WO2020082291A1 - 模式重构型微创手术机器人从手系统 - Google Patents

模式重构型微创手术机器人从手系统 Download PDF

Info

Publication number
WO2020082291A1
WO2020082291A1 PCT/CN2018/111849 CN2018111849W WO2020082291A1 WO 2020082291 A1 WO2020082291 A1 WO 2020082291A1 CN 2018111849 W CN2018111849 W CN 2018111849W WO 2020082291 A1 WO2020082291 A1 WO 2020082291A1
Authority
WO
WIPO (PCT)
Prior art keywords
endoscope
minimally invasive
operating arm
arm
manipulator arm
Prior art date
Application number
PCT/CN2018/111849
Other languages
English (en)
French (fr)
Inventor
王树新
胡振璇
张国凯
李建民
李进华
高德中
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to PCT/CN2018/111849 priority Critical patent/WO2020082291A1/zh
Publication of WO2020082291A1 publication Critical patent/WO2020082291A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the present disclosure relates to the field of minimally invasive surgical robots, and in particular, to a model reconstructed minimally invasive surgical robot slave system.
  • Minimally invasive surgical tools have many advantages such as small hand wounds, less bleeding, fast recovery time and good cosmetic effects.
  • Traditional minimally invasive surgical tools are mostly long straight rods, which are held by doctors and inserted through tiny wounds in the chest cavity, abdominal cavity, or other parts.
  • the medical endoscope With the medical endoscope, the operation is completed under the display screen. In this mode of operation, it is necessary to cooperate with the chief doctor, the doctor holding the mirror and other auxiliary doctors to perform the operation.
  • problems such as surgical tool interference occur, which affect the smooth operation of the operation.
  • the minimally invasive surgical robot is a surgical robot developed for minimally invasive surgery. Its operating principle of surgical instruments is similar to traditional minimally invasive surgical instruments.
  • the long straight rod-type surgical instrument is placed into the patient's body cavity through a small wound, but the doctor does not directly operate the robotic surgical instrument, but performs motion control on the surgical instrument through the operating platform of the robot.
  • Minimally invasive surgical robots mostly use a master-slave control system. Through various principles such as kinematics, dynamics, control system principles, robotics, and machine vision, the movement of surgical instruments can accurately simulate the movements of doctors ’hands, thereby achieving more efficient Operate safely.
  • the types of minimally invasive surgical robots can be roughly divided into three categories: porous minimally invasive surgical robots, single-hole minimally invasive surgical robots, and natural cavity minimally invasive surgical robots. These three types of surgical robots are operated according to the different environments according to the characteristics and constraints of different types of surgery. Therefore, a certain type of surgical robot can only be applied to one type of surgery, that is: porous minimally invasive surgical robot can only be used for porous minimally invasive surgery
  • the single-hole minimally invasive surgical robot can only be used for single-hole minimally invasive surgery
  • the natural cavity surgical robot can only be used for natural cavity surgery.
  • the present disclosure provides a mode reconstruction type minimally invasive surgical robot slave system, including: an operating arm module for performing surgical operations, including: an operating arm guide motor; an operating arm drive motor; an operating arm guide, which is described by The operation arm guide motor drives; the operation arm drive motor is connected to the operation arm guide; the operation arm includes an operation arm drive mechanism and an operation arm actuator connected thereto; the operation arm drive mechanism and the operation arm drive motor pass The interface is connected, and the clamp at the end of the operating arm of the operating arm is used to perform the surgical operation; the operating arm drive motor provides power to the operating arm to drive the operating arm to complete the surgical action; Drive the operation arm to move along the guide rail of the operation arm; the endoscope module is used to provide stereo vision for the operation operation; Switch between invasive surgery.
  • an operating arm module for performing surgical operations including: an operating arm guide motor; an operating arm drive motor; an operating arm guide, which is described by The operation arm guide motor drives; the operation arm drive motor is connected to the operation arm guide; the operation arm includes an operation arm drive mechanism and an operation arm
  • the robot arm module can be reorganized according to the needs to achieve the morphological transformation for multi-hole minimally invasive surgery and single-hole minimally invasive surgery.
  • Flexible replacement can provide a variety of surgical instruments to meet the needs of different surgical operations; the operating arm and the corresponding operating arm rail together provide multiple degrees of freedom required for surgical operations, the same number of degrees of freedom in the two surgical modes, can complete all Surgical action; compact system, flexible layout, in the porous surgical mode, the initial position of the robotic arm is passively adjusted before surgery, the adjustment range is large, the operating room space is small, and it can be freely arranged according to the operating room environment; the number of operating arm modules is set according to the needs and One or more space constraints can be installed.
  • FIG. 1 is a schematic structural diagram of a robot slave hand system applied to a single-hole minimally invasive operation according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of the operating arm module in FIG. 1.
  • FIG. 3 is a schematic structural diagram of the endoscope module in FIG. 1.
  • FIG. 4 is a schematic structural diagram of the locking mechanism in FIG. 3.
  • FIG. 5 is a schematic structural view of an embodiment of the present disclosure after the combination of FIG. 1 is released.
  • FIG. 6 is a partially enlarged schematic view of the connection end of the lock tooth in FIG. 2.
  • FIG. 7 is a schematic structural diagram of a robotic slave system applied to a porous minimally invasive operation according to an embodiment of the present disclosure.
  • the present disclosure provides a model reconstructed minimally invasive surgical robot slave system.
  • the mechanical arm module can be reorganized according to requirements to realize the morphological transformation for porous minimally invasive surgery and single-hole minimally invasive surgery.
  • the reorganization process is simple and the shape is stable.
  • An embodiment of the present disclosure provides a model reconstructed minimally invasive surgical robot slave system applied to a single-hole minimally invasive surgical robot. As shown in FIGS. 1 to 5, it includes an operation arm module 200 and an endoscope module 100.
  • the operating arm module 200 is used to perform a surgical operation, and the endoscope module 100 is used to provide stereoscopic vision for the surgical operation.
  • the endoscope module 100 includes a locking mechanism 110, which is connected to and locked with the locking tooth connection end 250 and locked Together.
  • the number of operating arm modules 200 can be combined with the endoscope module 100 according to actual needs.
  • FIG. 1 shows a combined structure of three operation arm modules 200 and one endoscope module 100. The connection between each operation arm module 200 and the connection with the endoscope module 100 are consistent.
  • the operating arm module 200 includes: an operating arm rail driving motor 210, an operating arm driving motor 220, an operating arm rail 230, an operating arm 240 and a lock tooth connection end 250.
  • the operating arm guide 230 is driven by the operating arm guide driving motor 210.
  • the operating arm drive motor 220 is connected to the operating arm guide 230.
  • the operation arm 240 includes an operation arm drive mechanism 241 and an operation arm execution lever 242 connected thereto.
  • the operating arm drive mechanism 241 is connected to the operating arm drive motor 220 through an interface, and the clamp at the end of the operating arm actuator 242 completes the surgical operation.
  • the operating arm rail driving motor 210 drives the operating arm 240 and the operating arm driving motor 220 to move along the operating arm rail 230; the operating arm driving motor 220 provides power to the operating arm 240, so that the operating arm executive rod 242 and its end clamps complete the surgical action;
  • the lock tooth connection end 250 is provided at the end of the operating arm guide 230 toward the end clamp of the operating arm actuating lever 242.
  • This embodiment further includes a protective outer tube 300, and the operating arm actuating lever 242 is confined in the protective outer tube 300.
  • the protective outer tube 300 can also form a seal with human tissues such as the abdominal wall to prevent air leakage from the pneumoperitoneum.
  • the operating arm 240 has six degrees of freedom, including five degrees of freedom in deflection of the operating arm actuating lever 242, one degree of freedom in opening and closing the clamp, and one degree of freedom in rotation along the axis of the operating arm actuating lever 242.
  • One degree of freedom of movement along the axis direction of the operating arm execution lever 242 in the spatial motion is provided by the operating arm guide 230.
  • the specification of the interface structure in this embodiment is uniform, which is convenient for immediate replacement before or during operation to meet different surgical operation requirements. And it is not limited to single pore or porous mode.
  • the endoscope module 100 includes: a locking mechanism 110, an endoscope rail driving motor 120, an endoscope driving motor 130, an endoscope rail 140, an endoscope driving mechanism 150, an endoscope Executive rod 160 and camera 170.
  • the endoscope guide rail 140 is driven by the endoscope guide rail drive motor 120, which drives the endoscope drive motor 130 and the endoscope drive mechanism 150 to move along the endoscope guide rail 140.
  • the sight distance of the speculum keeps the tissue within the clear focal length of the camera 170.
  • the endoscope drive motor 130 is connected to the endoscope guide rail 140.
  • the endoscope drive mechanism 150 is connected to the endoscope drive motor 130 through an interface; the first end of the endoscope actuator rod 160 is connected to the endoscope drive mechanism 150; the camera 170 is connected to the second end of the endoscope actuator rod 160;
  • the endoscope driving motor 130 provides power to the endoscope driving mechanism 150, and driving the endoscope driving mechanism 150 drives the endoscope execution lever 160 to adjust the angle of the camera 170.
  • the camera 170 may use a binocular camera, which is beneficial to photographing tissues and generating a three-dimensional stereoscopic image.
  • the locking mechanism 110 includes: a locking mechanism connecting seat 111, a locking tooth 112 and a spring 113; a locking mechanism connecting seat 111 is connected to the endoscope rail 140 on one side; a locking tooth 112 is connected to the lock
  • the other side of the coupling mechanism connecting seat 111 is connected by a pin rod; the spring 113 is nested on the pin rod, and the two ends of the spring 113 respectively interfere with the locking mechanism coupling seat 111 and the locking tooth 112 to provide the locking tooth 112 with Adapting to the adjustment function, the locking tooth 112 has an adaptive telescopic function.
  • the two locking teeth 112 can be adjusted by themselves to complete the combination process with the operation arm module and form a stable connection.
  • the lock mechanism 110 further includes: a lock mechanism protection cover 114, which is covered on the lock teeth 112 and the spring 113, and is connected to the lock mechanism connection seat 111; a connection rod is provided on the lock teeth 112, and the lock mechanism protection cover 114 There is a connecting groove on the connecting rod, the connecting rod passes through the connecting groove, and the connecting rod moves along the connecting groove.
  • FIG. 6 is a partially enlarged schematic view of the connection end of the lock tooth in FIG. 2.
  • the locking teeth 112 of the locking mechanism 110 and the connecting ends 250 of the locking teeth are first spliced and connected, and then the locking teeth connecting end 250 is pushed toward the locking mechanism 110.
  • the pushing force moves and compresses the spring 113 until the lock mechanism 110 is locked with the lock tooth connection end 250.
  • the lock mechanism 110 and the connection end 250 of the lock teeth will always maintain a stable bite state when the lock teeth are not artificially split.
  • the number of operation arm modules 200 involved in the present disclosure is n, where n ⁇ 1.
  • the n operation arm modules 200 are connected to each other through a locking tooth connection end 250.
  • the number of installations of the operating arm 200 depends on the needs of the operation. When the operation space allows, the number of installations is not limited to three.
  • Another embodiment of the present disclosure provides a model reconstructed minimally invasive surgical robot slave system, which is applied to a porous minimally invasive surgical robot.
  • the difference from the previous embodiment is that the operating arm module 200 and the operating arm module and the endoscope module 100 are not connected to each other, and are in a separated state, that is, between the locking teeth connecting ends 250 2.
  • the locking mechanism 110 and the locking tooth connecting end 250 are not inserted and locked together.
  • the operating arm module 200 and the endoscope module 100 are respectively supported by the supporting arm 400, and the supporting arm 400 can be passively adjusted so that the endoscope module 100 and the operating arm module 200 are at the most Good initial position.
  • the mounting position of the base of the support arm 400 is fixed according to the requirements of the operating room space and the operation space.
  • the number of operating arm modules 200 depends on the surgical needs.
  • the support arm 400 is fixed and there is no movement. All the movements required for the operation are completed by the operation arm module 200. Therefore, the operation of the arm module during the operation avoids problems such as collision and interference.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

一种模式重构型微创手术机器人从手系统,包括:操作臂模块(200),用于执行手术操作,包括:操作臂导轨驱动电机(210);操作臂驱动电机(220);操作臂导轨(230),由操作臂导轨驱动电机(210)驱动;操作臂驱动电机(220)与操作臂导轨(230)相连;操作臂(240),包括操作臂驱动机构(241)和与其相连的操作臂执行杆(242);操作臂驱动机构(241)与操作臂驱动电机(220)通过接口相连,操作臂执行杆(242)端部的夹钳用于执行手术操作;操作臂驱动电机(220)为操作臂(240)提供动力,带动操作臂(240)完成手术动作;操作臂导轨驱动电机(210)带动操作臂(240)沿操作臂导轨(230)运动;内窥镜模块(100),用于为手术操作提供立体视觉;模式重构型微创手术机器人从手系统可在多孔微创手术和单孔微创手术之间切换。

Description

模式重构型微创手术机器人从手系统 技术领域
本公开涉及微创手术机器人领域,尤其涉及一种模式重构型微创手术机器人从手系统。
背景技术
微创手术具手创口小,出血量少,恢复时间快及美容效果好等诸多优点。传统微创手术工具多为长直杆状,由医生手持,经由胸腔、腹腔或其它部位的微小创口置入。配合医用内窥镜,在显示器画面下完成手术操作。在此种操作模式中,需由主刀医生、持镜医生及其他辅助医生多人配合下进行手术操作。手术过程中,常因相互配合不协调或显示器画面中视野不合理以及手术器械运动不符合直觉操作规律等多种原因,出现手术工具干涉等问题,进而影响手术的顺利进行。
微创手术机器人是针对微创手术所研发的外科手术机器人,其手术器械工作原理与传统微创手术器械相似。将长直杆型手术器械通过微小创口置入患者体腔内,但医生并不直接操作机器人手术器械,而是通过操作机器人的操纵平台对手术器械进行运动控制。微创手术机器人多采用主-从控制系统,通过运动学、动力学、控制系统原理、机器人学、机器视觉等多种原理,使手术器械的运动能够精准模拟医生手部动作,从而达到更加高效安全地实施手术。
微创手术机器人类型可大致分为三类:多孔微创手术机器人、单孔微创手术机器人及自然腔道微创手术机器人。此三类手术机器人依据不同手术类型特点与约束,各自针对适应的环境进行手术,因此,某一类手术机器人只能适用于一类手术,即:多孔微创手术机器人只能用于多孔微创手术,单孔微创手术机器人只能用于单孔微创手术,自然腔道手术机器人只能用于自然腔道手术。
鉴于微创手术种类繁多,病灶部位各不相同,环境需求迥异,体内操作空间约束繁杂,某一类微创手术机器人亦不能完全适应其所针对的手术领域,医院需要配备多种类型手术机器人才能满足不同患者的手术需求。
公开内容
本公开提供了一种模式重构型微创手术机器人从手系统,包括:操作臂模块,用于执行手术操作,包括:操作臂导轨驱动电机;操作臂驱动电机;操作臂导轨,由所述操作臂导轨驱动电机驱动;所述操作臂驱动电机与操作臂导轨相连;操作臂,包括操作臂驱动机构和与其相连的操作臂执行杆;所述操作臂驱动机构与所述操作臂驱动电机通过接口相连,所述操作臂执行杆端部的夹钳用于执行手术操作;所述操作臂驱动电机为所述操作臂提供动力,带动所述操作臂完成手术动作;所述操作臂导轨驱动电机带动所述操作臂沿所述操作臂导轨运动;内窥镜模块,用于为手术操作提供立体视觉;所述模式重构型微创手术机器人从手系统可在多孔微创手术和单孔微创手术之间切换。
从上述技术方案可以看出,本公开实施例至少具有以下有益效果:
机械臂模块可依据需求进行重组,实现针对多孔微创手术与单孔微创手术的形态变换,重组过程简便,形态稳固;配套操作臂在两种手术状态下,均可在术前、术中灵活更换,能够提供多种手术器械以满足不同手术操作需求;操作臂与对应操作臂导轨共同提供手术操作所需的多个自由度,在两种手术模式状态下自由度数相同,均可完成所有手术动作;系统小巧,布局灵活,多孔手术模式下,机械臂初始位置在术前被动调整,调整范围大,占用手术室空间小,可依据手术室环境自由布局;操作臂模块设置数量依据需求与空间约束可安装一至多条。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本公开实施例应用于单孔微创手术的机器人从手系统结构示意图。
图2为图1中操作臂模块结构示意图。
图3为图1中内窥镜模块结构示意图。
图4为图3中锁合机构结构示意图。
图5为本公开实施例解除图1组合后的结构示意图。
图6为图2中锁齿连接端局部放大结构示意图。
图7为本公开实施例应用于多孔微创手术的机器人从手系统结构示意图。
【符号说明】
100-内窥镜模块;
110-锁合机构;
111-锁合机构连接座;
112-锁齿;
113-弹簧;
114-锁合机构保护盖;
120-内窥镜导轨驱动电机;
130-内窥镜驱动电机;
140-内窥镜导轨;
150-内窥镜驱动机构;
160-内窥镜执行杆;
170-摄像头;
200-操作臂模块;
210-操作臂导轨驱动电机;
220-操作臂驱动电机;
230-操作臂导轨;
240-操作臂;
241-操作臂驱动机构;
242-操作臂执行杆;
250-锁齿连接端;
300-保护外管;
400-支撑臂。
具体实施方式
本公开提供了一种模式重构型微创手术机器人从手系统,机械臂模块可依据需求进行重组,实现针对多孔微创手术与单孔微创手术的形态变换,重组过程简便,形态稳固。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实 施例,并参照附图,对本公开进一步详细说明。
本公开一实施例提供了一种模式重构型微创手术机器人从手系统,应用于单孔微创手术的机器人。如图1至图5所示,包括操作臂模块200和内窥镜模块100。
操作臂模块200用于执行手术操作,内窥镜模块100用于为手术操作提供立体视觉,内窥镜模块100包括锁合机构110,锁合机构110与锁齿连接端250拼插相连并锁合。本实施例操作臂模块200的数量可以根据实际需要与内窥镜模块100进行组合。图1中给出了一种三个操作臂模块200与一个内窥镜模块100的组合结构。其中各个操作臂模块200之间的连接、以及与内窥镜模块100之间的连接方式一致。
进一步如图2所示,操作臂模块200包括:操作臂导轨驱动电机210、操作臂驱动电机220、操作臂导轨230、操作臂240和锁齿连接端250。
操作臂导轨230由操作臂导轨驱动电机210驱动。操作臂驱动电机220与操作臂导轨230相连。操作臂240包括操作臂驱动机构241和与其相连的操作臂执行杆242。操作臂驱动机构241与操作臂驱动电机220通过接口相连,操作臂执行杆242端部的夹钳完成手术操作动作。
操作臂导轨驱动电机210带动操作臂240和操作臂驱动电机220沿操作臂导轨230运动;操作臂驱动电机220为操作臂240提供动力,使操作臂执行杆242及其末端夹钳完成手术动作;锁齿连接端250设置在操作臂导轨230的朝向操作臂执行杆242末端夹钳的端部。
本实施例还包括保护外管300,操作臂执行杆242收束于保护外管300内。保护外管300还可以与腹壁等人体组织形成密封,从而防止气腹漏气。
本实施例中,操作臂240具有六个自由度,包括操作臂执行杆242的五个偏转自由度、一个夹钳开合自由度以及一个沿操作臂执行杆242轴线的转动自由度。空间运动中沿操作臂执行杆242轴线方向的一个移动自由度由操作臂导轨230提供。
本实施例接口结构的规格统一,方便于术前或术中即时进行更换以应对不同手术操作需求。并且不限于单孔或多孔模式。
进一步如图3所示,内窥镜模块100包括:锁合机构110、内窥镜导轨驱动电机120、内窥镜驱动电机130、内窥镜导轨140、内窥镜驱动机构 150、内窥镜执行杆160和摄像头170。
内窥镜导轨140由内窥镜导轨驱动电机120驱动,带动内窥镜驱动电机130和内窥镜驱动机构150沿内窥镜导轨140运动,用于提供内窥镜前后运动自由度,调整内窥镜视距,使组织处于摄像头170清晰焦距范围之内。内窥镜驱动电机130与内窥镜导轨140相连。内窥镜驱动机构150与内窥镜驱动电机130通过接口相连;内窥镜执行杆160第一端与内窥镜驱动机构150相连;摄像头170与内窥镜执行杆160第二端相连;内窥镜驱动电机130为内窥镜驱动机构150提供动力,驱动内窥镜驱动机构150带动内窥镜执行杆160调整摄像头170角度。这里摄像头170可以选用双目摄像头,利于拍摄组织并生成三维立体图像。
进一步如图4和图5所示,锁合机构110包括:锁合机构连接座111、锁齿112和弹簧113;锁合机构连接座111一面与内窥镜导轨140连接;锁齿112与锁合机构连接座111另一面通过销杆连接;弹簧113嵌套在销杆上,且弹簧113的两端分别与锁合机构连接座111和锁齿112相抵触,用于为锁齿112提供自适应调节功能,使锁齿112具有自适应的伸缩功能。在进行单孔状态组合过程中,两个锁齿112均可自行调节以完成与操作臂模块的组合过程并形成稳固连接。
锁合机构110还包括:锁合机构保护盖114,罩合在锁齿112和弹簧113上,且与锁合机构连接座111相连;锁齿112上设有连接杆,锁合机构保护盖114上设有连接槽,连接杆穿过连接槽,且连接杆沿连接槽移动。
图6为图2中锁齿连接端局部放大结构示意图。参考图6所示,连接时,锁合机构110的锁齿112与锁齿连接端250首先拼插相连,再向锁合机构110推动锁齿连接端250,锁齿112受锁齿连接端250推力作用运动并压缩弹簧113,直至锁合机构110与锁齿连接端250锁合。
由于弹簧113的推力作用,在无人为将锁齿拆分情况下,锁合机构110与锁齿连接端250将会始终保持稳定的咬合状态。
本公开中涉及的操作臂模块200数量为n个,其中,n≥1。n个操作臂模块200通过锁齿连接端250相互拼插相连。操作臂200安装数量视手术需求而定,在手术空间允许情况下,安装数量不限于三条。
本公开另一实施例提供了一种模式重构型微创手术机器人从手系统, 应用于多孔微创手术的机器人。如图7所示,相对于上一实施例的区别为操作臂模块200之间以及操作臂模块与内窥镜模块100之间没有相互连接,处于分离状态,即各个锁齿连接端250之间、锁合机构110与锁齿连接端250之间不进行拼插锁合。
在多孔微创手术的机器人的应用中,操作臂模块200与内窥镜模块100分别通过支撑臂400进行支撑,支撑臂400可进行被动调节,使内窥镜模块100与操作臂模块200处于最佳初始位置。支撑臂400其底座安装位置视手术室空间与手术操作空间需求而进行固定。操作臂模块200数量视手术需求而定。
多孔手术过程中,支撑臂400固定,无运动,手术所需所有运动均由操作臂模块200完成。因此,在手术过种中操作臂模块避免了碰撞、干涉等问题。
至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;在不冲突的情况下,本发明实施例中的特征可以任意组合;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (9)

  1. 一种模式重构型微创手术机器人从手系统,其中,包括:
    操作臂模块,用于执行手术操作,包括:
    操作臂导轨驱动电机;
    操作臂驱动电机;
    操作臂导轨,由所述操作臂导轨驱动电机驱动;所述操作臂驱动电机与操作臂导轨相连;
    操作臂,包括操作臂驱动机构和与其相连的操作臂执行杆;所述操作臂驱动机构与所述操作臂驱动电机通过接口相连,所述操作臂执行杆端部的夹钳用于执行手术操作;所述操作臂驱动电机为所述操作臂提供动力,带动所述操作臂完成手术动作;所述操作臂导轨驱动电机带动所述操作臂沿所述操作臂导轨运动;
    内窥镜模块,用于为手术操作提供立体视觉;
    所述模式重构型微创手术机器人从手系统可在多孔微创手术和单孔微创手术之间切换。
  2. 如权利要求1所述的模式重构型微创手术机器人从手系统,其中,其应用于单孔微创手术,还包括:
    锁齿连接端,设置在所述操作臂导轨的端部;以及
    所述内窥镜模块包括锁合机构;所述锁合机构与所述锁齿连接端拼插相连并锁合。
  3. 根据权利要求2所述的模式重构型微创手术机器人从手系统,其中,所述锁合机构包括:
    锁合机构连接座,其一面与所述内窥镜模块连接;
    锁齿,与所述锁合机构连接座另一面通过销杆连接;以及
    弹簧,嵌套在所述销杆上,且所述弹簧的两端分别与所述锁合机构连接座和所述锁齿相抵触。
  4. 根据权利要求3所述的模式重构型微创手术机器人从手系统,其中,所述锁合机构还包括:
    锁合机构保护盖,罩合在所述锁齿和所述弹簧上,且与所述锁合机构连接座相连;所述锁齿上设有连接杆,所述锁合机构保护盖上设有连接槽, 所述连接杆穿过连接槽,且所述连接杆可沿所述连接槽移动。
  5. 根据权利要求2所述的模式重构型微创手术机器人从手系统,其中,所述操作臂模块为n个,其中,n≥1;n个所述操作臂模块通过所述锁齿连接端相互拼插相连。
  6. 根据权利要求1所述的模式重构型微创手术机器人从手系统,其中,其应用于多孔微创手术,还包括:支撑臂,用于支撑所述操作臂模块和所述内窥镜模块。
  7. 根据权利要求6所述的模式重构型微创手术机器人从手系统,其中,所述操作臂模块为n个,其中,n≥1;n个所述操作臂模块与所述内窥镜模块相互分离。
  8. 根据权利要求2或6所述的模式重构型微创手术机器人从手系统,其中,所述内窥镜模块包括:
    内窥镜导轨驱动电机;
    内窥镜驱动电机;
    内窥镜导轨,由所述内窥镜导轨驱动电机驱动;所述内窥镜导轨与所述内窥镜驱动电机相连;
    内窥镜驱动机构,与所述内窥镜驱动电机通过接口相连;
    内窥镜执行杆,所述内窥镜执行杆第一端与内窥镜驱动机构相连;
    摄像头,与所述内窥镜执行杆第二端相连;
    所述内窥镜驱动电机为所述内窥镜驱动机构提供动力,驱动所述内窥镜驱动机构带动内窥镜执行杆调整摄像头角度;所述内窥镜导轨驱动电机带动所述内窥镜驱动机构沿所述内窥镜导轨运动。
  9. 根据权利要求8所述的模式重构型微创手术机器人从手系统,其中,当所述模式重构型微创手术机器人从手系统应用于单孔微创手术时,还包括:保护外管,所述操作臂执行杆与所述内窥镜执行杆收束于所述保护外管内。
PCT/CN2018/111849 2018-10-25 2018-10-25 模式重构型微创手术机器人从手系统 WO2020082291A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/111849 WO2020082291A1 (zh) 2018-10-25 2018-10-25 模式重构型微创手术机器人从手系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/111849 WO2020082291A1 (zh) 2018-10-25 2018-10-25 模式重构型微创手术机器人从手系统

Publications (1)

Publication Number Publication Date
WO2020082291A1 true WO2020082291A1 (zh) 2020-04-30

Family

ID=70330943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111849 WO2020082291A1 (zh) 2018-10-25 2018-10-25 模式重构型微创手术机器人从手系统

Country Status (1)

Country Link
WO (1) WO2020082291A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102697564A (zh) * 2012-06-20 2012-10-03 哈尔滨工业大学 用于单孔腹腔微创手术的柔性臂机器人
CN102917662A (zh) * 2010-05-25 2013-02-06 郑昶旭 能够实现单一通道手术模式和多通道手术模式的手术用机器人系统及其控制方法
CN103948435A (zh) * 2014-05-15 2014-07-30 上海交通大学 单孔腹腔镜微创手术机器人系统
CN106037937A (zh) * 2016-07-08 2016-10-26 天津大学 具有自适应能力的手术机器人操作臂
US20180049816A1 (en) * 2016-08-16 2018-02-22 Ethicon Endo-Surgery, Llc Methods, systems, and devices for limiting torque in robotic surgical tools

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917662A (zh) * 2010-05-25 2013-02-06 郑昶旭 能够实现单一通道手术模式和多通道手术模式的手术用机器人系统及其控制方法
CN102697564A (zh) * 2012-06-20 2012-10-03 哈尔滨工业大学 用于单孔腹腔微创手术的柔性臂机器人
CN103948435A (zh) * 2014-05-15 2014-07-30 上海交通大学 单孔腹腔镜微创手术机器人系统
CN106037937A (zh) * 2016-07-08 2016-10-26 天津大学 具有自适应能力的手术机器人操作臂
US20180049816A1 (en) * 2016-08-16 2018-02-22 Ethicon Endo-Surgery, Llc Methods, systems, and devices for limiting torque in robotic surgical tools

Similar Documents

Publication Publication Date Title
JP6285064B2 (ja) 手術システム無菌ドレープ
US9844411B2 (en) Extendable suction surface for bracing medical devices during robotically assisted medical procedures
KR102167359B1 (ko) 영공간을 이용한 수술 머니퓰레이터의 명령된 재구성을 위한 시스템 및 방법
JP2018149303A (ja) マルチポート手術ロボットシステム構造
US20120132018A1 (en) Remote centre of motion positioner
CN109561939A (zh) 外科手术盖布安装辅助工具
Chen et al. The SHURUI system: a modular continuum surgical robotic platform for multiport, hybrid-port, and single-port procedures
US11832911B2 (en) Surgical platform supported by multiple arms
Lehman et al. Recent advances in the CoBRASurge robotic manipulator and dexterous miniature in vivo robotics for minimally invasive surgery
Abdi et al. Foot-controlled endoscope positioner for laparoscopy: Development of the master and slave interfaces
Dachs et al. A novel surgical robot design: Minimizing the operating envelope within the sterile field
Direkwatana et al. Development of wire-driven laparoscopic surgical robotic system,“MU-LapaRobot”
WO2020082291A1 (zh) 模式重构型微创手术机器人从手系统
CN109481021B (zh) 模式重构型微创手术机器人从手系统
CN114599302A (zh) 调节外科机器人臂的关节空间速度
CN114098994B (zh) 器械驱动装置、器械臂、从手端及机器人辅助手术系统
Markvicka Design and development of a miniature in vivo surgical robot with distributed motor control for laparoendoscopic single-site surgery
Wang et al. Kinematic design for robot-assisted laryngeal surgery systems
WO2020133368A1 (zh) 柔性手术器械、操作臂系统及微创手术机器人从手系统
US20210022817A1 (en) Strain wave gearing with input to output braking
Dai et al. Eye Robotic System for Vitreoretinal Surgery
Shin et al. Design of a dexterous and compact laparoscopic assistant robot
CN114098996B (zh) 器械驱动装置、器械臂、从手端及机器人辅助手术系统
CN114098995B (zh) 器械驱动装置、器械臂、从手端及机器人辅助手术系统
US20210251708A1 (en) Surgical robot mechanism with single-port and multi-port minimally invasive surgery functions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 16.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18938019

Country of ref document: EP

Kind code of ref document: A1