WO2020082253A1 - 多芯光纤压力传感器、传感系统和传感器制备方法 - Google Patents

多芯光纤压力传感器、传感系统和传感器制备方法 Download PDF

Info

Publication number
WO2020082253A1
WO2020082253A1 PCT/CN2018/111559 CN2018111559W WO2020082253A1 WO 2020082253 A1 WO2020082253 A1 WO 2020082253A1 CN 2018111559 W CN2018111559 W CN 2018111559W WO 2020082253 A1 WO2020082253 A1 WO 2020082253A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core
core optical
group
end surface
Prior art date
Application number
PCT/CN2018/111559
Other languages
English (en)
French (fr)
Inventor
何俊
王义平
杜斌
张哲�
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2018/111559 priority Critical patent/WO2020082253A1/zh
Publication of WO2020082253A1 publication Critical patent/WO2020082253A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet

Definitions

  • the invention relates to the field of optical fiber sensing, in particular to a multi-core optical fiber pressure sensor, a sensing system and a sensor preparation method.
  • Optical fiber sensing technology is a new type of sensing technology that uses light as a carrier and fiber as a medium to sense and transmit external signals, which has rapidly developed with the development of optical fiber and optical fiber communication technology.
  • this external signal is pressure, it constitutes an optical fiber pressure sensor.
  • the optical fiber pressure sensor has the advantages of small size, light weight, electrical insulation, no electromagnetic interference, and can be applied to flammable and explosive environments compared with traditional pressure sensors.
  • this kind of fiber optic pressure sensor can only obtain the average pressure value of the entire fiber end face in a single measurement, and it cannot measure and characterize the pressure at different positions of the fiber end face. Characterization, photoacoustic imaging and other fields play an important role.
  • the main purpose of the present invention is to propose a multi-core optical fiber pressure sensor, a sensing system and a sensor preparation method to solve the problem that the existing optical fiber pressure sensor cannot perform multi-point parallel acquisition and it is difficult to achieve high spatial resolution, making it unusable Problems in fine structure.
  • a first aspect of the embodiments of the present invention provides a multi-core optical fiber pressure sensor, the multi-core optical fiber pressure sensor includes a multi-core optical fiber cladding, a multi-core optical fiber core group, a microcavity group, and a thin film material;
  • each of the multi-core optical fiber cores is connected to the first end surface of each of the microcavities, and the output end surface of the multi-core optical fiber core constitutes a first parallel reflective surface group;
  • the multi-core optical fiber core group is disposed in the multi-core optical fiber cladding, the end surface of the multi-core optical fiber cladding and the second end surface of each of the microcavities are coated with the film material, each The second end face of the microcavity and the film material form a second reflective end face;
  • the multi-core fiber core and the microcavity transmit optical signals
  • the first parallel reflective surface group and the second reflective end surface reflect the optical signal, and the second reflective end surface also receives a pressure signal.
  • the first end face of the microcavity coincides with the output end face of the multi-core optical fiber core
  • the second end surface area of the microcavity is larger than the first end surface of the microcavity.
  • the surface of the microcavity is the same as the material of the multi-core fiber core.
  • the thin film material includes quartz, high molecular polymer, metal, graphene, black phosphorus.
  • a second aspect of an embodiment of the invention provides a multi-core optical fiber pressure sensing system.
  • the multi-core optical fiber pressure sensing system includes a light source, an optical fiber coupler, a multi-core optical fiber multiplexer, as described in the first aspect of the embodiments of the present invention
  • the light source, the optical fiber coupler, the multi-core optical fiber multiplexer, the multi-core optical fiber sensor, and the pressure generating device are sequentially connected, and the optical fiber coupler is also connected to the optical demodulation device;
  • the light source provides an optical signal
  • the pressure generating device generates pressure and acts on the multi-core optical fiber sensor
  • the multi-core optical fiber sensor receives the pressure signal and reflects the optical signal
  • the optical fiber coupler receives the optical signal and the reflected optical signal of the multi-core optical fiber sensor, and sends the optical signal to the multi-core optical fiber multiplexer, and sends the reflected optical signal to the light Demodulation device
  • the multi-core optical fiber multiplexer separates the optical signal and couples the reflected optical signal
  • the optical demodulation device receives the reflected light signal and analyzes pressure signals at different positions in the multi-core fiber sensor.
  • the light source includes a broadband light source and an optical fiber light source.
  • the pressure generating device includes a hydraulic generator, an air pressure controller, and a micro-displacement pressure controller.
  • the optical demodulation device includes a diffraction grating spectrometer, a prism spectrometer, an interference spectrometer, and a micro spectrometer.
  • a third aspect of the embodiments of the present invention provides a method for preparing a multi-core optical fiber pressure sensor, including:
  • a layer of thin film material is coated on the end surface of the cleaned and dried multi-core optical fiber core group to form a multi-core optical fiber pressure sensor.
  • flattening the end face of the multi-core optical fiber core group placed after the multi-core optical fiber cladding includes:
  • a standard optical fiber cleaver is used to simultaneously cut the multi-core optical fiber core group and the multi-core optical fiber cladding after being placed on the multi-core optical fiber cladding to form a flat end surface.
  • processing the split multi-core fiber core group to form a microcavity includes:
  • the cleaning and drying the processed multi-core optical fiber core group includes:
  • coating the end surface of the cleaned and dried multi-core optical fiber core group with a layer of thin film material to form a multi-core optical fiber pressure sensor includes:
  • the end surface of the cleaned and dried multi-core optical fiber core group is coated by a chemical deposition transfer method
  • the end surface of the cleaned and dried multi-core optical fiber core group is coated using a spin coating method.
  • An embodiment of the present invention proposes a multi-core optical fiber pressure sensor, which includes a first parallel reflective end surface group composed of the output end surface of the multi-core optical fiber core, and a second reflective end surface composed of the second end surface of the microcavity and the thin film material.
  • the signal is transmitted in the multi-core fiber core, and the first parallel reflective end face group and the second reflective end face reflect the optical signal, and the second reflective end face also receives the pressure signal, due to the existence between the first parallel reflective end face group and the second reflective end face Microcavity, so there is an optical path difference between the optical signal reflected by the first reflective end face group and the optical signal reflected by the second reflective end face.
  • the optical path difference of the reflected light signal also changes, which can calculate the size of the pressure signal received at different positions on the reflective surface of the second end, thereby achieving high spatial resolution of the fiber optic pressure sensor to characterize the fine structure.
  • Embodiment 1 is a schematic structural diagram of a multi-core optical fiber pressure sensor provided by Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a multi-core optical fiber pressure sensing system provided by Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of an implementation process of a preparation method of a multi-core optical fiber pressure sensor provided in Embodiment 3 of the present invention.
  • an embodiment of the present invention provides a multi-core optical fiber pressure sensor 10, which can calculate the magnitude of the pressure signal at different positions of the sensor when receiving the pressure signal, thereby improving the spatial resolution of the optical fiber pressure sensor.
  • the multi-core optical fiber pressure sensor 10 includes a multi-core optical fiber cladding 11, a multi-core optical fiber core group 12, a microcavity group 13, and a thin film material 14.
  • connection relationship of each part of the multi-core optical fiber pressure sensor is as follows:
  • each multi-core optical fiber core 121 is connected to the first end surface of each microcavity 131, and the output end surface of the multi-core optical fiber core 121 constitutes a first parallel reflective surface group 15;
  • the multi-core optical fiber core group 12 is disposed in the multi-core optical fiber cladding 11, the end surface of the multi-core optical fiber cladding 11 and the second end surface of each microcavity 131 are coated with a thin film material 14, and the second end surface of each microcavity 131
  • the thin-film material 14 constitutes the second reflective end surface 16.
  • the multi-core optical fiber core group 12 includes a plurality of multi-core optical fiber cores 121
  • the micro cavity group 13 includes a plurality of micro cavities 131.
  • the multi-core optical fiber cladding 11 is used to protect the multi-core optical fiber core group 12 and provide physical support to the film material 14; the multi-core optical fiber core 121 and the microcavity 131 are used to transmit optical signals.
  • each multi-core fiber core is connected to an optical signal, and the optical signal is transmitted in each multi-core fiber core, and the output end face of the multi-core fiber core is connected to the first end face of the microcavity , The optical signal is output from the multi-core fiber core and transmitted to the microcavity.
  • the first parallel reflective surface group 15 and the second reflective end surface 16 are used to reflect the optical signal, and the second reflective end surface 16 is also used to receive the pressure signal.
  • the optical signal after the optical signal is transmitted to the first parallel emitting surface group, part of it is reflected back to the multi-core fiber core for reverse transmission, and the other part of the optical signal is transmitted in the microcavity, after reaching the second emitting end surface, the second The reflective end face is reflected back to the microcavity and the multi-core fiber core for transmission.
  • the optical signal reflected at the first parallel reflective end face group is different from the second The optical signal reflected by the end face has an optical path difference, which is equal to the length of the microcavity.
  • the microcavity group 13 includes multiple microcavities 131, which are also used to transmit optical signals.
  • the first end face of the microcavity coincides with the output end face of the multi-core optical fiber core; the second end face area of the microcavity is larger than the first end face of the microcavity; the first end face of the microcavity is the first parallel reflective endface In the reflective end face of the group, the second end face of the microcavity is a part of the second reflective end face, but the second end face is used as the end face for receiving the pressure signal, and its area is larger than that of the first end face, which can improve the sensing sensitivity when receiving the pressure signal.
  • the material of the microcavity surface and the core of the multi-core optical fiber are the same.
  • the thin film material 14 may be any material capable of forming a thin film coated on the end face of the optical fiber material and capable of reflecting optical signals, which is not specifically limited in the embodiment of the present invention.
  • the thin film material includes quartz, high molecular polymer, metal, graphene, black phosphorus.
  • the working principle of the multi-core optical fiber pressure sensor is as follows:
  • the optical signal is continuously input from the input end of the multi-core optical fiber pressure sensor, that is, the input end face of the multi-core optical fiber core group. At this time, the optical signal is transmitted from the input end face of each multi-core optical fiber core, and part of the optical signal is transmitted to each multi-core In the microcavity connected to the output end surface of the optical fiber core, when the optical signal transmitted to the microcavity is transmitted to the first parallel reflective surface group, the first parallel transmitting surface group reflects the multiple beams of optical signals into the multi-core optical fiber core, Reverse transmission, another part of the optical signal is transmitted to the microcavity, and then reflected on the second reflective end surface, and reversely transmitted to the microcavity and the multi-core fiber core.
  • the microcavity occurs Deformation, the distance between the first parallel reflective end face group and the second reflective end face changes, that is, the optical path difference between the optical signal reflected from the first parallel reflective end face group and the optical signal reflected from the second reflective end face changes, according to this optical path
  • the difference and the difference of the optical path difference can be calculated to calculate the magnitude of the pressure signal acting on the first reflective end face group, and analyze the different position of the pressure signal acting on the second reflective end face, so as to derive Urging structural features of the object, to achieve high spatial resolution optical fiber pressure sensor.
  • the multi-core optical fiber pressure sensor provided by the embodiment of the present invention includes a first parallel reflective end surface group formed by the output end surface of the multi-core optical fiber core, and a second reflective end surface formed by the multi-core optical fiber cladding end surface and the second end surface of the microcavity ,
  • the optical signal is transmitted in the multi-core fiber core, and the first parallel reflective end face group and the second reflective end face reflect the optical signal, and the second reflective end face also receives the pressure signal, because the first parallel reflective end face group and the second reflective end face There is a microcavity between them, so there is an optical path difference between the optical signal reflected by the first reflective end face group and the optical signal reflected by the second reflective end face.
  • the first parallel reflective end face group and the second reflective end face When the second reflective end face receives the pressure signal, the first parallel reflective end face group and the second reflective end face The distance between them changes, and the optical path difference of the reflected light signal also changes, so that the size of the pressure signal received at different positions on the reflective surface of the second end can be calculated, thereby achieving a high spatial resolution of the fiber optic pressure sensor. Characterize fine structure.
  • an embodiment of the present invention provides a multi-core optical fiber pressure sensing system 20, including a light source 21, an optical fiber coupler 22, a multi-core optical fiber multiplexer 23, and the multi-core optical fiber in the first embodiment
  • the pressure sensor 10, the pressure generating device 24, and the optical demodulation device 25 are included in the first embodiment.
  • connection relationship of each part of the multi-core optical fiber pressure sensing system 20 is as follows:
  • the light source 21, the optical fiber coupler 22, the multi-core optical fiber multiplexer 23, the multi-core optical fiber sensor 10, and the pressure generating device 24 are sequentially connected, and the optical fiber coupler 22 is also connected to the optical demodulation device 25.
  • the light source 21 is used to provide an optical signal.
  • the light source includes a broadband light source and a fiber light source.
  • the broadband light source and the fiber light source can provide a high-power stable light source with a wide frequency band and a low degree of polarization.
  • Optical fiber can theoretically spread light anywhere, satisfying the diversity of practical applications.
  • the pressure generating device 24 is used to generate pressure and act on the multi-core optical fiber sensor.
  • the pressure generating device includes a hydraulic generator, an air pressure controller, and a micro-displacement pressure controller, which specifically act on the second reflective end surface of the multi-core optical fiber sensor.
  • the multi-core optical fiber sensor 10 is used to receive a pressure signal and reflect the optical signal.
  • the multi-core fiber sensor input end face of the multi-core fiber sensor receives an optical signal
  • the second reflective end face of the multi-core fiber sensor receives a pressure signal and reflects the optical signal
  • the optical fiber coupler 22 is used to receive the optical signal and the reflected optical signal of the multi-core optical fiber sensor, send the optical signal to the multi-core optical fiber multiplexer, and send the reflected optical signal to the optical demodulation device.
  • the optical fiber coupler includes an optical signal input terminal, an optical signal output terminal, a reflected optical signal input terminal, and a reflected optical signal output terminal.
  • the multi-core fiber multiplexer 23 is used to separate optical signals and couple reflected optical signals.
  • the multi-core fiber multiplexer divides the signal light output by the light source into multiple beams, so that the multi-beam signal light is transmitted in multiple multi-core fiber cores of the multi-core fiber sensor;
  • the signal light reflected by the core fiber sensor is transmitted to the fiber coupling module.
  • the optical demodulation device 25 is used to receive the reflected optical signal and analyze the pressure signals at different positions in the multi-core fiber sensor.
  • the optical demodulation device includes a diffraction grating spectrometer, a prism spectrometer, an interference spectrometer, and a micro spectrometer, which receives the signal light reflected by the fiber sensor output from the multi-core fiber multiplexer, analyzes it, and obtains the multi-core fiber sensor
  • the module senses pressure signals at different positions on the end face.
  • the working principle of the multi-core optical fiber pressure sensing system is as follows:
  • the light source continuously outputs optical signals
  • the optical fiber coupler receives the optical signals and transmits them to the multi-core optical fiber multiplexer.
  • the multi-core optical fiber multiplexer divides the optical signals into multiple optical signals and transmits them to the multi-core optical fiber sensor.
  • the transmission of multiple multi-core optical fibers in the multi-core optical fiber sensor will cause reflection when the optical signal is transmitted to the first parallel reflective end face group of the multi-core optical fiber sensor, and reverse transmission to the multi-core optical fiber multiplexer, and, when the optical signal is transmitted Up to the second reflective end face of the multi-core fiber sensor, reflection will also occur. Because there is a distance between the first reflective end face group and the second reflective end face, the two reflected optical signals have optical path differences.
  • the multi-core fiber multiplexer transmits all the reflected light signals to the fiber coupler, which is fiber coupled
  • the device transmits all the reflected optical signals to the optical demodulation device, and the optical demodulation device analyzes the reflected optical signal, that is, according to the light emitted from the optical signal Difference change calculated to obtain the multicore optical fiber end surface sensor modules sensing pressure signals of the different locations.
  • the multi-core optical fiber pressure sensing system provided by the embodiment of the present invention provides multiple beams of the same optical signal to the multi-core optical fiber sensor through the light source, optical fiber coupler, and multi-core optical fiber multiplexer, and receives and couples the reflected light from the multi-core optical fiber sensor
  • the reflected light signals with different optical paths are transmitted to the optical demodulation device for analysis to obtain the pressure signal of the pressure generating device acting on the multi-core optical fiber sensor, and the position and position of the pressure signal acting on the multi-core optical fiber sensor are analyzed.
  • the size of the pressure signal is analyzed.
  • an embodiment of the present invention provides a method for preparing a multi-core optical fiber pressure sensor, which is used to prepare the optical fiber pressure sensor in Embodiment 1.
  • the steps include:
  • cutting the end surface of the multi-core optical fiber core group placed after the multi-core optical fiber cladding may include: The core fiber core group and the multi-core optical fiber cladding are simultaneously cut to form a flat end surface.
  • the micro cavity is a hollow structure.
  • the micro-cavity formed by processing and cutting the multi-core optical fiber core group can be any material processing method. In the embodiment of the present invention, it includes: using the output end face of the multi-core optical fiber core group The corrosive agent is corroded to form a plurality of parallel groove structures; the corrosion rate of the multi-core optical fiber core group and the multi-core optical fiber cladding is adjusted to obtain the microcavity.
  • the corrosive agent can corrode the multi-core optical fiber core without corroding the cladding or the corrosion rate of the cladding is much smaller than the corrosion rate of the core.
  • This corrosive agent can be hydrofluoric acid solution or caustic Alkaline solution, etc., can accurately control the depth of corrosion of the core by controlling the concentration of the corrosive agent and the corrosion time.
  • processing the flattened multi-core optical fiber core group to form a microcavity may include: corroding and adjusting the output end surface of the flattened multi-core optical fiber core group using an etchant The corrosion rate of the multi-core optical fiber core group and the multi-core optical fiber cladding forms a plurality of parallel groove structures;
  • the cleaned and dried multi-core optical fiber core group can be any cleaning and drying method.
  • it includes: using a volatile solution or an ultrasonic cleaning device to process the processed multi-core
  • the optical fiber core group is cleaned and dried.
  • step S105 there is a multi-core optical fiber cladding outside the multi-core optical fiber core group, the multi-core optical fiber cladding serves as a structure supporting the film material, and after coating the film material on the end surface of the multi-core optical fiber core group, the multi-core optical fiber core The end faces of the group and the multi-core optical fiber cladding have a layer of thin film material.
  • coating the end surface of the cleaned and dried multi-core optical fiber core group with a layer of thin film material to form a multi-core optical fiber pressure sensor may include:
  • the end surface of the cleaned and dried multi-core optical fiber core group is coated by a chemical deposition transfer method
  • the end surface of the cleaned and dried multi-core optical fiber core group is coated using a spin coating method.
  • the preparation method of the multi-core optical fiber pressure sensor designs a light pressure sensor, which includes a first parallel reflective end face group composed of the output end face of the multi-core optical fiber core, a multi-core optical fiber cladding end face and a microcavity
  • the second reflective end face formed by the second end face transmits the optical signal in the multi-core fiber core, and the first parallel reflective end face group and the second reflective end face reflect the optical signal.
  • the second reflective end face also receives the pressure signal.
  • There is a microcavity between the reflective end face group and the second reflective end face so there is an optical path difference between the optical signal reflected by the first reflective end face group and the optical signal reflected by the second reflective end face.
  • the second reflective end face When the second reflective end face receives the pressure signal, the first The distance between the parallel reflective end face group and the second reflective end face changes, and the optical path difference of the reflected light signal also changes. From this, the magnitude of the pressure signal received at different positions on the second reflective face can be calculated, thereby realizing the fiber pressure
  • the high spatial resolution of the sensor is used to characterize the fine structure.
  • An embodiment of the present invention proposes a multi-core optical fiber pressure sensor, which includes a first parallel reflective end surface group composed of the output end surface of the multi-core optical fiber core, and a second reflective end surface composed of the second end surface of the microcavity and the thin film material.
  • the signal is transmitted in the multi-core fiber core, and the first parallel reflective end face group and the second reflective end face reflect the optical signal, and the second reflective end face also receives the pressure signal, due to the existence between the first parallel reflective end face group and the second reflective end face Microcavity, so there is an optical path difference between the optical signal reflected by the first reflective end face group and the optical signal reflected by the second reflective end face.
  • the optical path difference of the reflected light signal also changes, which can calculate the size of the pressure signal received at different positions on the reflective surface of the second end, thereby achieving high spatial resolution of the fiber optic pressure sensor to characterize the fine structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本发明适用于光纤传感技术领域,提供了一种多芯光纤压力传感器、传感系统及传感器制备方法,多芯光纤压力传感器包括多芯光纤包层、多芯光纤纤芯组、微腔组和薄膜材料;每个多芯光纤纤芯的输出端面与每个微腔的第一端面连接,多芯光纤纤芯的输出端面构成第一并行反射面组;多芯光纤纤芯组设置于多芯光纤包层中,多芯光纤包层端面、每个微腔的第二端面涂覆有薄膜材料,每个微腔的第二端面和薄膜材料构成第二反射端面。通过本发明可以解决现有的光纤压力传感器无法进行多点并行采集、难以实现高空间分辨率,从而使其不能应用在精细结构上的问题。

Description

多芯光纤压力传感器、传感系统和传感器制备方法 技术领域
本发明涉及光纤传感领域,尤其涉及一种多芯光纤压力传感器、传感系统和传感器制备方法。
背景技术
光纤传感技术是伴随着光导纤维及光纤通信技术的发展而迅速发展起来的一种以光为载体,光纤为媒质,感知和传输外界信号的新型传感技术。当这种外界信号为压力时,即构成光纤压力传感器。光纤压力传感器作为一种新型的传感器,与传统的压力传感器相比体积小、重量轻,具有电绝缘性、不受电磁干扰、可应用于易燃易爆的环境中等优点。
然而,这种光纤压力传感器单次测量只能获得整个光纤端面处的平均压力值,并不能对光纤端面的不同位置处的压力进行测量和表征,而高空间分辨率的压力传感器在精细结构的表征、光声成像等领域具有重要作用。
技术问题
本发明的主要目的在于提出一种多芯光纤压力传感器、传感系统及传感器制备方法,以解决现有的光纤压力传感器无法进行多点并行采集、难以实现高空间分辨率,从而使其不能应用在精细结构上的问题。
技术解决方案
为实现上述目的,本发明实施例第一方面提供了一种多芯光纤压力传感器,所述多芯光纤压力传感器包括多芯光纤包层、多芯光纤纤芯组、微腔组和薄膜材料;
每个所述多芯光纤纤芯的输出端面与每个所述微腔的第一端面连接,所述多芯光纤纤芯的输出端面构成第一并行反射面组;
所述多芯光纤纤芯组设置于所述多芯光纤包层中,所述多芯光纤包层端面、每个所述微腔的第二端面涂覆有所述薄膜材料,所述每个所述微腔的第二端面和所述薄膜材料构成第二反射端面;
所述多芯光纤纤芯和所述微腔传输光信号;
所述第一并行反射面组和所述第二反射端面反射所述光信号,所述第二反射端面还接收压力信号。
可选地,所述微腔的第一端面与所述多芯光纤纤芯的输出端面重合;
所述微腔的第二端面面积大于所述微腔的第一端面。
可选地,所述微腔表面与所述多芯光纤纤芯的材质相同。
可选地,所述薄膜材料包括石英、高分子聚合物、金属、石墨烯、黑磷。
发明实施例第二方面提供了一种多芯光纤压力传感系统,所述多芯光纤压力传感系统包括光源、光纤耦合器、多芯光纤复用器、如本发明实施例第一方面所述的多芯光纤压力传感器、压力发生装置和光解调装置;
所述光源、光纤耦合器、多芯光纤复用器、多芯光纤传感器、压力发生装置装依次连接,所述光纤耦合器还与所述光解调装置连接;
所述光源提供光信号;
所述压力发生装置产生压力,并作用于所述多芯光纤传感器;
所述多芯光纤传感器接收压力信号,且反射所述光信号;
所述光纤耦合器接收所述光信号和所述多芯光纤传感器的反射光信号,并将所述光信号发送至所述多芯光纤复用器,将所述反射光信号发送至所述光解调装置;
所述多芯光纤复用器分离所述光信号,耦合所述反射光信号;
所述光解调装置接收所述反射光信号,并分析所述多芯光纤传感器中不同位置的压力信号。
可选地,所述光源包括宽带光源和光纤光源。
可选地,所述压力发生装置包括液压发生器、气压控制器、微位移压力控制器。
可选地,所述光解调装置包括衍射光栅光谱仪、棱镜光谱仪、干涉光谱仪、微型光谱仪。
本发明实施例第三方面提供了一种多芯光纤压力传感器的制备方法,包括:
将多芯光纤纤芯组置于多芯光纤包层中;
将所述置于多芯光纤包层后的多芯光纤纤芯组的端面切平;
对切平后的多芯光纤纤芯组进行加工,形成微腔;
清洁干燥所述加工过后的多芯光纤纤芯组;
将清洁干燥后的多芯光纤纤芯组的端面涂覆一层薄膜材料,形成多芯光纤压力传感器。
可选地,将所述置于多芯光纤包层后的多芯光纤纤芯组的端面切平包括:
通过标准光纤切割刀,对所述置于多芯光纤包层后的多芯光纤纤芯组和所述多芯光纤包层同时切割,形成一个平整端面。
可选地,所述对切平后的多芯光纤纤芯组加工,形成微腔包括:
对所述切平后的多芯光纤纤芯组的输出端面,使用腐蚀剂进行腐蚀,并调整所述多芯光纤纤芯组和所述多芯光纤包层的腐蚀速度,形成多个并行凹槽结构;
调整所述切平后的多芯光纤纤芯组的飞秒激光加工半径和深度,形成多个并行凹槽结构。
可选地,所述清洁干燥所述加工过后的多芯光纤纤芯组包括:
使用易挥发溶液或超声清洁装置对所述加工过后的多芯光纤纤芯组进行清洁干燥。
可选地,所述将清洁干燥后的多芯光纤纤芯组的端面涂覆一层薄膜材料,形成多芯光纤压力传感器包括:
所述薄膜材料为金属材料时,使用化学沉积转移法涂覆所述清洁干燥后的多芯光纤纤芯组的端面;
所述薄膜材料为高分子聚合物时,使用旋涂法涂覆所述清洁干燥后的多芯光纤纤芯组的端面。
有益效果
本发明实施例提出了一种多芯光纤压力传感器,包括由多芯光纤纤芯的输出端面构成的第一并行反射端面组,和微腔第二端面及薄膜材料构成的第二反射端面,光信号在多芯光纤纤芯中传输,而第一并行反射端面组和第二反射端面反射光信号,第二反射端面还接收压力信号,由于第一并行反射端面组和第二反射端面之间存在微腔,因此第一反射端面组反射的光信号和第二反射端面反射的光信号存在光程差,当第二反射端面接收压力信号时,第一并行反射端面组和第二反射端面之间的距离变化,其反射光信号的光程差也发生变化,由此可以计算第二端反射面上不同位置所接收的压力信号大小,从而实现光纤压力传感器的高空间分辨率,用以表征精细结构。
附图说明
图1为本发明实施例一所提供的多芯光纤压力传感器结构示意图;
图2为本发明实施例二所提供的多芯光纤压力传感系统的结构示意图;
图3为本发明实施例三所提供的多芯光纤压力传感器的制备方法的实现流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的最佳实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本文中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身并没有特定的意义。因此,"模块"与"部件"可以混合地使用。
在后续的描述中,发明实施例序号仅仅为了描述,不代表实施例的优劣。
实施例一
如图1所示,本发明实施例提供了一种多芯光纤压力传感器10,能够计算其接收压力信号时,传感器不同位置上的压力信号大小,提高光纤压力传感器的空间分辨率。多芯光纤压力传感器10包括多芯光纤包层11、多芯光纤纤芯组12、微腔组13和薄膜材料14。
在本发明实施例中,多芯光纤压力传感器各部位的连接关系如下:
每个多芯光纤纤芯121的输出端面与每个微腔131的第一端面连接,多芯光纤纤芯121的输出端面构成第一并行反射面组15;
多芯光纤纤芯组12设置于多芯光纤包层11中,多芯光纤包层11端面、每个微腔131的第二端面涂覆有薄膜材料14,每个微腔131的第二端面和薄膜材料14构成第二反射端面16。
在本发明实施例中,多芯光纤纤芯组12包括多个多芯光纤纤芯121,微腔组13包括多个微腔131。
在本发明实施例中,多芯光纤包层11用于保护多芯光纤纤芯组12,并给薄膜材料14提供物理支撑;多芯光纤纤芯121和微腔131用于传输光信号。
在具体应用中,每个多芯光纤纤芯的输入端面均接入光信号,光信号在每个多芯光纤纤芯中传输,而多芯光纤纤芯的输出端面连接微腔的第一端面,则光信号从多芯光纤纤芯中输出后,传输至微腔中。
在本发明实施例中,第一并行反射面组15和第二反射端面16用于反射光信号,第二反射端面16还用于接收压力信号。
在具体应用中,光信号传输至第一并行发射面组后,一部分反射回多芯光纤纤芯中反向传输,另一部分光信号在微腔中传输,到达第二发射端面后,由第二反射端面反射回微腔和多芯光纤纤芯中传输,第一并行反射端面与第二反射端面之间具有一个微腔,因此在第一并行反射端面组反射的光信号,与在第二反射端面反射的光信号具有光程差,此光程差等于微腔的长度。
在本发明实施例中,微腔组13包括多个微腔131,同样用于传输光信号。
在一个实施例中,微腔的第一端面与多芯光纤纤芯的输出端面重合;微腔的第二端面面积大于微腔的第一端面;微腔的第一端面即第一并行反射端面组中的反射端面,微腔的第二端面为第二反射端面的一部分,但第二端面作为接收压力信号的端面,其面积大于第一端面,能够提高接收压力信号时的传感灵敏度。
在一个实施例中,微腔表面与多芯光纤纤芯的材质相同。
在本发明实施例中,薄膜材料14可以为任意的能够形成薄膜涂覆在光纤材料端面,且能够反射光信号的材料,在本发明实施例中不对其做具体限定。
在一个实施例中,薄膜材料包括石英、高分子聚合物、金属、石墨烯、黑磷。
在本发明实施例中,多芯光纤压力传感器的工作原理如下:
光信号持续从多芯光纤压力传感器的输入端,即多芯光纤纤芯组的输入端面输入,此时光信号从每个多芯光纤纤芯的输入端面,光信号一部分传输至与每个多芯光纤纤芯输出端面连接的微腔中,当传输至微腔中的光信号传输至第一并行反射面组时,第一并行发射面组将此多束光信号反射至多芯光纤纤芯中,反向传输出去,另一部分光信号传输至微腔中,然后在第二反射端面反射,反向传输至微腔和多芯光纤纤芯中,当第二反射端面接收压力信号时,微腔发生形变,第一并行反射端面组和第二反射端面的距离发生改变,即从第一并行反射端面组反射的光信号和从第二反射端面反射的光信号的光程差改变,根据此光程差及光程差变化量,可以出计算作用于第一反射端面组的压力信号的大小,并分析压力信号作用在第二反射端面上的不同位置,从而推导出施力物体的结构特征,实现光纤压力传感器的高空间分辨率。
本发明实施例提供的多芯光纤压力传感器,包括由多芯光纤纤芯的输出端面构成的第一并行反射端面组,和多芯光纤包层端面及微腔第二端面构成的第二反射端面,光信号在多芯光纤纤芯中传输,而第一并行反射端面组和第二反射端面反射光信号,第二反射端面还接收压力信号,由于第一并行反射端面组和第二反射端面之间存在微腔,因此第一反射端面组反射的光信号和第二反射端面反射的光信号存在光程差,当第二反射端面接收压力信号时,第一并行反射端面组和第二反射端面之间的距离变化,其反射光信号的光程差也发生变化,由此可以计算第二端反射面上不同位置所接收的压力信号大小,从而实现光纤压力传感器的高空间分辨率,用以表征精细结构。
本发明的实施方式
实施例二
如图2所示,本发明实施例提供了一种多芯光纤压力传感系统20,包括光源21、光纤耦合器22、多芯光纤复用器23、如上述实施例一中的多芯光纤压力传感器10、压力发生装置24和光解调装置25。
在本发明实施例中,多芯光纤压力传感系统20各部分的连接关系如下:
光源21、光纤耦合器22、多芯光纤复用器23、多芯光纤传感器10、压力发生装置24装依次连接,光纤耦合器22还与光解调装置25连接。
在本发明实施例中,光源21用于提供光信号。
在具体应用中,光源包括宽带光源和光纤光源,宽带光源和光纤光源能够提供宽频段、低偏振度的高功率稳定光源,其在光纤中传播时,由于光纤的自身特性和光的直线传播原理,光纤在理论上可以把光线传播到任何地方,满足了实际应用的多元性。
在本发明实施例中,压力发生装置24用于产生压力,并作用于多芯光纤传感器。
在具体应用中,压力发生装置包括液压发生器、气压控制器、微位移压力控制器,其具体作用于多芯光纤传感器的第二反射端面上。
在本发明实施例中,多芯光纤传感器10用于接收压力信号,且反射光信号。
在具体应用中,多芯光纤传感器的多芯光纤纤芯输入端面接收光信号,多芯光纤传感器的第二反射端面接收压力信号,并反射光信号。
在本发明实施例中,光纤耦合器22用于接收光信号和多芯光纤传感器的反射光信号,并将光信号发送至多芯光纤复用器,将反射光信号发送至光解调装置。
在具体应用中,光纤耦合器包括光信号输入端、光信号输出端、反射光信号输入端和反射光信号输出端。
在本发明实施例中,多芯光纤复用器23用于分离光信号,耦合反射光信号。
在具体应用中,多芯光纤复用器将光源输出的信号光分为多束,以使此多束信号光在多芯光纤传感器的多个多芯光纤纤芯中传输;同时,也将多芯光纤传感器反射的信号光一并传输至光纤耦合模块中。
在本发明实施例中,光解调装置25用于接收反射光信号,并分析多芯光纤传感器中不同位置的压力信号。
在具体应用中,光解调装置包括衍射光栅光谱仪、棱镜光谱仪、干涉光谱仪、微型光谱仪,其接收多芯光纤复用器输出的光纤传感器反射的信号光,对其进行分析,获得多芯光纤传感器模块传感端面不同位置的压力信号。
在本发明实施例中,多芯光纤压力传感系统的工作原理如下:
光源持续输出光信号,光纤耦合器接收光信号,并传输至多芯光纤复用器,多芯光纤复用器将光信号分为多束光信号,并传输至多芯光纤传感器,多束光信号在多芯光纤传感器中的多个多芯光纤传输,当光信号传输至多芯光纤传感器的第一并行反射端面组时,会产生反射,反向传输至多芯光纤复用器,并且,当光信号传输至多芯光纤传感器的第二反射端面时,也会产生反射,由于第一反射端面组和第二反射端面之间存在距离,因此两束反射光信号具有光程差,当多芯光纤传感器的第二反射端面接收到压力发生装置对其施加的压力信号时,第一反射端面组和第二反射端面的距离改变;多芯光纤复用器将所有的反射光信号传输至光纤耦合器,光纤耦合器将所有的反射光信号传输至光解调装置,光解调装置对反射光信号进行分析,即根据发射光信号的光程差变化进行计算,获得多芯光纤传感器模块传感端面不同位置的压力信号。
本发明实施例提供的多芯光纤压力传感系统,通过光源、光纤耦合器、多芯光纤复用器向多芯光纤传感器提供多束相同的光信号,接收并耦合多芯光纤传感器中反射的具有不同光程的反射光信号,并传输至光解调装置中进行分析,以获得压力发生装置作用于多芯光纤传感器上的压力信号,分析此压力信号作用在多芯光纤传感器上的位置及压力信号大小。
实施例三
如图3所示,本发明实施例提供了一种多芯光纤压力传感器的制备方法,用以制备实施例一中的光纤压力传感器,其步骤包括:
S101、将多芯光纤纤芯组置于多芯光纤包层中。
S102、将所述置于多芯光纤包层后的多芯光纤纤芯组的端面切平。
在本发明实施例中,将置于多芯光纤包层后的多芯光纤纤芯组的端面切平,可以包括:通过标准光纤切割刀,对所述置于多芯光纤包层后的多芯光纤纤芯组和所述多芯光纤包层同时切割,形成一个平整端面。
S103、对切平后的多芯光纤纤芯组进行加工,形成微腔。
在上述步骤S103中,微腔为中空结构。
在具体应用中,加工切平后的多芯光纤纤芯组形成微腔可以为任意的材料加工方法,在本发明实施例中,其包括:对所述多芯光纤纤芯组的输出端面使用腐蚀剂进行腐蚀,形成多个并行凹槽结构;调整所述多芯光纤纤芯组和所述多芯光纤包层的腐蚀速度,获得所述微腔。
在实际应用中,腐蚀剂能够对多芯光纤纤芯进行腐蚀而对包层无腐蚀作用或者对包层的腐蚀速率远远小于对纤芯的腐蚀速率,这种腐蚀剂可以是氢氟酸溶液或苛性碱溶液等,通过控制腐蚀剂的浓度和腐蚀时间,能够精确控制纤芯腐蚀的深度。
在一个实施例中,对切平后的多芯光纤纤芯组进行加工,形成微腔可以包括:对所述切平后的多芯光纤纤芯组的输出端面,使用腐蚀剂进行腐蚀,并调整所述多芯光纤纤芯组和所述多芯光纤包层的腐蚀速度,形成多个并行凹槽结构;
调整所述切平后的多芯光纤纤芯组的飞秒激光加工半径和深度,形成多个并行凹槽结构。
S104、清洁干燥所述加工过后的多芯光纤纤芯组。
在具体应用中,清洁干燥加工过后的多芯光纤纤芯组可以为任意的清洁干燥方式,在本发明实施例中,其包括:使用易挥发溶液或超声清洁装置对所述加工过后的多芯光纤纤芯组进行清洁干燥。
S105、将清洁干燥后的多芯光纤纤芯组的端面涂覆一层薄膜材料,形成多芯光纤压力传感器。
在上述步骤S105中,多芯光纤纤芯组外部有多芯光纤包层,多芯光纤包层作为支撑薄膜材料的结构,多芯光纤纤芯组端面涂覆薄膜材料后,多芯光纤纤芯组和多芯光纤包层的端面均具有一层薄膜材料。
在具体应用中,将清洁干燥后的多芯光纤纤芯组的端面涂覆一层薄膜材料,形成多芯光纤压力传感器可以包括:
所述薄膜材料为金属材料时,使用化学沉积转移法涂覆所述清洁干燥后的多芯光纤纤芯组的端面;
所述薄膜材料为高分子聚合物时,使用旋涂法涂覆所述清洁干燥后的多芯光纤纤芯组的端面。
本发明提供的多芯光纤压力传感器的制备方法,设计了一种光线压力传感器,包括由多芯光纤纤芯的输出端面构成的第一并行反射端面组,和多芯光纤包层端面及微腔第二端面构成的第二反射端面,光信号在多芯光纤纤芯中传输,而第一并行反射端面组和第二反射端面反射光信号,第二反射端面还接收压力信号,由于第一并行反射端面组和第二反射端面之间存在微腔,因此第一反射端面组反射的光信号和第二反射端面反射的光信号存在光程差,当第二反射端面接收压力信号时,第一并行反射端面组和第二反射端面之间的距离变化,其反射光信号的光程差也发生变化,由此可以计算第二端反射面上不同位置所接收的压力信号大小,从而实现光纤压力传感器的高空间分辨率,用以表征精细结构。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例提出了一种多芯光纤压力传感器,包括由多芯光纤纤芯的输出端面构成的第一并行反射端面组,和微腔第二端面及薄膜材料构成的第二反射端面,光信号在多芯光纤纤芯中传输,而第一并行反射端面组和第二反射端面反射光信号,第二反射端面还接收压力信号,由于第一并行反射端面组和第二反射端面之间存在微腔,因此第一反射端面组反射的光信号和第二反射端面反射的光信号存在光程差,当第二反射端面接收压力信号时,第一并行反射端面组和第二反射端面之间的距离变化,其反射光信号的光程差也发生变化,由此可以计算第二端反射面上不同位置所接收的压力信号大小,从而实现光纤压力传感器的高空间分辨率,用以表征精细结构。

Claims (13)

  1. 一种多芯光纤压力传感器,其特征在于,所述多芯光纤压力传感器包括多芯光纤包层、多芯光纤纤芯组、微腔组和薄膜材料;
    每个所述多芯光纤纤芯的输出端面与每个所述微腔的第一端面连接,所述多芯光纤纤芯的输出端面构成第一并行反射面组;
    所述多芯光纤纤芯组设置于所述多芯光纤包层中,所述多芯光纤包层端面、每个所述微腔的第二端面涂覆有所述薄膜材料,所述每个所述微腔的第二端面和所述薄膜材料构成第二反射端面;
    所述多芯光纤纤芯和所述微腔传输光信号;
    所述第一并行反射面组和所述第二反射端面反射所述光信号,所述第二反射端面还接收压力信号。
  2. 如权利要求1所述的多芯光纤压力传感器,其特征在于,所述微腔的第一端面与所述多芯光纤纤芯的输出端面重合;
    所述微腔的第二端面面积大于所述微腔的第一端面。
  3. 如权利要求2所述的多芯光纤压力传感器,其特征在于,所述微腔表面与所述多芯光纤纤芯的材质相同。
  4. 如权利要求1所述的多芯光纤压力传感器,其特征在于,所述薄膜材料包括石英、高分子聚合物、金属、石墨烯、黑磷。
  5. 一种多芯光纤压力传感系统,其特征在于,所述多芯光纤压力传感系统包括光源、光纤耦合器、多芯光纤复用器、如权利要求1至4任一项所述的多芯光纤压力传感器、压力发生装置和光解调装置;
    所述光源、光纤耦合器、多芯光纤复用器、多芯光纤传感器、压力发生装置装依次连接,所述光纤耦合器还与所述光解调装置连接;
    所述光源提供光信号;
    所述压力发生装置产生压力,并作用于所述多芯光纤传感器;
    所述多芯光纤传感器接收压力信号,且反射所述光信号;
    所述光纤耦合器接收所述光信号和所述多芯光纤传感器的反射光信号,并将所述光信号发送至所述多芯光纤复用器,将所述反射光信号发送至所述光解调装置;
    所述多芯光纤复用器分离所述光信号,耦合所述反射光信号;
    所述光解调装置接收所述反射光信号,并分析所述多芯光纤传感器中不同位置的压力信号。
  6. 如权利要求5所述的多芯光纤压力传感系统,其特征在于,所述光源包括宽带光源和光纤光源。
  7. 如权利要求5所述的多芯光纤压力传感系统,其特征在于,所述压力发生装置包括液压发生器、气压控制器、微位移压力控制器。
  8. 如权利要求5所述的多芯光纤压力传感系统,其特征在于,所述光解调装置包括衍射光栅光谱仪、棱镜光谱仪、干涉光谱仪、微型光谱仪。
  9. 一种多芯光纤压力传感器的制备方法,其特征在于,包括:
    将多芯光纤纤芯组置于多芯光纤包层中;
    将所述置于多芯光纤包层后的多芯光纤纤芯组的端面切平;
    对切平后的多芯光纤纤芯组进行加工,形成微腔;
    清洁干燥所述加工过后的多芯光纤纤芯组;
    将清洁干燥后的多芯光纤纤芯组的端面涂覆一层薄膜材料,形成多芯光纤压力传感器。
  10. 如权利要求9所述的多芯光纤压力传感器的制备方法,其特征在于,将所述置于多芯光纤包层后的多芯光纤纤芯组的端面切平包括:
    通过标准光纤切割刀,对所述置于多芯光纤包层后的多芯光纤纤芯组和所述多芯光纤包层同时切割,形成一个平整端面。
  11. 如权利要求9所述的多芯光纤压力传感器的制备方法,其特征在于,所述对切平后的多芯光纤纤芯组加工,形成微腔包括:
    对所述切平后的多芯光纤纤芯组的输出端面,使用腐蚀剂进行腐蚀,并调整所述多芯光纤纤芯组和所述多芯光纤包层的腐蚀速度,形成多个并行凹槽结构;
    调整所述切平后的多芯光纤纤芯组的飞秒激光加工半径和深度,形成多个并行凹槽结构。
  12. 如权利要求9所述的多芯光纤压力传感器的制备方法,其特征在于,所述清洁干燥所述加工过后的多芯光纤纤芯组包括:
    使用易挥发溶液或超声清洁装置对所述加工过后的多芯光纤纤芯组进行清洁干燥。
  13. 如权利要求9所述的多芯光纤压力传感器的制备方法,其特征在于,所述将清洁干燥后的多芯光纤纤芯组的端面涂覆一层薄膜材料,形成多芯光纤压力传感器包括:
    所述薄膜材料为金属材料时,使用化学沉积转移法涂覆所述清洁干燥后的多芯光纤纤芯组的端面;
    所述薄膜材料为高分子聚合物时,使用旋涂法涂覆所述清洁干燥后的多芯光纤纤芯组的端面。
PCT/CN2018/111559 2018-10-24 2018-10-24 多芯光纤压力传感器、传感系统和传感器制备方法 WO2020082253A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/111559 WO2020082253A1 (zh) 2018-10-24 2018-10-24 多芯光纤压力传感器、传感系统和传感器制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/111559 WO2020082253A1 (zh) 2018-10-24 2018-10-24 多芯光纤压力传感器、传感系统和传感器制备方法

Publications (1)

Publication Number Publication Date
WO2020082253A1 true WO2020082253A1 (zh) 2020-04-30

Family

ID=70330849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111559 WO2020082253A1 (zh) 2018-10-24 2018-10-24 多芯光纤压力传感器、传感系统和传感器制备方法

Country Status (1)

Country Link
WO (1) WO2020082253A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858809A (zh) * 2010-05-28 2010-10-13 天津大学 一种光纤法布里-珀罗压力传感器及其制作方法
DE102012106806A1 (de) * 2012-07-26 2014-01-30 J-Fiber Gmbh Sensorfaser zur Temperatur-, Dehnungs- und/oder Torsionsdetektion in Form eines Mehrkern-Lichtwellenleiters mit einer Fiber-Bragg-Gitterstruktur
CN204027744U (zh) * 2014-04-25 2014-12-17 深圳大学 基于光纤fp干涉仪的压力传感器
US20150377765A1 (en) * 2014-06-30 2015-12-31 Baker Hughes Incorporated Systems and devices for sensing corrosion and deposition for oil and gas applications
CN108225657A (zh) * 2017-09-28 2018-06-29 南京邮电大学 一种具有光学游标效应的光纤fp气压传感器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858809A (zh) * 2010-05-28 2010-10-13 天津大学 一种光纤法布里-珀罗压力传感器及其制作方法
DE102012106806A1 (de) * 2012-07-26 2014-01-30 J-Fiber Gmbh Sensorfaser zur Temperatur-, Dehnungs- und/oder Torsionsdetektion in Form eines Mehrkern-Lichtwellenleiters mit einer Fiber-Bragg-Gitterstruktur
CN204027744U (zh) * 2014-04-25 2014-12-17 深圳大学 基于光纤fp干涉仪的压力传感器
US20150377765A1 (en) * 2014-06-30 2015-12-31 Baker Hughes Incorporated Systems and devices for sensing corrosion and deposition for oil and gas applications
CN108225657A (zh) * 2017-09-28 2018-06-29 南京邮电大学 一种具有光学游标效应的光纤fp气压传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, ZILIANG ET AL.: "Research Progress of In-Fiber Fabry-Perot Interferometric Temperature and Pressure Sensors", ACTA PHYSICA SINICA, vol. 66, no. 7, 5 April 2017 (2017-04-05), pages 70708-1 - 70708-17, XP055707483, ISSN: 1000-3290, DOI: 201 *

Similar Documents

Publication Publication Date Title
CN110319786B (zh) 一种应变传感Fabry-Perot干涉仪及基于该干涉仪的应变传感方法
US10866081B2 (en) Waveguide interferometer
WO2008092372A1 (fr) Détecteur de fabry-pérot à fibre optique et son procédé de fabrication
CN107063554B (zh) 一种一体化光纤大压力传感器及其制作方法
CN103344381B (zh) 具有多台阶的宽范围光纤真空传感器及其制作方法
CN101846491B (zh) 双F-P腔与Michelson组合干涉仪
WO2023103373A1 (zh) 消除温度干扰的法珀干涉光纤压力传感器及其制作方法
CN108020248A (zh) 基于化学腐蚀法制备大模场光纤f-p传感器的方法
CN111337060A (zh) 一种基于并联结构游标效应的混合型传感器及其制作方法
CN108168584A (zh) 全单模光纤f-p传感器及其制作方法
CN112596174B (zh) 一种微纳光纤耦合器复合制造方法
CN107861192A (zh) 基于光纤拉锥结合化学腐蚀制备光纤f‑p传感器的方法
CN107300437A (zh) 一种基于微椭球空气腔的光纤压力传感器及其制造方法
CN108731841A (zh) 调频连续波激光干涉光纤温度传感器
Wang et al. Development of fabrication technique and sensing performance of optical fiber humidity sensors in the most recent decade
Li et al. Micro-cap on 2-core-fiber facet hybrid interferometer for dual-parameter sensing
CN112179537A (zh) 一种基于光纤表面波导的法布里-珀罗干涉仪光纤传感器
CN206960027U (zh) 一种基于微椭球空气腔的光纤压力传感器
CN206177480U (zh) 基于微纳光纤迈克尔逊干涉的温度传感器
WO2020082253A1 (zh) 多芯光纤压力传感器、传感系统和传感器制备方法
CN210005129U (zh) 一种免熔接f-p腔光纤温度传感装置
Kashen et al. The influence of no-core fibre length on the sensitivity Optical fibre Humidity sensor
CN109374026B (zh) 一种免熔接的开腔fp光纤光栅传感器的制备方法
CN209400111U (zh) 多芯光纤压力传感器及多芯光纤压力传感系统
CN208043091U (zh) 一种用于双物理参量测量的光纤传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18937665

Country of ref document: EP

Kind code of ref document: A1