-10-09 2017-02-15 苏州奥曦特电子科技有限公司 高效率多路led驱动控制方法
CN107454711A (zh) * 2014-08-07 2017-12-08 矽力杰半导体技术(杭州)有限公司 一种多路led驱动电路、驱动方法及led驱动电源
CN109168226A (zh) * 2018-10-25 2019-01-08 英飞特电子(杭州)股份有限公司 一种led调节方法及电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130169173A1 (en) * 2011-12-30 2013-07-04 Chengdu Monolithic Power Systems Co., Ltd. Phase-shift dimming circuit for led controller and the method thereof
CN103458578A (zh) * 2013-08-27 2013-12-18 青岛海信电器股份有限公司 发光二极管驱动系统、方法及显示装置
CN107454711A (zh) * 2014-08-07 2017-12-08 矽力杰半导体技术(杭州)有限公司 一种多路led驱动电路、驱动方法及led驱动电源
CN106413188A (zh) * 2016-10-09 2017-02-15 苏州奥曦特电子科技有限公司 高效率多路led驱动控制方法
CN109168226A (zh) * 2018-10-25 2019-01-08 英飞特电子(杭州)股份有限公司 一种led调节方法及电路

Similar Documents

Publication Publication Date Title
TWI508613B (zh) High efficiency LED driver circuit and its driving method
CN103313472B (zh) 一种具有调光功能的led驱动电路及灯具
JP5959624B2 (ja) 調光可能ledドライバ、および、その制御方法
TWI523569B (zh) Adjustable LED driver circuit and drive method
CN201839477U (zh) Led驱动电路及灯具
WO2011160380A1 (zh) 一种led调光系统
US9000673B2 (en) Multi-channel two-stage controllable constant current source and illumination source
EP2916620A2 (en) Hybrid dimming control techniques for LED drivers
US20100013409A1 (en) LED Lamp
KR20120081610A (ko) Led 드라이버의 디밍
CN103379708B (zh) 可调整亮度的照明装置及其亮度调整方法
US8901832B2 (en) LED driver system with dimmer detection
CN104717781B (zh) 调光装置以及调光方法
CN102740547A (zh) 用于半导体发光元件的点亮装置和包括这种点亮装置的照明设备
TW201620334A (zh) Led驅動電路及其驅動方法
WO2013170490A1 (zh) 一种led背光驱动电路、背光模组及液晶显示装置
WO2008059677A1 (fr) Dispositif d'éclairage par lampe à décharge
CN105657932A (zh) 光源驱动电路及亮度和色温控制器
CN103561528A (zh) 一种能够融合多种调光方式的led电源平台
CN210868227U (zh) 一种调光控制电路
WO2020082908A1 (zh) 一种led调节方法及电路
Ma et al. Control scheme for TRIAC dimming high PF single-stage LED driver with adaptive bleeder circuit and non-linear current reference
CN109168226A (zh) 一种led调节方法及电路
CN110099486A (zh) 一种调光控制电路及调光控制方法
US10701779B2 (en) Drive device for illuminating device, illumination device, lighting system and method for controlling the lighting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875414

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19875414

Country of ref document: EP

Kind code of ref document: A1