WO2020080759A1 - Floating body for wave power generation and wave power generator using same - Google Patents

Floating body for wave power generation and wave power generator using same Download PDF

Info

Publication number
WO2020080759A1
WO2020080759A1 PCT/KR2019/013405 KR2019013405W WO2020080759A1 WO 2020080759 A1 WO2020080759 A1 WO 2020080759A1 KR 2019013405 W KR2019013405 W KR 2019013405W WO 2020080759 A1 WO2020080759 A1 WO 2020080759A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating body
wing
wave
rotating
wave power
Prior art date
Application number
PCT/KR2019/013405
Other languages
French (fr)
Korean (ko)
Inventor
권효재
Original Assignee
주식회사 인진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인진 filed Critical 주식회사 인진
Publication of WO2020080759A1 publication Critical patent/WO2020080759A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1845Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem
    • F03B13/1865Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem where the connection between wom and conversion system takes tension only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/22Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the flow of water resulting from wave movements to drive a motor or turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/4466Floating structures carrying electric power plants for converting water energy into electric energy, e.g. from tidal flows, waves or currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2209/00Energy supply or activating means
    • B63B2209/14Energy supply or activating means energy generated by movement of the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the following embodiment relates to a floating body for wave power generation and a wave power generation device including the same.
  • the wave power generation device is a device that generates power using the energy of the waves.
  • the wave power generation device is provided with a floating body floating on the sea level in order to capture the energy of the waves.
  • a structure capable of efficiently absorbing the energy of waves is required.
  • a floating body capable of controlling the degree to which the floating body is submerged in the sea surface according to the state of the wave and a wave power generating device including the floating body.
  • An object of an embodiment is to provide a floating body for wave power generation and a wave power generating device including the floating body capable of controlling the degree to which the floating body is submerged in the sea level according to the state of the wave.
  • An object of an embodiment is to provide a floating body for wave power generation capable of increasing the power production efficiency and a wave power generator including the same.
  • Floating body for wave power the body floating on the sea surface; A rotating shaft horizontally connected to the body; A blade rotatably connected to the rotating shaft; And it may include a rotating portion for rotating the blade around the rotation axis.
  • the cross section of the wing has a plurality of ends, the distance from the rotation axis to the plurality of ends may be formed differently.
  • the rotating part may rotate the wing about the rotation axis so that the degree to which the wing is submerged in the sea level is adjusted according to the state of the wave.
  • the rotating unit may rotate the wing so that the degree to which the wing is submerged in the sea level increases when the floating body rises by the waves.
  • the rotating part may rotate the wing so that the degree to which the wing is submerged in the sea level is reduced when the floating body descends by the waves.
  • the rotating part is such that the longest end is submerged in the sea level when the floating body rises by the waves.
  • the wing can be rotated and the wing can be rotated so that the shortest end is submerged in the sea level when the floating body descends by the waves.
  • a plurality of the blades may be provided, and may be rotatable around the rotation axis.
  • At least one pair of wings among the plurality of wings may be connected to the rotating shaft so that the cross-sections are symmetrical with each other.
  • the rotating part may rotate at least one pair of wings among the plurality of wings in opposite directions about the rotation axis.
  • the wing may be formed in the longitudinal direction along the rotation axis.
  • the wave power generating apparatus includes a body floating on the sea surface, a rotating shaft horizontally connected to the body, a blade rotatably connected to the rotating shaft, and a rotating portion rotating the blade about the rotating shaft Floating bodies; A power generation unit that generates electric power through the kinetic energy of the floating body; And a wire that transmits the kinetic energy of the floating body to the power generation unit.
  • the rotating part may rotate the wing about the rotation axis so that the degree to which the wing is submerged in the sea level is adjusted.
  • the cross section of the wing may be formed asymmetrically about the rotation axis.
  • a tension maintaining unit for maintaining the tension of the wire may be further included.
  • the rotating part may rotate the wing so that the degree to which the wing is submerged in the sea level increases.
  • the rotating part may rotate the wing so that the degree to which the wing is submerged in the sea level decreases.
  • the wire includes three wires each of which is fixed on the seabed, and the floating body can be connected to the three wires at three points.
  • control unit for controlling the operation of the rotating unit, the control unit based on at least one or more of the wave direction, wave wave, wave speed, wave period and wave pattern, the operation of the rotating unit Can be controlled.
  • the floating body for wave power generation according to an embodiment and the wave power generating device including the same may control the degree to which the floating body is submerged in the sea surface according to the state of the wave.
  • a floating body for wave power generation and a wave power generation device including the same may increase power production efficiency.
  • FIG. 1 is a plan view of a wave power generator according to an embodiment.
  • FIG 2 is a front view of a wave power generator according to an embodiment.
  • FIG 3 is a side view of a wave power generating apparatus according to an embodiment.
  • FIG. 4 is a side view of a wave power generating apparatus according to an embodiment.
  • FIG. 5 is a block diagram of a control unit and a rotating unit according to an embodiment.
  • FIG. 6 is a block diagram of a wire, a tension holding unit, and a power generating unit according to an embodiment.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the component from other components, and the nature, order, or order of the component is not limited by the term.
  • 1 is a plan view of a wave power generator according to an embodiment.
  • 2 is a front view of a wave power generator according to an embodiment.
  • 3 is a side view of a wave power generating apparatus according to an embodiment.
  • 4 is a side view of a wave power generating apparatus according to an embodiment.
  • 5 is a block diagram of a control unit and a rotating unit according to an embodiment.
  • 6 is a block diagram of a wire, a tension holding unit, and a power generating unit according to an embodiment.
  • the wave power generating apparatus 1 may generate electric power from energy of a wave.
  • the wave power generating device 1 can absorb the energy of the waves as the kinetic energy of the floating body 10.
  • the kinetic energy of the floating body 10 may be transferred to the power generation unit 11 and converted into electrical energy.
  • the wave power generating device 1 may adjust the degree to which the floating body 10 is submerged in the sea surface according to the state of the wave in order to increase the power production efficiency. According to this structure, the energy absorbed from the wave increases while the wave passes through the floating body, and the energy consumed can be decreased. That is, such a structure can increase the power production efficiency of the wave power generating device 1.
  • the wave power generating device 1 may include a floating body 10, a power generation unit 11, a wire 12, a tension holding unit 13, and a control unit 14.
  • the floating body 10 may float on the sea level.
  • the floating body 10 may float on the sea far from the coast or the sea near the coast.
  • the floating body 10 can capture the energy of the waves.
  • the floating body 10 can absorb the energy of the waves as kinetic energy.
  • the floating body 10 can move in six degrees of freedom as the waves pass. 6 degrees of freedom may mean translational motion in the X, Y and Z axis directions and rotational motion around the X, Y and Z axes.
  • the floating body 10 may be formed in the longitudinal direction.
  • the degree to which the floating body 10 is submerged in the sea level may be adjusted according to the state of the waves.
  • the floating body 10 may include a body 101, a rotating shaft 102, a wing 103, an extension body 104, a roller 105, a ballast tank 106 and a rotating portion 107.
  • the body 101 may float on the sea level.
  • the body 101 may be located at the center of the floating body 10.
  • the body 101 may include an insertion portion (not shown) that is concavely formed inward along the circumference of the body 101 to be coupled with the wing 103.
  • the insertion portion may include a horizontal upper surface, a vertical side surface, and a downward slope.
  • the rotation shaft 102 may be a center of rotation of the wing 103.
  • the rotating shaft 102 may be horizontally connected to the body 101.
  • the rotating shaft 102 may penetrate the body 101 horizontally.
  • the rotating shaft 102 may be separately provided for each wing 103.
  • the wing 103 may be a bouy connected horizontally to the body 101 to increase the amount of waves captured by the floating body 10.
  • the wing 103 may be rotatably connected to the rotating shaft 102. That is, the wing 103 may be rotatable about the rotation axis 102.
  • Wing 103 may be formed in the longitudinal direction.
  • the wings 103 may be formed in the longitudinal direction along the rotation axis 102.
  • a plurality of wings 103 may be provided.
  • the wing 103 may include a first wing 103a, a second wing 103b, a third wing 103c, and a fourth wing 103d.
  • the plurality of wings 103 may be rotatable about each of the rotation axes 102.
  • the plurality of wings 103 may be connected to both sides of the body 101.
  • the plurality of wings 103 may be arranged on a straight line in the longitudinal direction.
  • the first wing 103a and the second wing 103b may be connected to one side of the body 101
  • the third wing 103c and fourth wing 103d may be connected to the other side of the body 101.
  • four wings 103 are illustrated, but as examples, the wings 103 may be provided in various numbers.
  • the cross section of the wing 103 may be formed asymmetrically about the rotation axis 102.
  • the cross section of the wing 103 may be formed in an asymmetric shape.
  • the cross section of the wing 103 is formed in a symmetrical shape, and the rotating shaft 102 may be connected to be located at a position other than the center of the wing 103.
  • the cross section of the wing 103 may have a plurality of ends 1031. Distances from the rotation shaft 102 to the plurality of ends 1031 may be formed differently.
  • the cross section of the wing 103 may include a first end 1031a, a second end 1031b, and a third end 1031c. Distances from the rotation shaft 102 to the first end 1031a, the second end 1031b, and the third end 1031c may be formed differently.
  • the end of the plurality of ends 1031 located farthest from the rotating shaft 102 may be referred to as the longest end portion 1031a and the closest end portion referred to as the shortest end portion 1031c.
  • the first end 1031a may be the longest end
  • the third end 1031c may be the shortest.
  • the cross section of the wing 103 is shown as having three ends, which is exemplary, and the cross section of the wing 103 may be formed in various shapes.
  • the extension body 104 may be connected in the horizontal direction from the body 101.
  • the extension body 104 may be formed in the longitudinal direction.
  • the extension body 104 may be positioned below the wing 103.
  • the extension 104 may be located below the sea level. Meanwhile, the extension body 104 may be disposed at the same height as the wing 103.
  • a plurality of extension bodies 104 may be connected along the circumference of the body 101.
  • the extension body 104 may include a first extension body 104a, a second extension body 104b, and a third extension body 104c that are radially connected along the circumference of the body 101.
  • the wings 103 may be disposed between two adjacent extensions 104 of the plurality of extensions 104.
  • the ballast tank 106 can improve the posture stability of the floating body 10.
  • the ballast tank 106 may be located under the body 101.
  • the ballast tank 106 may hold the center of gravity of the floating body 10 so that the floating body 10 can stably float.
  • the ballast tank 106 can accommodate water therein.
  • the ballast tank 106 may adjust the amount of water accommodated therein, depending on the situation, to control the height of the floating body 10 floating on the sea surface.
  • the rotating part 107 may rotate the wing 103 around the rotating shaft 102.
  • the rotation unit 107 may rotate the wing 103 around the rotation axis 102 so that the degree of locking of the wing 103 on the sea level is adjusted according to the state of the waves on the sea level. Since the blade 103 is formed asymmetrically about the rotating shaft 102, when the rotating portion 107 rotates the blade 103 around the rotating shaft 102, the degree to which the blade 103 is submerged in the sea level Can be adjusted.
  • the rotating part 107 may include, for example, a motor, a winch or a wire. The detailed description of the rotating part 107 will be described later.
  • the power generation unit 11 may generate electric power through the kinetic energy of the floating body 10.
  • the power generation unit 11 may receive the kinetic energy of the floating body 10 through the wire 12 and convert the received kinetic energy into electrical energy.
  • the power generation unit 11 may be disposed on the body 101.
  • the power generation unit 11 may be disposed on the top of the body 101.
  • the wire 12 may transfer kinetic energy of the floating body 10 to the power generation unit 11.
  • the wire 12 is wound on a drum to convert linear kinetic energy into rotary kinetic energy.
  • One side of the wire 12 may be fixed on the seabed.
  • the other side of the wire 12 can be connected to the floating body 10 by being connected to the drum.
  • the wire 12 may be fixed on the seabed via the extension body 104.
  • the wire 12 may be connected to the roller 105 disposed on the extension body 104 or the body 101.
  • a plurality of rollers 105 may be provided.
  • the roller 105 can set the path of the wire 12.
  • the wire 12 may have a path bent by the roller 105. According to such a structure, the path of the wire 12 can be set so that the path of the wire 12 does not interfere with other components.
  • the roller 105 may be connected to the extension body 104 or the body 101 by a ball joint in order to improve the path freedom of the wire 12.
  • the wire 12 may include three wires 12 that are respectively fixed on the seabed.
  • the floating body 10 can be connected to three wires 12 and three different points. According to such a structure, the kinetic energy of the floating body 10 moving at six degrees of freedom by waves can be transmitted to the power generation unit 11 through three wires 12. Meanwhile, the power generation unit 11 may be arranged on the land. In this case, one side of the wire 12 may be connected to the floating body 10, and the other side may be connected to the power generation unit 11 via the seabed.
  • the tension holding unit 13 can maintain the tension of the wire 12. If the floating body 10 does not pull the wire 12 while moving, the wire 12 cannot transmit energy to the power generation unit 11 because tension cannot be maintained in the wire 12. That is, when the wire 12 moves in one direction according to the movement of the floating body 10, the wire 12 is pulled to transfer energy to the power generation unit 11, and when the wire 12 moves in the other direction, the wire ( As 12) is relaxed, energy cannot be transmitted to the power generation unit 11. Therefore, when the tension according to the movement of the floating body 10 is not applied to the wire 12, the tension holding unit 13 may pull the wire 12 so that the tension of the wire 12 is maintained. For example, when the floating body 10 descends by a wave, the tension holding unit 13 may pull the wire 12 so that the tension is maintained on the wire 12.
  • the tension holding unit 13 may include, for example, a hydraulic motor, a hydraulic pump, a hydraulic cylinder, an electric motor, a gas spring, a mechanical spring, and a fly wheel.
  • the rotating part 107 may rotate the wing 103 according to the state of the wave.
  • 3 and 4 show the process of the wave (W) passing through the floating body (10).
  • 3 shows a state in which the wave W enters the floating body 10.
  • the rotating part 107 may rotate the wing 103 so that the degree to which the wing 103 is immersed in the sea level increases. That is, the rotating part 107 may rotate the wing 103 so that the end 1031 distant from the rotating shaft 102 is submerged in the sea level.
  • the rotating part 107 may rotate the wings 103 so that the longest end portion 1031a is submerged in the sea level when the floating body 10 rises by the wave W.
  • the amount of buoyancy received by the floating body 10 may increase as the degree to which the wings 103 are submerged in the sea level. Therefore, the floating body 10 can pull the wire 12 with a greater force, and more energy is transmitted to the power generation unit 11 so that the power generation unit 11 can produce more power.
  • the rotating part 107 may rotate the wing 103 so that the degree to which the wing 103 is submerged in the sea level is reduced. That is, the rotating part 107 may rotate the wing 103 so that the end 1031 close to the distance from the rotating shaft 102 is submerged in the sea level.
  • the rotating part 107 may rotate the wing 103 so that the shortest end 1031c is submerged in the sea level when the floating body 10 descends by the wave W.
  • the degree to which the wings 103 are submerged in the sea level is reduced, the amount of buoyancy received by the floating body 10 may be reduced or less affected by the waves. Therefore, when the floating body 10 is returned to the original position, energy consumed by the tension holding unit 13 can be reduced.
  • At least one pair of the wings 103 of the plurality of wings 103 may be connected to the rotating shaft 102 so that the cross-sections are symmetrical with each other.
  • the first wing 103a and the second wing 103b may be connected to the rotating shaft 102 so that the cross-sections are symmetrical with each other.
  • the rotation unit 107 may rotate at least one pair of the wings 103 of the plurality of wings 103 in the opposite direction to each other about the rotation axis 102.
  • the first wing 103a and the second wing 103b may be rotated in opposite directions.
  • the moment of inertia generated when the blades 103 rotate may be offset, so the floating body ( The posture of 10) can be kept stable.
  • the plurality of wings 103 may be formed to have different cross-sectional shapes.
  • the plurality of wings 103 may be connected to the rotating shaft 102 at different angles.
  • the rotating unit 107 may rotate the plurality of wings 103, respectively.
  • the rotating unit 107 may rotate each of the blades 103 with varying degrees of rotation.
  • the control unit 14 may control the operation of the rotating unit 107.
  • the control unit 14 may adjust the degree of rotation and the presence or absence of rotation of the blade 103 by the rotating unit 107 according to the state of the wave.
  • the control unit 14 may control the operation of the rotating unit 107 based on at least one of a wave moving direction, wave wave height, wave speed, wave period, and wave pattern.
  • the control unit 14 compares the amount of energy consumed to rotate the blade 103 with the amount of energy that can be saved by rotating the blade 103 or the energy that is additionally produced, and rotates the portion 107 toward more profit ) Can be controlled. For example, if the wave height of the wave is not high, the control unit 14 may control the rotating unit 107 not to rotate the wing 103 when the wave exits the floating body 10.
  • control unit 14 may control the rotating part 107 so that the end portion 1031b of the intermediate length, not the longest end part 1031a or the shortest end part 1031c, of the wing 103 is submerged in the sea surface according to the state of the wave. You can.
  • control unit 14 controls the rotating unit 107 so that the degree to which the floating body 10 is immersed in the sea surface is controlled for the safety of the floating body 10 in extreme situations such as tsunami and tsunami. Can rotate.
  • the control unit 14 may control the rotating unit 107 such that only all or some of the wings 103 of the plurality of wings 103 are rotated according to the state of the wave. For example, if the wave is relatively calm, the control unit 14 may control to rotate only two of the four wings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

A floating body for wave power generation, according to one embodiment, may comprise: a body floating on the surface of the sea; a rotary shaft horizontally connected to the body; a blade rotatably connected to the rotary shaft; and a rotating part for rotating the blade about the rotary shaft.

Description

파력 발전용 부유체 및 이를 포함하는 파력 발전 장치Floating body for wave power generation and wave power generation device including the same
아래의 실시 예는 파력 발전용 부유체 및 이를 포함하는 파력 발전 장치에 관한 것이다.The following embodiment relates to a floating body for wave power generation and a wave power generation device including the same.
파력 발전 장치는 파도의 에너지를 이용하여 전력을 생산하는 장치이다. 파력 발전 장치는 파도의 에너지를 포획하기 위해, 해수면 상에 부유하는 부유체를 구비하게 된다. 전력 생산 효율을 높이기 위하여, 파도의 에너지를 효율적으로 흡수할 수 있는 구조가 요구된다. 이를 위하여, 파도의 상태에 따라 부유체가 해수면에 잠기는 정도를 조절할 수 있는 부유체 및 이를 포함하는 파력 발전 장치가 요구되는 실정이다.The wave power generation device is a device that generates power using the energy of the waves. The wave power generation device is provided with a floating body floating on the sea level in order to capture the energy of the waves. In order to increase power generation efficiency, a structure capable of efficiently absorbing the energy of waves is required. To this end, there is a need for a floating body capable of controlling the degree to which the floating body is submerged in the sea surface according to the state of the wave and a wave power generating device including the floating body.
전술한 배경기술은 발명자가 본 발명의 도출과정에서 보유하거나 습득한 것으로서, 반드시 본 발명의 출원 전에 일반 공중에 공개된 공지기술이라고 할 수는 없다.The above-described background art is possessed or acquired by the inventor during the derivation process of the present invention, and is not necessarily a known technology disclosed to the general public prior to the filing of the present invention.
일 실시 예의 목적은, 파도의 상태에 따라 부유체가 해수면에 잠기는 정도를 조절할 수 있는 파력 발전용 부유체 및 이를 포함하는 파력 발전 장치를 제공하는 것이다.An object of an embodiment is to provide a floating body for wave power generation and a wave power generating device including the floating body capable of controlling the degree to which the floating body is submerged in the sea level according to the state of the wave.
일 실시 예의 목적은, 전력 생산 효율을 상승시킬 수 있는 파력 발전용 부유체 및 이를 포함하는 파력 발전 장치를 제공하는 것이다.An object of an embodiment is to provide a floating body for wave power generation capable of increasing the power production efficiency and a wave power generator including the same.
일 실시 예에 따른 파력 발전용 부유체는, 해수면 상에 부유하는 몸체; 상기 몸체에 수평하게 연결되는 회전축; 상기 회전축에 회전 가능하게 연결되는 날개; 및 상기 날개를 상기 회전축을 중심으로 회전시키는 회전부를 포함할 수 있다.Floating body for wave power according to an embodiment, the body floating on the sea surface; A rotating shaft horizontally connected to the body; A blade rotatably connected to the rotating shaft; And it may include a rotating portion for rotating the blade around the rotation axis.
상기 날개의 단면은 복수 개의 단부를 갖고, 상기 회전축으로부터 상기 복수 개의 단부까지의 거리는 서로 다르게 형성될 수 있다.The cross section of the wing has a plurality of ends, the distance from the rotation axis to the plurality of ends may be formed differently.
상기 회전부는 파도의 상태에 따라 상기 날개가 상기 해수면에 잠기는 정도가 조절되도록, 상기 날개를 상기 회전축을 중심으로 회전시킬 수 있다.The rotating part may rotate the wing about the rotation axis so that the degree to which the wing is submerged in the sea level is adjusted according to the state of the wave.
상기 회전부는, 상기 부유체가 파도에 의해 상승할 때 상기 날개가 상기 해수면에 잠기는 정도가 증가하도록 상기 날개를 회전시킬 수 있다.The rotating unit may rotate the wing so that the degree to which the wing is submerged in the sea level increases when the floating body rises by the waves.
상기 회전부는, 상기 부유체가 파도에 의해 하강할 때 상기 날개가 상기 해수면에 잠기는 정도가 감소하도록 상기 날개를 회전시킬 수 있다.The rotating part may rotate the wing so that the degree to which the wing is submerged in the sea level is reduced when the floating body descends by the waves.
상기 복수 개의 단부 중 상기 회전축으로부터 가장 멀리 위치한 단부를 최장단부 및 가장 가까이 위치한 단부를 최단단부라고 할 때, 상기 회전부는, 상기 부유체가 파도에 의해 상승할 때 상기 최장단부가 상기 해수면에 잠기도록 상기 날개를 회전시키고, 상기 부유체가 파도에 의해 하강할 때 상기 최단단부가 상기 해수면에 잠기도록 상기 날개를 회전시킬 수 있다.When the end that is located farthest from the rotating shaft among the plurality of ends is called the longest end and the closest end is the shortest, the rotating part is such that the longest end is submerged in the sea level when the floating body rises by the waves. The wing can be rotated and the wing can be rotated so that the shortest end is submerged in the sea level when the floating body descends by the waves.
상기 날개는 복수 개 마련되고, 상기 회전축을 중심으로 각각 회전 가능할 수 있다.A plurality of the blades may be provided, and may be rotatable around the rotation axis.
상기 복수 개의 날개 중 적어도 어느 한 쌍의 날개는, 단면이 서로 좌우 대칭을 이루도록 상기 회전축에 연결될 수 있다.At least one pair of wings among the plurality of wings may be connected to the rotating shaft so that the cross-sections are symmetrical with each other.
상기 회전부는, 상기 복수 개의 날개 중 적어도 어느 한 쌍의 날개를 상기 회전축을 중심으로 서로 반대 방향으로 회전시킬 수 있다.The rotating part may rotate at least one pair of wings among the plurality of wings in opposite directions about the rotation axis.
상기 날개는 상기 회전축을 따르는 길이 방향으로 형성될 수 있다.The wing may be formed in the longitudinal direction along the rotation axis.
일 실시 예에 따른 파력 발전 장치는, 해수면 상에 부유하는 몸체와, 상기 몸체에 수평하게 연결되는 회전축, 상기 회전축에 회전 가능하게 연결되는 날개 및 상기 날개를 상기 회전축을 중심으로 회전시키는 회전부를 포함하는 부유체; 상기 부유체의 운동 에너지를 통해 전력을 생산하는 발전부; 및 상기 부유체의 운동 에너지를 상기 발전부로 전달하는 와이어를 포함할 수 있다.The wave power generating apparatus according to an embodiment includes a body floating on the sea surface, a rotating shaft horizontally connected to the body, a blade rotatably connected to the rotating shaft, and a rotating portion rotating the blade about the rotating shaft Floating bodies; A power generation unit that generates electric power through the kinetic energy of the floating body; And a wire that transmits the kinetic energy of the floating body to the power generation unit.
상기 회전부는 상기 날개가 상기 해수면에 잠기는 정도가 조절되도록 상기 날개를 상기 회전축을 중심으로 회전시킬 수 있다.The rotating part may rotate the wing about the rotation axis so that the degree to which the wing is submerged in the sea level is adjusted.
상기 날개의 단면은 상기 회전축을 중심으로 비대칭적으로 형성될 수 있다.The cross section of the wing may be formed asymmetrically about the rotation axis.
상기 와이어의 장력을 유지시키는 장력유지부를 더 포함할 수 있다.A tension maintaining unit for maintaining the tension of the wire may be further included.
상기 회전부는, 파도에 따른 상기 부유체의 움직임에 의해 상기 와이어가 당겨질 때, 상기 날개가 상기 해수면에 잠기는 정도가 증가하도록 상기 날개를 회전시킬 수 있다.When the wire is pulled by the movement of the floating body according to the wave, the rotating part may rotate the wing so that the degree to which the wing is submerged in the sea level increases.
상기 회전부는, 상기 장력유지부에 의해 상기 와이어가 당겨질 때, 상기 날개가 상기 해수면에 잠기는 정도가 감소하도록 상기 날개를 회전시킬 수 있다.When the wire is pulled by the tension holding part, the rotating part may rotate the wing so that the degree to which the wing is submerged in the sea level decreases.
상기 와이어는, 일측이 해저상에 각각 고정되는 3개의 와이어를 포함하고, 상기 부유체는 상기 3개의 와이어와 3개의 지점에서 연결될 수 있다.The wire includes three wires each of which is fixed on the seabed, and the floating body can be connected to the three wires at three points.
상기 회전부의 동작을 제어하는 제어부를 더 포함하고, 상기 제어부는 파도의 진행 방향, 파도의 파고, 파도의 속도, 파도의 주기 및 파도의 패턴 중 적어도 어느 하나 이상에 기초하여, 상기 회전부의 동작을 제어할 수 있다.Further comprising a control unit for controlling the operation of the rotating unit, the control unit based on at least one or more of the wave direction, wave wave, wave speed, wave period and wave pattern, the operation of the rotating unit Can be controlled.
일 실시 예에 따른 파력 발전용 부유체 및 이를 포함하는 파력 발전 장치는, 파도의 상태에 따라 부유체가 해수면에 잠기는 정도를 조절할 수 있다.The floating body for wave power generation according to an embodiment and the wave power generating device including the same may control the degree to which the floating body is submerged in the sea surface according to the state of the wave.
일 실시 예에 따른 파력 발전용 부유체 및 이를 포함하는 파력 발전 장치는, 전력 생산 효율을 상승시킬 수 있다.A floating body for wave power generation and a wave power generation device including the same according to an embodiment may increase power production efficiency.
일 실시 예에 따른 파력 발전용 부유체 및 이를 포함하는 파력 발전 장치의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the floating body for wave power generation according to an embodiment and the wave power generating device including the same are not limited to those mentioned above, and other effects not mentioned may be clearly understood by a person skilled in the art from the following description. will be.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일 실시 예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings attached to this specification are intended to illustrate one preferred embodiment of the present invention and serve to further understand the technical spirit of the present invention together with the detailed description of the present invention, so the present invention is limited to those described in those drawings. It should not be interpreted as limited.
도 1은 일 실시 예에 따른 파력 발전 장치의 평면도이다.1 is a plan view of a wave power generator according to an embodiment.
도 2는 일 실시 예에 따른 파력 발전 장치의 정면도이다.2 is a front view of a wave power generator according to an embodiment.
도 3은 일 실시 예에 따른 파력 발전 장치의 측면도이다.3 is a side view of a wave power generating apparatus according to an embodiment.
도 4는 일 실시 예에 따른 파력 발전 장치의 측면도이다.4 is a side view of a wave power generating apparatus according to an embodiment.
도 5는 일 실시 예에 따른 제어부 및 회전부의 블록도이다.5 is a block diagram of a control unit and a rotating unit according to an embodiment.
도 6은 일 실시 에에 따른 와이어, 장력유지부 및 발전부의 블록도이다.6 is a block diagram of a wire, a tension holding unit, and a power generating unit according to an embodiment.
이하, 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, embodiments will be described in detail through exemplary drawings. It should be noted that in adding reference numerals to the components of each drawing, the same components have the same reference numerals as possible even though they are displayed on different drawings. In addition, in describing the embodiments, when it is determined that detailed descriptions of related well-known configurations or functions interfere with understanding of the embodiments, detailed descriptions thereof will be omitted.
또한, 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the components of the embodiment, terms such as first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the component from other components, and the nature, order, or order of the component is not limited by the term. When a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected to or connected to the other component, but another component between each component It should be understood that may be "connected", "coupled" or "connected".
어느 하나의 실시 예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시 예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시 예에 기재한 설명은 다른 실시 예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.Components included in any one embodiment and components including a common function will be described using the same name in other embodiments. Unless there is an objection to the contrary, the description described in any one embodiment may be applied to other embodiments, and a detailed description will be omitted in the overlapped range.
도 1은 일 실시 예에 따른 파력 발전 장치의 평면도이다. 도 2는 일 실시 예에 따른 파력 발전 장치의 정면도이다. 도 3은 일 실시 예에 따른 파력 발전 장치의 측면도이다. 도 4는 일 실시 예에 따른 파력 발전 장치의 측면도이다. 도 5는 일 실시 예에 따른 제어부 및 회전부의 블록도이다. 도 6은 일 실시 에에 따른 와이어, 장력유지부 및 발전부의 블록도이다.1 is a plan view of a wave power generator according to an embodiment. 2 is a front view of a wave power generator according to an embodiment. 3 is a side view of a wave power generating apparatus according to an embodiment. 4 is a side view of a wave power generating apparatus according to an embodiment. 5 is a block diagram of a control unit and a rotating unit according to an embodiment. 6 is a block diagram of a wire, a tension holding unit, and a power generating unit according to an embodiment.
도 1 내지 도 6을 참조하면, 일 실시 예에 따른 파력 발전 장치(1)는 파도의 에너지로부터 전력을 생산할 수 있다. 파력 발전 장치(1)는 파도의 에너지를 부유체(10)의 운동 에너지로 흡수할 수 있다. 부유체(10)의 운동 에너지는 발전부(11)로 전달되어 전기 에너지로 변환될 수 있다. 파력 발전 장치(1)는 전력 생산 효율을 높이기 위하여, 파도의 상태에 따라 부유체(10)가 해수면에 잠기는 정도를 조절할 수 있다. 이러한 구조에 의하면, 파도가 부유체를 지나가는 과정에서, 파도로부터 흡수하는 에너지는 증가시키고, 소비하는 에너지는 감소시킬 수 있다. 즉, 이러한 구조는 파력 발전 장치(1)의 전력 생산 효율을 상승시킬 수 있다.1 to 6, the wave power generating apparatus 1 according to an embodiment may generate electric power from energy of a wave. The wave power generating device 1 can absorb the energy of the waves as the kinetic energy of the floating body 10. The kinetic energy of the floating body 10 may be transferred to the power generation unit 11 and converted into electrical energy. The wave power generating device 1 may adjust the degree to which the floating body 10 is submerged in the sea surface according to the state of the wave in order to increase the power production efficiency. According to this structure, the energy absorbed from the wave increases while the wave passes through the floating body, and the energy consumed can be decreased. That is, such a structure can increase the power production efficiency of the wave power generating device 1.
일 실시 예에 따른 파력 발전 장치(1)는 부유체(10), 발전부(11), 와이어(12), 장력유지부(13) 및 제어부(14)를 포함할 수 있다.The wave power generating device 1 according to an embodiment may include a floating body 10, a power generation unit 11, a wire 12, a tension holding unit 13, and a control unit 14.
부유체(10)는 해수면 상에 부유할 수 있다. 부유체(10)는 해안과 먼 바다 또는 해안 근처의 바다 위에 부유할 수 있다. 부유체(10)는 파도의 에너지를 포획할 수 있다. 부유체(10)는 파도의 에너지를 운동 에너지로 흡수할 수 있다. 부유체(10)는 파도가 지나감에 따라 6 자유도로 움직일 수 있다. 6 자유도는 X, Y 및 Z 축 방향의 병진 운동과 X, Y 및 Z 축을 중심으로 하는 회전 운동을 의미할 수 있다. 부유체(10)가 포획하는 파도의 양을 증가시키기 위하여, 부유체(10)는 길이 방향으로 형성될 수 있다. 파도의 상태에 따라 부유체(10)가 해수면에 잠기는 정도는 조절될 수 있다.The floating body 10 may float on the sea level. The floating body 10 may float on the sea far from the coast or the sea near the coast. The floating body 10 can capture the energy of the waves. The floating body 10 can absorb the energy of the waves as kinetic energy. The floating body 10 can move in six degrees of freedom as the waves pass. 6 degrees of freedom may mean translational motion in the X, Y and Z axis directions and rotational motion around the X, Y and Z axes. In order to increase the amount of waves that the floating body 10 captures, the floating body 10 may be formed in the longitudinal direction. The degree to which the floating body 10 is submerged in the sea level may be adjusted according to the state of the waves.
부유체(10)는 몸체(101), 회전축(102), 날개(103), 연장체(104), 롤러(105), 밸러스트 탱크(106) 및 회전부(107)를 포함할 수 있다.The floating body 10 may include a body 101, a rotating shaft 102, a wing 103, an extension body 104, a roller 105, a ballast tank 106 and a rotating portion 107.
몸체(101)는 해수면 상에 부유할 수 있다. 몸체(101)는 부유체(10)의 중심에 위치될 수 있다. 몸체(101)는 날개(103)와 결합되기 위하여, 몸체(101)의 둘레를 따라 내측으로 오목지게 형성되는 삽입부(미도시)를 포함할 수 있다. 예를 들어, 삽입부는 수평한 상면, 수직한 측면 및 하향 경사지는 하면을 포함할 수 있다.The body 101 may float on the sea level. The body 101 may be located at the center of the floating body 10. The body 101 may include an insertion portion (not shown) that is concavely formed inward along the circumference of the body 101 to be coupled with the wing 103. For example, the insertion portion may include a horizontal upper surface, a vertical side surface, and a downward slope.
회전축(102)은 날개(103)의 회전 중심일 수 있다. 회전축(102)은 몸체(101)에 수평하게 연결될 수 있다. 예를 들어, 회전축(102)은 몸체(101)를 수평하게 관통할 수 있다. 회전축(102)은 각 날개(103)마다 개별적으로 구비될 수도 있다.The rotation shaft 102 may be a center of rotation of the wing 103. The rotating shaft 102 may be horizontally connected to the body 101. For example, the rotating shaft 102 may penetrate the body 101 horizontally. The rotating shaft 102 may be separately provided for each wing 103.
날개(103)는 부유체(10)가 포획하는 파도의 양을 증가시키기 위하여, 몸체(101)에 수평 방향으로 연결되는 부이(bouy)일 수 있다. 날개(103)는 회전축(102)에 회전 가능하게 연결될 수 있다. 즉, 날개(103)는 회전축(102)을 중심으로 회전 가능할 수 있다. 날개(103)는 길이 방향으로 형성될 수 있다. 예를 들어, 날개(103)는 회전축(102)을 따르는 길이 방향으로 형성될 수 있다. 날개(103)는 복수 개 마련될 수 있다. 예를 들어, 날개(103)는 제1 날개(103a), 제2 날개(103b), 제3 날개(103c) 및 제4 날개(103d)를 포함할 수 있다. 복수 개의 날개(103)는 회전축(102)을 중심으로 각각 회전 가능할 수 있다. 복수 개의 날개(103)는 몸체(101)의 양측으로 연결될 수 있다. 복수 개의 날개(103)는 길이 방향으로 일직선 상에 배치될 수 있다. 예를 들어, 제1 날개(103a) 및 제2 날개(103b)는 몸체(101)의 일측에, 제3 날개(103c) 및 제4 날개(103d)는 몸체(101)의 타측에 연결될 수 있다. 한편, 도 1 및 도 2에서는 날개(103)가 4개인 것으로 도시되었으나, 이는 예시적인 것으로서 날개(103)는 다양한 개수로 마련될 수 있다. 도 3 및 도 4를 참조하면, 날개(103)의 단면은 회전축(102)을 중심으로 비대칭적으로 형성될 수 있다. 예를 들어, 날개(103)의 단면은 비대칭적인 형상으로 형성될 수 있다. 또는, 날개(103)의 단면이 대칭적인 형상으로 형성되고, 회전축(102)이 날개(103)의 중심이 아닌 곳에 위치하도록 연결될 수도 있다. 날개(103)의 단면은 복수 개의 단부(1031)를 가질 수 있다. 회전축(102)으로부터 복수 개의 단부(1031)까지의 거리는 서로 다르게 형성될 수 있다. 예를 들어, 날개(103)의 단면은 제1 단부(1031a), 제2 단부(1031b) 및 제3 단부(1031c)를 포함할 수 있다. 회전축(102)으로부터 제1 단부(1031a), 제2 단부(1031b) 및 제3 단부(1031c)까지의 거리는 서로 다르게 형성될 수 있다. 설명의 편의를 위하여, 복수 개의 단부(1031) 중 회전축(102)으로부터 가장 멀리 위치한 단부를 최장단부(1031a) 및 가장 가까이 위치한 단부를 최단단부(1031c)라고 할 수 있다. 예를 들어, 도 3 및 도 4를 기준으로, 제1 단부(1031a)가 최장단부, 제3 단부(1031c)가 최단단부일 수 있다. 한편, 도 3 및 도 4에서는 날개(103)의 단면은 3개의 단부를 갖는 것으로 도시되었으나, 이는 예시적인 것으로서 날개(103)의 단면은 다양한 형상으로 형성될 수 있다.The wing 103 may be a bouy connected horizontally to the body 101 to increase the amount of waves captured by the floating body 10. The wing 103 may be rotatably connected to the rotating shaft 102. That is, the wing 103 may be rotatable about the rotation axis 102. Wing 103 may be formed in the longitudinal direction. For example, the wings 103 may be formed in the longitudinal direction along the rotation axis 102. A plurality of wings 103 may be provided. For example, the wing 103 may include a first wing 103a, a second wing 103b, a third wing 103c, and a fourth wing 103d. The plurality of wings 103 may be rotatable about each of the rotation axes 102. The plurality of wings 103 may be connected to both sides of the body 101. The plurality of wings 103 may be arranged on a straight line in the longitudinal direction. For example, the first wing 103a and the second wing 103b may be connected to one side of the body 101, and the third wing 103c and fourth wing 103d may be connected to the other side of the body 101. . Meanwhile, in FIG. 1 and FIG. 2, four wings 103 are illustrated, but as examples, the wings 103 may be provided in various numbers. 3 and 4, the cross section of the wing 103 may be formed asymmetrically about the rotation axis 102. For example, the cross section of the wing 103 may be formed in an asymmetric shape. Alternatively, the cross section of the wing 103 is formed in a symmetrical shape, and the rotating shaft 102 may be connected to be located at a position other than the center of the wing 103. The cross section of the wing 103 may have a plurality of ends 1031. Distances from the rotation shaft 102 to the plurality of ends 1031 may be formed differently. For example, the cross section of the wing 103 may include a first end 1031a, a second end 1031b, and a third end 1031c. Distances from the rotation shaft 102 to the first end 1031a, the second end 1031b, and the third end 1031c may be formed differently. For convenience of description, the end of the plurality of ends 1031 located farthest from the rotating shaft 102 may be referred to as the longest end portion 1031a and the closest end portion referred to as the shortest end portion 1031c. For example, based on FIGS. 3 and 4, the first end 1031a may be the longest end, and the third end 1031c may be the shortest. On the other hand, in Figures 3 and 4, the cross section of the wing 103 is shown as having three ends, which is exemplary, and the cross section of the wing 103 may be formed in various shapes.
연장체(104)는 몸체(101)에서 수평 방향으로 연결될 수 있다. 연장체(104)는 길이 방향으로 형성될 수 있다. 연장체(104)는 날개(103)보다 하측에 위치될 수 있다. 연장체(104)는 해수면보다 아래에 위치될 수 있다. 한편, 연장체(104)는 날개(103)와 동일한 높이에 배치될 수도 있다. 연장체(104)는 몸체(101)의 둘레를 따라 복수 개 연결될 수 있다. 예를 들어, 연장체(104)는 몸체(101)의 둘레를 따라 방사상으로 연결되는 제1 연장체(104a), 제2 연장체(104b) 및 제3 연장체(104c)를 포함할 수 있다. 날개(103)는 복수 개의 연장체(104) 중 이웃한 2개의 연장체(104)의 사이에 배치될 수 있다.The extension body 104 may be connected in the horizontal direction from the body 101. The extension body 104 may be formed in the longitudinal direction. The extension body 104 may be positioned below the wing 103. The extension 104 may be located below the sea level. Meanwhile, the extension body 104 may be disposed at the same height as the wing 103. A plurality of extension bodies 104 may be connected along the circumference of the body 101. For example, the extension body 104 may include a first extension body 104a, a second extension body 104b, and a third extension body 104c that are radially connected along the circumference of the body 101. The wings 103 may be disposed between two adjacent extensions 104 of the plurality of extensions 104.
밸러스트 탱크(106)는 부유체(10)의 자세 안정성을 향상시킬 수 있다. 밸러스트 탱크(106)는 몸체(101)의 하측에 위치될 수 있다. 밸러스트 탱크(106)는 부유체(10)가 안정적으로 부유할 수 있도록, 부유체(10)의 무게 중심을 잡아줄 수 있다. 밸러스트 탱크(106)는 내부에 물을 수용할 수 있다. 밸러스트 탱크(106)는 상황에 따라 내부에 수용되는 물의 양을 조절하여, 부유체(10)가 해수면에 부유하는 높이를 조절할 수 있다.The ballast tank 106 can improve the posture stability of the floating body 10. The ballast tank 106 may be located under the body 101. The ballast tank 106 may hold the center of gravity of the floating body 10 so that the floating body 10 can stably float. The ballast tank 106 can accommodate water therein. The ballast tank 106 may adjust the amount of water accommodated therein, depending on the situation, to control the height of the floating body 10 floating on the sea surface.
회전부(107)는 회전축(102)을 중심으로 날개(103)를 회전시킬 수 있다. 회전부(107)는 해수면의 파도의 상태에 따라 날개(103)가 해수면에 잠기는 정도가 조절되도록, 날개(103)를 회전축(102)을 중심으로 회전시킬 수 있다. 날개(103)는 단면이 회전축(102)을 중심으로 비대칭적으로 형성되기 때문에, 회전부(107)가 회전축(102)을 중심으로 날개(103)를 회전시키면, 날개(103)가 해수면에 잠기는 정도가 조절될 수 있다. 회전부(107)는 예를 들어, 모터, 윈치 또는 와이어 등을 포함할 수 있다. 회전부(107)에 대한 상세한 설명은 후술하도록 한다.The rotating part 107 may rotate the wing 103 around the rotating shaft 102. The rotation unit 107 may rotate the wing 103 around the rotation axis 102 so that the degree of locking of the wing 103 on the sea level is adjusted according to the state of the waves on the sea level. Since the blade 103 is formed asymmetrically about the rotating shaft 102, when the rotating portion 107 rotates the blade 103 around the rotating shaft 102, the degree to which the blade 103 is submerged in the sea level Can be adjusted. The rotating part 107 may include, for example, a motor, a winch or a wire. The detailed description of the rotating part 107 will be described later.
발전부(11)는 부유체(10)의 운동 에너지를 통해 전력을 생산할 수 있다. 발전부(11)는 와이어(12)를 통해 부유체(10)의 운동 에너지를 전달받고, 전달받은 운동 에너지를 전기 에너지로 변환시킬 수 있다. 발전부(11)는 몸체(101)에 배치될 수 있다. 예를 들어, 발전부(11)는 몸체(101)의 상부에 배치될 수 있다.The power generation unit 11 may generate electric power through the kinetic energy of the floating body 10. The power generation unit 11 may receive the kinetic energy of the floating body 10 through the wire 12 and convert the received kinetic energy into electrical energy. The power generation unit 11 may be disposed on the body 101. For example, the power generation unit 11 may be disposed on the top of the body 101.
와이어(12)는 부유체(10)의 운동 에너지를 발전부(11)로 전달할 수 있다. 와이어(12)는 드럼에 권취되어 선형 운동 에너지를 회전 운동 에너지로 변환시킬 수 있다. 와이어(12)의 일측은 해저상에 고정될 수 있다. 와이어(12)의 타측은 드럼과 연결됨으로써, 부유체(10)와 연결될 수 있다. 와이어(12)는 연장체(104)를 경유하여 해저상에 고정될 수 있다. 와이어(12)는 연장체(104) 또는 몸체(101)에 배치되는 롤러(105)와 연결될 수 있다. 롤러(105)는 복수 개 구비될 수 있다. 롤러(105)는 와이어(12)의 경로를 설정할 수 있다. 예를 들어, 와이어(12)는 롤러(105)에 의하여 절곡된 경로를 가질 수 있다. 이와 같은 구조에 의하면, 와이어(12)의 경로가 타 구성과 간섭되지 않도록, 와이어(12)의 경로를 설정할 수 있다. 롤러(105)는 와이어(12)의 경로 자유도 향상을 위하여, 연장체(104) 또는 몸체(101)와 볼 조인트로 연결될 수 있다. 와이어(12)는 해저상에 각각 고정되는 3개의 와이어(12)를 포함할 수 있다. 부유체(10)는 3개의 와이어(12)와 3개의 서로 다른 지점에서 연결될 수 있다. 이러한 구조에 의하면, 파도에 의하여 6 자유도로 움직이는 부유체(10)의 운동 에너지를, 3개의 와이어(12)를 통해 발전부(11)로 전달할 수 있다. 한편, 발전부(11)는 육지에 배치될 수도 있다. 이 경우, 와이어(12)는 일측이 부유체(10)에 연결되고, 해저를 경유하여 타측이 발전부(11)에 연결될 수 있다.The wire 12 may transfer kinetic energy of the floating body 10 to the power generation unit 11. The wire 12 is wound on a drum to convert linear kinetic energy into rotary kinetic energy. One side of the wire 12 may be fixed on the seabed. The other side of the wire 12 can be connected to the floating body 10 by being connected to the drum. The wire 12 may be fixed on the seabed via the extension body 104. The wire 12 may be connected to the roller 105 disposed on the extension body 104 or the body 101. A plurality of rollers 105 may be provided. The roller 105 can set the path of the wire 12. For example, the wire 12 may have a path bent by the roller 105. According to such a structure, the path of the wire 12 can be set so that the path of the wire 12 does not interfere with other components. The roller 105 may be connected to the extension body 104 or the body 101 by a ball joint in order to improve the path freedom of the wire 12. The wire 12 may include three wires 12 that are respectively fixed on the seabed. The floating body 10 can be connected to three wires 12 and three different points. According to such a structure, the kinetic energy of the floating body 10 moving at six degrees of freedom by waves can be transmitted to the power generation unit 11 through three wires 12. Meanwhile, the power generation unit 11 may be arranged on the land. In this case, one side of the wire 12 may be connected to the floating body 10, and the other side may be connected to the power generation unit 11 via the seabed.
장력유지부(13)는 와이어(12)의 장력을 유지시킬 수 있다. 부유체(10)가 움직이면서 와이어(12)를 당기지 않으면, 와이어(12)에 장력이 유지될 수 없으므로 와이어(12)가 발전부(11)에 에너지를 전달할 수 없다. 즉, 와이어(12)가 부유체(10)의 움직임에 따라 일 방향으로 움직이면 와이어(12)가 당겨지면서 발전부(11)에 에너지를 전달하게 되고, 와이어(12)가 타 방향으로 움직이면 와이어(12)가 이완되면서 발전부(11)에 에너지를 전달할 수 없게 된다. 따라서, 와이어(12)에 부유체(10)의 움직임에 따른 장력이 가해지지 않을 경우에, 장력유지부(13)가 와이어(12)의 장력이 유지되도록 와이어(12)를 당겨줄 수 있다. 예를 들어, 부유체(10)가 파도에 의해 하강할 때, 장력유지부(13)는 와이어(12)에 장력이 유지되도록, 와이어(12)를 당길 수 있다. 장력유지부(13)에서 와이어(12)를 당기는 동안, 발전부(11)에서는 전력이 생산될 수 있다. 장력유지부(13)는 예를 들어, 유압 모터, 유압 펌프, 유압 실린더, 전기 모터, 가스 스프링, 기계 스프링 및 플라이 휠을 포함할 수 있다.The tension holding unit 13 can maintain the tension of the wire 12. If the floating body 10 does not pull the wire 12 while moving, the wire 12 cannot transmit energy to the power generation unit 11 because tension cannot be maintained in the wire 12. That is, when the wire 12 moves in one direction according to the movement of the floating body 10, the wire 12 is pulled to transfer energy to the power generation unit 11, and when the wire 12 moves in the other direction, the wire ( As 12) is relaxed, energy cannot be transmitted to the power generation unit 11. Therefore, when the tension according to the movement of the floating body 10 is not applied to the wire 12, the tension holding unit 13 may pull the wire 12 so that the tension of the wire 12 is maintained. For example, when the floating body 10 descends by a wave, the tension holding unit 13 may pull the wire 12 so that the tension is maintained on the wire 12. While pulling the wire 12 from the tension holding unit 13, electric power may be produced in the power generating unit 11. The tension holding unit 13 may include, for example, a hydraulic motor, a hydraulic pump, a hydraulic cylinder, an electric motor, a gas spring, a mechanical spring, and a fly wheel.
이하에서는, 도 3 및 도 4를 참조하여, 회전부(107)의 동작에 따른 날개(103)의 회전에 대하여 설명하도록 한다.Hereinafter, with reference to FIGS. 3 and 4, the rotation of the blade 103 according to the operation of the rotating unit 107 will be described.
회전부(107)는 파도의 상태에 따라 날개(103)를 회전시킬 수 있다. 도 3 및 도 4는 파도(W)가 부유체(10)를 통과하는 과정을 도시한다. 도 3은 파도(W)가 부유체(10)를 향해 들어가는 상태를 도시한다. 도 3과 같이, 파도(W)가 부유체(10)를 향해 들어갈 때는, 부유체(10)는 파도(W)에 의해 상승하면서 와이어(12)를 당길 수 있다. 이 경우, 회전부(107)는 날개(103)가 해수면에 잠기는 정도가 증가하도록 날개(103)를 회전시킬 수 있다. 즉, 회전부(107)는 회전축(102)으로부터 거리가 먼 단부(1031)가 해수면에 잠기도록, 날개(103)를 회전시킬 수 있다. 예를 들어, 회전부(107)는 부유체(10)가 파도(W)에 의해 상승할 때 최장단부(1031a)가 해수면에 잠기도록 날개(103)를 회전시킬 수 있다. 이와 같은 구조에 의하면, 날개(103)가 해수면에 잠기는 정도가 증가됨에 따라 부유체(10)가 받는 부력의 크기가 증가할 수 있다. 따라서, 부유체(10)는 더 큰 힘으로 와이어(12)를 당길 수 있고, 발전부(11)에 더 많은 에너지가 전달되어 발전부(11)는 더 많은 전력을 생산할 수 있다.The rotating part 107 may rotate the wing 103 according to the state of the wave. 3 and 4 show the process of the wave (W) passing through the floating body (10). 3 shows a state in which the wave W enters the floating body 10. As shown in FIG. 3, when the wave W enters the floating body 10, the floating body 10 may pull the wire 12 while rising by the wave W. In this case, the rotating part 107 may rotate the wing 103 so that the degree to which the wing 103 is immersed in the sea level increases. That is, the rotating part 107 may rotate the wing 103 so that the end 1031 distant from the rotating shaft 102 is submerged in the sea level. For example, the rotating part 107 may rotate the wings 103 so that the longest end portion 1031a is submerged in the sea level when the floating body 10 rises by the wave W. According to such a structure, the amount of buoyancy received by the floating body 10 may increase as the degree to which the wings 103 are submerged in the sea level. Therefore, the floating body 10 can pull the wire 12 with a greater force, and more energy is transmitted to the power generation unit 11 so that the power generation unit 11 can produce more power.
도 4는 파도(W)가 부유체(10)를 지나간 상태를 도시한다. 도 4와 같이, 파도(W)가 부유체(10)를 지나고 빠져나올 때는, 부유체(10)는 파도(W)에 의해 하강할 수 있다. 부유체(10)가 하강하면 와이어(12)에 장력이 풀릴 수 있으므로, 장력유지부(13)가 와이어(12)를 당겨서 와이어(12)의 장력을 유지시킬 수 있다. 이 경우, 회전부(107)는 날개(103)가 해수면에 잠기는 정도가 감소하도록 날개(103)를 회전시킬 수 있다. 즉, 회전부(107)는 회전축(102)으로부터 거리가 가까운 단부(1031)가 해수면에 잠기도록, 날개(103)를 회전시킬 수 있다. 예를 들어, 회전부(107)는 부유체(10)가 파도(W)에 의해 하강할 때 최단단부(1031c)가 해수면에 잠기도록 날개(103)를 회전시킬 수 있다. 이와 같은 구조에 의하면, 날개(103)가 해수면에 잠기는 정도가 감소됨에 따라, 부유체(10)가 받는 부력의 크기가 감소하거나 파도의 영향을 덜 받을 수 있다. 따라서, 부유체(10)를 원위치 시킬 때, 장력유지부(13)에서 소모되는 에너지를 절감할 수 있다.4 shows a state in which the wave W has passed through the floating body 10. As shown in FIG. 4, when the wave W passes through the floating body 10 and exits, the floating body 10 may descend by the wave W. When the floating body 10 descends, tension may be released on the wire 12, so the tension holding unit 13 can pull the wire 12 to maintain the tension of the wire 12. In this case, the rotating part 107 may rotate the wing 103 so that the degree to which the wing 103 is submerged in the sea level is reduced. That is, the rotating part 107 may rotate the wing 103 so that the end 1031 close to the distance from the rotating shaft 102 is submerged in the sea level. For example, the rotating part 107 may rotate the wing 103 so that the shortest end 1031c is submerged in the sea level when the floating body 10 descends by the wave W. According to this structure, as the degree to which the wings 103 are submerged in the sea level is reduced, the amount of buoyancy received by the floating body 10 may be reduced or less affected by the waves. Therefore, when the floating body 10 is returned to the original position, energy consumed by the tension holding unit 13 can be reduced.
한편, 복수 개의 날개(103) 중 적어도 어느 한 쌍의 날개(103)는 단면이 서로 좌우 대칭을 이루도록 회전축(102)에 연결될 수 있다. 예를 들어, 제1 날개(103a) 및 제2 날개(103b)는 단면이 서로 좌우 대칭을 이루도록 회전축(102)에 연결될 수 있다. 또한, 회전부(107)는 복수 개의 날개(103) 중 적어도 어느 한 쌍의 날개(103)를 회전축(102)을 중심으로 서로 반대 방향으로 회전시킬 수 있다. 예를 들어, 제1 날개(103a) 및 제2 날개(103b)는 서로 반대 방향으로 회전될 수 있다. 제1 날개(103a) 및 제2 날개(103b)가 단면이 서로 좌우 대칭을 이루면서, 서로 반대 방향으로 회전되는 경우, 날개(103)가 회전하면서 발생되는 관성 모멘트가 상쇄될 수 있으므로, 부유체(10)의 자세는 안정하게 유지될 수 있다. 한편, 복수 개의 날개(103)는 서로 다른 단면 형상을 갖도록 형성될 수 있다. 또한, 복수 개의 날개(103)는 서로 다른 각도로 회전축(102)에 연결될 수 있다. 회전부(107)는 복수 개의 날개(103)를 각각 회전시킬 수 있다. 회전부(107)는 복수 개의 날개(103)가 회전되는 정도를 서로 달리하여 각각 회전시킬 수 있다.Meanwhile, at least one pair of the wings 103 of the plurality of wings 103 may be connected to the rotating shaft 102 so that the cross-sections are symmetrical with each other. For example, the first wing 103a and the second wing 103b may be connected to the rotating shaft 102 so that the cross-sections are symmetrical with each other. In addition, the rotation unit 107 may rotate at least one pair of the wings 103 of the plurality of wings 103 in the opposite direction to each other about the rotation axis 102. For example, the first wing 103a and the second wing 103b may be rotated in opposite directions. When the cross sections of the first and second wings 103a and 103b are symmetrical to each other and are rotated in opposite directions, the moment of inertia generated when the blades 103 rotate may be offset, so the floating body ( The posture of 10) can be kept stable. Meanwhile, the plurality of wings 103 may be formed to have different cross-sectional shapes. In addition, the plurality of wings 103 may be connected to the rotating shaft 102 at different angles. The rotating unit 107 may rotate the plurality of wings 103, respectively. The rotating unit 107 may rotate each of the blades 103 with varying degrees of rotation.
제어부(14)는 회전부(107)의 동작을 제어할 수 있다. 제어부(14)는 파도의 상태에 따라, 회전부(107)가 날개(103)를 회전시키는 정도 및 회전 유무를 조절할 수 있다. 제어부(14)는 파도의 진행 방향, 파도의 파고, 파도의 속도, 파도의 주기 및 파도의 패턴 중 적어도 어느 하나 이상에 기초하여, 상기 회전부(107)의 동작을 제어할 수 있다. 제어부(14)는 날개(103)를 회전시키는 데에 소모되는 에너지와, 날개(103)를 회전시킴으로써 절약할 수 있는 에너지 또는 추가 생산되는 에너지의 크기를 비교하여, 더 이득이 되는 쪽으로 회전부(107)의 동작을 제어할 수 있다. 예를 들어, 제어부(14)는 파도의 파고가 높지 않은 경우, 파도가 부유체(10)를 빠져나갈 때 회전부(107)가 날개(103)를 회전시키지 않도록 제어할 수 있다. 또는, 제어부(14)는 파도의 상태에 따라, 날개(103)의 최장단부(1031a) 또는 최단단부(1031c)가 아닌 중간 길이의 단부(1031b)가 해수면에 잠기도록 회전부(107)를 제어할 수 있다. 또한, 제어부(14)는 해일, 쓰나미 등의 극한의 상황에서 부유체(10)의 안전을 위해 부유체(10)가 해수면에 잠기는 정도가 조절되도록, 회전부(107)를 제어하여 날개(103)를 회전시킬 수 있다. 제어부(14)는 파도의 상태에 따라, 복수 개의 날개(103) 중 전부 또는 일부의 날개(103)만 회전되도록 회전부(107)를 제어할 수 있다. 예를 들어, 제어부(14)는 파도가 비교적 잔잔한 상태라면, 4개의 날개 중 2개의 날개만 회전하도록 제어할 수 있다.The control unit 14 may control the operation of the rotating unit 107. The control unit 14 may adjust the degree of rotation and the presence or absence of rotation of the blade 103 by the rotating unit 107 according to the state of the wave. The control unit 14 may control the operation of the rotating unit 107 based on at least one of a wave moving direction, wave wave height, wave speed, wave period, and wave pattern. The control unit 14 compares the amount of energy consumed to rotate the blade 103 with the amount of energy that can be saved by rotating the blade 103 or the energy that is additionally produced, and rotates the portion 107 toward more profit ) Can be controlled. For example, if the wave height of the wave is not high, the control unit 14 may control the rotating unit 107 not to rotate the wing 103 when the wave exits the floating body 10. Alternatively, the control unit 14 may control the rotating part 107 so that the end portion 1031b of the intermediate length, not the longest end part 1031a or the shortest end part 1031c, of the wing 103 is submerged in the sea surface according to the state of the wave. You can. In addition, the control unit 14 controls the rotating unit 107 so that the degree to which the floating body 10 is immersed in the sea surface is controlled for the safety of the floating body 10 in extreme situations such as tsunami and tsunami. Can rotate. The control unit 14 may control the rotating unit 107 such that only all or some of the wings 103 of the plurality of wings 103 are rotated according to the state of the wave. For example, if the wave is relatively calm, the control unit 14 may control to rotate only two of the four wings.
이상과 같이 비록 한정된 도면에 의해 실시 예들이 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구조, 장치 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.As described above, although the embodiments have been described by the limited drawings, those skilled in the art can make various modifications and variations from the above description. For example, the described techniques may be performed in a different order than the described method, and / or components such as the structure, device, etc. described may be combined or combined in a different form from the described method, or may be applied to other components or equivalents. Even if replaced or substituted by, appropriate results can be achieved.

Claims (18)

  1. 해수면 상에 부유하는 몸체;A body floating on the sea level;
    상기 몸체에 수평하게 연결되는 회전축;A rotating shaft horizontally connected to the body;
    상기 회전축에 회전 가능하게 연결되는 날개; 및A blade rotatably connected to the rotating shaft; And
    상기 날개를 상기 회전축을 중심으로 회전시키는 회전부를 포함하는 파력 발전용 부유체.A floating body for wave power generation including a rotating part for rotating the blade about the rotation axis.
  2. 제1항에 있어서,According to claim 1,
    상기 날개의 단면은 복수 개의 단부를 갖고, 상기 회전축으로부터 상기 복수 개의 단부까지의 거리는 서로 다르게 형성되는 파력 발전용 부유체.A cross section of the wing has a plurality of ends, and the distance from the rotating shaft to the plurality of ends is formed differently from the floating wave power generation.
  3. 제1항에 있어서,According to claim 1,
    상기 회전부는 파도의 상태에 따라 상기 날개가 상기 해수면에 잠기는 정도가 조절되도록, 상기 날개를 상기 회전축을 중심으로 회전시키는 파력 발전용 부유체.The rotating part is a floating body for wave power generation that rotates the wing about the rotation axis so that the degree to which the wing is submerged in the sea level is adjusted according to the state of the wave.
  4. 제1항에 있어서,According to claim 1,
    상기 회전부는, 상기 부유체가 파도에 의해 상승할 때 상기 날개가 상기 해수면에 잠기는 정도가 증가하도록 상기 날개를 회전시키는 파력 발전용 부유체.The rotating part, the floating body for wave power generation to rotate the wing so as to increase the degree to which the wing is submerged in the sea surface when the floating body rises by the waves.
  5. 제1항에 있어서,According to claim 1,
    상기 회전부는, 상기 부유체가 파도에 의해 하강할 때 상기 날개가 상기 해수면에 잠기는 정도가 감소하도록 상기 날개를 회전시키는 파력 발전용 부유체.The rotating part, the floating body for wave power to rotate the wing so that the degree of submersion in the sea surface when the floating body is lowered by the waves.
  6. 제2항에 있어서,According to claim 2,
    상기 복수 개의 단부 중 상기 회전축으로부터 가장 멀리 위치한 단부를 최장단부 및 가장 가까이 위치한 단부를 최단단부라고 할 때,When the end that is located farthest from the rotating shaft among the plurality of ends is the longest end and the closest end is the shortest,
    상기 회전부는, 상기 부유체가 파도에 의해 상승할 때 상기 최장단부가 상기 해수면에 잠기도록 상기 날개를 회전시키고, 상기 부유체가 파도에 의해 하강할 때 상기 최단단부가 상기 해수면에 잠기도록 상기 날개를 회전시키는 파력 발전용 부유체.The rotating part rotates the wing so that the longest end is submerged in the sea level when the floating body rises by the waves, and rotates the wing so that the shortest end is submerged in the sea level when the floating body descends by the waves. A floating body for wave power generation.
  7. 제1항에 있어서,According to claim 1,
    상기 날개는 복수 개 마련되고, 상기 회전축을 중심으로 각각 회전 가능한 파력 발전용 부유체.A plurality of said wings are provided, and the floating bodies for wave power generation respectively rotatable about the rotation axis.
  8. 제7항에 있어서,The method of claim 7,
    상기 복수 개의 날개 중 적어도 어느 한 쌍의 날개는, 단면이 서로 좌우 대칭을 이루도록 상기 회전축에 연결되는 파력 발전용 부유체.At least one pair of wings among the plurality of wings is connected to the rotating shaft so that the cross-sections are symmetrical with each other.
  9. 제7항에 있어서,The method of claim 7,
    상기 회전부는, 상기 복수 개의 날개 중 적어도 어느 한 쌍의 날개를 상기 회전축을 중심으로 서로 반대 방향으로 회전시키는 파력 발전용 부유체.The rotating part, the floating body for wave power for rotating at least any one pair of the plurality of wings in the opposite direction about the rotation axis.
  10. 제1항에 있어서,According to claim 1,
    상기 날개는 상기 회전축을 따르는 길이 방향으로 형성되는 파력 발전용 부유체.The wing is a floating body for wave power generation formed in the longitudinal direction along the rotation axis.
  11. 해수면 상에 부유하는 몸체와, 상기 몸체에 수평하게 연결되는 회전축, 상기 회전축에 회전 가능하게 연결되는 날개 및 상기 날개를 상기 회전축을 중심으로 회전시키는 회전부를 포함하는 부유체;A floating body including a body floating on the sea surface, a rotating shaft horizontally connected to the body, a blade rotatably connected to the rotating shaft, and a rotating part rotating the blade about the rotating shaft;
    상기 부유체의 운동 에너지를 통해 전력을 생산하는 발전부; 및A power generation unit that generates electric power through the kinetic energy of the floating body; And
    상기 부유체의 운동 에너지를 상기 발전부로 전달하는 와이어를 포함하는 파력 발전 장치.Wave power generating device comprising a wire for transmitting the kinetic energy of the floating body to the power generation unit.
  12. 제11항에 있어서,The method of claim 11,
    상기 회전부는 상기 날개가 상기 해수면에 잠기는 정도가 조절되도록 상기 날개를 상기 회전축을 중심으로 회전시키는 파력 발전 장치.The rotating unit is a wave power generating device for rotating the wing about the rotation axis so that the degree to which the wing is submerged in the sea level.
  13. 제11항에 있어서,The method of claim 11,
    상기 날개의 단면은 상기 회전축을 중심으로 비대칭적으로 형성되는 파력 발전 장치.The cross section of the blade is a wave power generating device that is formed asymmetrically about the rotation axis.
  14. 제11항에 있어서,The method of claim 11,
    상기 와이어의 장력을 유지시키는 장력유지부를 더 포함하는 파력 발전 장치.A wave power generating device further comprising a tension holding unit for maintaining the tension of the wire.
  15. 제11항에 있어서,The method of claim 11,
    상기 회전부는, 파도에 따른 상기 부유체의 움직임에 의해 상기 와이어가 당겨질 때, 상기 날개가 상기 해수면에 잠기는 정도가 증가하도록 상기 날개를 회전시키는 파력 발전 장치.The rotating unit, a wave power generating device for rotating the wing so that the degree of the wing is submerged in the sea level when the wire is pulled by the movement of the floating body in response to the wave.
  16. 제14항에 있어서,The method of claim 14,
    상기 회전부는, 상기 장력유지부에 의해 상기 와이어가 당겨질 때, 상기 날개가 상기 해수면에 잠기는 정도가 감소하도록 상기 날개를 회전시키는 파력 발전 장치.The rotating portion, when the wire is pulled by the tension holding portion, the wave power generating device for rotating the blade so that the degree of the wing is submerged in the sea level.
  17. 제11항에 있어서,The method of claim 11,
    상기 와이어는, 일측이 해저상에 각각 고정되는 3개의 와이어를 포함하고,The wire includes three wires each of which is fixed on the seabed,
    상기 부유체는 상기 3개의 와이어와 3개의 지점에서 연결되는 파력 발전 장치.The floating body is a wave power generator connected to the three wires and three points.
  18. 제11항에 있어서,The method of claim 11,
    상기 회전부의 동작을 제어하는 제어부를 더 포함하고,Further comprising a control unit for controlling the operation of the rotating unit,
    상기 제어부는 파도의 진행 방향, 파도의 파고, 파도의 속도, 파도의 주기 및 파도의 패턴 중 적어도 어느 하나 이상에 기초하여, 상기 회전부의 동작을 제어하는 파력 발전 장치.The control unit is a wave power generating device for controlling the operation of the rotating unit, based on at least one of the wave direction, wave wave height, wave speed, wave period, and wave pattern.
PCT/KR2019/013405 2018-10-19 2019-10-14 Floating body for wave power generation and wave power generator using same WO2020080759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0125494 2018-10-19
KR1020180125494A KR102110734B1 (en) 2018-10-19 2018-10-19 Buoy for wave power generation and wave power generator comprising the same

Publications (1)

Publication Number Publication Date
WO2020080759A1 true WO2020080759A1 (en) 2020-04-23

Family

ID=70284688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013405 WO2020080759A1 (en) 2018-10-19 2019-10-14 Floating body for wave power generation and wave power generator using same

Country Status (2)

Country Link
KR (1) KR102110734B1 (en)
WO (1) WO2020080759A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110100540A (en) * 2010-03-04 2011-09-14 우정택 Wave power generation system
KR20130038446A (en) * 2011-10-10 2013-04-18 유재인 Ocean stream powered device using funnel pipe
KR101559664B1 (en) * 2014-04-24 2015-10-19 울산대학교 산학협력단 Wave energy converter using adjustable tilt sliding floating buoy and pressure coupling hydratulic system
KR20160097877A (en) * 2015-02-10 2016-08-18 주식회사 인진 Wave Systems
US20180238295A1 (en) * 2015-08-12 2018-08-23 Jospa Limited Wave energy convertor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110100540A (en) * 2010-03-04 2011-09-14 우정택 Wave power generation system
KR20130038446A (en) * 2011-10-10 2013-04-18 유재인 Ocean stream powered device using funnel pipe
KR101559664B1 (en) * 2014-04-24 2015-10-19 울산대학교 산학협력단 Wave energy converter using adjustable tilt sliding floating buoy and pressure coupling hydratulic system
KR20160097877A (en) * 2015-02-10 2016-08-18 주식회사 인진 Wave Systems
US20180238295A1 (en) * 2015-08-12 2018-08-23 Jospa Limited Wave energy convertor

Also Published As

Publication number Publication date
KR102110734B1 (en) 2020-05-14
KR20200044560A (en) 2020-04-29

Similar Documents

Publication Publication Date Title
WO2016208843A1 (en) Floating wave power generating device
WO2016043415A1 (en) Floating wind power generation device
WO2020111721A1 (en) Wave power generation apparatus
US9790913B2 (en) Pitch and heave driven wave energy converter system including cable supported reaction masses
WO2016163631A1 (en) Power generation apparatus using precessional motion
WO2012002607A1 (en) Wind/tidal power generation ship
WO2016043416A1 (en) Floating wind power generation device
KR101143849B1 (en) An electric dynamo using sea wave
WO2014017859A1 (en) Repeating rise and fall tidal current generator
WO2020080759A1 (en) Floating body for wave power generation and wave power generator using same
WO2018174348A1 (en) Floating type offshore wind power generation plant
WO2013065987A2 (en) Airborne wind power generating system
CN111094739A (en) Wave power energy generator
WO2020076120A1 (en) Floating body for wave power generation and wave power generation device comprising same
WO2010117173A2 (en) Wave power generating apparatus
CN113187649B (en) Energy self-supply offshore network communication hotspot floating platform
WO2020111726A1 (en) Wave power generation apparatus and control method therefor
WO2019156516A1 (en) Wave force generation system and controlling method therefor
WO2017010619A1 (en) Pendulum electricity-generating device using natural energy
WO2020209556A1 (en) Floating-type power generation apparatus
WO2016111460A1 (en) Buoy for wave power generation, and wave power generation system comprising the same
WO2015174727A1 (en) Floating wave power generator using cross-flow turbine
WO2015137535A1 (en) Oxygen and hydrogen supply system through floating offshore combined power generation
CN215333233U (en) Floating platform combining wind energy and dot-matrix wave energy power generation
WO2019172706A1 (en) Wave power generation system and method for controlling same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874532

Country of ref document: EP

Kind code of ref document: A1