WO2020082371A1 - 一种终端的功耗控制方法及相关设备 - Google Patents

一种终端的功耗控制方法及相关设备 Download PDF

Info

Publication number
WO2020082371A1
WO2020082371A1 PCT/CN2018/112216 CN2018112216W WO2020082371A1 WO 2020082371 A1 WO2020082371 A1 WO 2020082371A1 CN 2018112216 W CN2018112216 W CN 2018112216W WO 2020082371 A1 WO2020082371 A1 WO 2020082371A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
cell
signal
sampling rate
metric
Prior art date
Application number
PCT/CN2018/112216
Other languages
English (en)
French (fr)
Inventor
魏璟鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880099022.4A priority Critical patent/CN112956244B/zh
Priority to PCT/CN2018/112216 priority patent/WO2020082371A1/zh
Publication of WO2020082371A1 publication Critical patent/WO2020082371A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technology, and in particular, to a power consumption control method of a terminal and related equipment.
  • the user terminal In a wireless network, when data needs to be transmitted, the user terminal (User Equipment, UE) must always monitor the physical downlink control channel (Physical Downlink Control Channel, PDCCH), and send and receive data according to the instruction message sent by the network side. This causes the UE's power consumption and data transmission delay to be relatively large. Therefore, the 3GPP standard protocol introduces a discontinuous reception mechanism (Discontinuous Reception, DRX) energy-saving strategy in the LTE system, defined in the physical layer media access control (Media Access Control, MAC).
  • DRX means that the terminal performs discontinuous reception, that is, the terminal can periodically stop monitoring the PDCCH channel for a period of time, so as to achieve the purpose of saving power.
  • DRX According to the working state of DRX, it is divided into idle state IDLE DRX and connected state ACTIVE DRX.
  • IDLE DRX that is, when the terminal (in the UE as an example) is in the discontinuous reception in the IDLE state, because the terminal is in the RRC_IDLE state (the UE is initially turned on, or stays in idle mode after turning on), there is no Radio resource control (Radio Resource Control, RRC) connection and user's proprietary resources, so IDLE DRX is mainly to monitor the paging channel and broadcast channel, as long as a fixed period is defined, the purpose of discontinuous reception can be achieved. It can be understood that if the UE wants to monitor the user data channel, it must first enter the connected state from the IDLE state, that is, it must first perform downlink synchronization.
  • RRC Radio Resource Control
  • ACTIVE DRX that is, DRX when the UE is in the RRC-CONNECTED Connected state.
  • DRX in this state can optimize the system resource configuration, and because there is an RRC connection in the Active DRX state, the UE should go to listen to the downlink
  • the state of the data is very fast, thereby saving UE power consumption. For example, some non-real-time applications, web browsing, instant messaging, etc.
  • the UE does not need to continuously monitor downlink data and related processing for a period of time, that is, it can be understood that the UE is on the network, but cannot perform normal scheduling, and is in a deactivated state or out of gait state.
  • the speed at which the UE transitions to the non-DRX state is very fast.
  • CELL-PCH paging channel
  • URA-PCH paging channel
  • CELL-FACH forward access channel
  • CELL-DCH dedicated channel
  • the technical problem to be solved by the embodiments of the present invention is to provide a terminal power consumption control method and related equipment, which solves the problem that the terminal standby power consumption in the prior art is large due to the excessive sampling rate of the terminal in some communication scenarios in the prior art problem.
  • an embodiment of the present invention provides a method for controlling power consumption of a terminal, which may include:
  • the terminal Configuring the terminal to receive an analog-to-digital conversion AD sampling rate of the first downlink signal of the first cell at a first initial sampling rate; the first cell is a serving cell of the terminal, or the first cell is the One or more neighboring cells of the terminal at a designated frequency; when the first metric of the first cell signal of the terminal is better than the first metric threshold, configure the terminal to receive the first downlink signal
  • the AD sampling rate is the first sampling rate; wherein the value of the first sampling rate is smaller than the value of the first initial sampling rate.
  • receiving the first downlink signal of the corresponding cell with a smaller sampling rate can not only ensure the terminal The quality of receiving downlink signals, and can also reduce the standby power consumption of the terminal and improve the user experience.
  • the quality of the downlink signal received by the terminal can also reduce the standby power consumption in the DRX state and improve the user experience.
  • the first cell is a plurality of neighboring cells of the terminal at a specified frequency point; the first cell signal is a plurality of neighboring cell signals; the first time In the M DRX cycles in the segment, one or more of the SINR, RSRP, and RSRQ of the first cell signal is better than the corresponding first metric threshold, including: M in the first time period During each DRX cycle, one or more of the SINR, RSRP, and RSRQ metrics of all neighbor cell signals in the multiple neighbor cell signals are better than the corresponding first metric threshold.
  • the signal quality of a plurality of neighboring cells of the terminal at a specified frequency point is monitored in real time, and when the signal quality of all neighboring cells is evaluated to be good, Then use a smaller sampling rate to receive the downlink signal, such as the following synchronization signal or the related signal used for downlink synchronization, etc., on the premise of ensuring the quality of the terminal receiving the downlink signal, the standby power in the DRX state can be reduced as much as possible Consumption and improve user experience.
  • the method further includes: when the second metric of the first cell signal of the terminal is worse than a second metric threshold, configuring the terminal to receive the first downlink signal
  • the AD sampling rate is the second sampling rate; wherein the value of the second sampling rate is greater than or equal to the first initial sampling rate.
  • the standby of the terminal can be reduced as much as possible while ensuring the quality of the downlink signal received by the terminal Power consumption improves user experience.
  • the second metric of the first cell signal of the terminal being inferior to the second metric threshold includes that, when the terminal is in the DRX state, within N DRX cycles in the second time period , One or more of the SINR, RSRP, and RSRQ metrics of the first cell signal is inferior to the corresponding second metric threshold, where N is an integer greater than or equal to 1.
  • the present invention by monitoring the signal quality of the terminal's serving cell or neighboring cell in real time when the terminal is in the DRX state, and receiving a downlink signal with a smaller sampling rate when the signal quality is evaluated to be better In the case of poor signal quality, use a larger sampling rate to receive downlink signals, that is, on the premise that the quality of the downlink signal received by the terminal can be ensured whether the signal quality of the serving cell is good or poor Next, reduce the standby power consumption in the DRX state as much as possible to improve the user experience.
  • the first cell is a plurality of neighboring cells of the terminal at a specified frequency point; the first cell signal is a plurality of neighboring cell signals; the second time In N DRX cycles within a segment, one or more of the SINR, RSRP, and RSRQ metrics of the first cell signal are inferior to the corresponding second metric threshold, including: N within the second time period In the DRX cycle, the metric of one or more of SINR, RSRP, and RSRQ of any one of the multiple neighbor cell signals is worse than the corresponding second metric threshold.
  • the signal quality of a plurality of neighboring cells of the terminal at a specified frequency point is monitored in real time, and when the signal quality of all neighboring cells is evaluated to be good, Then use a smaller sampling rate to receive downlink signals, such as downlink synchronization signals or related signals for downlink synchronization, etc. Further, after evaluating the signal quality of any one of the neighboring cells, In the case of poor, use a larger sampling rate to receive downlink signals, that is, whether the signal quality of multiple neighboring cells is good or poor, as long as the quality of the downlink signal received by the terminal can be guaranteed, Reduces the standby power consumption in the DRX state and improves the user experience.
  • the first downlink signal is a synchronization signal block SSB or a cell reference signal CRS.
  • the first downlink signal may be a synchronization signal block SSB in a new air interface NR system, or a cell reference signal CRS in a long-term evolution LTE system.
  • the first cell signal is the first downlink signal of the first cell.
  • whether the first metric of the first cell signal is better than the first metric threshold can be determined to determine whether the signal quality of the first cell is good or bad.
  • it can also be determined whether the first metric of other related signals of the first cell is better than the first metric threshold.
  • M is greater than N.
  • M is an integer greater than 1, and N is equal to 1.
  • the sampling rate is erroneously reduced, so that the quality of the sampled signal cannot be guaranteed; but when evaluating whether the signal quality of the serving cell is poor, you can only determine based on the relevant parameters measured in a DRX cycle to avoid as much as possible The signal quality may be poor, and there is a risk that the downstream time-frequency synchronization cannot be completed due to the sampling rate not being adjusted up in time.
  • an embodiment of the present invention provides a terminal, which may include:
  • the processing unit is configured to configure the terminal to receive an analog-to-digital conversion AD sampling rate of the first downlink signal of the first cell from the first initial sampling rate;
  • the first cell is a serving cell of the terminal, or the first A cell is one or more neighboring cells of the terminal at a designated frequency point;
  • the processing unit is further configured to, when the first metric of the first cell signal of the terminal is better than the first metric threshold, configure the terminal to receive the first downlink signal with an AD sampling rate of first Sampling Rate;
  • the value of the first sampling rate is smaller than the value of the first initial sampling rate.
  • the processing unit is specifically used to:
  • the terminal When the terminal is in the discontinuous reception DRX state, within M DRX cycles in the first time period, when the signal-to-interference and noise ratio SINR of the first cell signal, the reference signal received power RSRP and the reference signal received quality RSRQ When one or more of the metrics is better than the corresponding first metric threshold, configure the terminal to receive the first downlink signal at an AD sampling rate of the first sampling rate; where M is greater than or equal to 1 Integer.
  • the processing unit specifically Used for:
  • the terminal When the terminal is in the DRX state, within M DRX cycles in the first time period, when one or more of the SINR, RSRP, and RSRQ of all adjacent cell signals among the multiple adjacent cell signals When the metric of each item is better than the corresponding first metric threshold, the terminal is configured to receive the first downlink signal with an AD sampling rate of the first sampling rate.
  • processing unit is further used to:
  • the terminal When the second metric of the first cell signal of the terminal is worse than the second metric threshold, configure the terminal to receive an AD sampling rate of the first downlink signal at a second sampling rate; wherein, the second The value of the sampling rate is greater than or equal to the first initial sampling rate.
  • the processing unit is specifically used to:
  • the terminal When the terminal is in the DRX state, within N DRX cycles in the second time period, when one or more metrics of SINR, RSRP, and RSRQ of the first cell signal are inferior to the corresponding second
  • configure the terminal When measuring the threshold, configure the terminal to receive an AD sampling rate of the first downlink signal at a second sampling rate; where N is an integer greater than or equal to 1.
  • the processing unit specifically Used for:
  • the terminal When the terminal is in the DRX state, within N DRX cycles in the second time period, when any one of the neighboring cell signals among the plurality of neighboring cell signals is one of SINR, RSRP, and RSRQ, or When the metric of multiple items is inferior to the corresponding second metric threshold, configure the terminal to receive an AD sampling rate of the first downlink signal at a second sampling rate.
  • the first downlink signal is a synchronization signal block SSB or a cell reference signal CRS.
  • the first cell signal is the first downlink signal of the first cell.
  • the control The terminal maintains the current sampling rate to receive the first downlink signal of the first cell.
  • the terminal may keep the previous sampling rate configuration result unchanged until the first metric is better than the first metric threshold or the second metric is worse than the second metric threshold before reconfiguring the sampling rate.
  • the present application provides a terminal that has the function of implementing the method in any of the foregoing embodiments of the power consumption control method of the terminal.
  • This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the present application provides a terminal including a processor.
  • the processor is configured to support the terminal to perform a corresponding function in a method for controlling power consumption of the terminal provided in the first aspect.
  • the terminal may also include a memory for coupling with the processor, which stores necessary program instructions and data of the terminal.
  • the terminal may also include a communication interface for the terminal to communicate with other devices or communication networks.
  • the present application provides a computer storage medium for storing computer software instructions for the terminal provided in the third aspect above, which contains a program designed to execute the above aspect.
  • an embodiment of the present invention provides a computer program, the computer program including instructions, when the computer program is executed by a computer, so that the computer can execute any one of the first aspect of the power consumption control method of the terminal Process.
  • the present application provides a chip system that includes a processor for supporting a terminal to implement the functions related to the first aspect, for example, generating or processing information related to the above-mentioned sampling adjustment method.
  • the chip system further includes a memory, which is used to store necessary program instructions and data of the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic structural diagram of an SS burst provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a sampling rate control network architecture provided by an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for controlling power consumption of a terminal according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a DRX cycle provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of sampling rate control of a serving cell and neighboring cells provided by an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a sampling rate control provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another sampling rate control provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another sampling rate control provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another terminal according to an embodiment of the present invention.
  • Resource block Resource block (Resource, Block, RB): 12 consecutive subcarriers in frequency and one slot in time domain, called 1 RB.
  • Resource element / resource particle (Resource Element, RE): a subcarrier on the frequency and a symbol on the domain, called a RE.
  • Orthogonal Frequency Division Multiplexing is a type of multi-carrier modulation. Due to its high frequency band utilization and strong anti-multipath capability, it can effectively suppress inter-symbol interference and inter-channel interference, especially Suitable for wireless high-speed communication.
  • the OFDM system uses multiple orthogonal subcarriers, which requires the maximum position of the spectrum of each subcarrier, and the spectrum values of all remaining subchannels are exactly zero, and the output signal is a superposition of multiple orthogonal subcarriers.
  • Subcarrier Both LTE and NR adopt OFDM technology.
  • OFDM In OFDM, each symbol corresponds to an orthogonal subcarrier, and the orthogonality between the carriers is used to combat interference. The agreement stipulates that under normal circumstances, the subcarrier spacing is 15khz.
  • CP Cyclic Prefix
  • each slot of each subcarrier has 7 symbols; in the case of extended CP, each slot of each subcarrier has 6 symbols.
  • CP Chinese can be translated as a cyclic prefix, which contains the tail repeat of the OFDM symbol.
  • CP is mainly used to combat multipath interference in the actual environment. Without CP, the delay spread due to multipath will affect the orthogonality between subcarriers, causing inter-symbol interference.
  • the PBCH provides basic system information to the UE, and the UE decodes the information on the PBCH to access the cell.
  • the information provided by the PBCH may include: downlink system bandwidth, timing information in radio frames, periodicity of synchronization signal pulse transmission, and system frame number.
  • bandwidth In analog signal systems, it is also called bandwidth, which refers to the amount of data that can be transmitted in a fixed time, that is, the ability to transfer data in the transmission pipeline. It is usually expressed in transmission cycles per second or hertz (Hz).
  • FFT Fast Fourier Transform
  • DFT discrete Fourier transform
  • IFFT Inverse-Fast Fourier Transformation
  • Finite Impulse Response (FIR) filter also known as non-recursive filter, is the most basic component in the digital signal processing system. It can ensure any amplitude-frequency characteristics while having strict The linear phase frequency characteristic, and its unit sampling response is finite length, so the filter is a stable system.
  • Signal to interference plus noise ratio refers to the ratio of the strength of the received useful signal to the strength of the received interference signal (noise and interference); it can be simply understood as “Signal to noise ratio”.
  • Reference signal received power (Reference Signal Receiving Power, RSRP) is the average of the received signal power on all resource elements (Resource, Element, RE) carrying the reference signal (Reference Signal) within a certain symbol (Symbol) value.
  • Received signal strength indicator is the average power of all signals (including pilot signal and data signal, neighboring area interference signal, noise signal, etc.) received in this Symbol. Refers to the received signal strength indicator, which is an optional part of the infinite transmission layer, used to determine the quality of the link, and whether to increase the broadcast transmission strength.
  • Radio Resource Management is to provide service quality assurance for wireless user terminals in the network under the condition of limited bandwidth.
  • the basic starting point is uneven distribution of network traffic and channel characteristics In the case of channel weakness and interference fluctuations, etc., flexibly allocate and dynamically adjust the available resources of the wireless transmission part and the network to maximize the utilization rate of the wireless spectrum, prevent network congestion and keep the signaling load as small as possible.
  • the research content of radio resource management (RRM) mainly includes the following parts: power control, channel allocation, scheduling, handover, access control, load control, end-to-end QoS and adaptive coding modulation.
  • sampling is the discretization of the signal in time, that is, the instantaneous value is taken point by point on the analog signal x (t) at a certain time interval ⁇ t, which is processed by digital signal premise.
  • Sampling frequency which is the sampling time interval, also known as sampling speed or sampling rate, defines the number of samples that are extracted from a continuous signal and constitute a discrete signal per second, which is expressed in Hertz (Hz) .
  • the reciprocal of the sampling frequency is the sampling period or sampling time, which is the time interval between samplings.
  • the sampling frequency refers to how many signal samples are collected by the computer per second.
  • the sampling rate is the frequency of signal conversion (that is, the number of acquisitions per second) when converting analog to digital. The higher the frequency, the more the signal is collected per unit time, and the more information in the signal is retained. Less information is lost, and the converted digital quantity can accurately reflect the value of the signal.
  • Sampling theorem also known as Shannon's sampling theorem and Nyquist's sampling theorem
  • the sampling frequency must be greater than twice the bandwidth of the sampled signal to avoid frequency aliasing.
  • the sampling frequency must be at least twice the frequency of the largest frequency component in the sampled signal, otherwise it cannot Restore the original signal from the signal samples. For example, if the bandwidth of the signal is 100 Hz, the sampling frequency must be greater than 200 Hz to avoid aliasing.
  • a terminal such as a UE
  • DRX discontinuous reception
  • the UE can receive broadcast information sent by the base station to obtain various configuration parameters of the base station. If the UE has data to send to the base station, the UE initiates a random access (RACH) process to establish uplink synchronization with the base station.
  • RACH random access
  • a synchronization signal block contains a primary synchronization signal (Primary Synchronization Signal, PSS), a secondary synchronization signal (Secondary Synchronization Signal, SSS), and a physical broadcast channel (Physical Broadcast Channel) , PBCH), SS block may occupy multiple orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols, which is related to the carrier frequency band and sub-carrier spacing, the UE can receive the periodically broadcast SS block to complete the service cell Downlink synchronization.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 1 is a schematic diagram of the structure of the SS burst provided by this application.
  • each SSB occupies 4 OFDM symbols (OFDM symbols), which is composed of synchronization signals (PSS / SSS) and PBCH composition.
  • the subcarrier spacing (SCS) of the SSB symbol can take values of 15KHz, 30KHz, 120KHz, and 240KHz, of which 15KHz and 30KHz are used in the frequency band below 6GHz, and 120KHz and 240KHz are used in the frequency band above 6GHz.
  • the operating bandwidth of the UE is flexible and variable.
  • the UE does not need to support the entire system bandwidth and only needs to meet the minimum bandwidth requirements to support narrow bandwidth capabilities.
  • UE may save UE power consumption.
  • BWP1 bandwidth
  • BWP2 bandwidth
  • the bandwidth of each BWP should not be less than the bandwidth of SS Block, but may or may not include SS Block.
  • the system can configure the bandwidth of the SS Block for the UE, so that the UE can pass the SS Block when it needs to perform downlink synchronization It is sufficient to perform time-frequency synchronization of the downlink.
  • the transmitting end (such as a base station) usually needs to perform IFFT processing on the information to be transmitted, and convert the frequency domain signal into a time domain signal.
  • the number of sampling points of OFDM symbols is generally 2 to the Nth power, and theoretically the number of IFFT sampling points is greater than the number of subcarriers to ensure that no information is lost after conversion.
  • the minimum number of sampling points greater than 1200 in the Nth power of 2 is 2048, therefore, 2048 sampling points, that is, 2048 subcarriers need to be extracted for IFFT operation , Where 1200 sampling points transmit useful information, and the remaining sampling points default to zero.
  • a filter is passed, and only the signal carrying useful information is transmitted (so the number of sampling points will not affect the bandwidth of the transmitting end); and the receiving end (such as the UE) does the restoration after receiving it.
  • the bandwidth of the FFT sampling signal is determined to be 30.72M (15KHZ * 2048). But in fact, only the middle 18M (15KHZ * 1200) is valid information.
  • the sampling frequency of the real signal must be greater than or equal to 2 times the maximum frequency of the signal, but OFDM is a complex signal and is unilateral in the spectrum. Therefore, it only needs to satisfy 1 times the sampling The rate will not cause aliasing, that is, the maximum frequency of the real signal is less than 20MHz, so the sampling frequency of 30.72MHz is completely satisfactory.
  • the FIR filter at the transmitting end of the NR system designs OFDM symbols where the PBCH in the SS Block is based on input of 256 sampling points and output of 240 sampling points (that is, filtering to the PBCH bandwidth is also SS Block ), The difficulty will be greater. However, if the design is based on the input of 512 sampling points and the output of 240 sampling points, it is easy to implement and does not affect performance. In the same way, the FIR filter at the transmitting end designs the OFDM symbol where the synchronization signal (PSS / SSS) is located according to the input 256 sampling points and outputs 144 sampling points (that is, filtering to the synchronization signal bandwidth), which is easy to implement and does not affect performance. Based on the above, the input signal sampling rate of the FIR filter at the receiving end filtered by the transmitting end to the PBCH bandwidth is twice that of the input signal of the FIR filter at the receiving end filtered by the transmitting end to the synchronization signal bandwidth.
  • the terminal needs to perform time-frequency tracking of the serving cell when it is in the DRX state.
  • the terminal using PBCH bandwidth signals will perform 2dB + better than the synchronous signal bandwidth signals for time-frequency tracking, but at this time the terminal's analog-to-digital (AD) conversion sampling rate of the received signal ( (Referred to as AD sampling rate) will be doubled.
  • AD sampling rate analog-to-digital conversion sampling rate of the received signal
  • the bandwidth of the UE needs to be consistent with the system bandwidth.
  • the physical cell ID is decoded by detecting the PSS and SSS, and the downlink subframe time is determined according to the position of the PSS and SSS, and further through the cell reference signal (Cell Reference) (CRS).
  • Cell Reference Cell Reference
  • time-frequency tracking is required based on the CRS of the serving cell for downlink synchronization, and the LTE CRS is transmitted on each subframe and spans the entire system bandwidth. Therefore, when the UE performs downlink time-frequency synchronization, it needs to adopt a large AD sampling rate (sampling rate that matches the system bandwidth of the serving cell) to receive signals, thereby affecting standby power consumption.
  • AD sampling rate sampling rate that matches the system bandwidth of the serving cell
  • the technical problems that can be solved by the present application include: for wireless communication systems such as the NR system and the LTE system, how to enable the terminal to successfully perform downlink synchronization with as little standby power consumption as possible in the DRX state. It can be understood that, in the DRX state, the terminal also needs to search and measure neighboring cells of the same / different frequency. Therefore, the present application can also solve the problem of excessive standby power consumption of the terminal during the measurement scheduling of neighboring cells of the same / different frequency.
  • FIG. 2 is a schematic diagram of a sampling rate control network architecture provided by an embodiment of the present invention.
  • the communication network architecture includes a core network, a network device (such as a base station), and a terminal (such as a UE). among them
  • the terminal may be an access terminal, terminal, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent, or user device.
  • it can be a cellular phone, cordless phone, smart phone, Session Initiation Protocol (SIP) phone, wireless local loop (Wireless Local Loop, WLL) station, smart bracelet, smart wearable device, MP3 player ( Moving Pictures Experts Group Audio Layer III, Motion Picture Experts Compression Standard Audio Level 3), MP4 (Moving Pictures Experts Group Audio Layer 3, Motion Picture Experts Compression Standard Audio Level 3) Player, Personal Digital Processing (Personal Digital Assistant, PDA) , Handheld devices with wireless communication function, computing devices or other processing devices connected to wireless modems, in-vehicle devices, roadside units (Road Side Unit), Internet of Things devices with communication capabilities, and terminals in future 5G networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • MP3 player Moving Pictures Experts Group
  • a base station also known as a network-side device, can be a base station transceiver (Base Transceiver Station, BTS) in a time division synchronization code division multiple access (Time-Division Synchronous Code Division Multiple Access (TD-SCDMA) system) or an LTE system Evolutionary Nodes (Evolutional Node B, eNB), and base stations gNB in 5G systems and New Air Interface (NR) systems.
  • BTS Base Transceiver Station
  • TD-SCDMA Time-Division Synchronous Code Division Multiple Access
  • eNB LTE system Evolutionary Nodes
  • the base station may also be an access point (Access Point, AP), transmission and reception point (Transmission Reception Point, TRP), central unit (Central Unit, CU), or other network entities, and may include the functions of the above network entities.
  • the core network mainly provides data support and related services for the communication between the terminal and the base station.
  • GSM global system of mobile
  • CDMA code division multiple access
  • WCDMA wideband code division Multi-access
  • GPRS general packet radio service
  • LTE long-term evolution
  • LTE-A advanced long-term evolution
  • Universal mobile communication system Universal mobile communication system, UMTS
  • next-generation communication system such as 5G wireless access (New Radio, NR) system (referred to as 5G NR system), machine-to-machine communication (Machine to Machine, M2M) System etc.
  • 5G wireless access New Radio, NR
  • 5G NR machine-to-machine communication
  • M2M Machine to Machine
  • systems specifically applied in the embodiments of the present invention include, but are not limited to, the above-mentioned communication systems, as long as the systems that can apply the terminal power consumption control method in the present invention fall within the scope of protection and coverage of the present invention.
  • the communication system architecture in FIG. 2 is only an exemplary implementation in the embodiment of the present invention, and the communication system architecture in the embodiment of the present invention includes but is not limited to the above communication system architecture.
  • FIG. 3 is a schematic flow chart of a method for controlling power consumption of a terminal according to an embodiment of the present application, which can be applied to the communication system described in FIG. 2 described below.
  • the interaction side of the neighboring cell at the frequency point is described.
  • the method may include the following steps S301-S302, and optionally, may further include step S303.
  • Step S301 Configure the terminal to receive an analog-to-digital conversion AD sampling rate of the first downlink signal of the first cell to the first initial sampling rate.
  • the first cell is a serving cell of the terminal, or the first cell is one or more neighboring cells of the terminal at a specified frequency point; the first initial sampling rate may be according to system requirements, etc.
  • the preset sampling rate may also be a minimum sampling rate that satisfies the bandwidth requirement of the first downlink signal.
  • the minimum sampling rate that satisfies the bandwidth requirement of the first downlink signal refers to a minimum sampling rate that satisfies the bandwidth requirement of the first downlink signal based on the actual communication system and follows the sampling theorem. It can be understood that when the communication system is different or different signal processing methods are used, the minimum sampling rate calculated for the same size signal bandwidth may be different.
  • the minimum sampling rate in this embodiment of the present invention is the first initial sampling rate. No specific restrictions.
  • the first downlink signal is a synchronization signal block SSB or a cell reference signal CRS.
  • the first downlink signal is a synchronization signal block SSB in a new air interface NR system, and the synchronization signal block includes an SSB primary synchronization signal PSS, an auxiliary synchronization signal SSS, and a physical broadcast channel PBCH; If the terminal accesses the BPL to the serving cell or the neighboring cell through the optimal beam; the first downlink signal is the synchronization signal block SSB of the BPL, and the first metric of the first cell signal of the terminal Is the first metric for the SSB of the BPL; the first sampling rate is the minimum sampling rate that meets the SSB or PSS bandwidth requirements, and the second sampling rate is the minimum sampling rate that meets the PBCH bandwidth requirements.
  • the signal quality of the serving cell is evaluated by evaluating the signal quality of the optimal beam BPL of the terminal, and the first sampling rate can be satisfied
  • the minimum sampling rate required by the SSB or PSS bandwidth, and the second sampling rate is the minimum sampling rate that meets the PBCH bandwidth requirement.
  • the symbol where it is located occupies a total of 144 subcarriers in 12RB, and the PBCH symbol A total of 240 subcarriers occupy 20RB.
  • the minimum sample rate corresponding to the SCS value of the first downlink signal that is, the relationship between the first initial sampling rate can be as follows:
  • the corresponding AD sampling frequency is the first initial sampling rate of 3.84MHZ (15KHZ * 256)
  • the corresponding first initial sampling rate when the SCS is 30KHZ is 7.68MHZ (30KHZ * 256)
  • the corresponding first initial sampling is when the SCS is 120KHZ
  • the rate is 30.72MHZ (120KHZ * 256)
  • the SCS is 240KHZ
  • the corresponding first initial sampling rate is 61.44MHZ (240KHZ * 256).
  • the downlink synchronization signal is a CRS signal in an LTE system
  • the minimum sampling rate that meets the bandwidth requirement of the first downlink signal meets the minimum sampling rate of the LTE system bandwidth. That is, when the power consumption control method of the terminal in the embodiment of the present invention is applied to the LTE system, the signal quality of the serving cell is evaluated by evaluating the signal quality of the serving cell, and meeting the first downlink signal bandwidth requirement The minimum sampling rate satisfies the minimum sampling rate of the LTE system bandwidth.
  • the frequency bandwidth and the corresponding minimum sample rate are also The relationship between the first initial sampling rate can be as follows: the corresponding AD sampling frequency when the frequency bandwidth is 20MHZ, that is, the first initial sampling rate is 30.72MHZ, and the corresponding first initial sampling rate when the frequency bandwidth is 15MH is 23.04MHZ, When the frequency bandwidth is 10MHZ, the corresponding AD sampling frequency is 15.36MHZ; when the frequency bandwidth is 5MHZ, the corresponding first initial sampling rate is 7.68MHZ; when the frequency bandwidth is 3MHZ, the corresponding first initial sampling rate is 3.84MHZ; frequency When the point bandwidth is 1.4 MHz, the corresponding first initial sampling rate is 1.92 MHz; that is, it will not be repeated here.
  • Step S302 When the first metric of the first cell signal of the terminal is better than the first metric threshold, configure the terminal to receive an AD sampling rate of the first downlink signal at the first sampling rate.
  • the value of the first sampling rate is smaller than the value of the first initial sampling rate. That is, by configuring and receiving the first downlink signal with a smaller sampling rate when the signal quality of the serving cell or the neighboring cell of the designated frequency point accessed by the terminal is good, it can not only ensure that the terminal receives the downlink signal Quality can also reduce power consumption at the terminal and improve user experience. That is, in the embodiment of the present invention, the signal quality of the serving cell or the neighboring cell can be measured and judged by a preset rule. If the signal quality is judged to be good, a smaller sampling rate is used for sampling, that is, sampling is guaranteed The signal can meet the requirements while reducing the standby power consumption of the terminal.
  • the first cell signal is the first downlink signal of the first cell. That is, the quality of the signal of the first cell can be judged by judging whether the first metric of the signal of the first cell is better than the first metric threshold. Optionally, it can also be determined whether the first metric of other related signals of the first cell is better than the first metric threshold. That is, the first cell signal may be the first downlink signal itself, or other signals that predict or help judge the quality of the first downlink signal.
  • One or more metrics of the signal-to-interference and noise ratio SINR, reference signal received power RSRP and reference signal received quality RSRQ of the serving cell in M DRX cycles are better than the corresponding first metric threshold, where M is An integer greater than or equal to 1.
  • the first downlink signal is used for downlink synchronization between the terminal and the serving cell.
  • the DRX cycle refers to the DRX scheduling cycle of the terminal. Please refer to FIG. 4.
  • FIG. 4 is a schematic diagram of a UE scheduling cycle provided by an embodiment of the present invention.
  • the relevant parameters measured once or multiple times in succession need to be greater than the first metric threshold.
  • the first metric threshold includes the first metric threshold of SINR
  • the relevant parameter includes SINR and RSRP
  • the first metric threshold includes SINR
  • the first metric threshold and the first metric threshold of RSRP By analogy, other situations are no longer exhaustive.
  • the signal quality of the serving cell or the neighboring cell of the terminal is monitored, and when the signal quality is evaluated to be good, the downlink synchronization signal or the reception is received with a smaller sampling rate
  • the related signals for downlink synchronization can not only ensure the quality of the terminal receiving the downlink signal, but also reduce the standby power consumption in the DRX state and improve the user experience.
  • the sampling rate (AD sampling rate) in the embodiment of the present invention can also be adjusted, but due to the transmission of data and other services in the terminal, the main power consumption is consumed in the transmission In data services, the power for signal sampling only occupies a small part of the power consumption of the entire UE. Therefore, the embodiments of the present invention mainly discuss the terminal in a discontinuous reception DRX state.
  • the first cell is a plurality of neighboring cells of the terminal at a specified frequency point; the first cell signal is a plurality of neighboring cell signals; the first time In the M DRX cycles in the segment, one or more of the SINR, RSRP, and RSRQ of the first cell signal is better than the corresponding first metric threshold, including: M in the first time period During each DRX cycle, one or more of the SINR, RSRP, and RSRQ metrics of all neighbor cell signals in the multiple neighbor cell signals are better than the corresponding first metric threshold.
  • FIG. 5 is a schematic diagram of a sampling rate control of a serving cell and a neighboring cell provided by an embodiment of the present invention.
  • the measurement scheduling period of a serving cell, a co-frequency neighboring cell, and an inter-frequency neighboring cell may also be the same. It may be different.
  • the timing at which the terminal performs signal quality evaluation on the serving cell, the intra-frequency cell, or the inter-frequency cell is also different, and the corresponding timing for adjusting the sampling rate of the corresponding downlink signal (first downlink signal) is also different.
  • the terminal adjusts the sampling rate in the measurement scheduling period of the serving cell or the neighboring cell of the same / different frequency, which can reduce the standby power consumption of the terminal in the measurement scheduling period of the serving cell, the same frequency, and the different frequency cell.
  • Step S303 When the second metric of the first cell signal of the terminal is worse than the second metric threshold, configure the terminal to receive an AD sampling rate of the first downlink signal at the second sampling rate.
  • the value of the second sampling rate is greater than or equal to the first initial sampling rate. That is, by monitoring the signal quality of the terminal's serving cell or the neighboring cell at a specified frequency in real time, and when the signal quality is evaluated to be good, the first downlink signal is received with a smaller sampling rate. Further, during the evaluation When the quality of the outgoing signal is poor, the first downlink signal is received with a larger sampling rate. Whether the signal quality of the serving cell / neighboring cell is good or poor, the quality of the downlink signal received by the terminal can be ensured. On the premise of reducing standby power consumption as much as possible to improve user experience.
  • the second metric of the first cell signal of the terminal being inferior to the second metric threshold includes that, when the terminal is in the DRX state, within N DRX cycles in the second time period , One or more of the SINR, RSRP, and RSRQ metrics of the first cell signal is inferior to the corresponding second metric threshold, where N is an integer greater than or equal to 1.
  • the signal quality of the serving cell or the neighboring cell of the terminal is monitored in real time, and when the signal quality is evaluated to be good, the downlink synchronization signal is received with a smaller sampling rate or Receive related signals for downlink synchronization, and further, when the signal quality is evaluated to be poor, use a larger sampling rate to receive downlink synchronization signals or receive related signals for downlink synchronization, whether in the serving cell or When the signal quality of the neighboring cell is good or poor, the standby power consumption in the DRX state can be reduced as much as possible on the premise of ensuring the quality of the downlink signal received by the terminal to improve the user experience.
  • the first cell is a plurality of neighboring cells of the terminal at a specified frequency point; the first cell signal is a plurality of neighboring cell signals; the second time In N DRX cycles within a segment, one or more of the SINR, RSRP, and RSRQ metrics of the first cell signal are inferior to the corresponding second metric threshold, including: N within the second time period In the DRX cycle, the metric of one or more of SINR, RSRP, and RSRQ of any one of the multiple neighbor cell signals is worse than the corresponding second metric threshold.
  • the terminal receives the cell signal at this frequency point at a smaller AD sampling rate. Otherwise, the cell signal at this frequency is received at a larger AD sampling rate.
  • the case where the signal quality of all cells in the RRM measurement list at this frequency point is good includes that the related parameter (optional one or more of SINR, RSRP, and RSRQ) of each cell measures Metric and preset
  • the threshold is greater than or equal to the threshold, it is judged as good quality, otherwise it is judged as poor quality.
  • each cell in the RRM measurement list selects the optimal Z BPL metric Metric, which can be directly compared in the LTE system.
  • the signal quality of the serving cell and the neighboring cell can be separately monitored, and the sampling rate of the downlink signal received by the terminal in the serving cell or the neighboring cell can be adjusted based on the quality of the signal quality based on the evaluation.
  • the signal quality of the serving cell and the neighboring cell can also be monitored at the same time, that is, when the terminal is in the DRX state, in addition to monitoring the signal quality of the serving cell accessed by the terminal in real time, and based on the estimated signal quality Good or bad, adjust the sampling rate, and further monitor the signal quality of the neighboring cell of the serving cell, and also adjust the sampling rate of the downlink signal received by the terminal in the neighboring cell based on the assessed signal quality .
  • first time period and the second time period in this application may be equal or different, and this application does not specifically limit this.
  • the values of the above parameters can be obtained and set in advance according to certain rules or algorithms.
  • the values of N and M may be equal or unequal.
  • M is an integer greater than 1, and N is equal to 1, that is, when evaluating whether the signal quality of the serving cell is good, it can be determined based on the relevant parameters measured in multiple DRX cycles to avoid short or accidental first
  • the metric is better than the first metric threshold, which results in the sampling rate being lowered by mistake, which cannot guarantee the quality of the sampled signal; but when evaluating whether the signal quality of the serving cell is poor, you can only need to measure based on a DRX cycle
  • the relevant parameters are determined to avoid the risk that the signal quality may be poor and that the sampling time may not be adjusted up in time to complete the downlink time-frequency synchronization.
  • the second sampling rate may be controlled to be used in consecutive X DRX cycles
  • X is an integer greater than or equal to 1. That is, when the terminal is in the DRX state, the signal quality of the serving cell to which the terminal is connected is monitored in real time, and when the signal quality is evaluated to be poor, the control uses a larger sampling rate in consecutive X DRX cycles, Receive a first downlink signal, such as a downlink synchronization signal or a related signal for downlink synchronization, to enhance the robustness of the system.
  • the control The terminal maintains the current sampling rate to receive the first downlink signal of the first cell.
  • M and N are different when they are equal to 1, that is, when at least one of M and N is greater than 1, there may be neither the first metric better than the first metric threshold nor the satisfaction
  • the second metric is worse than the second metric threshold.
  • the terminal may keep the previous sampling rate configuration result unchanged until the first metric is better than the first metric threshold or the second metric is worse than the second metric threshold before reconfiguring the sampling rate.
  • FIG. 6 is a schematic diagram of a sampling rate control provided by an embodiment of the present invention.
  • the signal quality measured in each DRX cycle will determine the next The sampling rate corresponding to the DRX cycle.
  • FIG. 7 is another schematic diagram of sampling rate control provided by an embodiment of the present invention, that is, multiple DRX cycles may be determined.
  • the 5G communication system when applied to the NR system, since the 5G communication system will use a higher carrier frequency than LTE, such as 38GHz, 72GHz, etc., to achieve greater bandwidth and higher transmission rate Wireless communication. Due to the higher carrier frequency, the wireless signal it transmits experiences a more severe fading during the spatial propagation process, and it is difficult to detect the wireless signal even at the receiving end. For this reason, beamforming technology will be used in 5G communication systems to obtain beams with good directivity to increase the power in the transmission direction, thereby improving the signal-to-interference and noise ratio SINR at the receiving end. In order to improve the communication quality, the beamforming technology is also used on the user equipment (UE) side to generate analog beams in different directions for receiving and sending data.
  • UE user equipment
  • NR Since both the base station and the user equipment use narrow analog beam communication, only when the analog beams used for transmission and reception are aligned will a better communication quality be obtained. Therefore, in the 3GPP RAN1 meeting, it has been determined that the NR will use the beam scanning (Beam Sweeping) process to determine the beam pair between the base station and the UE, and monitor multiple beam pairs during the communication process to improve the robustness of the communication link Sex. Therefore, NR is based on the optimal BPL of the serving cell.
  • Beam Sweeping Beam Sweeping
  • sampling rate control in the measurement and scheduling phase of the serving cell in the DRX state of the NR system For example, for the specific implementation example of the sampling rate control in the measurement and scheduling phase of the serving cell in the DRX state of the NR system:
  • the cycle for scheduling the reception of the serving cell signal is T, that is, the DRX cycle is T.
  • SCS_KHz can take a value of 15/30/120/240, which can be determined when accessing the service cell
  • the metric Metric (optionally one or more of SINR, RSRP, RSRQ) of the best BPL (the best BPL of the serving cell, the determination of the best BPL can be considered as the prior art).
  • Judgment hysteresis mechanism can be used: consecutive M (preset threshold for terminal) times of scheduling all pass the preset threshold before changing the AD sampling rate from large to small; continuous N (preset threshold for terminal) times of scheduling fail
  • the threshold is preset to change the AD sampling rate from small to large. Where, for example, M takes a value of 2, N takes a value of 1, or, for example, M takes a value of 4, N takes a value of 2, and so on.
  • the hysteresis mechanism of the AD sampling rate can be increased, then when the terminal determines to configure the sampling rate to be the second sampling rate for consecutive X times of scheduled reception of the serving cell signal, it is fixed at the larger AD sampling rate, that is, the second sampling rate. sampling.
  • X takes the values 2, 3, 4 and so on.
  • the smaller AD sampling rate refers to selecting a sampling rate that matches the bandwidth smaller than the bandwidth of the serving cell, and is smaller than the larger AD sampling rate.
  • the serving cell bandwidth is 20M
  • the larger AD sampling rate 30.72M
  • the smaller AD sampling rate 15.36M.
  • LTE directly compares the metric Metric of the serving cell with the preset threshold, unlike NR, which compares the metric Metric of the optimal BPL of the serving cell with the preset threshold.
  • NR which compares the metric Metric of the optimal BPL of the serving cell with the preset threshold.
  • the terminal when the terminal is in the DRX state, the terminal adaptively adjusts the AD sampling rate of the received serving cell signal to reduce the standby power consumption of the terminal.
  • the embodiments of the present invention may further include an adaptive AD sampling rate solution for the measurement scheduling phase of the intra-frequency cell and the measurement scheduling phase of the inter-frequency cell.
  • an adaptive AD sampling rate solution for the measurement scheduling phase of the intra-frequency cell and the measurement scheduling phase of the inter-frequency cell may further include an adaptive AD sampling rate solution for the measurement scheduling phase of the intra-frequency cell and the measurement scheduling phase of the inter-frequency cell.
  • the specific implementation examples of the sampling rate control in the measurement scheduling phase of the same frequency or different frequency cells are as follows:
  • the terminal is in the DRX state and the measurement scheduling phase of a co-frequency or inter-frequency cell.
  • the larger AD sampling rate ie, second sampling rate
  • SCS_KHz SCS_KHz
  • the value can be 15/30/120/240, from which the RRM measurement configuration of the frequency can be determined
  • Measure and calculate the metric Metric (optionally one or more of SINR, RSRP, and RSRQ) of the best N BPLs (BPL prioritization can be considered as prior art) for each cell at this frequency.
  • the jth DRX that performs cell measurement scheduling at this frequency receives the cell signal at this frequency, if the optimal N BPL metrics for each cell at this frequency pass the preset threshold, the j + 1 will perform this frequency
  • AD sampling rate adaptation can be performed independently for each of the same frequency and different frequency points.
  • sampling rate control in the measurement scheduling phase of the co-frequency or inter-frequency cell in the DRX state of the LTE system For example, for the specific implementation example of the sampling rate control in the measurement scheduling phase of the co-frequency or inter-frequency cell in the DRX state of the LTE system:
  • the smaller AD sampling rate refers to selecting a sampling rate that matches the bandwidth smaller than the cell measurement bandwidth of this frequency point, and is smaller than the larger AD sampling rate.
  • the serving cell bandwidth is 20M
  • the larger AD sampling rate 30.72M
  • the smaller AD sampling rate 15.36M.
  • LTE directly compares the metric Metric of each cell at this frequency with a preset threshold, and others can refer to the NR system.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal 10 may include a processing unit 101.
  • the detailed description of the processing unit 101 is as follows.
  • the processing unit 101 is configured to configure the terminal to receive the analog-to-digital conversion AD sampling rate of the downlink synchronization signal of the first cell at a first initial sampling rate; the first cell is a serving cell of the terminal, or the first The cell is one or more neighboring cells of the terminal at a designated frequency point;
  • the processing unit 101 is further configured to, when the first metric of the first cell signal of the terminal is better than the first metric threshold, configure the terminal to receive the first downlink signal at an AD sampling rate of the first sample Rate; wherein, the value of the first sampling rate is less than the value of the first initial sampling rate.
  • processing unit 101 is specifically used to:
  • the terminal When the terminal is in the discontinuous reception DRX state, within M DRX cycles in the first time period, when the signal-to-interference and noise ratio SINR of the first cell signal, the reference signal received power RSRP and the reference signal received quality RSRQ When one or more of the metrics is better than the corresponding first metric threshold, configure the terminal to receive the first downlink signal at an AD sampling rate of the first sampling rate; where M is greater than or equal to 1 Integer.
  • the processing unit 101 is specifically used to:
  • the terminal When the terminal is in the DRX state, within M DRX cycles in the first time period, when one or more of the SINR, RSRP, and RSRQ of all adjacent cell signals among the multiple adjacent cell signals When the metric of each item is better than the corresponding first metric threshold, the terminal is configured to receive the first downlink signal with an AD sampling rate of the first sampling rate.
  • processing unit 101 is also used to:
  • the terminal When the second metric of the first cell signal of the terminal is worse than the second metric threshold, configure the terminal to receive an AD sampling rate of the first downlink signal at a second sampling rate; wherein, the second The value of the sampling rate is greater than or equal to the first initial sampling rate.
  • processing unit 101 is specifically used to:
  • the terminal When the terminal is in the DRX state, within N DRX cycles in the second time period, when one or more metrics of SINR, RSRP, and RSRQ of the first cell signal are inferior to the corresponding second
  • configure the terminal When measuring the threshold, configure the terminal to receive an AD sampling rate of the first downlink signal at a second sampling rate; where N is an integer greater than or equal to 1.
  • the processing unit 101 is specifically used to:
  • the terminal When the terminal is in the DRX state, within N DRX cycles in the second time period, when any one of the neighboring cell signals among the plurality of neighboring cell signals is one of SINR, RSRP, and RSRQ, or When the metric of multiple items is inferior to the corresponding second metric threshold, configure the terminal to receive an AD sampling rate of the first downlink signal at a second sampling rate.
  • the downlink synchronization signal is a synchronization signal block SSB or a cell reference signal CRS.
  • the first cell signal is the downlink synchronization signal of the first cell.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and control the terminal, execute the software program, process the data of the software program, etc. For example, it is used to control and execute the process corresponding to the power consumption control method of the terminal in FIG. 3 above.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminals may not have input / output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal after radio frequency processing and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 10 only one memory and processor are shown in FIG. 10. In actual terminal products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiments of the present application.
  • an antenna and a radio frequency circuit with a transceiver function may be regarded as a transceiver unit of a terminal, and a processor with a processing function may be regarded as a processing unit of the terminal.
  • the terminal includes a transceiver unit 201 and a processing unit 202.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, or the like.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the processing unit may be a central processing unit (English: central processing unit, abbreviation: CPU), a network processor (English: network processor, abbreviation: NP), or a combination of CPU and NP.
  • the processing unit may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (English: application-specific integrated circuit, abbreviation: ASIC), a programmable logic device (English: programmable logic device, abbreviation: PLD), or a combination thereof.
  • the PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field programmable logic gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array) logic, abbreviation: GAL) or any combination thereof.
  • the device used to implement the receiving function in the transceiver unit 201 can be regarded as a receiving unit
  • the device used to implement the sending function in the transceiver unit 201 can be regarded as a sending unit, that is, the transceiver unit 201 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, transceiver, or transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the communication device is a chip
  • the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input and output circuit, a communication interface;
  • the processing unit is an integrated processor or microprocessor or integrated circuit on the chip.
  • An embodiment of the present application further provides a computer storage medium, where the computer storage medium may store a program, and when the program is executed, it includes some or all of the steps of the power consumption control method of any terminal described in the foregoing method embodiments.
  • An embodiment of the present application further provides a computer program, the computer program includes instructions, and when the computer program is executed by the computer, the computer can execute some or all steps of any power consumption control method of the terminal.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the above-mentioned unit division is only a logical function division.
  • there may be other division modes for example, multiple units or components may be combined or integrated To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or software function unit.
  • the above integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application may be essentially or part of the contribution to the existing technology or all or part of the technical solution may be embodied in the form of a software product, and the computer software product is stored in a storage medium Includes several instructions to make a computer device (which may be a personal computer, a server or a network device, etc., specifically a processor in the computer device) execute all or part of the steps of the above methods in various embodiments of the present application.
  • the aforementioned storage medium may include: U disk, mobile hard disk, magnetic disk, optical disk, read-only memory (Read-Only Memory, abbreviation: ROM) or random access memory (Random Access Memory, abbreviation: RAM), etc.
  • a medium that can store program code may include: U disk, mobile hard disk, magnetic disk, optical disk, read-only memory (Read-Only Memory, abbreviation: ROM) or random access memory (Random Access Memory, abbreviation: RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种终端的功耗控制方法及相关设备,该方法可包括:配置所述终端接收第一小区的第一下行信号的模数转换AD采样率为第一初始采样率;所述第一小区为所述终端的服务小区,或者所述第一小区为所述终端在指定频点的一个或多个相邻小区;当所述终端的第一小区信号的第一度量优于第一度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第一采样率;其中,所述第一采样率的取值小于所述第一初始采样率的取值。。采用本发明实施例可以降低终端在待机状态下的功耗。

Description

一种终端的功耗控制方法及相关设备 技术领域
本申请涉及通信技术领域,尤其涉及一种终端的功耗控制方法及相关设备。
背景技术
在无线网络中,当有数据需要进行传输时,用户终端(User Equipment,UE)要一直监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),并根据网络侧发送的指示消息对数据进行收发,这样导致UE的功耗和数据传输的时延都比较大。因此3GPP标准协议在LTE系统中引入非连续接收机制(Discontinuous Reception,DRX)节能策略,定义在物理层媒体访问控制(Media Access Control,MAC)。DRX是指终端进行非连续接收,即终端可以周期性地在一段时间里停止监听PDCCH信道,从而达到省电的目的。
按照DRX的工作状态,分为空闲状态IDLE DRX和连接状态ACTIVE DRX。
1、IDLE DRX,也就是当终端(以UE为例)处于IDLE状态下的非连续性接收,由于终端此时处于RRC_IDLE状态(UE初始开机,或者开机后停留在空闲模式下)时,已经没有无线资源控制(Radio Resource Control,RRC)连接以及用户的专有资源,因此IDLE DRX主要是监听寻呼信道与广播信道,只要定义好固定的周期,就可以达到非连续接收的目的。可以理解的是,UE若要监听用户数据信道,则必须从IDLE状态先进入连接状态,即必须先进行下行同步。
2、ACTIVE DRX,也就是UE处在RRC连接(RRC-CONNECTEDConnected)状态下的DRX,该状态下的DRX可以优化系统资源配置,且由于Active DRX状态下存在RRC连接,因此UE要转到监听下行数据的状态的速度非常快,从而节约UE功耗。例如,一些非实时应用、web浏览、即时通信等。UE在一段时间里不需要不停的监听下行数据以及相关处理,即可以理解为UE在网,但是不能进行正常的调度,处于去激活态或者失步态。而由于该状态下依然存在RRC连接,因此UE转到非DRX状态的速度非常快。例如,UE连接模式的四种状态CELL-PCH(寻呼信道)、URA-PCH(寻呼信道)、CELL-FACH(前向接入信道)和CELL-DCH(专用信道)中,CELL-PCH,URA-PCH属于上述ACTIVE DRX状态。
在上述两种DRX的工作状态下,虽然已经大量节省了UE的功耗。但是,如果UE希望进入非DRX状态,则仍然需要在DRX状态下,周期性监听用于进行下行同步的相关信号以与基站建立下行同步,该监听过程同样会导致UE功耗较大。因此,如何进一步减少终端在DRX状态下的功耗,是亟待解决的问题。
发明内容
本发明实施例所要解决的技术问题在于,提供一种终端的功耗控制方法及相关设备,解决了现有技术中在一些通信场景下,终端采样率过大导致的终端待机功耗较大的问题。
第一方面,本发明实施例提供了一种终端的功耗控制方法,可包括:
配置所述终端接收第一小区的第一下行信号的模数转换AD采样率为第一初始采样率; 所述第一小区为所述终端的服务小区,或者所述第一小区为所述终端在指定频点的一个或多个相邻小区;当所述终端的第一小区信号的第一度量优于第一度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第一采样率;其中,所述第一采样率的取值小于所述第一初始采样率的取值。
本发明实施例,通过监测终端的服务小区或相邻小区的信号质量,并在评估出信号质量较好的情况下,利用较小采样率接收对应小区的第一下行信号,不仅可以保证终端接收下行信号的质量,并且还可以降低终端的待机功耗,提升用户体验。
在一种可能的实现方式中,所述终端的第一小区信号的第一度量优于第一度量门限包括:当所述终端处于非连续接收DRX状态下,在第一时间段内的M个DRX周期内,所述第一小区信号的信干噪比SINR、参考信号接收功率RSRP和参考信号接收质量RSRQ中的一项或者多项的度量优于对应的第一度量门限,其中,M为大于或者等于1的整数。
本发明实施例,通过在终端处于DRX状态下,监测该终端所接入的服务小区的信号质量,并在评估出信号质量较好的情况下,利用较小采样率接收下行信号,不仅可以保证终端接收下行信号的质量,并且还可以降低在DRX状态下的待机功耗,提升用户体验。
在一种可能的实现方式中,当所述第一小区为所述终端在指定频点的多个相邻小区;所述第一小区信号为多个相邻小区信号;所述在第一时间段内的M个DRX周期内,所述第一小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量优于对应的第一度量门限,包括:在第一时间段内的M个DRX周期内,所述多个相邻小区信号中的所有相邻小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量均优于对应的第一度量门限。
本发明实施例,通过在终端处于DRX状态下,实时监测该终端在指定频点的多个相邻小区的信号质量,并在评估出所有的相邻小区的信号质量均较好的情况下,则利用较小采样率接收下行信号,如下行同步信号或者接收用于进行下行同步的相关信号等,可以在保证终端接收下行信号的质量的前提下,尽可能的降低在DRX状态下的待机功耗,提升用户体验。
在一种可能的实现方式中,所述方法还包括:当所述终端的第一小区信号的第二度量劣于第二度量门限时,配置所述终端的接收所述第一下行信号的AD采样率为第二采样率;其中,所述第二采样率的取值大于或者等于所述第一初始采样率。
本发明实施例,通过监测终端的服务小区或相邻小区的信号质量,并在评估出信号质量较好的情况下,利用较小采样率接收下行信号,进一步地,在评估出信号质量较差的情况下,利用较大采样率接收下行信号,即无论是在服务小区的信号质量好或差的情况下,都可以在保证终端接收下行信号的质量的前提下,尽可能的降低终端的待机功耗,提升用户体验。
在一种可能的实现方式中,所述终端的第一小区信号的第二度量劣于第二度量门限包括,当所述终端处于DRX状态下,在第二时间段内的N个DRX周期内,所述第一小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限,其中,N为大于或者等于1的整数。
本发明实施例,通过在终端处于DRX状态下,实时监测该终端的服务小区或相邻小区的信号质量,并在评估出信号质量较好的情况下,利用较小采样率接收下行信号,进一步 地,在评估出信号质量较差的情况下,利用较大采样率接收下行信号,即无论是在服务小区的信号质量好或差的情况下,都可以在保证终端接收下行信号的质量的前提下,尽可能的降低在DRX状态下的待机功耗,提升用户体验。
在一种可能的实现方式中,当所述第一小区为所述终端在指定频点的多个相邻小区;所述第一小区信号为多个相邻小区信号;所述在第二时间段内的N个DRX周期内,所述第一小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限,包括:在第二时间段内的N个DRX周期内,所述多个相邻小区信号中的任意一个相邻小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限。
本发明实施例,通过在终端处于DRX状态下,实时监测该终端在指定频点的多个相邻小区的信号质量,并在评估出所有的相邻小区的信号质量均较好的情况下,则利用较小采样率接收下行信号,如下行同步信号或者接收用于进行下行同步的相关信号等,进一步地,在评估出所述多个相邻小区中的任意一个相邻小区的信号质量均较差的情况下,利用较大采样率接收下行信号,即无论是在多个相邻小区的信号质量好或差的情况下,都可以在保证终端接收下行信号的质量的前提下,尽可能的降低在DRX状态下的待机功耗,提升用户体验。
在一种可能的实现方式中,所述第一下行信号为同步信号块SSB或小区参考信号CRS。
本发明实施例,可以应用于不同的通信系统,例如,第一下行信号可以为新空口NR系统中的同步信号块SSB,也可以为长期演进LTE系统中的小区参考信号CRS。
在一种可能的实现方式中,所述第一小区信号为所述第一小区的所述第一下行信号。
本发明实施例,可以通过判断第一小区信号的第一度量是否优于第一度量门限,来判断第一小区的信号质量的好坏。可选的,也可以通过判断第一小区的其他相关信号的第一度量是否优于第一度量门限。
在一种可能的实现方式中,M大于N。可选的,M为大于1的整数,N等于1。
本发明实施例,即在评估服务小区的信号质量是否较好时,可以基于多个DRX周期内测量的相关参数来确定,以避免短暂或偶然的第一度量优于第一度量门限,导致误将采样率调小,从而无法保证采样的信号质量;但在评估服务小区的信号质量是否较差时,则可以只需要基于一个DRX周期内测量的相关参数就来确定,以尽可能避免信号质量可能较差,且采样率未及时调大导致的无法完成下行时频同步的风险。
第二方面,本发明实施例提供了一种终端,可包括:
处理单元,用于配置所述终端接收第一小区的第一下行信号的模数转换AD采样率为第一初始采样率;所述第一小区为所述终端的服务小区,或者所述第一小区为所述终端在指定频点的一个或多个相邻小区;
所述处理单元,还用于当所述终端的第一小区信号的第一度量优于第一度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第一采样率;
其中,所述第一采样率的取值小于所述第一初始采样率的取值。
在一种可能的实现方式中,所述处理单元,具体用于:
当所述终端处于非连续接收DRX状态下,在第一时间段内的M个DRX周期内,当所 述第一小区信号的信干噪比SINR、参考信号接收功率RSRP和参考信号接收质量RSRQ中的一项或者多项的度量优于对应的第一度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第一采样率;其中,M为大于或者等于1的整数。
在一种可能的实现方式中,当所述第一小区为所述终端在指定频点的多个相邻小区;所述第一小区信号为多个相邻小区信号;所述处理单元,具体用于:
当所述终端处于DRX状态下,在第一时间段内的M个DRX周期内,当所述多个相邻小区信号中的所有相邻小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量均优于对应的第一度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第一采样率。
在一种可能的实现方式中,所述处理单元还用于:
当所述终端的第一小区信号的第二度量劣于第二度量门限时,配置所述终端的接收所述第一下行信号的AD采样率为第二采样率;其中,所述第二采样率的取值大于或者等于所述第一初始采样率。
在一种可能的实现方式中,所述处理单元,具体用于:
当所述终端处于DRX状态下,在第二时间段内的N个DRX周期内,当所述第一小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第二采样率;其中,N为大于或者等于1的整数。
在一种可能的实现方式中,当所述第一小区为所述终端在指定频点的多个相邻小区;所述第一小区信号为多个相邻小区信号;所述处理单元,具体用于:
当所述终端处于DRX状态下,在第二时间段内的N个DRX周期内,当所述多个相邻小区信号中的任意一个相邻小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第二采样率。
在一种可能的实现方式中,所述第一下行信号为同步信号块SSB或小区参考信号CRS。
在一种可能的实现方式中,所述第一小区信号为所述第一小区的所述第一下行信号。
在一种可能的实现方式中,当所述终端的第一小区信号既不满足第一度量优于第一度量门限,又不满足第二度量劣于第二度量门限的情况下,控制所述终端保持当前采样率接收所述第一小区的所述第一下行信号。
本发明实施例,当M和N不同时等于1的情况下,即M和N中至少有一个是大于1时,则可能存在既不满足第一度量优于第一度量门限又不满足第二度量劣于第二度量门限的情况。此时,终端可以保持上一个采样率配置结果不变,直到第一度量优于第一度量门限或者第二度量劣于第二度量门限才进行采样率的重新配置。
第三方面,本申请提供一种终端,该终端具有实现上述任意一种终端的功耗控制方法实施例中方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请提供一种终端,该终端中包括处理器,处理器被配置为支持该终端执行第一方面提供的一种控制终端的功耗控制方法中相应的功能。该终端还可以包括存储 器,存储器用于与处理器耦合,其保存该终端必要的程序指令和数据。该终端还可以包括通信接口,用于该终端与其它设备或通信网络通信。
第五方面,本申请提供一种计算机存储介质,用于储存为上述第三方面提供的终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第六方面,本发明实施例提供了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行上述第一方面中任意一项的终端的功耗控制方法中的流程。
第七方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持终端实现上述第一方面中所涉及的功能,例如,生成或处理上述采样调整方法中所涉及的信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其它分立器件。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本发明实施例提供的SS burst set的结构示意图;
图2是本发明实施例提供的一种采样率控制网络架构图;
图3是本发明实施例提供的一种终端的功耗控制方法的流程示意图;
图4是本发明实施例提供的一种DRX周期示意图;
图5是本发明实施例提供的一种服务小区以及相邻小区的采样率控制示意图;
图6是本发明实施例提供的一种采样率控制示意图;
图7是本发明实施例提供的另一种采样率控制示意图;
图8是本发明实施例提供的又一种采样率控制示意图;
图9是本发明实施例提供的一种终端的结构示意图;
图10是本发明实施例提供的另一种终端结构示意图。
具体实施方式
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)资源块(Resource Block,RB):频率上连续12个子载波,时域上一个时隙(slot),称为1个RB。
(2)资源元素/资源粒子(Resource Element,RE):频率上一个子载波及时域上一个符号(symbol),称为一个RE。
(3)正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)是多载波调制的一种,由于其频带利用率高,抗多径能力强,能有效抑制符号间干扰和信道间干扰,特别适用于无线高速通信。OFDM系统采用多个正交子载波,要求在每个子载波频谱最大值位置,其余所有子信道的频谱取值恰好为零,输出信号是多个正交子载波的叠加。
(4)子载波:LTE和NR均采用了OFDM技术。OFDM则是每个Symbol都对应一个 正交的子载波,通过载波间的正交性来对抗干扰。协议规定,通常情况下子载波间隔15khz,正常循环前缀CP(Cyclic Prefix)情况下,每个子载波的一个slot有7个symbol;扩展CP情况下,每个子载波的一个slot有6个symbol。
(5)CP:中文可译为循环前缀,它包含的是OFDM符号的尾部重复,CP主要用来对抗实际环境中的多径干扰。不加CP的话,由于多径导致的时延扩展会影响子载波之间的正交性,造成符号间干扰。
(6)物理广播信道(Physical Broadcast Channel,PBCH):PBCH向UE提供基本的系统信息,UE解码PBCH上的信息,以便接入小区。例如,PBCH提供的信息可包括:下行系统带宽、无线电帧内的定时信息、同步信号脉冲发送的周期性、系统帧号。
(7)带宽:在模拟信号系统又叫频宽,是指在固定的时间可传输的资料数量,亦即在传输管道中可以传递数据的能力。通常以每秒传送周期或赫兹(Hz)来表示。
(8)快速傅氏变换(Fast Fourier Transformation,FFT),为离散傅氏变换(DFT)的快速算法。它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。采样点数越多FFT计算精度越高,但计算量增大,故要选择合适的采样点数,当采样点数等于2次幂数时,可用快速傅里叶变换法,极大提高运算速度,所以一般设定采样点数为2次幂数,实际采样数量不够时自动以0填补。快速傅氏逆变换Inverse-Fast Fourier Transformation,IFFT)则为FFT的逆过程。IFFT和FFT可以在数字域中实现OFDM信号的调制(保证输出OFDM信号的各子载波间相互正交)和解调。
(9)有限冲激响应(Finite Impulse Response,FIR)滤波器,又称为非递归型滤波器,是数字信号处理系统中最基本的元件,它可以在保证任意幅频特性的同时具有严格的线性相频特性,同时其单位抽样响应是有限长的,因而滤波器是稳定的系统。
(10)信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR),是指接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值;可以简单的理解为“信噪比”。
(11)参考信号接收功率(Reference Signal Receiving Power,RSRP),是在某个符号(Symbol)内承载参考信号(Reference Signal)的所有资源粒(Resource Element,RE)上接收到的信号功率的平均值。
(12)接收信号强度指示(Received Signal Strength Indicator,RSSI),是在这个Symbol内接收到的所有信号(包括导频信号和数据信号,邻区干扰信号,噪音信号等)功率的平均值,是指接收的信号强度指示,是无限发送层的可选用部分,用来判定链接的质量,以及是否增大广播发送强度。
(13)参考信号接收质量(Reference Signal Receiving Quality,RSRQ),是RSRP和RSSI的比值,因为两者测量所基于的带宽可能不同,可以用相关系数来调整,也就是RSRQ=N*RSRP/RSS。
(14)无线资源管理(Radio Resource Management,RRM)的目标是在有限带宽的条件下,为网络内无线用户终端提供业务质量保障,其基本出发点是在网络话务量分布不均匀、信道特性因信道衰弱和干扰而起伏变化等情况下,灵活分配和动态调整无线传输部分和网络的可用资源,最大程度地提高无线频谱利用率,防止网络拥塞和保持尽可能小的信 令负荷。无线资源管理(RRM)的研究内容主要包括以下几个部分:功率控制、信道分配、调度、切换、接入控制、负载控制、端到端的QoS和自适应编码调制等。
(15)采样(sampling),由于模拟信号的时间取值是连续无限长的,数字信号的时间取值是离散有限长的。若要对模拟信号用计算机或者计算芯片进行数字化处理,就必须将模拟信号转变为计算机可以识别的离散有限长的信号。一般把从连续信号到离散信号的过程叫采样,是信号在时间上的离散化,即按照一定时间间隔△t在模拟信号x(t)上逐点采取其瞬时值,是进行数字信号处理的前提。
(16)采样频率(sampling rate),就是采样时间间隔,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样频率的倒数是采样周期或者叫做采样时间,它是采样之间的时间间隔。通俗的讲采样频率是指计算机每秒钟采集多少个信号样本。而采样率是将模拟量转换为数字量时对信号转换的频率(即每秒采集次数),这个频率越高,单位时间内对信号的采集就越多,信号中的信息就保留越多,丢失信息就少,转换出的数字量就能准确反映信号的数值。
(17)采样定理,又称香农采样定理、奈奎斯特采样定理,是信息论特别是通讯与信号处理学科中的一个重要基本结论。根据奈奎斯特采样定律,采样频率必须大于被采样信号带宽的两倍,才能避免频率混叠,换句话说就是采样频率必须至少是被采样信号中最大频率分量频率的两倍,否则就不能从信号采样中恢复原始信号。例如,如果信号的带宽是100Hz,那么为了避免混叠现象采样频率必须大于200Hz。
在通信系统中,当终端(如UE)处于非连续接收(Discontinuous Reception,DRX)状态下,如果希望进入非DRX状态,需要先与基站建立下行同步。在建立下行同步之后,UE便可以接收基站发送的广播信息,以获取基站的各种配置参数。如果UE有数据需要发送给基站,则UE发起随机接入(RACH)过程与基站建立上行同步。
在NR(New Radio)系统中,为了提高网络设备的覆盖范围,保证终端能够快速获得接入网络所需的同步信号、系统信息等,需要将这些信息进行周期性广播。在NR中,一个同步信号块(Synchronization Signal block,SS block或SSB)中包含了主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)和物理广播信道(Physical Broadcast channel,PBCH),SS block可能占据多个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,其与载波频段和子载波间隔相关,UE通过接收周期性广播的SS block可以完成与服务小区的下行同步。
如图1所示,图1为本申请提供的SS burst set的结构示意图,其中,在NR系统中,每个SSB占4个OFDM符号(OFDM symbol),由同步信号(PSS/SSS)和PBCH组成。SSB符号的子载波间隔(subcarrier spacing,SCS)可取值15KHz、30KHz、120KHz、240KHz,其中15KHz、30KHz用于6GHz以下频段,120KHz、240KHz用于6GHz以上频段。NR SSB中同步信号(PSS/SSS)所在符号占12RB(每个RB包含12个子载波),共144个子载波;PBCH符号占20RB,共240个子载波。SSS所在符号两边还各有4个RB的PBCH。
需要说明的是,由于NR中引入带宽部分(Bandwidth Part,BWP)的特性,使得UE的工作带宽灵活可变,UE无需支持全部系统带宽,只需要满足最低带宽要求即可,以支持窄 带宽能力UE或节省UE功耗。例如,第一时刻,UE的业务量较大,系统给UE配置一个大带宽(BWP1);第二时刻,UE的业务量较小,系统给UE配置了一个小带宽(BWP2),满足基本的通信需求即可。其中,每个BWP带宽应该不小于SS Block的带宽,但是可以包含或者不包含SS Block。例如,当NR系统中的UE在DRX状态下时,可能在短时间内无需进行数据业务的传输,因此系统可以给UE配置SS Block的带宽,以便于UE在需要进行下行同步时可以通过SS Block进行下行的时频同步即可。
针对OFDM信号的发生,发射端(如基站)通常需要对待发送信息进行IFFT处理,将频域信号变为时域信号。为了便于计算机利用IFFT进行处理,OFDM符号的抽样点数一般是2的N次方个,且理论上需要IFFT抽样点个数大于子载波个数,才能保证变换后没有信息丢失。因此,假设OFDM信号中有1200个子载波,且子载波间隔为15KHZ,那么2的N次方中大于1200的最小抽样点数为2048,因此,需要抽取2048点个抽样点即2048个子载波进行IFFT运算,其中1200抽样点传输有用信息,剩下的抽样点默认为零。在发射端的空口传输之前要经过滤波器,只将携带有用信息的信号发射出去(因此抽样点数不会影响发射端的带宽);而接收端(如UE)收到之后再做还原,需要将另外的点数补上(因为没有信息量,所以为确知信号),因此确定FFT采样信号带宽为30.72M(15KHZ*2048)。但是实际上只有中间的18M(15KHZ*1200)是有效信息。且另一方面,根据奈奎斯特采样定理,实信号的采样频率必须大于等于信号最大频率的2倍,但是OFDM是复信号,在频谱上是单边的,因此,只需满足1倍采样率就不至于造成混叠,即真正信号最大频率是小于20MHz的,所以30.72MHz的采样频率是完全满足要求的。
基于上述,若NR系统中的发射端的FIR滤波器对上述SS Block中的PBCH所在的OFDM符号按照输入256个采样点,输出240个采样点来设计(即滤波到PBCH带宽也即是SS Block带宽),难度会比较大。但如果按照输入512个采样点,输出240个采样点设计,则容易实现且不影响性能。同理,发射端的FIR滤波器对同步信号(PSS/SSS)所在的OFDM符号按照输入256个采样点,输出144个采样点设计(即滤波到同步信号带宽),容易实现且不影响性能。基于以上所述,发射端滤波到PBCH带宽对应的接收端的FIR滤波器的输入信号采样率,是发射端滤波到同步信号带宽的对应的接收端的FIR滤波器的输入信号采样率的2倍。
综上,无论NR高频还是NR低频场景,终端处于DRX状态时都需要进行服务小区的时频跟踪。从性能上讲,终端采用PBCH带宽的信号会比只用同步信号带宽的信号进行时频跟踪的性能好2dB+,但此时终端对接收信号的模拟数字(analog digital,AD)转换的采样率(简称AD采样率)会大一倍。在服务小区信号质量好时,性能不再受限,此时仍采用大的AD采样率会影响终端的待机功耗。
而在LTE系统中,UE的带宽需要跟系统带宽保持一致。例如,当UE初始接入服务小区时,通过检测PSS和SSS解码出物理小区ID,同时根据PSS和SSS的位置确定下行的子帧时刻,并进一步通过小区参考信号(Cell Reference Signal,CRS)进行更加精确的下行时频同步,之后通过解广播PBCH获知服务小区配置的带宽(Bandwidth:1.4M、3M、5M、10M、15M、20M)等系统信息,成功驻留该小区。此后,当终端处于DRX状态下时,则需要基于该服务小区的CRS进行时频跟踪以进行下行同步,而LTE的CRS在每个子帧上 都发射,而且是跨整个系统带宽的。所以,UE在进行下行时频同步时,则需要采用大的AD采样率(和服务小区的系统带宽相匹配的采样率)接收信号,从而影响待机功耗。
综上,本申请可以解决的技术问题包括:针对NR系统和LTE系统等无线通信系统,如何让终端在DRX状态下,尽可能以较小的待机功耗成功进行下行同步。可以理解的是,终端在DRX状态下还需要进行同/异频相邻小区的搜索和测量。因此,本申请也可以对终端在同/异频相邻小区的测量调度的过程中待机功耗过高的问题进行解决。
为了便于理解本发明实施例,下面先对本发明实施例所基于的通信网络架构进行描述。请参阅图2,图2为本发明实施例提供的一种采样率控制网络架构图,该通信网络架构中包含了核心网、网络设备(例如基站)、终端(例如UE)。其中
终端,可为接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。例如,可以是蜂窝电话、无绳电话、智能手机、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、智能手环、智能穿戴设备、MP3播放器(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面3)播放器、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、路边单元(Road Side Unit)、具有通信能力的物联网设备以及未来5G网络中的终端等。
基站,也可称为网络侧设备,可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是LTE系统中的演进型基站(Evolutional Node B,eNB),以及5G系统、新空口(NR)系统中的基站gNB。另外,基站也可以为接入点(Access Point,AP)、传输接收点(Transmission Reception Point,TRP)、中心单元(Central Unit,CU)或其它网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
核心网,核心网主要为终端和基站间的通信提供数据支持和相关服务。
可以理解的是,本发明实施例可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)或下一代通信系统如5G无线接入(New Radio,NR)系统(简称5G NR系统),机器与机器通信(Machine to Machine,M2M)系统等。还可以理解的是,本发明实施例具体所应用的系统包括但不仅限于上述通信系统,只要可以应用本发明中的终端的功耗控制方法的系统均属于本发明所保护和涵盖的范围。
可以理解的是,图2中的通信系统架构只是本发明实施例中的一种示例性的实施方式,本发明实施例中的通信系统架构包括但不仅限于以上通信系统架构。
下面结合本申请中提供的终端的功耗控制方法的实施例,对本申请中提出的技术问题进行分析和解决。
请参见图3,是本申请实施例提供的一种终端的功耗控制方法的流程示意图,可应用于上述图2中所述的通信系统,下面将结合附图3从终端和服务小区或指定频点的相邻小区的交互侧进行描述,该方法可以包括以下步骤S301-步骤S302,可选的,还可以包括步骤S303。
步骤S301:配置所述终端接收第一小区的第一下行信号的模数转换AD采样率为第一初始采样率。
具体地,所述第一小区为所述终端的服务小区,或者所述第一小区为所述终端在指定频点的一个或多个相邻小区;第一初始采样率可以为根据系统等要求预设的采样率,也可以为满足所述第一下行信号的带宽要求的最小采样率。其中,满足所述第一下行信号带宽要求的最小采样率,是指基于实际的通信系统,并遵循采样定理得到的满足该第一下行信号的带宽要求的最低采样率。可以理解的是,当通信系统不同,或采用不同的信号处理方式,针对同样大小的信号带宽计算出的最小采样率可能会不同,本发明实施例对最小采样率也即是第一初始采样率不作具体限定。
可选的,所述第一下行信号为同步信号块SSB或小区参考信号CRS。
在一种可能的实现方式中,所述第一下行信号为新空口NR系统中的同步信号块SSB,所述同步信号块包括SSB主同步信号PSS、辅同步信号SSS和物理广播信道PBCH;若所述终端通过最优波束对BPL接入服务小区或相邻小区;则所述第一下行信号为所述BPL的同步信号块SSB,所述终端的第一小区信号的第一度量为针对所述BPL的SSB的第一度量;所述第一采样率为满足SSB或PSS带宽要求的最小采样率,所述第二采样率为满足PBCH带宽要求的最小采样率。即本发明实施例中的终端的功耗控制方法,应用于NR系统中时,通过评估终端的最优波束BPL的信号质量来对服务小区的信号质量进行评估,并且第一采样率可以为满足SSB或PSS带宽要求的最小采样率,第二采样率为满足PBCH带宽要求的最小采样率。
例如,基于前述所述的NR系统中采用IFFT/FFT处理的OFDM信号,由于NR SSB中同步信号(PSS/SSS)也即是第一下行信号,所在符号占12RB共144个子载波,PBCH符号占20RB共240个子载波。基于前述分析若终端滤波到PBCH带宽也即是SS Block带宽,则第一下行信号的SCS取值对应的最小样率也即是第一初始采样率之间的关系可以如下:SCS为15KHZ时对应的AD采样频率即第一初始采样率为3.84MHZ(15KHZ*256),SCS为30KHZ时对应的第一初始采样率为7.68MHZ(30KHZ*256),SCS为120KHZ时对应的第一初始采样率为30.72MHZ(120KHZ*256),SCS为240KHZ时对应的第一初始采样率为61.44MHZ(240KHZ*256)。
在一种可能的实现方式中,所述下行同步信号为LTE系统中的CRS信号,所述满足所述第一下行信号带宽要求的最小采样率为满足所述LTE系统带宽的最小采样率。即本发明实施例中的终端的功耗控制方法,应用于LTE系统中时,通过评估服务小区的信号质量来对服务小区的信号质量进行评估,并且满足所述第一下行信号带宽要求的最小采样率为满 足所述LTE系统带宽的最小采样率。
例如,基于前述所述的LTE系统中采用IFFT/FFT处理的OFDM信号,而小区参考信号CRS也即是第一下行信号为全带宽信号,其频点带宽与对应的最小样率也即是第一初始采样率之间的关系可以如下:频点带宽为20MHZ时对应的AD采样频率即第一初始采样率为30.72MHZ,频点带宽为15MH时对应的第一初始采样率为23.04MHZ,频点带宽为10MHZ时对应的AD采样频率为15.36MHZ;频点带宽为5MHZ时对应的第一初始采样率为7.68MHZ;频点带宽为3MHZ时对应的第一初始采样率为3.84MHZ;频点带宽为1.4MHZ时对应的第一初始采样率为1.92MHZ;也即是此处不再赘述。
步骤S302:当所述终端的第一小区信号的第一度量优于第一度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第一采样率。
具体地,所述第一采样率的取值小于所述第一初始采样率的取值。即通过在该终端所接入的服务小区或指定频点的相邻小区的信号质量较好的情况下,配置并利用较小采样率接收第一下行信号,不仅可以保证终端接收下行信号的质量,还可以降低在终端的功耗,提升用户体验。即本发明实施例中,可以通过预设规则测量并判断服务小区或相邻小区信号质量的好坏,如果判断出信号质量较好时,则采用较小采样率进行采样,即在保证了采样信号可以满足要求的同时,又可以减少终端的待机功耗。
可选的,所述第一小区信号为所述第一小区的所述第一下行信号。即可以通过判断第一小区信号的第一度量是否优于第一度量门限,来判断第一小区的信号质量的好坏。可选的,也可以通过判断第一小区的其他相关信号的第一度量是否优于第一度量门限。即第一小区信号可以是第一下行信号的本身,也可以是预测或帮助判断第一下行信号质量好坏的其它信号。
在一种可能的实现方式中,所述终端的第一小区信号的第一度量优于第一度量门限包括:当所述终端处于非连续接收DRX状态下,在第一时间段内的M个DRX周期内所述服务小区的信干噪比SINR、参考信号接收功率RSRP和参考信号接收质量RSRQ中的一项或者多项的度量优于对应的第一度量门限,其中,M为大于或者等于1的整数。可选的,所述第一下行信号用于所述终端与所述服务小区进行下行同步。其中,DRX周期则是指所述终端的DRX调度周期,请参见图4,图4为本发明实施例提供的一种UE调度周期示意图,其中UE在空闲态以DRX周期进行寻呼监听,以进行下行同步。第一时间段内的M个DRX周期内所述服务小区的SINR、RSRP和RSRQ中的一项或者多项的度量优于对应的第一度量门限,则表示在预设的时间范围内,一次或者连续多次测量的相关参数需要大于第一度量门限。例如,当所述相关参数包括SINR,则所述第一度量门限包括SINR的第一度量门限值;当所述相关参数包括SINR和RSRP,则所述第一度量门限包括SINR的第一度量门限值和RSRP的第一度量门限值。以此类推,其它情况不再穷举。
本发明实施例通过在终端处于DRX状态下,监测该终端的服务小区或相邻小区的信号质量,并在评估出信号质量较好的情况下,利用较小采样率接收下行同步信号或者接收用于进行下行同步的相关信号,不仅可以保证终端接收下行信号的质量,并且还可以降低在DRX状态下的待机功耗,提升用户体验。
可选的,针对连续接收状态下,同样也可以进行本发明实施例中的采样率(AD采样率) 的调整,但是由于在终端进行数据等业务传输过程中,主要的功耗消耗在了传输数据业务上,因此进行信号采样的功率只占据了整个UE功耗的很小一部分,所以,本发明实施例主要针对终端处于非连续接收DRX状态进行讨论。
在一种可能的实现方式中,当所述第一小区为所述终端在指定频点的多个相邻小区;所述第一小区信号为多个相邻小区信号;所述在第一时间段内的M个DRX周期内,所述第一小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量优于对应的第一度量门限,包括:在第一时间段内的M个DRX周期内,所述多个相邻小区信号中的所有相邻小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量均优于对应的第一度量门限。
具体地,终端处于DRX状态下对指定频点的多个相邻小区(包括同频相邻小区和/或异频相邻小区)的测量调度,不同于对服务小区的测量调度。终端需要针对某个频点,进行该频点的所有相邻小区的搜索和测量,因此评估终端所接入的服务小区的相邻小区的第一度量或第二度量包括评估针对某个频点(包括同频或异频)搜索测量的所有相邻小区的相关参数。参见图5,图5是本发明实施例提供的一种服务小区以及相邻小区的采样率控制示意图,终端对服务小区、同频相邻小区以及异频相邻小区的测量调度周期可能相同也可以能不同。并且终端针对服务小区、同频小区或异频小区进行信号质量评估的时刻也不同,以及对应的调整相应下行信号(第一下行信号)的采样率的时刻也不同。终端分别针对服务小区或者同/异频相邻小区的测量调度时间段内的采样率的调整,可以降低终端在服务小区、同频、异频小区测量调度时间段内的待机功耗。
步骤S303:当所述终端的第一小区信号的第二度量劣于第二度量门限时,配置所述终端的接收所述第一下行信号的AD采样率为第二采样率。
具体地,所述第二采样率的取值大于或者等于所述第一初始采样率。即通过实时监测该终端的服务小区或指定频点的相邻小区的信号质量,并在评估出信号质量较好的情况下,利用较小采样率接收第一下行信号,进一步地,在评估出信号质量较差的情况下,利用较大采样率接收第一下行信号,无论是在服务小区/相邻小区的信号质量好或差的情况下,都可以在保证终端接收下行信号的质量的前提下,尽可能的降低待机功耗,提升用户体验。
在一种可能的实现方式中,所述终端的第一小区信号的第二度量劣于第二度量门限包括,当所述终端处于DRX状态下,在第二时间段内的N个DRX周期内,所述第一小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限,其中,N为大于或者等于1的整数。本发明实施例,通过在终端处于DRX状态下,实时监测该终端的服务小区或相邻小区的信号质量,并在评估出信号质量较好的情况下,利用较小采样率接收下行同步信号或者接收用于进行下行同步的相关信号,进一步地,在评估出信号质量较差的情况下,利用较大采样率接收下行同步信号或者接收用于进行下行同步的相关信号,无论是在服务小区或相邻小区的信号质量好或差的情况下,都可以在保证终端接收下行信号的质量的前提下,尽可能的降低在DRX状态下的待机功耗,提升用户体验。
在一种可能的实现方式中,当所述第一小区为所述终端在指定频点的多个相邻小区;所述第一小区信号为多个相邻小区信号;所述在第二时间段内的N个DRX周期内,所述第一小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限,包括:在第二时间段内的N个DRX周期内,所述多个相邻小区信号中的任意一个相邻小 区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限。
例如,当终端针对某个频点的RRM测量列表中的所有小区的信号质量都好时,按较小的AD采样率接收此频点小区信号。否则,按较大的AD采样率接收此频点小区信号。具体地,此频点RRM测量列表中的所有小区的信号质量都好的情况包括,每个小区的所述相关参数(可选SINR、RSRP、RSRQ中的一个或多个)度量Metric与预设门限比较,都大于或等于门限则判为质量好,否则判为质量差。比如,在NR系统中,RRM测量列表中每个小区选取最优的Z个BPL的度量Metric,在LTE系统中则可以直接比较。
本发明实施例,可以分别单独对服务小区和相邻小区的信号质量进行监测,也分别基于基于评估的信号质量的好坏,对终端在服务小区或者相邻小区接收下行信号的采样率进行调整。可选的,也可以同时对服务小区和相邻小区的信号质量进行监测,即在终端处于DRX状态下,除了实时监测该终端所接入的服务小区的信号质量,并基于评估的信号质量的好坏,对采样率进行调整,还进一步地对服务小区的相邻小区的信号质量进行监测,也基于评估的信号质量的好坏,对终端在该相邻小区接收下行信号的采样率进行调整。
需要说明的是,本申请中的第一时间段、第二时间段可以相等也可以不等,本申请对此不作具体限定。上述参数的值均可以是根据一定的规则或者算法预先得到并设置的。
在一种可能的实现方式中,N与M的取值可以相等也可以不等。可选的,M为大于1的整数,N等于1,即在评估服务小区的信号质量是否较好时,可以基于多个DRX周期内测量的相关参数来确定,以避免短暂或偶然的第一度量优于第一度量门限,导致误将采样率调小,从而无法保证采样的信号质量;但在评估服务小区的信号质量是否较差时,则可以只需要基于一个DRX周期内测量的相关参数就来确定,以尽可能避免信号质量可能较差,且采样率未及时调大导致的无法完成下行时频同步的风险。
在一种可能的实现方式中,所述配置所述终端的接收所述第一下行信号的AD采样率为第二采样率之后,可以控制在连续X个DRX周期采用所述第二采样率接收所述第一下行信号,X为大于或者等于1的整数。即通过在终端处于DRX状态下,实时监测该终端所接入的服务小区的信号质量,并在评估出信号质量较差的情况下,控制在连续X个DRX周期内均利用较大采样率,接收第一下行信号例如下行同步信号或者接收用于进行下行同步的相关信号,以增强系统的鲁棒性。
在一种可能的实现方式中,当所述终端的第一小区信号既不满足第一度量优于第一度量门限,又不满足第二度量劣于第二度量门限的情况下,控制所述终端保持当前采样率接收所述第一小区的所述第一下行信号。本发明实施例,当M和N不同时等于1的情况下,即M和N中至少有一个是大于1时,则可能存在既不满足第一度量优于第一度量门限又不满足第二度量劣于第二度量门限的情况。此时,终端可以保持上一个采样率配置结果不变,直到第一度量优于第一度量门限或者第二度量劣于第二度量门限才进行采样率的重新配置。
例如,当M=1,且N=1;请参见图6,图6为本发明实施例提供的一种采样率控制示意图,图6中,每一个DRX周期所测量的信号质量将决定下一个DRX周期所对应的采样率。
例如,当M大于1,且N=1或者M=1,N大于1;请参见图7,图7为本发明实施例 提供的另一种采样率控制示意图,即多个DRX周期可能决定下一个DRX周期的采样率。进一步地,例如,当M大于1,且N=1,或者M=1,N大于1;且X=2;请参阅图8,图8为本发明实施例提供的又一种采样率控制示意图,即多个DRX周期可能决定后续多个DRX周期的采样率。
在上述步骤S302和步骤S303中,当应用于NR系统中时,由于5G通信系统中将会采用相对于LTE更高的载波频率,如38GHz、72GHz等,来实现更大带宽、更高传输速率的无线通信。由于载波频率较高,使得其发射的无线信号在空间传播过程中经历更加严重的衰落,甚至在接收端难以检测出该无线信号。为此,5G通信系统中将采用波束赋形(beamforming)技术来获得具有良好方向性的波束,以提高在发射方向上的功率,从而改善接收端的信干噪比SINR。为了提高通信质量,在用户设备(User equipment,UE)侧也会使用波束赋形技术来产生不同方向上的模拟波束,用于接收和发送数据。由于基站和用户设备都会使用较窄的模拟波束通信,所以只有当用于发送和接收的模拟波束对准时才会获得更好的通信质量。因此,在3GPP RAN1会议中已确定NR中会用波束扫描(Beam sweeping)过程来确定基站和UE之间的波束对,并在通信过程中监视多个波束对,以提高通信链路的鲁棒性。因此NR是基于服务小区最优BPL进行。
例如,针对NR系统中DRX状态下,服务小区测量调度阶段的采样率控制的具体实施举例:
1)终端处于DRX状态时,记调度接收服务小区信号的周期为T,即DRX周期为T。
2)第1次调度接收服务小区信号时,按较大的AD采样率=512*SCS_KHz(SCS_KHz可取值15/30/120/240,在接入服务小区时可确定)接收服务小区信号(如第一下行信号)。计算服务小区最优BPL(the best BPL,最优BPL的确定可认为是现有技术)的度量Metric(可选SINR、RSRP、RSRQ中的一个或多个)。如果服务小区最优BPL所选度量Metric都通过预设门限(如SINR>=预设门限a,RSRP>=预设门限b,RSRQ>=预设门限c),则第2次调度接收服务小区信号时,按较小的AD采样率=256*SCS_KHz接收服务小区信号。
3)第j次调度接收服务小区信号时,如果服务小区最优BPL度量Metric通过预设门限,则第j+1次调度接收服务小区信号时,按较小的AD采样率=256*SCS_KHz接收服务小区信号。否则,按较大的AD采样率=512*SCS_KHz接收服务小区信号。
4)可以采用判断迟滞机制:连续M(为终端预设门限)次调度都通过预设门限,才将AD采样率由大变为小;连续N(为终端预设门限)次调度都未通过预设门限,才将AD采样率由小变为大。其中,例如M取值为2,N取值为1,或者,例如M取值为4,N取值为2等。
5)可以增加AD采样率的迟滞机制,则终端在确定将采样率配置为第二采样率之后的连续X次调度接收服务小区信号时都固定按较大的AD采样率即第二采样率进行采样。例如,X取值为2、3、4等。
□例如,针对LTE系统中DRX状态下,服务小区测量调度阶段的采样率控制的具体实施举例:
1)较大的AD采样率(即第二采样率)是指至少为与服务小区带宽匹配的采样率:例如,20M/15M带宽时,AD采样率>=30.72M,10M带宽时,AD采样率>=15.36M,5M带宽时,AD采样率>=7.68M,3M带宽时,采样率>=3.84M,1.4M带宽时,采样率>=1.92M。
2)较小的AD采样率(即第一采样率)是指选取比服务小区带宽更小带宽所匹配的采样率,并且小于较大的AD采样率。比如:服务小区带宽20M,较大AD采样率=30.72M,较小的AD采样率=15.36M。
3)LTE直接将服务小区的度量Metric与预设门限比较,不像NR时是将服务小区最优BPL的度量Metric与预设门限比较。其它可参考NR系统的相关表述,在此不再赘述。
本发明实施例,当终端处于DRX状态时,终端自适应的调整接收服务小区信号的AD采样率,减少终端的待机功耗。
可选的,本发明实施例还可以包括终端对同频小区测量调度阶段、异频小区测量调度阶段的自适应AD采样率方案。在上述步骤S302和步骤S303中,分别以NR系统和LTE系统中同频、异频小区对应的采样率的控制进行举例。
例如,针对NR系统中DRX状态下,同频或异频小区测量调度阶段的采样率控制的具体实施举例:
1)终端处于DRX状态下某同频或异频小区测量调度阶段。
2)第1个进行此频点小区测量调度的DRX接收此频点小区信号时(即第一下行信号),按较大的AD采样率(即第二采样率)=512*SCS_KHz(SCS_KHz可取值15/30/120/240,由此频点的RRM测量配置可确定)接收此频点小区信号,进行此频点小区搜索,并对搜到的小区及RRM测量列表内的小区进行测量,计算此频点各个小区的最优N个BPL(BPL优先级排序可认为是现有技术)的度量Metric(可选SINR、RSRP、RSRQ中的一个或多个)。如果此频点各个小区的最优Z个BPL所选度量Metric都通过预设门限(例如SINR>=预设门限a,RSRP>=预设门限b,RSRQ>=预设门限c),则第2个进行此频点小区测量调度的DRX接收此频点小区信号时,按较小的AD采样率(即第一采样率)=256*SCS_KHz接收此频点小区信号。
3)第j个进行此频点小区测量调度的DRX接收此频点小区信号时,如果此频点各个小区最优N个BPL度量Metric通过预设门限,则第j+1个进行此频点小区测量调度的DRX接收此频点小区信号时,按较小的AD采样率=256*SCS_KHz接收此频点小区信号。否则,按较大的AD采样率=512*SCS_KHz接收此频点小区信号。
4)可以增加如下迟滞机制:连续M(为终端预设门限)个进行此频点小区测量调度的DRX都通过预设门限,才将AD采样率由大变为小;连续N(为终端预设门限)个进行此频点小区测量调度的DRX都未通过预设门限,才将AD采样率由小变为大。
可以理解的是,各个同频、异频频点可以单独进行AD采样率自适应。
例如,针对LTE系统中DRX状态下,同频或异频小区测量调度阶段的采样率控制的具体实施举例:
1)较大的AD采样率(即第二采样率)是指至少为与此频点小区测量带宽匹配的采样 率:20M/15M带宽时,AD采样率>=30.72M,10M带宽时,AD采样率>=15.36M,5M带宽时,AD采样率>=7.68M,3M带宽时,采样率>=3.84M,1.4M带宽时,采样率>=1.92M。
2)较小的AD采样率(即第一采样率)是指选取比此频点小区测量带宽更小带宽所匹配的采样率,并且小于较大的AD采样率。比如:服务小区带宽20M,较大AD采样率=30.72M,较小的AD采样率=15.36M。
3)LTE直接将此频点各个小区的度量Metric与预设门限比较,其它可参考NR系统。
上述详细阐述了本发明实施例的方法,下面提供了本发明实施例的相关装置。
请参见图9,图9是本发明实施例提供的一种终端的结构示意图,该终端10可以包括处理单元101,其中,处理单元101的详细描述如下。
处理单元101,用于配置所述终端接收第一小区的下行同步信号的模数转换AD采样率为第一初始采样率;所述第一小区为所述终端的服务小区,或者所述第一小区为所述终端在指定频点的一个或多个相邻小区;
处理单元101,还用于当所述终端的第一小区信号的第一度量优于第一度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第一采样率;其中,所述第一采样率的取值小于所述第一初始采样率的取值。
在一种可能的实现方式中,处理单元101,具体用于:
当所述终端处于非连续接收DRX状态下,在第一时间段内的M个DRX周期内,当所述第一小区信号的信干噪比SINR、参考信号接收功率RSRP和参考信号接收质量RSRQ中的一项或者多项的度量优于对应的第一度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第一采样率;其中,M为大于或者等于1的整数。
在一种可能的实现方式中,当所述第一小区为所述终端在指定频点的多个相邻小区;所述第一小区信号为多个相邻小区信号;处理单元101,具体用于:
当所述终端处于DRX状态下,在第一时间段内的M个DRX周期内,当所述多个相邻小区信号中的所有相邻小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量均优于对应的第一度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第一采样率。
在一种可能的实现方式中,处理单元101还用于:
当所述终端的第一小区信号的第二度量劣于第二度量门限时,配置所述终端的接收所述第一下行信号的AD采样率为第二采样率;其中,所述第二采样率的取值大于或者等于所述第一初始采样率。
在一种可能的实现方式中,处理单元101,具体用于:
当所述终端处于DRX状态下,在第二时间段内的N个DRX周期内,当所述第一小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第二采样率;其中,N为大于或者等于1的整数。
在一种可能的实现方式中,当所述第一小区为所述终端在指定频点的多个相邻小区;所述第一小区信号为多个相邻小区信号;处理单元101,具体用于:
当所述终端处于DRX状态下,在第二时间段内的N个DRX周期内,当所述多个相邻 小区信号中的任意一个相邻小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第二采样率。
在一种可能的实现方式中,所述下行同步信号为同步信号块SSB或小区参考信号CRS。
在一种可能的实现方式中,所述第一小区信号为所述第一小区的所述下行同步信号。
需要说明的是,本发明实施例中所描述的终端10中各功能单元的功能可参见上述图1-图8中所述的方法实施例的相关描述,此处不再赘述。
图10是本申请实施例提供的另一种终端结构示意图。如图10所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等,例如用于控制执行上述图3中终端的功耗控制方法对应的流程,具体可参见上述相关部分的描述。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图10所示,终端包括收发单元201和处理单元202。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。处理单元可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。处理单元还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。可选的,可以将收发单元201中用于实现接收功能的器件视为接收单元,将收发单元201中用于实现发送功能的器件视为发送单元,即收发单元201包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。当所述通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以 是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
需要说明的是,本发明实施例中所描述的设备中各功能单元的功能可参见图1-图8中所述的方法实施例中终端的相关功能的描述,此处不再赘述。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任意一种终端的功耗控制方法的部分或全部步骤。
本申请实施例还提供一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行任意一种终端的功耗控制方法的部分或全部步骤。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可能可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以为个人计算机、服务器或者网络设备等,具体可以是计算机设备中的处理器)执行本申请各个实施例上述方法的全部或部分步骤。其中,而前述的存储介质可包括:U盘、移动硬盘、磁碟、光盘、只读存储器(Read-Only Memory,缩写:ROM)或者随机存取存储器(Random Access Memory,缩写:RAM)等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述 实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种终端的功耗控制方法,其特征在于,包括:
    配置所述终端接收第一小区的第一下行信号的模数转换AD采样率为第一初始采样率;所述第一小区为所述终端的服务小区,或者所述第一小区为所述终端在指定频点的一个或多个相邻小区;
    当所述终端的第一小区信号的第一度量优于第一度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第一采样率;
    其中,所述第一采样率的取值小于所述第一初始采样率的取值。
  2. 如权利要求1所述的方法,其特征在于,所述终端的第一小区信号的第一度量优于第一度量门限包括:当所述终端处于非连续接收DRX状态下,在第一时间段内的M个DRX周期内,所述第一小区信号的信干噪比SINR、参考信号接收功率RSRP和参考信号接收质量RSRQ中的一项或者多项的度量优于对应的第一度量门限,其中,M为大于或者等于1的整数。
  3. 如权利要求2所述的方法,其特征在于,当所述第一小区为所述终端在指定频点的多个相邻小区;所述第一小区信号为多个相邻小区信号;
    所述在第一时间段内的M个DRX周期内,所述第一小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量优于对应的第一度量门限,包括:
    在第一时间段内的M个DRX周期内,所述多个相邻小区信号中的所有相邻小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量均优于对应的第一度量门限。
  4. 如权利要求1-3任意一项所述的方法,其特征在于,所述方法还包括:
    当所述终端的第一小区信号的第二度量劣于第二度量门限时,配置所述终端的接收所述第一下行信号的AD采样率为第二采样率;其中,所述第二采样率的取值大于或者等于所述第一初始采样率。
  5. 如权利要求4所述的方法,其特征在于,所述终端的第一小区信号的第二度量劣于第二度量门限包括,当所述终端处于DRX状态下,在第二时间段内的N个DRX周期内,所述第一小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限,其中,N为大于或者等于1的整数。
  6. 如权利要求5所述的方法,其特征在于,当所述第一小区为所述终端在指定频点的多个相邻小区;所述第一小区信号为多个相邻小区信号;
    所述在第二时间段内的N个DRX周期内,所述第一小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限,包括:
    在第二时间段内的N个DRX周期内,所述多个相邻小区信号中的任意一个相邻小区 信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限。
  7. 如权利要求1-6任意一项所述的方法,其特征在于,所述第一下行信号为同步信号块SSB或小区参考信号CRS。
  8. 如权利要求1-7任意一项所述的方法,其特征在于,所述第一小区信号为所述第一小区的所述第一下行信号。
  9. 一种终端,其特征在于,包括:
    处理单元,用于配置所述终端接收第一小区的第一下行信号的模数转换AD采样率为第一初始采样率;所述第一小区为所述终端的服务小区,或者所述第一小区为所述终端在指定频点的一个或多个相邻小区;
    所述处理单元,还用于当所述终端的第一小区信号的第一度量优于第一度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第一采样率;
    其中,所述第一采样率的取值小于所述第一初始采样率的取值。
  10. 如权利要求9所述的终端,其特征在于,所述处理单元,具体用于:
    当所述终端处于非连续接收DRX状态下,在第一时间段内的M个DRX周期内,当所述第一小区信号的信干噪比SINR、参考信号接收功率RSRP和参考信号接收质量RSRQ中的一项或者多项的度量优于对应的第一度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第一采样率;其中,M为大于或者等于1的整数。
  11. 如权利要求10所述的终端,其特征在于,当所述第一小区为所述终端在指定频点的多个相邻小区;所述第一小区信号为多个相邻小区信号;所述处理单元,具体用于:
    当所述终端处于DRX状态下,在第一时间段内的M个DRX周期内,当所述多个相邻小区信号中的所有相邻小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量均优于对应的第一度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第一采样率。
  12. 如权利要求9-11任意一项所述的终端,其特征在于,所述处理单元还用于:
    当所述终端的第一小区信号的第二度量劣于第二度量门限时,配置所述终端的接收所述第一下行信号的AD采样率为第二采样率;其中,所述第二采样率的取值大于或者等于所述第一初始采样率。
  13. 如权利要求12所述的终端,其特征在于,所述处理单元,具体用于:
    当所述终端处于DRX状态下,在第二时间段内的N个DRX周期内,当所述第一小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第二采样率;其中,N为大于或者等于1的整数。
  14. 如权利要求13所述的终端,其特征在于,当所述第一小区为所述终端在指定频点的多个相邻小区;所述第一小区信号为多个相邻小区信号;所述处理单元,具体用于:
    当所述终端处于DRX状态下,在第二时间段内的N个DRX周期内,当所述多个相邻小区信号中的任意一个相邻小区信号的SINR、RSRP和RSRQ中的一项或者多项的度量劣于对应的第二度量门限时,配置所述终端接收所述第一下行信号的AD采样率为第二采样率。
  15. 如权利要求9-14任意一项所述的终端,其特征在于,所述第一下行信号为同步信号块SSB或小区参考信号CRS。
  16. 如权利要求9-15任意一项所述的终端,其特征在于,所述第一小区信号为所述第一小区的所述第一下行信号。
  17. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器、存储器;所述存储器和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行时,权利要求1-8中任一所述的方法得以实现。
PCT/CN2018/112216 2018-10-26 2018-10-26 一种终端的功耗控制方法及相关设备 WO2020082371A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880099022.4A CN112956244B (zh) 2018-10-26 2018-10-26 一种终端的功耗控制方法及相关设备
PCT/CN2018/112216 WO2020082371A1 (zh) 2018-10-26 2018-10-26 一种终端的功耗控制方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112216 WO2020082371A1 (zh) 2018-10-26 2018-10-26 一种终端的功耗控制方法及相关设备

Publications (1)

Publication Number Publication Date
WO2020082371A1 true WO2020082371A1 (zh) 2020-04-30

Family

ID=70331254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112216 WO2020082371A1 (zh) 2018-10-26 2018-10-26 一种终端的功耗控制方法及相关设备

Country Status (2)

Country Link
CN (1) CN112956244B (zh)
WO (1) WO2020082371A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872709A (zh) * 2021-10-14 2021-12-31 上海橙科微电子科技有限公司 持续监测高速信号有无的系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256339A (zh) * 2010-05-17 2011-11-23 中兴通讯股份有限公司 业务数据传输方法、接收机、移动终端、发射机以及基站
CN106028436A (zh) * 2016-04-28 2016-10-12 华为技术有限公司 一种时频偏补偿的方法及用户终端
US20180310079A1 (en) * 2016-12-15 2018-10-25 National Sun Yat-Sen University Method and apparatus for signal processing by light waveform shaping

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454937C (zh) * 2006-02-27 2009-01-21 宇龙计算机通信科技(深圳)有限公司 移动通信终端的通话录音方法
CN102149097B (zh) * 2010-02-10 2016-06-01 重庆重邮信科通信技术有限公司 一种移动设备信号收发方法
US10012680B2 (en) * 2014-02-14 2018-07-03 Infineon Technologies Austria Ag AC input signal detection
EP3146754B1 (en) * 2014-05-19 2018-04-18 Telefonaktiebolaget LM Ericsson (publ) Methods, user equipment and network node for supporting cell identification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256339A (zh) * 2010-05-17 2011-11-23 中兴通讯股份有限公司 业务数据传输方法、接收机、移动终端、发射机以及基站
CN106028436A (zh) * 2016-04-28 2016-10-12 华为技术有限公司 一种时频偏补偿的方法及用户终端
US20180310079A1 (en) * 2016-12-15 2018-10-25 National Sun Yat-Sen University Method and apparatus for signal processing by light waveform shaping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872709A (zh) * 2021-10-14 2021-12-31 上海橙科微电子科技有限公司 持续监测高速信号有无的系统
CN113872709B (zh) * 2021-10-14 2023-10-24 上海橙科微电子科技有限公司 持续监测高速信号有无的系统

Also Published As

Publication number Publication date
CN112956244A (zh) 2021-06-11
CN112956244B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
JP5373798B2 (ja) ユーザ装置及びユーザ装置における下りリンクの同期判定方法
CN109565356B (zh) 用于新无线电中的稳健通信的自适应资源管理的方法和装置
RU2594001C2 (ru) Оборудование пользователя и способ для режима приема с перерывами (drx) в сетях беспроводной передачи данных
EP2755419B1 (en) Reporting of non-real-time MDT measurements
US20130121172A1 (en) Power savings based wireless traffic controller for mobile devices
JP5237442B2 (ja) ボイスオーバーインターネットプロトコル通信中に省電力モードを使用する方法およびシステム
WO2020019235A1 (zh) 传输信号的方法、网络设备和终端设备
RU2737282C1 (ru) Узел радиосети, беспроводное устройство и выполняемые на них способы
EP3363242B1 (en) Network node and method for managing transmit power
CN112005517A (zh) 使用非锚定载波中的窄带参考信号(nrs)频段来确定非锚定载波的质量
CN111727637B (zh) 估计窄带参考信号接收功率参数
KR20220092451A (ko) 셀 상태의 관리 방법, 장치, 단말 디바이스 및 네트워크 디바이스
JP2022525588A (ja) 端末のための測定方法及び装置、並びに端末
CN113872629B (zh) 信息传输方法、装置及存储介质
TW202002695A (zh) 一種下行控制通道的檢測方法及裝置、終端設備
TWI722606B (zh) 功率設定檔自適應方法及使用者設備
KR102457879B1 (ko) 정보 전송 방법, 네트워크 기기 및 단말
WO2020082371A1 (zh) 一种终端的功耗控制方法及相关设备
WO2020020285A1 (zh) 配置天线通道的方法、接收装置以及计算机可读存储介质
CN112586066B (zh) 一种通信方法及装置
CN111148144B (zh) 一种rrm测量方法及装置
RU2649309C1 (ru) Способ приоритетной идентификации и измерения ячеек
US9143921B2 (en) Communicating physical layer wireless parameters over an application programming interface
EP2394470B1 (en) Transmission scheduling during sleep mode in wimax networks
WO2015066929A1 (zh) 选择无线接入网络的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937567

Country of ref document: EP

Kind code of ref document: A1