WO2020082235A1 - 一种超声设备的调节方法及超声设备 - Google Patents

一种超声设备的调节方法及超声设备 Download PDF

Info

Publication number
WO2020082235A1
WO2020082235A1 PCT/CN2018/111444 CN2018111444W WO2020082235A1 WO 2020082235 A1 WO2020082235 A1 WO 2020082235A1 CN 2018111444 W CN2018111444 W CN 2018111444W WO 2020082235 A1 WO2020082235 A1 WO 2020082235A1
Authority
WO
WIPO (PCT)
Prior art keywords
operation mode
actual operation
mode
imaging
adjustment method
Prior art date
Application number
PCT/CN2018/111444
Other languages
English (en)
French (fr)
Inventor
李雷
徐志安
董腾驹
陈志杰
王泽兵
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2018/111444 priority Critical patent/WO2020082235A1/zh
Priority to CN201880097295.5A priority patent/CN112689476A/zh
Publication of WO2020082235A1 publication Critical patent/WO2020082235A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present application belongs to the field of medical device parameter adjustment, and particularly relates to an ultrasonic device adjustment method and ultrasonic device.
  • the related parameters of the existing medical equipment such as the image related parameters of the ultrasound equipment
  • the clinical scenarios used are very different, so that the factory-set parameter settings cannot meet the user's different parameter setting requirements for different clinical scenarios.
  • the purpose of the present application is to provide an ultrasound device adjustment method and ultrasound device. According to the doctor's operation and usage habits, the operation mode of the ultrasound device is intelligently adjusted to meet the different needs of users in different clinical scenarios.
  • the present application provides an adjustment method for an ultrasound device.
  • the adjustment method includes:
  • the actual operation mode includes at least one of a probe type, an inspection mode, an imaging mode, and an imaging parameter adjustment mode;
  • the default operation mode of the ultrasound apparatus is adjusted.
  • the adjustment method further includes:
  • the determining the conventional operation mode for the ultrasound device according to the actual operation mode includes:
  • the actual operation mode with the largest number of operations is determined as the conventional operation mode.
  • the determining the conventional operation mode for the ultrasound device according to the actual operation mode includes:
  • the weighted actual operation mode is determined as the conventional operation mode.
  • the determining the conventional operation mode for the ultrasound device according to the actual operation mode includes:
  • the actual operation mode after the average value is determined as the conventional operation mode.
  • the adjustment method further includes:
  • the probe type includes at least one of a linear array type, a fan type, and a convex arc type.
  • the image inspection mode is an inspection mode that is not applied according to an organization structure.
  • the imaging mode includes at least one of a grayscale B image mode, a color blood flow C image mode, and a Doppler D image mode.
  • the imaging parameters include at least one of imaging depth, imaging focus, imaging frequency, dynamic range, and image gain.
  • This application also provides an ultrasound device, including:
  • a memory in which computer readable instructions are stored
  • a processor when the computer-readable instructions are executed by the processor, causing the processor to perform the following steps:
  • the actual operation mode includes at least one of a probe type, an inspection mode, an imaging mode, and an imaging parameter adjustment mode;
  • the processor is further configured to count the number of operations of the actual operation mode before determining the conventional operation mode of the ultrasonic device according to the actual operation mode.
  • the processor is used to determine the actual operation mode with the largest number of operations as the conventional operation mode.
  • the processor is configured to perform weighted analysis according to the actual operation mode and the number of operations of the actual operation mode to determine the conventional operation mode.
  • the processor is configured to perform an average analysis based on the actual operation mode and the number of operations of the actual operation mode to determine the conventional operation mode.
  • the memory is used to store the actual operation mode and the number of operations of the actual operation mode.
  • the probe type includes at least one of a linear array type, a fan type, and a convex arc type.
  • the image inspection mode is an inspection mode that is not applied according to an organization structure.
  • the imaging mode includes at least one of a grayscale B image mode, a color blood flow C image mode, and a Doppler D image mode.
  • the imaging parameters include at least one of imaging depth, imaging focus, imaging frequency, dynamic range, and image gain.
  • the ultrasound device acquires the actual operation mode of the ultrasound device, wherein the actual operation mode includes at least one of a probe type, an inspection mode, an imaging mode, and an imaging parameter adjustment mode; determined according to the actual operation mode With respect to the conventional operation mode of the ultrasound device, the default operation mode of the ultrasound device is adjusted according to the conventional operation mode. It can be seen that the ultrasound device can statistically adjust the actual operation mode of the ultrasound device according to the doctor's usage habits, and intelligently adjust the previously set default operation mode, so as to meet different needs of users in different clinical scenarios.
  • FIG. 1 is a schematic structural diagram of an ultrasound device in this application
  • FIG. 2 is a schematic diagram of an embodiment of a method for adjusting an operation mode in this application
  • FIG. 3 is a schematic diagram of another embodiment of a method for adjusting an operation mode in this application.
  • FIG. 4 is a schematic diagram of another embodiment of the adjustment method of the operation mode in this application.
  • 5 is a schematic diagram of an application scenario of the adjustment method of the operation mode in the present application.
  • this embodiment provides an ultrasound device 10, which includes a memory 11 and a processor 12, and a communication connection between the memory 11 and the processor 12, the memory 11 stores computer-readable instructions
  • the processor 12 is used to execute the computer-readable instructions.
  • the memory 11 may be a flash memory card, a solid-state memory, a hard disk, or the like.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a plurality of program instructions. After being invoked and executed by the processor 12, the plurality of program instructions can execute the following method embodiments of the present application. Partial steps or all steps or any combination of steps.
  • the computer-readable storage medium may be the memory 11, which may be a non-volatile storage medium such as a flash memory card, solid state memory, or hard disk.
  • the processor 12 in the aforementioned ultrasound device 10 may be implemented by software, hardware, firmware, or a combination thereof, and may use circuits, single or multiple application specific integrated circuits (application specific integrated circuits (ASIC), single or multiple General-purpose integrated circuits, single or multiple microprocessors, single or multiple programmable logic devices, or a combination of the aforementioned circuits or devices, or other suitable circuits or devices, so that the processor 12 can perform various methods described below The corresponding steps in the example.
  • ASIC application specific integrated circuits
  • ASIC application specific integrated circuits
  • General-purpose integrated circuits single or multiple microprocessors, single or multiple programmable logic devices, or a combination of the aforementioned circuits or devices, or other suitable circuits or devices
  • the present application also provides an adjustment method for the operation mode.
  • the adjustment method is applied to an ultrasound device.
  • the specific flow of the adjustment method is as follows:
  • Step S10 Acquire the actual operation mode of the ultrasound device, where the actual operation mode includes at least one of a probe type, an inspection mode, an imaging mode, and an imaging parameter adjustment mode.
  • each time the ultrasound device 10 performs ultrasound imaging a certain operation mode is selected. That is, the processor 12 in the ultrasound device 10 acquires the actual operation mode of the ultrasound device.
  • the specific process of ultrasound imaging is as follows: the ultrasound probe emits ultrasound waves to the object to be tested, wherein the object to be tested may be various tissues and organs of a person or an animal, etc., which can be set as needed, for example, the object to be tested It is the heart, liver, fetus, etc., not specifically limited here. Then, the ultrasound probe receives the ultrasound echo returned from the object to be measured, thereby acquiring the ultrasound echo signal / data.
  • the processor 12 in the ultrasound apparatus 10 processes the ultrasound echo signal / data to acquire the ultrasound image of the object under test.
  • the processor 12 may store the ultrasound image in the memory 11 or display the ultrasound image on a display, where the display may be a touch screen, a liquid crystal display, etc., or may be independent of the ultrasound device 10
  • the LCD, TV and other independent display devices can also be the display screen on electronic devices such as mobile phones and tablet computers.
  • the actual operation mode may be at least one of probe type, inspection mode, imaging mode, and imaging parameter adjustment mode. That is, the actual operation mode may be one or more of these adjustment modes.
  • the probe type includes at least one of a linear array type, a sector type, and a convex arc type. Of course, it may also be one or more of a plurality of linear array type probes, or one of a plurality of sector type probes. Or more than one, or one or more of convex arc probes.
  • the doctor actually selects the probe with the serial number 1 in the linear array probe for scanning, where the serial number can be the default of the ultrasound device or a user-defined serial number to distinguish other probes of the same type .
  • the image inspection mode is an inspection mode that is not applied according to the organization structure.
  • the examination mode for the tissue structure is the abdomen, or the examination mode for the tissue structure is the gynecological application, or the examination mode for the obstetrics and gynecology application, or the examination mode for the vascular application, etc., which is not specifically limited here.
  • the imaging mode may be at least one of a grayscale B image mode, a color blood flow C image mode, and a Doppler D image mode.
  • the imaging mode may be other imaging modes than the B image mode, the C image mode, and the D image mode, for example, elastography mode, etc., which is not specifically limited here.
  • the D image mode may be, for example, a spectrum Doppler, pulsed Doppler, continuous Doppler and any other D image mode are not specifically limited here.
  • the imaging parameters include at least one of imaging depth, imaging focus, imaging frequency, dynamic range, and image gain, which is not specifically limited here.
  • Each imaging mode may correspond to different imaging parameters.
  • the imaging parameters in the B image mode, the imaging parameters may be imaging depth, imaging focus, imaging frequency and dynamic range, magnification, image gain and other parameters.
  • the imaging parameters can be imaging focus, speed scale, imaging frequency, wall filtering, image gain and other parameters.
  • pulsed Doppler PW mode the imaging parameters can be sampling gate, speed scale, imaging frequency, wall filtering and other parameters.
  • the imaging parameters may also be other parameters, such as gray scale, brightness, contrast, etc., which are not specifically limited here.
  • Step S20 Determine the usual operation mode for the ultrasound equipment according to the actual operation mode.
  • the processor 12 in the ultrasound device 10 counts the actual operation mode of the ultrasound device, wherein the statistics may be carried out at a certain time period or according to a certain time point, for example, every other month One time statistics, or one time every day at 5 pm, the specific statistical time period or time point setting can be customized by the user, or the default operation of the ultrasound equipment, which is not specifically limited here.
  • the processor 12 in the ultrasonic device 10 will take the time period or the time point as the reference to calculate the actual operation mode of the ultrasonic device, and then further determine the conventional operation mode of the ultrasonic device according to the actual operation mode, that is, the conventional operation mode As a standard for future adjustments, the ultrasound equipment automatically adjusts future operation modes according to the conventional operation mode to meet user needs.
  • the processor 12 in the ultrasound device 10 also counts the number of operations in the actual operation mode, and stores the actual operation mode and the number of operation in the actual operation mode through the memory 11 so that the actual operation mode and The number of operations in this actual operation mode determines the usual operation mode for the ultrasound equipment.
  • the actual operation mode with the largest number of operations is determined as the conventional operation mode.
  • the ultrasound equipment counts the actual operation mode over a period of time, assuming that the actual operation mode is image gain, where the image gain is reduced by 2 dB 10 times, the image gain is increased by 1 dB 20 times, and the image gain is increased by 2 dB There are 10 times, the image gain is increased by 3dB, there are 30 times, then the image gain is increased by 3dB adjustment method is determined as the conventional adjustment method.
  • weighted analysis is performed according to the actual operation mode and the number of actual operation modes to determine the weighted actual operation mode, and the weighted actual operation mode is determined as the conventional operation mode.
  • the ultrasound device counts the actual operation mode over a period of time, and determines the corresponding weighted weight according to the number of each actual operation mode, and sums the product of the weighted weight and the actual operation mode to determine the conventional operation mode.
  • the actual operation mode is image gain, where the image gain is reduced by 2dB 10 times, the image gain is reduced by 1dB 10 times, the image gain is unchanged by 20 times, and the image gain is increased by 1dB 20 times, the image gain is increased by 2dB 10 times, the image gain is increased by 3dB 30 times, then the image gain is reduced by 2dB corresponding to a weighted proportion of 0.1, the image gain is reduced by 1dB corresponding to a weighted proportion of 0.1, If the image gain is unchanged, the corresponding weighted weight is 0.2, the image gain is increased by 1dB, the corresponding weighted weight is 0.2, the image gain is increased by 2dB, the weighted weight is 0.1, and the image gain is increased by 3dB, the weighted weight is 0.3
  • an average analysis is performed to determine the actual operation mode after averaging according to the actual operation mode and the number of actual operation modes, and the actual operation mode after averaging is determined as the conventional operation mode.
  • the actual operation mode is image gain, where the image gain is reduced by 2dB 10 times, the image gain is reduced by 1dB 10 times, the image gain is unchanged by 20 times, and the image gain is increased by 1dB 20 times, the image gain is increased by 2dB for 10 times, and the image gain is increased by 3dB for 30 times
  • the image gain is used as an example for illustration.
  • the actual operation mode may also be other adjustment modes than the image gain.
  • the process of determining the conventional operation mode is similar.
  • the above examples illustrate and will not be repeated here.
  • Step S30 Adjust the default operation mode of the ultrasound equipment according to the conventional operation mode.
  • the processor 12 in the ultrasound device 10 adjusts the default operation mode of the ultrasound device according to the conventional operation mode determined above.
  • the default operation mode is the factory-set operation mode of the ultrasound equipment.
  • the adjustment of the default operation mode of the ultrasound device by the processor 12 may be to replace the default operation mode with the conventional operation mode, or may be to adjust the default operation mode to a certain proportion or to a certain degree, so that the adjusted default operation mode It is within a preset threshold range of the conventional operation mode.
  • the preset threshold range may be set according to actual needs, specifically may be a user-defined setting, or a default setting of an ultrasound device, which is not specifically limited here.
  • the actual operation mode of the ultrasound equipment can be statistically adjusted according to the doctor's usage habits, and the default operation mode set before can be intelligently adjusted, so as to meet different needs of users in different clinical scenarios.
  • the adjustment method further includes:
  • Step S12 counting the number of operations in the actual operation mode.
  • the processor 12 counts the number of operations of the actual operation mode before determining the usual operation mode of the ultrasound device according to the actual operation mode.
  • the processor 12 may count the operation times of imaging depth.
  • the adjustment method further includes:
  • step S11 the actual operation mode and the number of operations of the actual operation mode are stored.
  • the memory 11 before counting the number of operations of the actual operation mode, stores the operation times of the actual operation mode and the actual operation mode.
  • the memory 11 may store the adjustment mode of the imaging depth and the number of operations.
  • the image gain of the ultrasound device is adjusted by the knob of the ultrasound device to increase the gain by 1 dB.
  • the processor 12 acquires the actual operation mode while continuing to wait for the next operation.
  • the gain of is adjusted, for example, a gain of 2dB is added, the processor 12 acquires the actual operation mode, and so on, and after performing N operations, the processor 12 acquires the actual operation mode of the gain of the ultrasound device N times .
  • the memory 11 stores the actual operation mode and the number of operations of the actual operation mode for subsequent statistical analysis.
  • the processor 12 determines the conventional operation mode for the image gain of the ultrasound device according to the actual operation mode for the image gain of the ultrasound device. Among them, there are many ways to determine, the following examples illustrate several possible implementations:
  • Method 1 Determine the actual adjustment mode with the largest number of operations as the usual operation mode.
  • Method 2 Perform weighted analysis according to the actual operation mode and the number of actual operation modes to determine the weighted actual operation mode, and determine the weighted actual operation mode as the conventional operation mode.
  • Method 3 Perform an average analysis on the actual operation mode and the number of actual operation modes to determine the actual operation mode after the average, and determine the actual operation mode after the average as the conventional operation mode.
  • the abscissa represents the increase or decrease of the gain value, such as increase + 1dB, increase + 3dB, etc.
  • the ordinate represents the corresponding number of operations, for example, the doctor increases the gain of + 3dB the most operations, you can
  • the actual operation mode corresponding to the increase of + 3dB is determined as the usual operation mode.
  • the processor 12 adjusts the default operation mode corresponding to the image gain of the ultrasound device according to the conventional operation mode.
  • the processor 12 may intelligently adjust the default operation mode corresponding to the previously set image gain according to the conventional operation mode corresponding to the image gain determined above.
  • the default operation mode may be replaced with the conventional operation mode, or the default operation mode may be performed. A certain proportion or a certain degree of adjustment, so that the adjusted default operation mode is within a preset threshold range of the conventional operation mode.
  • the preset threshold range may be set according to actual needs, and may be a user-defined setting. Or the default setting of the ultrasound equipment is not specifically limited here.
  • the ultrasound device can statistically calculate the actual operation mode of the ultrasound device according to the doctor's usage habits, and intelligently adjust the default operation mode set before, so as to meet different needs of users in different clinical scenarios.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声设备的调节方法及超声设备(10),调节方法包括:获取对超声设备(10)的实际操作方式,其中,实际操作方式包括探头类型,检查模式,成像模式以及成像参数的调节方式中的至少一种(S10);根据实际操作方式确定对超声设备(10)的惯用操作方式(S20);根据惯用操作方式,对超声设备(10)的默认操作方式进行调节(S30)。能够根据医生使用习惯统计对超声设备(10)的实际操作方式,智能调节之前设置的默认操作方式,从而满足用户对不同临床场景的不同需求。

Description

一种超声设备的调节方法及超声设备 技术领域
本申请属于医疗设备参数调节领域,尤其涉及一种超声设备的调节方法及超声设备。
背景技术
现有医疗设备的相关参数,如超声设备的图像相关参数,只是针对部分用户习惯设计的。但是在客户端,使用的临床场景区别很大,使得出厂的参数设置,并不能满足用户对不同临床场景的不同的参数设置需求。例如,在如下临床场景会存在不同的参数设置需求:
1、不同医生,对图像的认知和操作不一样,有些医生喜欢图像偏亮一点的,有些医生喜欢图像偏暗一点的。所以,基于出厂的参数设置,医生会一直增加增益或者降低增益。
2,不同地区的人,有些体型偏胖,有些体型偏瘦。这样,体型偏胖地区的医生会频繁的降低频率,增加增益等,对于偏瘦的地区,则相反。
3,不同诊室的坏境,比如有些科室灯光很亮,有些科室完全暗室操作,这样对图像亮度,动态范围等参数,医生都会做相应的调节。
发明内容
本申请的目的是提供一种超声设备的调节方法及超声设备,根据医生的操作和使用习惯,智能调节超声设备的操作方式,以满足用户对不同临床场景的不同需求。
本申请提供了一种超声设备的调节方法,所述调节方法包括:
获取对超声设备的实际操作方式,其中,所述实际操作方式包括探头类型,检查模式,成像模式以及成像参数的调节方式中的至少一种;
根据所述实际操作方式确定对所述超声设备的惯用操作方式;
根据所述惯用操作方式,对所述超声设备的默认操作方式进行调节。
进一步地,在所述根据所述实际操作方式确定对所述超声设备的惯用操作方式之前,所述调节方法还包括:
统计所述实际操作方式的操作次数。
进一步地,所述根据所述实际操作方式确定对所述超声设备的惯用操作方式包括:
将操作次数最多的所述实际操作方式确定为所述惯用操作方式。
进一步地,所述根据所述实际操作方式确定对所述超声设备的惯用操作方式包括:
根据所述实际操作方式和所述实际操作方式的次数进行加权分析确定加权后的实际操作方式;
将所述加权后的实际操作方式确定为所述惯用操作方式。
进一步地,所述根据所述实际操作方式确定对所述超声设备的惯用操作方式包括:
根据所述实际操作方式和所述实际操作方式的次数进行均值分析确定均值后的实际操作方式;
将所述均值后的实际操作方式确定为所述惯用操作方式。
进一步地,在所述统计所述实际操作方式的操作次数之前,所述调节方法还包括:
存储所述实际操作方式和所述实际操作方式的操作次数。
进一步地,所述探头类型包括线阵型,扇型以及凸弧型中的至少一种。
进一步地,所述图像检查模式为根据组织结构划分的不用应用的检查模式。
进一步地,所述成像模式包括灰度B图像模式,彩色血流C图像模式以及多普勒D图像模式中的至少一种。
进一步地,所述成像参数包括成像深度,成像焦点,成像频率,动态范围以及图像增益中的至少一种。
本申请还提供了一种超声设备,包括:
存储器,所述存储器中存储有计算机可读指令;
处理器,所述计算机可读指令被所述处理器执行时,使得所述处理器执行如下步骤:
获取对超声设备的实际操作方式,其中,所述实际操作方式包括探头类型,检查模式,成像模式以及成像参数的调节方式中的至少一种;
根据所述实际操作方式确定对所述超声设备的惯用操作方式;
用于根据所述惯用操作方式,对所述超声设备的默认操作方式进行调节。
进一步的,所述处理器,还用于在所述根据所述实际操作方式确定对所述超声设备的惯用操作方式之前,统计所述实际操作方式的操作次数。
进一步地,所述处理器用于将操作次数最多的所述实际操作方式确定为所述惯用操作方式。
进一步地,所述处理器用于根据所述实际操作方式和所述实际操作方式的操作次数进行加权分析以确定所述惯用操作方式。
进一步地,所述处理器用于根据所述实际操作方式和所述实际操作方式的操作次数进行均值分析以确定所述惯用操作方式。
进一步地,所述存储器,用于存储所述实际操作方式和所述实际操作方式的操作次数。
进一步地,所述探头类型包括线阵型,扇型以及凸弧型中的至少一种。
进一步地,所述图像检查模式为根据组织结构划分的不用应用的检查模式。
进一步地,所述成像模式包括灰度B图像模式,彩色血流C图像模式以及多普勒D图像模式中的至少一种。
进一步地,所述成像参数包括成像深度,成像焦点,成像频率,动态范围以及图像增益中的至少一种。
本申请中,超声设备获取对超声设备的实际操作方式,其中,所述实际操作方式包括探头类型,检查模式,成像模式以及成像参数的调节方式中的至少一种;根据所述实际操作方式确定对所述超声设备的惯用操作方式,根据所述惯用操作方式,对所述超声设备的默认操作方式进行调节。可见,超声设备能够根据医生使用习惯统计对超声设备的实际操作方式,智能调节之前设置的默认操作方式,从而满足用户对不同临床场景的不同需求。
附图说明
图1是本申请中超声设备的一个结构示意图;
图2是本申请中操作方式的调节方法的一个实施例示意图;
图3是本申请中操作方式的调节方法的另一个实施例示意图;
图4是本申请中操作方式的调节方法的另一个实施例示意图;
图5是本申请中操作方式的调节方法的一个应用场景示意图。
具体实施方式
下面结合附图所示的各实施方式对本申请进行详细说明,但应当说明的是,这些实施方式并非对本申请的限制,本领域普通技术人员根据这些实施方式所作的功能、方法、或者结构上的等效变换或替代,均属于本申请的保护范围之内。
参图1所示,本实施例提供了一种超声设备10,该超声设备包括存储器11和处理器12,该存储器11和处理器12之间通信连接,该存储器11存储有计算机可读指令,该处理器12用于执行该计算机可读指令。其中,该存储器11可为闪存卡、固态存储器、硬盘等。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有多条程序指令,该多条程序指令被处理器12调用执行后,可执行本申请下 述各个方法实施例中的部分步骤或全部步骤或其中步骤的任意组合。
一个实施例中,该计算机可读存储介质可为存储器11,其可以是闪存卡、固态存储器、硬盘等非易失性存储介质。
在本申请中,前述超声设备10中的处理器12可以通过软件、硬件、固件或者其组合实现,可以使用电路、单个或多个专用集成电路(application specific integrated circuits,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路或器件的组合、或者其他适合的电路或器件,从而使得该处理器12可以执行下述各个方法实施例中的相应步骤。
参图2所示,本申请还提供了一种操作方式的调节方法,该调节方法应用于超声设备,该调节方法的具体流程如下:
步骤S10,获取对超声设备的实际操作方式,其中,实际操作方式包括探头类型,检查模式,成像模式以及成像参数的调节方式中的至少一种。
在本申请中,超声设备10每次进行超声成像时,都会选取一定的操作方式。即超声设备10中的处理器12获取对超声设备的实际操作方式。其中,超声成像的具体过程为:超声探头向受测对象发射超声波,其中,该受测对象可以是人或者动物的各种组织器官等,可以根据需要进行设定,例如,该受测对象可以是心脏,肝脏,胎儿等,此处不做具体限定。然后,超声探头接收从受测对象返回的超声回波,从而获取超声回波信号/数据。超声设备10中的处理器12对该超声回波信号/数据进行处理,以获取该受测对象的超声图像。处理器12将该超声图像可以存储于存储器11中,也可以将该超声图像显示在显示器上,其中,该显示器可以是触摸显示屏、液晶显示屏等,也可以是独立于超声设备10之外的液晶显示器、电视机等独立显示设备,也可为手机、平板电脑等电子设备上的显示屏。
本申请中,该实际操作操作方式可以是探头类型,检查模式,成像模式,成像参数的调节方式中的至少一种。即该实际操作方式可以这些调节方式中的一种或者多种。其中,探头类型包括线阵型,扇型以及凸弧型中的至少一 种,当然,还可以是多个线阵型探头中的其中一个或者多个,也可以是多个扇型探头中的其中一个或者多个,或者,也可以是凸弧型探头中的一个或者多个。比如,在某个超声设备中,医生实际选取线阵型探头中的序号1的探头进行扫描,其中,该序号可以是超声设备默认的或者是用户自定义的序号,用于区别其他同类型的探头。该图像检查模式为根据组织结构划分的不用应用的检查模式。例如,针对组织结构是腹部的检查模式,或者针对组织结构是妇科应用,或者是妇产应用的检查模式,或者血管应用的检查模式等,此处不做具体限定。该成像模式可以是灰度B图像模式,彩色血流C图像模式以及多普勒D图像模式中的至少一种。当然,该成像模式可以是处B图像模式,C图像模式以及D图像模式以外的其他成像模式,例如,弹性成像模式等,此处不做具体限定,另外,该D图像模式可以是例如频谱多普勒,脉冲多普勒,连续多普勒等任意一种D图像模式,此处不做具体限定。该成像参数包括成像深度,成像焦点,成像频率,动态范围以及图像增益中的至少一种,此处不做具体限定。其中,每种成像模式可以对应不同的成像参数,例如,在B图像模式下,成像参数可以是成像深度,成像焦点,成像频率以及动态范围,放大倍数,图像增益等参数。在C图像模式下,成像参数可以是成像焦点,速度标尺,成像频率,壁滤波,图像增益等参数。脉冲多普勒PW模式下,成像参数可以是取样门,速度标尺,成像频率,壁滤波等参数。当然,成像参数还可以是其他参数,例如灰度,亮度,对比度等,此处不做具体限定。
步骤S20,根据实际操作方式确定对超声设备的惯用操作方式。
在本申请中,超声设备10中处理器12统计超声设备的实际操作方式,其中,可以是以某个时间段进行统计,也可以是根据某个时间点进行统计,例如,每隔一个月进行一次统计,或者每天的下午5点进行一次统计,具体统计时间段或者时间点设置可以由用户自定义操作,或者由超声设备默认操作,此处不做具体限定。超声设备10中的处理器12将以时间段或者以时间 点为基准,统计对超声设备的实际操作方式后,则进一步根据该实际操作方式确定对超声设备的惯用操作方式,即该惯用操作方式将作为日后调整的一个标准,超声设备根据该惯用操作方式自动调整日后的操作方式,以满足用户的需求。
在一些可能的实现方式中,超声设备10中的处理器12还统计实际操作方式的操作次数,并通过存储器11存储了实际操作方式和实际操作方式的操作次数,以便后续根据该实际操作方式和该实际操作方式的操作次数确定对超声设备的惯用操作方式。
在本申请中,根据对超声设备的实际操作方式确定对超声设备的惯用操作方式有很多种,下面举例说明几种可能的实现方式:
在一个可能的实现方式中,将操作次数最多的实际操作方式确定为惯用操作方式。例如,超声设备统计一段时间内的实际操作方式,假设该实际操作方式为图像增益,其中,图像增益为减小2dB的有10次,图像增益为增加1dB的有20次,图像增益为增加2dB的有10次,图像增益为增加3dB的有30次,则将图像增益为增加3dB的调节方式确定为惯用调节方式。
在一个可能的实现方式中,根据实际操作方式和实际操作方式的次数进行加权分析确定加权后的实际操作方式,将加权后的实际操作方式确定为惯用操作方式。例如,超声设备统计一段时间内的实际操作方式,并根据每个实际操作方式的次数确定对应的加权比重,并根据该加权比重和该实际操作方式的乘积求和,从而确定该惯用操作方式。假设该实际操作方式为图像增益,其中,图像增益为减小2dB的有10次,图像增益为减小1dB的有10次,图像增益为不变的有20次,图像增益为增加1dB的有20次,图像增益为增加2dB的有10次,图像增益为增加3dB的有30次,则图像增益为减小2dB对应的加权比重为0.1,图像增益为减小1dB对应的加权比重为0.1,图像增益为不变对应的加权比重为0.2,图像增益为增加1dB对应的加权比重为0.2,图像增益为增加2dB对应的加权比重为0.1,图像增益为增加3dB对应 的加权比重为0.3,则确定的惯用操作方式为-2*0.1-1*0.1+0*0.2+1*0.2+2*0.1+3*0.3=1dB,即在默认的图像增益的基础上,增加1dB。
在一个可能的实现方式中,根据实际操作方式和实际操作方式的次数进行均值分析确定均值后的实际操作方式,将均值后的实际操作方式确定为惯用操作方式。假设该实际操作方式为图像增益,其中,图像增益为减小2dB的有10次,图像增益为减小1dB的有10次,图像增益为不变的有20次,图像增益为增加1dB的有20次,图像增益为增加2dB的有10次,图像增益为增加3dB的有30次,则确定的惯用操作方式为(-2*10-1*10+0*20+1*20+2*10+3*30)/100=1dB,即在默认的图像增益的基础上增加1dB。
上述几种可能的实现方式中,均以图像增益举例进行说明,在实际应用中,该实际操作方式还可以是图像增益以外的其他调节方式,其中,确定惯用操作方式的过程相似,具体可参考上述举例说明,此处不再赘述。当然,除了上述可能的几种实现方式外,还可以是其他实现方式,此处不做具体限定。
步骤S30,根据惯用操作方式,对超声设备的默认操作方式进行调节。
本申请中,超声设备10中的处理器12根据上述确定的惯用操作方式对超声设备的默认操作方式进行调节。其中,该默认操作方式是该超声设备出厂设置的操作方式。处理器12对超声设备的默认操作方式进行调节可以是将该默认操作方式替换成该惯用操作方式,还可以是将该默认操作方式进行一定比例或者一定程度的调节,使得调节后的默认操作方式是在该惯用操作方式的预设阈值范围内,该预设阈值范围可以是根据实际需求设定,具体可以是用户自定义设定,或者超声设备默认设定,此处不做具体限定。
通过对该操作方式的调节方法,能够根据医生使用习惯统计对超声设备的实际操作方式,智能调节之前设置的默认操作方式,从而满足用户对不同 临床场景的不同需求。
参图3所示,在另一实施例中,在步骤S20之前,该调节方法还包括:
步骤S12,统计实际操作方式的操作次数。
在本申请中,处理器12在根据实际操作方式确定对超声设备的惯用操作方式之前,对实际操作方式的操作次数进行了统计。
例如,处理器12在确定对超声设备成像深度的惯用操作方式之前,可以对成像深度的操作次数进行统计。
参图4所示,在另一实施例中,在步骤S12之前,该调节方法还包括:
步骤S11,存储实际操作方式和实际操作方式的操作次数。
在本申请中,存储器11在统计实际操作方式的操作次数之前,对实际操作方式和实际操作方式的操作次数进行了存储。
例如,存储器11在统计实际操作方式的操作次数之前,可以对成像深度的调节方式及操作次数进行存储。
下面以对图像增益调节为例,对该操作方式的调节方法进行详细说明:
1)处理器12获取对超声设备的图像增益的实际操作方式。
超声设备启动超声成像后,通过超声设备的旋钮对超声设备的图像增益进行调节,增加了1dB增益,处理器12获取该实际操作方式,同时继续等待下一次的操作,当第二次对超声设备的增益进行了调节时,例如增加了2dB增益,同样,处理器12获取该实际操作方式,依次类推,当进行了N次操作后,处理器12就获取N次对超声设备增益的实际操作方式。在该示例中,存储器11对实际操作方式和实际操作方式的操作次数进行了存储,以便后续进行统计分析。
2)处理器12根据对超声设备的图像增益的实际操作方式确定对超声设备的图像增益的惯用操作方式。其中,确定方式有很多种,下面举例说明几种可能的实现方式:
方法一,将操作次数最多的实际调节方式确定为惯用操作方式。
方法二,根据实际操作方式和实际操作方式的次数进行加权分析确定加权后的实际操作方式,将加权后的实际操作方式确定为惯用操作方式。
方法三,根据实际操作方式和实际操作方式的次数进行均值分析确定均值后的实际操作方式,将均值后的实际操作方式确定为惯用操作方式。
参图5所示,横坐标代表增加或者减小的增益值,比如增加+1dB,增加+3dB等,纵坐标代表相对应操作的次数,例如,医生增大+3dB增益的操作最多,则可以将增加+3dB对应的实际操作方式确定为惯用操作方式。
3)处理器12根据惯用操作方式,对超声设备的图像增益对应的默认操作方式进行调节。
处理器12可以根据上述确定的图像增益对应的惯用操作方式,智能调节之前设置的图像增益对应的默认操作方式,可以是将默认操作方式替换成惯用操作方式,还可以是将该默认操作方式进行一定比例或者一定程度的调节,使得调节后的默认操作方式是在该惯用操作方式的预设阈值范围内,该预设阈值范围可以是根据实际需求设定,具体可以是用户自定义设定,或者超声设备默认设定,此处不做具体限定。
通过该操作方式的调节方法,超声设备能够根据医生使用习惯统计对超声设备的实际操作方式,智能调节之前设置的默认操作方式,从而满足用户对不同临床场景的不同需求。
上文所列出的一系列的详细说明仅仅是针对本申请的可行性实施方式的具体说明,它们并非用以限制本申请的保护范围,凡未脱离本申请技艺精神所作的等效实施方式或变更均应包含在本申请的保护范围之内。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本申 请内。

Claims (20)

  1. 一种超声设备的调节方法,其特征在于,所述调节方法包括:
    获取对超声设备的实际操作方式,其中,所述实际操作方式包括探头类型,检查模式,成像模式以及成像参数的调节方式中的至少一种;
    根据所述实际操作方式确定对所述超声设备的惯用操作方式;
    根据所述惯用操作方式,对所述超声设备的默认操作方式进行调节。
  2. 根据权利要求1所述的调节方法,其特征在于,在所述根据所述实际操作方式确定对所述超声设备的惯用操作方式之前,所述调节方法还包括:
    统计所述实际操作方式的操作次数。
  3. 根据权利要求2所述的调节方法,其特征在于,所述根据所述实际操作方式确定对所述超声设备的惯用操作方式包括:
    将操作次数最多的所述实际操作方式确定为所述惯用操作方式。
  4. 根据权利要求2所述的调节方法,其特征在于,所述根据所述实际操作方式确定对所述超声设备的惯用操作方式包括:
    根据所述实际操作方式和所述实际操作方式的次数进行加权分析确定加权后的实际操作方式;
    将所述加权后的实际操作方式确定为所述惯用操作方式。
  5. 根据权利要求2所述的调节方法,其特征在于,所述根据所述实际操作方式确定对所述超声设备的惯用操作方式包括:
    根据所述实际操作方式和所述实际操作方式的次数进行均值分析确定均值后的实际操作方式;
    将所述均值后的实际操作方式确定为所述惯用操作方式。
  6. 根据权利要求2至5任一项所述的调节方法,其特征在于,在所述统计所述实际操作方式的操作次数之前,所述调节方法还包括:
    存储所述实际操作方式和所述实际操作方式的操作次数。
  7. 根据权利要求1至6任一项所述的调节方法,其特征在于,所述探头类型包括线阵型,扇型以及凸弧型中的至少一种。
  8. 根据权利要求1至6任一项所述的调节方法,其特征在于,所述检查模式为根据组织结构划分的不用应用的检查模式。
  9. 根据权利要求1至6任一项所述的调节方法,其特征在于,所述成像模式包括灰度B图像模式,彩色血流C图像模式以及多普勒D图像模式中的至少一种。
  10. 根据权利要求1至6任一项所述的调节方法,其特征在于,所述成像参数包括成像深度,成像焦点,成像频率,动态范围以及图像增益中的至少一种。
  11. 一种超声设备,其特征在于,包括:
    存储器,所述存储器中存储有计算机可读指令;
    处理器,所述计算机可读指令被所述处理器执行时,使得所述处理器执行如下步骤:
    获取对超声设备的实际操作方式,其中,所述实际操作方式包括探头类型,检查模式,成像模式以及成像参数的调节方式中的至少一种的调节方式中的至少一种;
    根据所述实际操作方式确定对所述超声设备的惯用操作方式;
    根据所述惯用操作方式,对所述超声设备的默认操作方式进行调节。
  12. 根据权利要求11所述的超声设备,其特征在于,
    所述处理器,还用于在所述根据所述实际操作方式确定对所述超声设备的惯用操作方式之前,统计所述实际操作方式的操作次数。
  13. 根据权利要求12所述的超声设备,其特征在于,所述处理器用于将操作次数最多的所述实际操作方式确定为所述惯用操作方式。
  14. 根据权利要求12所述的超声设备,其特征在于,所述处理器用于根据所述实际操作方式和所述实际操作方式的操作次数进行加权分析以确 定所述惯用操作方式。
  15. 根据权利要求12所述的超声设备,其特征在于,所述处理器用于根据所述实际操作方式和所述实际操作方式的操作次数进行均值分析以确定所述惯用操作方式。
  16. 根据权利要求12至15任一项所述的超声设备,其特征在于,
    所述存储器,用于存储所述实际操作方式和所述实际操作方式的操作次数。
  17. 根据权利要求11至16任一项所述的超声设备,其特征在于,所述探头类型包括线阵型,扇型以及凸弧型中的至少一种。
  18. 根据权利要求11至16任一项所述的超声设备,其特征在于,所述检查模式为根据组织结构划分的不用应用的检查模式。
  19. 根据权利要求11至16任一项所述的超声设备,其特征在于,所述成像模式包括灰度B图像模式,彩色血流C图像模式以及多普勒D图像模式中的至少一种。
  20. 根据权利要求11至16任一项所述的超声设备,其特征在于,所述成像参数包括成像深度,成像焦点,成像频率,动态范围以及图像增益中的至少一种。
PCT/CN2018/111444 2018-10-23 2018-10-23 一种超声设备的调节方法及超声设备 WO2020082235A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/111444 WO2020082235A1 (zh) 2018-10-23 2018-10-23 一种超声设备的调节方法及超声设备
CN201880097295.5A CN112689476A (zh) 2018-10-23 2018-10-23 一种超声设备的调节方法及超声设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/111444 WO2020082235A1 (zh) 2018-10-23 2018-10-23 一种超声设备的调节方法及超声设备

Publications (1)

Publication Number Publication Date
WO2020082235A1 true WO2020082235A1 (zh) 2020-04-30

Family

ID=70330831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111444 WO2020082235A1 (zh) 2018-10-23 2018-10-23 一种超声设备的调节方法及超声设备

Country Status (2)

Country Link
CN (1) CN112689476A (zh)
WO (1) WO2020082235A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315999A (en) * 1993-04-21 1994-05-31 Hewlett-Packard Company Ultrasound imaging system having user preset modes
CN101513353A (zh) * 2009-03-19 2009-08-26 无锡祥生科技有限公司 带有指纹识别器的超声诊断仪中预设值的选择方法
CN101721227A (zh) * 2009-10-21 2010-06-09 无锡祥生科技有限公司 一种图像引导的超声诊断仪预设值选择方法
CN103181778A (zh) * 2011-12-31 2013-07-03 深圳迈瑞生物医疗电子股份有限公司 超声成像方法及系统
CN108451543A (zh) * 2017-02-17 2018-08-28 郝晓辉 自动化超声成像系统与方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315999A (en) * 1993-04-21 1994-05-31 Hewlett-Packard Company Ultrasound imaging system having user preset modes
CN101513353A (zh) * 2009-03-19 2009-08-26 无锡祥生科技有限公司 带有指纹识别器的超声诊断仪中预设值的选择方法
CN101721227A (zh) * 2009-10-21 2010-06-09 无锡祥生科技有限公司 一种图像引导的超声诊断仪预设值选择方法
CN103181778A (zh) * 2011-12-31 2013-07-03 深圳迈瑞生物医疗电子股份有限公司 超声成像方法及系统
CN108451543A (zh) * 2017-02-17 2018-08-28 郝晓辉 自动化超声成像系统与方法

Also Published As

Publication number Publication date
CN112689476A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
US10387713B2 (en) Apparatus and method of processing medical image
US9655593B2 (en) Medical diagnostic apparatus, method for operating medical diagnostic apparatus, and computer-readable recording medium
Mulabecirovic et al. Repeatability of shear wave elastography in liver fibrosis phantoms—Evaluation of five different systems
US20130251221A1 (en) Ultrasound imaging system and method with peak intensity detection
US20120136248A1 (en) Ultrasound diagnosis apparatus, image generating method, and image processing apparatus
US20160166233A1 (en) Ultrasound diagnosis apparatus and method of operating the same
CN105939674B (zh) 超声波诊断装置以及超声波诊断装置的工作方法
US10249037B2 (en) Echogenicity quantification method and calibration method for ultrasonic device using echogenicity index
CN108451543A (zh) 自动化超声成像系统与方法
US11928816B2 (en) Image processing method, apparatus, and system, electronic device, and storage medium
CN112472123A (zh) 自动调整成像参数的方法和超声成像系统
JP2011224410A (ja) 超音波診断装置
US20180146954A1 (en) Method of ultrasound apparatus parameters configuration and an ultrasound apparatus of using the same
CN108601581B (zh) 用于输出对象的速率的方法以及超声诊断设备
WO2020082235A1 (zh) 一种超声设备的调节方法及超声设备
US20140063006A1 (en) Method and apparatus for displaying stereoscopic information related to ultrasound sectional plane of target object
EP3029634B1 (en) Echogenicity quantification method and calibration method for ultrasonic device using echogenicity index
US20120016240A1 (en) Ultrasonic diagnostic apparatus and method thereof
JP5931414B2 (ja) 超音波診断装置、画像生成方法及び画像処理装置
CN108366782A (zh) 超声波诊断装置、超声波诊断装置的工作方法以及超声波诊断装置的工作程序
JP2019193784A (ja) 超音波診断装置及び表示制御プログラム
JPWO2015198712A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
TWI539178B (zh) 利用散射子分布統計量分析超音波回音信號之方法
WO2022006819A1 (zh) 超声声速确定方法和超声成像系统
Huber et al. Human Observer Sensitivity to Temporal Noise During B-Mode Ultrasound Scanning: Characterization and Imaging Implications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18937578

Country of ref document: EP

Kind code of ref document: A1