WO2020082384A1 - 光谱防伪鉴别系统及光谱防伪码制码、解码方法 - Google Patents

光谱防伪鉴别系统及光谱防伪码制码、解码方法 Download PDF

Info

Publication number
WO2020082384A1
WO2020082384A1 PCT/CN2018/112235 CN2018112235W WO2020082384A1 WO 2020082384 A1 WO2020082384 A1 WO 2020082384A1 CN 2018112235 W CN2018112235 W CN 2018112235W WO 2020082384 A1 WO2020082384 A1 WO 2020082384A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectral
counterfeiting
code
information
decoding
Prior art date
Application number
PCT/CN2018/112235
Other languages
English (en)
French (fr)
Inventor
王星泽
舒远
雷馨
Original Assignee
合刃科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合刃科技(深圳)有限公司 filed Critical 合刃科技(深圳)有限公司
Priority to CN201880068668.6A priority Critical patent/CN111357027A/zh
Priority to PCT/CN2018/112235 priority patent/WO2020082384A1/zh
Publication of WO2020082384A1 publication Critical patent/WO2020082384A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce

Definitions

  • the invention relates to the technical field of anti-counterfeiting, in particular to a spectral anti-counterfeiting identification system, and a spectral anti-counterfeiting code coding method and a spectral anti-counterfeiting code decoding method based on the spectral anti-counterfeiting identification system.
  • the anti-counterfeiting technology that uses one or more technical means to identify the artificially recorded information on the object requiring security, such as bills, currencies, certificates, and commodities, to determine the authenticity of the object has been widely used.
  • Anti-counterfeiting technology is actually an information recognition technology.
  • various anti-counterfeiting technologies have emerged, including laser holographic anti-counterfeiting technology, heavy ion anti-counterfeiting technology, telephone code anti-counterfeiting technology, digital anti-counterfeiting technology, cloud-checking information platform anti-counterfeiting technology, and spectral anti-counterfeiting technology.
  • spectral anti-counterfeiting technology is a kind of anti-counterfeiting technology that is widely used at present.
  • spectral anti-counterfeiting technology is to add anti-counterfeiting materials with certain spectral characteristics to paper, ink, printing oil and other anti-counterfeiting products, and print the above anti-counterfeiting ink and other anti-counterfeiting products on tickets, product trademarks or packaging by printing , Observe the color change of the printed matter under different external conditions (mainly in the form of light, heat, spectrum detection, etc.), so as to achieve the corresponding anti-counterfeiting function.
  • the identification light sources used in the spectral anti-counterfeiting technology include infrared light, ultraviolet light, white light, infrared laser, etc. Further, in the prior art, high-magnification optical imaging lenses and Charge-coupled Device (CCD) cameras can also be used.
  • CCD Charge-coupled Device
  • the anti-counterfeiting process of the spectral anti-counterfeiting technology is essentially to encrypt the up-conversion material, and once the counterfeiter can identify the type and concentration parameter of the up-conversion material used in the spectral anti-counterfeiting product, it is very easy to This kind of spectral anti-counterfeiting product is imitated and forged, which shows that the existing spectral anti-counterfeiting method is not safe.
  • the spectral anti-counterfeiting identification system includes:
  • Coding device decoding device and cloud server.
  • the cloud server is respectively connected to the coding device and the decoding device through a network;
  • the cloud server includes an anti-counterfeit code distribution module, an anti-counterfeit code verification module, and a storage module; the cloud server is used to distribute and verify the anti-counterfeit code of anti-counterfeit products; wherein, the anti-counterfeit code distribution module is used to distribute the anti-counterfeit code To the code-making device, the anti-counterfeit code verification module is used for comparison verification of the received spectral anti-counterfeit code information uploaded by the decoding device, and the storage module is used to store the anti-counterfeit code;
  • the coding device is used to receive the security code issued by the cloud server, and encode and make the security code into a spectral security code in the security product;
  • the decoding device is used to decode the spectral anti-counterfeit code obtained by it, and send the decoded spectral anti-counterfeit code information to the cloud server for comparison and verification operation to identify the authenticity of the spectral anti-counterfeit code.
  • the coding device includes a binary security coding module, a spectral coding module, a laser coding module, and a laser process parameter database module;
  • the binary anti-counterfeiting encoding module performs binary encoding processing on the received anti-counterfeiting code to generate binary anti-counterfeiting encoding information
  • the spectral encoding module performs one-dimensional spectral encoding on the generated binary anti-counterfeiting encoding information, and uses a conversion algorithm to convert the binary anti-counterfeiting encoding information into a spectral map to obtain one-dimensional spectral encoding information;
  • the one-dimensional spectral encoding information is Spectral distribution curve corresponding to binary anti-counterfeit coding information;
  • the laser coding module utilizes the one-dimensional spectral coding information generated by the spectral coding module, queries the laser processing parameters corresponding to the one-dimensional spectral coding information in the database through the laser process parameter database module, and utilizes the laser Process parameters generate corresponding spectral anti-counterfeit codes on the surface of anti-counterfeit products by laser radiation coding.
  • the laser process parameters in the laser process parameter database module include pulse energy, pulse number, scanning speed, scanning interval, and defocus amount.
  • the decoding device includes a spectrum acquisition module and a binary spectrum decoding module, and the spectrum acquisition module includes an identification light source and a hyperspectral sensor;
  • the identification light source is used to irradiate the spectral security code in the security product
  • the hyperspectral sensor is used to photograph the spectral anti-counterfeiting code to obtain spectral information and generate a corresponding spectral distribution curve; the binary spectral decoding module decodes the spectral distribution curve into binary anti-counterfeiting decoding information.
  • the identification light source in the spectrum acquisition module uses a combined light source of white light LED and near infrared LED, and the wavelength range of the identification light source is 360 nm-1100 nm.
  • a spectral anti-counterfeiting code coding method is proposed.
  • the coding method of the spectral anti-counterfeit code includes:
  • Step S21 the code making device receives the anti-counterfeiting code issued by the cloud server
  • Step S22 the code-making device performs binary anti-counterfeit coding on the anti-counterfeit code to generate binary anti-counterfeit encoded information
  • Step S23 the coding device performs one-dimensional spectral coding on the generated binary anti-counterfeiting coding information, and uses a conversion algorithm to convert the binary anti-counterfeiting coding into a spectral distribution curve to generate one-dimensional spectral coding information;
  • the one-dimensional spectral coding information is binary Spectral distribution curve corresponding to anti-counterfeit coding information;
  • Step S24 the code-making device uses the generated one-dimensional spectral coding information to query the laser processing parameters corresponding to the one-dimensional spectral coding information in the database through a pre-established laser processing parameter database, and uses the laser processing parameters in anti-counterfeit products
  • the surface of the laser beam generates a specific spectral security code through laser radiation.
  • the laser process parameter database contains the corresponding relationship between the reflection spectrum of the metal surface or the dielectric material and the laser process parameters; the laser process parameters include pulse energy, pulse number, scanning speed, scanning interval and defocus the amount.
  • the spectral anti-counterfeiting code decoding method includes:
  • Step S31 the decoding device irradiates the obtained spectral anti-counterfeit code on the anti-counterfeit product with the identification light source, and at the same time, the decoding device uses a hyperspectral sensor to photograph the spectral anti-counterfeit code to obtain the corresponding spectral distribution curve;
  • the hyperspectral camera photographs the spectral anti-counterfeiting code perpendicular to the spectral anti-counterfeiting code of the anti-counterfeiting product, so as to obtain a stable and accurate spectral distribution;
  • Step S32 the decoding device performs binary decoding on the acquired spectral distribution curve to generate binary anti-counterfeiting decoding information
  • Step S33 the decoding device sends the binary anti-counterfeiting decoding information to the anti-counterfeiting code verification module of the cloud server; the anti-counterfeiting code verifying module sends the binary anti-counterfeiting decoding information to the anti-counterfeiting stored in the cloud server storage module The binary form of the code is compared and verified to identify the authenticity of the security code information.
  • the decoding device performs binary decoding on the acquired spectral distribution curve, and the step of generating binary anti-counterfeit decoding information specifically includes:
  • the first step is to perform smooth filtering on the acquired spectral distribution curve
  • the second step is to normalize the reflectance value of the vertical coordinate of the spectral distribution curve
  • the third step is to divide the wavelength distribution range of the spectral distribution curve into a plurality of division units with fixed intervals;
  • the fourth step is to select a fixed threshold value T and perform binarization on the spectral distribution curve of each band in the segmentation unit; when the reflectivity of this band is> T, the value of this band after binarization is 1, On the contrary, it takes 0; the binary digital string reflecting the spectral distribution curve generated after the binary decoding process is binary anti-counterfeiting decoding information;
  • the fixed threshold T can be adjusted.
  • step S32 after the decoding device obtains the spectral distribution curve, the Fourier spectrum analysis is performed on the spectral distribution curve, and the frequency distribution information obtained by the spectral analysis is digitized, and the generated frequency distribution information is used as Spectral anti-counterfeit decoding information;
  • step S32 after acquiring the spectral distribution curve, the decoding device digitizes the distribution of peaks and troughs in the spectral distribution curve, and uses the generated peak-trough information as spectral anti-counterfeiting decoding information;
  • step S32 after obtaining the spectral distribution curve, the decoding device performs 0-9 quantization on the spectral distribution curve, and uses the generated spectral distribution curve quantization information as spectral anti-counterfeiting decoding information;
  • the decoding device uses incident light of the light source at multiple different incident angles to project onto the spectral anti-counterfeiting code, thereby acquiring multiple different spectral distribution curves of the spectral anti-counterfeiting code, and synthesizing the different spectral distribution curves into Two-dimensional code, the generated two-dimensional code is used as spectral anti-counterfeiting decoding information;
  • step S33 the decoding device sends the any one or more spectral anti-counterfeiting decoding information to the anti-counterfeiting code verification module of the cloud server; the anti-counterfeiting code verification module sends the any one or more spectral anti-counterfeiting information
  • the decoded information is matched, compared, and verified with various forms of the anti-counterfeit code information stored in the cloud server storage module to identify the authenticity of the spectral anti-counterfeit code obtained by the decoding device.
  • Spectral anti-counterfeit codes made by irradiating metal surfaces or dielectric materials with femtosecond laser processing technology, the encrypted spectral characteristic information will change according to the material properties and laser process parameters, and the personalized anti-counterfeit codes in the cloud server will be fused
  • the spectral characteristic information makes the spectral anti-counterfeiting code extremely difficult to be copied, so that counterfeiters' counterfeiting and forgery can be effectively eliminated.
  • the anti-counterfeiting feature pattern of the spectral anti-counterfeiting code produced by the invention has high stability, strong anti-environmental interference ability, and is not easy to fade and deform at high temperature, and is a security and highly stable anti-counterfeiting technical scheme.
  • the technical solution of the present invention gets rid of the dependence of the spectral encryption method on the material characteristics in the prior art.
  • different encrypted spectral characteristic information can be designed, so that the spectral anti-counterfeiting encryption has a higher Security.
  • FIG. 1 is a schematic diagram of a spectral anti-counterfeiting identification system in the present invention
  • FIG. 2 is a flow chart of a method for coding a spectral anti-counterfeiting code in the present invention
  • FIG. 3 is a flowchart of a method for decoding a spectral anti-counterfeiting code in the present invention
  • FIG. 4 is a schematic diagram of the principle of binary spectrum decoding in the present invention.
  • the present invention specifically proposes a spectral anti-counterfeiting identification system and a spectral anti-counterfeiting code based on the spectral anti-counterfeiting identification system Coding method, spectral anti-counterfeiting code decoding method.
  • the spectral anti-counterfeiting identification system and method proposed by the present invention are based on the femtosecond laser processing technology in principle.
  • femtosecond laser processing technology As a cutting-edge technology, femtosecond laser processing technology has already demonstrated its many advantages in micro-nano manufacturing and other fields.
  • a special micro-nano structure can be processed on the surface of the anti-counterfeit product. This micro-nano structure can form a specific spectral response to the incident light through diffraction, scattering and reflection effects, so as to add on the surface of the anti-counterfeit product Put on a colorful ID, or colorful pattern mark.
  • the laser structure color generated by the femtosecond laser processing technology has many advantages such as no coating, no pollution, and no fading. Moreover, by changing the femtosecond laser process parameters and design, different surface microscopy can be generated. Nanostructures to achieve different spectral response distributions. Femtosecond laser processing technology has become an important processing method in the field of laser structural color production.
  • the spectral anti-counterfeiting authentication system includes a coding device 11, a decoding device 13, and a cloud server 12.
  • the cloud server 12 is connected to the coding device 11 and the decoding device 13 through a network respectively; the connection includes but is not limited to a wired connection and a wireless connection.
  • the cloud server 12 includes an anti-counterfeit code distribution module 121, an anti-counterfeit code verification module 122, and a storage module 123.
  • the cloud server 12 is used for distribution and verification of anti-counterfeit codes of anti-counterfeit products; wherein, the anti-counterfeit code distribution module 121
  • the security code verification module 122 is used for security code verification
  • the storage module 123 is used for storing security code information
  • the coding device 11 includes a binary anti-counterfeiting coding module 111, a spectral coding module 112, a laser coding module 114, and a laser process parameter database module 113, and the coding device 11 is used for coding of the spectral anti-counterfeiting code in anti-counterfeiting products and Make
  • the decoding device 13 includes a spectrum acquisition module 132, a binary spectrum decoding module 131, the spectrum acquisition module 132 includes an identification light source 1321, a hyperspectral sensor 1322, and the decoding device 13 is used to perform a spectral security code acquisition Decode processing, and send the decoded spectral anti-counterfeiting decoding information to the cloud server 12 for comparison and verification operation to identify the authenticity of the anti-counterfeiting product.
  • the anti-counterfeit code distribution module 121 of the cloud server 12 delivers the anti-counterfeit code to the coding device; the coding device 11 performs binary coding processing on the received anti-counterfeit code in the binary anti-counterfeit coding module 111 to convert the anti-counterfeit code Converted into binary anti-counterfeit coding information, that is, the anti-counterfeit code becomes a long string of binary 0, 1 encoded digital strings; the binary anti-counterfeit coding module 111 of the coding end device 11 sends the binary anti-counterfeit coding information to the spectral encoding module 112 One-dimensional spectral coding is performed in the spectrum, and a corresponding conversion algorithm is used in the spectral coding module 112 to realize the conversion from the binary anti-counterfeiting coding information to the spectral map, thereby obtaining the one-dimensional spectral coding.
  • the coding device includes a laser process parameter database module 113; thus, by changing one or more specific values set with the laser process parameters Different spectral anti-counterfeit code information can be obtained; the laser process parameters include: pulse energy, pulse number, scanning speed, scanning interval and defocusing amount.
  • the laser coding module 114 uses the laser processing parameters in the laser processing parameter database module 113 to generate corresponding spectral security code information on the surface of the security product by laser radiation coding.
  • the metal surfaces or dielectric materials receive different micro-nano structures after being irradiated by laser, so as to process on metal surfaces or dielectric materials Various colors. Different luminous colors and random position distribution constitute unique spectral anti-counterfeiting code information.
  • the spectral anti-counterfeiting code information not only contains the wavelength of the light generated by the excitation, but more importantly, it covers the characteristic information of the color distribution, so this kind of spectrum
  • the anti-counterfeiting code is extremely difficult to be copied, which greatly increases the difficulty of counterfeiting and can effectively prevent the occurrence of counterfeiting and imitation.
  • the decoding device 13 decodes the spectral anti-counterfeiting code information on the anti-counterfeiting product having the spectral anti-counterfeiting code.
  • the spectrum acquisition module 132 of the decoding device 13 includes an identification light source 1321 and a hyperspectral sensor 1322.
  • the identification light source 1321 is used to irradiate the spectral anti-counterfeit code in the anti-counterfeit product; the hyperspectral sensor 1322 is used to photograph the spectral anti-counterfeit code to obtain spectral information and generate a corresponding spectral distribution curve.
  • the identification light source 1321 in the spectrum acquisition module 132 uses a combination of white LED and near-infrared LED.
  • the wavelength range of the identification light source 1321 is 360 nm-1100 nm.
  • a full range of experiments and tests were conducted on the spatial distribution and irradiation angle of the identification light source 1321 in advance.
  • the hyperspectral sensor 1322 of the decoding device 13 is a hyperspectral camera, and the hyperspectral camera is used to photograph the spectral anti-counterfeiting code perpendicular to the spectral anti-counterfeiting code of the anti-counterfeiting product, so as to obtain a stable and accurate spectrum distributed.
  • the spectral acquisition module 132 of the decoding device 13 After acquiring the spectral distribution curve of the spectral security code, the spectral acquisition module 132 of the decoding device 13 transmits the spectral distribution curve to the binary spectral decoding module 131; in the binary spectral decoding module 131, the spectral The distribution curve is decoded into binary anti-counterfeit decoding information, that is, the spectral distribution data is decoded and converted into a long series of binary 0 and 1 digital strings.
  • the decoding device 13 sends the binary anti-counterfeiting decoding information to the anti-counterfeiting code verification module 122 of the cloud server 12; the anti-counterfeiting code verification module 122 sends the binary anti-counterfeiting decoding information to the storage module 123 of the cloud server 12
  • the binary form of the anti-counterfeit code stored in the data is matched, compared, and verified to identify the authenticity of the spectral anti-counterfeit code obtained by the decoding device.
  • the spectral anti-counterfeiting identification system in the present invention can be applied to the anti-counterfeiting of electronic products and industrial devices.
  • a code-making device is used to generate a spectral anti-counterfeiting code on the metal nameplate attached to the electronic products and industrial devices, and the cloud server is used for anti-counterfeiting Authenticity determination; also can realize the personalized rapid customization of the same product type and different anti-counterfeiting codes.
  • the spectral anti-counterfeiting identification system in the present invention can be applied to various texts, labels, trademarks, and patterns that need to be encrypted. It is suitable for the case where an anti-counterfeiting code is directly formed on the surface of anti-counterfeiting products using laser radiation, and is also suitable for generating The case of various micro-nano materials with specific spectral distribution as anti-counterfeiting codes.
  • the unique spectral anti-counterfeiting information can also be obtained by coating the anti-counterfeiting product after the metal powder is prepared by using the coding device of the spectral anti-counterfeiting identification system.
  • a spectral anti-counterfeiting code coding method includes:
  • Step S21 the code making device receives the anti-counterfeiting code issued by the cloud server
  • Step S22 the code-making device performs binary anti-counterfeit coding on the anti-counterfeit code to generate binary anti-counterfeit encoded information
  • Step S23 the coding device performs one-dimensional spectral coding on the generated binary anti-counterfeiting coding information, and uses a conversion algorithm to convert the binary anti-counterfeiting coding into a spectral distribution curve to generate one-dimensional spectral coding information;
  • the one-dimensional spectral coding information is binary Spectral distribution curve corresponding to anti-counterfeit coding information;
  • Step S24 the code-making device uses the generated one-dimensional spectral coding information to query the laser processing parameters corresponding to the one-dimensional spectral coding information in the database through a pre-established laser processing parameter database, and uses the laser processing parameters in anti-counterfeit products
  • the surface of the laser beam generates a specific spectral security code through laser radiation.
  • the laser process parameter database contains the corresponding relationship between the reflection spectrum of the metal surface or the dielectric material and the femtosecond laser process parameter.
  • the laser process parameters include: pulse energy, pulse number, scanning speed, scanning interval, and defocus amount.
  • a spectral anti-counterfeiting code decoding method includes:
  • Step S31 the decoding device irradiates the obtained spectral anti-counterfeit code on the anti-counterfeit product with the identification light source, and at the same time, the decoding device uses a hyperspectral sensor to photograph the spectral anti-counterfeit code to obtain the corresponding spectral distribution curve;
  • the hyperspectral camera photographs the spectral anti-counterfeiting code perpendicular to the spectral anti-counterfeiting code of the anti-counterfeiting product, so as to obtain a stable and accurate spectral distribution;
  • Step S32 the decoding device performs binary decoding on the acquired spectral distribution curve to generate binary anti-counterfeiting decoding information
  • Step S33 the decoding device sends the binary anti-counterfeiting decoding information to the anti-counterfeiting code verification module of the cloud server; the anti-counterfeiting code verifying module sends the binary anti-counterfeiting decoding information to the anti-counterfeiting stored in the cloud server storage module The binary form of the code is compared and verified to identify the authenticity of the spectral security code obtained by the decoding device.
  • a combined light source of white light LED and near-infrared LED is used as the identification light source of the spectral anti-counterfeiting code information, and the wavelength range of the identification light source is between 360 nm and 1100 nm.
  • a step 30 may be further included to conduct a full range of experiments and tests on the spatial distribution and illumination angle of the light source, respectively, to meet the requirements for identifying the spatial brightness and uniformity of the light source;
  • the decoding device performs binary decoding on the acquired spectral distribution curve, and the step of generating binary anti-counterfeit decoding information specifically includes:
  • the first step is to perform smooth filtering on the acquired spectral distribution curve to remove the interference of the noise signal
  • the second step is to normalize the reflectance value of the vertical coordinate of the spectral distribution curve to eliminate the overall upward or downward shift of the spectral curve caused by the change of the light intensity of the identification light source;
  • the third step is to divide the wavelength distribution range of the spectral distribution curve into multiple division units with a fixed interval according to the spectral distribution curve generated by the hyperspectral camera shooting the spectral security code; wherein, one division unit can be divided every 50 nm or 100 nm , That is, the fixed interval may be 50 nm or 100 nm;
  • a fixed threshold T is selected, and the spectral distribution curve of each band in each segment is binarized; when the reflectivity of this band is greater than T, the value of this band is 1, and vice versa, 0; where,
  • the fixed threshold T may be the reflectance after the intensity normalization is 0.35, and the fixed threshold T may be adjusted;
  • the corresponding reflectances in the four division units of 450nm-500nm, 550nm-600nm, 600nm-650nm, 800nm-850nm are all greater than the threshold T, and the value after the binarization process is 1, while the reflectance in other wavelength regions is less than T, the value after binarization is 0.
  • a binary digital string reflecting the spectral distribution curve can be generated, and the binary digital string is binary anti-counterfeiting decoding information.
  • the spectral distribution curve in the figure is decoded by binary decoding: 000010110001000000.
  • step S32 after the decoding device obtains the spectral distribution curve, the Fourier spectrum analysis is performed on the spectral distribution curve, and the frequency distribution information obtained by the spectral analysis is digitized, and the generated frequency distribution information is used as Spectral anti-counterfeit decoding information;
  • step S32 after acquiring the spectral distribution curve, the decoding device digitizes the distribution of peaks and troughs in the spectral distribution curve, and uses the generated peak-trough information as spectral anti-counterfeiting decoding information;
  • step S32 after obtaining the spectral distribution curve, the decoding device performs 0-9 quantization on the spectral distribution curve, and uses the generated spectral distribution curve quantization information as spectral anti-counterfeiting decoding information;
  • the decoding device uses incident light of the light source at multiple different incident angles to project onto the spectral anti-counterfeiting code, thereby acquiring multiple different spectral distribution curves of the spectral anti-counterfeiting code, and synthesizing the different spectral distribution curves into Two-dimensional code, the generated two-dimensional code is used as spectral anti-counterfeiting decoding information;
  • step S33 the decoding device sends the any one or more spectral anti-counterfeiting decoding information to the anti-counterfeiting code verification module of the cloud server; the anti-counterfeiting code verification module sends the any one or more spectral anti-counterfeiting information
  • the decoded information is matched, compared, and verified with various forms of the anti-counterfeit code information stored in the cloud server storage module to identify the authenticity of the spectral anti-counterfeit code obtained by the decoding device.
  • the femtosecond laser processing technology uses specific laser process parameters to generate a spectral security code through laser radiation, and uses the color and intensity distribution characteristic information of the reflection spectrum of the spectral security code to encode and decode the spectral security code information. Since the laser is used to irradiate the metal surface to obtain a micro-nano structure, for different materials of metal, different types of laser light sources, and different laser process parameters, the spectrum containing anti-counterfeiting information will be changed, so that a unique anti-counterfeiting model can be established. Only after holding the original anti-counterfeit code medium and shooting through the hyperspectral sensor, can the spectrum decoding process be performed and the authenticity of the cloud server can be verified.
  • the spectral anti-counterfeiting feature pattern produced by the invention has high stability, strong anti-environmental interference capability, and is not easy to fade and deform at high temperature, and is a spectral anti-counterfeiting method with extremely high stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Health & Medical Sciences (AREA)
  • Finance (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Strategic Management (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Laser Beam Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种光谱防伪鉴别系统,以及基于光谱防伪鉴别系统的光谱防伪码制码、解码方法,系统包括:制码装置(11)、解码装置(13)以及云端服务器(12)。云端服务器(12)用于防伪产品的防伪码的分发和验证;制码装置(11)用于接收云端服务器(12)下发的防伪码,并将防伪码编码和制作成防伪产品中的光谱防伪码;解码装置(13)用于对其获得的光谱防伪码进行解码处理,并将解码得到的光谱防伪码信息发送至云端服务器(12)中进行对比验证,以鉴别光谱防伪码的真伪。该光谱防伪码的防伪特征图样稳定性高、抗环境干扰能力强、高温下不易褪色变形,极难被复制,可以有效地杜绝仿制、伪造,提升了光谱防伪码的安全性。

Description

光谱防伪鉴别系统及光谱防伪码制码、解码方法 技术领域
本发明涉及防伪技术领域,特别涉及一种光谱防伪鉴别系统,以及基于该光谱防伪鉴别系统的光谱防伪码制码方法、光谱防伪码解码方法。
背景技术
现有技术中,利用一种或多种技术手段来识别票据、货币、证件、商品等需要防伪的客体上人为记载的信息以判断该客体真伪的防伪技术已获得广泛应用。防伪技术实际上是一种信息识别技术。如今已应运而生了各种各样的防伪技术,包括激光全息防伪技术、重离子防伪技术、电话电码防伪技术、数码防伪技术,云端查信息平台防伪技术、光谱防伪技术等。
其中,光谱防伪技术是目前应用较为广泛的一种防伪技术。在现有技术中,光谱防伪技术是将具有一定光谱特征的防伪材料加入到纸张、油墨、印油等防伪产品中,通过印刷的方式将上述防伪油墨等防伪产品印在票证、产品商标或包装上,在不同的外界条件(主要是采用光、热、光谱检测等形式)下观察该印刷品的色彩变化,从而实现相应的防伪功能。光谱防伪技术所采用的鉴别光源包括红外光、紫外光、白光、红外激光等,进一步地,在现有技术中,还可以通过高倍光学成像镜头、电荷耦合器件(Charge-coupled Device,CCD)相机拍摄光谱防伪产品上的防伪票样而得到的光谱图像与数据库中相同状态下原版票样的真实光谱图像进行比对,从而对该光谱防伪产品的票证进行真伪鉴别。
由此可见,在现有技术中,光谱防伪技术的防伪过程本质上是对上转换材料进行加密,而一旦造假者能够识别出光谱防伪产品所用上转换材料的种类与浓度参数,便极易对这种光谱防伪产品进行仿制和伪造,由此可见,现有的光谱防伪方式安全程度不高。
发明内容
基于此,为解决现有技术中光谱防伪技术安全性较低的技术问题,特提出了一种光谱防伪鉴别系统。所述光谱防伪鉴别系统包括:
制码装置、解码装置以及云端服务器。所述云端服务器分别与所述制码装置、所述解码装置通过网络进行连接;
其中,所述云端服务器包括防伪码分发模块、防伪码验证模块、存储模块;所述云端服务器用于防伪产品的防伪码的分发和验证;其中,所述防伪码分发模块用于将防伪码分发至制码装置,所述防伪码验证模块用于接收到的解码装置上传的光谱防伪码信息的对比验证,所述存储模块用于存储防伪码;
其中,所述制码装置用于接收云端服务器下发的防伪码,并将所述防伪码编码和制作成防伪产品中的光谱防伪码;
其中,所述解码装置用于对其获得光谱防伪码进行解码处理,并将解码得到的光谱防伪码信息发送至所述云端服务器中进行对比验证操作,以鉴别该光谱防伪码的真伪。
在一个实施例中,所述制码装置包括二进制防伪编码模块、光谱编码模块、激光制码模块、激光工艺参数数据库模块;
其中,所述二进制防伪编码模块将接收到的防伪码进行二进制编码处理,生成二进制防伪编码信息;
其中,所述光谱编码模块对生成的二进制防伪编码信息进行一维光谱编码,采用转换算法实现由二进制防伪编码信息到光谱图的转换,得到一维光谱编码信息;所述一维光谱编码信息为二进制防伪编码信息对应的光谱分布曲线;
其中,所述激光制码模块利用光谱编码模块生成的一维光谱编码信息,通过所述激光工艺参数数据库模块查询所述一维光谱编码信息在该数据库中对应的激光工艺参数,利用所述激光工艺参数在防伪产品的表面通过激光辐射制码生成对应的光谱防伪码。
在一个实施例中,所述激光工艺参数数据库模块中的激光工艺参数包括脉冲能量、脉冲个数、扫描速度、扫描间隔和离焦量。
在一个实施例中,所述解码装置包括光谱获取模块、二进制光谱解码模块,所述光谱获取模块包括鉴别光源、高光谱传感器;
其中,所述鉴别光源用于对防伪产品中的光谱防伪码进行照射;
其中,所述高光谱传感器用于拍摄所述光谱防伪码以获取光谱信息,并生成相应的光谱分布曲线;所述二进制光谱解码模块将所述光谱分布曲线解码为二进制防伪解码信息。
在一个实施例中,光谱获取模块中的鉴别光源采用白光LED和近红外LED的组合光源,所述鉴别光源的波长范围为360nm-1100nm。
此外,基于该光谱防伪鉴别系统,提出了一种光谱防伪码制码方法。所述光谱防伪码制码方法包括:
步骤S21,制码装置接收云端服务器下发的防伪码;
步骤S22,制码装置将所述防伪码进行二进制防伪编码,生成二进制防伪编码信息;
步骤S23,制码装置将生成的二进制防伪编码信息进行一维光谱编码,采用转换算法实现由二进制防伪编码向光谱分布曲线的转换,生成一维光谱编码信息;所述一维光谱编码信息为二进制防伪编码信息对应的光谱分布曲线;
步骤S24,制码装置利用生成的一维光谱编码信息,通过预先建立的激光工艺参数数据库查询所述一维光谱编码信息在该数据库中对应的激光工艺参数,利用所述激光工艺参数在防伪产品的表面通过激光辐射生成特定的光谱防伪码。
在一个实施例中,所述激光工艺参数数据库中包含金属表面或者电介质材料反射光谱与激光工艺参数的对应关系;所述激光工艺参数包括脉冲能量、脉冲个数、扫描速度、扫描间隔和离焦量。
此外,基于该光谱防伪鉴别系统,提出了一种光谱防伪码解码方法。所述光谱防伪码解码方法包括:
步骤S31,解码装置利用鉴别光源对获取的防伪产品上的光谱防伪码进行照射,同时解码装置利用高光谱传感器拍摄所述光谱防伪码,获取相应的光谱分布曲线;
所述高光谱相机垂直于防伪产品的光谱防伪码上方对所述光谱防伪码进行拍摄,以便能够获取稳定而准确的光谱分布;
步骤S32,解码装置对获取的光谱分布曲线进行二进制解码,生成二进制防伪解码信息;
步骤S33,所述解码装置将所述二进制防伪解码信息发送至所述云端服务器的防伪码验证模块;所述防伪码验证模块将所述二进制防伪解码信息与所述云端服务器存储模块中存储的防伪码的二进制形式进行对比、验证,以鉴别该防伪码信息的真伪。
在一个实施例中,所述解码装置对获取的光谱分布曲线进行二进制解码,生成二进制防伪解码信息的步骤具体包括:
第一步,对获取的光谱分布曲线进行平滑滤波处理;
第二步,对光谱分布曲线纵坐标的反射率数值进行归一化操作;
第三步,将所述光谱分布曲线的波长分布范围分成具有固定间隔的多个分割单元;
第四步,选择一个固定阈值T,对每个分割单元内的波段光谱分布曲线进行二值化处理;当该波段的反射率>T,则该波段二值化处理后的取值为1,反之取0;二值化解码处理后生成的反映该光谱分布曲线的二进制数字串为二进制防伪解码信息;
其中,所述固定阈值T可以调节。
在一个实施例中,步骤S32中,解码装置获取光谱分布曲线后,对光谱分布曲线进行傅里叶频谱分析,并对频谱分析所得到的频率分布信息进行数字化处理,将生成的频率分布信息作为光谱防伪解码信息;
或者,步骤S32中,解码装置获取光谱分布曲线后,对光谱分布曲线中波峰、波谷的分布进行数字化处理,将生成的波峰-波谷信息作为光谱防伪解码信息;
或者,步骤S32中,解码装置获取光谱分布曲线后,对光谱分布曲线进行0-9量化处理,将生成的光谱分布曲线量化信息作为光谱防伪解码信息;
或者,步骤S32中,解码装置利用光源在多个不同入射角度下的入射光投射至光谱防伪码,从而获取所述光谱防伪码的多个不同光谱分布曲线,将所述不同光谱分布曲线合成为二维码,将生成的二维码作为光谱防伪解码信息;
步骤S33中,所述解码装置将所述任意一种或者多种光谱防伪解码信息发送至所述云端服务器的防伪码验证模块;所述防伪码验证模块将所述任意一种或者多种光谱防伪解码信息与所述云端服务器存储模块中存储的防伪码信息的各种形式进行匹配、对比、验证,以鉴别解码装置获得的光谱防伪码的真伪。
实施本发明实施例,将具有如下有益效果:
利用飞秒激光加工技术辐射金属表面或者电介质材料而制成的光谱防伪码,其加密的光谱特征信息会根据材料属性、激光工艺参数的不同而发生改变,将云端服务器中的个性化防伪码融合到光谱特征信息中,使得该光谱防伪码极 难被复制,从而可以有效地杜绝造假者的仿制、伪造行为。本发明制作出的光谱防伪码的防伪特征图样稳定性高、抗环境干扰能力强、高温下不易褪色变形,是一种安全性、稳定性极高的防伪技术方案。
本发明的技术方案摆脱了现有技术中光谱加密方法对材料特性的依赖,通过设计不同的微纳结构产生不同的光谱分布,可以设计出不同的加密光谱特征信息,使得光谱防伪加密具有更高的安全性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为本发明中的光谱防伪鉴别系统示意图;
图2为本发明中一种光谱防伪码制码方法的流程图;
图3为本发明中一种光谱防伪码解码方法的流程图;
图4为本发明中的二进制光谱解码原理示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为解决现有技术中光谱防伪技术安全性较低、光谱防伪产品极易被仿制、伪造的技术问题,本发明特提出了一种光谱防伪鉴别系统,以及基于该光谱防伪鉴别系统的光谱防伪码制码方法、光谱防伪码解码方法。
本发明提出的光谱防伪鉴别系统及方法在原理上基于飞秒激光加工技术。飞秒激光加工技术作为一种前沿技术已经在微纳米制造等领域展现出其诸多优势。利用飞秒激光加工技术可以在防伪产品的材料表面加工出特殊的微纳结构,该种微纳结构能够通过衍射、散射和反射效应对入射光形成特定的光谱响应, 从而在防伪产品的表面添加上彩色身份标识、或色彩斑斓的图案标记。
与传统的油墨印刷方式相比,利用飞秒激光加工技术生成的激光结构色具有无需涂覆、无污染、不褪色等诸多优点,而且通过改变飞秒激光工艺参数和设计可以生成不同的表面微纳结构,从而实现不同的光谱响应分布。飞秒激光加工技术已经成为激光结构色生产领域的一种重要加工手段。
具体的,本发明提出的光谱防伪鉴别系统的实现可参考如图1所示。所述光谱防伪鉴别系统包括制码装置11、解码装置13以及云端服务器12。所述云端服务器12分别与所述制码装置11、所述解码装置13通过网络进行连接;所述连接包括但不仅限于有线连接、无线连接。
其中,所述云端服务器12包括防伪码分发模块121、防伪码验证模块122、存储模块123,所述云端服务器12用于防伪产品的防伪码的分发和验证;其中,所述防伪码分发模块121用于防伪码的分发,所述防伪码验证模块122用于防伪码的验证,所述存储模块123用于存储防伪码信息;
其中,所述制码装置11包括二进制防伪编码模块111、光谱编码模块112、激光制码模块114、激光工艺参数数据库模块113,所述制码装置11用于防伪产品中光谱防伪码的编码和制作;
其中,所述解码装置13包括光谱获取模块132、二进制光谱解码模块131,所述光谱获取模块132包括鉴别光源1321、高光谱传感器1322,所述解码装置13用于对其获得的光谱防伪码进行解码处理,并将解码得到的光谱防伪解码信息发送至所述云端服务器12中进行对比验证操作,以鉴别防伪产品的真伪。
具体的,由云端服务器12的防伪码分发模块121向制码装置下发防伪码;所述制码装置11将其接收到的防伪码在二进制防伪编码模块111中进行二进制编码处理,将防伪码转换为二进制防伪编码信息,即将防伪码变成一长串的二进制0、1编码的数字串;所述制码端装置11的二进制防伪编码模块111将该二进制防伪编码信息发送至光谱编码模块112中进行一维光谱编码,在光谱编码模块112中采用相应的转换算法实现由二进制防伪编码信息到光谱图的转换,从而得到一维光谱编码。
预先建立金属表面或者电介质材料反射光谱数据与激光工艺参数相互对应的数据库,即所述制码装置包括激光工艺参数数据库模块113;由此,通过改变 一个或者多个与激光工艺参数的具体数值设置可以获得不同的光谱防伪码信息;所述激光工艺参数包括:脉冲能量、脉冲个数、扫描速度、扫描间隔和离焦量。
所述激光制码模块114利用所述激光工艺参数数据库模块113中的激光工艺参数在防伪产品的表面通过激光辐射制码生成对应的光谱防伪码信息。采用飞秒激光加工技术在金属表面或者电介质材料上根据不同的激光工艺参数制成光谱防伪码,金属表面或者电介质材料受激光辐射后得到不同的微纳结构,从而在金属表面或者电介质材料上加工出各种颜色。不同的发光颜色与随机的位置分布组成了独特的光谱防伪码信息,该光谱防伪码信息不仅包含了激发产生的光的波长,更重要的是其涵盖了颜色分布的特征信息,因此该种光谱防伪码极难被复制,极大地提高了造假者的造假难度,可以有效地杜绝伪造、仿制的发生。
具体的,解码装置13对具有光谱防伪码的防伪产品上的光谱防伪码信息进行解码。所述解码装置13的光谱获取模块132包括鉴别光源1321、高光谱传感器1322。所述鉴别光源1321用于对防伪产品中的光谱防伪码进行照射;所述高光谱传感器1322用于拍摄所述光谱防伪码以获取光谱信息,并生成相应的光谱分布曲线。
在一个实施例中,光谱获取模块132中的鉴别光源1321采用白光LED和近红外LED的组合光源,所述鉴别光源1321的波长范围为360nm-1100nm。为了达到鉴别光源的空间亮度以及均匀度的要求,事先分别对鉴别光源1321的空间分布和照射角度进行全方位的实验及测试。
在一个实施例中,所述解码装置13的高光谱传感器1322为高光谱相机,采用高光谱相机垂直于防伪产品的光谱防伪码上方对该光谱防伪码进行拍摄,以便能够获取稳定而准确的光谱分布。
所述解码装置13的光谱获取模块132在获取了光谱防伪码的光谱分布曲线之后,将所述光谱分布曲线传输至所述二进制光谱解码模块131;在二进制光谱解码模块131中,将所述光谱分布曲线解码为二进制防伪解码信息,即将光谱分布数据解码转换为一长串的二进制0、1数字串。所述解码装置13将所述二 进制防伪解码信息发送至所述云端服务器12的防伪码验证模块122;所述防伪码验证模块122将所述二进制防伪解码信息与所述云端服务器12的存储模块123中存储的防伪码的二进制形式进行匹配、对比、验证,以鉴别解码装置获取的光谱防伪码的真伪。
本发明中的光谱防伪鉴别系统可以应用于电子产品、工业器件的防伪,在附着于电子产品、工业器件的金属铭牌上利用制码装置生成光谱防伪码,并利用所述云端服务器进行防伪码的真伪判别;也可以实现同一产品类型、不同防伪码的个性化快速定制。
本发明中的光谱防伪鉴别系统可以应用于各种需要加密的文字、标签、商标和图案中,适用于利用激光辐射直接在防伪产品表面制成防伪码的情况,也适用于将利用激光辐射生成的带有特定光谱分布的各种微纳材料作为防伪码的情况。
由于通过激光辐射得到的金属粉末也带有特定的防伪信息的光谱分布曲线,利用光谱防伪鉴别系统的制码装置制备金属粉末后对防伪产品进行表面涂抹,也可以得到唯一的光谱防伪信息。
具体的,如图2所示,一种光谱防伪码制码方法,包括:
步骤S21,制码装置接收云端服务器下发的防伪码;
步骤S22,制码装置将所述防伪码进行二进制防伪编码,生成二进制防伪编码信息;
步骤S23,制码装置将生成的二进制防伪编码信息进行一维光谱编码,采用转换算法实现由二进制防伪编码向光谱分布曲线的转换,生成一维光谱编码信息;所述一维光谱编码信息为二进制防伪编码信息对应的光谱分布曲线;
步骤S24,制码装置利用生成的一维光谱编码信息,通过预先建立的激光工艺参数数据库查询所述一维光谱编码信息在该数据库中对应的激光工艺参数,利用所述激光工艺参数在防伪产品的表面通过激光辐射生成特定的光谱防伪码。
其中,所述激光工艺参数数据库中包含金属表面或者电介质材料反射光谱与飞秒激光工艺参数的对应关系。
在一个实施例中,所述激光工艺参数包括:脉冲能量、脉冲个数、扫描速度、 扫描间隔和离焦量。
具体的,如图3所示,一种光谱防伪码解码方法,包括:
步骤S31,解码装置利用鉴别光源对获取的防伪产品上的光谱防伪码进行照射,同时解码装置利用高光谱传感器拍摄所述光谱防伪码,获取相应的光谱分布曲线;
所述高光谱相机垂直于防伪产品的光谱防伪码上方对所述光谱防伪码进行拍摄,以便能够获取稳定而准确的光谱分布;
步骤S32,解码装置对获取的光谱分布曲线进行二进制解码,生成二进制防伪解码信息;
步骤S33,所述解码装置将所述二进制防伪解码信息发送至所述云端服务器的防伪码验证模块;所述防伪码验证模块将所述二进制防伪解码信息与所述云端服务器存储模块中存储的防伪码的二进制形式进行对比、验证,以鉴别解码装置获取的光谱防伪码的真伪。
在一个实施例中,在光谱防伪码解码过程中,采用白光LED和近红外LED的组合光源作为光谱防伪码信息的鉴别光源,鉴别光源的波长范围在360nm-1100nm之间。
在一个实施例中,在步骤31之前还可以包括步骤30,分别对光源的空间分布和照射角度进行全方位的实验及测试,以达到鉴别光源的空间亮度以及均匀度的要求;
在一个实施例中,所述解码装置对获取的光谱分布曲线进行二进制解码,生成二进制防伪解码信息的步骤具体包括:
第一步,对获取的光谱分布曲线进行平滑滤波处理,去除其中噪声信号的干扰;
第二步,对光谱分布曲线纵坐标的反射率数值进行归一化操作,消除由于鉴别光源的光强改变而引起的光谱曲线整体上移或者下移;
第三步,根据高光谱相机拍摄光谱防伪码生成的光谱分布曲线,将所述光谱分布曲线的波长分布范围分成具有固定间隔的多个分割单元;其中,可以每隔50nm或者100nm划分一个分割单元,即所述固定间隔可以是50nm或者100nm;
第四步,选择一个固定阈值T,对每个分割单元内的波段光谱分布曲线进行 二值化处理;该波段的反射率>T,则该波段取值为1,反之取0;其中,所述固定阈值T可以是强度归一化后的反射率0.35,所述固定阈值T可以调节;
示例性的,如图4中所示,450nm-500nm、550nm-600nm、600nm-650nm、800nm-850nm这4个分割单元内对应的反射率都大于阈值T,二值化处理后的取值为1,而其它波长区域的反射率都小于T,二值化处理后的取值为0。根据上述的二值化解码处理后,可以生成一个反映该光谱分布曲线的二进制数字串,该二进制数字串即为二进制防伪解码信息。示例性的,如图4所示,图中的光谱分布曲线二值化解码得到:000010110001000000。将解码得到的二进制防伪解码信息和云端服务器中存储的原始防伪码的二进制形式进行对比、验证,即可以确定该光谱防伪码的真伪。
在一个实施例中,步骤S32中,解码装置获取光谱分布曲线后,对光谱分布曲线进行傅里叶频谱分析,并对频谱分析所得到的频率分布信息进行数字化处理,将生成的频率分布信息作为光谱防伪解码信息;
或者,步骤S32中,解码装置获取光谱分布曲线后,对光谱分布曲线中波峰、波谷的分布进行数字化处理,将生成的波峰-波谷信息作为光谱防伪解码信息;
或者,步骤S32中,解码装置获取光谱分布曲线后,对光谱分布曲线进行0-9量化处理,将生成的光谱分布曲线量化信息作为光谱防伪解码信息;
或者,步骤S32中,解码装置利用光源在多个不同入射角度下的入射光投射至光谱防伪码,从而获取所述光谱防伪码的多个不同光谱分布曲线,将所述不同光谱分布曲线合成为二维码,将生成的二维码作为光谱防伪解码信息;
步骤S33中,所述解码装置将所述任意一种或者多种光谱防伪解码信息发送至所述云端服务器的防伪码验证模块;所述防伪码验证模块将所述任意一种或者多种光谱防伪解码信息与所述云端服务器存储模块中存储的防伪码信息的各种形式进行匹配、对比、验证,以鉴别解码装置获得的光谱防伪码的真伪。
实施本发明实施例,将具有如下有益效果:
飞秒激光加工技术利用特定的激光工艺参数通过激光辐射生成光谱防伪码,利用所述光谱防伪码的反射光谱的颜色与强度的分布特征信息进行光谱防伪码信息的编解码。由于采用激光对金属表面进行辐射得到微纳结构,对于不同材质的金属、不同类型的激光光源、不同激光工艺参数都会造成包含防伪信 息的光谱发生改变,如此便可以建立唯一的防伪模型。只有持有原始防伪码介质并通过高光谱传感器拍摄后,才能进行光谱解码处理,并且通过云端服务器的真伪鉴定。使用云端服务器可以为批量化定制光谱防伪码提供了高效的途径。该发明制作出的光谱防伪特征图样稳定性高、抗环境干扰能力强、高温下不易褪色变形,是一种稳定性极高的光谱防伪方法。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不会使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种光谱防伪鉴别系统,其特征在于,包括:
    制码装置、解码装置以及云端服务器;所述云端服务器分别与所述制码装置、所述解码装置通过网络进行连接;
    其中,所述云端服务器包括防伪码分发模块、防伪码验证模块、存储模块;所述云端服务器用于防伪产品的防伪码的分发和验证;其中,所述防伪码分发模块用于将防伪码分发至制码装置,所述防伪码验证模块用于接收到的解码装置上传的光谱防伪解码信息的对比验证,所述存储模块用于存储防伪码信息;
    其中,所述制码装置用于接收云端服务器下发的防伪码,并将所述防伪码编码和制作成防伪产品中的光谱防伪码;
    其中,所述解码装置用于对其获得光谱防伪码进行解码处理,并将解码得到的光谱防伪解码信息发送至所述云端服务器中进行对比验证操作,以鉴别解码装置获得的光谱防伪码的真伪。
  2. 根据权利要求1所述的系统,其特征在于,
    所述制码装置包括二进制防伪编码模块、光谱编码模块、激光制码模块、激光工艺参数数据库模块;
    其中,所述二进制防伪编码模块将接收到的防伪码进行二进制编码处理,生成二进制防伪编码信息;
    其中,所述光谱编码模块对生成的二进制防伪编码信息进行一维光谱编码,采用转换算法实现由二进制防伪编码信息到光谱图的转换,得到一维光谱编码信息;所述一维光谱编码信息为二进制防伪编码信息对应的光谱分布曲线;
    其中,所述激光制码模块利用光谱编码模块生成的一维光谱编码信息,通过所述激光工艺参数数据库模块查询所述一维光谱编码信息在该数据库中对应的激光工艺参数,利用所述激光工艺参数在防伪产品的表面通过激光辐射制码生成对应的光谱防伪码。
  3. 根据权利要求2所述的系统,其特征在于,
    所述激光工艺参数数据库模块中的激光工艺参数包括脉冲能量、脉冲个数、扫描速度、扫描间隔和离焦量。
  4. 根据权利要求1所述的系统,其特征在于,
    所述解码装置包括光谱获取模块、二进制光谱解码模块,所述光谱获取模块包括鉴别光源、高光谱传感器;
    其中,所述鉴别光源用于对防伪产品中的光谱防伪码进行照射;
    其中,所述高光谱传感器用于拍摄所述光谱防伪码以获取光谱信息,并生成相应的光谱分布曲线;所述二进制光谱解码模块将所述光谱分布曲线解码为二进制防伪解码信息。
  5. 根据权利要求4所述的系统,其特征在于,
    光谱获取模块中的鉴别光源采用白光LED和近红外LED的组合光源,所述鉴别光源的波长范围为360nm-1100nm。
  6. 一种光谱防伪码制码方法,其特征在于,包括:
    步骤S21,制码装置接收云端服务器下发的防伪码;
    步骤S22,制码装置将所述防伪码进行二进制防伪编码,生成二进制防伪编码信息;
    步骤S23,制码装置将生成的二进制防伪编码信息进行一维光谱编码,采用转换算法实现由二进制防伪编码向光谱分布曲线的转换,生成一维光谱编码信息;所述一维光谱编码信息为二进制防伪编码信息对应的光谱分布曲线;
    步骤S24,制码装置利用生成的一维光谱编码信息,通过预先建立的激光工艺参数数据库查询所述一维光谱编码信息在该数据库中对应的激光工艺参数,利用所述激光工艺参数在防伪产品的表面通过激光辐射生成特定的光谱防伪码。
  7. 根据权利要求6所述的方法,其特征在于,
    所述激光工艺参数数据库中包含金属表面或者电介质材料反射光谱与激光工艺参数的对应关系;所述激光工艺参数包括脉冲能量、脉冲个数、扫描速度、扫描间隔和离焦量。
  8. 一种光谱防伪码解码方法,其特征在于,包括:
    步骤S31,解码装置利用鉴别光源对获取的防伪产品上的光谱防伪码进行照射,同时解码装置利用高光谱传感器拍摄所述光谱防伪码,获取相应的光谱分布曲线;
    步骤S32,解码装置对获取的光谱分布曲线进行二进制解码,生成二进制防 伪解码信息;
    步骤S33,所述解码装置将所述二进制防伪解码信息发送至所述云端服务器的防伪码验证模块;所述防伪码验证模块将所述二进制防伪解码信息与所述云端服务器存储模块中存储的防伪码信息的二进制形式进行匹配、对比、验证,以鉴别该防伪码信息的真伪。
  9. 根据权利要求8所述的方法,其特征在于,
    所述解码装置对获取的光谱分布曲线进行二进制解码,生成二进制防伪解码信息的步骤具体包括:
    第一步,对获取的光谱分布曲线进行平滑滤波处理;
    第二步,对光谱分布曲线纵坐标的反射率数值进行归一化操作;
    第三步,将所述光谱分布曲线的波长分布范围分成具有固定间隔的多个分割单元;
    第四步,选择一个固定阈值T,对每个分割单元内的波段光谱分布曲线进行二值化处理;当该波段的反射率>T,则该波段二值化处理后的取值为1,反之取0;二值化解码处理后生成的反映该光谱分布曲线的二进制数字串为二进制防伪解码信息;
    其中,所述固定阈值T可以调节。
  10. 根据权利要求8所述的方法,其特征在于,
    步骤S32中,解码装置获取光谱分布曲线后,对光谱分布曲线进行傅里叶频谱分析,并对频谱分析所得到的频率分布信息进行数字化处理,将生成的频率分布信息作为光谱防伪解码信息;
    或者,步骤S32中,解码装置获取光谱分布曲线后,对光谱分布曲线中波峰、波谷的分布进行数字化处理,将生成的波峰-波谷信息作为光谱防伪解码信息;
    或者,步骤S32中,解码装置获取光谱分布曲线后,对光谱分布曲线进行0-9量化处理,将生成的光谱分布曲线量化信息作为光谱防伪解码信息;
    或者,步骤S32中,解码装置利用光源在多个不同入射角度下的入射光投射至光谱防伪码,从而获取所述光谱防伪码的多个不同光谱分布曲线,将所述不同光谱分布曲线合成为二维码,将生成的二维码作为光谱防伪解码信息;
    步骤S33中,所述解码装置将所述任意一种或者多种光谱防伪解码信息发 送至所述云端服务器的防伪码验证模块;所述防伪码验证模块将所述任意一种或者多种光谱防伪解码信息与所述云端服务器存储模块中存储的防伪码信息的各种形式进行匹配、对比、验证,以鉴别解码装置获得的光谱防伪码的真伪。
PCT/CN2018/112235 2018-10-26 2018-10-26 光谱防伪鉴别系统及光谱防伪码制码、解码方法 WO2020082384A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880068668.6A CN111357027A (zh) 2018-10-26 2018-10-26 光谱防伪鉴别系统及光谱防伪码制码、解码方法
PCT/CN2018/112235 WO2020082384A1 (zh) 2018-10-26 2018-10-26 光谱防伪鉴别系统及光谱防伪码制码、解码方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112235 WO2020082384A1 (zh) 2018-10-26 2018-10-26 光谱防伪鉴别系统及光谱防伪码制码、解码方法

Publications (1)

Publication Number Publication Date
WO2020082384A1 true WO2020082384A1 (zh) 2020-04-30

Family

ID=70331283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112235 WO2020082384A1 (zh) 2018-10-26 2018-10-26 光谱防伪鉴别系统及光谱防伪码制码、解码方法

Country Status (2)

Country Link
CN (1) CN111357027A (zh)
WO (1) WO2020082384A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113469708A (zh) * 2021-06-30 2021-10-01 平安科技(深圳)有限公司 产品防伪处理方法、装置、计算机设备及存储介质
CN113935744A (zh) * 2020-06-29 2022-01-14 华为技术有限公司 一种设备防伪方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110147456A1 (en) * 2009-12-19 2011-06-23 Skai Technologies, Llc. Labeling and authenticating using a microtag
CN102222235A (zh) * 2010-04-14 2011-10-19 同济大学 基于对象集成高度信息的面向对象的高光谱分类处理方法
CN102855577A (zh) * 2012-08-30 2013-01-02 周利平 基于云计算的多重商品防伪验证方法
CN103310255A (zh) * 2013-05-31 2013-09-18 曾芝渝 一种彩色字符的编码方法及其解码方法
CN105260892A (zh) * 2015-09-10 2016-01-20 上海乔马电子科技有限公司 一种防伪验证、销售信息获取的方法和系统
CN105809456A (zh) * 2016-03-09 2016-07-27 深圳正品创想科技有限公司 一种防伪数据关联平台和鉴伪方法
CN106022200A (zh) * 2016-05-06 2016-10-12 江苏南大五维电子科技有限公司 一种光谱二维码的编码和解码方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927668B (zh) * 2014-04-14 2017-10-24 立德高科(北京)数码科技有限责任公司 基于拍摄图片与预存图片对比结果以辨别产品真伪的方法
CN107194706B (zh) * 2017-05-27 2020-12-04 苏州环秀自动化设备有限公司 基于多光谱波长的防伪追溯方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110147456A1 (en) * 2009-12-19 2011-06-23 Skai Technologies, Llc. Labeling and authenticating using a microtag
CN102222235A (zh) * 2010-04-14 2011-10-19 同济大学 基于对象集成高度信息的面向对象的高光谱分类处理方法
CN102855577A (zh) * 2012-08-30 2013-01-02 周利平 基于云计算的多重商品防伪验证方法
CN103310255A (zh) * 2013-05-31 2013-09-18 曾芝渝 一种彩色字符的编码方法及其解码方法
CN105260892A (zh) * 2015-09-10 2016-01-20 上海乔马电子科技有限公司 一种防伪验证、销售信息获取的方法和系统
CN105809456A (zh) * 2016-03-09 2016-07-27 深圳正品创想科技有限公司 一种防伪数据关联平台和鉴伪方法
CN106022200A (zh) * 2016-05-06 2016-10-12 江苏南大五维电子科技有限公司 一种光谱二维码的编码和解码方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113935744A (zh) * 2020-06-29 2022-01-14 华为技术有限公司 一种设备防伪方法及装置
CN113469708A (zh) * 2021-06-30 2021-10-01 平安科技(深圳)有限公司 产品防伪处理方法、装置、计算机设备及存储介质
CN113469708B (zh) * 2021-06-30 2023-05-02 平安科技(深圳)有限公司 产品防伪处理方法、装置、计算机设备及存储介质

Also Published As

Publication number Publication date
CN111357027A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
JP5341092B2 (ja) 制御された周期的ナノ構造体によって表面をマーキングする方法およびデバイス
US10019626B2 (en) Method for authenticating a security element, and optically variable security element
US10102462B2 (en) Optically variable data storage device
US7184569B2 (en) Marking articles using a covert digitally watermarked image
US10943421B2 (en) Identification device, identification method, identification program, and computer-readable medium including identification program
US11126902B2 (en) Optically variable data storage device
WO2011035738A1 (zh) 一种随机纹理的防伪方法及其识别器
JP2003534753A (ja) オリジナルのドキュメントを作成する及び認証するシステムと方法
CN112313716B (zh) 用于在图像中制作人眼不可见的且不可复制的安全元件的方法以及印刷的图像
HUE026760T2 (en) Secure element identification and authentication system and non-cloning properties
WO2020082384A1 (zh) 光谱防伪鉴别系统及光谱防伪码制码、解码方法
CN1430175A (zh) 一种基于物质特性的加密防伪方法
CN108764930A (zh) 基于区块链结构的商品防伪验证平台的实现方法
Blau et al. Meta-hologram-based authentication scheme employing a speckle pattern fingerprint
KR102424876B1 (ko) 키랄성 금속 나노구조체를 이용한 암호화 방법
KR102003164B1 (ko) 위변조 방지 기구의 제조 방법
WO2020191520A1 (zh) 基于微结构检测的防伪纸质品及其制作方法和鉴别方法
Gandla et al. Laser‐induced carbonization for anticounterfeiting Tags
CN110119732A (zh) 一种基于反射光能量值的图片标识防伪识别方法
CN1309376A (zh) 用于读取和校验全息图的方法和设备
RO135617A0 (ro) Metodă pentru tipărirea şi verificarea documentelor securizate
RU2616448C1 (ru) Способ изготовления ценного документа, ценный документ и способ определения его подлинности
CN110533135A (zh) 非r角防伪方法
WO2012041126A1 (zh) 一种随机纹理的防伪方法及其识别器
CN108876411A (zh) 一种基于信息处理的产品防伪方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937582

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18937582

Country of ref document: EP

Kind code of ref document: A1