WO2020080637A1 - Metal-organic framework-based water electrolysis catalyst derived from prussian blue analog comprising three transition metals and comprising size-controlled pores, and method of preparing same - Google Patents

Metal-organic framework-based water electrolysis catalyst derived from prussian blue analog comprising three transition metals and comprising size-controlled pores, and method of preparing same Download PDF

Info

Publication number
WO2020080637A1
WO2020080637A1 PCT/KR2019/006681 KR2019006681W WO2020080637A1 WO 2020080637 A1 WO2020080637 A1 WO 2020080637A1 KR 2019006681 W KR2019006681 W KR 2019006681W WO 2020080637 A1 WO2020080637 A1 WO 2020080637A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
mof
based water
organic framework
catalyst
Prior art date
Application number
PCT/KR2019/006681
Other languages
French (fr)
Korean (ko)
Inventor
안욱
박문규
Original Assignee
순천향대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천향대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Publication of WO2020080637A1 publication Critical patent/WO2020080637A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a metal-organic structure-based water electrolytic catalyst derived from a ternary Ni-Co-Fe prussian blue analog and having a controlled pore size, and a method for manufacturing the same.
  • Hydrogen production due to electrochemical water electrolysis reaction is a technology that is spotlighted as clean energy.
  • an efficient electrode catalyst for overcoming the activation energy is required.
  • oxidation occurs at the anode and oxygen is generated.
  • OER oxygen evolution reaction
  • a high overvoltage of the anode is required, thereby increasing the hydrogen production cost.
  • a catalyst capable of lowering the overvoltage to the OER has been studied.
  • Platinum catalyst was known to be the most efficient catalyst in HER and iridium catalyst in OER.
  • platinum and iridium are difficult to commercialize due to the scarcity of materials and high price. Therefore, there is a need for a non-noble metal electrode catalyst that can replace the noble metal catalyst.
  • MOFs Metal organic frameworks
  • ZIF Zeolitic Imidazolate Framework
  • MOF catalysts containing Co-N-C species exhibit efficient OER and ORR activity.
  • NiP carbon-coated nickel phosphides
  • the metal-organic structure-based water electrolytic catalyst according to an aspect of the present invention can replace an expensive platinum catalyst as a non-precious metal catalyst exhibiting low overvoltage in a hydrogen production reaction.
  • Metal organic structure-based water electrolytic catalyst can replace the expensive iridium catalyst as a non-precious metal catalyst exhibiting a low overvoltage in the oxygen production reaction.
  • the metal-organic structure-based water electrolytic catalyst according to another aspect of the present invention can replace an expensive precious metal catalyst as a non-precious metal catalyst that exhibits a low overvoltage in a hydrogen production reaction and a low overvoltage in an oxygen production reaction.
  • One aspect of the present invention is represented by the formula of Ni 3 [Fe X Co 1-X (CN) 6 ] 2 - wherein X is prepared from a Prussian blue analog (PBA) of 0.1 to 0.9, and the oxidation number 2 as a transition metal.
  • PBA Prussian blue analog
  • Another aspect of the present invention is represented by the formula of Ni 3 [Fe X Co 1-X (CN) 6 ] 2 - wherein X is 0.1 to 0.9 to prepare a Prussian Blue Analog (PBA), the Prussian Blue [Co (CN) 6 ] of the analog 3- ion exchange reaction of the complex ion and S 2- ion, washing and drying the intermediate product subjected to the ion exchange reaction, crushing the dried intermediate product, and the It provides a method for manufacturing a metal-organic framework-based water electrolytic catalyst comprising the step of heat-treating the crushed intermediate product.
  • PBA Prussian Blue Analog
  • CN Prussian Blue [Co (CN) 6 ] of the analog 3- ion exchange reaction of the complex ion and S 2- ion
  • the metal-organic framework-based water electrolytic catalyst according to an aspect of the present invention may have a low overvoltage for HER by containing doped nitrogen.
  • the metal organic skeleton-based water electrolytic catalyst according to another aspect of the present invention may have a low overvoltage for the OER by lowering the number of outermost electrons of the transition metal.
  • the metal-organic framework-based water electrolytic catalyst according to another aspect of the present invention may have high strength and high porosity.
  • Metal organic skeleton-based water electrolytic catalyst according to another aspect of the present invention can be produced in a relatively simple method.
  • the metal-organic framework-based water electrolytic catalyst according to another aspect of the present invention may simultaneously have a low overvoltage for HER and a low overvoltage for OER.
  • Figure 6 shows the XRD pattern of the Prussian blue analogs.
  • Figure 10 shows the results of the EDS line scan of the center and edge of the particles of the NCF-MOF.
  • the total volume of the MOF pores can be determined from the weight of the material used.
  • Figure 16 shows the high-resolution XPS spectrum of Ni 2p and S 2p of NC-MOF, Ni 2p and Fe 2p of NF-MOF.
  • FIG. 17 shows Ni 2p (A), Fe 2p (B), Co 2p (C), S 2p (D), N 1s (F) of NCF-MOF, and N 1s (E) of NF-MOF.
  • FIG. 19 shows the HER polarization curve and HER Tapel Slope of the Nickel Foam Electrode (NFE) carrying a metal-organic framework.
  • NFE Nickel Foam Electrode
  • FIG. 20 shows an OER polarization curve and an OER Tapel Slope of a Nickel Foam Electrode (NFE) carrying a metal organic skeleton.
  • NFE Nickel Foam Electrode
  • FIG. 21 shows the HER and OER polarization curves of a nickel foam electrode carrying nothing and a metal organic skeleton.
  • Figure 23 shows the OER polarization curves of NCF-MOF and Ir / C before and after 1000 CV cycles.
  • FIG. 24 shows the TEM images of the NCF-MOF catalyst ink (including carbon black) before (A), after the endurance test for A's OER (B), and after the endurance test for HER (C). . Also shown are TEM images of the NCF-MOF catalyst ink (including carbon black) before the electrochemical test (D), after the endurance test for A's OER (E) and after the endurance test for HER (F).
  • water electrolysis refers to the electrochemical decomposition of water, and specifically refers to the production of hydrogen and oxygen through a hydrogen generating reaction and an oxygen generating reaction.
  • the metal organic framework refers to a metal organic structure (MOF) synthesized by using a complex ion and a transition compound in which a transition metal and an organic ligand are combined as a precursor.
  • MOF metal organic structure
  • PBA Prussian Blue Analog
  • the PBA may be represented by the formula of M a II [M b III (CN) 6 ] c ⁇ H 2 O.
  • the M II means a divalent transition metal cation
  • the M III means a trivalent transition metal cation.
  • the PBA may have a nano-cube shape.
  • the crystal structure of the PBA may be a face-centered cubic structure (FCC).
  • Metal organic skeleton-based water electrolytic catalyst is represented by the formula of Ni 3 [Fe X Co 1-X (CN) 6 ] 2 - and X is 0.1 to 0.9 Prussian blue analog (PBA It is prepared from), and includes as a transition metal Ni of 2 oxidation, Co of 2 oxidation, Co of 3 oxidation, Fe of 2 oxidation and Fe of 3 oxidation, [Co (CN) 6 ] 3- complex ion and Ni 2 + Coordinated Compound, [Fe (CN) 6 ] 3- Complex Ion and Ni 2 + Coordinated Compound, and [Co (CN) 6 ] 3- Ion Exchange Reaction of Complex Ion and S 2- Ion It contains NiS.
  • the metal-organic framework based water electrolytic catalyst is prepared from PBA represented by the formula Ni 3 [Fe X Co 1-X (CN) 6 ] 2 , Ni 3 [Co (CN) 6 ] And Ni 3 [Fe (CN) 6 ], which may have an effect that the metal-organic framework prepared from PBA represented by the formula does not have.
  • the metal-organic framework-based water electrolytic catalyst may have a low overvoltage for HER by containing doped nitrogen.
  • the metal-organic framework-based water electrolytic catalyst may have a low overvoltage for the OER by lowering the number of outermost electrons of the transition metal.
  • the metal-organic framework-based water electrolytic catalyst may have high porosity while having appropriate strength. Excellent effects as a water electrolytic catalyst of a metal-organic framework prepared from PBA having both Co and Fe will be described in detail later.
  • the X is 0.1 to 0.9, 0.2 to 0.9, 0.3 to 0.9, 0.4 to 0.9, 0.5 to 0.9, 0.6 to 0.9, 0.1 to 0.8, 0.2 to 0.8, 0.3 to 0.8, 0.4 to 0.8, 0.5 to 0.8, 0.6 to 0.8 , 0.1 to 0.7, 0.2 to 0.7, 0.3 to 0.7, 0.4 to 0.7, 0.5 to 0.7, 0.1 to 0.6, 0.2 to 0.6, 0.3 to 0.6, 0.4 to 0.6, 0.5 to 0.6, preferably 0.3 to 0.7 It may be, more preferably from 0.4 to 0.6.
  • Ni 3 [Fe (CN) 6 ] 2 is too large, the content of Ni 3 [Co (CN) 6 ] 2 is too small the amount of [Co (CN) - 6] 3 - and S 2- ion
  • the ion exchange reaction of ions may occur too little, which may cause the porosity of the metal-organic framework to be too small, and it may be difficult to have a specific surface area as a suitable water electrolytic catalyst.
  • the preparation is represented by the formula of Ni 3 [Fe X Co 1-X (CN) 6 ] 2 - and wherein X is 0.1 to 0.9, preparing a Prussian Blue Analog (PBA), [ Co (CN) 6 ] 3- Completion ion and S 2- ion ion exchange reaction, washing and drying the intermediate product subjected to the ion exchange reaction, grinding the dried intermediate product, and grinding the intermediate product It may be manufactured by a method of manufacturing a metal-organic skeleton-based water electrolytic catalyst comprising the step of heat-treating the product.
  • the coordination compound in which the [Co (CN) 6 ] 3- complex ion and Ni 2 + are combined may be Ni 3 [Co (CN) 6 ] 2 .
  • the coordination compound in which the [Fe (CN) 6 ] 3- complex ion and Ni 2 + are combined may be Ni 3 [Fe (CN) 6 ] 2 .
  • the metal-organic framework-based water electrolytic catalyst has a size of 150 to 210 nm, 160 to 210 nm, 170 to 210 nm, 180 to 210 nm, 150 to 200 nm, 160 to 200 nm, 170 to 200 nm, 180 to 200 nm, 150 to 190 nm, 160 to It may be 190 nm, 170 to 190 nm, 180 to 190 nm, 150 to 180 nm, 160 to 180 nm, 170 to 180 nm, and preferably 170 to 190 nm.
  • the metal-organic skeleton-based water electrolytic catalyst may have a rough shape in which the external shape observed by SEM is maintained while maintaining a general nano-cube shape.
  • the content of Fe 3 as the oxidation water may be higher than the content of Fe as the oxidation number 2 based on XPS analysis.
  • the content of Fe, the oxidation number 2, may be 40 to 46% by weight based on the total content of Fe.
  • the metal-organic framework-based water electrolytic catalyst may further include doped nitrogen. At least some of the doped nitrogen may be nitrogen derived from CN - produced by the ion exchange reaction. More specifically, [Co (CN) 6 ] CN - can be generated by ion exchange reaction of 3- ions and S 2- ions, and the generated CN - is by Ni 3 [Fe (CN) 6 ] 2 CNO - can be oxidized to the CNO - may be the NH 3 produced is further decomposed. The NH 3 may be doped into a metal organic skeleton.
  • Ni 3 [Fe (CN) 6 ] 2 And Ni 3 [Co (CN) 6 ] 2 all of which contain PBA to be subjected to ion exchange reaction with S 2 .
  • the doped nitrogen is 70 to 90%, 75 to 90%, 80 to 90%, 85 to 90%, 70 to 85%, 75 to 85 in CN of [Co (CN) 6 ] 3- ions reacted with ion exchange %, Or 80 to 85%, preferably 83 to 90%, or 84 to 89%.
  • the doped nitrogen may be pyridine nitrogen.
  • the pyridine nitrogen is formed from a carbon-nitrogen-carbon bond formed by nitrogen doping during a carbon-carbon bond in a cyclic structure in which six carbons are bonded in a structure such as a graphite layer. Refers to the nitrogen atom exposure.
  • the metal-organic framework-based water electrolytic catalyst containing doped nitrogen may include a graphitic carbon network structure derived from a cyano group at least in part.
  • the pyridine nitrogen may be located in the carbon structure.
  • the carbon structure may include a graphite layer in part.
  • the doped nitrogen improves electrical conductivity and increases the reactivity of HER and OER catalysts.
  • the doped nitrogen can reduce the bandgap so that the current flows more easily and the overvoltage in the HER can be reduced.
  • the metal-organic framework-based water electrolysis catalyst may include a carbon structure derived from a cyano group, and the carbon structure may include nitrogen doped from the cyano group.
  • the cyano group may be a cyano group produced by an ion exchange reaction of [Co (CN) 6 ] 3- ions and S 2- ions.
  • the metal-organic framework-based water electrolytic catalyst has a specific surface area (BET) of 30 to 60 m 2 ⁇ g -1 , 40 to 60 m 2 ⁇ g -1 , 45 to 60 m 2 ⁇ g -1 , 30 to 55 m 2 ⁇ g -1 , 40 to 55 m 2 ⁇ g -1 , or 45 to 55 m 2 ⁇ g -1 , and preferably 47 to 53 m 2 ⁇ g -1 .
  • BET specific surface area
  • the metal-organic skeleton-based water electrolytic catalyst may include pores.
  • At least some of the pores may be mesopores.
  • pores having a diameter of 2 nm to 50 nm are referred to as mesopores, and pores having a diameter of 2 nm or less are referred to as micropore.
  • mesopores and micropores mean pores according to the recommendations of the IUPAC, and the mesopores mean pores with a diameter of 2 nm to 50 nm.
  • the metal organic skeleton-based water electrolytic catalyst may exhibit hysteresis loops in a certain pressure range by analyzing the N 2 adsorption and desorption isotherms.
  • the pressure range in which the hysteresis loop appears is 0.5 to 1.1, 0.6 to 1.1, 0.7 to 1.1, 0.8 to 1.1, 0.5 to 1.0, 0.6 to 1.0, 0.7 to 1.0, 0.8 to 1.0, 0.5 to 0.9, 0.6 to 0.9, 0.7 to It may be 0.9, 0.5 to 0.8, 0.6 to 0.8, preferably 0.5 to 1.0, 0.6 to 1.0, 0.6 to 1.1, and more preferably 0.6 to 1.0. If the hysteresis loop is shown in the above pressure range, it can be seen that it contains mesopores.
  • At least some of the pores may be pores generated by an ion exchange reaction of [Co (CN) 6 ] 3- ions and S 2- ions.
  • the volume of the pores is 0.15 to 0.35 cc ⁇ g -1 , 0.20 to 0.35 cc ⁇ g -1 , 0.25 to 0.35 cc ⁇ g -1 , 0.15 to 0.32 cc ⁇ g -1 , 0.20 to 0.32 cc ⁇ g -1 , It may be 0.25 to 0.32 cc ⁇ g -1 , 0.15 to 0.30 cc ⁇ g -1 , 0.20 to 0.30 cc ⁇ g -1 , 0.25 to 0.30 cc ⁇ g -1 .
  • the volume of the pores is an analysis of the volume of the pores per gram by the Barrett-Joyner-Halenda (BJH) method.
  • the sum of the number of outermost electrons of Fe of 2 oxidation number, Fe of 3 oxidation number, Co of 2 oxidation number, and Co of 3 oxidation number is 5.3 to 5.6, 5.4 to 5.6, 5.3 to 5.5, 5.4 to 5.5, 5.3 to 5.5, or 5.4 to 5.5.
  • the method of obtaining the sum of the number of outermost electrons is well known to a person skilled in the art, and the method is also described in Experimental Example 9 below.
  • Ni combined with S of the NiS is 1 to 10%, 2 to 10%, 3 to 10%, 4 to 10%, 5 to 10%, 6 to 10%, 7 to 10%, 8 to 10 based on total Ni 10%, 9-10%, 1-9%, 2-9%, 3-9%, 4-9%, 5-9%, 6-9%, 7-9%, 8-9%, 1- 8%, 2-8%, 3-8%, 4-8%, 5-8%, 6-8%, 7-8%, 1-7%, 2-7%, 3-7%, 4-8 7%, 5-7%, 6-7%, 1-6%, 2-6%, 3-6%, 4-6%, or 5-6%, preferably 3-7 %, And more preferably 4 to 6%.
  • the NiS may be at least partially amorphous. It can be confirmed that the amorphous NiS does not exhibit a characteristic NiS pattern in XRD pattern analysis.
  • the NiS may be formed by ion exchange reaction of [Co (CN) 6 ] 3- ions and S 2- ions.
  • the ratio of NiS may be smaller than the decrease in the ratio of Co of the metal organic structure after the ion exchange reaction in the ratio of Co of the Prussian blue analog.
  • the metal organic skeleton-based water electrolytic catalyst is (200) plane, (220) plane, (400) plane, (420) plane, (422) plane, (440) plane, (600) plane, (XRD) 620)
  • the peak of the surface may be observed. More specifically, the metal-organic framework-based water electrolytic catalyst has a peak of 2 ⁇ from 12.5 ° to 14.5 ° in the (200) plane, a peak of 2 ⁇ to 23.5 ° to 25.5 ° in the (220) plane, and 400 in the XRD measurement.
  • the surface peak is 2 ⁇ 34 ⁇ to 36 ⁇
  • the (420) plane peak is 2 ⁇ 38 ⁇ to 40 ⁇
  • the (422) plane peak is 2 ⁇ 42 ⁇ to 44 ⁇
  • the (440) plane peak is 2 ⁇ 49.5 ⁇ to 51.5 ⁇
  • the (600) plane peak may be observed at 2 ⁇ 53 ⁇ to 55 ⁇
  • the (620) plane peak at 2 ⁇ 55 to 57 ⁇ .
  • the (200) plane peak may have a greater intensity than the (220) plane peak.
  • the (400) plane peak may have a greater intensity than the (420) plane peak.
  • the (400) plane peak may have a greater intensity than the (422) plane peak.
  • the peak is JCPDS card No. It may be similar to 89-3738.
  • the precursor of the metal-organic framework-based water electrolysis catalyst is (200) plane, (220) plane, (400) plane, (420) plane, (422) plane, (440) plane, (600) plane in XRD measurement. , The peak of the (620) plane may be observed.
  • the precursor of the metal-organic framework-based water electrolytic catalyst is XRD measurement in the (200) plane peak is 2 ⁇ 12.5 ⁇ to 14.5 ⁇ , the (220) plane peak is 2 ⁇ 23.5 ⁇ to 25.5 ⁇ , the (400) )
  • the plane peak is 2 ⁇ 34 ⁇ to 36 ⁇
  • the (420) plane peak is 2 ⁇ 38 ⁇ to 40 ⁇
  • the (422) plane peak is 2 ⁇ 42 ⁇ to 44 ⁇
  • the (440) plane peak is 2 ⁇ 49.5 ⁇ to 51.5 ⁇
  • the (600) plane peak may be observed at 2 ⁇ 53 ⁇ to 55 ⁇
  • the (620) plane peak at 2 ⁇ 55 to 57 ⁇ .
  • the peak observed in the XRD measurement of the metal-organic framework-based water electrolytic catalyst may be the same peak observed in the XRD measurement of the precursor of the metal-organic framework-based water electrolysis catalyst.
  • the catalyst ink may be prepared by mixing a metal organic skeleton-based water electrolytic catalyst with a solution.
  • the solution may be a Nafion solution.
  • the solution may further include Vulcan Carbon.
  • the catalyst ink uses Nafion solution as a solvent and contains 1 to 3 mg / ml, or 1.5 to 2. 5 mg / ml of a metal organic skeleton based water electrolytic catalyst, and 1 to 3 mg of Vulcan Carbon (XC-72, VC) / ml or 1.5 to 2.5 mg / ml.
  • the catalyst ink may be prepared as a uniform suspension by dissolving a metal-organic framework-based water electrolytic catalyst and sonicating for 40 to 70 minutes, 50 to 70 minutes, or 55 to 65 minutes.
  • Nickel Foam Electrode hereinafter referred to as NFE
  • the nickel-electrode for water electrolysis can be prepared by mixing the metal-organic framework-based water electrolysis catalyst in a solution and drop casting it into NFE.
  • the solution may be a Nafion solution.
  • the solution may further include Vulcan Carbon.
  • Method for producing a metal-organic framework-based electrolytic catalyst according to another aspect of the present invention is represented by the formula of Ni 3 [Fe X Co 1-X (CN) 6 ] 2- and X is 0.1 to 0.9 Prussian Blue Preparing an analog (PBA), [Co (CN) 6 ] of the Prussian blue analog is ion-exchanged with 3 - ion ions and S 2- ions, and the intermediate product washed with the ion-exchange reaction is washed and dried. Step, crushing the dried intermediate product and heat-treating the crushed intermediate product.
  • the X is 0.1 to 0.9, 0.2 to 0.9, 0.3 to 0.9, 0.4 to 0.9, 0.5 to 0.9, 0.1 to 0.8, 0.2 to 0.8, 0.3 to 0.8, 0.4 to 0.8, 0.5 to 0.8, 0.1 to 0.7, 0.2 to 0.7 , 0.3 to 0.7, 0.4 to 0.7, 0.5 to 0.7, 0.1 to 0.6, 0.2 to 0.6, 0.3 to 0.6, 0.4 to 0.6, 0.5 to 0.6, 0.1 to 0.5, 0.2 to 0.5, 0.3 to 0.5, 0.4 to 0.5 And preferably 0.3 to 0.7, and more preferably 0.4 to 0.6.
  • the porosity of the metal-organic framework-based water electrolytic catalyst may decrease, and when the X is decreased, the porosity of the metal-organic framework-based water electrolytic catalyst may increase.
  • Increasing the X may increase the density of the metal-organic framework-based water electrolytic catalyst, and decreasing the X may decrease the density of the metal-organic framework-based water electrolytic catalyst.
  • the step of preparing the Prussian blue analog (PBA) comprises dissolving nickel nitrate and sodium citrate in water to prepare a first solution, potassium hexacyanoferate (III) in the above X ratio, potassium hexa Preparing a second solution by dissolving cyanocobalt (III) in water at the 1-X ratio, preparing a third solution by mixing the first solution and the second solution, and the third solution. And coprecipitation to obtain a Prussian Blue Analog (PBA).
  • the water may be ultrapure water in which almost no ions are present, and in detail, it may be tertiary water, and more specifically, Mili-Q water.
  • the ion exchange reaction may be a step of mixing the Prussian blue analog with Na 2 S and subjecting the mixture to a hydrothermal reaction.
  • the hydrothermal reaction may be to synthesize a substance in water or an aqueous solution under high temperature and high pressure conditions.
  • the hydrothermal reaction can increase the crystallinity by dispersing the PBA evenly in water and raising and raising the pressure.
  • the hydrothermal reaction may be a temperature condition of 80 to 100 °C, 85 to 100 °C, 90 to 100 °C, or 95 to 100 °C.
  • the time of the hydrothermal reaction may be 4 to 8 hours, 5 to 7 hours, or 5 and a half hours to 6 and a half hours.
  • the heat treatment step may be a heat treatment in an Ar atmosphere, the temperature conditions are 250 to 350 °C, 260 to 350 °C, 270 to 350 °C, 280 to 350 °C, 290 to 350 °C, 250 to 340 °C, 260 to 340 °C , 270 to 340 ° C, 280 to 340 ° C, 290 to 340 ° C, 250 to 330 ° C, 260 to 330 ° C, 270 to 330 ° C, 280 to 330 ° C, 290 to 330 ° C, 250 to 320 ° C, 260 to 320 ° C , 270 to 320 ° C, 280 to 320 ° C, 290 to 320 ° C, 250 to 310 ° C, 260 to 310 ° C, 270 to 310 ° C, 280 to 310 ° C, 290 to 310 ° C, 250 to 310 ° C, 260 to 310 ° C,
  • the method for manufacturing a metal-organic framework-based water electrolytic catalyst may further include a second drying step of 50 to 90 ° C. for 10 to 14 hours after the heat treatment.
  • the temperature conditions of the secondary drying may be 50 to 90 ° C, 60 to 90 ° C, 50 to 80 ° C, 60 to 90 ° C, preferably 65 to 75 ° C, and the drying time is 10 to 14 hours, It may be 11 to 14 hours, 10 to 13 hours, and preferably 11 to 13 hours.
  • the second drying step may be a vacuum condition, for example, it may be dried using a vacuum oven.
  • the metal organic structure may be referred to as MOF.
  • the metal organic structure (MOF) according to an embodiment of the present invention has a function of a water electrolytic catalyst itself. Therefore, in this specification, the metal organic structure-based water electrolytic catalyst may be referred to as a metal organic structure.
  • Prussian Blue Analog (PBA) is used to synthesize metal-organic frameworks.
  • NC-PBA The Prussian blue analog containing Ni, Co
  • NC-PBA may be represented by the formula of Ni 3 [Co (CN) 6 ] 2 .
  • the NC-PBA is used as a precursor for synthesizing a metal organic skeleton containing Ni and Co.
  • FIG. 1A An example of the crystal structure of the NC-PBA is shown in Fig. 1A.
  • the appearance of the NC-PBA is shown in A and B of FIG. 2.
  • NF-PBA Prussian blue analogs containing Ni and Fe
  • the NF-PBA is used as a precursor for synthesizing a metal-organic framework containing Ni and Fe.
  • An example of the crystal structure of the NF-PBA is shown in Fig. 1B.
  • the appearance of the NF-PBA is shown in FIGS. 2C and D.
  • NCF-PBA Prussian blue analogs containing Ni, Co, Fe
  • the NCF-PBA is used as a precursor for synthesizing a metal-organic framework containing Ni, Co, and Fe.
  • FIG. 1C An example of the crystal structure of the NCF-PBA is shown in FIG. 1C.
  • the appearance of the NCF-PBA is shown in E and F of FIG. 2.
  • a first solution was prepared by dissolving 0.6 nmol of Nickel Nitrate and 0.9 mmol of sodium citrate in 20 ml of Mili-Q water.
  • the second solution was prepared by dissolving 0.4 mmol of potassium hexacyanocobaltate (III) (potassium hexacyano cobaltate (III)) in 20 ml of Mili-Q water.
  • the remaining steps 1), 3) and 4) were obtained in the same manner to obtain NC-PBA.
  • the second solution was prepared by dissolving 0.4 mmol of potassium hexacyanoferrate (III) in 20 ml of Mili-Q water. The remaining steps 1), 3), and 4) obtained NCF-PBA in the same manner.
  • the Mili-Q water refers to ultra pure water in which almost no ions are present.
  • the citrate ions are intended to prevent the formation of excessively large particles during the coprecipitation process.
  • Stirring in step 4) was carried out for 12 hours, to obtain a small and uniform PBA precursor.
  • the stirring time is not absolute, and may have an appropriate range depending on other conditions.
  • a metal-organic framework-based water electrolytic catalyst was prepared therefrom.
  • the metal organic skeleton-based water electrolytic catalyst may be referred to as MOF.
  • the metal-organic framework-based water electrolytic catalyst prepared from NC-PBA may be referred to as NC-MOF.
  • the metal-organic framework-based water electrolytic catalyst prepared from NF-PBA may be referred to as NF-MOF.
  • the metal-organic framework based water electrolytic catalyst prepared from NCF-PBA may be referred to as NCF-MOF.
  • the intermediate product obtained after the hydrothermal reaction was washed with a mixed solution of water and ethanol and dried. After drying, it was pulverized with Agate Motar to make an intermediate product powder.
  • the powder was heat-treated at 300 ° C. for 3 hours on Ar gas to prepare highly crystalline Highly Crystalline Frameworks (MOFs).
  • the heat treatment may improve crystallinity.
  • the final NCF-MOF was prepared by pulverizing the high-crystalline MOF and drying the high-crystalline MOF in a vacuum oven at 70 ° C. for 12 hours. The drying is to remove moisture that may be introduced in the grinding process.
  • NC-PBA precursor was used, and the rest of the procedure was the same as that of NCF-MOF preparation to prepare NC-MOFs.
  • the NF-PBA precursor was used, and the rest of the procedure was the same as that of NCF-MOF preparation to prepare NF-MOFs.
  • the final MOF was referred to as NC-MOF, NF-MOF, and NCF-MOF, respectively.
  • the average size, pore size and external morphology of the metal organic framework (MOF) based electrolytic catalyst were observed by SEM.
  • the prussian blue analog used as a precursor for the synthesis of the metal-organic framework-based water electrolytic catalyst has a shape close to a cube when the shape is confirmed by SEM.
  • a shape close to a cube that can be observed with the SEM may be referred to as a nanocube shape.
  • See Fig. 2 It can be explained that the particles of each of the metal-organic frameworks maintain a nano-cube shape when the difference from the PBA is not significantly different. (See Figure 3)
  • NC-MOF is in the form of nano cubes.
  • the average size is 400 nm, and there are pores larger than NF-MOF and NCF-MOF on each side.
  • NF-MOF has an average size of 160 nm.
  • the exterior is similar to that of the PBA precursor. External voids were not observed well compared to NC-MOF and NCF-MOF.
  • NCF-MOF has an average size of 180 nm, has a rough surface, and maintains a general nanocube shape.
  • the rough surface of the NCF-MOF may suggest that there is an adequate void to the extent that the nanocube shape can be maintained outside the nanocube.
  • the shape of the MOF is highly dependent on the type of transition metal center present in the PBA.
  • the size of MOF was relatively largest in NC-MOF. This is thought to be due to the absence of Fe.
  • NC-MOF had the largest air gap in MOF. This takes place in the hydrothermal reaction step [Co (CN) - 6] 3 - ions and the speed of the S 2- ion exchange reaction of the ions may be due to a relatively fast in the NC-MOF. Due to the relatively fast ion exchange reaction, relatively large pores may be formed inside the NC-MOF. If the pores are too large, the specific surface area of NC-MOF may decrease, the exposed catalytically active sites may decrease, and the structural durability of NC-MOF may be reduced.
  • NF-MOF and NCF-MOF retain the nano-cube shape than NC-MOF.
  • NF-MOF and NCF-MOF have fewer morphological changes that can be observed compared to PBA compared to NC-MOF.
  • the porosity of MOF and the external form of MOF can be controlled according to the content of Co and Fe. If the MOF does not contain Fe, the porosity may be too low, and if the MOF does not contain Co, the pores may be too large and the durability required as a metal-organic framework-based water electrolytic catalyst may be low.
  • porosity and hollow formation in the MOF can be controlled by adjusting the contents of Co and Fe.
  • the MOF with the appropriate size of the hollow can contact more reactants, enable smooth inflow and discharge of a larger amount of reactants, and can smoothly discharge hydrogen or oxygen gas generated in the water electrolysis reaction. If the hollow size of the MOF is appropriate, exposure of metal sites with catalytic activity that can contact the reactants can be increased and the electrochemical performance of the MOF can be optimized.
  • X-ray diffraction analysis (AXS D8 Advancer, Bruker) was performed to confirm the crystal structure of the PBA precursors and final MOFs.
  • XRD X-ray diffraction analysis
  • the crystal structure of MOF was observed through X-ray diffraction (XRD).
  • NC-MOF was consistent with that of NiS.
  • NC-MOF is almost all of it was found that it has the S 2- ion-ion and ion-exchange reaction - [Co (CN) - 6 ] 3.
  • the XRD pattern of NF-MOF was consistent with typical characteristic peaks of NF-PBA.
  • the XRD pattern of NCF-MOF was consistent with typical characteristic peaks of NCF-PBA.
  • EDS Energy-Dispersive X-ray Spectrometry
  • NC-MOF confirmed the porous structure and the hollow structure to which the inside is connected.
  • NF-MOF has a higher density and no hollow structure than NC-MOF.
  • the NCF-MOF has a porous structure and a hollow structure.
  • NC-MOF was analyzed by a face-centered cubic lattice structure (FCC Lattice Structure).
  • NF-MOF was analyzed with a polycrystalline FCC structure.
  • NCF-MOF was analyzed to correspond to a typical face-centered cubic structure (FCC) structure.
  • NC-MOF consists of Ni, N, S, C and residual Co. S was measured a lot outside and inside, and Co was hardly measured. It can be seen that the S 2- ion can be seen that the ions, because of the fast ion exchange reaction rate, and also because the hollow of the NC-MOF the fast ion exchange reaction rate - [Co (CN) - 6 ] 3.
  • NF-MOF contained more Ni and Fe than NC-MOF both inside and outside, and less S than NC-MOF.
  • NCF-MOF is because the Co and Fe are uniformly distributed in the outside and inside of the nano-cube by containing Fe [Co (CN) - 6 ] 3 - ions and the S 2- ion exchange reaction of ions as compared with the NC-MOF It can be seen that only a part has happened.
  • NF-MOF was 27.4 m 2 ⁇ g -1
  • NCF-MOF showed a larger 50.7 m 2 ⁇ g - 1 than NF-MOF.
  • the pore size distribution and pore volume were analyzed by BJH (Barrett-Joyner-Halenda) method.
  • the cumulative volume of voids NCF-MOF is 0.29cc ⁇ g - a 1
  • NF-MOF is 0.14cc ⁇ g - 1 because the measurement was found that MOF-NCF more Mesopore is present than NF-MOF. (See FIGS. 11 and 14)
  • NCF-MOF can significantly increase the activity of HER and OER by exposing more active sites that catalyze the water electrolysis reaction.
  • Ni 2 + and Fe are Fe 2 + about 27% and Fe 3 + about 73% based on the total Fe atom. It was confirmed to include.
  • the chemical composition of NF-MOF can be expressed as Ni x II [Fey II Fe z III (CN) 6 ] 2 .
  • Ni 2 + and Fe include Fe 2 + about 43% and Fe 3 + about 57% based on the total Fe atom, and Co is based on the total Co atom. It was confirmed to include Co 2 + about 17% and Co 3 + about 83%.
  • Ni 2p peak and the S 2p peak of the NCF-MOF a small amount of NiS is formed. NiS was found to be about 5.4% based on total Ni atoms. This is consistent with the results observed in SEM, TEM and XRD. Since there is no characteristic NiS peak in the XRD pattern analysis of NCF-MOF, it can be determined that the NiS of NCF-MOF is amorphous.
  • NC-MOF, NF-MOF, and NCF-MOF was nitrogen doped was confirmed by analyzing the XPS spectrum.
  • N 1s peak is not detected in the XPS spectrum of NC-MOF. This may be because ion exchange of [Co (CN) 6 ] 3- ions and S 2- ions occurs actively, and may be because Ni 2 [Fe (CN) 6 ] 3 does not exist.
  • N 1s peak is detected in the XPS spectrum of NF-MOF.
  • CN of [Fe (CN) 6 ] 3- is 98.7% and nitrogen oxide 1.9%. This is because [Fe (CN) 6 ] 3- rarely undergoes ion exchange reaction with S 2 .
  • N 1s peaks are detected in the XPS spectrum of the NCF-MOF.
  • [Fe (CN) 6 ] 3- and [Co (CN) 6 ] 3- CN is 94.7%, nitric oxide 0.9%, and pyridine nitrogen 4.24%.
  • the pyridine nitrogen may be generated from free CN - present in the solution by an ion exchange reaction of [Co (CN) 6 ] 3- ions and S 2- ions of NCF-MOF.
  • Free CN - in solution is oxidized to CNO - by Ni 3 [Fe (CN) 6 ] 2 and can be further decomposed to form NH 3 .
  • NH 3 may play a role in doping nitrogen.
  • the nitrogen oxide may be in a form in which oxygen is bonded to pyridine nitrogen.
  • the doped nitrogen of NCF-MOF can improve HER activity by synergy with transition metals such as Ni, Co and Fe.
  • the electrochemical properties of MOF as an electrocatalyst were analyzed using a typical half-cell system with three electrodes.
  • the three electrodes are a working electrode, a glass carbon electrode (GCE), a reference electrode (saturated calomel electrode, SCE), and a counter electrode (Counter electrode), a platinum wire (platinum wire) was used.
  • the electrocatalytic activity for OER and HER was evaluated using the Rotating Disk Electrode (hereinafter referred to as RDE) method using the MOF water electrolytic catalyst loaded NFE or catalyst coated GCE.
  • RDE Rotating Disk Electrode
  • CHI Electrochemical Station (Model 760D) was used for all electrochemical evaluations. OER measurements were made from 0.00 to 0.85V for SCE at a rotational speed of 1600 rpm. The HER measurement was measured at -0.9 to -1.5 V compared to SCE at a rotational speed of 1600 rpm. The scan speed was performed at 10 mV ⁇ s -1 . Pure nitrogen gas was purged for 30 minutes prior to OER and HER measurements, and all measurements were performed in 0.1 m KOH solution.
  • GCE Glassy Carbon Electrode
  • alumina suspension size: 0.05 ⁇ m
  • the catalyst ink is a Nafion solution (IPA 10mL, Nafion 5 wt%, 80 ⁇ l (Ion Power), which is pretreated with 2mg of a metal-organic framework-based water electrolytic catalyst (for example, NCF-MOF) and Vulcan Carbon (XC-72, VC). ) Dissolved in 1 ml and sonicated for 60 minutes to prepare a uniform suspension.
  • IPA 10mL Nafion 5 wt%, 80 ⁇ l
  • Ion Power IPA 10mL, Nafion 5 wt%, 80 ⁇ l
  • a metal-organic framework-based water electrolytic catalyst for example, NCF-MOF
  • Vulcan Carbon XC-72, VC
  • a noble metal catalyst composed of platinum (Pt / C 29.9 wt% Pt) and iridium (Ir / C, 20 wt% Ir) is used as benchmark catalysts for comparing the electrocatalytic performance and actual efficiency of MOF catalysts. Became.
  • NC-MOF represents -0.39V (meaning a distance away from 0V) under a current density condition of -10mA ⁇ cm 2
  • NF-MOF is ⁇ 0.34V (meaning the distance away from 0V).
  • NCF-MOF exhibited an overvoltage of -0.27V (meaning a distance from 0V) lower than that of NC-MOF and NF-MOF.
  • NCF-MOF may exhibit low overvoltage by reducing the HER energy barrier by doped nitrogen of NCF-MOF. Doped nitrogen can reduce ⁇ G (H *) by enhancing adsorption to H * at the catalytically active site.
  • NCF-MOF may exhibit a low overvoltage because of its high specific surface area and high porosity, so that the catalytically active site can contact more water.
  • NCF-MOF exhibits lower overvoltage for OER compared to Ir / C catalyst, which is a noble metal catalyst.
  • NCF-MOF exhibited an overvoltage of 0.32 V under a current density condition of 10 mA ⁇ cm ⁇ 2 . (0.32V means 0.32V is higher based on 1.23V. It means that the potential for water decomposition is 1.23V based on RHE, so it means 1.55V based on RHE.)
  • NF-MOF is 30mV higher than NCF-MOF It showed overvoltage. NC-MOF showed an overvoltage of 60 mV higher than NCF-MOF.
  • Ir / C showed an overvoltage of 20 mV higher than NCF-MOF.
  • the low overvoltage for the OER of the NCF-MOF may be attributed to the low number of outermost electrons of the transition metals Co and Fe included in the NCF-MOF.
  • NFE Nickel Foam Electrode
  • the NFE carrying MOF was prepared as follows. Cut NFE pieces to 1 cm to 2 cm in size. In addition, the oxidized nickel was removed by washing in a 2.0 m HCl aqueous solution for 1 hour while sonication. Again, ultrasonic cleaning was performed in acetone for 1 hour to remove organic impurities on the surface of NFEs.
  • MOF ink is mixed with 0.5 mg of MOF and 0.5 mg of VC (Vulcan Carbon) in 1.0 mL of pre-treated Nafion solution (10 mL of isopropyl alcohol (IPA) and 80 ⁇ l solution of Nafion 5 wt%, Ion Power), and ultrasonically treated for 60 minutes. One solution was obtained. Then, the mixture was drop-cast on dried NFE (active area 1 cm 2 ) to support 0.5 mg ⁇ cm ⁇ 2 of the catalyst.
  • IPA isopropyl alcohol
  • the Nafion is an electrolyte for a proton exchange membrane and is well known to a person skilled in the art as a product of DuPont.
  • the pre-treatment of the Nafion is well known to those skilled in the art using Nafion, so a detailed description thereof will be omitted.
  • the NFE carrying NC-MOF at a current density of -30mA ⁇ cm -2 exhibited an overvoltage of 0.30V in the HER.
  • NFE carrying NF-MOF showed an overvoltage of 0.25V.
  • the NFE carrying NCF-MOF showed a lower overvoltage of 0.16V than the NFE carrying the NC-MOF or NF-MOF.
  • the NFE carrying NC-MOF was 168 mV ⁇ dec - 1 and the NFE carrying NF-MOF was 157 mV ⁇ dec - 1 .
  • the NFE carrying NCF-MOF was 114 mV ⁇ dec -1 .
  • the Tafel slope in the HER of the NCF-MOF was lower compared to the NFE carrying the NC-MOF and the NFE carrying the NF-MOF. The lower the slope of the Tafel slope, the lower the voltage required to reach hydrogen production.
  • NCF-MOF Under the OER condition, at a current density of 30 mA ⁇ cm ⁇ 2 , NCF-MOF exhibited an overvoltage of 0.48 V.
  • the overvoltage in the OER of the NCF-MOF was 160 mV lower than that of Ir / C, and 110 mV lower than that of NF-MOF.
  • NFE carrying NC-MOF is 99 mV ⁇ dec -1
  • NFE carrying NF-MOF is 119 mV ⁇ dec -1
  • Ir / C is 73 mV ⁇ dec -1
  • the NFE loaded with NCF-MOF was 49 mV ⁇ dec -1 , showing a lower slope than Ir / C.
  • NFE without MOF catalyst as a control showed a much higher overvoltage in both HER and OER than NFE with MOR catalyst.
  • the first was to check the durability by passing a fixed current through Chronopotentiometry, and measuring the potential value according to it to measure how much the value changed compared to the initial value. In this way, durability was tested in both the HER and OER potential ranges.
  • GCE coated with MOF catalyst was activated by cyclic voltammetry (about 40 cycles) in nitrogen saturated electrolyte.
  • the HER of the MOF catalyst was subjected to CP evaluation at a current density of -20mA ⁇ cm -2 .
  • the OER of the MOF catalyst was subjected to CP evaluation at a current density of 20 mA ⁇ cm -2 .
  • the overvoltage of the OER of the MOF catalyst coated GCE was measured at 10 mA ⁇ cm -2
  • the HER overvoltage of the MOF catalyst coated GCE was measured at -10 mA ⁇ cm -2 .
  • the OER overvoltage of the NFE carrying the MOF catalyst was measured at 30 mA ⁇ cm -2
  • the HER overvoltage of the NFE carrying the MOF catalyst was measured at -30 mA ⁇ cm -2 .
  • the standard potential for OER was 1.23V vs RHE
  • the standard potential for HER was 0.00V vs RHE.
  • the NCF-MOF electrode in the HER CP evaluation conditions, the NCF-MOF electrode exhibited an initial HER potential of -0.34V based on RHE, and a voltage loss of 0.05V after 20000s. This indicates that NCF-MOF retains the potential by 86% after 20000s in HER.
  • the NCF-MOF electrode in the OER CP evaluation conditions, exhibited an initial OER potential of 1.53 V compared to RHE, and an OER potential increase of 0.01 V after 20000 s. This indicates that the NCF-MOF retains the potential by 97% after 20000s in the OER, and has excellent electrochemical durability.
  • the NCF-MOF in the OER, the NCF-MOF exhibited an initial OER potential of 1.54 V compared to the RHE. Under the same conditions, Ir / C had an initial OER potential of 1.57V. NCF-MOF showed an initial OER potential lower than Ir / C for OER.
  • NCF-MOF After 1000 CV cycles at a high oxidation potential window of 1.2 to 1.75 V versus RHE, NCF-MOF exhibited a potential loss of 1 mV and a potential retention of 99%. Under the same conditions, Ir / C exhibited a potential loss of 116 mV and a potential retention rate of 66%.
  • the initial form of the whole nanocube of NCF-MOF is maintained.
  • the maintenance of the initial form may be useful as an electrochemical catalyst because the crystal structure is maintained even after side reactions that may occur with HER, OER, or for a long time.
  • the corners of the nanocube are slightly roughened. This may be due to the formation of a metal hydroxide at an undercoordinated metal site. In more detail, it may be because a metal that does not coordinate with surrounding ligands forms a metal hydroxide.
  • the electrochemical safety of NCF-MOF in HER and OER may be due to the rigid porous structure capable of maintaining the porous skeleton during the generation of hydrogen gas and oxygen gas.
  • an overvoltage lower than the Ir / C of NCF-MOF in OER reduces carbon corrosion and reduces the oxidation of active metals.
  • the carbon corrosion is a phenomenon in which carbon is released from the high potential region of the OER, and may mean, for example, a phenomenon of changing to CO or CO 2 . Due to the low overvoltage in the OER, carbon corrosion of the NCF-MOF can be reduced because the carbon in the lower region is exposed to the potential.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

Disclosed is a metal-organic framework-based water electrolysis catalyst prepared from a Prussian blue analog. The metal-organic framework-based water electrolysis catalyst comprises, as transition metals, Ni having an oxidation number of 2, Co having an oxidation number of 2, Co having an oxidation number of 3, Fe having an oxidation number of 2, and Fe having an oxidation number of 3, and comprises a coordination compound in which [Co(CN)6]3- complex ions are bonded to Ni2 +, a coordination compound in which [Fe(CN)6]3- complex ions are bonded to Ni2 +, and NiS produced by an ion-exchange reaction of the [Co(CN)6]3- complex ions and S2- ions.

Description

3개의 전이금속을 함유하는 프러시안 블루 유사체에서 유래되고 크기가 제어된 공극을 포함하는 금속유기구조체 기반 수전해 촉매 및 그 제조방법.A metal-organic structure-based water electrolytic catalyst comprising a size-controlled pore derived from a Prussian blue analog containing three transition metals and a method for manufacturing the same.
본 발명은 3원계 Ni-Co-Fe 프러시안 블루 유사체에서 유래되고 공극의 크기가 제어된 금속유기구조체 기반 수전해 촉매 및 그 제조방법에 대한 것이다. The present invention relates to a metal-organic structure-based water electrolytic catalyst derived from a ternary Ni-Co-Fe prussian blue analog and having a controlled pore size, and a method for manufacturing the same.
전기 화학적인 수전해 반응으로 인한 수소 생성은 청정 에너지로서 각광받는 기술이다. 그러나, 수전해 반응에서 수소 발생 반응(Hydrogen Evolution Reaction, HER) 및 산소 발생 반응(Oxygen Evolution Reaction, OER)을 위해서는 이와 관련된 활성화 에너지를 극복하기 위한 효율적인 전극 촉매가 필요하다. 특히 수전해 반응은 양극에서 산화반응이 일어나 산소가 발생하는데, OER을 위해서는 양극의 높은 과전압이 필요하여 수소 생산 단가를 높인다는 문제가 있었다. 이를 해결하기 위해 OER에 대한 과전압을 낮출 수 있는 촉매가 연구되었다. 백금 촉매는 HER에서, 이리듐 촉매는 OER에서 각각 가장 효율적인 촉매로 알려져 있었다. 그러나 백금과 이리듐은 재료의 희소성과 높은 가격으로 인해 상용화에 어려움이 있다. 따라서 귀금속 촉매를 대체할 수 있는 비귀금속 전극 촉매가 필요하다.Hydrogen production due to electrochemical water electrolysis reaction is a technology that is spotlighted as clean energy. However, for the hydrogen evolution reaction (Hydrogen Evolution Reaction, HER) and the oxygen evolution reaction (Oxygen Evolution Reaction, OER) in the water electrolysis reaction, an efficient electrode catalyst for overcoming the activation energy is required. Particularly, in the water electrolysis reaction, oxidation occurs at the anode and oxygen is generated. For the OER, a high overvoltage of the anode is required, thereby increasing the hydrogen production cost. In order to solve this, a catalyst capable of lowering the overvoltage to the OER has been studied. Platinum catalyst was known to be the most efficient catalyst in HER and iridium catalyst in OER. However, platinum and iridium are difficult to commercialize due to the scarcity of materials and high price. Therefore, there is a need for a non-noble metal electrode catalyst that can replace the noble metal catalyst.
전이금속을 이용한 금속유기골격(Metal Organic Frameworks, MOFs)은 높은 다공성과 구조적 강성을 가지며, 기능성 촉매를 개발하기 위한 전구체로 각광받고 있다. 따라서 MOF를 이용해서 수분해 반응에서 귀금속 촉매를 대체할 수 있는 비귀금속 촉매가 연구되어 왔다. 예를 들어, ZIF(Zeolitic Imidazolate Framework) 골격이 사용된 MOF 전기 촉매가 알려져 있다. 또한 Co-N-C 종을 함유한 MOF 촉매는 효율적인 OER 및 ORR 활성을 나타낸다고 알려져 있다. 또한 Ni 기반 PBA(Prussian Blue analog)로부터 제조된 탄소 코팅 니켈 인산염(Nickel phosphides, NiP)을 기반으로 한 OER 촉매가 알려져 있다. 그러나, HER 및 OER 모두에 대해 활성인 이작용성 MOF 촉매는 아직 개발이 부족한 실정이다.Metal organic frameworks (MOFs) using transition metals have high porosity and structural rigidity, and are in the spotlight as precursors for developing functional catalysts. Therefore, a non-precious metal catalyst that can replace a precious metal catalyst in a hydrolysis reaction using MOF has been studied. For example, MOF electrocatalysts using a ZIF (Zeolitic Imidazolate Framework) framework are known. It is also known that MOF catalysts containing Co-N-C species exhibit efficient OER and ORR activity. Also known is an OER catalyst based on a carbon-coated nickel phosphides (NiP) made from Ni-based PBA (Prussian Blue analog). However, bifunctional MOF catalysts that are active against both HER and OER have not been developed yet.
본 발명의 일 측면에 따른 금속유기구조체 기반 수전해 촉매는 수소 생성 반응에서 낮은 과전압을 나타내는 비귀금속 촉매로서 고가의 백금 촉매를 대체할 수 있다. The metal-organic structure-based water electrolytic catalyst according to an aspect of the present invention can replace an expensive platinum catalyst as a non-precious metal catalyst exhibiting low overvoltage in a hydrogen production reaction.
본 발명의 다른 측면에 따른 금속유기구조체 기반 수전해 촉매는 산소 생성 반응에서 낮은 과전압을 나타내는 비귀금속 촉매로서 고가의 이리듐 촉매를 대체할 수 있다. Metal organic structure-based water electrolytic catalyst according to another aspect of the present invention can replace the expensive iridium catalyst as a non-precious metal catalyst exhibiting a low overvoltage in the oxygen production reaction.
본 발명의 다른 측면에 따른 금속유기구조체 기반 수전해 촉매는 수소 생성 반응에서 낮은 과전압 및 산소 생성 반응에서 낮은 과전압을 나타내는 비귀금속 촉매로서 고가의 귀금속 촉매를 대체할 수 있다. The metal-organic structure-based water electrolytic catalyst according to another aspect of the present invention can replace an expensive precious metal catalyst as a non-precious metal catalyst that exhibits a low overvoltage in a hydrogen production reaction and a low overvoltage in an oxygen production reaction.
본 발명의 일 측면은 Ni 3[Fe XCo 1-X(CN) 6] 2 -의 화학식으로 표현되고 상기 X는 0.1 내지 0.9 인 프러시안 블루 유사체(PBA)로부터 제조되고, 전이금속으로써 산화수 2인 Ni, 산화수 2인 Co, 산화수 3인 Co, 산화수 2인 Fe 및 산화수 3인 Fe 를 포함하고, [Co(CN) 6] 3- 착이온과 Ni 2 +이 결합된 배위화합물, [Fe(CN) 6] 3- 착이온과 Ni 2 +이 결합된 배위화합물, 및 상기 [Co(CN) 6] 3- 착이온과 S 2- 이온의 이온 교환 반응으로 생성된 NiS를 포함하는 금속유기골격체 기반 수전해 촉매를 제공한다.One aspect of the present invention is represented by the formula of Ni 3 [Fe X Co 1-X (CN) 6 ] 2 - wherein X is prepared from a Prussian blue analog (PBA) of 0.1 to 0.9, and the oxidation number 2 as a transition metal. of Ni, Co oxidation states 2, 3 oxidation number of Co, Fe in oxidation state 2 and 3 comprises an oxidation number of Fe, and [Co (CN) 6] 3- complex ion and Ni + 2 binding coordination compound, [Fe ( CN) 6] 3- complex ion and Ni 2 + fitted with a coordination compound, and the [Co (CN) 6] metal organic framework comprising a 3-complex ion and the NiS created in the ion exchange reaction of the S 2- ion A sieve-based water electrolytic catalyst is provided.
본 발명의 다른 측면은 Ni 3[Fe XCo 1-X(CN) 6] 2 -의 화학식으로 표현되고 상기 X는 0.1 내지 0.9 인 프러시안 블루 유사체(PBA)를 준비하는 단계, 상기 프러시안 블루 유사체의 [Co(CN) 6] 3- 착이온과 S 2- 이온을 이온 교환 반응시키는 단계, 상기 이온 교환 반응시킨 중간생성물을 세척하고 건조하는 단계, 상기 건조시킨 중간생성물을 분쇄하는 단계 및 상기 분쇄한 중간생성물을 열처리하는 단계를 포함하는 금속유기골격체 기반 수전해촉매 제조방법을 제공한다. Another aspect of the present invention is represented by the formula of Ni 3 [Fe X Co 1-X (CN) 6 ] 2 - wherein X is 0.1 to 0.9 to prepare a Prussian Blue Analog (PBA), the Prussian Blue [Co (CN) 6 ] of the analog 3- ion exchange reaction of the complex ion and S 2- ion, washing and drying the intermediate product subjected to the ion exchange reaction, crushing the dried intermediate product, and the It provides a method for manufacturing a metal-organic framework-based water electrolytic catalyst comprising the step of heat-treating the crushed intermediate product.
본 발명의 일 측면에 따른 금속유기골격체 기반 수전해 촉매는 도핑된 질소를 함유함으로써 HER에 대한 낮은 과전압을 가질 수 있다. The metal-organic framework-based water electrolytic catalyst according to an aspect of the present invention may have a low overvoltage for HER by containing doped nitrogen.
본 발명의 다른 측면에 따른 금속유기골격체 기반 수전해 촉매는 전이금속의 최외각전자수가 낮아짐으로써 OER에 대한 낮은 과전압을 가질 수 있다. The metal organic skeleton-based water electrolytic catalyst according to another aspect of the present invention may have a low overvoltage for the OER by lowering the number of outermost electrons of the transition metal.
본 발명의 또 다른 측면에 따른 금속유기골격체 기반 수전해 촉매는 적절한 강도를 가지면서 공극률이 높을 수 있다. The metal-organic framework-based water electrolytic catalyst according to another aspect of the present invention may have high strength and high porosity.
본 발명의 또 다른 측면에 따른 금속유기골격체 기반 수전해 촉매는 비교적 간단한 방법으로 제조가 가능하다. Metal organic skeleton-based water electrolytic catalyst according to another aspect of the present invention can be produced in a relatively simple method.
본 발명의 또 다른 측면에 따른 금속유기골격체 기반 수전해 촉매는 HER에 대한 낮은 과전압 및 OER에 대한 낮은 과전압을 동시에 가질 수 있다. The metal-organic framework-based water electrolytic catalyst according to another aspect of the present invention may simultaneously have a low overvoltage for HER and a low overvoltage for OER.
도 1 은 프러시안 블루 유사체의 결정 구조를 나타낸 것이다. 1 shows the crystal structure of a Prussian blue analog.
도 2 는 프러시안 블루 유사체들의 SEM 이미지를 나타낸 것이다. 2 shows SEM images of Prussian blue analogs.
도 3 은 금속유기구조체의 SEM 이미지를 나타낸 것이다. 3 shows an SEM image of a metal organic structure.
도 4 는 금속유기구조체의 TEM 이미지를 나타낸 것이다. 4 shows a TEM image of the metal organic structure.
도 5 는 금속유기구조체의 XRD 패턴을 나타낸 것이다. 5 shows the XRD pattern of the metal organic structure.
도 6 은 프러시안 블루 유사체들의 XRD 패턴을 나타낸 것이다. Figure 6 shows the XRD pattern of the Prussian blue analogs.
도 7 은 금속유기구조체의 EDS 라인 스캔되어있는 STEM 이미지를 나타낸 것이다.7 shows an SDS image scanned by EDS line of a metal organic structure.
도 8 은 NC-MOF의 입자의 중앙과 가장자리의 EDS 라인 스캔 결과를 나타낸 것이다. 8 shows the EDS line scan results of the center and edge of NC-MOF particles.
도 9 는 NF-MOF의 입자의 중앙과 가장자리의 EDS 라인 스캔 결과를 나타낸 것이다. 9 shows the EDS line scan results of the center and edge of the particles of NF-MOF.
도 10 은 NCF-MOF의 입자의 중앙과 가장자리의 EDS 라인 스캔 결과를 나타낸 것이다. Figure 10 shows the results of the EDS line scan of the center and edge of the particles of the NCF-MOF.
도 11 은 금속유기구조체들의 SAED 패턴을 나타낸 것이다. 11 shows SAED patterns of metal organic structures.
도 12 는 금속유기구조체들의 DFTEM 이미지 및 원소 지도를 나타낸 것이다. 12 shows DFTEM images and elemental maps of metal organic structures.
도 13 은 NCF-MOF 및 NF-MOF의 질소의 흡착(Absorption) 및 탈착(Desorption)의 등온선(isotherm)을 나타낸 것이다. 13 shows the isotherm of the adsorption (absorption) and desorption (desorption) of nitrogen of NCF-MOF and NF-MOF.
도 14 는 NCF-MOF 및 NF-MOF의 공극 크기 분포(pore size distribution)를 나타낸 것이다. 사용된 물질의 무게로부터 MOF 공극의 총 부피를 알 수 있다. 14 shows the pore size distribution of NCF-MOF and NF-MOF. The total volume of the MOF pores can be determined from the weight of the material used.
도 15 는 금속유기구조체의 전체 XPS 분석 결과를 나타낸 것이다. 15 shows the overall XPS analysis results of the metal organic structure.
도 16 은 NC-MOF의 Ni 2p 및 S 2p, NF-MOF의 Ni 2p 및 Fe 2p의 고해상도 XPS 스펙트럼을 나타낸 것이다. Figure 16 shows the high-resolution XPS spectrum of Ni 2p and S 2p of NC-MOF, Ni 2p and Fe 2p of NF-MOF.
도 17 은 NCF-MOF의 Ni 2p(A), Fe 2p(B), Co 2p(C), S 2p(D), N 1s(F) 및 NF-MOF의 N 1s(E)를 나타낸 것이다. FIG. 17 shows Ni 2p (A), Fe 2p (B), Co 2p (C), S 2p (D), N 1s (F) of NCF-MOF, and N 1s (E) of NF-MOF.
도 18 은 금속유기골격체를 담지시킨 GCE 전극의 HER 곡선 및 OER 분극 곡선을 나타낸 것이다. 18 shows the HER curve and the OER polarization curve of the GCE electrode carrying the metal organic skeleton.
도 19는 금속유기골격체를 담지시킨 니켈 폼 전극(Nickel Foam Electrode, NFE)의 HER 분극 곡선(polarization curve) 및 HER 타펠 기울기(Tapel Slope)를 나타낸 것이다. FIG. 19 shows the HER polarization curve and HER Tapel Slope of the Nickel Foam Electrode (NFE) carrying a metal-organic framework.
도 20 은 금속유기골격체를 담지시킨 니켈 폼 전극(Nickel Foam Electrode, NFE)의 OER 분극 곡선(polarization curve) 및 OER 타펠 기울기(Tapel Slope)를 나타낸 것이다. 20 shows an OER polarization curve and an OER Tapel Slope of a Nickel Foam Electrode (NFE) carrying a metal organic skeleton.
도 21 은 아무것도 담지 시키지 않은 니켈 폼 전극 및 금속유기골격체를 담지시킨 니켈 폼 전극의 HER 및 OER 분극 곡선을 나타낸 것이다. FIG. 21 shows the HER and OER polarization curves of a nickel foam electrode carrying nothing and a metal organic skeleton.
도 22 는 HER 또는 OER 에서 크로노퍼텐쇼메트리(chronopotentiometry) 방법으로 과전압의 변화를 측정한 것이다. 22 shows the change in overvoltage in a HER or OER by a chronopotentiometry method.
도 23 은 1000 CV 싸이클 전(before) 및 후(after)의 NCF-MOF 및 Ir/C의 OER 분극 곡선을 나타낸 것이다. Figure 23 shows the OER polarization curves of NCF-MOF and Ir / C before and after 1000 CV cycles.
도 24 는 NCF-MOF 촉매 잉크(카본 블랙이 포함됨)의 전기 화학적 시험 전(A), A의 OER에 대한 내구성 시험 후(B) 및 HER에 대한 내구성 시험 후(C)의 TEM 이미지를 나타낸 것이다. 또한 NCF-MOF 촉매 잉크(카본 블랙이 포함됨)의 전기 화학적 시험 전(D), A의 OER에 대한 내구성 시험 후(E) 및 HER에 대한 내구성 시험 후(F)의 TEM 이미지를 나타낸 것이다. FIG. 24 shows the TEM images of the NCF-MOF catalyst ink (including carbon black) before (A), after the endurance test for A's OER (B), and after the endurance test for HER (C). . Also shown are TEM images of the NCF-MOF catalyst ink (including carbon black) before the electrochemical test (D), after the endurance test for A's OER (E) and after the endurance test for HER (F).
본 명세서에서 수전해는 물의 전기 화학적 분해를 말하며, 구체적으로는 수소 발생 반응과 산소 발생 반응으로 수소와 산소를 생산하는 것을 말한다. In this specification, water electrolysis refers to the electrochemical decomposition of water, and specifically refers to the production of hydrogen and oxygen through a hydrogen generating reaction and an oxygen generating reaction.
본 명세서에서 금속유기골격체는 전이금속과 유기리간드가 결합된 착이온 및 전이금속이 결합된 배위화합물을 전구체로 사용하여 합성된 금속유기구조체(Metal Organic Framework, MOF)를 의미한다.In the present specification, the metal organic framework refers to a metal organic structure (MOF) synthesized by using a complex ion and a transition compound in which a transition metal and an organic ligand are combined as a precursor.
본 명세서 전체에서 PBA(Prussian Blue Analog)는 MOF 기반 수전해 촉매를 제조하기 위한 전구체이다. 상기 PBA는 M a II[M b III(CN) 6] c ·H 2O의 화학식으로 나타낼 수 있다. 상기 M II는 2가 전이금속 양이온을 의미하고, 상기 M III는 3가 전이금속 양이온을 의미한다. 상기 PBA는 외형은 나노 큐브 형태일 수 있다. 상기 PBA의 결정구조는 면심 입방 구조(FCC)일 수 있다. Throughout this specification, PBA (Prussian Blue Analog) is a precursor for preparing MOF-based electrolytic catalysts. The PBA may be represented by the formula of M a II [M b III (CN) 6 ] c · H 2 O. The M II means a divalent transition metal cation, and the M III means a trivalent transition metal cation. The PBA may have a nano-cube shape. The crystal structure of the PBA may be a face-centered cubic structure (FCC).
본 발명의 일측면에 따른 금속유기골격체 기반 수전해 촉매는 Ni 3[Fe XCo 1-X(CN) 6] 2 -의 화학식으로 표현되고 상기 X는 0.1 내지 0.9 인 프러시안 블루 유사체(PBA)로부터 제조되고, 전이금속으로써 산화수 2인 Ni, 산화수 2인 Co, 산화수 3인 Co, 산화수 2인 Fe 및 산화수 3인 Fe 를 포함하고, [Co(CN) 6] 3- 착이온과 Ni 2 +이 결합된 배위화합물, [Fe(CN) 6] 3- 착이온과 Ni 2 +이 결합된 배위화합물, 및 상기 [Co(CN) 6] 3- 착이온과 S 2- 이온의 이온 교환 반응으로 생성된 NiS를 포함한다. Metal organic skeleton-based water electrolytic catalyst according to an aspect of the present invention is represented by the formula of Ni 3 [Fe X Co 1-X (CN) 6 ] 2 - and X is 0.1 to 0.9 Prussian blue analog (PBA It is prepared from), and includes as a transition metal Ni of 2 oxidation, Co of 2 oxidation, Co of 3 oxidation, Fe of 2 oxidation and Fe of 3 oxidation, [Co (CN) 6 ] 3- complex ion and Ni 2 + Coordinated Compound, [Fe (CN) 6 ] 3- Complex Ion and Ni 2 + Coordinated Compound, and [Co (CN) 6 ] 3- Ion Exchange Reaction of Complex Ion and S 2- Ion It contains NiS.
상기 금속유기골격체 기반 수전해 촉매는 Ni 3[Fe XCo 1-X(CN) 6] 2 화학식으로 표현된 PBA로부터 제조되며, Ni 3[Co(CN) 6] 및 Ni 3[Fe(CN) 6] 화학식으로 표현되는 PBA로부터 제조되는 금속유기골격체가 가지지 못하는 효과를 가질 수 있다. 예를 들면 상기 금속유기골격체 기반 수전해 촉매는 도핑된 질소를 함유함으로써 HER에 대한 낮은 과전압을 가질 수 있다. 또는 상기 금속유기골격체 기반 수전해 촉매는 전이금속의 최외각전자수가 낮아짐으로써 OER에 대한 낮은 과전압을 가질 수 있다. 또는 상기 금속유기골격체 기반 수전해 촉매는 적절한 강도를 가지면서 공극률이 높을 수 있다. 상기 Co 및 Fe를 모두 갖는 PBA로부터 제조된 금속유기골격체의 수전해 촉매로써 탁월한 효과들은 이후 자세히 서술될 것이다. The metal-organic framework based water electrolytic catalyst is prepared from PBA represented by the formula Ni 3 [Fe X Co 1-X (CN) 6 ] 2 , Ni 3 [Co (CN) 6 ] And Ni 3 [Fe (CN) 6 ], which may have an effect that the metal-organic framework prepared from PBA represented by the formula does not have. For example, the metal-organic framework-based water electrolytic catalyst may have a low overvoltage for HER by containing doped nitrogen. Alternatively, the metal-organic framework-based water electrolytic catalyst may have a low overvoltage for the OER by lowering the number of outermost electrons of the transition metal. Alternatively, the metal-organic framework-based water electrolytic catalyst may have high porosity while having appropriate strength. Excellent effects as a water electrolytic catalyst of a metal-organic framework prepared from PBA having both Co and Fe will be described in detail later.
상기 X는 0.1 내지 0.9, 0.2 내지 0.9, 0.3 내지 0.9, 0.4 내지 0.9, 0.5 내지 0.9, 0.6 내지 0.9, 0.1 내지 0.8, 0.2 내지 0.8, 0.3 내지 0.8, 0.4 내지 0.8, 0.5 내지 0.8, 0.6 내지 0.8, 0.1 내지 0.7, 0.2 내지 0.7, 0.3 내지 0.7, 0.4 내지 0.7, 0.5 내지 0.7, 0.1 내지 0.6, 0.2 내지 0.6, 0.3 내지 0.6, 0.4 내지 0.6, 0.5 내지 0.6일 수 있고, 바람직하게는 0.3 내지 0.7일 수 있고, 보다 바람직하게는 0.4 내지 0.6일 수 있다. The X is 0.1 to 0.9, 0.2 to 0.9, 0.3 to 0.9, 0.4 to 0.9, 0.5 to 0.9, 0.6 to 0.9, 0.1 to 0.8, 0.2 to 0.8, 0.3 to 0.8, 0.4 to 0.8, 0.5 to 0.8, 0.6 to 0.8 , 0.1 to 0.7, 0.2 to 0.7, 0.3 to 0.7, 0.4 to 0.7, 0.5 to 0.7, 0.1 to 0.6, 0.2 to 0.6, 0.3 to 0.6, 0.4 to 0.6, 0.5 to 0.6, preferably 0.3 to 0.7 It may be, more preferably from 0.4 to 0.6.
상기 X가 지나치게 작으면 Ni 3[Fe(CN) 6] 2의 함량이 지나치게 적고 Ni 3[Co(CN) 6] 2의 함량이 지나치게 커서 [Co(CN) - 6] 3 -이온과 S 2-이온의 이온교환 반응이 지나치게 많이 일어날 수 있고, 이로 인해 금속유기골격체의 공극률이 지나치게 커질 수 있고, 밀도가 지나치게 낮아질 수 있고, 강도 또는 내구도가 약해질 수 있다. 상기 X가 지나치게 크면 Ni 3[Fe(CN) 6] 2의 함량이 지나치게 크고 Ni 3[Co(CN) 6] 2의 함량이 지나치게 작아서 [Co(CN) - 6] 3 -이온과 S 2-이온의 이온교환 반응이 지나치게 적게 일어날 수 있고, 이로 인해 금속유기골격체의 공극률이 지나치게 작아질 수 있고, 적절한 수전해 촉매로서의 비표면적을 갖기 어려울 수 있다. When the above X is too small Ni 3 [Fe (CN) 6 ] less the content of the second over-Ni 3 [Co (CN) 6 ] the content of the two is too large [Co (CN) - 6] 3 - ions and S 2 -The ion-exchange reaction of ions may occur excessively, and thus the porosity of the metal-organic framework may be excessively large, the density may be excessively low, and strength or durability may be weakened. Wherein X is too large Ni 3 [Fe (CN) 6 ] 2 is too large, the content of Ni 3 [Co (CN) 6 ] 2 is too small the amount of [Co (CN) - 6] 3 - and S 2- ion The ion exchange reaction of ions may occur too little, which may cause the porosity of the metal-organic framework to be too small, and it may be difficult to have a specific surface area as a suitable water electrolytic catalyst.
상기 제조는 Ni 3[Fe XCo 1-X(CN) 6] 2 -의 화학식으로 표현되고 상기 X는 0.1 내지 0.9 인 프러시안 블루 유사체(PBA)를 준비하는 단계, 상기 프러시안 블루 유사체의 [Co(CN) 6] 3- 착이온과 S 2- 이온을 이온 교환 반응시키는 단계, 상기 이온 교환 반응시킨 중간생성물을 세척하고 건조하는 단계, 상기 건조시킨 중간생성물을 분쇄하는 단계 및 상기 분쇄한 중간생성물을 열처리하는 단계를 포함하는 금속유기골격체 기반 수전해촉매 제조방법에 의해 제조되는 것일 수 있다. The preparation is represented by the formula of Ni 3 [Fe X Co 1-X (CN) 6 ] 2 - and wherein X is 0.1 to 0.9, preparing a Prussian Blue Analog (PBA), [ Co (CN) 6 ] 3- Completion ion and S 2- ion ion exchange reaction, washing and drying the intermediate product subjected to the ion exchange reaction, grinding the dried intermediate product, and grinding the intermediate product It may be manufactured by a method of manufacturing a metal-organic skeleton-based water electrolytic catalyst comprising the step of heat-treating the product.
상기 [Co(CN) 6] 3- 착이온과 Ni 2 +이 결합된 배위화합물은 Ni 3[Co(CN) 6] 2일 수 있다. 상기 [Fe(CN) 6] 3- 착이온과 Ni 2 +이 결합된 배위화합물은 Ni 3[Fe(CN) 6] 2일 수 있다. The coordination compound in which the [Co (CN) 6 ] 3- complex ion and Ni 2 + are combined may be Ni 3 [Co (CN) 6 ] 2 . The coordination compound in which the [Fe (CN) 6 ] 3- complex ion and Ni 2 + are combined may be Ni 3 [Fe (CN) 6 ] 2 .
상기 금속유기골격체 기반 수전해 촉매는 크기가 150 내지 210nm, 160 내지 210nm, 170 내지 210nm, 180 내지 210nm, 150 내지 200nm, 160 내지 200nm, 170 내지 200nm, 180 내지 200nm, 150 내지 190nm, 160 내지 190nm, 170 내지 190nm, 180 내지 190nm, 150 내지 180nm, 160 내지 180nm, 170 내지 180nm일 수 있고, 바람직하게는 170 내지 190nm일 수 있다. The metal-organic framework-based water electrolytic catalyst has a size of 150 to 210 nm, 160 to 210 nm, 170 to 210 nm, 180 to 210 nm, 150 to 200 nm, 160 to 200 nm, 170 to 200 nm, 180 to 200 nm, 150 to 190 nm, 160 to It may be 190 nm, 170 to 190 nm, 180 to 190 nm, 150 to 180 nm, 160 to 180 nm, 170 to 180 nm, and preferably 170 to 190 nm.
상기 금속유기골격체 기반 수전해 촉매는 일반적인 나노 큐브 형태를 유지하면서도 SEM으로 관찰되는 외부 형태가 거친 형태일 수 있다. The metal-organic skeleton-based water electrolytic catalyst may have a rough shape in which the external shape observed by SEM is maintained while maintaining a general nano-cube shape.
상기 산화수 3인 Fe의 함량은 XPS 분석을 기준으로 상기 산화수 2인 Fe의 함량보다 더 높은 것일 수 있다. The content of Fe 3 as the oxidation water may be higher than the content of Fe as the oxidation number 2 based on XPS analysis.
상기 산화수 2인 Fe의 함량은 Fe 전체 함량을 기준으로 40 내지 46 중량%일 수 있다. The content of Fe, the oxidation number 2, may be 40 to 46% by weight based on the total content of Fe.
상기 금속유기골격체 기반 수전해 촉매는 도핑된 질소를 더 포함할 수 있다. 상기 도핑된 질소 중 적어도 일부는 상기 이온 교환 반응으로 생성된 CN -에서 유래한 질소일 수 있다. 보다 상세하게는 [Co(CN) 6] 3-이온과 S 2-이온의 이온 교환 반응에 의해 CN -이 생성될 수 있고, 생성된 CN -는 Ni 3[Fe(CN) 6] 2에 의해 CNO -로 산화될 수 있고, 상기 CNO -는 더 분해되어 NH 3이 생성될 수 있다. 상기 NH 3는 금속유기골격체에 도핑될 수 있다. 즉 도핑된 질소가 금속유기골격체 기반 수전해 촉매에 포함되기 위해서는 Ni 3[Fe(CN) 6] 2 및 Ni 3[Co(CN) 6] 2이 모두 함유된 PBA를 S 2-와 이온 교환 반응 시켜야 한다. 상기 도핑된 질소는 이온 교환 반응한 [Co(CN) 6] 3-이온의 CN 중에서 70 내지 90%, 75 내지 90%, 80 내지 90%, 85 내지 90%, 70 내지 85%, 75 내지 85%, 또는 80 내지 85%,일 수 있고, 바람직하게는 83내지 90%, 또는 84 내지 89%일 수 있다. The metal-organic framework-based water electrolytic catalyst may further include doped nitrogen. At least some of the doped nitrogen may be nitrogen derived from CN - produced by the ion exchange reaction. More specifically, [Co (CN) 6 ] CN - can be generated by ion exchange reaction of 3- ions and S 2- ions, and the generated CN - is by Ni 3 [Fe (CN) 6 ] 2 CNO - can be oxidized to the CNO - may be the NH 3 produced is further decomposed. The NH 3 may be doped into a metal organic skeleton. That is, in order for the doped nitrogen to be included in the metal organic skeleton-based water electrolytic catalyst, Ni 3 [Fe (CN) 6 ] 2 And Ni 3 [Co (CN) 6 ] 2 , all of which contain PBA to be subjected to ion exchange reaction with S 2 . The doped nitrogen is 70 to 90%, 75 to 90%, 80 to 90%, 85 to 90%, 70 to 85%, 75 to 85 in CN of [Co (CN) 6 ] 3- ions reacted with ion exchange %, Or 80 to 85%, preferably 83 to 90%, or 84 to 89%.
상기 도핑된 질소 중 적어도 일부는 피리딘성 질소일 수 있다. 상기 피리딘성 질소는 흑연층과 같은 구조에서 6개의 탄소가 결합된 고리형 구조에서 질소가 탄소와 탄소의 결합 중에 도핑이 되어 형성된 탄소-질소-탄소의 결합에서 상기 탄소-질소-탄소의 결합의 질소 원자가 노출된 것을 말한다. At least some of the doped nitrogen may be pyridine nitrogen. The pyridine nitrogen is formed from a carbon-nitrogen-carbon bond formed by nitrogen doping during a carbon-carbon bond in a cyclic structure in which six carbons are bonded in a structure such as a graphite layer. Refers to the nitrogen atom exposure.
상기 도핑된 질소를 포함하는 금속유기골격체 기반 수전해 촉매는 적어도 일부에 시아노기로부터 유래한 탄소구조(graphite carbon network structure)를 포함할 수 있다. 상기 피리딘성 질소는 상기 탄소구조에 위치할 수 있다. 상기 탄소구조는 일부에 흑연층을 포함할 수 있다. The metal-organic framework-based water electrolytic catalyst containing doped nitrogen may include a graphitic carbon network structure derived from a cyano group at least in part. The pyridine nitrogen may be located in the carbon structure. The carbon structure may include a graphite layer in part.
상기 도핑된 질소는 전기전도도를 향상시키고 HER 및 OER 촉매의 반응성을 증가시킨다. 상기 도핑된 질소는 밴드갭을 감소시켜 전류가 더욱 쉽게 흐르도록 할 수 있고, HER에서의 과전압을 감소시킬 수 있다. The doped nitrogen improves electrical conductivity and increases the reactivity of HER and OER catalysts. The doped nitrogen can reduce the bandgap so that the current flows more easily and the overvoltage in the HER can be reduced.
상기 금속유기골격체 기반 수전해 촉매는 시아노기로부터 유래한 탄소구조가 포함될 수 있고, 상기 탄소구조에는 시아노기로부터 도핑된 질소가 포함될 수 있다. 상기 시아노기는 [Co(CN) 6] 3-이온과 S 2-이온의 이온 교환 반응에 의해 생성된 시아노기일 수 있다. The metal-organic framework-based water electrolysis catalyst may include a carbon structure derived from a cyano group, and the carbon structure may include nitrogen doped from the cyano group. The cyano group may be a cyano group produced by an ion exchange reaction of [Co (CN) 6 ] 3- ions and S 2- ions.
상기 금속유기골격체 기반 수전해 촉매는 비표면적(BET)이 30 내지 60 m 2 ·g -1, 40 내지 60 m 2 ·g -1, 45 내지 60 m 2 ·g -1, 30 내지 55 m 2 ·g -1, 40 내지 55 m 2 ·g -1, 또는 45 내지 55 m g -1일 수 있고, 바람직하게는 47 내지 53 m g -1일 수 있다. The metal-organic framework-based water electrolytic catalyst has a specific surface area (BET) of 30 to 60 m 2 · g -1 , 40 to 60 m 2 · g -1 , 45 to 60 m 2 · g -1 , 30 to 55 m 2 · g -1 , 40 to 55 m 2 · g -1 , or 45 to 55 m 2 · g -1 , and preferably 47 to 53 m 2 · g -1 .
상기 금속유기골격체 기반 수전해 촉매는 공극을 포함할 수 있다. The metal-organic skeleton-based water electrolytic catalyst may include pores.
상기 공극 중 적어도 일부는 메소세공(mesopore)일 수 있다. At least some of the pores may be mesopores.
IUPAC의 권장에 따르면 2nm 내지 50nm의 직경을 갖는 공극을 메소세공이라 지칭하고, 2nm 이하의 직경을 갖는 공극을 마이크로세공(Micropore)이라 지칭한다. 본 명세서에서 사용되는 용어 "메소세공" 및 "마이크로세공"은 상기 IUPAC의 권장사항에 따른 공극을 의미하며, 상기 메소세공은 2nm 내지 50nm의 직경을 갖는 공극을 의미한다. According to the recommendation of IUPAC, pores having a diameter of 2 nm to 50 nm are referred to as mesopores, and pores having a diameter of 2 nm or less are referred to as micropore. As used herein, the terms "mesopores" and "micropores" mean pores according to the recommendations of the IUPAC, and the mesopores mean pores with a diameter of 2 nm to 50 nm.
상기 금속유기골격체 기반 수전해 촉매는 N 2 흡착 및 탈착 등온선을 분석하면 일정 압력 범위에서 히스테리시스 루프를 나타내는 것일 수 있다. 상기 히스테리시스 루프가 나타나는 압력 범위는 0.5 내지 1.1, 0.6 내지 1.1, 0.7 내지 1.1, 0.8 내지 1.1, 0.5 내지 1.0, 0.6 내지 1.0, 0.7 내지 1.0, 0.8 내지 1.0, 0.5 내지 0.9, 0.6 내지 0.9, 0.7 내지 0.9, 0.5 내지 0.8, 0.6 내지 0.8일 수 있고, 바람직하게는 0.5 내지 1.0, 0.6 내지 1.0, 0.6 내지 1.1 일 수 있고, 보다 바람직하게는 0.6 내지 1.0 일 수 있다. 상기 압력범위에서 히스테리시스 루프를 나타내면 메소세공을 포함하고 있는 것을 알 수 있다. The metal organic skeleton-based water electrolytic catalyst may exhibit hysteresis loops in a certain pressure range by analyzing the N 2 adsorption and desorption isotherms. The pressure range in which the hysteresis loop appears is 0.5 to 1.1, 0.6 to 1.1, 0.7 to 1.1, 0.8 to 1.1, 0.5 to 1.0, 0.6 to 1.0, 0.7 to 1.0, 0.8 to 1.0, 0.5 to 0.9, 0.6 to 0.9, 0.7 to It may be 0.9, 0.5 to 0.8, 0.6 to 0.8, preferably 0.5 to 1.0, 0.6 to 1.0, 0.6 to 1.1, and more preferably 0.6 to 1.0. If the hysteresis loop is shown in the above pressure range, it can be seen that it contains mesopores.
상기 공극 중 적어도 일부는 [Co(CN) 6] 3-이온과 S 2-이온의 이온 교환 반응으로 생성되는 공극일 수 있다. At least some of the pores may be pores generated by an ion exchange reaction of [Co (CN) 6 ] 3- ions and S 2- ions.
상기 공극의 부피는 0.15 내지 0.35 cc·g -1, 0.20 내지 0.35 cc·g -1,0.25 내지 0.35 cc·g -1, 0.15 내지 0.32 cc·g -1, 0.20 내지 0.32 cc·g -1, 0.25 내지 0.32 cc·g -1, 0.15 내지 0.30 cc·g -1, 0.20 내지 0.30 cc·g -1, 0.25 내지 0.30 cc·g -1일 수 있다. 상기 공극의 부피는 BJH(Barrett-Joyner-Halenda) 방법으로 그램 당 공극의 부피를 분석한 것이다. The volume of the pores is 0.15 to 0.35 cc · g -1 , 0.20 to 0.35 cc · g -1 , 0.25 to 0.35 cc · g -1 , 0.15 to 0.32 cc · g -1 , 0.20 to 0.32 cc · g -1 , It may be 0.25 to 0.32 cc · g -1 , 0.15 to 0.30 cc · g -1 , 0.20 to 0.30 cc · g -1 , 0.25 to 0.30 cc · g -1 . The volume of the pores is an analysis of the volume of the pores per gram by the Barrett-Joyner-Halenda (BJH) method.
상기 산화수 2인 Fe, 산화수 3인 Fe, 산화수 2인 Co, 및 산화수 3인 Co의 최외각전자수의 합이 5.3 내지 5.6, 5.4 내지 5.6, 5.3 내지 5.5, 5.4 내지 5.5, 5.3 내지 5.5, 또는 5.4 내지 5.5 일 수 있다. 상기 최외각전자수의 합을 구하는 방법은 통상기술자에게 잘 알려져 있으며, 하기 실험예 9에도 방법이 기재되어 있다. 상기 최외각전자수의 합이 낮을수록 산소 중간체의 흡착 에너지가 작아지므로 OER에 대한 과전압이 낮아진다. 하기 실시예 9를 참조하면 상기 최외각전자수가 5.49일 때 OER에서 가장 뛰어나다고 알려진 촉매인 Ir/C 촉매보다 20mV 낮은 과전압을 나타내었다. The sum of the number of outermost electrons of Fe of 2 oxidation number, Fe of 3 oxidation number, Co of 2 oxidation number, and Co of 3 oxidation number is 5.3 to 5.6, 5.4 to 5.6, 5.3 to 5.5, 5.4 to 5.5, 5.3 to 5.5, or 5.4 to 5.5. The method of obtaining the sum of the number of outermost electrons is well known to a person skilled in the art, and the method is also described in Experimental Example 9 below. The lower the sum of the number of outermost electrons, the smaller the adsorption energy of the oxygen intermediate, so that the overvoltage to the OER decreases. Referring to Example 9 below, when the number of outermost electrons was 5.49, an overvoltage of 20 mV lower than that of the Ir / C catalyst, which is a catalyst known to be the best in OER, was exhibited.
상기 NiS의 S와 결합된 Ni은 전체 Ni기준으로 1 내지 10%, 2 내지 10%, 3 내지 10%, 4 내지 10%, 5 내지 10%, 6 내지 10%, 7 내지 10%, 8 내지 10%, 9 내지 10%, 1 내지 9%, 2 내지 9%, 3 내지 9%, 4 내지 9%, 5 내지 9%, 6 내지 9%, 7 내지 9%, 8 내지 9%, 1 내지 8%, 2 내지 8%, 3 내지 8%, 4 내지 8%, 5 내지 8%, 6 내지 8%, 7 내지 8%, 1 내지 7%, 2 내지 7%, 3 내지 7%, 4 내지 7%, 5 내지 7%, 6 내지 7%, 1 내지 6%, 2 내지 6%, 3 내지 6%, 4 내지 6%, 또는 5 내지 6% 를 포함할 수 있고, 바람직하게는 3 내지 7% 를 포함할 수 있고, 보다 바람직하게는 4 내지 6% 를 포함할 수 있다.Ni combined with S of the NiS is 1 to 10%, 2 to 10%, 3 to 10%, 4 to 10%, 5 to 10%, 6 to 10%, 7 to 10%, 8 to 10 based on total Ni 10%, 9-10%, 1-9%, 2-9%, 3-9%, 4-9%, 5-9%, 6-9%, 7-9%, 8-9%, 1- 8%, 2-8%, 3-8%, 4-8%, 5-8%, 6-8%, 7-8%, 1-7%, 2-7%, 3-7%, 4-8 7%, 5-7%, 6-7%, 1-6%, 2-6%, 3-6%, 4-6%, or 5-6%, preferably 3-7 %, And more preferably 4 to 6%.
상기 NiS는 적어도 일부는 비정질(Amorphous)일 수 있다. 상기 비정질 NiS는 XRD 패턴 분석에서 특징적인 NiS 패턴이 나타나지 않는 것으로 확인될 수 있다. The NiS may be at least partially amorphous. It can be confirmed that the amorphous NiS does not exhibit a characteristic NiS pattern in XRD pattern analysis.
상기 NiS는 [Co(CN) 6] 3- 이온과 S 2-이온이 이온교환 반응하여 형성된 것일 수 있다. 상기 NiS의 비율은 프러시안 블루 유사체의 Co의 비율에서 이온 교환 반응 후 금속 유기 구조체의 Co의 비율의 감소분보다 작은 것일 수 있다. The NiS may be formed by ion exchange reaction of [Co (CN) 6 ] 3- ions and S 2- ions. The ratio of NiS may be smaller than the decrease in the ratio of Co of the metal organic structure after the ion exchange reaction in the ratio of Co of the Prussian blue analog.
상기 금속유기골격체 기반 수전해 촉매는 XRD 측정에 있어서 (200)면, (220)면, (400)면, (420)면, (422)면, (440)면, (600)면, (620)면의 피크가 관찰되는 것일 수 있다. 보다 상세하게는 상기 금속유기골격체 기반 수전해 촉매는 XRD 측정에 있어서 상기 (200)면 피크는 2θ 12.5˚ 내지 14.5˚, 상기 (220)면 피크는 2θ 23.5˚ 내지 25.5˚, 상기 (400)면 피크는 2θ 34˚ 내지 36˚, 상기 (420)면 피크는 2θ 38˚ 내지 40˚, 상기 (422)면 피크는 2θ 42˚ 내지 44˚, 상기 (440)면 피크는 2θ 49.5˚ 내지 51.5˚, 상기 (600) 면 피크는 2θ 53˚ 내지 55˚, 상기 (620)면 피크는 2θ 55 내지 57˚에서 관찰되는 것일 수 있다. 상기 (200)면 피크는 (220)면 피크보다 강도가 클 수 있다. 상기 (400)면 피크는 (420)면 피크보다 강도가 클 수 있다. 상기 (400)면 피크는 (422)면 피크보다 강도가 클 수 있다. 상기 피크는 JCPDS card No. 89-3738과 유사한 것일 수 있다. The metal organic skeleton-based water electrolytic catalyst is (200) plane, (220) plane, (400) plane, (420) plane, (422) plane, (440) plane, (600) plane, (XRD) 620) The peak of the surface may be observed. More specifically, the metal-organic framework-based water electrolytic catalyst has a peak of 2θ from 12.5 ° to 14.5 ° in the (200) plane, a peak of 2θ to 23.5 ° to 25.5 ° in the (220) plane, and 400 in the XRD measurement. The surface peak is 2θ 34˚ to 36˚, the (420) plane peak is 2θ 38˚ to 40˚, the (422) plane peak is 2θ 42˚ to 44˚, and the (440) plane peak is 2θ 49.5˚ to 51.5 ˚, the (600) plane peak may be observed at 2θ 53˚ to 55˚, and the (620) plane peak at 55 to 57˚. The (200) plane peak may have a greater intensity than the (220) plane peak. The (400) plane peak may have a greater intensity than the (420) plane peak. The (400) plane peak may have a greater intensity than the (422) plane peak. The peak is JCPDS card No. It may be similar to 89-3738.
상기 금속유기골격체 기반 수전해 촉매의 전구체는 XRD 측정에 있어서 (200)면, (220)면, (400)면, (420)면, (422)면, (440)면, (600)면, (620)면의 피크가 관찰되는 것일 수 있다. 상세하게는 상기 금속유기골격체 기반 수전해 촉매의 전구체는 XRD 측정에 있어서 상기 (200)면 피크는 2θ 12.5˚ 내지 14.5˚, 상기 (220)면 피크는 2θ 23.5˚ 내지 25.5˚, 상기 (400)면 피크는 2θ 34˚ 내지 36˚, 상기 (420)면 피크는 2θ 38˚ 내지 40˚, 상기 (422)면 피크는 2θ 42˚ 내지 44˚, 상기 (440)면 피크는 2θ 49.5˚ 내지 51.5˚, 상기 (600) 면 피크는 2θ 53˚ 내지 55˚, 상기 (620)면 피크는 2θ 55 내지 57˚에서 관찰되는 것일 수 있다. The precursor of the metal-organic framework-based water electrolysis catalyst is (200) plane, (220) plane, (400) plane, (420) plane, (422) plane, (440) plane, (600) plane in XRD measurement. , The peak of the (620) plane may be observed. Specifically, the precursor of the metal-organic framework-based water electrolytic catalyst is XRD measurement in the (200) plane peak is 2θ 12.5˚ to 14.5˚, the (220) plane peak is 2θ 23.5˚ to 25.5˚, the (400) ) The plane peak is 2θ 34˚ to 36˚, the (420) plane peak is 2θ 38˚ to 40˚, the (422) plane peak is 2θ 42˚ to 44˚, and the (440) plane peak is 2θ 49.5˚ to 51.5˚, the (600) plane peak may be observed at 2θ 53˚ to 55˚, and the (620) plane peak at 55 to 57˚.
상기 금속유기골격체 기반 수전해 촉매의 XRD 측정에서 관찰되는 피크는 상기 금속유기골격체 기반 수전해 촉매의 전구체의 XRD 측정에서 관찰되는 피크와 동일한 피크가 관찰될 수 있다. The peak observed in the XRD measurement of the metal-organic framework-based water electrolytic catalyst may be the same peak observed in the XRD measurement of the precursor of the metal-organic framework-based water electrolysis catalyst.
본 발명의 다른 측면은 상기 금속유기골격체 기반 수전해 촉매를 포함하는 촉매 잉크를 제공한다. 상기 촉매 잉크는 금속유기골격체 기반 수전해 촉매를 용액에 혼합하여 제조할 수 있다. 상기 용액은 Nafion 용액일 수 있다. 상기 용액은 Vulcan Carbon을 더 포함할 수 있다. 촉매 잉크는 Nafion 용액을 용매로 사용하고 금속유기골격체 기반 수전해 촉매 1 내지 3 mg/ml, 또는 1.5 내지 2. 5 mg/ml만큼 포함하고, Vulcan Carbon(XC-72, VC) 1 내지 3mg/ml 또는 1.5 내지 2.5 mg/ml만큼 포함하여 제조할 수 있다. 상기 촉매 잉크는 금속유기골격체 기반 수전해 촉매를 용해시키고 40 내지 70분, 50 내지 70분, 또는 55 내지 65분 동안 초음파 처리하여 균일한 현탁액으로 제조할 수 있다.Another aspect of the present invention provides a catalyst ink comprising the metal-organic framework-based water electrolytic catalyst. The catalyst ink may be prepared by mixing a metal organic skeleton-based water electrolytic catalyst with a solution. The solution may be a Nafion solution. The solution may further include Vulcan Carbon. The catalyst ink uses Nafion solution as a solvent and contains 1 to 3 mg / ml, or 1.5 to 2. 5 mg / ml of a metal organic skeleton based water electrolytic catalyst, and 1 to 3 mg of Vulcan Carbon (XC-72, VC) / ml or 1.5 to 2.5 mg / ml. The catalyst ink may be prepared as a uniform suspension by dissolving a metal-organic framework-based water electrolytic catalyst and sonicating for 40 to 70 minutes, 50 to 70 minutes, or 55 to 65 minutes.
본 발명의 다른 측면은 상기 금속유기골격체 기반 수전해 촉매를 포함하는 수전해용 니켈 폼 전극(Nickel Foam Electrode, 이하 NFE로 지칭될 수 있다.)을 제공한다. 상기 수전해용 니켈 폼 전극은 상기 금속유기골격체 기반 수전해 촉매를 용액에 혼합하고 NFE에 드롭 캐스팅시켜 제조할 수 있다. 상기 용액은 Nafion 용액일 수 있다. 상기 용액은 Vulcan Carbon을 더 포함할 수 있다. Another aspect of the present invention provides a nickel foam electrode (Nickel Foam Electrode, hereinafter referred to as NFE) for the water electrolysis comprising the metal-organic framework-based water electrolysis catalyst. The nickel-electrode for water electrolysis can be prepared by mixing the metal-organic framework-based water electrolysis catalyst in a solution and drop casting it into NFE. The solution may be a Nafion solution. The solution may further include Vulcan Carbon.
본 발명의 또 다른 측면에 따른 금속유기골격체 기반 수전해촉매 제조방법은 Ni 3[Fe XCo 1-X(CN) 6] 2-의 화학식으로 표현되고 상기 X는 0.1 내지 0.9 인 프러시안 블루 유사체(PBA)를 준비하는 단계, 상기 프러시안 블루 유사체의 [Co(CN) 6] 3- 착이온과 S 2- 이온을 이온 교환 반응시키는 단계, 상기 이온 교환 반응시킨 중간생성물을 세척하고 건조하는 단계, 상기 건조시킨 중간생성물을 분쇄하는 단계 및 상기 분쇄한 중간생성물을 열처리하는 단계를 포함한다. Method for producing a metal-organic framework-based electrolytic catalyst according to another aspect of the present invention is represented by the formula of Ni 3 [Fe X Co 1-X (CN) 6 ] 2- and X is 0.1 to 0.9 Prussian Blue Preparing an analog (PBA), [Co (CN) 6 ] of the Prussian blue analog is ion-exchanged with 3 - ion ions and S 2- ions, and the intermediate product washed with the ion-exchange reaction is washed and dried. Step, crushing the dried intermediate product and heat-treating the crushed intermediate product.
상기 X는 0.1 내지 0.9, 0.2 내지 0.9, 0.3 내지 0.9, 0.4 내지 0.9, 0.5 내지 0.9, 0.1 내지 0.8, 0.2 내지 0.8, 0.3 내지 0.8, 0.4 내지 0.8, 0.5 내지 0.8, 0.1 내지 0.7, 0.2 내지 0.7, 0.3 내지 0.7, 0.4 내지 0.7, 0.5 내지 0.7, 0.1 내지 0.6, 0.2 내지 0.6, 0.3 내지 0.6, 0.4 내지 0.6, 0.5 내지 0.6, 0.1 내지 0.5, 0.2 내지 0.5, 0.3 내지 0.5, 0.4 내지 0.5일 수 있고, 바람직하게는 0.3 내지 0.7일 수 있고, 보다 바람직하게는 0.4 내지 0.6일 수 있다. The X is 0.1 to 0.9, 0.2 to 0.9, 0.3 to 0.9, 0.4 to 0.9, 0.5 to 0.9, 0.1 to 0.8, 0.2 to 0.8, 0.3 to 0.8, 0.4 to 0.8, 0.5 to 0.8, 0.1 to 0.7, 0.2 to 0.7 , 0.3 to 0.7, 0.4 to 0.7, 0.5 to 0.7, 0.1 to 0.6, 0.2 to 0.6, 0.3 to 0.6, 0.4 to 0.6, 0.5 to 0.6, 0.1 to 0.5, 0.2 to 0.5, 0.3 to 0.5, 0.4 to 0.5 And preferably 0.3 to 0.7, and more preferably 0.4 to 0.6.
상기 X를 증가시키면 금속유기골격체 기반 수전해촉매의 공극률이 감소할 수 있고, 상기 X를 감소시키면 금속유기골격체 기반 수전해촉매의 공극률이 증가할 수 있다. When the X is increased, the porosity of the metal-organic framework-based water electrolytic catalyst may decrease, and when the X is decreased, the porosity of the metal-organic framework-based water electrolytic catalyst may increase.
상기 X를 증가시키면 금속유기골격체 기반 수전해촉매의 밀도가 증가할 수 있고, 상기 X를 감소시키면 금속유기골격체 기반 수전해촉매의 밀도가 감수하는 것일 수 있다. Increasing the X may increase the density of the metal-organic framework-based water electrolytic catalyst, and decreasing the X may decrease the density of the metal-organic framework-based water electrolytic catalyst.
상기 프러시안 블루 유사체(PBA)를 준비하는 단계는, 질산 니켈 및 시르트산 나트륨을 물에 용해시켜 제 1 용액을 제조하는 단계, 칼륨 헥사시아노페레이트(III)를 상기 X 비율로, 칼륨 헥사시아노코발테이트(III)을 상기 1-X 비율로 물에 용해시켜 제 2 용액을 제조하는 단계, 상기 제 1 용액 및 제 2 용액을 혼합시켜 제 3 용액을 제조하는 단계 및 상기 제 3 용액을 공침시켜 프러시안 블루 유사체(PBA)를 얻는 단계를 포함할 수 있다. The step of preparing the Prussian blue analog (PBA) comprises dissolving nickel nitrate and sodium citrate in water to prepare a first solution, potassium hexacyanoferate (III) in the above X ratio, potassium hexa Preparing a second solution by dissolving cyanocobalt (III) in water at the 1-X ratio, preparing a third solution by mixing the first solution and the second solution, and the third solution. And coprecipitation to obtain a Prussian Blue Analog (PBA).
상기 물은 이온이 거의 존재하지 않는 초순수 물일 수 있으며, 상세하게는 3차수이고, 보다 상세하게는 Mili-Q water일 수 있다. The water may be ultrapure water in which almost no ions are present, and in detail, it may be tertiary water, and more specifically, Mili-Q water.
금속유기골격체의 결정 성장 속도는 핵형성 속도에 비해 상대적으로 빠른 것으로 알려져 있다. 따라서 크기가 작고 고른 PBA를 얻기 위해서는 결정 성장 속도 억제제가 필요하다. 상기 시트르산 나트륨의 시트르산 이온은 결정 성장을 억제시켜 공침과정에서 지나치게 큰 입자를 생성하는 것을 방지한다. It is known that the rate of crystal growth of a metal-organic framework is relatively fast compared to the rate of nucleation. Therefore, a crystal growth rate inhibitor is required to obtain a small and even PBA. The citrate ion of the sodium citrate inhibits crystal growth and prevents formation of excessively large particles during the coprecipitation process.
상기 이온 교환 반응은 상기 프러시안 블루 유사체와 Na 2S를 혼합하는 단계 및 상기 혼합물을 수열 반응하는 것일 수 있다. 상기 수열반응은 고온, 고압 조건하에서 물 또는 수용액에서 물질을 합성하는 것일 수 있다. 수열반응은 상기 PBA를 물에 고르게 분산시키고 승온, 승압하여 결정성을 높일 수 있다. 상기 수열반응은 80 내지 100℃, 85 내지 100℃, 90 내지 100℃, 또는 95 내지 100℃의 온도조건일 수 있다. 상기 수열반응의 시간은 4 내지 8시간, 5 내지 7시간, 또는 5시간반 내지 6시간반일 수 있다. The ion exchange reaction may be a step of mixing the Prussian blue analog with Na 2 S and subjecting the mixture to a hydrothermal reaction. The hydrothermal reaction may be to synthesize a substance in water or an aqueous solution under high temperature and high pressure conditions. The hydrothermal reaction can increase the crystallinity by dispersing the PBA evenly in water and raising and raising the pressure. The hydrothermal reaction may be a temperature condition of 80 to 100 ℃, 85 to 100 ℃, 90 to 100 ℃, or 95 to 100 ℃. The time of the hydrothermal reaction may be 4 to 8 hours, 5 to 7 hours, or 5 and a half hours to 6 and a half hours.
상기 열처리 단계는 Ar 분위기에서 열처리하는 것일 수 있고, 온도 조건은 250 내지 350℃, 260 내지 350℃, 270 내지 350℃, 280 내지 350℃, 290 내지 350℃, 250 내지 340℃, 260 내지 340℃, 270 내지 340℃, 280 내지 340℃, 290 내지 340℃, 250 내지 330℃, 260 내지 330℃, 270 내지 330℃, 280 내지 330℃, 290 내지 330℃, 250 내지 320℃, 260 내지 320℃, 270 내지 320℃, 280 내지 320℃, 290 내지 320℃, 250 내지 310℃, 260 내지 310℃, 270 내지 310℃, 280 내지 310℃, 290 내지 310℃일 수 있고, 열처리 시간은 120분 내지 240분, 140분 내지 240분, 160분 내지 240분, 120분 내지 220분, 140분 내지 220분, 160분 내지 220분, 120분 내지 200분, 140분 내지 200분, 또는 160분 내지 200분일 수 있다. 상기 열처리 단계는 수열반응 후 얻은 중간생성물을 고결정화 시킬 수 있다. The heat treatment step may be a heat treatment in an Ar atmosphere, the temperature conditions are 250 to 350 ℃, 260 to 350 ℃, 270 to 350 ℃, 280 to 350 ℃, 290 to 350 ℃, 250 to 340 ℃, 260 to 340 ℃ , 270 to 340 ° C, 280 to 340 ° C, 290 to 340 ° C, 250 to 330 ° C, 260 to 330 ° C, 270 to 330 ° C, 280 to 330 ° C, 290 to 330 ° C, 250 to 320 ° C, 260 to 320 ° C , 270 to 320 ° C, 280 to 320 ° C, 290 to 320 ° C, 250 to 310 ° C, 260 to 310 ° C, 270 to 310 ° C, 280 to 310 ° C, 290 to 310 ° C, and heat treatment time from 120 minutes to 240 minutes, 140 minutes to 240 minutes, 160 minutes to 240 minutes, 120 minutes to 220 minutes, 140 minutes to 220 minutes, 160 minutes to 220 minutes, 120 minutes to 200 minutes, 140 minutes to 200 minutes, or 160 minutes to 200 minutes It can be minutes. In the heat treatment step, the intermediate product obtained after the hydrothermal reaction may be highly crystallized.
상기 금속유기골격체 기반 수전해촉매 제조방법은 열처리하는 단계 후 50 내지 90℃, 10 내지 14시간 2차 건조시키는 단계를 더 포함할 수 있다. 상기 2차 건조의 온도 조건은 50 내지 90℃, 60 내지 90℃, 50 내지 80℃, 60 내지 90℃일 수 있고, 바람직하게는 65 내지 75℃일 수 있고, 건조 시간은 10 내지 14 시간, 11 내지 14시간, 10 내지 13시간일 수 있고, 바람직하게는 11 내지 13시간일 수 있다. The method for manufacturing a metal-organic framework-based water electrolytic catalyst may further include a second drying step of 50 to 90 ° C. for 10 to 14 hours after the heat treatment. The temperature conditions of the secondary drying may be 50 to 90 ° C, 60 to 90 ° C, 50 to 80 ° C, 60 to 90 ° C, preferably 65 to 75 ° C, and the drying time is 10 to 14 hours, It may be 11 to 14 hours, 10 to 13 hours, and preferably 11 to 13 hours.
상기 2차 건조시키는 단계는 진공 조건일 수 있고, 예를 들면 진공 오븐을 이용하여 건조시킬 수 있다. The second drying step may be a vacuum condition, for example, it may be dried using a vacuum oven.
이하 본 발명의 실시 예를 통하여 보다 자세히 설명한다. 그러나 이들 실시 예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명이 하기 실시 예로 한정되는 것은 아니다. Hereinafter will be described in more detail through an embodiment of the present invention. However, these examples are for illustrative purposes only, and the present invention is not limited to the following examples.
이하 본 발명의 실시 예, 제조 예 및 실험 예에서 금속유기구조체는 MOF로 지칭될 수 있다. 본 발명의 실시 예에 따른 금속유기구조체(MOF)는 그 자체로써 수전해 촉매의 기능을 가진다. 그러므로 본 명세서에서 금속유기구조체 기반 수전해 촉매는 금속유기구조체로 지칭될 수 있다. Hereinafter, in the examples of the present invention, manufacturing examples, and experimental examples, the metal organic structure may be referred to as MOF. The metal organic structure (MOF) according to an embodiment of the present invention has a function of a water electrolytic catalyst itself. Therefore, in this specification, the metal organic structure-based water electrolytic catalyst may be referred to as a metal organic structure.
<제조예: 프러시안 블루 유사체(PBA) 합성><Production Example: Prussian blue analog (PBA) synthesis>
프러시안 블루 유사체(Prussian Blue Analog, PBA)는 금속유기골격체 합성에 사용된다.Prussian Blue Analog (PBA) is used to synthesize metal-organic frameworks.
NC-PBANC-PBA
Ni, Co를 함유한 프러시안 블루 유사체(이하 NC-PBA로 지칭될 수 있다.)는 Ni 3[Co(CN) 6] 2의 화학식으로 표현될 수 있다. 상기 NC-PBA는 하기 Ni,Co를 함유한 금속유기골격체를 합성하기 위한 전구체로 사용된다. The Prussian blue analog containing Ni, Co (hereinafter referred to as NC-PBA) may be represented by the formula of Ni 3 [Co (CN) 6 ] 2 . The NC-PBA is used as a precursor for synthesizing a metal organic skeleton containing Ni and Co.
상기 NC-PBA의 결정구조의 예는 도 1의 A에 도시되어 있다. 상기 NC-PBA의 외형은 도 2의 A, B에 도시되어 있다. An example of the crystal structure of the NC-PBA is shown in Fig. 1A. The appearance of the NC-PBA is shown in A and B of FIG. 2.
NF-PBANF-PBA
Ni, Fe를 함유한 프러시안 블루 유사체(이하 NF-PBA로 지칭될 수 있다.)는 Ni 3[Fe(CN) 6] 2의 화학식으로 표현될 수 있다. 상기 NF-PBA는 하기 Ni, Fe를 함유한 금속유기골격체를 합성하기 위한 전구체로 사용된다. 상기 NF-PBA의 결정구조의 예는 도 1의 B에 도시되어 있다. 상기 NF-PBA의 외형은 도 2의 C, D에 도시되어 있다.Prussian blue analogs containing Ni and Fe (hereinafter referred to as NF-PBA) may be represented by the formula Ni 3 [Fe (CN) 6 ] 2 . The NF-PBA is used as a precursor for synthesizing a metal-organic framework containing Ni and Fe. An example of the crystal structure of the NF-PBA is shown in Fig. 1B. The appearance of the NF-PBA is shown in FIGS. 2C and D.
NCF-PBANCF-PBA
Ni, Co, Fe를 함유한 프러시안 블루 유사체(이하 NCF-PBA로 지칭될 수 있다.)는 Ni 3[Fe xCo 1-x(CN) 6] 2의 화학식으로 표현될 수 있다. 상기 NCF-PBA는 하기 Ni, Co, Fe를 함유한 금속유기골격체를 합성하기 위한 전구체로 사용된다. 상기 NCF-PBA의 결정 구조의 예는 도 1의 C에 도시되어 있다. 상기 NCF-PBA의 외형은 도 2의 E, F에 도시되어 있다.Prussian blue analogs containing Ni, Co, Fe (hereinafter referred to as NCF-PBA) may be represented by the formula of Ni 3 [Fe x Co 1-x (CN) 6 ] 2 . The NCF-PBA is used as a precursor for synthesizing a metal-organic framework containing Ni, Co, and Fe. An example of the crystal structure of the NCF-PBA is shown in FIG. 1C. The appearance of the NCF-PBA is shown in E and F of FIG. 2.
제조예 1: NCF-PBA 합성Preparation Example 1: NCF-PBA synthesis
1) 제 1 용액 제조: 질산 니켈(Nickel Nitrate) 0.6nmol 및 시트르산 나트륨(sodium citrate) 0.9mmol을 Mili-Q water 20ml에 용해시켜 제 1 용액을 제조하였다. 1) First solution preparation: A first solution was prepared by dissolving 0.6 nmol of Nickel Nitrate and 0.9 mmol of sodium citrate in 20 ml of Mili-Q water.
2) 제 2 용액 제조: 칼륨 헥사시아노 페레이트(III) (potassium hexacyanoferrate(III)) 0.2mmol 및 칼륨 헥사시아노 코발트산염(III)(potassium hexacyano cobaltate(III)) 0.2mmol을 Mili-Q 물 20ml에 용해시켜 제 2 용액을 제조하였다. 2) Preparation of the second solution: 0.2 mmol of potassium hexacyano ferrate (III) (potassium hexacyanoferrate (III)) and 0.2 mmol of potassium hexacyano cobaltate (III) (potassium hexacyano cobaltate (III)) with Mili-Q water A second solution was prepared by dissolving in 20 ml.
3) 제 3 용액 제조: 상기 제 1 용액 및 제 2 용액을 혼합하여 제 3 용액을 제조하였다. 3) Third solution preparation: A third solution was prepared by mixing the first solution and the second solution.
4) 공침: 상온에서 300rpm으로 12시간 교반시켜 공침시켜 NF-PBA를 얻었다. 4) Coprecipitation: Stirred at 300 rpm at room temperature for 12 hours to coprecipitate to obtain NF-PBA.
제조예 2: NC-PBA 합성Preparation Example 2: NC-PBA synthesis
상기 제 2 용액은 칼륨 헥사시아노코발트산염(III)(potassium hexacyano cobaltate(III)) 0.4mmol을 Mili-Q 물 20ml에 용해시켜 제 2 용액을 제조하였다. 나머지 1), 3), 4) 단계는 같은 방법으로 하여 NC-PBA를 얻었다. The second solution was prepared by dissolving 0.4 mmol of potassium hexacyanocobaltate (III) (potassium hexacyano cobaltate (III)) in 20 ml of Mili-Q water. The remaining steps 1), 3) and 4) were obtained in the same manner to obtain NC-PBA.
제조예 3: NF-PBA 합성Preparation Example 3: NF-PBA synthesis
상기 제 2 용액은 칼륨 헥사시아노페레이트(III)(potassium hexacyanoferrate(III)) 0.4mmol을 Mili-Q 물 20ml에 용해시켜 제 2 용액을 제조하였다. 나머지 1), 3), 4) 단계는 같은 방법으로 NCF-PBA를 얻었다. The second solution was prepared by dissolving 0.4 mmol of potassium hexacyanoferrate (III) in 20 ml of Mili-Q water. The remaining steps 1), 3), and 4) obtained NCF-PBA in the same manner.
상기 Mili-Q water는 이온이 거의 존재하지 않는 초 순수물을 말한다. 상기 시트르산 이온(citrate ions)은 공침과정에서 지나치게 큰 입자를 생성하는 것을 방지하기 위한 것이다. 상기 4) 단계의 교반은 12시간 동안 이루어졌는데, 이는 작고 균일한 PBA 전구체를 얻기 위한 것이다. 상기 교반 시간은 절대적인 것이 아니며, 다른 조건에 따라 적절한 범위를 가질 수 있다. The Mili-Q water refers to ultra pure water in which almost no ions are present. The citrate ions are intended to prevent the formation of excessively large particles during the coprecipitation process. Stirring in step 4) was carried out for 12 hours, to obtain a small and uniform PBA precursor. The stirring time is not absolute, and may have an appropriate range depending on other conditions.
<실시 예: NCF-MOF 제조> <Example: NCF-MOF production>
상기 프러시안 블루 유사체(PBA)를 전구체로 사용하여 그로부터 금속유기골격체 기반 수전해 촉매를 제조하였다. 금속유기골격체 기반 수전해 촉매는 MOF로 지칭될 수 있다. NC-PBA로부터 제조된 금속유기골격체 기반 수전해 촉매는 NC-MOF로 지칭될 수 있다. NF-PBA로부터 제조된 금속유기골격체 기반 수전해 촉매는 NF-MOF로 지칭될 수 있다. NCF-PBA로부터 제조된 금속유기골격체 기반 수전해 촉매는 NCF-MOF로 지칭될 수 있다.Using the Prussian blue analog (PBA) as a precursor, a metal-organic framework-based water electrolytic catalyst was prepared therefrom. The metal organic skeleton-based water electrolytic catalyst may be referred to as MOF. The metal-organic framework-based water electrolytic catalyst prepared from NC-PBA may be referred to as NC-MOF. The metal-organic framework-based water electrolytic catalyst prepared from NF-PBA may be referred to as NF-MOF. The metal-organic framework based water electrolytic catalyst prepared from NCF-PBA may be referred to as NCF-MOF.
실시 예: NCF-MOF 제조Example: NCF-MOF production
상기 NCF-PBA 전구체 100mg 및 Na 2S 200mg를 100mL의 에탄올에서 혼합하였다. 이온 교환 반응을 위해 수열반응을 하였다. 상기 혼합물을 수열반응(Hydrothermal Reaction)하기 위해 테플론 라이너 스테인레스강 오토 클레이브(Teflon Liner Stainless-Steel Autoclave)로 옮겼다. 상기 오토 클레이브에서 100℃에서 6시간 동안 수열 반응(Hydrothermal Reaction)은 시켜 충분한 이온 교환을 유도하였다. 100 mg of the NCF-PBA precursor and 200 mg of Na 2 S were mixed in 100 mL of ethanol. Hydrothermal reaction was performed for the ion exchange reaction. The mixture was transferred to a Teflon Liner Stainless-Steel Autoclave for hydrothermal reaction. The autoclave was subjected to hydrothermal reaction at 100 ° C. for 6 hours to induce sufficient ion exchange.
상기 수열반응 후 얻은 중간생성물을 물과 에탄올의 혼합 용액으로 세척하고 건조하였다. 상기 건조 후 Agate Motar로 분쇄하여 중간생성물 분말을 만들었다. The intermediate product obtained after the hydrothermal reaction was washed with a mixed solution of water and ethanol and dried. After drying, it was pulverized with Agate Motar to make an intermediate product powder.
상기 분말을 Ar 가스 상에서 300℃에서 3시간 열처리하여 고결정성 MOF(Highly Crystalline Frameworks)를 제조하였다. 상기 열처리는 결정성을 향상시킬 수 있다. The powder was heat-treated at 300 ° C. for 3 hours on Ar gas to prepare highly crystalline Highly Crystalline Frameworks (MOFs). The heat treatment may improve crystallinity.
상기 고결정성 MOF를 분쇄하고 고결정성 MOF를 진공오븐에서 70℃에서 12시간 동안 건조시킴으로써 최종 NCF-MOF를 제조하였다. 상기 건조는 분쇄 과정에서 유입될 수 있는 수분을 제거하기 위한 것이다. The final NCF-MOF was prepared by pulverizing the high-crystalline MOF and drying the high-crystalline MOF in a vacuum oven at 70 ° C. for 12 hours. The drying is to remove moisture that may be introduced in the grinding process.
비교예 1: NC-MOF 제조Comparative Example 1: Preparation of NC-MOF
상기 NC-PBA 전구체를 사용하였으며 나머지 과정은 NCF-MOF 제조와 동일하게 하여 NC-MOFs를 제조하였다.The NC-PBA precursor was used, and the rest of the procedure was the same as that of NCF-MOF preparation to prepare NC-MOFs.
비교예 2: NF-MOF 제조Comparative Example 2: NF-MOF production
상기 NF-PBA 전구체를 사용하였으며 나머지 과정은 NCF-MOF 제조와 동일하게 하여 NF-MOFs를 제조하였다.The NF-PBA precursor was used, and the rest of the procedure was the same as that of NCF-MOF preparation to prepare NF-MOFs.
상기 최종 MOF은 각각 NC-MOF, NF-MOF, 및 NCF-MOF라고 지칭하였다. The final MOF was referred to as NC-MOF, NF-MOF, and NCF-MOF, respectively.
<실험예 1: 평균 크기, 공극의 크기, 외부 형태><Experimental Example 1: Average size, pore size, external form>
금속유기골격체(MOF) 기반 수전해 촉매의 평균 크기, 공극의 크기 및 외부 형태를 SEM으로 관찰하였다. The average size, pore size and external morphology of the metal organic framework (MOF) based electrolytic catalyst were observed by SEM.
상기 금속유기골격체 기반 수전해 촉매의 합성을 위한 전구체로 사용된 프러시안 블루 유사체는 SEM으로 형태를 확인하면 각각의 입자가 정육면체에 가까운 형태를 가진다. 본 명세서에서 상기 SEM으로 관찰될 수 있는 정육면체에 가까운 형태를 나노 큐브 형태라고 지칭할 수 있다. (도 2 참조) 상기 금속유기골격체 각각의 입자가 PBA와 차이가 크게 나지 않는 경우 나노 큐브 형태를 유지한다고 설명될 수 있다. (도 3 참조) The prussian blue analog used as a precursor for the synthesis of the metal-organic framework-based water electrolytic catalyst has a shape close to a cube when the shape is confirmed by SEM. In the present specification, a shape close to a cube that can be observed with the SEM may be referred to as a nanocube shape. (See Fig. 2) It can be explained that the particles of each of the metal-organic frameworks maintain a nano-cube shape when the difference from the PBA is not significantly different. (See Figure 3)
도 3의 A, B에 도시된 NC-MOF의 SEM 사진을 참조하여 설명한다. NC-MOF는 나노 큐브 형태이다. 평균 크기가 400nm이고, 각각의 면에 NF-MOF 및 NCF-MOF보다 큰 공극이 있다. It will be described with reference to SEM pictures of NC-MOF shown in A, B of FIG. 3. NC-MOF is in the form of nano cubes. The average size is 400 nm, and there are pores larger than NF-MOF and NCF-MOF on each side.
도 3의 D, E에 도시된 NF-MOF의 SEM 사진을 참조하여 설명한다. NF-MOF는 평균 크기가 160nm이다. 외부는 PBA 전구체의 형태와 유사한 형태이다. 외부의 공극은 NC-MOF 및 NCF-MOF에 비해서 잘 관찰되지 않았다. It will be described with reference to SEM pictures of NF-MOF shown in D, E of FIG. 3. NF-MOF has an average size of 160 nm. The exterior is similar to that of the PBA precursor. External voids were not observed well compared to NC-MOF and NCF-MOF.
도 3의 G, H에 도시된 NCF-MOF의 SEM 사진을 참조하여 설명한다. NCF-MOF는 평균 크기가 180nm이고, 거친 표면을 가지며, 일반적인 나노 큐브 형태를 유지하였다. NCF-MOF의 거친 표면은 나노 큐브의 외부에 나노 큐브 형태를 유지할 수 있는 정도의 적절한 공극이 존재함을 암시할 수 있다. It will be described with reference to SEM pictures of the NCF-MOF shown in G, H of FIG. 3. NCF-MOF has an average size of 180 nm, has a rough surface, and maintains a general nanocube shape. The rough surface of the NCF-MOF may suggest that there is an adequate void to the extent that the nanocube shape can be maintained outside the nanocube.
MOF의 형태는 PBA에 존재하는 전이금속 중심의 종류에 크게 의존한다는 것을 알 수 있었다. It can be seen that the shape of the MOF is highly dependent on the type of transition metal center present in the PBA.
MOF의 크기는 NC-MOF가 상대적으로 가장 컸다. 이것은 Fe의 부재가 원인인 것으로 생각된다. The size of MOF was relatively largest in NC-MOF. This is thought to be due to the absence of Fe.
MOF의 공극은 NC-MOF가 상대적으로 가장 컸다. 이것은 수열반응 단계에서 일어나는 [Co(CN) - 6] 3 -이온과 S 2-이온의 이온교환 반응의 속도가 NC-MOF에서 상대적으로 빠르기 때문일 수 있다. 상대적으로 빠른 이온교환 반응으로 인해 NC-MOF의 내부에 상대적으로 큰 공극이 형성될 수 있다. 공극이 지나치게 크면 NC-MOF의 specific surface area가 도리어 감소할 수 있고, 노출된 촉매 활성 부위가 감소할 수 있고, NC-MOF의 구조적 내구성을 약화시킬 수 있다. NC-MOF had the largest air gap in MOF. This takes place in the hydrothermal reaction step [Co (CN) - 6] 3 - ions and the speed of the S 2- ion exchange reaction of the ions may be due to a relatively fast in the NC-MOF. Due to the relatively fast ion exchange reaction, relatively large pores may be formed inside the NC-MOF. If the pores are too large, the specific surface area of NC-MOF may decrease, the exposed catalytically active sites may decrease, and the structural durability of NC-MOF may be reduced.
NF-MOF 및 NCF-MOF는 NC-MOF보다 나노 큐브 형태를 유지한다. NF-MOF 및 NCF-MOF는 NC-MOF에 비해서 PBA와 비교하였을 때 관찰할 수 있는 형태의 변화가 적다. NF-MOF and NCF-MOF retain the nano-cube shape than NC-MOF. NF-MOF and NCF-MOF have fewer morphological changes that can be observed compared to PBA compared to NC-MOF.
이는 [Fe(CN) 6] 3-이온과 S 2-이온의 이온교환 반응의 속도가 [Co(CN) - 6] 3 -이온과 S 2-이온의 이온교환 반응의 속도보다 낮기 때문인 것으로 생각된다. This [Fe (CN) 6] 3- ion and S 2- speed of the ion exchange reactions of ions thought to be due to lower than the speed of the ions and the ion-exchange reaction of S 2- ions - [Co (CN) - 6 ] 3 do.
따라서 Co 및 Fe의 함량에 따라 MOF의 공극률 및 MOF의 외부 형태를 제어할 수 있다. MOF에 Fe이 포함되지 않는 경우 공극률이 지나치게 낮을 수 있으며, MOF에 Co가 포함되지 않는 경우 공극이 지나치게 늘어나고 금속유기골격체 기반 수전해 촉매로서 필요한 내구성이 낮을 수 있다. Therefore, the porosity of MOF and the external form of MOF can be controlled according to the content of Co and Fe. If the MOF does not contain Fe, the porosity may be too low, and if the MOF does not contain Co, the pores may be too large and the durability required as a metal-organic framework-based water electrolytic catalyst may be low.
<실험예 2: 내부 형태 분석><Experimental Example 2: Internal morphology analysis>
TEM으로 MOF의 내부 형태학적 특징을 분석하였다. The internal morphological characteristics of MOF were analyzed by TEM.
도 4의 C를 참조하면, NC-MOF는 나노 큐브의 각각의 면에서 관찰된 공극이 내부에서 연결되어 중공을 형성하였다. Referring to C of FIG. 4, in NC-MOF, voids observed on each side of the nanocube were connected inside to form hollows.
도 4의 F를 참조하면, NF-MOF는 공극이 거의 관찰되지 않았다. Referring to F of FIG. 4, almost no pores were observed in the NF-MOF.
도 4의 I를 참조하면, NCF-MOF는 다수의 공극이 관찰되었고, 중공이 형성되었다. Referring to I of FIG. 4, a number of voids were observed in the NCF-MOF, and hollows were formed.
따라서 Co 및 Fe의 함량을 조절함으로써 MOF 내부의 공극률 및 중공 형성을 제어할 수 있다는 것을 알 수 있었다. Therefore, it was found that porosity and hollow formation in the MOF can be controlled by adjusting the contents of Co and Fe.
적절한 크기의 중공이 있는 MOF는 더 많은 반응물과 접촉할 수 있고, 더 많은 양의 반응물의 원활한 유입과 배출이 가능해지며, 수전해 반응에서 발생한 수소 또는 산소 가스를 원활히 배출할 수 있다. MOF의 중공 크기가 적절하다면 반응물과 접촉할 수 있는 촉매 활성을 갖는 금속 site의 노출이 증가할 수 있고 MOF의 전기화학적 성능을 최적화할 수 있다. The MOF with the appropriate size of the hollow can contact more reactants, enable smooth inflow and discharge of a larger amount of reactants, and can smoothly discharge hydrogen or oxygen gas generated in the water electrolysis reaction. If the hollow size of the MOF is appropriate, exposure of metal sites with catalytic activity that can contact the reactants can be increased and the electrochemical performance of the MOF can be optimized.
<실험예 3: 결정구조 분석><Experimental Example 3: Crystal structure analysis>
상기 PBA 전구체들 및 최종 MOF들의 결정구조를 확인하기 위해 X선 회절 분석(XRD)(AXS D8 Advancer, Bruker)을 수행하였다. XRD는 Cu Kα방사선 (λ=1.5405 Å) 조건이고, 0.02˚인터벌에서 2θ 범위에서 10˚ 내지 80˚, 0.02˚min -1 스캔속도로 측정하였다. X-ray diffraction analysis (XRD) (AXS D8 Advancer, Bruker) was performed to confirm the crystal structure of the PBA precursors and final MOFs. XRD was a condition of Cu Kα radiation (λ = 1.5405 Å), and was measured at a scan rate of 10 ° to 80 °, 0.02 ° min −1 in a 2θ range at 0.02 ° interval.
XRD(X-ray Diffraction)을 통해 MOF의 결정구조를 관찰하였다. The crystal structure of MOF was observed through X-ray diffraction (XRD).
도 5 및 도 6을 참조하여 설명한다. NC-MOF의 XRD 패턴은 NiS의 XRD 패턴과 일치하였다. 따라서 NC-MOF는 거의 대부분의 [Co(CN) - 6] 3 -이온이 S 2-이온과 이온교환 반응하였음을 알 수 있었다. NF-MOF의 XRD 패턴은 NF-PBA의 전형적인 특성 피크와 일치하였다. NCF-MOF의 XRD 패턴은 NCF-PBA의 전형적인 특성 피크와 일치하였다. This will be described with reference to FIGS. 5 and 6. The XRD pattern of NC-MOF was consistent with that of NiS. Thus NC-MOF is almost all of it was found that it has the S 2- ion-ion and ion-exchange reaction - [Co (CN) - 6 ] 3. The XRD pattern of NF-MOF was consistent with typical characteristic peaks of NF-PBA. The XRD pattern of NCF-MOF was consistent with typical characteristic peaks of NCF-PBA.
상기 XRD를 통한 결정구조 분석을 통해 외부 형태의 변화는 S 2-의 이온교환 반응 속도의 차이라는 것을 알 수 있었다.Through the crystal structure analysis through the XRD, it was found that the change in the external form is the difference in the rate of the ion exchange reaction of S 2- .
<실험예 4: EDS Line Scanning에 의한 분석><Experimental Example 4: Analysis by EDS Line Scanning>
MOF의 형태 및 최종 원소분포는 SEM(LEO FESEM 1530), HRTEM(JEOL 2010F, JEOL Ltd.)을 사용한 EDS 라인 스캔 및 매핑 분석을 이용하여 분석하였다. The morphology and final element distribution of MOF were analyzed using EDS line scan and mapping analysis using SEM (LEO FESEM 1530) and HRTEM (JEOL 2010F, JEOL Ltd.).
MOF의 성분 분석을 위해 STEM(Scanning TEM)으로 EDS(Energy-Dispersive X-ray Spectrometry) Line-Scans를 실시하였다. For the analysis of the components of the MOF, Energy-Dispersive X-ray Spectrometry (EDS) Line-Scans were performed by scanning TEM (STEM).
도 7 내지 도 10 을 참조하여 설명한다. This will be described with reference to FIGS. 7 to 10.
도 7 및 도 8을 참조하면, NC-MOF는 내부가 연결된 다공성 구조 및 중공 구조를 확인하였다. 7 and 8, NC-MOF confirmed the porous structure and the hollow structure to which the inside is connected.
도 7 및 도 9를 참조하면, NF-MOF는 NC-MOF보다 더 밀도가 높고 중공 구조가 확인되지 않았다. 7 and 9, NF-MOF has a higher density and no hollow structure than NC-MOF.
도 7 및 도 10을 참조하면, NCF-MOF는 다공성 구조 및 중공 구조가 존재함을 확인하였다. 7 and 10, it was confirmed that the NCF-MOF has a porous structure and a hollow structure.
<실험예 5: SAED에 의한 구조 분석> <Experimental Example 5: Structure analysis by SAED>
도 11을 참조하여 설명한다. This will be described with reference to FIG. 11.
NC-MOF는 면심 입방 격자 구조(FCC Lattice Structure)로 분석되었다. NF-MOF는 다결정 면심 입방 구조(Polycrystalline FCC Structure)로 분석되었다. NCF-MOF는 전형적인 면심 입방 구조(FCC) 구조에 상응하는 것으로 분석되었다. NC-MOF was analyzed by a face-centered cubic lattice structure (FCC Lattice Structure). NF-MOF was analyzed with a polycrystalline FCC structure. NCF-MOF was analyzed to correspond to a typical face-centered cubic structure (FCC) structure.
<실험예 6: DFEEM에 의한 원소 매핑 분석><Experimental Example 6: Elemental mapping analysis by DFEEM>
도 12를 참조하여 설명한다. This will be described with reference to FIG. 12.
NC-MOF는 Ni, N, S, C 및 잔류 Co로 구성되어 있다. S가 외부와 내부에서 많이 측정되었고, Co는 거의 측정되지 않았다. 이는 [Co(CN) - 6] 3 -이온과 S 2-이온의 이온교환 반응 속도가 빠르기 때문이라는 것을 알 수 있고, 또한 NC-MOF의 중공이 상기 빠른 이온교환 반응 속도 때문임을 알 수 있다. NC-MOF consists of Ni, N, S, C and residual Co. S was measured a lot outside and inside, and Co was hardly measured. It can be seen that the S 2- ion can be seen that the ions, because of the fast ion exchange reaction rate, and also because the hollow of the NC-MOF the fast ion exchange reaction rate - [Co (CN) - 6 ] 3.
NF-MOF는 내부 및 외부 모두에서 NC-MOF보다 많은 Ni 및 Fe을 함유하고, NC-MOF보다 적은 S 을 함유하였다.NF-MOF contained more Ni and Fe than NC-MOF both inside and outside, and less S than NC-MOF.
NF-MOF의 S가 NC-MOF의 S보다 함량이 작은 것은 S 2- 이온 교환이 적게 일어났기 때문이라는 것을 알 수 있다. It can be seen that the content of S of NF-MOF is smaller than that of NC-MOF due to less S 2 ion exchange.
NCF-MOF는 Co 및 Fe이 나노 큐브의 외부 및 내부에 골고루 분포되어 있으므로 Fe을 함유함으로써 [Co(CN) - 6] 3 -이온과 S 2-이온의 이온교환 반응이 NC-MOF와 비교할 때 일부만 일어났음을 알 수 있다. NCF-MOF is because the Co and Fe are uniformly distributed in the outside and inside of the nano-cube by containing Fe [Co (CN) - 6 ] 3 - ions and the S 2- ion exchange reaction of ions as compared with the NC-MOF It can be seen that only a part has happened.
<실험예 7: MOF의 공극률 분석><Experimental Example 7: Analysis of porosity of MOF>
NF-MOF 및 NCF-MOF의 N 2 흡착 및 탈착 등온선을 분석한 결과, 0.6 내지 1.0의 압력 범위에서 히스테리시스 루프를 나타내며, 이를 통해 NF-MOF 및 NCF-MOF에는 메소세공(Mesopore)가 존재함을 알 수 있다. (도 13 참조)As a result of analyzing the N 2 adsorption and desorption isotherms of NF-MOF and NCF-MOF, it shows a hysteresis loop in the pressure range of 0.6 to 1.0, and through this, Mesopore is present in NF-MOF and NCF-MOF. Able to know. (See Figure 13)
BET(Brunauer-Emmett-Teller) 방법으로 비표면적을 분석하였다. NF-MOF는 27.4m g -1이고, NCF-MOF는 NF-MOF보다 더 큰 50.7m g - 1를 나타내었다. (도 14 참조)The specific surface area was analyzed by the BET (Brunauer-Emmett-Teller) method. NF-MOF was 27.4 m 2 · g -1 , and NCF-MOF showed a larger 50.7 m 2 · g - 1 than NF-MOF. (See Figure 14)
BJH(Barrett-Joyner-Halenda) 방법으로 공극 크기 분포 및 공극 누적 부피를 분석하였다. 공극의 누적 부피는 NCF-MOF는 0.29cc ·g -1이고, NF-MOF는 0.14cc ·g - 1으로 측정되었으므로 NCF-MOF가 NF-MOF보다 더 많은 Mesopore가 존재함을 알 수 있었다. (도 11 및 도 14 참조)The pore size distribution and pore volume were analyzed by BJH (Barrett-Joyner-Halenda) method. The cumulative volume of voids NCF-MOF is 0.29cc · g - a 1, NF-MOF is 0.14cc · g - 1 because the measurement was found that MOF-NCF more Mesopore is present than NF-MOF. (See FIGS. 11 and 14)
상기 비표면적 및 공극 분석 결과, NCF-MOF는 수전해 반응을 촉매하는 활성 부위를 더 많이 노출시킴으로써 HER 및 OER의 활성을 크게 증가시킬 수 있음을 알 수 있다. As a result of the specific surface area and pore analysis, it can be seen that NCF-MOF can significantly increase the activity of HER and OER by exposing more active sites that catalyze the water electrolysis reaction.
<실험예 8: MOF의 조성 측정(Coposition of the MOF catalyst)><Experimental Example 8: Composition of the MOF catalyst (Coposition of the MOF catalyst)>
상기 최종 MOF들의 산화상태 확인 및 각각의 결합 그룹을 확인하기 위해 XPS(K-Alpha XPS 분광기, Thermal Scientific)분석을 수행하였다. XPS (K-Alpha XPS spectroscopy, Thermal Scientific) analysis was performed to confirm the oxidation state of the final MOFs and each binding group.
도 15 및 도 16을 참조하면, NC-MOF의 스펙트럼에서 Ni 2p(오비탈) 및 S 2p의 피크가 관찰됨으로써 NiS 및 Ni 3S 2에 해당하는 결합에너지가 관찰되었다. Ni 3S 2는 상기 NC-MOF의 나중에 설명하는 XRD 패턴에서 관찰되지 않았으므로 무시할 수 있는 정도의 양으로 생각된다. 15 and 16, the peaks of Ni 2p (orbital) and S 2p were observed in the spectrum of NC-MOF, and thus binding energy corresponding to NiS and Ni 3 S 2 was observed. Since Ni 3 S 2 was not observed in the XRD pattern described later in the NC-MOF, it is considered to be a negligible amount.
도 15 및 도 16을 참조하면, NF-MOF의 스펙트럼의 Ni 2p 및 Fe 2p 신호 분석을 토대로 보면 주로 Ni 2 +, Fe는 총 Fe 원자 기준으로 Fe 2 + 약 27% 및 Fe 3 + 약 73%를 포함하는 것을 확인하였다. NF-MOF의 화학 조성은 Ni x II[Fey IIFe z III(CN) 6] 2로 표현할 수 있다. 15 and 16, based on the analysis of the Ni 2p and Fe 2p signals of the spectrum of the NF-MOF, mainly Ni 2 + and Fe are Fe 2 + about 27% and Fe 3 + about 73% based on the total Fe atom. It was confirmed to include. The chemical composition of NF-MOF can be expressed as Ni x II [Fey II Fe z III (CN) 6 ] 2 .
도 15 및 도 17를 참조하면, NCF-MOF의 스펙트럼에서 Ni 2 +, Fe는 총 Fe 원자 기준으로 Fe 2 + 약 43% 및 Fe 3 + 약 57%를 포함하고, Co는 총 Co 원자 기준으로 Co 2 + 약 17% 및 Co 3 + 약 83%를 포함하는 것을 확인하였다. NCF-MOF의 Ni 2p 피크 및 S 2p 피크를 참조하면, 작은 양의 NiS가 형성된다. NiS는 총 Ni 원자 기준으로 약 5.4% 인 것으로 확인되었다. 이는 SEM, TEM 및 XRD에서 관찰한 결과와 일치한다. NCF-MOF의 XRD 패턴 분석에서 특징적인 NiS 피크가 없으므로 NCF-MOF의 NiS는 비정질인 것으로 판단할 수 있다. 15 and 17, in the spectrum of NCF-MOF, Ni 2 + and Fe include Fe 2 + about 43% and Fe 3 + about 57% based on the total Fe atom, and Co is based on the total Co atom. It was confirmed to include Co 2 + about 17% and Co 3 + about 83%. Referring to the Ni 2p peak and the S 2p peak of the NCF-MOF, a small amount of NiS is formed. NiS was found to be about 5.4% based on total Ni atoms. This is consistent with the results observed in SEM, TEM and XRD. Since there is no characteristic NiS peak in the XRD pattern analysis of NCF-MOF, it can be determined that the NiS of NCF-MOF is amorphous.
<실험예 9: MOF의 최외각전자수 계산><Experimental Example 9: Calculation of the outermost electron number of MOF>
XPS 분석을 통해 결정된 산화 상태를 바탕으로 MOF에 포함된 Fe과 Co의 평균 최외각전자수를 계산하였다. Based on the oxidation state determined through XPS analysis, the average number of outermost electrons of Fe and Co included in the MOF was calculated.
[NF-MOF의 Fe][Fe of NF-MOF]
2+: 6×0.733 = 4.3982+: 6 × 0.733 = 4.398
3+: 5×0.267 = 1.3353+: 5 × 0.267 = 1.335
NF-MOF의 Fe의 총 최외각전자수는 4.398 + 1.335 = 5.73이다. The total number of outermost electrons of Fe in NF-MOF is 4.398 + 1.335 = 5.73.
[NCF-MOF의 Fe 0 .5][Fe 0 .5 the NCF-MOF]
2+: 6×0.427 = 2.5622+: 6 × 0.427 = 2.562
3+: 5×0.573 = 2.8653+: 5 × 0.573 = 2.865
[NCF-MOF의 Co 0 .45][NCF-MOF Co 0 .45 ]
2+: 7×0.173 = 1.2112+: 7 × 0.173 = 1.211
3+: 6×0.827 = 4.9623+: 6 × 0.827 = 4.962
NCF-MOF의 Fe 및 Co의 총 최외각전자수는 2.71 + 2.78 = 5.49이다. The total number of outermost electrons of Fe and Co of NCF-MOF is 2.71 + 2.78 = 5.49.
OER 반응에서는 MOF 전이전자의 최외각전자수가 클수록 *OH, *OOH와 같은 산소 중간체의 흡착에너지가 커지므로 OER에 대한 과전압이 높아진다. NF-MOF의 최외각전자수보다 MCF-MOF의 최외각전자수가 더 낮으므로 NCF-MOF의 OER에 대한 과전압이 더 낮다는 것을 알 수 있다. In the OER reaction, the larger the number of outermost electrons of the MOF transition electrons, the greater the adsorption energy of oxygen intermediates such as * OH and * OOH, and the higher the overvoltage for OER. Since the outermost electron number of MCF-MOF is lower than the outermost electron number of NF-MOF, it can be seen that the overvoltage for OER of NCF-MOF is lower.
<실험예 10: 질소 도핑(N-Doping) 확인><Experimental Example 10: nitrogen doping (N-Doping) confirmation>
NC-MOF, NF-MOF 및 NCF-MOF가 질소 도핑 여부를 XPS 스펙트럼을 분석하여 확인하였다. Whether NC-MOF, NF-MOF, and NCF-MOF was nitrogen doped was confirmed by analyzing the XPS spectrum.
도 15를 참조하면, NC-MOF의 XPS 스펙트럼에서는 N 1s 피크는 검출되지 않는다. 이것은 [Co(CN) 6] 3-이온과 S 2-이온의 이온 교환이 활발히 일어나기 때문일 수 있고, Ni 2[Fe(CN) 6] 3가 존재하지 않기 때문일 수 있다. 15, N 1s peak is not detected in the XPS spectrum of NC-MOF. This may be because ion exchange of [Co (CN) 6 ] 3- ions and S 2- ions occurs actively, and may be because Ni 2 [Fe (CN) 6 ] 3 does not exist.
도 15를 참조하면, NF-MOF의 XPS 스펙트럼에서는 N 1s 피크가 검출된다. NF-MOF 총 질소 원자의 개수 기준으로 [Fe(CN) 6] 3-의 CN은 98.7%, 산화 질소 1.9%이다. 이것은 [Fe(CN) 6] 3-이 S 2-과 이온 교환 반응이 거의 일어나지 않기 때문이다. 15, N 1s peak is detected in the XPS spectrum of NF-MOF. Based on the number of NF-MOF total nitrogen atoms, CN of [Fe (CN) 6 ] 3- is 98.7% and nitrogen oxide 1.9%. This is because [Fe (CN) 6 ] 3- rarely undergoes ion exchange reaction with S 2 .
도 15를 참조하면 NCF-MOF의 XPS 스펙트럼에서는 N 1s 피크가 검출된다. NCF-MOF 총 질소 원자의 개수 기준으로 [Fe(CN) 6] 3- 및 [Co(CN) 6] 3- CN이 94.7%, 산화 질소가 0.9% 및 피리딘성 질소를 4.24%이다. 상기 피리딘성 질소는 NCF-MOF의 [Co(CN) 6] 3-이온과 S 2-이온의 이온 교환 반응에 의해 용액에 존재하던 자유 CN -으로부터 생성될 수 있다. 용액 속의 자유 CN -은 Ni 3[Fe(CN) 6] 2에 의해 CNO -로 산화되고, 더 분해되어 NH 3이 생성될 수 있다. NH 3는 질소를 도핑하는 역할을 할 수 있다. 상기 산화 질소는 피리딘성 질소에 산소가 결합된 형태일 수 있다. Referring to FIG. 15, N 1s peaks are detected in the XPS spectrum of the NCF-MOF. Based on the number of NCF-MOF total nitrogen atoms, [Fe (CN) 6 ] 3- and [Co (CN) 6 ] 3- CN is 94.7%, nitric oxide 0.9%, and pyridine nitrogen 4.24%. The pyridine nitrogen may be generated from free CN - present in the solution by an ion exchange reaction of [Co (CN) 6 ] 3- ions and S 2- ions of NCF-MOF. Free CN - in solution is oxidized to CNO - by Ni 3 [Fe (CN) 6 ] 2 and can be further decomposed to form NH 3 . NH 3 may play a role in doping nitrogen. The nitrogen oxide may be in a form in which oxygen is bonded to pyridine nitrogen.
XPS 분석을 종합하면, NCF-MOF에서 [Co(CN) 6] 3-이온의 9.85%가 S 2-이온과 이온 교환 되었고, 이온 교환되어 용액에 존재하던 CN -중 86%가 질소 도핑 되었다. 이 결과는 도 10의 NCF-MOF의 EDS 라인 스캔 분석과도 일치한다. In the XPS analysis, 9.85% of [Co (CN) 6 ] 3- ions were ion-exchanged with S 2- ions in NCF-MOF, and 86% of CN - present in the solution was ion-doped with nitrogen. This result is also consistent with the EDS line scan analysis of the NCF-MOF in FIG. 10.
NCF-MOF의 도핑된 질소는 Ni, Co 및 Fe와 같은 전이금속과 상승 작용으로 HER 활성을 향상시킬 수 있다. The doped nitrogen of NCF-MOF can improve HER activity by synergy with transition metals such as Ni, Co and Fe.
<실험예 11: MOF의 HER 및 OER 활성 측정><Experimental Example 11: Measurement of HER and OER activity of MOF>
3개의 전극을 가진 일반적인 하프 셀 시스템을 사용하여 MOF의 전기 촉매로서의 전기화학적 특성을 분석하였다. 상기 3개의 전극은 작동 전극(Working Electrode)인 유리 카본 전극(Glassy carbon electrode, GCE), 기준 전극(Reference Electrode)인 포화 칼로멜 전극(saturated calomel electrode, SCE), 및 상대 전극(Counter electrode)인 백금선(platinum wire)이 사용되었다. The electrochemical properties of MOF as an electrocatalyst were analyzed using a typical half-cell system with three electrodes. The three electrodes are a working electrode, a glass carbon electrode (GCE), a reference electrode (saturated calomel electrode, SCE), and a counter electrode (Counter electrode), a platinum wire (platinum wire) was used.
OER 및 HER에 대한 전기 촉매 활성은 상기 MOF 수전해 촉매가 담지된 NFE 또는 촉매 코팅된 GCE를 사용한 회전 디스크 전극 측정법(Rotating Disk Electrode, 이하 RDE로 지칭될 수 있다)을 사용하여 평가되었다. The electrocatalytic activity for OER and HER was evaluated using the Rotating Disk Electrode (hereinafter referred to as RDE) method using the MOF water electrolytic catalyst loaded NFE or catalyst coated GCE.
모든 전기 화학 평가에는 CHI 전기 화학 스테이션(CHI Electrochemical Station, Model 760D)가 사용되었다. OER 측정은 1600rpm의 회전 속도에서 SCE에 대해 0.00 내지 0.85V로 측정되었다. HER 측정은 1600rpm의 회전속도에서 SCE와 비교해서 -0.9 내지 -1.5V로 측정되었다. 스캔 속도는 10mV·s -1로 수행되었다. OER 및 HER 측정 전에 순수 질소 가스를 30분 동안 퍼지하였고(purge) 모든 측정은 0.1m KOH 용액에서 수행하였다. CHI Electrochemical Station (Model 760D) was used for all electrochemical evaluations. OER measurements were made from 0.00 to 0.85V for SCE at a rotational speed of 1600 rpm. The HER measurement was measured at -0.9 to -1.5 V compared to SCE at a rotational speed of 1600 rpm. The scan speed was performed at 10 mV · s -1 . Pure nitrogen gas was purged for 30 minutes prior to OER and HER measurements, and all measurements were performed in 0.1 m KOH solution.
모든 측정된 전위(potentials)는 하기 식 1 에 의해 가역 수소 전극 (Reversable Hydrogen Electrode, RHE) 스케일로 조정되었다. All measured potentials were adjusted to the Reversible Hydrogen Electrode (RHE) scale by Equation 1 below.
[식 1][Equation 1]
E RHE = E SCE + 0.241 + 0.059 pH E RHE = E SCE + 0.241 + 0.059 pH
모든 측정된 분극 곡선은 전기 화학 시험 전에 iR 보정(iR-compensated)을 하였다. GCE(Glassy Carbon Electrode)는 직경 5mm이다. 상기 GCE는 매끄러운 연마 천에 알루미나 현탁액(suspension)(크기:0.05μm)을 사용하여 균일하고 매끄럽게 연마하였다. 그리고 연마된 GCE 표면을 Mili-Q 물에서 몇 초 정도 초음파 처리하여 남아있는 알루미나 입자를 제거하였다. All measured polarization curves were iR-compensated prior to electrochemical testing. GCE (Glassy Carbon Electrode) is 5mm in diameter. The GCE was polished uniformly and smoothly using alumina suspension (size: 0.05 μm) on a smooth polishing cloth. Then, the surface of the polished GCE was sonicated in Mili-Q water for several seconds to remove the remaining alumina particles.
촉매 잉크는 금속유기골격체 기반 수전해 촉매 2mg(예를 들면 NCF-MOF), Vulcan Carbon(XC-72, VC) 2mg을 전처리된 Nafion 용액(IPA 10mL, Nafion 5 중량%인 80μl(Ion Power)) 1ml에 용해시키고, 60분 동안 초음파 처리하여 균일한 현탁액으로 준비되었다. The catalyst ink is a Nafion solution (IPA 10mL, Nafion 5 wt%, 80μl (Ion Power), which is pretreated with 2mg of a metal-organic framework-based water electrolytic catalyst (for example, NCF-MOF) and Vulcan Carbon (XC-72, VC). ) Dissolved in 1 ml and sonicated for 60 minutes to prepare a uniform suspension.
상기 촉매 잉크 20μl를 GCE 표면에 떨어트리고, 상온 상에서 건조시켜 촉매를 0.2mg·cm -2 만큼 담지(loading)시켰다. 상기 0.2mg/cm 2은 용액 속의 촉매의 양을 전극의 면적으로 나눈 값으로써 Vulcan carbon의 함량은 제외된 것이다. 한편, 백금(Pt/C 29.9중량% Pt) 및 이리듐(Ir/C, 20중량% Ir)로 구성된 귀금속 촉매는 MOF 촉매의 전기 촉매 성능 및 실제 효율을 비교하기 위한 기준 촉매(benchmark catalysts)로서 이용되었다. 20 μl of the catalyst ink was dropped on the surface of the GCE, and dried at room temperature to load the catalyst by 0.2 mg · cm −2 . The 0.2mg / cm 2 is a value obtained by dividing the amount of the catalyst in the solution by the area of the electrode, so that the content of Vulcan carbon is excluded. On the other hand, a noble metal catalyst composed of platinum (Pt / C 29.9 wt% Pt) and iridium (Ir / C, 20 wt% Ir) is used as benchmark catalysts for comparing the electrocatalytic performance and actual efficiency of MOF catalysts. Became.
도 18의 HER을 참조하면, HER 분극 곡선에 근거하여, -10mA·cm 2의 전류밀도 조건에서 NC-MOF는 -0.39V(0V로부터 떨어진 거리를 의미한다.)를 나타내고, NF-MOF는 -0.34V(0V로부터 떨어진 거리를 의미한다.)를 나타냈다. 같은 조건에서 NCF-MOF는 NC-MOF 및 NF-MOF의 과전압보다 더 낮은 -0.27V(0V로부터 떨어진 거리를 의미한다.)의 과전압을 나타내었다. NCF-MOF은 NCF-MOF의 도핑된 질소에 의한 HER 에너지 장벽 감소에 의해 낮은 과전압을 나타낼 수 있다. 도핑된 질소는 촉매 활성 부위에 H*에 대한 흡착을 향상시켜 ΔG(H*)를 감소시킬 수 있다. 또한 NCF-MOF는 높은 비표면적 및 높은 공극률로 인해 촉매 활성 부위가 물과 더 많이 접촉할 수 있기 때문에 낮은 과전압을 나타낼 수 있다. Referring to the HER of FIG. 18, based on the HER polarization curve, NC-MOF represents -0.39V (meaning a distance away from 0V) under a current density condition of -10mA · cm 2 , and NF-MOF is − 0.34V (meaning the distance away from 0V). Under the same conditions, NCF-MOF exhibited an overvoltage of -0.27V (meaning a distance from 0V) lower than that of NC-MOF and NF-MOF. NCF-MOF may exhibit low overvoltage by reducing the HER energy barrier by doped nitrogen of NCF-MOF. Doped nitrogen can reduce ΔG (H *) by enhancing adsorption to H * at the catalytically active site. In addition, NCF-MOF may exhibit a low overvoltage because of its high specific surface area and high porosity, so that the catalytically active site can contact more water.
NCF-MOF는 귀금속 촉매인 Ir/C 촉매와 비교할 때 OER에 대해서 더 낮은 과전압을 나타낸다. 도 18의 OER을 참조하면, 10mA·cm -2의 전류 밀도 조건에서 NCF-MOF는 0.32V의 과전압을 나타내었다. (0.32V는 1.23V 기준으로 0.32V가 높다는 의미이다. 물이 분해되는 potential이 RHE 기준으로 1.23V이므로 RHE 기준으로는 1.55V를 나타냄을 의미한다.) NF-MOF는 NCF-MOF보다 30mV 높은 과전압을 나타내었다. NC-MOF는 NCF-MOF보다 60mV 높은 과전압을 나타내었다. Ir/C은 NCF-MOF보다 20mV 높은 과전압을 나타내었다. 상기 NCF-MOF의 OER에 대한 낮은 과전압은 NCF-MOF에 포함된 전이금속 Co 및 Fe의 낮은 최외각전자수가 원인일 수 있다. NCF-MOF exhibits lower overvoltage for OER compared to Ir / C catalyst, which is a noble metal catalyst. Referring to the OER of FIG. 18, NCF-MOF exhibited an overvoltage of 0.32 V under a current density condition of 10 mA · cm −2 . (0.32V means 0.32V is higher based on 1.23V. It means that the potential for water decomposition is 1.23V based on RHE, so it means 1.55V based on RHE.) NF-MOF is 30mV higher than NCF-MOF It showed overvoltage. NC-MOF showed an overvoltage of 60 mV higher than NCF-MOF. Ir / C showed an overvoltage of 20 mV higher than NCF-MOF. The low overvoltage for the OER of the NCF-MOF may be attributed to the low number of outermost electrons of the transition metals Co and Fe included in the NCF-MOF.
<실험예 12: 니켈 폼 전극(Nickel Foam Electrode, NFE) 시험><Experimental Example 12: Nickel Foam Electrode (NFE) test>
NC-MOF, NF-MOF 및 NCF-MOF 중 어느 하나의 MOF 촉매를 담지시킨(loaded) NFE(Nickel Foam Electrode)를 작동 전극(Working Electrode)으로 사용하였다. 그리고 위에 설명한 3개 전극 구성을 이용하여 시험하였다. NFE (Nickel Foam Electrode) loaded with any MOF catalyst of NC-MOF, NF-MOF, and NCF-MOF was used as a working electrode. And it was tested using the three electrode configuration described above.
MOF가 담지된 NFE는 다음과 같이 준비되었다. NFE 조각을 1cm 내지 2 cm 크기로 자른다. 그리고 2.0m HCl 수용액에서 1시간 동안 초음파 처리하면서 세척하여 산화된 니켈을 제거하였다. 다시 아세톤에서 1시간 동안 초음파 세척하여 NFEs 표면의 유기 불순물을 제거하였다. The NFE carrying MOF was prepared as follows. Cut NFE pieces to 1 cm to 2 cm in size. In addition, the oxidized nickel was removed by washing in a 2.0 m HCl aqueous solution for 1 hour while sonication. Again, ultrasonic cleaning was performed in acetone for 1 hour to remove organic impurities on the surface of NFEs.
MOF 잉크는 MOF 0.5 mg 및 VC(Vulcan Carbon) 0.5 mg을 전처리된 Nafion 용액(isopropyl alcohol(IPA) 10mL 및 Nafion 5 중량%인 80μl용액, Ion Power) 1.0mL에 혼합하고, 60분간 초음파 처리하여 균일한 용액을 얻었다. 그런 다음, 혼합물을 건조된 NFE(활성영역 1 cm 2)에 드롭 캐스팅시켜 촉매를 0.5mg·cm -2 만큼 담지시켰다. MOF ink is mixed with 0.5 mg of MOF and 0.5 mg of VC (Vulcan Carbon) in 1.0 mL of pre-treated Nafion solution (10 mL of isopropyl alcohol (IPA) and 80 μl solution of Nafion 5 wt%, Ion Power), and ultrasonically treated for 60 minutes. One solution was obtained. Then, the mixture was drop-cast on dried NFE (active area 1 cm 2 ) to support 0.5 mg · cm −2 of the catalyst.
상기 Nafion은 양자 교환막용 전해질이며 DuPont사의 제품으로써 통상기술자에게 잘 알려져 있다. 상기 Nafion의 전처리도 Nafion을 사용하는 기술분야의 통상기술자에게 잘 알려져 있으므로 자세한 설명은 생략한다. The Nafion is an electrolyte for a proton exchange membrane and is well known to a person skilled in the art as a product of DuPont. The pre-treatment of the Nafion is well known to those skilled in the art using Nafion, so a detailed description thereof will be omitted.
사이클링은 CV곡선이 안정한 고체/액체 계면을 나타내는 안정한 전류를 나타낼 때까지 N 2포화 전해질(electrolyte)에서 50mV·s -1 스캔 속도로 수행되었다.Cycling was performed at 50 mV · s −1 scan rate in N 2 saturated electrolyte until the CV curve showed a stable current representing a stable solid / liquid interface.
도 19를 참조하면, HER 조건으로, -30mA·cm -2의 전류 밀도에서 NC-MOF가 담지된 NFE는 HER에서 0.30V의 과전압을 나타내었다. 같은 조건에서 NF-MOF가 담지된 NFE는 0.25V의 과전압을 나타내었다. NCF-MOF가 담지된 NFE는 상기 NC-MOF 또는 NF-MOF가 담지된 NFE보다 더 낮은 0.16V의 과전압을 나타내었다. Referring to FIG. 19, under the HER condition, the NFE carrying NC-MOF at a current density of -30mA · cm -2 exhibited an overvoltage of 0.30V in the HER. Under the same conditions, NFE carrying NF-MOF showed an overvoltage of 0.25V. The NFE carrying NCF-MOF showed a lower overvoltage of 0.16V than the NFE carrying the NC-MOF or NF-MOF.
도 19를 참조하면, HER 곡선으로부터의 Tafel 분석에서, NC-MOF가 담지된 NFE는 168 mV·dec - 1 이고, NF-MOF가 담지된 NFE는 157 mV·dec - 1 이었다. NCF-MOF가 담지된 NFE는 114mV·dec -1이었다. 상기 NC-MOF가 담지된 NFE 및 상기 NF-MOF가 담지된 NFE와 비교할 때 NCF-MOF의 HER에서의 Tafel 기울기가 더 낮았다. Tafel 기울기의 경사도가 낮을수록 수소생산량에 도달하는데 필요한 전압이 낮아진다. Referring to FIG. 19, in the Tafel analysis from the HER curve, the NFE carrying NC-MOF was 168 mV · dec - 1 and the NFE carrying NF-MOF was 157 mV · dec - 1 . The NFE carrying NCF-MOF was 114 mV · dec -1 . The Tafel slope in the HER of the NCF-MOF was lower compared to the NFE carrying the NC-MOF and the NFE carrying the NF-MOF. The lower the slope of the Tafel slope, the lower the voltage required to reach hydrogen production.
도 20을 참조하면, OER 조건으로, 30 mA·cm -2의 전류 밀도에서 NCF-MOF는 0.48V의 과전압을 나타내었다. 상기 NCF-MOF의 OER에서의 과전압은 Ir/C보다 160mV 낮고, NF-MOF보다 110mV 낮았다. Referring to FIG. 20, under the OER condition, at a current density of 30 mA · cm −2 , NCF-MOF exhibited an overvoltage of 0.48 V. The overvoltage in the OER of the NCF-MOF was 160 mV lower than that of Ir / C, and 110 mV lower than that of NF-MOF.
도 20을 참조하면, OER Tafel 분석에서, NC-MOF가 담지된 NFE는 99 mV·dec -1이고, NF-MOF가 담지된 NFE는 119 mV·dec -1이고, Ir/C는 73 mV·dec -1였다. NCF-MOF가 담지된 NFE는 49 mV·dec -1로서 Ir/C보다도 낮은 기울기를 나타내었다. Referring to FIG. 20, in the OER Tafel analysis, NFE carrying NC-MOF is 99 mV · dec -1 , NFE carrying NF-MOF is 119 mV · dec -1 , and Ir / C is 73 mV · dec -1 . The NFE loaded with NCF-MOF was 49 mV · dec -1 , showing a lower slope than Ir / C.
도 21을 참조하면, 대조군으로써 상기 MOF 촉매가 담지되지 않은 NFE는 MOR 촉매가 담지된 NFE보다 HER 및 OER 모두에서 훨씬 높은 과전압을 나타내었다.Referring to FIG. 21, NFE without MOF catalyst as a control showed a much higher overvoltage in both HER and OER than NFE with MOR catalyst.
<실험예 13: 전기화학적 안전성 시험><Experimental Example 13: Electrochemical safety test>
도 22 및 도 23을 참조하면, 두 가지 전기화학적 내구성 테스트를 진행하였다. 22 and 23, two electrochemical durability tests were performed.
첫번째는 Chronopotentiometry로 고정된 전류를 흘려주고, 그에 따른 Potential 값을 측정하여 그 값이 최초값에 비해 얼마나 변화하였는지 측정함으로써 내구성을 확인하였다. 이 방법으로 HER 및 OER potential range 모두에서 내구성을 테스트 하였다. The first was to check the durability by passing a fixed current through Chronopotentiometry, and measuring the potential value according to it to measure how much the value changed compared to the initial value. In this way, durability was tested in both the HER and OER potential ranges.
두번째는 OER과 관련한 내구성 테스트를 진행하였다. OER은 HER 조건보다 potential이 더 높고 산화적 조건이므로 촉매에 더욱 가혹한 조건이므로 OER의 내구성 테스트를 별도로 진행하였다. OER Potential range 내에서 반복적인 cycle을 주어 cycle 전후의 극성 곡선을 비교하여 내구성을 테스트 하였다. The second was the durability test related to OER. Since the OER has a higher potential than the HER condition and is an oxidative condition, it is a more severe condition for the catalyst, so the durability test of the OER was conducted separately. Durability was tested by comparing the polarity curves before and after the cycle by giving repeated cycles within the OER potential range.
MOF 촉매의 전기 화학적 안정성(stability)을 확인하기 위해 CP(Chronopotentiometry)가 수행되었다. Chronopotentiometry (CP) was performed to confirm the electrochemical stability of the MOF catalyst.
먼저 MOF 촉매로 코팅된 GCE는 질소 포화된 전해질에서 사이클릭 볼타메트리 (약 40사이클)에 의해 활성화 되었다.First, GCE coated with MOF catalyst was activated by cyclic voltammetry (about 40 cycles) in nitrogen saturated electrolyte.
MOF 촉매의 HER은 -20mA·cm -2의 전류 밀도에서 CP 평가를 수행하였다. MOF 촉매의 OER은 20 mA·cm -2의 전류밀도에서 CP 평가를 수행하였다.The HER of the MOF catalyst was subjected to CP evaluation at a current density of -20mA · cm -2 . The OER of the MOF catalyst was subjected to CP evaluation at a current density of 20 mA · cm -2 .
전기 화학적 성능 측정을 위해 MOF 촉매 코팅된 GCE의 OER의 과전압은 10mA·cm -2 에서 측정되고, MOF 촉매 코팅된 GCE의 HER 과전압은 -10mA·cm -2에서 측정되었다. For the electrochemical performance measurement, the overvoltage of the OER of the MOF catalyst coated GCE was measured at 10 mA · cm -2 , and the HER overvoltage of the MOF catalyst coated GCE was measured at -10 mA · cm -2 .
MOF 촉매가 담지된 NFE의 OER 과전압은 30 mA·cm -2에서 측정되고, MOF 촉매가 담지된 NFE의 HER 과전압은 -30 mA·cm -2에서 측정되었다. OER 및 HER 과전압의 보다 쉬운 비교를 위해, OER에 대한 표준 전위는 1.23V 대 RHE를 사용하고, HER에 대한 표준 전위는 0.00V 대 RHE를 사용하였다. The OER overvoltage of the NFE carrying the MOF catalyst was measured at 30 mA · cm -2 , and the HER overvoltage of the NFE carrying the MOF catalyst was measured at -30 mA · cm -2 . For easier comparison of OER and HER overvoltages, the standard potential for OER was 1.23V vs RHE, and the standard potential for HER was 0.00V vs RHE.
도 22를 참조하면, 상기 HER CP 평가 조건에서, NCF-MOF 전극은 RHE를 기준으로 -0.34V의 초기 HER 포텐셜(initial HER potential)을 나타내고, 20000s 후에 0.05V의 전압 손실을 나타내었다. 이는 NCF-MOF는 HER에서 20000s 후에 포텐셜을 86%만큼 유지함을 나타낸다. Referring to FIG. 22, in the HER CP evaluation conditions, the NCF-MOF electrode exhibited an initial HER potential of -0.34V based on RHE, and a voltage loss of 0.05V after 20000s. This indicates that NCF-MOF retains the potential by 86% after 20000s in HER.
도 22 및 도 23을 참조하면, 상기 OER CP 평가 조건에서, NCF-MOF 전극은 RHE에 비해 1.53V의 초기 OER 포텐셜을 나타내고, 20000s 후에 0.01V의 OER 포텐셜 증가를 나타내었다. 이는 NCF-MOF는 OER에서 20000s 후에 포텐셜을 97%만큼 유지하며, 전기 화학적 내구성이 매우 우수하다는 것을 나타낸다. 22 and 23, in the OER CP evaluation conditions, the NCF-MOF electrode exhibited an initial OER potential of 1.53 V compared to RHE, and an OER potential increase of 0.01 V after 20000 s. This indicates that the NCF-MOF retains the potential by 97% after 20000s in the OER, and has excellent electrochemical durability.
NCF-MOF의 OER CP평가를 Ir/C과 비교하였다. The OER CP evaluation of NCF-MOF was compared with Ir / C.
도 22를 참조하면, OER에서 NCF-MOF는 초기 OER 포텐셜이 RHE와 대비하여 1.54V를 나타내었다. 같은 조건에서 Ir/C는 초기 OER 포텐셜이 1.57V를 나타내었다. NCF-MOF는 OER에 대해서 Ir/C보다 더 낮은 초기 OER 포텐셜을 나타내었다. Referring to FIG. 22, in the OER, the NCF-MOF exhibited an initial OER potential of 1.54 V compared to the RHE. Under the same conditions, Ir / C had an initial OER potential of 1.57V. NCF-MOF showed an initial OER potential lower than Ir / C for OER.
RHE에 대비하여 1.2 내지 1.75V의 고도 산화 전위 창에서 1000CV 사이클 후에는, NCF-MOF는 1mV의 포텐셜 손실을 나타내었고, 99%의 포텐셜 유지율을 나타내었다. 같은 조건에서 Ir/C는 116mV의 포텐셜 손실을 나타내었고, 66%의 포텐셜 유지율을 나타내었다. After 1000 CV cycles at a high oxidation potential window of 1.2 to 1.75 V versus RHE, NCF-MOF exhibited a potential loss of 1 mV and a potential retention of 99%. Under the same conditions, Ir / C exhibited a potential loss of 116 mV and a potential retention rate of 66%.
<실험예 14: NCF-MOF의 구조적 안전성을 확인><Experiment 14: confirm the structural safety of NCF-MOF>
상기 전기화학적 안전성 검사 후에 NCF-MOF의 TEM 특성화를 통해 구조적 안전성을 확인하였다. After the electrochemical safety test, structural safety was confirmed through TEM characterization of NCF-MOF.
도 24를 참조하면, 알칼리 전해액 내 OER 및 HER 전기화학적 안전성 검사 후 NCF-MOF의 전체 나노 큐브의 초기 형태가 유지되는 것으로 확인되었다. 상기 초기 형태의 유지는 장시간의 HER, OER, 또는 그와 함께 일어날 수 있는 부반응 후에도 결정 구조가 유지되는 것으로써 전기 화학적 촉매로써 유용함을 보여주는 것일 수 있다. 나노 큐브의 모서리는 약간 거칠어졌다(roughened). 이는 배위결합이 잘 되지 않은(undercoordinated) 금속 site에서의 금속 수산화물의 형성 때문일 수 있다. 보다 상세하게는 주변의 리간드들과 배위결합을 이루지 않은 금속이 금속 수산화물을 형성하기 때문일 수 있다. Referring to FIG. 24, after the OER and HER electrochemical safety tests in the alkaline electrolyte solution, it was confirmed that the initial form of the whole nanocube of NCF-MOF is maintained. The maintenance of the initial form may be useful as an electrochemical catalyst because the crystal structure is maintained even after side reactions that may occur with HER, OER, or for a long time. The corners of the nanocube are slightly roughened. This may be due to the formation of a metal hydroxide at an undercoordinated metal site. In more detail, it may be because a metal that does not coordinate with surrounding ligands forms a metal hydroxide.
NCF-MOF의 HER 및 OER에서의 전기화학적 안전성은 수소 가스 및 산소 가스가 발생하는 동안에 다공성 골격을 유지할 수 있는 단단한 다공성 구조 때문일 수 있다. 또한 OER에서 NCF-MOF의 Ir/C보다도 낮은 과전압은 탄소 부식을 감소시키고(reduced carbon corrosion) 활성 금속의 산화를 감소시킨다. 상기 탄소 부식은 OER의 높은 포텐셜 영역에서 탄소가 이탈하는 현상으로써, 예를 들면 CO 또는 CO 2로 바뀌는 현상을 의미할 수 있다. OER에서의 낮은 과전압으로 인해 NCF-MOF의 탄소가 더 낮은 영역의 포텐셜에 노출되므로 탄소 부식이 감소될 수 있다. The electrochemical safety of NCF-MOF in HER and OER may be due to the rigid porous structure capable of maintaining the porous skeleton during the generation of hydrogen gas and oxygen gas. In addition, an overvoltage lower than the Ir / C of NCF-MOF in OER reduces carbon corrosion and reduces the oxidation of active metals. The carbon corrosion is a phenomenon in which carbon is released from the high potential region of the OER, and may mean, for example, a phenomenon of changing to CO or CO 2 . Due to the low overvoltage in the OER, carbon corrosion of the NCF-MOF can be reduced because the carbon in the lower region is exposed to the potential.

Claims (20)

  1. Ni 3[Fe XCo 1-X(CN) 6] 2 -의 화학식으로 표현되고 상기 X는 0.1 내지 0.9 인 프러시안 블루 유사체(PBA)로부터 제조되고, Ni 3 [Fe X Co 1-X (CN) 6 ] 2 - is represented by the formula of X is 0.1 to 0.9 is prepared from a Prussian Blue Analog (PBA),
    전이금속으로써 산화수 2인 Ni, 산화수 2인 Co, 산화수 3인 Co, 산화수 2인 Fe 및 산화수 3인 Fe 를 포함하고, As the transition metal, Ni of 2 oxidized water, Co of 2 oxidized water, Co of 3 oxidized water, Fe of 2 oxidized water, and Fe of 3 oxidized water,
    [Co(CN) 6] 3- 착이온과 Ni 2+이 결합된 배위화합물,[Co (CN) 6 ] 3- coordination compound in which complex ion and Ni 2+ are combined,
    [Fe(CN) 6] 3- 착이온과 Ni 2+이 결합된 배위화합물, 및[Fe (CN) 6 ] 3- Coordination compound in which complex ion and Ni 2+ are combined, and
    상기 [Co(CN) 6] 3- 착이온과 S 2- 이온의 이온 교환 반응으로 생성된 NiS를 포함하는 금속유기골격체 기반 수전해 촉매.The [Co (CN) 6 ] metal organic skeleton based water electrolytic catalyst containing NiS generated by the ion exchange reaction of 3- complexion and S2 - ion.
  2. 제 1 항에 있어서, According to claim 1,
    XPS 분석을 기준으로 상기 산화수 3인 Fe의 함량이 상기 산화수 2인 Fe의 함량보다 더 높은 금속유기골격체 기반 수전해 촉매.Based on XPS analysis, the metal-organic framework-based water electrolysis catalyst has a higher content of Fe in the oxidation number 3 than the content of Fe in the oxidation number 2.
  3. 제 1 항에 있어서, According to claim 1,
    상기 산화수 2인 Fe의 함량은 Fe 전체 함량을 기준으로 40 내지 46 중량%인 금속유기골격체 기반 수전해 촉매.The content of Fe in the oxidation number 2 is 40 to 46% by weight based on the total amount of Fe metal-organic framework based water electrolytic catalyst.
  4. 제 1 항에 있어서, According to claim 1,
    도핑된 질소를 더 포함하는 금속유기골격체 기반 수전해 촉매. Metal-organic framework-based water electrolytic catalyst further comprising doped nitrogen.
  5. 제 4 항에 있어서, The method of claim 4,
    상기 도핑된 질소 중 적어도 일부는 피리딘성 질소인 금속유기골격체 기반 수전해 촉매.At least some of the doped nitrogen is a pyridine nitrogen metal organic skeleton based water electrolytic catalyst.
  6. 제 4 항에 있어서, The method of claim 4,
    상기 도핑된 질소 중 적어도 일부는 상기 이온 교환 반응으로 생성된 CN -에서 유래한 질소인 금속유기골격체 기반 수전해 촉매. At least some of the doped nitrogen is a metal-organic framework-based water electrolytic catalyst that is nitrogen derived from CN - generated by the ion exchange reaction.
  7. 제 1 항에 있어서 비표면적(BET)이 30 내지 60 m 2 ·g -1인 금속유기골격체 기반 수전해 촉매.The metal-organic framework-based water electrolytic catalyst according to claim 1, wherein the specific surface area (BET) is 30 to 60 m 2 · g -1 .
  8. 제 1 항에 있어서 공극을 포함하는 금속유기골격체 기반 수전해 촉매. The metal-organic framework-based water electrolytic catalyst according to claim 1 comprising a void.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 공극 중 적어도 일부는 메소세공인 금속유기골격체 기반 수전해 촉매. At least some of the pores are mesoporous metal-organic framework-based water electrolytic catalyst.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 공극 중 적어도 일부는 [Co(CN) 6] 3-이온과 S 2-이온의 이온 교환 반응으로 생성되는 공극인 금속유기골격체 기반 수전해 촉매. At least some of the pores are [Co (CN) 6 ] metal organic skeleton-based water electrolytic catalysts, which are pores generated by ion exchange reactions of 3- and S 2- ions.
  11. 제 1 항에 있어서,According to claim 1,
    상기 전체 공극의 부피는 0.15 내지 0.35 cc·g -1인 금속유기골격체 기반 수전해 촉매.The total pore volume is 0.15 to 0.35 cc · g -1 of the metal-organic framework based water electrolytic catalyst.
  12. 제 1 항에 있어서,According to claim 1,
    상기 산화수 2인 Fe, 산화수 3인 Fe, 산화수 2인 Co, 및 산화수 3인 Co의 최외각전자수의 합이 5.3 내지 5.6 인 금속유기골격체 기반 수전해 촉매.The metal organic skeleton based water electrolytic catalyst having a sum of the outermost electron number of Fe of 2 oxidized water, Fe of 3 oxidized water, Co of 2 oxidized water, and Co of 3 oxidized water.
  13. 제 1 항에 있어서,According to claim 1,
    상기 NiS의 S와 결합된 Ni은 전체 Ni기준으로 1 내지 10%를 포함하는 금속유기골격체 기반 수전해 촉매.Ni combined with S of the NiS is a metal-organic framework-based water electrolytic catalyst containing 1 to 10% based on the total Ni.
  14. 제 1 항에 있어서, According to claim 1,
    상기 금속유기골격체 기반 수전해 촉매는 XRD 측정에 있어서 (200)면, (220)면, (400)면, (420)면, (422)면, (440)면, (600)면, (620)면에서 피크가 관찰되는 금속유기골격체 기반 수전해 촉매.The metal organic skeleton-based water electrolytic catalyst is (200) plane, (220) plane, (400) plane, (420) plane, (422) plane, (440) plane, (600) plane, (XRD) 620) Metal-organic framework-based water electrolytic catalyst with a peak observed on the surface.
  15. 제 1 항의 금속유기골격체 기반 수전해 촉매를 포함하는 촉매 잉크. A catalyst ink comprising the metal organic skeleton-based water electrolytic catalyst of claim 1.
  16. Ni 3[Fe XCo 1-X(CN) 6] 2 -의 화학식으로 표현되고 상기 X는 0.1 내지 0.9 인 프러시안 블루 유사체(PBA)를 준비하는 단계;Ni 3 [Fe X Co 1-X (CN) 6 ] 2 - is represented by the formula of X is 0.1 to 0.9 to prepare a Prussian blue analog (PBA);
    상기 프러시안 블루 유사체의 [Co(CN) 6] 3- 착이온과 S 2- 이온을 이온 교환 반응시키는 단계;Ion exchange reaction of [Co (CN) 6 ] 3- complex ions and S 2- ions of the Prussian blue analog;
    상기 이온 교환 반응시킨 중간생성물을 세척하고 건조하는 단계;Washing and drying the intermediate product subjected to the ion exchange reaction;
    상기 건조시킨 중간생성물을 분쇄하는 단계; 및 Crushing the dried intermediate product; And
    상기 분쇄한 중간생성물을 열처리하는 단계를 포함하는 금속유기골격체 기반 수전해촉매 제조방법. A method of manufacturing a metal-organic framework-based water electrolytic catalyst comprising the step of heat-treating the crushed intermediate product.
  17. 제 16 항에 있어서, The method of claim 16,
    상기 프러시안 블루 유사체(PBA)를 준비하는 단계는, Preparing the Prussian blue analog (PBA),
    질산 니켈 및 시르트산 나트륨을 물에 용해시켜 제 1 용액을 제조하는 단계;Dissolving nickel nitrate and sodium citrate in water to prepare a first solution;
    칼륨 헥사시아노페레이트(III)를 상기 X 비율로, 칼륨 헥사시아노코발테이트(III)을 상기 1-X 비율로 물에 용해시켜 제 2 용액을 제조하는 단계;Preparing a second solution by dissolving potassium hexacyanoferate (III) in the X ratio and potassium hexacyanocobaltate (III) in the 1-X ratio in water;
    상기 제 1 용액 및 제 2 용액을 혼합시켜 제 3 용액을 제조하는 단계; 및Preparing a third solution by mixing the first solution and the second solution; And
    상기 제 3 용액을 공침시켜 프러시안 블루 유사체(PBA)를 얻는 단계를 포함하는, 금속유기골격체 기반 수전해촉매 제조방법. The method comprising the step of obtaining a Prussian blue analog (PBA) by coprecipitating the third solution, a method for producing a metal-organic framework-based water electrolytic catalyst.
  18. 제 16 항에 있어서, The method of claim 16,
    상기 이온 교환 반응은 The ion exchange reaction
    상기 프러시안 블루 유사체와 Na 2S를 혼합하는 단계 및 Mixing the Prussian blue analog with Na 2 S, and
    상기 혼합물을 수열 반응하는 단계를 포함하는 금속유기골격체 기반 수전해촉매 제조방법. Method for producing a metal-organic framework-based water electrolytic catalyst comprising the step of hydrothermal reaction of the mixture.
  19. 제 16 항에 있어서, The method of claim 16,
    상기 열처리 단계는 Ar 분위기에서 250 내지 350℃에서 120분 내지 240분 동안 열처리 하는 것인 금속유기골격체 기반 수전해촉매 제조방법. The heat treatment step is a metal-organic framework-based water electrolytic catalyst manufacturing method for heat treatment at 250 to 350 ℃ for 120 minutes to 240 minutes in an Ar atmosphere.
  20. 제 16 항에 있어서, The method of claim 16,
    상기 열처리하는 단계 후 50 내지 90℃, 10 내지 14시간 2차 건조시키는 단계를 더 포함하는 금속유기골격체 기반 수전해촉매 제조방법. A method of manufacturing a metal-organic framework-based water electrolytic catalyst further comprising a second drying step of 50 to 90 ° C. for 10 to 14 hours after the heat treatment.
PCT/KR2019/006681 2018-10-16 2019-06-03 Metal-organic framework-based water electrolysis catalyst derived from prussian blue analog comprising three transition metals and comprising size-controlled pores, and method of preparing same WO2020080637A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180122912A KR102160934B1 (en) 2018-10-16 2018-10-16 Water-splitting Catalyst Based On Metal Organic Framework Derived From Prussian Blue Analogs Containing Three Transition Metals And Having Size Controlled Pore, And Method For Manufacturing The Same.
KR10-2018-0122912 2018-10-16

Publications (1)

Publication Number Publication Date
WO2020080637A1 true WO2020080637A1 (en) 2020-04-23

Family

ID=70283986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006681 WO2020080637A1 (en) 2018-10-16 2019-06-03 Metal-organic framework-based water electrolysis catalyst derived from prussian blue analog comprising three transition metals and comprising size-controlled pores, and method of preparing same

Country Status (2)

Country Link
KR (1) KR102160934B1 (en)
WO (1) WO2020080637A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477883A (en) * 2020-05-11 2020-07-31 叶际宽 MOFs-derived porous carbon-coated NiFe nano-alloy oxygen evolution catalyst and preparation method thereof
CN111822054A (en) * 2020-08-14 2020-10-27 陕西科技大学 Nano porous material anode catalyst and preparation method thereof
CN112086644A (en) * 2020-09-01 2020-12-15 广东工业大学 Metal sulfide lithium ion negative electrode material and preparation method thereof
CN112626559A (en) * 2020-12-29 2021-04-09 山东大学 NiFe-PBAs-F catalyst with multi-stage structure and preparation method and application thereof
CN113200555A (en) * 2021-04-19 2021-08-03 南京师范大学 NiCo-PBA cross skeleton @ NiS2Preparation method and application of nano-framework material
CN113877540A (en) * 2021-10-09 2022-01-04 中国科学院过程工程研究所 Preparation method of prussian blue analogue-based composite adsorption material for cesium separation
CN114870862A (en) * 2022-05-06 2022-08-09 中国海洋大学 Composite oxide catalyst for purifying automobile exhaust and preparation method thereof
CN115954616A (en) * 2022-12-29 2023-04-11 广东卓高新材料科技有限公司 Coating membrane based on MOF material and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102486883B1 (en) * 2021-05-06 2023-01-10 인하대학교 산학협력단 Co3O4/CoS Heterostructure catalyst as Highly Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions and the Preparation method of thereof
WO2024085318A1 (en) * 2022-10-19 2024-04-25 건국대학교 산학협력단 Water electrolysis catalyst and preparation method therefor
KR20240054843A (en) 2022-10-19 2024-04-26 건국대학교 산학협력단 Method for producing water electrolysis catalyst using hydrothermal reaction and cation exchange reaction
KR102532065B1 (en) * 2022-11-14 2023-05-11 경북대학교 산학협력단 CoHCF POSITIVE ELECTRODE ACTIVE MATERIAL, METHOD FOR PREPARATION THE SAME

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746951B1 (en) 2015-10-12 2017-06-14 한양대학교 에리카산학협력단 Method for manufacturing a cobalt sulfide based on MOF(Metal Organic Framework), and method for manufacturing a dye sensitized solar cell using same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AHN, W.: "Hollow Multivoid Nanocuboids Derived from Ternary Ni-Co-Fe Prussian Blue Analog for Dual-Electrocatalysis of Oxygen and Hydrogen Evolution Reactions", ADV. FUNCT. MATER., 3 June 2018 (2018-06-03), pages 1 - 11, XP055703126 *
WIDMANN, A. ET AL.: "Structure, Insertion Electrochemistry, and Magnetic Properties of a New Type of Substitutional Solid Solutions of Copper, Nickel, and Iron Hexacyanoferrates/Hexacyanocobaltates", INORGANIC CHEMISTRY, 2002, pages 5706 - 5715, XP055703119 *
YAN, Y.: "A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting", JOURNAL OF MATERIALS CHEMISTRY A, 2016, pages 17587 - 17603, XP055703122 *
YU , X. -Y.: "Formation of Nickel Sulfide Nanoframes from Metal-Organic Frameworks with Enhanced Pseudocapacitive and Electrocatalytic Properties", ANGEW. CHEM. INT. ED., 2015, pages 5331 - 5335, XP055703117 *
ZHANG, X.: "Ni3[Fe (CN) 6]2 nanocubes boost the catalytic activity of Pt to wards electrochemical hydrogen evolution", INORG. CHEM. FRONT., 14 May 2018 (2018-05-14), XP055703124 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477883A (en) * 2020-05-11 2020-07-31 叶际宽 MOFs-derived porous carbon-coated NiFe nano-alloy oxygen evolution catalyst and preparation method thereof
CN111822054A (en) * 2020-08-14 2020-10-27 陕西科技大学 Nano porous material anode catalyst and preparation method thereof
CN112086644A (en) * 2020-09-01 2020-12-15 广东工业大学 Metal sulfide lithium ion negative electrode material and preparation method thereof
CN112086644B (en) * 2020-09-01 2022-04-01 广东工业大学 Metal sulfide lithium ion negative electrode material and preparation method thereof
CN112626559A (en) * 2020-12-29 2021-04-09 山东大学 NiFe-PBAs-F catalyst with multi-stage structure and preparation method and application thereof
CN112626559B (en) * 2020-12-29 2022-01-25 山东大学 NiFe-PBAs-F catalyst with multi-stage structure and preparation method and application thereof
CN113200555A (en) * 2021-04-19 2021-08-03 南京师范大学 NiCo-PBA cross skeleton @ NiS2Preparation method and application of nano-framework material
CN113877540A (en) * 2021-10-09 2022-01-04 中国科学院过程工程研究所 Preparation method of prussian blue analogue-based composite adsorption material for cesium separation
CN114870862A (en) * 2022-05-06 2022-08-09 中国海洋大学 Composite oxide catalyst for purifying automobile exhaust and preparation method thereof
CN115954616A (en) * 2022-12-29 2023-04-11 广东卓高新材料科技有限公司 Coating membrane based on MOF material and preparation method thereof
CN115954616B (en) * 2022-12-29 2023-08-15 广东卓高新材料科技有限公司 Coating diaphragm based on MOF material and preparation method thereof

Also Published As

Publication number Publication date
KR20200042605A (en) 2020-04-24
KR102160934B1 (en) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2020080637A1 (en) Metal-organic framework-based water electrolysis catalyst derived from prussian blue analog comprising three transition metals and comprising size-controlled pores, and method of preparing same
WO2021167212A1 (en) Heteroelement-doped high-graphite porous carbon body, catalyst comprising same, and method for producing same
Higgins et al. Activated and nitrogen-doped exfoliated graphene as air electrodes for metal–air battery applications
Liu et al. High performance of anode supported BaZr0. 1Ce0. 7Y0. 2O3− δ (BZCY) electrolyte cell for IT-SOFC
Hu et al. Detrimental phase evolution triggered by Ni in perovskite-type cathodes for CO2 electroreduction
WO2017135709A1 (en) Carrier-nanoparticle composite, catalyst containing same, and method for producing same
WO2019022268A1 (en) Zinc oxide nanoparticle/reduced graphene oxide nanocomposite photocatalyst with controlled shape having high photocatalytic characteristics, and manufacturing method therefor
WO2016064086A1 (en) Oxygen-generating catalyst, electrode and electrochemical reaction system
WO2018062769A1 (en) Carrier, electrode for fuel cell, membrane-electrode assembly, and fuel cell comprising same
KR20050084512A (en) Gas diffuser substrate containing catalysts for fuel cells, in addition to a method for the production thereof
Niemczyk et al. Effective oxygen reduction on A-site substituted LaCuO 3− δ: toward air electrodes for SOFCs based on perovskite-type copper oxides
Chen et al. Coating internal surface of porous electrode for decreasing the ohmic resistance and shifting oxygen reduction reaction pathways in solid oxide fuel cells
WO2015069068A1 (en) Catalyst for fuel cell and fuel cell comprising same
CN109585860B (en) Preparation method of sulfur-doped cobalt oxide and sulfur, nitrogen and oxygen-doped carbon in-situ composite electrode
WO2015069069A1 (en) Fuel cell and method for manufacturing same
WO2021242028A1 (en) Electrode for high-performance alkaline water electrolysis, and manufacturing method therefor
WO2013165079A1 (en) Cathode material for solid oxide fuel cell, composition for cathode containing thereof, cathode for solid oxide fuel cell, and solid oxide fuel cell
Silva et al. Mn-doped Co 3 O 4 for acid, neutral and alkaline electrocatalytic oxygen evolution reaction
WO2022025479A1 (en) Dry reforming catalyst comprising perovskite structure material having eluted transition element, method for manufacturing same, dry reforming catalyst system comprising same, and solid oxide fuel cell comprising same
WO2022103158A1 (en) Anode for anion exchange membrane water electrolysis
Yaremchenko et al. Perovskite-like LaNiO3-δ as oxygen electrode material for solid oxide electrolysis cells
WO2022169061A1 (en) In situ-grown porous-tio2-x-based catalyst and preparation method therefor
Han et al. Electrochemical performance of Ba0. 8Sr0. 2Co0. 7Fe0. 2Nb0. 1O3− δ–Ce0. 85Sm0. 15O1. 925 composite cathodes for intermediate temperature solid oxide fuel cells
WO2023075566A1 (en) Composite comprising platinum-alkaline earth metal alloy, fuel cell and water electrolysis cell comprising same, and preparation method therefor
WO2021194043A1 (en) Catalyst for fenton reaction system comprising metal oxide containing functional group on surface thereof, and fenton reaction system using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/08/2021).

122 Ep: pct application non-entry in european phase

Ref document number: 19874254

Country of ref document: EP

Kind code of ref document: A1