WO2020082700A1 - 一种电流滤波电路 - Google Patents

一种电流滤波电路 Download PDF

Info

Publication number
WO2020082700A1
WO2020082700A1 PCT/CN2019/083169 CN2019083169W WO2020082700A1 WO 2020082700 A1 WO2020082700 A1 WO 2020082700A1 CN 2019083169 W CN2019083169 W CN 2019083169W WO 2020082700 A1 WO2020082700 A1 WO 2020082700A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
filter
operational amplifier
power tube
sampling resistor
Prior art date
Application number
PCT/CN2019/083169
Other languages
English (en)
French (fr)
Inventor
陶冬毅
刘明龙
Original Assignee
苏州菲达旭微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州菲达旭微电子有限公司 filed Critical 苏州菲达旭微电子有限公司
Publication of WO2020082700A1 publication Critical patent/WO2020082700A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output

Definitions

  • the invention relates to the technical field of electronic drive circuit control, in particular to a current filter circuit.
  • LED As a high-efficiency new light source, LED has been widely used in various fields due to its long life, low energy consumption, energy saving and environmental protection.
  • the load filter circuit in the prior art is shown in Figure 1: That is, the filter and the load are directly connected in parallel, and the output current ripple flowing through the load follows the load circuit. The impedance changes and changes. When the output load impedance is low, the ripple current is large.
  • the present invention provides a current filter circuit, the technical solution is as follows:
  • the invention provides a current filter circuit, including a load, a first filter, a voltage sampler, a second filter and a voltage-current converter, the second filter is connected to a voltage sampler, and the voltage-current converter Connected with a second filter, the voltage sampler, the second filter and the voltage-current converter constitute a filter constant current unit;
  • the filtering constant current unit is connected to the load to form a circuit branch, and the first filter is connected in parallel at both ends of the circuit branch.
  • the voltage sampler includes a first sampling resistor and a second sampling resistor connected in series, and a sampling end of the voltage sampler is disposed between the first sampling resistor and the second sampling resistor point.
  • the second filter includes a capacitor
  • the voltage-current converter includes a power tube
  • the gate of the power tube is connected to the sampling end of the voltage sampler and one end of the capacitor
  • the drain of the power tube It is connected to one end of the voltage sampler
  • the source of the power tube is connected to the other end of the voltage sampler and the other end of the capacitor.
  • the second filter includes a capacitor and a first operational amplifier
  • the voltage-to-current converter includes a power tube
  • the non-inverting input terminal of the first operational amplifier is connected to the sampling terminal of the voltage sampler
  • the inverting input terminal of the first operational amplifier is connected to the reference voltage source
  • the output terminal of the first operational amplifier is connected to the gate of the power tube and one end of the capacitor
  • the drain of the power tube is connected to one end of the voltage sampler
  • the source of the power tube is connected to the other end of the voltage sampler and the other end of the capacitor.
  • the second filter includes a capacitor and a first operational amplifier
  • the voltage-current converter includes a power tube, a second operational amplifier, and a third sampling resistor
  • the non-inverting input terminal of the first operational amplifier is The sampling end of the voltage sampler is connected, the inverting input end of the first operational amplifier is connected to the reference voltage source, and the output end of the first operational amplifier is connected to the non-inverting input end of the second operational amplifier and one end of the capacitor;
  • the inverting input terminal of the second operational amplifier is connected to the source of the power tube, the output terminal of the second operational amplifier is connected to the gate of the power tube, the drain of the power tube is connected to the voltage sampler One end is connected, the source of the power tube is connected to one end of the third sampling resistor, and the other end of the third sampling resistor is connected to the other end of the voltage sampler and the other end of the capacitor.
  • V o_dc V ref (R1 + R2) / R2, where V o_dc is the average value of the output voltage, V ref is the threshold voltage of the power tube, R1 is the resistance of the first sampling resistor, and R2 is the resistance of the second sampling resistor.
  • V o_dc V ref (R1 + R2) / R2, where V o_dc is the average output voltage, V ref is the reference voltage of the first operational amplifier, R1 is the resistance of the first sampling resistor, and R2 is the resistance of the second sampling resistor value.
  • V o_dc V ref (R1 + R2) / R2, where V o_dc is the average output voltage, V ref is the reference voltage of the first operational amplifier, R1 is the resistance of the first sampling resistor, and R2 is the resistance of the second sampling resistor value.
  • the load includes one or more LED lamps connected in series.
  • a series of constant current lines are connected in series in the load path, and the constant current value is adaptively equal to the average input current, making the output ripple current independent of the load circuit impedance, greatly reducing the output ripple current;
  • FIG. 1 is a circuit schematic diagram of a filter circuit in the prior art
  • FIG. 2 is a block diagram of the overall topology structure of the current filter circuit provided by an embodiment of the present invention.
  • FIG. 3 is a first current filter circuit diagram provided by an embodiment of the present invention.
  • FIG. 5 is a third current filter circuit diagram provided by an embodiment of the present invention.
  • FIG. 6 is a waveform diagram of voltage and current in a current filter circuit provided by an embodiment of the present invention.
  • the reference signs include: 1-load, 2-first filter, 3-voltage sampler, 31-first sampling resistor, 32-second sampling resistor, 4-second filter, 41-capacitor, 42 -First operational amplifier, 5-voltage current converter, 51-power tube, 52-second operational amplifier, 53-third sampling resistor.
  • the present invention provides a current filter circuit, which adds a filter and a constant current to the circuit to adaptively adjust the load circuit current. See FIG. 2.
  • the filter circuit includes a load 1, a first filter 2, a voltage sampler 3, a second filter 4 and a voltage-current converter 5, the second filter 4 is connected to the voltage sampler 3, the voltage-current converter 5 is connected to the second filter 4, the voltage sampler 3, the second filter 4 and the voltage-current converter 5 form a filter constant current unit; the filter constant current unit is connected to the load 1 to form a circuit branch, the The first filter 2 is connected in parallel at both ends of the circuit branch.
  • the working principle of the above-mentioned filter circuit to achieve ripple-free current is as follows: the output voltage Vo in FIG. 2 is detected by a voltage sampler, and a DC control voltage Vc is generated after filtering or error amplification filtering. The control voltage Vc and the output voltage Vo The change direction of the average value Vo_dc is the same, see Figure 6. Then, the DC control voltage Vc is converted into the output DC current I_out_dc through the voltage-current converter to achieve the constant current filtering effect.
  • the first-level constant current line is connected in series in the output load path, and the constant current value is adaptively equal to the average input current, and the overall output impedance is improved, making the output ripple current independent of the load circuit impedance, greatly Reduced output ripple current.
  • the voltage sampler 3 includes a first sampling resistor 31 and a second sampling resistor 32 connected in series, and the sampling end of the voltage sampler 3 is disposed on the first sampling resistor 31 The connection point with the second sampling resistor 32.
  • FIG. 2 is the overall topology of the present invention. Examples of specific implementations of the topology are as follows:
  • the second filter 4 in the embodiment of the present invention includes a capacitor 41
  • the voltage-current converter 5 includes a power tube 51, a gate of the power tube 51 and a sampling end of the voltage sampler 3 ( A terminal between the resistors R1 and R2) and one end of the capacitor 41, the drain of the power tube 51 is connected to one end of the voltage sampler 3 (the upper end of the resistor R1), and the source of the power tube 51 is connected to the voltage sampling The other end of the capacitor 3 (the lower end of the resistor R2) and the other end of the capacitor 41 are connected.
  • V o_dc V ref (R1 + R2) / R2, where V o_dc is the average value of the output voltage, V ref is the threshold voltage of the power tube, R1 is the resistance of the first sampling resistor, and R2 is the resistance of the second sampling resistor.
  • the average value of the output voltage controlled by the voltage-current converter and the current value flowing through the load are constant values.
  • the advantage of this embodiment is that the structure is simple and the cost is reduced.
  • the second filter 4 includes a capacitor 41 and a first operational amplifier 42
  • the voltage-current converter 5 includes a power tube 51.
  • the first A non-inverting input terminal of an operational amplifier 42 is connected to a sampling terminal (a terminal between resistors R1 and R2) of the voltage sampler 3
  • an inverting input terminal of the first operational amplifier 42 is connected to a reference voltage source (the reference voltage is V ref ) connection
  • the output of the first operational amplifier 42 is connected to the gate of the power tube 51 and one end of the capacitor 41
  • the drain of the power tube 51 is connected to one end of the voltage sampler 3 (the upper end of the resistor R1)
  • the source of the power tube 51 is connected to the other end of the voltage sampler 3 (the lower end of the resistor R2) and the other end of the capacitor 41.
  • V o_dc V ref (R1 + R2) / R2, where V o_dc is the average output voltage, V ref is the reference voltage of the first operational amplifier, R1 is the resistance of the first sampling resistor, and R2 is the resistance of the second sampling resistor value.
  • the average value of the output voltage of the first operational amplifier control and the current value flowing through the load are constant values.
  • the advantage of this embodiment is that the engineering mass production deviation is small and the cost is higher than the implementation cost of Example 1.
  • the second filter 4 includes a capacitor 41 and a first operational amplifier 42
  • the voltage-current converter 5 includes a power tube 51, a second operational amplifier 52, and a first Three sampling resistors 53.
  • the non-inverting input terminal of the first operational amplifier 42 is connected to the sampling terminal of the voltage sampler 3 (the terminal between the resistors R1 and R2).
  • the phase input terminal is connected to a reference voltage source (the reference voltage is V ref ), and the output terminal of the first operational amplifier 42 is connected to the positive input terminal of the second operational amplifier 52 and one end of the capacitor 41;
  • the inverting input terminal of the second operational amplifier 52 is connected to the source of the power tube 51, the output terminal of the second operational amplifier 52 is connected to the gate of the power tube 51, and the drain of the power tube 51 It is connected to one end of the voltage sampler 3 (the upper end of the resistor R1), the source of the power tube 51 is connected to one end of the third sampling resistor 53, and the other end of the third sampling resistor 53 is connected to the other end of the voltage sampler 3 One end (the lower end of the resistor R2) and the other end of the capacitor 41 are connected.
  • V o_dc V ref (R1 + R2) / R2, where V o_dc is the average output voltage, V ref is the reference voltage of the first operational amplifier, R1 is the resistance of the first sampling resistor, and R2 is the resistance of the second sampling resistor value.
  • the first operational amplifier controls the average value of the output voltage and the current value flowing through the load to be constant.
  • the advantage of this embodiment is that the deviation of mass production is small. Due to the voltage-current converter in this embodiment ( Figure The NM1 power tube in 5) is smaller, so the cost is lower than the implementation cost of Embodiment 2.
  • the load 1 includes one or more LED lamps connected in series
  • the first filter 2 is a capacitor (single setting or multiple parallel setting)
  • the second filter is a capacitor
  • the second filters in Embodiment 2 and Embodiment 3 include an operational amplifier and a capacitor (the capacitor may be one, or a plurality of capacitors may be provided in parallel).
  • the voltage-current converter 5 is a power tube
  • the voltage-current converter 5 includes an operational amplifier, a power tube, and a sampling resistor.
  • the present invention uses voltage sampling, filtering and constant current technology , So that the output ripple current has nothing to do with the load impedance, reducing the ripple current.

Abstract

本发明公开了一种电流滤波电路,包括负载、第一滤波器、电压采样器、第二滤波器及电压电流转换器,所述第二滤波器与电压采样器连接,所述电压电流转换器与第二滤波器连接,所述电压采样器、第二滤波器及电压电流转换器组成滤波恒流单元;所述滤波恒流单元与负载连接形成电路支路,所述第一滤波器并联在所述电路支路的两端。本发明利用电压采样、滤波和恒流技术,使得输出纹波电流与负载阻抗无关,降低纹波电流。

Description

一种电流滤波电路 技术领域
本发明涉及电子驱动电路控制技术领域,特别涉及一种电流滤波电路。
背景技术
LED作为一种高效的新光源,由于具有寿命长,能耗低,节能环保,正广泛应用于各领域照明。
目前线性和开关恒流驱动电源都存在纹波缺陷,现有技术中的负载滤波电路如图1所示:即滤波器与负载直接并联连接,流过负载的输出电流纹波随着负载电路的阻抗变化而变化,当输出负载阻抗较低时,纹波电流较大。
发明内容
为了克服现有技术存在的不足,本发明提供了一种电流滤波电路,所述技术方案如下:
本发明提供了一种电流滤波电路,包括负载、第一滤波器、电压采样器、第二滤波器及电压电流转换器,所述第二滤波器与电压采样器连接,所述电压电流转换器和第二滤波器连接,所述电压采样器、第二滤波器及电压电流转换器组成滤波恒流单元;
所述滤波恒流单元与负载连接形成电路支路,所述第一滤波器并联在所述电路支路的两端。
进一步地,所述电压采样器包括通过串联方式进行连接的第一采样电阻和第二采样电阻,所述电压采样器的采样端设置在所述第一采样电阻与第二采样电阻之间的连接点。
可选地,所述第二滤波器包括电容器,所述电压电流转换器包括功率管,所述功率管的栅极与电压采样器的采样端以及电容器的一端连接,所述功率管的漏极与电压采样器的一端连接,所述功率管的源极与电压采样器的另一端以 及电容器的另一端连接。
可选地,所述第二滤波器包括电容器和第一运算放大器,所述电压电流转换器包括功率管,所述第一运算放大器的正相输入端与电压采样器的采样端连接,所述第一运算放大器的反相输入端与基准电压源连接,所述第一运算放大器的输出端与功率管的栅极以及电容器的一端连接,所述功率管的漏极与电压采样器的一端连接,所述功率管的源极与电压采样器的另一端以及电容器的另一端连接。
可选地,所述第二滤波器包括电容器和第一运算放大器,所述电压电流转换器包括功率管、第二运算放大器和第三采样电阻,所述第一运算放大器的正相输入端与电压采样器的采样端连接,所述第一运算放大器的反相输入端与基准电压源连接,所述第一运算放大器的输出端与第二运算放大器的正相输入端以及电容器的一端连接;
所述第二运算放大器的反相输入端与所述功率管的源极连接,所述第二运算放大器的输出端与功率管的栅极连接,所述功率管的漏极与电压采样器的一端连接,所述功率管的源极与第三采样电阻的一端连接,所述第三采样电阻的另一端与电压采样器的另一端以及电容器的另一端连接。
进一步地,所述滤波电路的输出电压平均值的计算公式为:
V o_dc=V ref(R1+R2)/R2,其中,V o_dc为输出电压平均值,V ref为功率管的阈值电压,R1为第一采样电阻阻值,R2为第二采样电阻阻值。
进一步地,所述滤波电路的输出电压平均值的计算公式为:
V o_dc=V ref(R1+R2)/R2,其中,V o_dc为输出电压平均值,V ref为第一运算放大器的基准电压,R1为第一采样电阻阻值,R2为第二采样电阻阻值。
进一步地,所述滤波电路的输出电压平均值的计算公式为:
V o_dc=V ref(R1+R2)/R2,其中,V o_dc为输出电压平均值,V ref为第一运算放大器的基准电压,R1为第一采样电阻阻值,R2为第二采样电阻阻值。
进一步地,所述负载包括一个或多个通过串联方式进行连接的LED灯。
本发明提供的技术方案带来的有益效果如下:
1)在负载通路中串联一级恒流线路,恒流值自适应地与输入平均电流相等,使得输出纹波电流与负载电路阻抗无关,极大地降低了输出纹波电流;
2)串联的一级恒流线路提高了整体的输出阻抗,进一步降低了输出纹波电 流;
3)纹波电流误差小,提高工程量产的质量稳定均一性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中滤波电路的电路示意图;
图2是本发明实施例提供的电流滤波电路总拓扑结构框图;
图3是本发明实施例提供的第一种电流滤波电路图;
图4是本发明实施例提供的第二种电流滤波电路图;
图5是本发明实施例提供的第三种电流滤波电路图;
图6是本发明实施例提供的电流滤波电路中电压、电流波形图。
其中,附图标记包括:1-负载,2-第一滤波器,3-电压采样器,31-第一采样电阻,32-第二采样电阻,4-第二滤波器,41-电容器,42-第一运算放大器,5-电压电流转换器,51-功率管,52-第二运算放大器,53-第三采样电阻。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
为了克服现有技术中LED电路中纹波电流过大的缺陷,本发明提供了一种 电流滤波电路,在电路中加入滤波器和恒流器,自适应调节负载电路电流,参见图2,所述滤波电路包括负载1、第一滤波器2、电压采样器3、第二滤波器4及电压电流转换器5,所述第二滤波器4与电压采样器3连接,所述电压电流转换器5与第二滤波器4连接,所述电压采样器3、第二滤波器4及电压电流转换器5组成滤波恒流单元;所述滤波恒流单元与负载1连接形成电路支路,所述第一滤波器2并联在所述电路支路的两端。
上述的滤波电路实现无纹波电流的工作原理如下:通过电压采样器检测图2中的输出电压Vo,经过滤波或者误差放大滤波后产生一个直流控制电压Vc,此控制电压Vc与输出电压Vo的平均值Vo_dc的变化方向一致,参见图6。然后通过电压电流转换器将直流控制电压Vc转换为输出直流电流I_out_dc,达到恒流滤波效果。
以上可以看出,在输出负载通路中串联一级恒流线路,恒流值自适应地与输入平均电流相等,并且提高了整体的输出阻抗,使得输出纹波电流与负载电路阻抗无关,极大地降低了输出纹波电流。
在本发明实施例中,所述电压采样器3包括通过串联方式进行连接的第一采样电阻31和第二采样电阻32,所述电压采样器3的采样端设置在所述第一采样电阻31与第二采样电阻32之间的连接点。
图2为本发明的总拓扑结构,关于该拓扑结构的具体实施方案举例以下几种:
实施例1
如图3所示,本发明实施例中的第二滤波器4包括电容器41,所述电压电流转换器5包括功率管51,所述功率管51的栅极与电压采样器3的采样端(电阻R1与R2之间的端子)以及电容器41的一端连接,所述功率管51的漏极与电压采样器3的一端(电阻R1的上端)连接,所述功率管51的源极与电压采样器3的另一端(电阻R2的下端)以及电容器41的另一端连接。
与之对应地,所述滤波电路的输出电压平均值的计算公式为:
V o_dc=V ref(R1+R2)/R2,其中,V o_dc为输出电压平均值,V ref为功率管的阈值电压,R1为第一采样电阻阻值,R2为第二采样电阻阻值。
即可以看出,电压电流转换器控制输出电压平均值和流经负载的电流值为恒定值,本实施方式的优点在于:结构简单,降低成本。
实施例2
与实施例1不同的是,在本实施例中,所述第二滤波器4包括电容器41和第一运算放大器42,所述电压电流转换器5包括功率管51,参见图4,所述第一运算放大器42的正相输入端与电压采样器3的采样端(电阻R1与R2之间的端子)连接,所述第一运算放大器42的反相输入端与基准电压源(基准电压为V ref)连接,所述第一运算放大器42的输出端与功率管51的栅极以及电容器41的一端连接,所述功率管51的漏极与电压采样器3的一端(电阻R1的上端)连接,所述功率管51的源极与电压采样器3的另一端(电阻R2的下端)以及电容器41的另一端连接。
与之对应地,所述滤波电路的输出电压平均值的计算公式为:
V o_dc=V ref(R1+R2)/R2,其中,V o_dc为输出电压平均值,V ref为第一运算放大器的基准电压,R1为第一采样电阻阻值,R2为第二采样电阻阻值。
即可以看出,第一运算放大器控制输出电压平均值和流经负载的电流值为恒定值,本实施方式的优点在于:工程量产偏差小,成本较实施例1的实施成本高。
实施例3
与实施例1不同的是,在本实施例中,所述第二滤波器4包括电容器41和第一运算放大器42,所述电压电流转换器5包括功率管51、第二运算放大器52和第三采样电阻53,参见图5,所述第一运算放大器42的正相输入端与电压采样器3的采样端(电阻R1与R2之间的端子)连接,所述第一运算放大器42的反相输入端与基准电压源(基准电压为V ref)连接,所述第一运算放大器42的输出端与第二运算放大器52的正相输入端以及电容器41的一端连接;
所述第二运算放大器52的反相输入端与所述功率管51的源极连接,所述第二运算放大器52的输出端与功率管51的栅极连接,所述功率管51的漏极与电压采样器3的一端(电阻R1的上端)连接,所述功率管51的源极与第三采样电阻53的一端连接,所述第三采样电阻53的另一端与电压采样器3的另一端(电阻R2的下端)以及电容器41的另一端连接。
与之对应地,所述滤波电路的输出电压平均值的计算公式为:
V o_dc=V ref(R1+R2)/R2,其中,V o_dc为输出电压平均值,V ref为第一运算放大器的基准电压,R1为第一采样电阻阻值,R2为第二采样电阻阻值。
即可以看出,第一运算放大器控制输出电压平均值和流经负载的电流值为恒定值,本实施方式的优点在于:工程量产偏差小,由于本实施例中的电压电流转换器(图5中NM1功率管)较小,因此成本较实施例2的实施成本低。
以上三个实施例中,所述负载1包括一个或多个通过串联方式进行连接的LED灯,所述第一滤波器2均为电容器(单个设置或者多个并联设置),而实施例1中第二滤波器为电容器,实施例2和实施例3中的第二滤波器包括一个运算放大器和电容器(电容器可以为一个,也可以由多个电容器并联设置)。在实施例1和实施例2中,所述电压电流转换器5为功率管,而在实施例3中,所述电压电流转换器5包括运算放大器、功率管和一个采样电阻。以上三种实施方式,均可以实现本发明的技术方案,各自具有相应的优势特点(如上述,在此不再赘述),实现无纹波的技术效果,需要说明的是,本发明中所述的无纹波效果指的是纹波电流接近零的情况,而不限定纹波电流一定等于零。
在本发明实施例中,现有的LED照明行业中,无纹波制约了LED的高质量研发生产,为了克服现有LED线性驱动电路技术存在不足,本发明利用电压采样、滤波和恒流技术,使得输出纹波电流与负载阻抗无关,降低纹波电流。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种电流滤波电路,其特征在于,包括负载(1)、第一滤波器(2)、电压采样器(3)、第二滤波器(4)及电压电流转换器(5),所述第二滤波器(4)与电压采样器(3)连接,所述电压电流转换器(5)与第二滤波器(4)连接,所述电压采样器(3)、第二滤波器(4)及电压电流转换器(5)组成滤波恒流单元;
    所述滤波恒流单元与负载(1)连接形成电路支路,所述第一滤波器(2)并联在所述电路支路的两端。
  2. 根据权利要求1所述的滤波电路,其特征在于,所述电压采样器(3)包括通过串联方式进行连接的第一采样电阻(31)和第二采样电阻(32),所述电压采样器(3)的采样端设置在所述第一采样电阻(31)与第二采样电阻(32)之间的连接点。
  3. 根据权利要求2所述的滤波电路,其特征在于,所述第二滤波器(4)包括电容器(41),所述电压电流转换器(5)包括功率管(51),所述功率管(51)的栅极与电压采样器(3)的采样端以及电容器(41)的一端连接,所述功率管(51)的漏极与电压采样器(3)的一端连接,所述功率管(51)的源极与电压采样器(3)的另一端以及电容器(41)的另一端连接。
  4. 根据权利要求2所述的滤波电路,其特征在于,所述第二滤波器(4)包括电容器(41)和第一运算放大器(42),所述电压电流转换器(5)包括功率管(51),所述第一运算放大器(42)的正相输入端与电压采样器(3)的采样端连接,所述第一运算放大器(42)的反相输入端与基准电压源连接,所述第一运算放大器(42)的输出端与功率管(51)的栅极以及电容器(41)的一端连接,所述功率管(51)的漏极与电压采样器(3)的一端连接,所述功率管(51)的源极与电压采样器(3)的另一端以及电容器(41)的另一端连接。
  5. 根据权利要求2所述的滤波电路,其特征在于,所述第二滤波器(4)包括电容器(41)和第一运算放大器(42),所述电压电流转换器(5)包括功率管(51)、第二运算放大器(52)和第三采样电阻(53),所述第一运算放大器(42)的正相输入端与电压采样器(3)的采样端连接,所述第一运算放大器(42)的反相输入端与基准电压源连接,所述第一运算放大器(42)的输出端与第二运算放大器(52)的正相输入端以及电容器(41)的一端连接;
    所述第二运算放大器(52)的反相输入端与所述功率管(51)的源极连接,所述第二运算放大器(52)的输出端与功率管(51)的栅极连接,所述功率管(51)的漏极与电压采样器(3)的一端连接,所述功率管(51)的源极与第三采样电阻(53)的一端连接,所述第三采样电阻(53)的另一端与电压采样器(3)的另一端以及电容器(41)的另一端连接。
  6. 根据权利要求3所述的滤波电路,其特征在于,所述滤波电路的输出电压平均值的计算公式为:
    V o_dc=V ref(R1+R2)/R2,其中,V o_dc为输出电压平均值,V ref为功率管的阈值电压,R1为第一采样电阻阻值,R2为第二采样电阻阻值。
  7. 根据权利要求4所述的滤波电路,其特征在于,所述滤波电路的输出电压平均值的计算公式为:
    V o_dc=V ref(R1+R2)/R2,其中,V o_dc为输出电压平均值,V ref为第一运算放大器的基准电压,R1为第一采样电阻阻值,R2为第二采样电阻阻值。
  8. 根据权利要求5所述的滤波电路,其特征在于,所述滤波电路的输出电压平均值的计算公式为:
    V o_dc=V ref(R1+R2)/R2,其中,V o_dc为输出电压平均值,V ref为第一运算放大器的基准电压,R1为第一采样电阻阻值,R2为第二采样电阻阻值。
  9. 根据权利要求1所述的滤波电路,其特征在于,所述负载包括一个或多个通过串联方式进行连接的LED灯。
PCT/CN2019/083169 2018-10-26 2019-04-18 一种电流滤波电路 WO2020082700A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811255394.X 2018-10-26
CN201811255394.XA CN109167506A (zh) 2018-10-26 2018-10-26 一种电流滤波电路

Publications (1)

Publication Number Publication Date
WO2020082700A1 true WO2020082700A1 (zh) 2020-04-30

Family

ID=64875243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083169 WO2020082700A1 (zh) 2018-10-26 2019-04-18 一种电流滤波电路

Country Status (2)

Country Link
CN (1) CN109167506A (zh)
WO (1) WO2020082700A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109167506A (zh) * 2018-10-26 2019-01-08 苏州菲达旭微电子有限公司 一种电流滤波电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132061A1 (en) * 2004-09-10 2006-06-22 Color Kinetics Incorporated Power control methods and apparatus for variable loads
CN102904427A (zh) * 2012-09-27 2013-01-30 成都芯源系统有限公司 一种供电系统及其抑制纹波电流的方法
CN104837267A (zh) * 2015-05-12 2015-08-12 金红涛 多路调光装置
CN206212336U (zh) * 2016-09-28 2017-05-31 深圳市晟碟半导体有限公司 一种led驱动电路和驱动装置
CN109167506A (zh) * 2018-10-26 2019-01-08 苏州菲达旭微电子有限公司 一种电流滤波电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4026665B1 (ja) * 2006-09-07 2007-12-26 オンキヨー株式会社 ローパスフィルタ及びそれに用いられる電圧電流変換回路
CN103813596B (zh) * 2014-03-10 2016-02-24 杭州士兰微电子股份有限公司 Led驱动电路以及降低led电流纹波的方法
CN204014192U (zh) * 2014-07-09 2014-12-10 无锡硅动力微电子股份有限公司 自适应led电流纹波消除电路
CN206402492U (zh) * 2017-01-17 2017-08-11 厦门奇力微电子有限公司 一种电流纹波消除电路
CN208908416U (zh) * 2018-10-26 2019-05-28 苏州菲达旭微电子有限公司 一种电流滤波电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132061A1 (en) * 2004-09-10 2006-06-22 Color Kinetics Incorporated Power control methods and apparatus for variable loads
CN102904427A (zh) * 2012-09-27 2013-01-30 成都芯源系统有限公司 一种供电系统及其抑制纹波电流的方法
CN104837267A (zh) * 2015-05-12 2015-08-12 金红涛 多路调光装置
CN206212336U (zh) * 2016-09-28 2017-05-31 深圳市晟碟半导体有限公司 一种led驱动电路和驱动装置
CN109167506A (zh) * 2018-10-26 2019-01-08 苏州菲达旭微电子有限公司 一种电流滤波电路

Also Published As

Publication number Publication date
CN109167506A (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
CN105406697B (zh) 纹波抑制电路、方法及应用其的led灯
CN103269550B (zh) 一种led电流纹波消除驱动电路
US9198245B2 (en) Dimming method and circuit and controlled-silicon dimming circuit with the same
CN102647823B (zh) 一种led灯恒流驱动电路
CN105979630B (zh) Led驱动电路
CN103813596B (zh) Led驱动电路以及降低led电流纹波的方法
TWI636648B (zh) Ripple suppression method, circuit and load driving circuit using same
CN108770117B (zh) 一种兼容电子变压器的整合式led驱动电源
CN203313490U (zh) 一种led电流纹波消除驱动电路
WO2017198126A1 (zh) 一种线性恒流驱动电路
WO2018094970A1 (zh) 一种led线性恒流驱动电路及led照明装置
WO2020082701A1 (zh) 一种半压供电的无纹波led电路
CN103269162B (zh) 一种准单级高功率因数恒流电路及装置
CN109428476B (zh) 一种功率因数校正电路的模拟控制装置
US20160212814A1 (en) Led driver and led lighting device
WO2020082700A1 (zh) 一种电流滤波电路
CN105101539B (zh) Led恒流驱动电路
CN207216474U (zh) 一种电流采样转换电路以及led恒流电源
CN201967214U (zh) 一种led灯恒流驱动电路
CN206402492U (zh) 一种电流纹波消除电路
CN205847656U (zh) Led驱动电路
CN209824078U (zh) 一种电流控制电路
CN102711330A (zh) 基于快速反应能量平衡运算技术的led驱动方法及系统
CN208908416U (zh) 一种电流滤波电路
CN104393750A (zh) 无桥pfc电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876833

Country of ref document: EP

Kind code of ref document: A1