WO2020080582A1 - Strain sensor for dynamic analysis, and method for manufacturing same strain sensor - Google Patents

Strain sensor for dynamic analysis, and method for manufacturing same strain sensor Download PDF

Info

Publication number
WO2020080582A1
WO2020080582A1 PCT/KR2018/012413 KR2018012413W WO2020080582A1 WO 2020080582 A1 WO2020080582 A1 WO 2020080582A1 KR 2018012413 W KR2018012413 W KR 2018012413W WO 2020080582 A1 WO2020080582 A1 WO 2020080582A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain sensor
fabric
conductive material
modified
exercise
Prior art date
Application number
PCT/KR2018/012413
Other languages
French (fr)
Korean (ko)
Inventor
황희선
정수환
이예인
Original Assignee
한국로봇융합연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국로봇융합연구원 filed Critical 한국로봇융합연구원
Publication of WO2020080582A1 publication Critical patent/WO2020080582A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes

Definitions

  • the present invention relates to a strain sensor for dynamic analysis, and a method for manufacturing the strain sensor, and more particularly, to a strain sensor for dynamic analysis in sports that requires information collection according to movement of a joint.
  • the electrode in the form of a composite of a conventional matrix and a conductive material requires a large amount of conductive material to obtain a desired conductivity.
  • the proportion of the conductive material is increased, the conductivity is improved, but the elastic properties of the matrix are reduced, thereby reducing the elasticity of the composite.
  • Stretchable electrode is applied to various fields such as artificial electronic skin, curved display, and tension sensor.
  • various tensile sensors such as health rehabilitation treatment, personal health monitoring, structural defect monitoring, and sports player performance monitoring, have been re-examined
  • studies on flexible, flexible, and tensile-sensitive tensile sensors have been actively conducted.
  • high elasticity and high sensitivity tensile sensors have been applied to fields such as biomechanics, physiology, and kinesiology that require relatively large deformation.
  • the present invention has been devised to solve the above-described conventional problems, and according to an embodiment of the present invention, the purpose of the present invention is to provide a strain sensor for motion analysis in sports that requires information collection according to movement of a joint. have.
  • the purpose of the present invention is to provide a strain sensor in which electrical resistance is changed according to movement of a joint of a body such as a knee, elbow, finger, etc. in order to collect exercise information in a force.
  • the purpose of providing a strain sensor that can be worn directly on the human body by coating a conductive material on nylon stockings.
  • the exercise information data is generated based on the measurement data measured by the strain sensor attached to the human body, and the exercise information data and the previously stored standard exercise information data are compared and analyzed to guide the user to the exercise guide
  • the purpose is to provide a training system using a joint sensor that can provide information.
  • a first object of the present invention is a strain sensor, the fabric having elasticity; And a conductive material layer coated on one side of the fabric surface.
  • the fabric may be characterized in that the nylon stockings.
  • the conductive material may be characterized in that the carbon nanotubes.
  • the fabric is modified to have a (-) charge
  • the conductive material layer is formed by repeatedly cross-injecting carbon nanotubes modified to run + charges and carbon nanotubes modified to run-charges.
  • the fabric is an O 2 plasma-treated fabric
  • the carbon nanotubes modified to exhibit + charges are single-walled carbon nanotubes (SWNT) having -NH 3 + groups, and the carbons modified to show charges of- nanotubes -COO - it can be characterized in that the single-wall carbon nanotubes (SWNT) having a group.
  • SWNT single-walled carbon nanotubes
  • it may be characterized in that it further comprises an electrode portion provided on the end side of the conductive material layer, and a connector that is connected to the other end of the electrode portion and is detachable from the communication board.
  • a second object of the present invention is a method for manufacturing a strain sensor, comprising: a first step of preparing a fabric having elasticity; And a second step of coating a conductive material layer by spraying a conductive material on one side of the fabric surface. It can be achieved as a method of manufacturing a strain sensor.
  • the fabric-it may be characterized in that it is modified to have a charge.
  • the second step includes: a 2-1 step of spraying the carbon nanotubes, which have been opened so as to have a + charge on one surface of the fabric; And-2-2 steps of spraying the carbon nanotubes modified to exhibit electric charges.
  • the 2-1 step and the 2-2 step may be characterized in that it further comprises the step of spraying purified water.
  • step 2-1 further comprises the step 2-1, and repeating the step 2-2 a predetermined number of times.
  • a third object of the present invention is a training system using a strain sensor, the strain sensor according to the aforementioned first object attached to the human body so that a conductive material layer is adhered to the joint side of the body;
  • a receiving unit receiving measurement data which is a resistance value and a resistance change value measured by the strain sensor;
  • a motion recognition unit for calculating exercise information data according to a joint angle and an exercise amount based on the measurement data received from the receiving unit;
  • it can be achieved as a training system using a strain sensor, characterized in that it comprises a motion analysis unit for analyzing the movement motion, posture based on the exercise information data.
  • a database for storing standard exercise information data for standard joint angle, exercise amount, and exercise posture in accordance with the type of exercise in a DB, and the motion analysis unit compares the standard exercise information data with the measured exercise information data. Analyzing, it may be characterized in that it comprises an information notification unit for guiding the user to the comparative analysis data analyzed by the motion analysis unit.
  • an electrical resistance change is analyzed according to the movement of a joint of the body such as a knee, elbow, finger, etc., thereby analyzing motion.
  • the conductive material is coated on the nylon stocking, so that it can be directly worn on the human body.
  • the exercise information data is generated based on the measurement data measured by the elastic strain sensor attached to the human body, and the exercise information data and pre-stored standard exercise information data Has the effect of providing exercise guide information to the user through comparative analysis.
  • FIG. 1 is a flow chart of a method for manufacturing a strain sensor according to an embodiment of the present invention
  • Figure 2 is a schematic diagram showing a Spray layer-by-layer method of coating a conductive material on a fabric according to an embodiment of the present invention
  • Figure 3 is a picture of wearing a nylon stockings with a strain sensor directly tilted according to an embodiment of the present invention
  • Figure 4 is a schematic diagram of a state in which the strain sensor according to an embodiment of the present invention is worn on the knee side
  • Figure 5 is a schematic diagram of a state in which the strain sensor according to an embodiment of the present invention is worn on the elbow side
  • Figure 6 is a schematic diagram of a state in which the strain sensor according to an embodiment of the present invention is worn on the finger penetration side
  • FIG. 7 is a configuration diagram of a training system using a strain sensor according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for providing training information using a training system using a strain sensor according to an embodiment of the present invention
  • FIG. 9 shows an example of using a training system according to an embodiment of the present invention.
  • a component when referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them.
  • a third component may be interposed between them.
  • the thickness of the components is exaggerated for effective description of the technical content.
  • Embodiments described herein will be described with reference to cross-sectional views and / or plan views, which are ideal exemplary views of the present invention.
  • the thicknesses of the films and regions are exaggerated for effective description of technical content. Therefore, the shape of the exemplary diagram may be modified by manufacturing technology and / or tolerance. Therefore, the embodiments of the present invention are not limited to the specific shapes shown, but also include changes in shapes generated according to the manufacturing process. For example, the area illustrated at a right angle may be rounded or have a shape having a predetermined curvature. Therefore, the regions illustrated in the drawings have properties, and the shapes of the regions illustrated in the drawings are for illustrating a specific shape of the region of the device and are not intended to limit the scope of the invention.
  • terms such as first and second are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component.
  • the embodiments described and illustrated herein also include its complementary embodiments.
  • Figure 1 shows a flow chart of a method for manufacturing a strain sensor according to an embodiment of the present invention.
  • Figure 2 shows a schematic diagram showing a Spray layer-by-layer method for coating the conductive material (2) on the fabric (1) according to an embodiment of the present invention.
  • the strain sensor 10 basically comprises a layer of a conductive material 2 coated on one surface of the fabric 1 having elasticity.
  • the fabric 1 having such elasticity is composed of nylon stockings in the embodiment of the present invention.
  • the conductive material 2 according to the embodiment of the present invention is composed of carbon nanotubes (CNT).
  • the fabric 1 is modified to have a charge
  • the conductive material 2 layer is formed by repeatedly cross-spraying a carbon nanotube modified to have a + charge and a carbon nanotube modified to have a charge. Can be.
  • the fabric 1 is an O 2 plasma-treated fabric
  • the carbon nanotubes modified to have + charges are single-walled carbon nanotubes (SWNT) 3 having -NH 3 + groups, and-charges. so that the modified carbon nanotubes stand out tube is -COO - may be of a single-wall carbon nanotubes (SWNT) (4) having a group.
  • SWNT single-walled carbon nanotubes
  • an electrode part may be provided at the end of the conductive material (2) layer, and connected to the other end of the electrode part, and may include a communication board and a detachable connector.
  • the strain sensor 10 is to coat the carbon nanotube, which is the conductive material 2, on one side of the fabric 1 having elasticity using a spray layer-by-layer method.
  • a fabric 1 having elasticity is prepared (S1). And for this fabric (1)-it is modified to have a charge. Specifically, O 2 plasma treatment is performed on the fabric 1 (S2).
  • the conductive material 2 is sprayed on one surface of the fabric 1 to coat the conductive material layer.
  • carbon nanotubes modified to show a + charge on one surface of the fabric are sprayed. Specifically, as shown in FIG. 2, a single-walled carbon nanotube (SWNT -NH 3 + ) (3) having a -NH 3 + group is injected (S3), and purified water (5) is injected (S4).
  • the elastic strain sensor 10 manufactured by the above-mentioned method is attached to the joints of the human body such as the elbow, knee, wrist, ankle, etc., and measures the change in resistance in real time to calculate the joint angle.
  • Figure 3 shows a picture of wearing a nylon stockings with a strain sensor 10 directly inclined according to an embodiment of the present invention.
  • Figure 4 shows a schematic diagram of a state in which the strain sensor 10 according to an embodiment of the present invention is worn on the knee side
  • FIG. 5 is worn on the elbow side of the strain sensor 10 according to the embodiment of the present invention.
  • It is a schematic diagram showing one state
  • FIG. 6 is a schematic diagram showing a state in which the strain sensor 10 according to an embodiment of the present invention is worn on the finger penetration side.
  • the electrical resistance changes according to the movement of the joints of the body, such as elbows, elbows, fingers for collecting exercise information in the force It is possible to analyze the motion by analyzing.
  • the strain sensor 10 according to an embodiment of the present invention it is possible to directly wear it on the human body by coating the nylon stockings with a conductive material 2.
  • FIG. 7 is a block diagram of a training system 100 using a stretchable strain sensor 10 according to an embodiment of the present invention.
  • Figure 8 shows a flow chart of a method for providing training information using a training system 100 using a stretchable strain sensor 10 according to an embodiment of the present invention.
  • Figure 9 shows an example of use of the training system 100 according to an embodiment of the present invention.
  • the training system 100 using the stretchable strain sensor 10 includes the above-mentioned stretchable strain sensor 10 attached to a joint of the body and the resistance value measured by the strain sensor 10 and
  • the receiving unit 110 receives the measurement data which is the resistance change value, and the motion recognition unit 120 which calculates the motion information data according to the joint angle and the exercise amount based on the measured data received from the receiving unit 110, It may be configured to include a motion analysis unit 130 for analyzing the movement motion, posture based on the exercise information data.
  • the elastic strain sensor 10 is attached to a joint of the body (S10), and measures a change in resistance according to the movement of the joint (S20).
  • the motion recognition unit 120 calculates motion information data for the joint angle, joint movement range, and angular velocity based on the measurement data S30 transmitted by the communication board 60 of the stretchable strain sensor 10 (S40). ).
  • the body in addition to the strain sensor 10 attached to the joint, the body may further include an acceleration sensor, an angular velocity sensor, and a gyro sensor. Therefore, the motion recognition unit 120 may receive the measured values from the strain sensor 10, the acceleration sensor, the angular velocity sensor, the gyro sensor, and the like, and collect motion information about body movement.
  • the motion analysis unit 130 analyzes the motion and posture based on the motion information data generated by the motion recognition unit 120 (S50).
  • standard exercise information data for standard joint angle, exercise amount, and exercise posture according to the type of exercise is DB-stored.
  • the motion analysis unit 130 generates training information by comparing and analyzing the standard exercise information data and the measured exercise information data. And the information notification unit 131 guides the user to the training information, which is comparative analysis data analyzed by the motion analysis unit 130 (S60).
  • the receiving unit 110, the motion recognition unit 120, the motion analysis unit 130, the database 140, and the information notification unit 131 may be provided in the user terminal.
  • the display unit 132 may be configured to display the measured exercise information data, the standard exercise information data, and the comparative analysis data on a screen according to an instruction to be displayed to the user.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Dentistry (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The present invention relates to a strain sensor for dynamic analysis and a method for manufacturing the strain sensor and, more specifically, to a strain sensor which changes in electrical resistance according to the movement of the joints of a body, such as knees, elbows, fingers, etc., in order to collect athletic information in sports, and can be worn directly on a human body by coating a conductive material on a nylon stocking.

Description

동적분석을 위한 스트레인 센서, 그 스트레인 센서의 제조방법Strain sensor for dynamic analysis, manufacturing method of the strain sensor
본 발명은 동적분석을 위한 스트레인 센서, 그 스트레인 센서의 제조방법에 관한 것으로, 보다 상세하게는 관절의 움직임에 따른 정보 수집이 필요한 스포츠에서의 동적분석을 위한 스트레인 센서에 관한 것이다.The present invention relates to a strain sensor for dynamic analysis, and a method for manufacturing the strain sensor, and more particularly, to a strain sensor for dynamic analysis in sports that requires information collection according to movement of a joint.
섬유(fiber)를 기반으로 하는 전자소자는 아직 개념적인 단계이지만, 섬유의 신축(stretching)과 직조의 가능성, 넓은 표면적, 표면 처리의 다양성, 복합재료 구성의 용이성과 같은 다양한 장점으로 인하여 많은 전자소자 시장을 대체할 가능성이 높다. 가능한 섬유 기반의 전자소자로서 텍스타일 태양전지, 신축성 트랜지스터, 신축성 디스플레이, 외부 자극형 약물 전달, 바이오 센서 및 가스 센서, 광조절 기능성 섬유, 기능성 의류, 방위 산업용 기능성 제품 등을 예로 들 수 있다.Although electronic devices based on fibers are still in a conceptual stage, many electronic devices due to various advantages such as the possibility of stretching and weaving of fibers, wide surface area, diversity of surface treatment, and ease of composition of composite materials It is likely to replace the market. Examples of possible fiber-based electronic devices include textile solar cells, stretchable transistors, stretchable displays, external stimulus drug delivery, biosensors and gas sensors, light-regulating functional fibers, functional clothing, and functional products for the defense industry.
섬유 기반의 전자소자에 사용되는 전도성 나노 섬유의 경우 전도성을 유지하면서 넓은 신장 범위를 확보하는 것이 유리하다. 종래의 매트릭스와 전도성 물질의 복합체 형태의 전극은 원하는 전도도를 얻기 위해 다량의 전도성 물질이 필요하다. 그러나 전도성 물질의 비율이 늘어날 경우 전도도는 향상하나 매트릭스의 탄성 특성이 감소하여 복합체의 신축성이 감소하게 된다.In the case of conductive nanofibers used in fiber-based electronic devices, it is advantageous to secure a wide elongation range while maintaining conductivity. The electrode in the form of a composite of a conventional matrix and a conductive material requires a large amount of conductive material to obtain a desired conductivity. However, when the proportion of the conductive material is increased, the conductivity is improved, but the elastic properties of the matrix are reduced, thereby reducing the elasticity of the composite.
신축성 유연 전극(stretchable electrode)은 인공 전자 피부, 휘는 디스플레이, 인장 센서와 같은 다양한 분야들에 적용되고 있다. 최근에 건강 재활 치료, 개인 건강 모니터링, 구조 결함 모니터링, 스포츠 선수 성능 모니터링 등 다양한 인장 센서의 잠재적 응용처가 재조명됨에 따라, 유연하면서 신축성 있고 동시에 인장에 따라 민감한 인장 센서에 관한 연구가 활발하게 진행되고 있다. 특히, 고신축성·고민감도 인장 센서는 비교적 큰 변형을 요구하는 생체역학(biomechanics), 생리학(physiology), 신체 운동학(kinesiology) 등의 분야에 응용되고 있다.Stretchable electrode is applied to various fields such as artificial electronic skin, curved display, and tension sensor. Recently, as the potential applications of various tensile sensors, such as health rehabilitation treatment, personal health monitoring, structural defect monitoring, and sports player performance monitoring, have been re-examined, studies on flexible, flexible, and tensile-sensitive tensile sensors have been actively conducted. . In particular, high elasticity and high sensitivity tensile sensors have been applied to fields such as biomechanics, physiology, and kinesiology that require relatively large deformation.
신축성을 가지면서 전도성을 일정하게 유지해야 하는 일반적인 유연 전극과는 달리, 인장 센서로 활용되기 위해서는 높은 신축성을 가지면서 동시에 인장에 따른 연속적인 전기적 특성 변화를 가져야 한다. 하지만 기 개발된 인장 센서의 경우, 굽힘과 인장 응력이 공존하는 비평면 구조(특히 인체)에 응용되기 어려움이 있다. 이를 해결하기 위해, 전도성 물질의 종류를 바꾸는 방법에 연구되어 왔으나, 단순히 전도성 물질의 변화만으로는 재료적인 한계로 인해 신축성과 민감도 두 가지 중요 요소를 동시에 구현하지 못하는 문제가 있었다.Unlike a general flexible electrode that has a stretch and must maintain a constant conductivity, in order to be used as a tension sensor, it must have a high stretch and have a continuous change in electrical properties due to tension. However, in the case of a previously developed tensile sensor, it is difficult to be applied to a non-planar structure (especially the human body) in which bending and tensile stress coexist. In order to solve this, a method of changing the type of the conductive material has been studied, but there is a problem in that it is not possible to simultaneously implement two important factors such as elasticity and sensitivity due to material limitations only by changing the conductive material.
따라서 본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 실시예에 따르면, 관절의 움직임에 따른 정보수집이 필요한 스포츠에서의 동작분석을 위한 스트레인 센서를 제공하는데 그 목적이 있다. Therefore, the present invention has been devised to solve the above-described conventional problems, and according to an embodiment of the present invention, the purpose of the present invention is to provide a strain sensor for motion analysis in sports that requires information collection according to movement of a joint. have.
본 발명의 실시예에 따르면, 스포스에서의 운동정보 수집을 위하여 무릅, 팔꿈치, 손가락 등 신체의 관절의 움직임에 따라 전기적 저항이 변하는 스트레인 센서를 제공하는데 그 목적이 있다. According to an embodiment of the present invention, the purpose of the present invention is to provide a strain sensor in which electrical resistance is changed according to movement of a joint of a body such as a knee, elbow, finger, etc. in order to collect exercise information in a force.
그리고, 본 발명의 실시예에 따르면 나일론 스타킹에 전도성 물질을 코팅하여 인체에 직접 착용이 가능한 스트레인 센서를 제공하는데 그 목적이 있다. And, according to an embodiment of the present invention, the purpose of providing a strain sensor that can be worn directly on the human body by coating a conductive material on nylon stockings.
또한, 본 발명의 일실시예 따르면, 인체에 부착된 스트레인 센서에서 측정된 측정데이터를 기반으로 운동정보데이터를 생성하고, 운동정보데이터와, 기 저장된 표준운동정보데이터를 비교분석하여 사용자에게 운동가이드 정보를 제공해 줄 수 있는 관절센서를 이용한 트레이닝 시스템을 제공하는데 그 목적을 갖는다. In addition, according to an embodiment of the present invention, the exercise information data is generated based on the measurement data measured by the strain sensor attached to the human body, and the exercise information data and the previously stored standard exercise information data are compared and analyzed to guide the user to the exercise guide The purpose is to provide a training system using a joint sensor that can provide information.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned are clearly understood by those skilled in the art from the following description. Will be understandable.
본 발명의 제1목적은, 스트레인 센서에 있어서, 탄성을 갖는 직물; 및 상기 직물 표면 일측에 코팅되는 전도성 물질층을 포함하는 것을 특징으로 하는 스트레인 센서로서 달성될 수 있다. A first object of the present invention is a strain sensor, the fabric having elasticity; And a conductive material layer coated on one side of the fabric surface.
그리고 상기 직물은 나일론 스타킹인 것을 특징으로 할 수 있다. And the fabric may be characterized in that the nylon stockings.
또한, 상기 전도성 물질은 탄소나노튜브인 것을 특징으로 할 수 있다. In addition, the conductive material may be characterized in that the carbon nanotubes.
그리고 상기 직물은 (-) 전하를 띄도록 개질된 것이고, 상기 전도성 물질층은 + 전하를 뛰도록 개질된 탄소나노튜브와 - 전하를 뛰도록 개질된 탄소나노튜브를 반복 교차 분사하여 형성되는 것을 특징으로 할 수 있다. And the fabric is modified to have a (-) charge, and the conductive material layer is formed by repeatedly cross-injecting carbon nanotubes modified to run + charges and carbon nanotubes modified to run-charges. Can be done with
또한, 상기 직물은 O2 플라즈마 처리된 직물이고, 상기 + 전하를 띄도록 개질된 탄소나노튜브는 -NH3 +기를 갖는 단일벽 탄소나노튜브(SWNT)이고, 상기 - 전하를 띄도록 개질된 탄소나노튜브는 -COO-기를 갖는 단일벽 탄소나노튜브(SWNT)인 것을 특징으로 할 수 있다. Further, the fabric is an O 2 plasma-treated fabric, and the carbon nanotubes modified to exhibit + charges are single-walled carbon nanotubes (SWNT) having -NH 3 + groups, and the carbons modified to show charges of- nanotubes -COO - it can be characterized in that the single-wall carbon nanotubes (SWNT) having a group.
그리고 상기 전도성 물질층 끝단부 측에 구비되는 전극부와, 상기 전극부 타측끝단과 연결되며 통신보드와 탈부착 가능한 커넥터를 더 포함하는 것을 특징으로 할 수 있다. And it may be characterized in that it further comprises an electrode portion provided on the end side of the conductive material layer, and a connector that is connected to the other end of the electrode portion and is detachable from the communication board.
본 발명의 제2목적은 스트레인 센서의 제조방법에 있어서, 탄성을 갖는 직물을 준비하는 제1단계; 및 상기 직물 표면 일측에 전도성 물질을 분사하여 전도성 물질층을 코팅하는 제2단계;를 포함하는 것을 특징으로 하는 스트레인 센서의 제조방법으로서 달성될 수 있다. A second object of the present invention is a method for manufacturing a strain sensor, comprising: a first step of preparing a fabric having elasticity; And a second step of coating a conductive material layer by spraying a conductive material on one side of the fabric surface. It can be achieved as a method of manufacturing a strain sensor.
그리고 상기 제1단계에서, 상기 직물에 대하여 - 전하를 띄도록 개질하는 것을 특징으로 할 수 있다. And in the first step, with respect to the fabric-it may be characterized in that it is modified to have a charge.
또한, 상기 직물에 대해 O2 플라즈마처리를 진행하는 것을 특징으로 할 수 있다. In addition, it may be characterized in that the O 2 plasma treatment for the fabric.
그리고 상기 제2단계는, 상기 직물 일측 표면에 + 전하를 띄도록 개진된 탄소나노튜브를 분사하는 제2-1단계; 및 - 전하를 띄도록 개질된 탄소나노튜브를 분사하는 제2-2단계;를 포함하는 것을 특징으로 할 수 있다. In addition, the second step includes: a 2-1 step of spraying the carbon nanotubes, which have been opened so as to have a + charge on one surface of the fabric; And-2-2 steps of spraying the carbon nanotubes modified to exhibit electric charges.
또한, 제2-1단계와, 상기 제2-2단계 후에, 정제수를 분사하는 단계를 더 포함하는 것을 특징으로 할 수 있다. In addition, after the 2-1 step and the 2-2 step, it may be characterized in that it further comprises the step of spraying purified water.
그리고 제2-1단계와, 상기 제2-2단계를 설정된 횟수만큼 반복하는 단계를 더 포함하는 것을 특징으로 할 수 있다. And it may be characterized in that it further comprises the step 2-1, and repeating the step 2-2 a predetermined number of times.
본 발명의 제3목적은 스트레인 센서를 이용한 트레이닝 시스템에 있어서, 신체의 관절 측에 전도성물질층이 접착되도록 인체에 부착되는 앞서 언급한 제1목적에 따른 스트레인 센서; 상기 스트레인 센서에서 측정된 저항값 및 저항변화값인 측정데이터를 수신받는 수신유닛; 상기 수신유닛에서 수신받은 측정데이터를 기반으로 관절각도, 및 운동량에따른 운동정보데이터를 산출하는 모션인지부; 및 상기 운동정보데이터를 기반으로 운동 동작, 자세를 분석하는 모션분석부를포함하는 것을 특징으로 하는 스트레인 센서를 이용한 트레이닝 시스템으로서 달성될 수 있다. A third object of the present invention is a training system using a strain sensor, the strain sensor according to the aforementioned first object attached to the human body so that a conductive material layer is adhered to the joint side of the body; A receiving unit receiving measurement data which is a resistance value and a resistance change value measured by the strain sensor; A motion recognition unit for calculating exercise information data according to a joint angle and an exercise amount based on the measurement data received from the receiving unit; And it can be achieved as a training system using a strain sensor, characterized in that it comprises a motion analysis unit for analyzing the movement motion, posture based on the exercise information data.
그리고 운동종류에 따른 표준 관절각도, 운동량, 운동자세에 대한 표준 운동정보데이터를 DB화하여 저장하는 데이터베이스;를 포함하고, 상기 모션분석부는 상기 표준 운동정보데이터와, 측정된 상기 운동정보데이터를 비교분석하며, 모션분석부에서 분석된 비교분석데이터를 사용자에게 가이드하는 정보알림부를 포함하는 것을 특징으로 할 수 있다. And a database for storing standard exercise information data for standard joint angle, exercise amount, and exercise posture in accordance with the type of exercise in a DB, and the motion analysis unit compares the standard exercise information data with the measured exercise information data. Analyzing, it may be characterized in that it comprises an information notification unit for guiding the user to the comparative analysis data analyzed by the motion analysis unit.
본 발명의 실시예에 따른 스트레인 센서에 따르면, 관절의 움직임에 따른 정보수집이 필요한 스포츠에서의 동작분석이 가능한 효과를 갖는다. According to the strain sensor according to an embodiment of the present invention, motion analysis in a sport requiring information collection according to movement of a joint has an effect capable of being analyzed.
그리고 본 발명의 실시예에 따른 스트레인 센서에 따르면, 스포스에서의 운동정보 수집을 위하여 무릅, 팔꿈치, 손가락 등 신체의 관절의 움직임에 따라 전기적 저항변화를 분석하여 모션을 분석할 수 있는 효과를 갖는다. In addition, according to the strain sensor according to an embodiment of the present invention, in order to collect motion information from the force, an electrical resistance change is analyzed according to the movement of a joint of the body such as a knee, elbow, finger, etc., thereby analyzing motion.
또한, 본 발명의 실시예에 따른 스트레인 센서에 따르면, 나일론 스타킹에 전도성 물질을 코팅하여 인체에 직접 착용이 가능한 효과를 갖는다. In addition, according to the strain sensor according to an embodiment of the present invention, the conductive material is coated on the nylon stocking, so that it can be directly worn on the human body.
그리고 본 발명의 실시예에 따른 스트레인 센서를 이용한 트레이닝 시스템에 따르면, 인체에 부착된 신축성 스트레인 센서에서 측정된 측정데이터를 기반으로 운동정보데이터를 생성하고, 운동정보데이터와, 기 저장된 표준운동정보데이터를 비교분석하여 사용자에게 운동가이드 정보를 제공해 줄 수 있는 효과를 갖는다. And according to the training system using a strain sensor according to an embodiment of the present invention, the exercise information data is generated based on the measurement data measured by the elastic strain sensor attached to the human body, and the exercise information data and pre-stored standard exercise information data Has the effect of providing exercise guide information to the user through comparative analysis.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description. Will be able to.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석 되어서는 아니 된다.The following drawings attached to the present specification illustrate a preferred embodiment of the present invention, and serve to further understand the technical spirit of the present invention together with the detailed description of the present invention, and therefore the present invention is limited to those described in such drawings. It should not be construed limitedly.
도 1은 본 발명의 실시예에 따른 스트레인 센서 제조방법의 흐름도, 1 is a flow chart of a method for manufacturing a strain sensor according to an embodiment of the present invention,
도 2는 본 발명의 실시예에 따른 전도성 물질을 직물에 코팅하는 Spray layer-by-layer법을 나타낸 모식도,Figure 2 is a schematic diagram showing a Spray layer-by-layer method of coating a conductive material on a fabric according to an embodiment of the present invention,
도 3은 본 발명의 실시예에 따라 스트레인 센서를 직접 기워넣은 나일론 스타킹을 착용한 사진,Figure 3 is a picture of wearing a nylon stockings with a strain sensor directly tilted according to an embodiment of the present invention,
도 4는 본 발명의 실시예에 따른 스트레인 센서를 무릎측에 착용한 상태의 모식도, Figure 4 is a schematic diagram of a state in which the strain sensor according to an embodiment of the present invention is worn on the knee side,
도 5는 본 발명의 실시예에 따른 스트레인 센서를 팔꿈치 측에 착용한 상태의 모식도, Figure 5 is a schematic diagram of a state in which the strain sensor according to an embodiment of the present invention is worn on the elbow side,
도 6은 본 발명의 실시예에 따른 스트레인 센서를 손가락 관철 측에 착용한 상태의 모식도, Figure 6 is a schematic diagram of a state in which the strain sensor according to an embodiment of the present invention is worn on the finger penetration side,
도 7은 본 발명의 실시예에 따른 스트레인 센서를 이용한 트레이닝 시스템의 구성도,7 is a configuration diagram of a training system using a strain sensor according to an embodiment of the present invention,
도 8은 본 발명의 실시예에 따른 스트레인 센서를 이용한 트레이닝 시스템을 이용한 트레이닝 정보 제공방법의 흐름도, 8 is a flowchart of a method for providing training information using a training system using a strain sensor according to an embodiment of the present invention;
도 9는 본 발명의 실시예에 따른 트레이닝 시스템의 활용예를 도시한 것이다.9 shows an example of using a training system according to an embodiment of the present invention.
이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.The above objects, other objects, features and advantages of the present invention will be readily understood through the following preferred embodiments related to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to ensure that the disclosed contents are thorough and complete and that the spirit of the present invention is sufficiently conveyed to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한 도면들에 있어서, 구성요소들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.In the present specification, when a component is referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them. In addition, in the drawings, the thickness of the components is exaggerated for effective description of the technical content.
본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도인 단면도 및/또는 평면도들을 참고하여 설명될 것이다. 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 따라서 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서 본 발명의 실시예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. 예를 들면, 직각으로 도시된 영역은 라운드지거나 소정 곡률을 가지는 형태일 수 있다. 따라서 도면에서 예시된 영역들은 속성을 가지며, 도면에서 예시된 영역들의 모양은 소자의 영역의 특정 형태를 예시하기 위한 것이며 발명의 범주를 제한하기 위한 것이 아니다. 본 명세서의 다양한 실시예들에서 제1, 제2 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 실시예들은 그것의 상보적인 실시예들도 포함한다.Embodiments described herein will be described with reference to cross-sectional views and / or plan views, which are ideal exemplary views of the present invention. In the drawings, the thicknesses of the films and regions are exaggerated for effective description of technical content. Therefore, the shape of the exemplary diagram may be modified by manufacturing technology and / or tolerance. Therefore, the embodiments of the present invention are not limited to the specific shapes shown, but also include changes in shapes generated according to the manufacturing process. For example, the area illustrated at a right angle may be rounded or have a shape having a predetermined curvature. Therefore, the regions illustrated in the drawings have properties, and the shapes of the regions illustrated in the drawings are for illustrating a specific shape of the region of the device and are not intended to limit the scope of the invention. In various embodiments of the present specification, terms such as first and second are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. The embodiments described and illustrated herein also include its complementary embodiments.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for describing the embodiments and is not intended to limit the present invention. In this specification, the singular form also includes the plural form unless otherwise specified in the phrase. As used herein, 'comprises' and / or 'comprising' does not exclude the presence or addition of one or more other components.
아래의 특정 실시예들을 기술하는데 있어서, 여러 가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 독자는 이러한 여러 가지의 특정적인 내용들이 없어도 사용될 수 있다는 것을 인지할 수 있다. 어떤 경우에는, 발명을 기술하는 데 있어서 흔히 알려졌으면서 발명과 크게 관련 없는 부분들은 본 발명을 설명하는데 있어 별 이유 없이 혼돈이 오는 것을 막기 위해 기술하지 않음을 미리 언급해 둔다.In describing the specific embodiments below, various specific contents have been prepared to more specifically describe and understand the invention. However, a reader who has knowledge in this field to understand the present invention can recognize that it can be used without these various specific contents. It should be noted that, in some cases, parts that are commonly known in describing the invention and that are not significantly related to the invention are not described in order to prevent chaos from coming into account in explaining the present invention.
이하에서는 본 발명의 실시예에 따른 동적분석을 위한 스트레인 센서(10)의 구성 및 제조방법에 대해 설명하도록 한다. Hereinafter, the configuration and manufacturing method of the strain sensor 10 for dynamic analysis according to an embodiment of the present invention will be described.
먼저, 도 1은 본 발명의 실시예에 따른 스트레인 센서 제조방법의 흐름도를 도시한 것이다. 그리고 도 2는 본 발명의 실시예에 따른 전도성 물질(2)을 직물(1)에 코팅하는 Spray layer-by-layer법을 나타낸 모식도를 도시한 것이다. First, Figure 1 shows a flow chart of a method for manufacturing a strain sensor according to an embodiment of the present invention. And Figure 2 shows a schematic diagram showing a Spray layer-by-layer method for coating the conductive material (2) on the fabric (1) according to an embodiment of the present invention.
본 발명의 실시예에 따른 스트레인 센서(10)는 기본적으로, 탄성을 갖는 직물(1)의 일측 표면에 코팅된 전도성물질(2)층을 포함하여 구성된다. The strain sensor 10 according to an embodiment of the present invention basically comprises a layer of a conductive material 2 coated on one surface of the fabric 1 having elasticity.
이러한 탄성을 갖는 직물(1)은 본 발명의 실시예에서 나일론 스타킹으로 구성된다. 또한, 본 발명의 실시예에 따른 전도성 물질(2)은 탄소나노튜브(CNT)로 구성된다. The fabric 1 having such elasticity is composed of nylon stockings in the embodiment of the present invention. In addition, the conductive material 2 according to the embodiment of the present invention is composed of carbon nanotubes (CNT).
또한, 직물(1)은 - 전하를 띄도록 개질된 것이고, 전도성 물질(2)층은 + 전하를 띄도록 개질된 탄소나노튜브와 - 전하를 띄도록 개질된 탄소나노튜브를 반복 교차 분사하여 형성될 수 있다. In addition, the fabric 1 is modified to have a charge, and the conductive material 2 layer is formed by repeatedly cross-spraying a carbon nanotube modified to have a + charge and a carbon nanotube modified to have a charge. Can be.
즉, 구체적으로 직물(1)은 O2 플라즈마 처리된 직물이고, + 전하를 띄도록 개질된 탄소나노튜브는 -NH3 +기를 갖는 단일벽 탄소나노튜브(SWNT)(3)이고, - 전하를 띄도록 개질된 탄소나노튜브는 -COO-기를 갖는 단일벽 탄소나노튜브(SWNT)(4)로 구성될 수 있다. That is, specifically, the fabric 1 is an O 2 plasma-treated fabric, and the carbon nanotubes modified to have + charges are single-walled carbon nanotubes (SWNT) 3 having -NH 3 + groups, and-charges. so that the modified carbon nanotubes stand out tube is -COO - may be of a single-wall carbon nanotubes (SWNT) (4) having a group.
그리고 전도성 물질(2)층 끝단부 측에 전극부 구비될 수 있으며, 이러한 전극부 타측끝단과 연결되며 통신보드와 탈부착 가능한 커넥터를 포함하여 구성될 수 있다.In addition, an electrode part may be provided at the end of the conductive material (2) layer, and connected to the other end of the electrode part, and may include a communication board and a detachable connector.
본 발명의 실시예에 따른 스트레인 센서(10)는 전도성 물질(2)인 탄소나노튜브를 탄성을 갖는 직물(1) 일측에 Spray layer-by-layer 법을 이용하여 코팅하게 된다. The strain sensor 10 according to an embodiment of the present invention is to coat the carbon nanotube, which is the conductive material 2, on one side of the fabric 1 having elasticity using a spray layer-by-layer method.
도 2에 도시된 바와 같이, 탄성을 갖는 직물(1)을 준비한다(S1). 그리고 이러한 직물(1)에 대하여 - 전하를 띄도록 개질하게 된다. 구체적으로 직물(1)에 대해 O2 플라즈마처리를 진행하게 된다(S2). As shown in FIG. 2, a fabric 1 having elasticity is prepared (S1). And for this fabric (1)-it is modified to have a charge. Specifically, O 2 plasma treatment is performed on the fabric 1 (S2).
그리고 직물(1) 표면 일측에 전도성 물질(2)을 분사하여 전도성 물질층을 코팅하게 된다. 먼저, 직물 일측 표면에 + 전하를 띄도록 개질된 탄소나노튜브를 분사하게 된다. 구체적으로 도 2에 도시된 바와 같이, -NH3 +기를 갖는 단일벽 탄소나노튜브(SWNT -NH3 +)(3)를 분사하고(S3), 정제수(5)를 분사하게 된다(S4). Then, the conductive material 2 is sprayed on one surface of the fabric 1 to coat the conductive material layer. First, carbon nanotubes modified to show a + charge on one surface of the fabric are sprayed. Specifically, as shown in FIG. 2, a single-walled carbon nanotube (SWNT -NH 3 + ) (3) having a -NH 3 + group is injected (S3), and purified water (5) is injected (S4).
그리고 연속적으로, - 전하를 띄도록 개질된 탄소나노튜브를 분사하게 된다. 구체적으로 도 2에 도시된 바와 같이, -COO-기를 갖는 단일벽 탄소나노튜브(SWNT -COO-)(4)를 분사하고(S5), 정제수(5)를 분사하게 된다(S5). 이러한 S3 내지 S5는 설정된 횟수만큼 반복하게 된다(S6). And continuously,-Carbon nanotubes modified to be charged are injected. As specifically shown in Figure 2, -COO - SWNT having (SWNT -COO -), thereby ejecting a jet (4) and (S5), purified water (5) (S5). These S3 to S5 are repeated a set number of times (S6).
앞서 언급한 방법에 의해 제조된 신축성 스트레인 센서(10)는 인체의 팔꿈치, 무릎, 손목, 발목 등 관절에 부착되게 되며 실시간으로 저항 변화값을 측정하여 관절각도를 산출하게 된다. The elastic strain sensor 10 manufactured by the above-mentioned method is attached to the joints of the human body such as the elbow, knee, wrist, ankle, etc., and measures the change in resistance in real time to calculate the joint angle.
도 3은 본 발명의 실시예에 따라 스트레인 센서(10)를 직접 기워넣은 나일론 스타킹을 착용한 사진을 도시한 것이다. Figure 3 shows a picture of wearing a nylon stockings with a strain sensor 10 directly inclined according to an embodiment of the present invention.
그리고 도 4는 본 발명의 실시예에 따른 스트레인 센서(10)를 무릎측에 착용한 상태의 모식도를 도시한 것이고, 도 5는 본 발명의 실시예에 따른 스트레인 센서(10)를 팔꿈치 측에 착용한 상태의 모식도를 도시한 것이며, 도 6은 본 발명의 실시예에 따른 스트레인 센서(10)를 손가락 관철 측에 착용한 상태의 모식도를 도시한 것이다. And Figure 4 shows a schematic diagram of a state in which the strain sensor 10 according to an embodiment of the present invention is worn on the knee side, and FIG. 5 is worn on the elbow side of the strain sensor 10 according to the embodiment of the present invention. It is a schematic diagram showing one state, and FIG. 6 is a schematic diagram showing a state in which the strain sensor 10 according to an embodiment of the present invention is worn on the finger penetration side.
도 3 내 지도 6에 도시된 바와 같이, 본 발명의 실시예에 따른 스트레인 센서(10)에 따르면, 스포스에서의 운동정보 수집을 위하여 무릅, 팔꿈치, 손가락 등 신체의 관절의 움직임에 따라 전기적 저항변화를 분석하여 모션을 분석할 수 있게 된다. 또한, 본 발명의 실시예에 따른 스트레인 센서(10)에 따르면, 나일론 스타킹에 전도성 물질(2)을 코팅하여 인체에 직접 착용이 가능하다. As shown in the map 6 in Figure 3, according to the strain sensor 10 according to an embodiment of the present invention, the electrical resistance changes according to the movement of the joints of the body, such as elbows, elbows, fingers for collecting exercise information in the force It is possible to analyze the motion by analyzing. In addition, according to the strain sensor 10 according to an embodiment of the present invention, it is possible to directly wear it on the human body by coating the nylon stockings with a conductive material 2.
이하에서는 앞서 언급한 신축성 스트레인 센서(10)를 이용한 트레이닝 시스텝(100)에 대해 설명하도록 한다. 도 7은 본 발명의 실시예에 따른 신축성 스트레인 센서(10)를 이용한 트레이닝 시스텝(100)의 구성도를 도시한 것이다. 그리고 도8은 본 발명의 실시예에 따른 신축성 스트레인 센서(10)를 이용한 트레이닝 시스텝(100)을 이용한 트레이닝 정보 제공방법의 흐름도를 도시한 것이다. 또한, 도 9는 본 발명의 실시예에 따른 트레이닝 시스텝(100)의 활용예를 도시한 것이다.Hereinafter, the training system 100 using the above-mentioned elastic strain sensor 10 will be described. 7 is a block diagram of a training system 100 using a stretchable strain sensor 10 according to an embodiment of the present invention. And Figure 8 shows a flow chart of a method for providing training information using a training system 100 using a stretchable strain sensor 10 according to an embodiment of the present invention. In addition, Figure 9 shows an example of use of the training system 100 according to an embodiment of the present invention.
본 발명의 실시예에 따른 신축성 스트레인 센서(10)를 이용한 트레이닝 시스텝(100)은 신체의 관절에 부착되는 앞서 언급한 신축성 스트레인 센서(10)와, 스트레인 센서(10)에서 측정된 저항값 및 저항변화값인 측정데이터를 수신받는 수신유닛(110)과, 수신유닛(110)에서 수신받은 측정데이터를 기반으로 관절각도, 및 운동량에 따른 운동정보데이터를 산출하는 모션인지부(120)와, 운동정보데이터를 기반으로 운동 동작, 자세를 분석하는 모션분석부(130)를 포함하여 구성될 수 있다. The training system 100 using the stretchable strain sensor 10 according to the embodiment of the present invention includes the above-mentioned stretchable strain sensor 10 attached to a joint of the body and the resistance value measured by the strain sensor 10 and The receiving unit 110 receives the measurement data which is the resistance change value, and the motion recognition unit 120 which calculates the motion information data according to the joint angle and the exercise amount based on the measured data received from the receiving unit 110, It may be configured to include a motion analysis unit 130 for analyzing the movement motion, posture based on the exercise information data.
신축성 스트레인 센서(10)는 신체의 관절에 부착되어(S10), 관절의 움직임에 따른 저항 변화값을 측정하게 된다(S20). 모션인지부(120)는 신축성 스트레인 센서(10)의 통신보드(60)에 의해 전송된 측정데이터(S30)를 기반으로 관절각도, 관절가동범위, 각속도에 대한 운동정보데이터를 산출하게 된다(S40). 또한, 본 발명의 실시예에서는 관절에 부착되는 스트레인 센서(10) 외에, 신체에 장착되는 가속도센서, 각속도센서, 및 자이로 센서 등을 더 포함할 수 있다. 따라서 모션인지부(120)는 이러한 스트레인 센서(10), 가속도센서, 각속도센서, 자이로센서 등에서 측정된 값들을 전송받아 신체 움직임에 관한 운동정보를 수집할 수 있게 된다.The elastic strain sensor 10 is attached to a joint of the body (S10), and measures a change in resistance according to the movement of the joint (S20). The motion recognition unit 120 calculates motion information data for the joint angle, joint movement range, and angular velocity based on the measurement data S30 transmitted by the communication board 60 of the stretchable strain sensor 10 (S40). ). In addition, in an embodiment of the present invention, in addition to the strain sensor 10 attached to the joint, the body may further include an acceleration sensor, an angular velocity sensor, and a gyro sensor. Therefore, the motion recognition unit 120 may receive the measured values from the strain sensor 10, the acceleration sensor, the angular velocity sensor, the gyro sensor, and the like, and collect motion information about body movement.
그리고 모션분석부(130)는 모션인지부(120)에서 생성한 운동정보데이터를 기반으로 운동 동작, 자세를 분석하게 된다(S50). 데이터베이스(140)에는 운동종류에 따른 표준 관절각도, 운동량, 운동자세에 대한 표준 운동정보데이터를 DB화하여 저장하고 있다. Then, the motion analysis unit 130 analyzes the motion and posture based on the motion information data generated by the motion recognition unit 120 (S50). In the database 140, standard exercise information data for standard joint angle, exercise amount, and exercise posture according to the type of exercise is DB-stored.
따라서 모션분석부(130)는 이러한 표준 운동정보데이터와, 측정된 운동정보데이터를 비교분석하여 트레이닝 정보를 생성하게 된다. 그리고 정보 알림부(131)는 모션분석부(130)에서 분석된 비교분석데이터인 트레이닝 정보를 사용자에게 가이드하게 된다(S60)Accordingly, the motion analysis unit 130 generates training information by comparing and analyzing the standard exercise information data and the measured exercise information data. And the information notification unit 131 guides the user to the training information, which is comparative analysis data analyzed by the motion analysis unit 130 (S60).
또한, 수신유닛(110)과, 모션인지부(120)와, 모션분석부(130)와, 데이터베이스(140)와, 상기 정보알림부(131)는 사용자 단말기 내에 구비되어질 수 있다. 그리고 디스플레이부(132)를 포함하여 측정된 운동정보데이터와 표준운동정보데이터, 및 비교분석데이터를 지시에 따라 화면상에 표시하여 사용자에게 디스플레이할 수 있도록 구성될 수 있다. In addition, the receiving unit 110, the motion recognition unit 120, the motion analysis unit 130, the database 140, and the information notification unit 131 may be provided in the user terminal. In addition, the display unit 132 may be configured to display the measured exercise information data, the standard exercise information data, and the comparative analysis data on a screen according to an instruction to be displayed to the user.
또한, 상기와 같이 설명된 장치 및 방법은 상기 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.In addition, the apparatus and method described above are not limited to the configuration and method of the above-described embodiments, and the above-described embodiments are selectively combined in all or part of each embodiment so that various modifications can be made. It may be configured.

Claims (14)

  1. 스트레인 센서에 있어서, In the strain sensor,
    탄성을 갖는 직물; 및Fabric with elasticity; And
    상기 직물 표면 일측에 코팅되는 전도성 물질층을 포함하는 것을 특징으로 하는 스트레인 센서.Strain sensor characterized in that it comprises a conductive material layer coated on one side of the fabric surface.
  2. 제 1항에 있어서, According to claim 1,
    상기 직물은 나일론 스타킹인 것을 특징으로 하는 스트레인 센서.The fabric is a strain sensor, characterized in that the nylon stockings.
  3. 제 1항에 있어서, According to claim 1,
    상기 전도성 물질은 탄소나노튜브인 것을 특징으로 하는 스트레인 센서.The conductive material is a carbon nanotube strain sensor, characterized in that.
  4. 제 3항에 있어서, According to claim 3,
    상기 직물은 - 전하를 띄도록 개질된 것이고, 상기 전도성 물질층은 + 전하를 띄도록 개질된 탄소나노튜브와 - 전하를 띄도록 개질된 탄소나노튜브를 반복 교차 분사하여 형성되는 것을 특징으로 하는 스트레인 센서.The fabric is modified to have a charge, and the conductive material layer is formed by repeatedly cross-spraying a carbon nanotube modified to have a + charge and a carbon nanotube modified to have a charge. sensor.
  5. 제 4항에 있어서, The method of claim 4,
    상기 직물은 O2 플라즈마 처리된 직물이고, 상기 + 전하를 띄도록 개질된 탄소나노튜브는 -NH3 +기를 갖는 단일벽 탄소나노튜브(SWNT)이고, 상기 - 전하를 띄도록 개질된 탄소나노튜브는 -COO-기를 갖는 단일벽 탄소나노튜브(SWNT)인 것을 특징으로 하는 스트레인 센서.The fabric is an O 2 plasma-treated fabric, and the carbon nanotubes modified to have + charges are single-walled carbon nanotubes (SWNT) having -NH 3 + groups, and the carbon nanotubes modified to show-charges. Is a single-walled carbon nanotube (SWNT) having a -COO - group.
  6. 제 5항에 있어서, The method of claim 5,
    상기 전도성 물질층 끝단부 측에 구비되는 전극부와, 상기 전극부 타측끝단과 연결되며 통신보드와 탈부착 가능한 커넥터를 더 포함하는 것을 특징으로 하는 스트레인 센서.Strain sensor characterized in that it further comprises an electrode portion provided at the end of the conductive material layer, and a connector that is connected to the other end of the electrode portion and is detachable from the communication board.
  7. 스트레인 센서의 제조방법에 있어서, In the manufacturing method of the strain sensor,
    탄성을 갖는 직물을 준비하는 제1단계; 및A first step of preparing an elastic fabric; And
    상기 직물 표면 일측에 전도성 물질을 분사하여 전도성 물질층을 코팅하는 제2단계;를 포함하는 것을 특징으로 하는 스트레인 센서의 제조방법.Method of manufacturing a strain sensor comprising a; second step of coating a conductive material layer by spraying a conductive material on one side of the fabric surface.
  8. 제 7항에 있어서, The method of claim 7,
    상기 제1단계에서, 상기 직물에 대하여 - 전하를 띄도록 개질하는 것을 특징으로 하는 스트레인 센서의 제조방법.In the first step, with respect to the fabric-a method of manufacturing a strain sensor characterized in that it is modified to have a charge.
  9. 제 8항에 있어서, The method of claim 8,
    상기 직물에 대해 O2 플라즈마처리를 진행하는 것을 특징으로 하는 스트레인 센서의 제조방법.A method for manufacturing a strain sensor, characterized in that O 2 plasma treatment is performed on the fabric.
  10. 제 8항에 있어서, The method of claim 8,
    상기 제2단계는, The second step,
    상기 직물 일측 표면에 + 전하를 띄도록 개질된 탄소나노튜브를 분사하는 제2-1단계; 및A 2-1 step of spraying carbon nanotubes modified to have a + charge on one surface of the fabric; And
    - 전하를 띄도록 개질된 탄소나노튜브를 분사하는 제2-2단계;를 포함하는 것을 특징으로 하는 스트레인 센서의 제조방법.-A 2-2 step of spraying the modified carbon nanotubes so as to exhibit electric charges.
  11. 제 10항에 있어서, The method of claim 10,
    상기 제2-1단계와, 상기 제2-2단계 후에, 정제수를 분사하는 단계를 더 포함하는 것을 특징으로 하는 스트레인 센서의 제조방법.A method of manufacturing a strain sensor further comprising the step of spraying purified water after the steps 2-1 and 2-2.
  12. 제 11항에 있어서, The method of claim 11,
    상기 제2-1단계와, 상기 제2-2단계를 설정된 횟수만큼 반복하는 단계를 더 포함하는 것을 특징으로 하는 스트레인 센서의 제조방법.The method of manufacturing the strain sensor further comprises the step of repeating the steps 2-1 and 2-2.
  13. 스트레인 센서를 이용한 트레이닝 시스템에 있어서, In the training system using a strain sensor,
    신체의 관절 측에 전도성물질층이 접착되도록 인체에 부착되는 제1항 내지 제 6항 중 어느 한 항에 따른 스트레인 센서;The strain sensor according to any one of claims 1 to 6 attached to a human body so that a conductive material layer is adhered to a joint side of the body;
    상기 스트레인 센서에서 측정된 저항값 및 저항변화값인 측정데이터를 수신받는 수신유닛;A receiving unit receiving measurement data which is a resistance value and a resistance change value measured by the strain sensor;
    상기 수신유닛에서 수신받은 측정데이터를 기반으로 관절각도, 및 운동량에따른 운동정보데이터를 산출하는 모션인지부; 및A motion recognition unit for calculating exercise information data according to a joint angle and an exercise amount based on the measurement data received from the receiving unit; And
    상기 운동정보데이터를 기반으로 운동 동작, 자세를 분석하는 모션분석부를포함하는 것을 특징으로 하는 스트레인 센서를 이용한 트레이닝 시스템.Training system using a strain sensor, characterized in that it comprises a motion analysis unit for analyzing the movement, posture based on the exercise information data.
  14. 제 13항에 있어서, The method of claim 13,
    운동종류에 따른 표준 관절각도, 운동량, 운동자세에 대한 표준 운동정보데이터를 DB화하여 저장하는 데이터베이스;를 포함하고, 상기 모션분석부는 상기 표준 운동정보데이터와, 측정된 상기 운동정보데이터를 비교분석하며,Includes a database that stores and stores standard exercise information data for standard joint angle, exercise amount, and exercise posture according to the type of exercise in a DB. The motion analysis unit compares and analyzes the standard exercise information data and the measured exercise information data. And
    상기 모션분석부에서 분석된 비교분석데이터를 사용자에게 가이드하는 정보알림부를 포함하는 것을 특징으로 하는 스트레인 센서를 이용한 트레이닝 시스템.Training system using a strain sensor, characterized in that it comprises an information notification unit for guiding the user to the comparative analysis data analyzed by the motion analysis unit.
PCT/KR2018/012413 2018-10-15 2018-10-22 Strain sensor for dynamic analysis, and method for manufacturing same strain sensor WO2020080582A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0122718 2018-10-15
KR1020180122718A KR102168457B1 (en) 2018-10-15 2018-10-15 Strain sensor for Motion analysis and method for manufacturing the Strain sensor

Publications (1)

Publication Number Publication Date
WO2020080582A1 true WO2020080582A1 (en) 2020-04-23

Family

ID=70283430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012413 WO2020080582A1 (en) 2018-10-15 2018-10-22 Strain sensor for dynamic analysis, and method for manufacturing same strain sensor

Country Status (2)

Country Link
KR (1) KR102168457B1 (en)
WO (1) WO2020080582A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113303767A (en) * 2021-05-26 2021-08-27 东南大学 Large-deformation sensing fabric sensor in two-dimensional global range and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070169364A1 (en) * 2001-02-23 2007-07-26 Microstrain, Inc. Posture and body movement measuring system
KR20150064418A (en) * 2013-12-03 2015-06-11 황정범 System and method for correcting posture
KR20170126280A (en) * 2016-05-09 2017-11-17 연세대학교 산학협력단 Textile motion sensor and clothing system including the same
KR20180074868A (en) * 2016-12-23 2018-07-04 주식회사 코엔 A posture monitering system
KR101885130B1 (en) * 2017-09-12 2018-08-03 한국섬유개발연구원 Method for Manufacturing Sensor Fiber for Strain Gage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101732178B1 (en) 2010-01-15 2017-05-04 삼성전자주식회사 Nanofiber-nanowire composite and fabrication method thereof
KR101982282B1 (en) 2012-07-31 2019-05-24 삼성전자주식회사 Stretchable and conductive composite fiber yarn, manufacturing method thereof, and stretchable and conductive composite spun yarn including the same
KR20140030975A (en) 2012-09-04 2014-03-12 삼성전자주식회사 Strechable conductive nano fiber and method for producing the same
KR101887481B1 (en) 2016-09-19 2018-08-10 한국과학기술원 Highly stretchable three-dimensional percolated conductive nano-network structure, method of manufacturing the same, strain sensor including the same and wearable device including the same
KR101795303B1 (en) * 2016-09-23 2017-11-07 연세대학교 산학협력단 Textile motion sensor and clothing system including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070169364A1 (en) * 2001-02-23 2007-07-26 Microstrain, Inc. Posture and body movement measuring system
KR20150064418A (en) * 2013-12-03 2015-06-11 황정범 System and method for correcting posture
KR20170126280A (en) * 2016-05-09 2017-11-17 연세대학교 산학협력단 Textile motion sensor and clothing system including the same
KR20180074868A (en) * 2016-12-23 2018-07-04 주식회사 코엔 A posture monitering system
KR101885130B1 (en) * 2017-09-12 2018-08-03 한국섬유개발연구원 Method for Manufacturing Sensor Fiber for Strain Gage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113303767A (en) * 2021-05-26 2021-08-27 东南大学 Large-deformation sensing fabric sensor in two-dimensional global range and preparation method

Also Published As

Publication number Publication date
KR102168457B1 (en) 2020-10-22
KR20200042577A (en) 2020-04-24

Similar Documents

Publication Publication Date Title
Liu et al. Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics
Khalid et al. Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: A review
Tang et al. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage
WO2016186281A1 (en) Method for manufacturing strain sensor, strain sensor, and wearable device including same
US11840798B2 (en) Carbon nanocomposite sensors
CN102149318B (en) Wearing tool for measuring biological signal, and wearing-type motion assisting device
WO2014208883A1 (en) Strain sensor manufacturing method, strain sensor, and motion sensing device using strain sensor
Yan et al. Weaved piezoresistive triboelectric nanogenerator for human motion monitoring and gesture recognition
WO2012165880A2 (en) Apparatus for rehabilitation exercise, method and device for controlling proactive assistance control in apparatus for rehabilitation exercise, and mobile-linked glove apparatus for inputting data
WO2016073655A2 (en) Smart sensing systems and related methods
Abro et al. Development of a smart garment for monitoring body postures based on FBG and flex sensing technologies
CN107077207A (en) Data glove
US11071498B2 (en) Smart clothing with inertial, strain, and electromyographic sensors for human motion capture
WO2009112281A1 (en) Garment integrated apparatus for online posture and body movement detection, analysis and feedback
WO2017099508A1 (en) Sensor device for detecting pressure
Yamagishi et al. Elastic kirigami patch for electromyographic analysis of the palm muscle during baseball pitching
WO2020080582A1 (en) Strain sensor for dynamic analysis, and method for manufacturing same strain sensor
WO2017039350A1 (en) Deformation sensing sensor having improved sensitivity
Shi et al. Highly stretchable and strain sensitive fibers based on braid-like structure and sliver nanowires
Geng et al. Conductive thermoplastic elastomer composite capacitive strain sensors and their application in a wearable device for quantitative joint angle prediction
WO2017082613A1 (en) Pressure sensing insole
Cha et al. AgNW treated PU nanofiber/PDMS composites as wearable strain sensors for joint flexion monitoring
WO2021192737A1 (en) Motion detection system
Rashid et al. Highly resilient and responsive fabric strain sensors: Their effective integration into textiles and wireless communication for wearable applications
Paterson et al. Monitoring of hand function enabled by low complexity sensors printed on textile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937367

Country of ref document: EP

Kind code of ref document: A1