WO2020080498A1 - Head-mounted display, display system, and mirror device - Google Patents

Head-mounted display, display system, and mirror device Download PDF

Info

Publication number
WO2020080498A1
WO2020080498A1 PCT/JP2019/040992 JP2019040992W WO2020080498A1 WO 2020080498 A1 WO2020080498 A1 WO 2020080498A1 JP 2019040992 W JP2019040992 W JP 2019040992W WO 2020080498 A1 WO2020080498 A1 WO 2020080498A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
mirror
display
light
display device
Prior art date
Application number
PCT/JP2019/040992
Other languages
French (fr)
Japanese (ja)
Inventor
隆夫 渋江
足立 昌哉
佳弘 齊郷
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018197821A external-priority patent/JP2020064264A/en
Priority claimed from JP2018197822A external-priority patent/JP2020065235A/en
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2020080498A1 publication Critical patent/WO2020080498A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to a head mounted display, a display system and a mirror device.
  • a goggle type display device in which additional information such as characters is superimposed and displayed in the real space (for example, Patent Document 1).
  • a hologram display device in which an image is projected on a half mirror to make it possible to visually recognize an image of the scene spreading on the back side of the half mirror (for example, Patent Document 2).
  • the half mirror transmits and reflects light in half. For this reason, only half or less of the light of the image projected on the half mirror and the light transmitted from the background through the half mirror reaches the eyes of the user, resulting in a dim image.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a head mount display, a display system, and a mirror device that appropriately display additional information by distinguishing it from the real space.
  • a head mounted display is a display device that displays an image, a processing circuit that controls at least the display device, a position where light is emitted from the display device, and a control circuit that controls the processing circuit. And a mirror device that switches between a first mode of transmitting the light emitted from the display device and a second mode of reflecting the light emitted from the display device.
  • a display system is a display system including a transmission device that transmits an image and a head-mounted display that receives the image transmitted from the transmission device, wherein the head-mounted display is the transmission device.
  • a receiving circuit that receives an image transmitted from the display device, a display device that displays the image received by the receiving circuit, a processing circuit that controls at least the display device, and a position where light is emitted from the display device.
  • a mirror device that switches between a first mode in which the light emitted from the display device is transmitted and a second mode in which the light emitted from the display device is reflected, according to the control of the processing circuit. .
  • a display system for displaying an image, a mirror device in which a main surface is inclined at an acute angle with respect to a main surface of the display device, and image data is output to the display device, And a processing circuit that outputs opacity data corresponding to the image data to the mirror device.
  • a mirror device is a mirror device in which a main surface is inclined with respect to a main surface of a display device for displaying an image at an acute angle, and a plurality of mirror elements provided in a matrix form, A reflective polarizing plate provided on the opposite side of the surface facing the display device, wherein the reflective polarizing plate changes the reflectance and the transmittance depending on the phase of the incoming light, and the opacity data corresponding to the image.
  • the higher the opacity the higher the opacity is, and the more the reflectance of the reflection type polarizing plate is higher.
  • FIG. 1 is a diagram schematically showing the configuration of the display system according to the first embodiment.
  • FIG. 2 is a diagram showing an arrangement example of the display device and the mirror device.
  • FIG. 3 is a functional block diagram showing the configuration of the head mounted display.
  • FIG. 4 is a diagram showing the configuration of the display device.
  • FIG. 5 is a diagram showing the configuration of the head mounted display.
  • FIG. 6 is a diagram showing the configuration of the head mounted display.
  • FIG. 7A is a diagram schematically showing a state of being visually recognized by the user via the head mounted display in the transmissive mode.
  • FIG. 7B is a diagram showing an example of an image visually recognized by the user via the head mounted display in FIG. 7A.
  • FIG. 8A is a diagram schematically showing how a user visually recognizes a head-mounted display in the mirror surface mode.
  • FIG. 8B is a diagram showing an example of an image visually recognized by the user via the head mounted display in FIG. 8A.
  • FIG. 9 is a diagram showing the configuration of the mirror device.
  • FIG. 10 is a diagram showing a circuit configuration example of a mirror element.
  • FIG. 11A is a diagram schematically illustrating how a user visually recognizes the head-mounted display.
  • FIG. 11B is a diagram showing an example of an image visually recognized by the user via the head mounted display in FIG. 11A.
  • FIG. 12 is a diagram showing the configuration of the head mounted display.
  • FIG. 13 is a diagram showing the correspondence relationship between the basic image signal supplied to the head mounted display, the display image signal supplied to the display device, and the mirror image signal supplied to the mirror device.
  • FIG. 14A is a diagram schematically showing how a mirror device drives a mirror element and reflects a display image displayed on a display device.
  • FIG. 14B is a diagram schematically showing how a display device displays a display image by driving pixels.
  • FIG. 15 is a diagram for explaining the operation of changing the reflectance of the mirror device according to the operation of the user.
  • FIG. 16 is a diagram showing the configuration of the head mounted display.
  • FIG. 17 is a schematic diagram showing the main configuration of the display system of the third embodiment.
  • FIG. 18 is a block diagram showing the configuration of the processing circuit and the input / output of the processing circuit.
  • FIG. 19 is a schematic diagram showing an example of a laminated structure of a mirror device.
  • 20 is a schematic diagram showing a circuit configuration example of the mirror device shown in FIG.
  • FIG. 21 is a schematic diagram showing a reflection-type polarizing plate, light having a phase that transmits the reflection-type polarizing plate to the maximum extent, and light having a phase that is maximally reflected by the reflection-type polarizing plate.
  • FIG. 22 is a schematic diagram showing a mechanism in which the mirror device switches the light transmittance and the light reflectance for each mirror element.
  • FIG. 23 is a schematic diagram showing an example of a laminated structure of a mirror device different from that of FIG. FIG.
  • FIG. 24 is a schematic diagram showing a circuit configuration example of the mirror device shown in FIG.
  • FIG. 25A is a diagram showing a display device that displays a display image at the first timing.
  • FIG. 25B is a diagram showing a display device which displays a display image at the second timing.
  • FIG. 26A is a diagram showing an operation of the mirror device for reflecting the display image on the display device shown in FIG. 25A at the first timing.
  • FIG. 26B is a diagram showing an operation of the mirror device for reflecting the display image on the display device shown in FIG. 25B at the second timing.
  • FIG. 27A is a schematic diagram showing a relationship between a display device, a mirror device, an object, and an eye when controlling the mirror device so as to maximize reflection of graphics.
  • FIG. 27B is a schematic diagram showing the contents visually recognized in the case of FIG. 27A.
  • FIG. 28A is a schematic diagram showing a relationship between a display device, a mirror device, an object, and an eye when controlling the mirror device so as to minimize reflection of graphics.
  • FIG. 28B is a schematic diagram showing the contents visually recognized in the case of FIG. 28A.
  • FIG. 29A is a schematic diagram showing the relationship between the display device, the mirror device, the object, and the eye when the mirror device is controlled so that the reflectance and the transmittance of the pixel that reflects the graphic are 50%.
  • FIG. 29B is a schematic diagram showing the contents visually recognized in the case of FIG. 29A.
  • FIG. 30 is a schematic diagram showing a mirror device in which a margin area is set.
  • FIG. 31 is an explanatory diagram showing a mechanism for determining the width of the margin area.
  • FIG. 1 is a diagram schematically showing the configuration of the display system according to the first embodiment.
  • the display system 10 includes a transmitter 20 that transmits image information (basic image signal BDS) and a head mounted display 30 that receives the image information (basic image signal BDS) transmitted from the transmitter 20.
  • the image information (basic image signal BDS) is an image for virtual reality (VR: Virtual Reality) and an image for augmented reality (AR: Augmented Reality).
  • Virtual reality is a technology that works on human senses to artificially create an environment that is not real, but that actually feels like reality.
  • Augmented reality is a technology that adds information to and displays objects and structures that exist in the real space.
  • the transmission device 20 is a terminal device such as a personal computer (PC), a smartphone, or a tablet of an individual or a creator who creates video content.
  • PC personal computer
  • smartphone or a tablet of an individual or a creator who creates video content.
  • the transmitting device 20 transmits the image information to the head mounted display 30 by using wireless communication, but it is not limited to the wireless communication and may transmit the image information to the head mounted display 30 by using wired communication.
  • the head mounted display 30 includes a right-eye display device 100a, a left-eye display device 100b, a right-eye mirror device 102a, a left-eye mirror device 102b, a processing circuit 104, and a cover 106.
  • An image for the right eye is displayed on the display device 100a for the right eye, and an image for the left eye is displayed on the display device 100b for the left eye.
  • the right-eye mirror device 102a can project the right-eye image on the right eye of the user wearing the head mounted display 30 by reflecting the light from the right-eye display device 100a.
  • the left-eye mirror device 102b reflects the light from the left-eye display device 100b, so that the left-eye image can be displayed on the left eye of the user wearing the head mounted display 30.
  • the image for the left eye and the image for the right eye are parallax images different from each other, and the head mounted display 30 uses the binocular parallax to generate the stereoscopic effect of the images.
  • the right-eye display device 100a and the left-eye display device 100b have different images to be displayed, but operate in the same manner. Therefore, the display device 100 will be described below.
  • the right-eye mirror device 102a and the left-eye mirror device 102b have different images displayed on the display device 100 that reflect, but the operations are similar, and hence the mirror device 102 will be described below.
  • the display device 100 displays an image.
  • the mirror device 102 reflects the light from the display device 100. In other words, the mirror device 102 projects the image displayed on the display device 100.
  • the mirror device 102 is covered with a cover 106.
  • the processing circuit 104 controls the mirror device 102 and the display device 100.
  • FIG. 2 is a diagram showing an arrangement example of the display device and the mirror device.
  • the display device 100 is arranged diagonally in front of the mirror device 102 and at positions where the display surfaces face each other at a predetermined angle.
  • the mirror device 102 is arranged such that the reflection surface of the mirror device 102 is located in front of the line of sight S of the user. Further, the display device 100 is arranged at a position that does not hinder the line of sight S of the user.
  • the head mounted display 30 is used by being attached to the user's head.
  • the external shape of the head mounted display 30 shown in FIG. 1 is an example, and the external shape is not limited to the external shape shown in FIG.
  • the head-mounted display 30 allows the user to visually recognize the VR image or the AR image displayed on the display device 100 by reflecting the image on the mirror device 102.
  • FIG. 3 is a functional block diagram showing the configuration of the head mounted display.
  • the head mounted display 30 includes a display device 100, a mirror device 102, and a processing circuit 104.
  • An operation input circuit 120 is connected to the head mounted display 30.
  • the operation input circuit 120 outputs an input signal IS according to a user operation to the control circuit 108.
  • the processing circuit 104 includes a control circuit 108, an image output circuit 110, and an image processing circuit 112.
  • the image output circuit 110 supplies the basic image signal BDS to the image processing circuit 112.
  • the image output circuit 110 includes, for example, a receiving circuit 1101 and a memory 1102.
  • the receiving circuit 1101 receives the image information (hereinafter referred to as the basic image signal BDS) transmitted from the transmitting device 20 (see FIG. 1), and the memory 1102 stores the basic image signal BDS received by the receiving circuit 1101. To do.
  • the image processing circuit 112 receives the basic image signal BDS from the image output circuit 110.
  • the image processing circuit 112 includes a display image processing circuit 114 and a mirror image processing circuit 116.
  • the display image processing circuit 114 generates the display image signal DDS for the display device 100 based on the basic image signal BDS.
  • the mirror image processing circuit 116 generates a mirror image signal MDS for the mirror device 102 based on the basic image signal BDS.
  • the image processing circuit 112 supplies the generated display image signal DDS and mirror image signal MDS to the control circuit 108.
  • the control circuit 108 includes a control circuit 108A (display device control circuit) and a control circuit 108B (mirror device control circuit).
  • the control circuit 108A controls the display device 100 so that display is performed based on the display image signal DDS supplied from the display image processing circuit 114. In other words, the control circuit 108A controls the display device 100 based on the display image signal DDS so that the image light described later is emitted.
  • the control circuit 108B controls the mirror device 102 based on the mirror image signal MDS supplied from the mirror image processing circuit 116. In other words, the control circuit 108B controls the mirror device 102 so as to form a reflecting surface based on the mirror image signal MDS.
  • the display device 100 is described as a liquid crystal display device in which each pixel includes a liquid crystal element, but the display device 100 is not limited to the liquid crystal display device.
  • the display device 100 includes an organic electroluminescence display device in which each pixel is formed of an organic electroluminescence element, a quantum dot display device in which quantum dots are included, and an element in which each pixel includes a micro LED. It may be a micro LED display device or the like.
  • FIG. 4 is a diagram showing the configuration of the display device.
  • the display device 100 includes a display panel 200, a backlight 202, a data driver 204, and a gate driver 206.
  • the backlight 202 is a light source that irradiates the display panel 200 with light, and is composed of, for example, an LED (Light Emitting Diode), a CCFL (Cold Cathode Fluorescent Lamp), or the like.
  • LED Light Emitting Diode
  • CCFL Cold Cathode Fluorescent Lamp
  • the control circuit 108A controls the drive timing of the gate driver 206 and the data driver 204, and also supplies the display image signal DDS to the data driver 204. Further, the control circuit 108A controls the timing of the lighting period of the backlight 202.
  • the display panel 200 modulates the light emitted from the backlight 202 based on the drive signal supplied from the gate driver 206 and the display image signal DDS supplied from the data driver 204 to display an image.
  • the display panel 200 includes a pixel PIX, a gate line GL1, and a data line SL1.
  • the pixels PIX are arranged in a matrix in the X direction (row direction) and the Y direction (column direction) intersecting the X direction. More specifically, in the display device 100, n pixels PIX in the row direction (X direction) and m pixels PIX in the column direction (Y direction) are arranged in a matrix.
  • n and m are natural numbers of 1 or more.
  • the data line SL1 extends in the column direction and is connected to the plurality of pixels PIX in the column direction.
  • the gate line GL1 extends in the row direction and is connected to the plurality of pixels PIX in the row direction.
  • the gate driver 206 supplies a drive signal to each pixel PIX in the display panel 200 via the gate line GL1 according to the timing control by the control circuit 108A.
  • the data driver 204 supplies the display pixel signal DPS (pixel voltage) based on the display image signal DDS supplied from the control circuit 108A to each pixel PIX of the display panel 200 to which the drive signal is supplied by the gate driver 206.
  • the display panel 200 supplies the display pixel signal DPS to the pixel PIX selected by the gate driver 206 via the data driver 204.
  • the gate driver 206 drives line-sequentially along the arrangement direction of the gate lines GL1.
  • the image displayed on the display panel 200 is specularly reflected by the mirror device 102 and is visually recognized by the user.
  • the image visually recognized by the user is an image obtained by mirror-reversing the image displayed on the display panel 200.
  • the mirror surface inversion means horizontal inversion or vertical inversion. It should be noted that whether the image reflected by the mirror device 102 is horizontally or vertically inverted depends on the optical path when the image displayed on the display panel 200 is reflected by the mirror device 102. In other words, whether the image reflected by the mirror device 102 is horizontally or vertically inverted is determined according to the positional relationship between the display device 100 and the mirror device 102.
  • the image displayed on the display panel 200 needs to be an inverted image.
  • the display image processing circuit 114 reads out the basic image signal BDS stored in the memory 1102 of the image output circuit 110.
  • the display image processing circuit 114 outputs a display image signal DDS corresponding to an inverted image obtained by inverting the image represented by the basic image signal BDS based on the position where the display device 100 is arranged with respect to the mirror device 102.
  • the control circuit 108A causes the display image processing circuit 114 to display a reverse image on the display device 100.
  • the display image processing circuit 114 can directly output the basic image signal BDS as the display image signal DDS. In this case, the processing load on the head mounted display 30 can be reduced.
  • the mirror device 102 switches between the first mode in which the light emitted from the display device 100 is transmitted and the second mode in which the light emitted from the display device 100 is reflected, under the control of the control circuit 108B.
  • the first mode may be referred to as a “transmission mode”
  • the second mode may be referred to as a “mirror surface mode” or a “reflection mode”.
  • FIG. 5 and 6 are diagrams showing the configuration of the head mounted display.
  • FIG. 5 is a diagram showing a case where the mode is switched to the transparent mode.
  • FIG. 6 is a diagram showing a case where the mode is switched to the mirror surface mode.
  • the head mounted display 30 includes an optical element 130, a display device 100, and a mirror device 102.
  • a polarizing plate 100c is arranged on the front surface of the display device 100.
  • the optical element 130 is an element that refracts the light emitted from the mirror device 102, and is, for example, a concave lens.
  • the light emitted from the mirror device 102 is light that is incident from the outside of the head mounted display 30 and that is transmitted through the mirror device 102 (outside light OL) and light that is reflected from the display device 100 by the mirror device 102. (Image light DL2b).
  • the mirror device 102 is a device capable of changing the optical property of light transmitted by electric energy. More specifically, the mirror device 102 is a transmission / reflection control device that selectively changes at least a part of the in-plane into a reflective state or a transmissive state with respect to the incident light according to the incident direction of the light.
  • the mirror device 102 includes, for example, an electro-optical material whose optical properties change with electrical energy.
  • the electro-optical material includes liquid crystal and the like.
  • the mirror device 102 has a configuration in which a first polarizing plate 300, a polarization axis conversion unit 400, a reflective polarizing plate 500, and a second polarizing plate 600 are arranged from the viewing side. 5 and 6 are illustrated such that the respective parts are arranged with a gap for the sake of explanation, in reality, the respective parts are arranged close to or in close contact with each other.
  • the first polarizing plate 300 transmits a linearly polarized light component in the first direction (hereinafter, also referred to as “first linearly polarized light component”), and a linearly polarized light component in the second direction (hereinafter also referred to as “second linearly polarized light component”). ) Is absorbed.
  • first linearly polarized light component also referred to as “first linearly polarized light component”
  • second linearly polarized light component a linearly polarized light component in the second direction
  • the polarization direction of the light passing through the first polarizing plate 300 will be described in detail.
  • the direction of linearly polarized light which is the strongest component of the polarization components included in the light passing through the first polarizing plate 300, is called a transmission polarization axis.
  • the polarization direction of the light absorbed by the first polarizing plate 300 in detail, the direction of the linearly polarized light, which is the strongest component among the polarization components included in the light absorbed by the first polarizing plate 300, is the absorption polarization. Called the axis. That is, the first polarizing plate 300 has a transmission polarization axis in the first direction and an absorption polarization axis in the second direction.
  • the first polarizing plate 300 is realized by a polarizing plate or a polarizing film having an absorptive polarizer.
  • the display device 100 when a liquid crystal display panel is used for the display device 100, the display device 100 includes a polarizing plate 100c on the light emission surface side, and the polarizing plate 100c is a linear polarizing plate.
  • the polarizing plate 100c has a transmission polarization axis in the first direction and an absorption polarization axis in the second direction.
  • the polarizing plate 100c is realized by a polarizing plate or a polarizing film having an absorptive polarizer.
  • the transmission polarization axis of the polarization plate 100c, which is a linear polarization plate, and the transmission polarization axis of the first polarization plate 300 are arranged in parallel or substantially in parallel.
  • the image light DL emitted from the display device 100 becomes linearly polarized light having a polarization axis that matches the transmission polarization axis of the first polarization plate 300 by the polarization plate 100c.
  • the image light DL emitted from the display device 100 is light including the first linearly polarized light component.
  • the polarization axis conversion unit 400 can take at least two states, that is, a state in which the polarization axis of incident light is changed and a state in which it is not changed.
  • the polarization axis conversion unit 400 is configured so that these two states can be selected by electrical switching.
  • the polarization axis conversion unit 400 can take a state in which the polarization direction of light linearly polarized in one direction is rotated by 90 degrees and a state in which it is not rotated.
  • the polarization axis conversion unit 400 having such a function is realized, for example, by utilizing the electro-optical effect of liquid crystal. Note that, as will be described later, the polarization axis conversion unit 400 can also be in a state in which a state in which the polarization axis of incident light is changed and a state in which it is not changed are mixed.
  • the polarization axis conversion unit 400 includes a first substrate 402 provided with a second electrode 404, a second substrate 406 provided with a first electrode 408, and a liquid crystal layer 410.
  • the first substrate 402 and the second substrate 406 are arranged so that the second electrode 404 and the first electrode 408 face each other with a gap.
  • the liquid crystal layer 410 is arranged in the gap between the first substrate 402 and the second substrate 406.
  • a glass substrate or a flexible resin substrate can be used for example.
  • the polarization axis conversion unit 400 has a plurality of mirror elements MPIX, the second electrode 404 is arranged so as to face the plurality of mirror elements MPIX, and the first electrode 408 is arranged for each mirror element MPIX.
  • the positions of the second electrode 404 and the first electrode 408 may be reversed. That is, the first electrode 408 may be arranged on the first substrate 402 and the second electrode 404 may be arranged on the second substrate 406.
  • the polarization axis conversion unit 400 is connected to a signal supply circuit for applying a potential difference between the second electrode 404 and the first electrode 408. Further, the signal supply circuit is provided with a switch for switching on and off of the applied voltage.
  • the signal supply circuit is preferably configured to include a polarity reversal circuit so that voltages of both positive and negative electrodes are applied between the second electrode 404 and the first electrode 408.
  • the signal supply circuit includes a data driver 802, which will be described later, a gate driver 804, and a second electrode drive circuit which drives the second electrode 404.
  • the second electrode 404 and the first electrode 408 are formed of a transparent conductive material such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide).
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • alignment films for aligning liquid crystals are formed on the surfaces of the second electrode 404 and the first electrode 408. In other words, the alignment film is formed at the position where it is in direct contact with the liquid crystal layer.
  • the alignment direction of the liquid crystal layer 410 changes according to the potential difference given by the second electrode 404 and the first electrode 408.
  • the liquid crystal layer 410 includes liquid crystal molecules 412 whose alignment direction changes according to an applied voltage.
  • a positive type nematic liquid crystal is used for the liquid crystal layer 410.
  • the polarization axis conversion unit 400 drives the liquid crystal layer 410 by, for example, a twist nematic method (TN method). Specifically, when no voltage is applied to the liquid crystal layer 410, the liquid crystal molecules 412 are arranged between the second electrode 404 and the first electrode 408 in a direction substantially parallel to the main surfaces of the first substrate 402 and the second substrate 406.
  • the liquid crystal molecules 412 are aligned, and more specifically, the rod-shaped liquid crystal molecules 412 are oriented with their major axes twisted by 90 degrees. That is, the orientation of the liquid crystal molecules 412 has a structure in which the liquid crystal molecules 412 are twisted by 90 degrees while gradually rotating in one direction from the second electrode 404 to the first electrode 408 when no voltage is applied.
  • the alignment of the liquid crystal molecules 412 is in the direction in which the electric field acts, that is, the first substrate 402 and the first substrate 402, as shown in FIG.
  • the structure is such that the main surface of the two substrates 406 is aligned substantially vertically.
  • the liquid crystal layer 410 passes through the liquid crystal layer in a state where a voltage is applied by the second electrode 404 and the first electrode 408 (first state) and a state in which no voltage is applied (second state).
  • Change the polarization state of light More specifically, when the light of the first linearly polarized component is incident on the liquid crystal layer 410 in which the voltage is not applied and the liquid crystal molecules 412 are twisted and oriented by 90 degrees, the liquid crystal molecules 412 are The direction of polarized light rotates along with the rotation of. Since the liquid crystal molecules 412 are twisted by 90 degrees, the light transmitted through the liquid crystal layer 410 is substantially converted into the light of the second linear polarization component.
  • the first linearly polarized light is applied to the liquid crystal layer 410 which is aligned in a direction substantially perpendicular to the main surfaces of the first substrate 402 and the second substrate 406 in a state where a voltage is applied. Even if the component light is incident, the twist of the liquid crystal molecules 412 is eliminated, so that the polarization direction of the incident light does not change.
  • the polarization axis conversion section 400 electrically changes the polarization axis of the linearly polarized incident light when the incident light is transmitted (first state) and does not change it (second state). It has a function that can be selected by simple switching.
  • the method of driving the liquid crystal layer 410 of the polarization axis conversion unit 400 is not limited to the twist nematic method.
  • a negative type nematic liquid crystal is used as the liquid crystal molecules 412 of the liquid crystal layer 410, and a vertical electric field method in which the initial alignment of the liquid crystal molecules 412 is substantially vertical to the main surfaces of the first substrate 402 and the second substrate 406.
  • the liquid crystal layer 410 may be driven by.
  • the polarization axis conversion unit 400 uses the horizontal electric field method in which the initial alignment of the liquid crystal molecules 412 of the liquid crystal layer 410 is a homogeneous alignment in a direction substantially parallel to the main surfaces of the first substrate 402 and the second substrate 406. May be driven.
  • the horizontal electric field method is, for example, in-plane switching (IPS: In Plane Switching) for driving the liquid crystal molecules 412 by a horizontal electric field parallel to the main surface, or fringe field switching (FFS) for driving the liquid crystal molecules 412 by a fringe electric field. : Fringe Field Switching) and the like.
  • IPS In Plane Switching
  • FFS fringe field switching
  • the second electrode 404 and the first electrode 408 are either the first substrate 402 or the second substrate 406. Is located in.
  • the second electrode 404 and the first electrode 408 are disposed between the liquid crystal layer 410 and the first substrate 402.
  • the second electrode 404 and the first electrode 408 may be formed of the same conductive layer or may be formed of different conductive layers with an insulating layer interposed therebetween. Further, the shapes of the second electrode 404 and the first electrode 408 may be rectangular or comb-shaped.
  • the reflective polarizing plate 500 reflects the first linearly polarized light component and transmits the second linearly polarized light component of the incident light.
  • the polarization direction of the light reflected by the reflective polarizing plate 500 will be described in detail.
  • the direction of linearly polarized light, which is the strongest component of the polarization components included in the light reflected by the reflective polarizing plate 500, is called the reflective polarization axis. That is, the reflective polarizing plate 500 has a reflection polarization axis in the first direction and a transmission polarization axis in the second direction.
  • the reflective polarizing plate 500 having such characteristics is realized by, for example, a polarizing plate having a wire grid polarizer using metal nanowires, or a polarizing film made of a laminate of polymer films.
  • a polarizing plate having a wire grid polarizer includes, for example, a polarizer formed of a wire grid, a base material that supports the polarizer, and a protective film.
  • a birefringent reflective polarizing film having a structure in which a plurality of birefringent polymer films having mutually different birefringences are alternately laminated can be used as the polarizing film composed of a laminate of polymer films.
  • the second polarizing plate 600 absorbs the first linearly polarized light component of the incident light and transmits the second linearly polarized light component.
  • the polarization direction of the light absorbed by the second polarizing plate 600 will be described in detail.
  • the direction of the linearly polarized light, which is the strongest component of the polarization components included in the light absorbed by the second polarizing plate 600 is called the absorption polarization axis.
  • the polarization direction of the light passing through the second polarizing plate 600 will be described in detail.
  • the direction of the linearly polarized light, which is the strongest component of the polarization components included in the light passing through the second polarizing plate 600 is called the transmission polarization axis. . That is, the second polarizing plate 600 has an absorption polarization axis in the first direction and a transmission polarization axis in the second direction.
  • the second polarizing plate 600 As shown in FIG. 5, when external light OL (natural light or artificial illumination light) is incident on the second polarizing plate 600, light of the second linearly polarized light component is obtained as transmitted light, and light of other components is absorbed. It
  • the second polarizing plate 600 having such characteristics is realized by a polarizing plate or a polarizing film having an absorptive polarizer.
  • the mirror device 102 has a configuration in which the first polarizing plate 300 is arranged on one side of the polarization axis conversion section 400, and the reflective polarizing plate 500 and the second polarizing plate 600 are arranged on the other side.
  • the transmission polarization axis of the first polarization plate 300 and the reflection polarization axis of the reflection-type polarization plate 500 are arranged in parallel or substantially in parallel.
  • the absorption polarization axis of the first polarizing plate 300 and the transmission polarization axis of the reflective polarizing plate 500 are arranged in parallel or substantially in parallel.
  • the reflective polarization axis of the reflective polarizing plate 500 and the absorption polarization axis of the second polarizing plate 600 are arranged in parallel or substantially in parallel. Further, the transmission polarization axis of the reflective polarization plate 500 and the transmission polarization axis of the second polarization plate 600 are arranged in parallel or substantially in parallel.
  • the mirror device 102 has a function of switching between the specular mode and the transmissive mode depending on the combination of the polarization axes of the first polarizing plate 300 and the reflective polarizing plate 500.
  • the image light DL1 emitted from the display device 100 enters the first polarizing plate 300 from the viewing side.
  • the image light DL1 incident on the first polarizing plate 300 is the light of the first linearly polarized light component, and therefore passes through the first polarizing plate 300.
  • the switch of the polarization axis conversion unit 400 is off, and no voltage is applied from the power supply. Therefore, the liquid crystal molecules 412 of the liquid crystal layer 410 are twisted by 90 degrees between the second electrode 404 and the first electrode 408. Therefore, when the image light DL1 incident on the polarization axis conversion unit 400 passes through the liquid crystal layer 410, the polarization direction is rotated by 90 degrees. As a result, the image light DL1 that has passed through the polarization axis converter 400 is converted into light of the second linearly polarized light component.
  • the image light DL1 that has passed through the polarization axis converter 400 is the light of the second linearly polarized light component, and therefore passes through the reflective polarizing plate 500.
  • the image light DL1 that has passed through the reflective polarizing plate 500 is also the light of the second linearly polarized light component, and therefore passes through the second polarizing plate 600.
  • the external light OL incident on the second polarizing plate 600 from the outside of the head mounted display 30 only the light of the second linearly polarized light component is transmitted and the light of the other components is absorbed. Therefore, the external light OL1 that has passed through the second polarizing plate 600 becomes the light of the second linear polarization component.
  • the external light OL1 that has passed through the second polarizing plate 600 is the light of the second linearly polarized light component, and therefore passes through the reflective polarizing plate 500.
  • the polarization axis conversion unit 400 Since the polarization axis conversion unit 400 is in a state in which the switch is off and the voltage is not applied from the power source, the liquid crystal molecules 412 of the liquid crystal layer 410 are twisted by 90 degrees between the second electrode 404 and the first electrode 408. It is in a state. Therefore, when the external light OL1 that is the light of the second linearly polarized light component that has passed through the reflective polarizing plate 500 passes through the liquid crystal layer 410, the polarization direction is rotated by 90 degrees. As a result, the external light OL1 that has passed through the liquid crystal layer 410 of the polarization axis conversion unit 400 is converted into the light of the first linear polarization component.
  • the external light OL1 that has passed through the liquid crystal layer 410 of the polarization axis conversion unit 400 is the light of the first linearly polarized light component, and therefore passes through the first polarizing plate 300.
  • FIG. 7A is a diagram schematically showing how the image is viewed by the user through the head mounted display in the transmissive mode
  • FIG. 7B is an example of an image viewed by the user through the head mounted display in FIG. 7A.
  • FIG. The virtual image I is an image visually recognized by the user when the image light DL emitted from the display device 100 is reflected by the mirror device 102.
  • the virtual image I is, for example, a VR image including an image of a person who is singing.
  • the real image R is an image that is present in the real space viewed through the outside light OL and is viewed by the user.
  • the real image R includes, for example, an object or a building existing in the real space.
  • the image light DL1 emitted from the display device 100 is not reflected by the mirror device 102, so the virtual image I displayed by the image light DL1 is not visually recognized by the user.
  • the external light OL1 incident from the outside of the head mounted display 30 passes through the mirror device 102 and is visually recognized by the user, so that the real image R is visually recognized by the user.
  • the user wearing the head mounted display 30 can see only the real image R of an object or a building existing in the real space via the head mounted display 30.
  • the specular mode (reflection mode) will be explained.
  • the image light DL2a emitted from the display device 100 enters the first polarizing plate 300 from the viewing side.
  • the image light DL2a that has entered the first polarizing plate 300 is the light of the first linearly polarized light component and therefore passes through the first polarizing plate 300.
  • the polarization axis conversion unit 400 is in a state where the switch is on and a voltage is applied from the power supply. Therefore, the liquid crystal molecules 412 of the liquid crystal layer 410 are in a state of being aligned between the second electrode 404 and the first electrode 408 in a direction parallel to the electric field. Therefore, the polarization direction of the image light DL2a that has entered the polarization axis conversion unit 400 does not change even though it passes through the liquid crystal layer 410.
  • the image light DL2a that has passed through the polarization axis conversion unit 400 is the light of the first linear polarization component, and thus is reflected by the reflective polarizing plate 500.
  • the image light DL2b (reflected image light) reflected by the reflective polarizing plate 500 enters the polarization axis conversion unit 400 again.
  • the image light DL2b that has entered the polarization axis conversion unit 400 again does not change its polarization direction and passes through the polarization axis conversion unit 400 as the first linear polarization component.
  • the image light DL2b that has passed through the polarization axis converter 400 is the light of the first linearly polarized light component, and therefore passes through the first polarizing plate 300.
  • the external light OL2 that enters the second polarizing plate 600 from the outside of the head mounted display 30 transmits only the light of the second linearly polarized light component and absorbs the light of the other components.
  • the external light OL2 that has passed through the second polarizing plate 600 is the light of the second linearly polarized light component, and therefore passes through the reflective polarizing plate 500.
  • the polarization axis conversion unit 400 is in a state where the switch is on and a voltage is applied from the power supply. Therefore, the liquid crystal molecules 412 of the liquid crystal layer 410 are in a state of being aligned between the second electrode 404 and the first electrode 408 in a direction parallel to the electric field. Therefore, the external light OL2 that has entered the polarization axis conversion unit 400 does not change its polarization direction and passes through the polarization axis conversion unit 400 as the second linear polarization component.
  • the external light OL2 that has passed through the polarization axis conversion unit 400 is the light of the second linearly polarized light component, and thus is absorbed by the first polarizing plate 300.
  • the hue of the reflected light can be adjusted by providing a metal film having high reflectance on the surface of the wire grid polarizer. For example, by coating the surface of the wire grid polarizer with gold (Au), titanium nitride (TiN), or the like, it is possible to make reflected light a golden color or a hue close to a golden color.
  • the reflective polarizing plate 500 is a birefringent reflective polarizing film
  • the birefringent reflective polarizing film reflects light in an arbitrary wavelength region by appropriately adjusting the thickness of each of the laminated films.
  • the wavelength range of the light reflected by the birefringent reflective polarizing film is limited to the short wavelength range, the color of the reflected light can be blue, and if limited to the long wavelength side, the reflected light can be red. it can. Further, if the wavelength range corresponding to gold is limited, the reflected light can be gold.
  • FIG. 8A is a diagram schematically showing a state of being visually recognized by the user via the head mounted display in the mirror surface mode.
  • FIG. 8B is a diagram showing an example of an image visually recognized by the user via the head mounted display in FIG. 8A.
  • the image light DL2a emitted from the display device 100 is reflected by the mirror device 102, and the image light DL2b reflected by the mirror device 102 is visually recognized by the user.
  • external light OL2 incident from the outside of the head mounted display 30 is absorbed by the mirror device 102 and is not visually recognized by the user.
  • the user wearing the head mounted display 30 can visually recognize only the virtual image I based on the image (VR image) reflected by the mirror device 102 through the head mounted display 30, and is immersed in the VR space. can do.
  • FIG. 9 is a diagram showing the configuration of the mirror device.
  • the mirror device 102 includes a mirror panel 800, a data driver 802, and a gate driver 804.
  • the driving method of the mirror device 102 is the active matrix method, it may be a passive method or a simple matrix method.
  • the mirror panel 800 includes a plurality of mirror elements MPIX arranged in a matrix as a whole. More specifically, in the mirror device 102, n mirror elements MPIX in the row direction (X direction) and m mirror elements MPIX in the column direction (Y direction) are arranged in a matrix. Here, n and m are natural numbers of 1 or more. Further, the mirror element MPIX is arranged so that the pixel PIX at the position where the left and right are inverted corresponds to the mirror element MPIX. For example, a pixel PIX (1, a) in an arbitrary column a on the first row is arranged so as to face the mirror element MPIX (1, n- (a-1)) (a is 1 or more and n or less). Natural number).
  • FIG. 10 is a diagram showing a circuit configuration example of a mirror element.
  • the mirror element MPIX has a liquid crystal element 810 and a switch element 808.
  • a gate line GL2 for line-sequentially selecting a mirror element to be driven and a data line SL2 for supplying a voltage to the mirror element to be driven are connected to the mirror element MPIX.
  • the switch element 808 is a switching element for supplying a voltage to the liquid crystal element 810, and is, for example, a thin film transistor (TFT: Thin Film Transistor). More specifically, the switch element 808 is composed of a MOS-FET (Metal Oxide Semiconductor-Field Effect Transistor).
  • One of the source and the drain of the switch element 808 is connected to the data line SL2, and the other of the source and the drain of the switch element 808 is connected to the liquid crystal element 810. Further, the gate of the switch element 808 and the gate line GL2 are connected. Further, the switch element 808 is selected based on the scanning signal from the gate line GL2, and the selected switch element 808 supplies the mirror element signal MES from the data line SL2 to the liquid crystal element 810.
  • the liquid crystal element 810 includes a first electrode 408, a second electrode 404, and liquid crystal molecules 412 driven according to a voltage between the first electrode 408 and the second electrode 404.
  • the first electrode 408 is arranged for each mirror element MPIX and is connected to the other of the source and the drain of the switch element 808.
  • the liquid crystal element 810 performs a mirror operation according to the voltage supplied from the data line SL2 to the first electrode 408 via the switch element 808 and the voltage supplied to the second electrode 404.
  • the second electrode 404 is supplied with the reference potential (eg, ground potential).
  • the signal given to the second electrode 404 is not limited to the DC potential whose potential is fixed, but may be an AC signal that changes every predetermined period (for example, one frame).
  • the control circuit 108B controls the drive timing of the gate driver 804 and the data driver 802, and supplies the mirror image signal MDS to the data driver 802.
  • the gate driver 804 line-sequentially drives each mirror element MPIX in the mirror panel 800 along the gate line GL2 according to the timing control by the control circuit 108B.
  • the data driver 802 supplies a voltage corresponding to the mirror element signal MES supplied from the control circuit 108B via the data line SL2 to each mirror element MPIX of the mirror panel 800.
  • the mirror device 102 includes a plurality of mirror elements MPIX.
  • One of the adjacent mirror elements MPIX may transmit the light emitted from the display device 100 and reflect the light emitted from the display device 100.
  • Both of the adjacent mirror elements MPIX may transmit the light emitted from the display device 100.
  • both of the adjacent mirror elements MPIX may reflect the light emitted from the display device 100.
  • the mirror elements MPIX operate independently. Then, under the control of the control circuit 108B, each mirror element MPIX transmits the light emitted from the display device 100 or reflects the light emitted from the display device 100.
  • FIG. 11A is a diagram schematically showing how the image is viewed by the user via the head mounted display.
  • FIG. 11B is a diagram showing an example of an image visually recognized by the user via the head mounted display in FIG. 11A.
  • FIG. 12 is a diagram showing the configuration of the head mounted display.
  • the mirror device 102 includes a partial mirror area PMAa (transmissive area) in which the mirror element MPIXa in the first state X10 that transmits the external light OL is arranged and a mirror in the second state X12 that reflects the image light DL from the display device 100. It has a partial mirror area PMAb (reflection area) in which the element MPIXb is arranged.
  • PMAa transmismissive area
  • PMAb reflection area
  • the mirror device 102 outputs light that is a combination of the image light DL displayed at the position corresponding to the partial mirror area PMAb of the display device 100 and the external light OL at the position corresponding to the partial mirror area PMAa. .
  • the user visually recognizes an image in which the real image R based on the image light DL and the virtual image I based on the outside light OL are combined.
  • the mirror device 102 has a configuration in which a first polarizing plate 300, a polarization axis conversion unit 400, a reflective polarizing plate 500, and a second polarizing plate 600 are arranged from the viewing side. Note that, although FIG. 12 is illustrated such that the respective parts are arranged with a gap therebetween for the sake of explanation, the respective parts are actually arranged close to or close to each other.
  • FIG. 12 shows an example in which a voltage is not applied to the mirror element MPIXa (first liquid crystal molecule 412a) but a voltage is applied to the mirror element MPIXb (second liquid crystal molecule 412b).
  • the orientation of the first liquid crystal molecules 412a of the mirror element MPIXa is such that the first liquid crystal molecules 412a are twisted by 90 degrees while gradually rotating in one direction from the second electrode 404 to the first electrode 408.
  • the second liquid crystal molecules 412b of the mirror element MPIXb are aligned in a direction substantially perpendicular to the main surfaces of the first substrate 402 and the second substrate 406.
  • the image light DL10 emitted from the display device 100 enters the first polarizing plate 300 from the viewing side.
  • the image light DL10 that has entered the first polarizing plate 300 is the light of the first linearly polarized light component, and therefore passes through the first polarizing plate 300.
  • the orientation of the first liquid crystal molecules 412a of the mirror element MPIXa is twisted by 90 degrees between the second electrode 404 and the first electrode 408. Therefore, when the image light DL10 passes through the first liquid crystal molecules 412a, the polarization direction is rotated by 90 degrees. As a result, the image light DL10 that has passed through the polarization axis conversion unit 400 is converted into the light of the second linear polarization component.
  • the image light DL10 that has passed through the polarization axis conversion unit 400 is the light of the second linearly polarized light component, and therefore passes through the reflective polarizing plate 500.
  • the image light DL10 that has passed through the reflective polarizing plate 500 is also the light of the second linearly polarized light component, and therefore passes through the second polarizing plate 600.
  • the image light DL12a emitted from the display device 100 enters the first polarizing plate 300 from the viewer side.
  • the image light DL12a that has entered the first polarizing plate 300 is the light of the first linearly polarized light component and therefore passes through the first polarizing plate 300.
  • the second liquid crystal molecules 412b of the mirror element MPIXb are aligned in a direction substantially perpendicular to the main surfaces of the first substrate 402 and the second substrate 406. Therefore, the polarization direction of the image light DL12a does not change, and the image light DL12a passes through the polarization axis conversion unit 400 as the first linear polarization component.
  • the image light DL12a that has passed through the polarization axis converter 400 is the light of the first linearly polarized light component, and thus is reflected by the reflective polarizing plate 500.
  • the image light DL12b reflected by the reflective polarizing plate 500 is incident on the polarization axis conversion unit 400 again.
  • the image light DL12b that has entered the polarization axis conversion unit 400 again does not change its polarization direction, and passes through the polarization axis conversion unit 400 as the first linear polarization component.
  • the image light DL12b that has passed through the polarization axis converter 400 is the light of the first linearly polarized light component, and therefore passes through the first polarizing plate 300.
  • the external light OL20 that enters the second polarizing plate 600 from the outside of the head mounted display 30 transmits only the light of the second linearly polarized light component and absorbs the light of the other components.
  • the external light OL20 that has passed through the second polarizing plate 600 is the light of the second linearly polarized light component, and therefore passes through the reflective polarizing plate 500.
  • the orientation of the first liquid crystal molecules 412a of the mirror element MPIXa is twisted by 90 degrees between the second electrode 404 and the first electrode 408. Therefore, when the outside light OL20 passes through the first liquid crystal molecules 412a, the polarization direction is rotated by 90 degrees. As a result, the external light OL20 that has passed through the polarization axis conversion unit 400 is converted into the light of the first linear polarization component.
  • the external light OL20 that has passed through the polarization axis conversion unit 400 is the light of the first linearly polarized light component, and therefore passes through the first polarizing plate 300.
  • the external light OL22 that enters the second polarizing plate 600 from the outside of the head mounted display 30 transmits only the light of the second linearly polarized light component and absorbs the light of the other components.
  • the external light OL22 that has passed through the second polarizing plate 600 is the light of the second linearly polarized light component, and therefore passes through the reflective polarizing plate 500.
  • the second liquid crystal molecules 412b of the mirror element MPIXb are aligned in a direction substantially perpendicular to the main surfaces of the first substrate 402 and the second substrate 406. Therefore, the outside light OL22 does not change its polarization direction and passes through the polarization axis conversion unit 400 as the second linear polarization component.
  • the external light OL22 that has passed through the polarization axis conversion unit 400 is the light of the second linearly polarized light component, and thus is absorbed by the first polarizing plate 300.
  • the image light emitted from the display device 100 is not reflected by the mirror device 102, and thus is not visually recognized by the user.
  • the external light OL 20 incident from the outside of the head mounted display 30 passes through the mirror device 102 and is visually recognized by the user.
  • the image light DL12 emitted from the display device 100 is reflected by the mirror device 102 and is visually recognized by the user.
  • the external light OL22 incident from the outside of the head mounted display 30 is absorbed by the mirror device 102 and is not visually recognized by the user.
  • the user wearing the head-mounted display 30 can see through the head-mounted display 30 with the real image R of an object or a building existing in the real space arranged at a position corresponding to the partial mirror area PMAa, together with the partial image.
  • the virtual image I based on the image (AR image) reflected by the mirror device 102 can be visually recognized based on the image light DL displayed by the display device 100 at the position corresponding to the mirror region PMAb.
  • the external light OL incident from the same direction is absorbed by the first polarizing plate 300, and thus is reflected by the mirror device 102.
  • the virtual image I based on the captured image (AR image) can be clearly recognized by the user.
  • the mirror device 102 changes the reflectance of a partial region and the reflectance of a region other than the partial region differently based on the control of the control circuit 108.
  • the shape of a part of the area is the same as the shape of the image displayed by the display device 100, which is mirror-inverted.
  • FIG. 13 is a diagram showing a correspondence relationship between the basic image signal supplied to the head mounted display, the display image signal supplied to the display device, and the mirror image signal supplied to the mirror device.
  • the number of mirror elements MPIX and pixels PIX in the row direction is 21 and the number in the column direction is 18, but the number of mirror elements MPIX and pixels PIX in the row direction and the column direction will be described.
  • the number may be any natural number of 1 or more.
  • the basic image signal BDS supplied from the image output circuit 110 of the head mounted display 30 corresponds to the basic image BDI including the basic pixels BPIX arranged in a matrix.
  • the basic image BDI includes an object A10 indicating a character and an object A12 indicating a figure.
  • the object A10 and the object A12 correspond to the image visually recognized by the user as the virtual image I, and an area corresponding to the object A10 is an area B10 and an area corresponding to the object A12 is an area B12.
  • the basic image signal BDS includes a basic pixel signal BPS corresponding to each basic pixel BPIX.
  • the basic image signal BDS includes a gradation signal BDS-G indicating a gradation value for each basic pixel BPIX and a reflectance signal BDS-R indicating a reflectance for each basic pixel BPIX.
  • the basic image BDI-G corresponds to the gradation signal BDS-G included in the basic image signal BDS
  • the basic image BDI-R corresponds to the reflectance signal BDS-R included in the basic image signal BDS.
  • Image The basic image BDI (basic image BDI-G) corresponds to an image that the display image DDI displayed by the display device 100 is reflected by the mirror device 102 and is visually recognized by the user.
  • the gradation signal BDS-G included in the basic image signal BDS is a signal indicating 256 gradations of 0 to 255, for example.
  • “50” is set as the gradation value signal of the basic pixel BPIX corresponding to the object A10
  • “150” is set as the gradation value signal of the basic pixel BPIX corresponding to the object A12.
  • “0” is set as the gradation value signal of the basic pixel BPIX which does not correspond to any of the objects A12.
  • the basic pixel signal BPS “0” is set as the tone value signals of (2,1), BPS (2,3), BPS (11,1), and BPS (11,3), respectively.
  • “50” is input as the gradation value signals of the basic pixel signals BPS (2,2) and BPS (2,7), respectively. It is set.
  • the basic pixels BPIX (11, 2) and BPIX (11, 20) corresponding to the object A12 have “150” as the gradation value signal of the basic pixel signals BPS (11, 2) and BPS (11, 20). Is set.
  • the gradation value signal of the basic pixel BPIX which is not associated with the object A10 and the object A12 is set to “0”, but the gradation value signal is not limited to this and may be any gradation value of 0 to 255. Further, the grayscale value indicated by the grayscale value signal of the basic pixel BPIX is not limited to 256 grayscales and may be any grayscale value of 2 or more, and may be two grayscales of “0” or “1”. May be.
  • the reflectance signal BDS-R included in the basic image signal BDS is, for example, a signal indicating two-step reflectance of “0” and “100”.
  • “100” is set as the reflectance signal of the basic pixel BPIX corresponding to either the object A10 or the object A12.
  • “0” is set as the reflectance signal of the basic pixel BPIX which does not correspond to either the object A10 or the object A12.
  • basic pixel signals BPIX (2,1), BPIX (2,3), BPIX (11,1), and BPIX (11,3) that do not correspond to either the object A10 or the object A12 have basic pixel signals. “0” is set as the reflectance signal of each of BPS (2,1), BPS (2,3), BPS (11,1), and BPS (11,3).
  • Basic pixel signals BPS (2,2), BPIX (2,7), BPIX (11,20), and BPIX (11,20) corresponding to the object A10 and the object A12 are included in the basic pixel signals BPS (2,2). ), BPS (2,7), BPS (11,20), and "100" are set as the reflectance signals of BPS (11,20).
  • the reflectance signal is not limited to two stages and may have two or more stages.
  • the reflectance signal of the basic pixel BPIX may be 101 steps from 0 to 100, for example.
  • the image output circuit 110 of the processing circuit 104 outputs the basic image signal BDS to the image processing circuit 112.
  • the display image processing circuit 114 of the image processing circuit 112 supplies the display image signal DDS to the control circuit 108 based on the basic image signal BDS. More specifically, the image output circuit 110 stores the basic image signal BDS received by the receiving circuit 1101 in the memory 1102, and the display image processing circuit 114 stores the basic image signal BDS stored in the memory 1102 of the image output circuit 110.
  • the display image signal DDS corresponding to the display image DDI obtained by horizontally reversing the basic image BDI is generated, and the display image signal DDS is supplied to the control circuit 108.
  • the control circuit 108A controls the display device 100 based on the display image signal DDS.
  • the display image signal DDS is a signal corresponding to the display image DDI displayed by the display device 100.
  • the display image DDI corresponds to the reverse image of the basic image BDI.
  • the display image signal DDS is a signal in which the row-direction coordinates of the grayscale signal BDS-G included in the basic image signal BDS are inverted left and right.
  • the display image signal DDS includes the display pixel signal DPS for each pixel PIX.
  • the display image processing circuit 114 generates a display image signal DDS based on the basic image signal BDS. More specifically, the grayscale signal of the basic pixel signal BPS (p, q) in the p-th row and the q-th column is replaced with the display pixel signal DPS (p, n- (q-1)).
  • p is a natural number of 1 or more and m or less
  • q is a natural number of 1 or more and n or less.
  • the basic pixels BPIX (2,1), BPIX (2,3), BPIX (11,1), and BPIX (11,3) that do not correspond to either the object A10 or the object A12 are the pixel PIX (2 , 21), PIX (2, 19), PIX (11, 21), and PIX (11, 19), respectively, and display pixel signals DPS (2, 21) and DPS (2, which are respectively input. 19), DPS (11, 21), and DPS (11, 19) are associated with “0” as the gradation value.
  • the basic pixels BPIX (2,2) and BPIX (2,7) corresponding to the object A10 correspond to the pixels PIX (2,20) and PIX (2,15), respectively, and display pixel signals input to the respective pixels.
  • “50” is associated with each of the gradation values of DPS (2,20) and DPS (2,15).
  • the basic pixels BPIX (11, 2) and BPIX (11, 20) corresponding to the object A12 respectively correspond to the pixels PIX (11, 20) and PIX (11, 2), and are displayed respectively.
  • the pixel signals DPS (11, 20) and DPS (11, 2) are associated with “150” as the gradation value, respectively.
  • the control circuit 108A and the display device 100 display the display image DDI based on the display image signal DDS. Specifically, the image light DL corresponding to the gradation value of the display pixel signal DPS is emitted to each pixel PIX.
  • the receiving circuit 1101 of the image output circuit 110 receives the image that is reflected by the mirror device 102 and visually recognized by the user as the basic image BDI is illustrated, but the present invention is not limited to this.
  • the basic image signal BDS which is an inverted image obtained by inverting the image visually recognized by the user by the receiving circuit 1101 of the image output circuit 110
  • the image processing circuit 112 causes the gradation signal of the basic image signal BDS to be input. Is output as is as the display image signal DDS.
  • the mirror image processing circuit 116 of the image processing circuit 112 supplies the mirror image signal MDS to the control circuit 108 based on the basic image signal BDS. More specifically, the image output circuit 110 stores the basic image signal BDS received by the receiving circuit 1101 in the memory 1102, and the mirror image processing circuit 116 stores the basic image signal BDS stored in the memory 1102 of the image output circuit 110.
  • the mirror image signal MDS corresponding to the mirror image MDI corresponding to the basic image BDI is converted based on the reflectance signal BDS-R of the BDS, and the mirror image signal MDS is supplied to the control circuit 108.
  • the control circuit 108B controls the mirror device 102 based on the mirror image signal MDS.
  • the mirror image signal MDS is a signal including the mirror element signal MES for each mirror element MPIX arranged in a matrix.
  • the mirror image MDI is an image corresponding to the reflectance indicated by the mirror element signal MES for each mirror element MPIX.
  • the mirror image MDI is an image visually recognized by the image light DL12b (reflected image light) after the image light DL12a (emitted image light) of the display image DDI displayed by the display device 100 is reflected by the mirror device 102.
  • the area where the reflectance of the mirror image MDI is set corresponds to the areas B10 and B12 in which the object A10 and the object A12 of the basic image BDI are arranged.
  • the mirror image signal MDS is a signal that directly represents the reflectance signal BDS-R included in the basic image signal BDS.
  • the mirror image MDI corresponds to an image obtained by inverting the display image DDI. More specifically, an arbitrary pixel PIX (p, q) in the p-th row and the q-th column corresponds to the mirror element MPIX (p, n- (q-1)).
  • the mirror image processing circuit 116 generates a mirror image signal MDS based on the reflectance signal BDS-R of the basic image signal BDS.
  • the basic elements BPIX (2,1), BPIX (2,3), BPIX (11,1), and BPIX (11,3) that do not correspond to either the object A10 or the object A12 have mirror elements MPIX.
  • (2,1), MPIX (2,3), MPIX (11,1), and MPIX (11,3) respectively corresponding to the mirror element signals MES (2,1) and MES (input to them).
  • 2, 3), MES (11, 1), and MES (11, 3) are associated with "0" as the reflectance.
  • the basic pixels BPIX (2,2), BPIX (2,7), BPIX (11,2), and BPIX (11,20) corresponding to the object A10 and the object A12 have mirror elements MPIX (2,2).
  • MPIX (2,7), MPIX (11,2), and MPIX (11,20) respectively, and the mirror element signals MES (2,2), MES (2,7), which are respectively input to them,
  • the MES (11, 2) and the MES (11, 20) are associated with "100" as the reflectance.
  • the control circuit 108B and the mirror device 102 control the mirror element MPIX based on the mirror image signal MDS so as to have a reflectance corresponding to the mirror image MDI. Specifically, for each mirror element MPIX, the first state X10 is set when the value of the mirror element signal MES is “0”, and the second state X12 is changed when the value is “100”. As a result, the mirror device 102 reflects the image light DL corresponding to the region where the mirror element MPIX in the second state is arranged, and allows the user to visually recognize it.
  • the image light DL from the display device 100 is reflected by the mirror elements MPIX arranged at the positions corresponding to the objects A10 and A12, and the mirror elements MPIX arranged at positions other than the positions corresponding to the objects A10 and A12 are reflected.
  • the outside light OL is transmitted through the outside.
  • the user can visually recognize the image in which the outside light OL and the image light DL are combined.
  • the mirror image processing circuit 116 may generate the reflectance signal from the gradation signal BDS-G included in the basic image signal BDS when the basic image signal BDS does not include the reflectance signal BDS-R.
  • the mirror element signal MES of the mirror element MPIX corresponding to the basic pixel BPIX whose gradation signal value is larger than “0” is set to “100”, and the mirror corresponding to the basic pixel BPIX whose gradation signal value is “0” is set.
  • the mirror element signal MES of the element MPIX may be “0”.
  • the mirror image processing circuit 116 causes the mirror image processing circuit 116 to have a mirror at a position horizontally inverted with respect to the basic pixel BPIX (p, q).
  • the reflectance signal of the basic pixel signal BPS is supplied to the element (p, n- (q-1)) as the mirror element signal MES.
  • the display image processing circuit 114 or the mirror image processing circuit 116 When the display image processing circuit 114 or the mirror image processing circuit 116 respectively generates the display image signal DDS and the mirror image signal MDS from the basic image signal BDS, the display image processing circuit 114 or the mirror image processing circuit 116 includes one basic image signal BDS by using a frame memory.
  • the basic pixel signals BPS corresponding to all the basic pixels BPIX may be stored and converted, but by using a line memory, basic pixel signals BPIX corresponding to some rows included in one basic image signal BDS The conversion may be performed and the control circuit 108 may be sequentially supplied.
  • the mirror element MPIX of the mirror device 102 is switched between the first state X10 that transmits the external light OL and the second state X12 that reflects the image light DL has been described, but the state may be changed in more stages. .
  • the voltage applied between the first electrode 408 and the second electrode 404 included in the polarization axis converter 400 of the mirror device 102 may be changed in multiple steps. More specifically, an intermediate voltage between the first state X10 and the second state X12 is supplied to the liquid crystal molecules 412c of the mirror element MPIXc via the first electrode 408 and the second electrode 404.
  • the image light DL14 having the first linear polarization component emitted from the display device 100 is reflected by the reflective polarizing plate 500 by converting a part of the light into the light of the second linear polarization component.
  • the outside light OL having the second linear polarization component is transmitted by the second polarizing plate 600 without being converted by the polarization axis conversion unit 400.
  • the light visually recognized by the user via the mirror element MPIXc is light in which the external light OL and the image light DL are superimposed.
  • an image in which the real image R visually recognized by the outside light OL and the virtual image I visually recognized by the image light DL are superimposed in the same region is visually recognized.
  • the polarization axis conversion rate of the polarization axis conversion unit 400 corresponds to the reflectance rate at which the image light DL is reflected by the mirror element MPIX.
  • the polarization axis conversion rate of the polarization axis conversion unit 400 corresponds to the reflectance signal of the basic image signal BDS or the mirror image signal MDS.
  • Mirror element MPIX having the lowest reflectance corresponds to the first state X10, and mirror element MPIX having the highest reflectance corresponds to the second state X12. Further, the higher the reflectance is, the more the image light DL is reflected, and the image light DL becomes easy to be visually recognized even when the image light DL is superposed on the outside light OL.
  • the reflectance of the mirror element signal MES corresponding to the object A10 is set to "100 (first reflectance)", and the reflectance of the mirror element signal MES corresponding to the object A12 is "50 (second reflectance)”.
  • the reflectance of the mirror element signal MES other than the objects A10 and A12 may be set to “0 (third reflectance)”.
  • the user corresponds to the image light DL showing the object A10 less affected by the outside light OL, the image light DL showing the object A12 affected by the outside light OL, and the areas other than the objects A10 and A12.
  • the outside light OL to be viewed is visually recognized.
  • the reflectance may be set for each object, for each mirror image unit, or for each mirror element.
  • the control circuit 108 may control the mirror device 102 so as to gradually increase or decrease the reflectance of the mirror element MPIX corresponding to the object A10 based on the mirror image signal MDS.
  • the user wearing the head-mounted display 30 visually recognizes the virtual image I corresponding to the object A10 gradually rising or disappearing in the real image R over time.
  • the basic image signal BDS corresponds to the basic pixel BPIX (1, n) at the right end of the first row in order from the basic pixel signal BPS (1,1) corresponding to the basic pixel BPIX (1,1) at the upper left corner.
  • the basic pixel signals BPS (1, n) are continuously provided, and subsequently, the basic pixel signals BPS (2,1) corresponding to the basic pixels BPIX (2,1) at the left end of the second row are transferred to the basic pixels BPIX (at the right end. 2, n), the basic pixel signals BPS (2, n) are continuous, and similarly, the basic pixel signals BPS from the left end to the right end are continuous for each row, and the basic pixel BPIX (m, n) of the mth row is continuous. Is a continuous series of signals up to the basic pixel signal BPS (m, n) corresponding to.
  • the display image signal DDS is a display pixel signal corresponding to the pixel PIX (1, n) at the right end of the first row in order from the display pixel signal DPS (1,1) corresponding to the pixel PIX (1,1) at the upper left end.
  • the DPS (1, n) is continuous, and subsequently, the display pixel signal DPS (2,1) corresponding to the leftmost pixel PIX (2,1) in the second row corresponds to the rightmost pixel PIX (2, n).
  • the display pixel signal DPS (2, n) is continuously displayed, and similarly, the display pixel signal DPS from the left end to the right end is continuous for each row, and the display pixel signal DPS corresponding to the pixel PIX (m, n) in the m-th row is It is a series of continuous signals up to (m, n).
  • the mirror image signal MDS corresponds to the mirror element MPIX (1, n) at the right end of the first row in order from the mirror element signal MES (1,1) corresponding to the mirror element MPIX (1,1) at the upper left corner.
  • the element signals MES (1, n) are continuous, and subsequently, from the mirror element signal MES (2,1) corresponding to the leftmost mirror element MPIX (2,1) in the second row to the rightmost mirror element MPIX (2,1). n), the mirror element signals MES (2, n) corresponding to each other, and similarly, the mirror element signals MES from the left end to the right end continue for each row, corresponding to the m-th row mirror element MPIX (m, n). It is a continuous series of signals up to the mirror element signal MES (m, n).
  • the processing circuit 104 includes the timing controller 118.
  • the processing circuit 104 drives the display device 100 and the mirror device 102 at the same time based on the synchronization signal from the timing controller 118 and the display image signal DDS based on the same basic image signal BDS and the mirror image signal MDS.
  • the time required to complete driving based on one basic image signal BDS is one frame.
  • the data driver 204 of the display device 100 writes in order from the leftmost pixel PIX (1,1) to the rightmost pixel PIX (1, n), and the data driver 802 of the mirror device 102 similarly.
  • the mirror element MPIX corresponding to the pixel PIX (1,1) is the mirror element MPIX (1, n).
  • the display pixel signal DPS (1,1) is supplied to the pixel PIX (1,1) of the first frame, and then the mirror element signal MES (1, n) is supplied to the mirror element MPIX (1, n) of the first frame.
  • the image of the first frame is displayed based on the mirror element signal MES (1, n) included in the mirror image signal MDS of the immediately preceding frame (second frame).
  • Light image light DL from the PIX (1, 1) is controlled is to be visually recognized.
  • each of the data driver 204 of the display device 100 and the data driver 802 of the mirror device 102 has a buffer area for one row, and a display pixel signal DPS for one row and a mirror element signal MES for one row are buffer areas. May be once held and output to one row of pixels PIX and one row of mirror elements MPIX at the same time. By doing so, it is possible to suppress the difference between the basic image signals BDS corresponding to the pixel PIX and the mirror element MPIX.
  • FIGS. 14A and 14B are diagrams for explaining a modification example of the scanning start position and the scanning direction of the display device and the mirror device.
  • FIG. 14A is a diagram schematically showing how a mirror device drives a mirror element and reflects a display image displayed on a display device.
  • FIG. 14B is a diagram schematically showing how a display device displays a display image by driving pixels.
  • the mirror image MDI displayed on the mirror device 102 is an image obtained by horizontally reversing the display image DDI displayed on the display device 100 will be described as an example.
  • the gate driver 804 of the mirror device 102 is connected to each gate line GL2 from the gate line GL2 (1) arranged at the upper end of the mirror panel 800 to the gate line GL2 (18) arranged at the lower end of the mirror panel 800.
  • the scan signals for selecting the mirror elements MPIX to be selected are sequentially supplied in units of rows.
  • the data driver 802 is located from the data line SL2 (1) located at the left end of the mirror panel 800 to the right end of the mirror panel 800 with respect to each mirror element MPIX arranged in the row selected by the gate driver 804.
  • the mirror element signal MES is supplied from each data line SL2 toward the data line SL2 (21).
  • the data line SL2 (1) arranged at the left end of the mirror panel 800.
  • the mirror element signal MES is sequentially supplied.
  • the mirror elements MPIX (1,1) to the mirror elements MPIX (1,21) arranged in the first row are changed from the mirror element signal MES (1,1) to the mirror elements MPIX (1,1). It is controlled by the reflectance corresponding to the mirror element signal MES up to the signal MES (1, 21).
  • the scanning signal is supplied to the gate line GL2 (2), and similarly, the mirror element signal MES is sequentially supplied in the order from the data line SL2 (1) to the data line SL2 (21).
  • the mirror elements MPIX from the mirror element MPIX (2,1) to the mirror element MPIX (2,21) arranged in the second row are changed from the mirror element signal MES (2,1) to the mirror element MPES (2,1). It is controlled by the reflectance corresponding to the mirror element signal MES up to the signal MES (2,21). Similar scanning is performed up to the gate line GL2 (18).
  • the gate driver 206 of the display device 100 extends from the gate line GL1 (1) arranged at the upper end of the display panel 200 toward the gate line GL1 (18) arranged at the lower end of the display panel 200. Scanning signals for sequentially selecting the pixels PIX connected to the gate line GL1 in units of rows are sequentially supplied. Further, the data driver 204, for each pixel PIX arranged in the row selected by the gate driver 206, outputs data from the data line SL1 (21) located at the right end of the display panel 200 to the data located at the left end of the display panel 200. The display pixel signal DPS is supplied from each data line SL1 toward the line SL1 (1).
  • the data line SL1 (1) arranged at the right end of the display panel 200.
  • the display pixel signal DPS is sequentially supplied.
  • the pixel PIX from the pixel PIX (1,21) to the pixel PIX (1,1) arranged in the first row is changed from the display pixel signal DPS (1,21) to the display pixel signal DPS (
  • the gradation values corresponding to the display pixel signals DPS up to 1, 1) are controlled.
  • the scanning signal is supplied to the gate line GL1 (2), and similarly, the display pixel signal DPS is sequentially supplied in the order from the data line SL1 (21) to the data line SL1 (1).
  • the pixel PIX from the pixel PIX (2,21) to the pixel PIX (2,1) arranged in the second row is changed from the display pixel signal DPS (2,21) to the display pixel signal DPS ( The gradation values corresponding to the display pixel signals DPS up to 2, 1) are controlled. Similar scanning is performed up to the gate line GL1 (18).
  • the control circuit 108 drives the display device 100 and the mirror device 102 at the same time based on the synchronization signal of the timing controller 118 and the display image signal DDS based on the same basic image signal BDS and the mirror image signal MDS.
  • the position of the pixel PIX of the display device 100 facing the mirror element MPIX of the mirror device 102 corresponds to the left-right inverted position. Specifically, the image light DL emitted from the pixel PIX (1,1) is reflected by the mirror element (1,21).
  • the scanning direction of the data driver 204 of the display device 100 is the second scanning direction from the left end to the right end of the display panel 200
  • the scanning direction of the data driver 802 of the mirror device 102 is the mirror panel 800.
  • the second scanning direction is opposite to the first scanning direction. Therefore, the mirror element (p, n- (q-1)) corresponding to the pixel PIX (p, q) is driven at the same timing.
  • the data driver 204 and the data driver 802 need not be provided with a buffer for holding the display pixel signal DPS or the mirror element signal MES for one row.
  • the mirror image signal MDS corresponds to the mirror element signal MES (corresponding to the mirror element MPIX (1, n) at the upper right end. 1, n), the mirror element signal MES (1, 1) corresponding to the leftmost mirror element MPIX (1, 1) in the first row is continuous, and subsequently, the rightmost mirror element MPIX (in the second row). 2, n) corresponding to the mirror element signal MES (2,1) corresponding to the leftmost mirror element MPIX (2,1), and similarly from the right end for each row. It is desirable that the mirror element signal MES up to the left end is continuous, and the mirror element signal MES (m, 1) corresponding to the mirror element MPIX (m, 1) in the m-th row is a continuous series of signals.
  • the mirror element MPIX (p, n- (q-1)) corresponds to the basic pixel BPIX (p, q). Therefore, the mirror image signal MDS is sequentially arranged from the mirror element signal MES based on the gradation value signal of the basic pixel signal BPS (1,1) corresponding to the basic pixel BPIX (1,1) at the upper left end in the right end of the first row.
  • the mirror element signal MES based on the gradation value signal is continuous, and similarly, the mirror element signal MES based on the gradation value signal of the basic pixel signal BPS from the left end to the right end is continuous for each row, and the basic pixel BPIX on the m-th row is continuous.
  • M, n It is a series of signals that are continuous to the mirror element signal MES based on the gradation value signal of the corresponding basic pixel signal BPS (m, n).
  • FIG. 15 is a diagram for explaining the operation of changing the reflectance of the mirror device according to the operation of the user.
  • the head mounted display 30 includes an operation input circuit 120.
  • the operation input circuit 120 outputs an input signal IS according to a user operation to the control circuit 108.
  • the control circuit 108 includes a correction circuit 108C.
  • the correction circuit 108C corrects the mirror image signal MDS input to the mirror device 102 with the input signal IS output from the operation input circuit 120.
  • the input signal IS is, for example, a signal for uniformly controlling the reflectance of the mirror panel 800.
  • the correction circuit 108C uniformly multiplies, for example, the reflectance indicated by each mirror element signal MES by the value indicated by the input signal IS from the operation input circuit 120.
  • the correction circuit 108C transmits the corrected mirror image signal AMDS to the control circuit 108B.
  • the control circuit 108B controls the mirror device 102 based on the corrected mirror image signal AMDS.
  • the mirror device 102 controls the reflectance of the mirror element MPIX based on the corrected mirror image signal AMDS.
  • the correction method of the mirror image signal MDS based on the input signal IS in the correction circuit 108C is not limited to this, and the input signal IS exhibits a constant reflectance, and the reflectance is added to the reflectance indicated by the mirror image signal MDS. May be.
  • the control range of the mirror device 102 and the range of the mirror element signal MES are 0 or more and 100 or less and the range of the input signal IS of the operation input circuit 120 is -100 or more and 100 or less
  • the input signal IS is -100
  • the values after the addition are all 0 or less. Since the range of the mirror device 102 is 0 or more and 100 or less, the values of all the mirror element signals MES included in the corrected mirror image signal AMDS are 0. In this case, all the mirror elements MPIX of the mirror device 102 are in the first state X10. As a result, the user visually recognizes the external light OL that passes through the entire area of the mirror panel 800 (first mode).
  • the values after addition are all 100 or more. Since the range of the mirror device 102 is 0 or more and 100 or less, the values of all the mirror element signals MES included in the corrected mirror image signal AMDS are 100. In this case, all the mirror elements MPIX of the mirror device 102 are in the second state X12. As a result, the user visually recognizes the image light DL reflected in the entire area of the mirror panel 800 (second mode).
  • the operation input circuit 120 may be composed of, for example, a switch that switches between a transmission mode and a specular mode (reflection mode), or may be composed of a volume adjustment knob that can adjust the reflectance in multiple stages.
  • FIG. 16 is a diagram showing the configuration of the head mounted display.
  • the head mounted display 30A includes a display device 100, a mirror device 102, an optical element 130, and a reflection device 140.
  • the display device 100 displays an image.
  • the reflection device 140 reflects the light emitted from the display device 100.
  • the mirror device 102 is irradiated with the light reflected by the reflection device 140, and the image displayed on the display device 100 is visually recognized by the user.
  • the head-mounted display 30A does not have to directly illuminate the image displayed on the display device 100 onto the mirror device 102, so that the degree of freedom in the location of the display device 100 is increased, and the design is improved. It will be an advantage.
  • FIG. 17 is a schematic diagram showing the main configuration of the display system of the third embodiment.
  • the display system 10 includes a processing circuit 104, a display device 100, and a mirror device 102.
  • FIG. 18 is a block diagram showing the configuration of the processing circuit and the input / output of the processing circuit.
  • the basic image signal BDS is input from the image output circuit 110 to the processing circuit 104.
  • the basic image signal BDS is a signal corresponding to the basic image BDI, and is a gradation signal BDS-G (image data) or a reflectance (non-existence) which indicates a gradation value for each of a plurality of basic pixels BPIX forming the basic image BDI.
  • a reflectance signal BDS-R (opacity data) indicating transparency is included.
  • the processing circuit 104 outputs the display image signal DDS based on the gradation signal BDS-G indicating the gradation value of the input basic image signal BDS to the display device 100.
  • the processing circuit 104 also outputs the mirror image signal MDS to the mirror device 102 based on the reflectance signal BDS-R indicating the reflectance of the basic image signal BDS.
  • the reflectance signal BDS-R included in the basic image signal BDS is a signal for designating the reflectance of each mirror element MPIX that constitutes the mirror device 102, and, for example, designates the opacity of each mirror element MPIX.
  • the data is so-called alpha channel data.
  • the display image DDI indicated by the display image signal DDS and the mirror image MDI indicated by the mirror image signal MDS have a mirror image relationship.
  • the basic image signal BDS output from the image output circuit 110 may not include the reflectance signal BDS-R indicating the reflectance.
  • the reflectance signal BDS-R of the basic image signal BDS may be created by the image processing circuit 112 when the basic image signal BDS output from the image output circuit 110 does not include the reflectance signal BDS-R.
  • the basic image signal BDS that does not include the reflectance signal BDS-R is denoted by the reference symbol BDSa
  • the created basic image signal BDS that includes the reflectance signal BDS-R is denoted by the reference
  • the image processing circuit 112 creates the reflectance signal BDS-R of the basic image signal BDS that does not include the reflectance signal BDS-R.
  • the image processing circuit 112 creates, for example, the reflectance signal BDS-R based on the grayscale signal BDS-G included in the basic image signal BDS. For example, based on the minimum value (min) of the gradation values (r, g, b) of each color included in the RGB data of each of the plurality of basic pixels BPIX that form the basic image signal BDS based on the basic image signal BDSa.
  • the reflectance signal BDS-R is generated.
  • the reflectance signal BDS-R has a value obtained by dividing the minimum value (min) of one basic pixel BPIX by the maximum value (MAX) that the gradation value of each color can take, and the one basic pixel BPIX.
  • the highest value (MAX) is the highest value in the number of bits of the gradation value. For example, if the gradation value is 8 bits, the maximum value (MAX) is 255 and the minimum value (min) is a value within the range of 0 to 255.
  • the minimum value (min) of one basic pixel BPIX is 85. . Since the maximum value (MAX) is 255, the reflectance signal BDS-R is a value obtained by dividing the minimum value (min) of one basic pixel BPIX by the maximum value (MAX) that the gradation value of each color can take. Therefore, it is 85/255.
  • the method of creating the reflectance signal BDS-R described here is merely an example, and the method is not limited to this, and can be changed as appropriate.
  • the image processing circuit 112 may be configured to determine the image area of the subject included in the image, regard the image area other than the subject in the image as the background, and set the reflectance signal BDS-R corresponding to the background. Good.
  • the image processing circuit 112 may be included in the processing circuit 104, may be included in the image output circuit 110, or may be independent of the image output circuit 110 and the processing circuit 104. Good.
  • the processing circuit 104 is an MPU (Micro Processor Unit) including an arithmetic circuit 1041, a memory 1042, and a control circuit 108.
  • the arithmetic circuit 1041 includes a CPU (Central Processing Unit), and performs various processes related to the operation of the processing circuit 104.
  • the memory 1042 includes a storage device such as a flash memory and stores data and the like used for the processing of the arithmetic circuit 1041.
  • the control circuit 108 is based on the basic image signal BDS (or basic image signal BDSb) including the reflectance signal BDS-R input from the image output circuit 110 (or image processing circuit 112). , And outputs data individually to the display device 100 and the mirror device 102.
  • the control circuit 108 outputs the display image signal DDS to the display device 100 based on the gradation signal BDS-G included in the basic image signal BDS.
  • the basic image BDI based on the gradation signal BDS-G of the basic image signal BDS and the display image DDI indicated by the display image signal DDS are mirror images.
  • the arithmetic circuit 1041 may perform the process of generating the display image signal DDS from the gradation signal BDS-G of the basic image signal BDS so that the basic image BDI and the display image DDI become mirror images. 112 may do.
  • the control circuit 108 outputs the mirror image signal MDS to the mirror device 102 based on the reflectance signal BDS-R included in the basic image signal BDS.
  • the display device 100 displays an image.
  • the display device 100 of the third embodiment is a transmissive color liquid crystal display device, but is not limited to this.
  • any flat panel such as a semi-transmissive or reflective liquid crystal display device, a display device using organic or inorganic electroluminescence (EL), and other self-luminous display device Type image display device.
  • the display device 100 may have a configuration specialized in displaying an image by projecting light, such as a projector. Further, it goes without saying that the display device 100 can be applied to a medium to small size to a large size without any particular limitation.
  • the image projection surface 100s (also referred to as the main surface) of the display device 100 faces the mirror device 102 side.
  • the mirror device 102 faces the display device 100 at a predetermined angle A.
  • the angle (predetermined angle A) formed by the main surface of the display device 100 and the main surface of the mirror device 102 is an acute angle. That is, the main surface of the mirror device 102 is inclined at a predetermined angle A with respect to the main surface of the display device 100.
  • the mirror device 102 functions as a mirror and reflects the image light DL from the display device 100, the image light DL reaches the user's eye E and the display image DDI displayed on the display device 100.
  • the specular image of is visible.
  • FIG. 19 is a schematic diagram showing an example of a laminated structure of the mirror device.
  • 20 is a schematic diagram showing a circuit configuration example of the mirror device shown in FIG.
  • the mirror device 102 is a mirror panel provided so as to be able to change whether light is transmitted or reflected.
  • the image light DLa emitted from the display device 100 is incident on the mirror device 102, and the image light DLb is reflected by the reflective polarizing plate 500 of the mirror device 102.
  • external light OL passes through the mirror device 102.
  • the object OB located on the opposite side of the eye E with the mirror device 102 interposed therebetween is visually recognized.
  • the mirror device 102 includes, for example, a first substrate 402 and a second substrate 406.
  • the first substrate 402 and the second substrate 406 face each other.
  • the first substrate 402 and the second substrate 406 are light-transmitting substrates such as a glass substrate.
  • First electrodes 408 are arranged in a matrix on one surface side of the second substrate 406.
  • the first electrode 408 is provided on each of the plurality of mirror elements MPIX included in the mirror device 102.
  • the second substrate 406 is provided with the data line SL2, the gate line GL2, and the switching element Tr shown in FIG.
  • the switching element Tr is a switching element using a thin film transistor (TFT: Thin Film Transistor).
  • TFT Thin Film Transistor
  • One of the source and the drain of the TFT is connected to the data line SL2.
  • the gate of the TFT is connected to the gate line GL2.
  • the other of the source and the drain of the TFT is connected to the first electrode 408.
  • the mirror element MPIX corresponds to a region surrounded by the two data lines SL2 and the two gate lines GL2, and the switching element Tr is arranged for each mirror element MPIX.
  • the data line SL2 is connected to the data driver 802 (see FIG. 26).
  • the gate line GL2 is connected to the gate driver 804 (see FIG. 26).
  • the gate driver 804 sequentially supplies a drive signal to each gate line GL2.
  • the connection between the source and the drain of the switching element Tr connected to the gate line GL2 to which the drive signal is supplied is turned on, the first electrode arranged in the row of the gate line GL2 to which the drive signal is supplied. 408 and the data line SL2 are connected.
  • the data driver 802 supplies the mirror element signal MES for each of the first electrodes 408 of the row to the data line SL2.
  • the potential of the mirror element signal MES is determined based on the mirror image signal MDS.
  • the second electrode 404 is provided on the surface of the first substrate 402 opposite to the first electrode 408.
  • a liquid crystal layer 410 is sealed between the first electrode 408 and the second electrode 404.
  • a reference potential is applied to the second electrode 404.
  • the reflectance of the mirror element MPIX is determined according to the potential difference between the potential given to each of the first electrodes 408 by the mirror element signal MES and the reference potential of the second electrode 404. More specifically, the orientation of the liquid crystal molecules 412 at each position of the first electrode 408 changes depending on the potential difference between the reference potential and the mirror element signal MES.
  • FIG. 21 is a schematic diagram showing a reflective polarizing plate, light having a phase that transmits the reflective polarizing plate to the maximum extent, and light having a phase that is maximally reflected by the reflective polarizing plate.
  • a reflective polarizing plate 500 is arranged on the other surface side of the second substrate 406, as shown in FIG. 19, .
  • the reflective polarizing plate 500 is a plate-shaped or film-shaped member provided so that the transmittance and the reflectance change depending on the phase of light.
  • the light L1 (the second linearly polarized light component) having the phase that is transmitted through the reflective polarizing plate 500 to the maximum and the light L2 (the first linearly polarized light component) having the phase that is reflected by the reflective polarizing plate 500 to the maximum.
  • the light L1 and the light L2 are linearly polarized lights having different phases of light with respect to the reflective polarizing plate 500 by 90 degrees [°] or 270 degrees [°].
  • FIG. 22 is a schematic diagram showing a mechanism in which the mirror device switches the light transmittance and the light reflectance for each mirror element. As described above, according to the potential difference between the potential given to each of the first electrodes 408 by the mirror element signal MES and the reference potential of the second electrode 404, the alignment of the liquid crystal molecules at each position of the first electrode 408. Will be decided.
  • the mirror device 102 has a first polarizing plate 300 on the surface facing the display device, and the first polarizing plate 300 transmits the light L2 of the first linearly polarized light component to the maximum extent and absorbs the light of other phases. It is a linear polarizing plate.
  • the display device 100 has a polarizing plate 100c on the surface facing the mirror device 102.
  • the polarizing plate 100c is a polarizing plate that transmits the light L2 of the first linearly polarized light component and absorbs light of other phases.
  • the image light DL emitted from the display device 100 is such that the light L2 of the first linearly polarized light component is maximally transmitted through the polarizing plate 100c or the first polarizing plate 300.
  • the display device 100 does not need to have the polarizing plate 100c as long as the image light DL emitted from the display device 100 includes the light of the first linearly polarized light component.
  • the mirror device 102 has the second polarizing plate 600 on the incident surface of the outside light OL, and the second polarizing plate 600 transmits the light L1 of the second linearly polarized component to the maximum and the light of other phases. Is a linear polarizing plate that absorbs. The external light OL passes through the second polarizing plate 600 and the light L1 of the second linearly polarized light component is transmitted.
  • the liquid crystal element LQ1 included in the first mirror element MPIX1 in FIG. 22 transmits the light L1 to the maximum and shields the light L2 to the maximum due to the potential difference given through the first electrode 408 and the second electrode 404.
  • the liquid crystal element LQ corresponds to the alignment of the liquid crystal molecules (first state X10). Therefore, in the liquid crystal element LQ1 of the first mirror element MPIX1, the light L1 included in the external light OL that enters from the second substrate 406 side and travels toward the first substrate 402 side is reflected by the reflective polarizing plate 500 and the liquid crystal element LQ1.
  • the liquid crystal can be maximally transmitted.
  • the light L1 included in the image light DL entering from the first substrate 402 side and traveling toward the second substrate 406 side is also maximally transmitted.
  • the light L2 included in the image light DL is shielded by the first polarizing plate 300 as much as possible. Therefore, the ratio of the image light DL incident from the first substrate 402 side to be reflected and returned to the first substrate 402 side is minimized.
  • the light L2 included in the outside light OL is maximally reflected by the reflective polarizing plate 500, and is minimally transmitted to the first substrate 402 side.
  • the outside light OL passes through the second polarizing plate 600, the light L1 of the second linearly polarized light component, and passes through the reflective polarizing plate 500.
  • the light L1 of the second linearly polarized light component that has passed through the second polarizing plate 600 and the reflective polarizing plate 500 is converted into the light L2 of the first linearly polarized light component via the liquid crystal element LQ1.
  • the external light OL converted into the light L2 of the first linearly polarized component passes through the first polarizing plate 300 and is visually recognized by the user.
  • the image light DL is transmitted through the first polarization plate 300 as the light L2 having the first linear polarization component, and the light L2 having the first linear polarization component transmitted through the first polarization plate 300 is transmitted through the liquid crystal element LQ1.
  • the light is converted into the light L1 of the second linearly polarized light component via.
  • the image light DL converted into the light L1 of the second linearly polarized light component passes through the reflective polarizing plate 500 and the second polarizing plate 600.
  • the liquid crystal element LQ2 included in the second mirror element MPIX2 of FIG. 22 is a liquid crystal that transmits the light L2 to the maximum and shields the light L1 to the maximum due to the potential difference given through the first electrode 408 and the second electrode 404.
  • the liquid crystal element LQ corresponds to the orientation of the molecules (second state X12). Therefore, in the liquid crystal element LQ2 of the second mirror element MPIX2, the light L1 included in the external light OL is transmitted through the reflective polarizing plate 500, but is shielded by the first polarizing plate 300 and transmitted to the first substrate 402 side. The ratio to do is minimized.
  • the light L2 included in the outside light OL is maximally reflected by the reflective polarizing plate 500, and the degree of transmission to the first substrate 402 side is minimized. Therefore, in the liquid crystal element LQ2 of the second mirror element MPIX2, the transmittance of the outside light OL is minimized.
  • the light L2 included in the image light DL is maximally transmitted through the liquid crystal of the liquid crystal element LQ2, and thus is maximally reflected by the reflective polarizing plate 500, and the first substrate 402 side. Maximize the proportion of returning to.
  • the light L1 included in the image light DL is maximally shielded by the first polarizing plate 300, and is maximally transmitted through the reflective polarizing plate 500 even though it is transmitted through the liquid crystal. More specifically, the outside light OL passes through the second polarizing plate 600, the light L1 of the second linearly polarized light component, and passes through the reflective polarizing plate 500. The light L1 of the second linearly polarized light component that has passed through the second polarizing plate 600 and the reflective polarizing plate 500 is directly transmitted through the liquid crystal element LQ2 as the light L1 of the second linearly polarized light component.
  • the external light OL that has been transmitted as the light L1 of the second linearly polarized light component is absorbed by the first polarizing plate 300 and is suppressed from being visually recognized by the user.
  • the image light DL is transmitted through the first polarizing plate 300 as the light L2 having the first linear polarization component, and the light L2 having the first linear polarization component having passed through the first polarizing plate 300 is transmitted through the liquid crystal element LQ2.
  • the light L2 of the first linearly polarized light component is transmitted therethrough as it is.
  • the image light DL converted into the light L2 having the first linear polarization component is reflected by the reflective polarizing plate 500.
  • the image light DL reflected by the reflective polarizing plate 500 passes through the liquid crystal element LQ2 as the light L2 of the first linearly polarized light component.
  • the image light DL having the light L2 of the first linearly polarized component that has passed through the liquid crystal element LQ2 passes through the first polarizing plate 300 and is visually recognized by the user.
  • the first polarizing plate 300 and the polarizing plate 100c of the display device 100 are liquid crystal elements LQ1 in the first state X10 as a linear polarizing plate that transmits the light L1 of the second linearly polarized light component to the maximum and absorbs light of other phases.
  • the polarization axis of the light passing through may be changed, and the polarization axis of the light passing through the liquid crystal element LQ2 in the second state X12 may be changed.
  • FIG. 22 exemplifies the liquid crystal element LQ1 and the liquid crystal element LQ2 that transmit the light L1 or the light L2 to the maximum and shield the other to the maximum for the sake of easy understanding of the description. It is not limited to the liquid crystal element LQ1 and the liquid crystal element LQ2.
  • the liquid crystal element LQ is provided so that the transmittance and the blocking rate of the light L1 and the light L2 by the liquid crystal molecules can be arbitrarily changed between maximum and minimum. Therefore, the transmittance of the external light OL and the reflectance of the image light DL by the mirror device 102 can be arbitrarily changed in units of the mirror element MPIX.
  • FIG. 23 is a schematic diagram showing an example of a laminated structure of a mirror device different from that of FIG.
  • FIG. 24 is a schematic diagram showing a circuit configuration example of the mirror device shown in FIG.
  • the mirror device 102 in FIG. 1 can be replaced with the mirror device 40.
  • the mirror device 40 is a liquid crystal panel that can change whether light is transmitted or reflected.
  • the mirror device 40 includes a first substrate 41 and a second substrate 45.
  • the first substrate 41 and the second substrate 45 are translucent substrates such as glass substrates.
  • the first substrate 41 and the second substrate 45 face each other.
  • the first electrode 42 is arranged on one surface side of the first substrate 41.
  • a second electrode 46 is provided on the surface of the second substrate 45 that faces the first electrode 42.
  • the first electrode 42 is an electrode whose longitudinal direction is along the X direction.
  • a plurality of first electrodes 42 are arranged on the first substrate 41 along the Y direction intersecting the X direction.
  • the second electrode 46 is an electrode whose longitudinal direction is along the Y direction.
  • a plurality of second electrodes 46 are arranged on the second substrate 45 along the X direction.
  • the first electrode 42 and the second electrode 46 have a twisted positional relationship where they intersect each other in a plan view.
  • Liquid crystal is sealed between the first electrode 42 and the second electrode 46.
  • the liquid crystal element LQ is formed at a position where the first electrode 42 and the second electrode 46 intersect in a plan view.
  • a reference potential is applied to one of the first electrode 42 and the second electrode 46.
  • the orientation of the liquid crystal molecules according to the liquid crystal element LQ is determined according to the potential difference between the potential given to the other of the first electrode 42 and the second electrode 46 by the mirror element signal MES and the reference potential of the second electrode 46. To do.
  • the combination of the first electrode 42 and the second electrode 46 between which the liquid crystal element LQ to be controlled is located is individually driven.
  • FIG. 25A is a diagram showing a display device for displaying a display image at the first timing.
  • FIG. 25B is a diagram showing a display device which displays a display image at the second timing.
  • FIG. 26A is a diagram showing an operation of the mirror device for reflecting the display image on the display device shown in FIG. 25A at the first timing.
  • FIG. 26B is a diagram showing an operation of the mirror device 102 for reflecting the display image on the display device shown in FIG. 25B at the second timing.
  • the eye E side (front side) of the display device 100 is relatively reflected on the mirror device 102 and the object OB side ( The rear side) is relatively reflected on the lower side by the mirror device 102.
  • the display device 100 includes pixels PIX arranged in a matrix. N pixels PIX are arranged in the row direction (first direction), and m pixels PIX are arranged in the column direction (second direction) intersecting the row direction.
  • the display device 100 has a plurality of gate lines GL1 and a plurality of data lines SL1, the gate line GL1 is connected to a plurality of pixels PIX in the row direction via switch elements or the like, and the data line SL1 is a switch element or the like.
  • the display device 100 includes a gate driver 206 connected to the gate line GL1, and the gate driver 206 sequentially selects the gate line GL1 and supplies a scan signal to the plurality of pixels PIX arranged in the row direction. Select. Further, the display device 100 has a data driver 204 connected to the data line SL1, and the data driver 204 sends the display pixel signal DPS to the pixel PIX selected by the gate driver 206 via the data line SL1. Output.
  • the display image DDI of the display device 100 illustrated in FIGS. 25A and 25B is a graphic GR (see FIG. 27A) that is supposed to be reflected by the mirror device 102 and visually recognized by the eye E, and an image that is not reflected by the mirror device 102 and is not reflected by the eye.
  • the background BG (see FIG. 27A) that is supposed to be visually recognized by E is included.
  • the mirror image signal MDS includes the display pixel signal DPS for each pixel PIX corresponding to each of the graphic GR and the background BG.
  • the gradation value indicated by the display pixel signal DPS corresponding to the pixel PIX corresponding to the part (background BG) that is suppressed from being visually recognized by the eye E may be a predetermined fixed value. For example, it may be either the minimum gradation value "0" or the maximum gradation value "255”.
  • the gate driver 206 sequentially drives the gate line GL1 from the first row (upper end) to the m-th row (lower end), and the data driver 204 changes from the n-th column (right end) to the first row (left end). Drive towards.
  • the basic image BDI corresponding to the basic image signal BDS input to the processing circuit 104 corresponds to the visually recognized image that is supposed to be visually recognized by the eye E. Similar to the display image DDI, the basic image BDI corresponds to an image in which basic pixels BPIX of n rows in the row direction and m columns in the column direction are arranged in a matrix.
  • basic pixel signals BPS corresponding to the basic pixels BPIX from the upper left basic pixel BPIX (1,1) to the upper right basic pixel BPIX (1, n) are continuous, and further the second row Similarly, the basic pixel signals BPS corresponding to the basic pixels BPIX from the left end to the right end consist of continuous signals from to the m-th row. Since the display image DDI is a left-right inverted image of the basic image BDI, the pixel PIX (p, q) corresponds to the basic pixel BPIX (p, nq + 1). Note that p and q are natural numbers of 1 or more.
  • the data driver 204 of the display device 100 supplies the display pixel signal DPS to each pixel PIX from the right end to the left end, and when generating the display image signal DDS based on the gradation signal BDS-G of the basic image signal BDS,
  • the display pixel signal DPS based on the basic pixel signal BPS (p, nq + 1) corresponding to the basic pixel BPIX (p, nq + 1) is converted into the pixel PIX (p, q) without conversion into an image.
  • the reverse image of the display image DDI is displayed on the display device 100.
  • the mirror device 102 has a plurality of gate lines GL2 and a plurality of data lines SL2, the gate line GL2 is connected to a plurality of mirror elements MPIX in the row direction via a switch element or the like, and the data line SL2 is a switch element. And the like are connected to a plurality of mirror elements MPIX in the column direction.
  • the mirror device 102 has a gate driver 804 connected to the gate line GL2, and the gate driver 804 sequentially selects the gate line GL2 from the first row to the m-th row to supply a drive signal. A plurality of mirror elements MPIX arranged in the row direction are selected.
  • the mirror device 102 has a data driver 802 connected to the data line SL2, and the data driver 802 goes from the first column to the n-th column with respect to the mirror element MPIX selected by the gate driver 804.
  • the mirror element signal MES is output via the data line SL2.
  • the mirror image MDI indicated by the mirror image signal MDS for operating the mirror device 102 is: It corresponds to an image obtained by horizontally inverting the display image DDI of the display device 100.
  • the mirror element MPIX (p, q) of the mirror device 102 corresponds to the pixel PIX (p, n ⁇ q + 1) of the display device 100 existing at the horizontally inverted position, and as shown in FIGS. 26A and 26B,
  • the mirror image MDI corresponding to the mirror image signal MDS includes a region RF (reflection region, see FIG. 27A) and a region CL (transmission region, FIG. 27A) corresponding to the graphic GR (see FIG. 27A) and the background BG (see FIG. 27A), respectively. Reference).
  • the opacity (reflectance) indicated by the mirror element signal MES of the mirror element MPIX corresponding to the graphic GR is equal to or higher than the opacity indicated by the mirror image signal MDS of the background BG.
  • the mirror element signal MES of the mirror element MPIX corresponding to the graphic GR is 100 [%]
  • the mirror image signal MDS of the mirror element MPIX corresponding to the background BG is 0%. That is, the mirror image signal MDS of the graphic GR has an opacity of 100 [%] and is set in the mirror device 102 to be controlled so as to reflect the image light DL.
  • the mirror image signal MDS of the background BG has an opacity of 0%, and is set in the mirror device 102 to be controlled so as to transmit the image light DL.
  • the mirror element MPIX of the mirror device 102 included in the area RF corresponding to the graphic GR displayed on the display device 100 is controlled to be in the second state X12 (see FIG. 22). Further, the mirror element MPIX of the mirror device 102 included in the region CL corresponding to the background BG displayed on the display device 100 is controlled to be in the first state X10.
  • the displacement direction of the region RF is the horizontal direction of the displacement direction of the graphic GR. It will be the direction you did.
  • the region RF is displaced from the position shown in FIG. 26A to the position shown in FIG. 26B.
  • the region RF is displaced from the position shown in FIG. 26B to the position shown in FIG. 26A.
  • the region RF corresponding to the graphic GR changes in the other of the left and right directions in the mirror image MDI.
  • the region RF corresponding to the graphic GR changes upward in the mirror image MDI.
  • the region RF corresponding to the graphic GR changes downward in the mirror image MDI.
  • the drive timing of each mirror element MPIX of the mirror device 102 is preferably the same as the drive timing of each pixel PIX of the display device 100 corresponding to each mirror element MPIX. Since the mirror element MPIX (p, q) of the mirror device 102 corresponds to the pixel PIX (p, n ⁇ q + 1) of the display device 100 that is present at the horizontally inverted position, the gate driver 206 of the display device 100 and the mirror device It is preferable that the drive timings of the gate drivers 804 of 102 are the same and in the same direction. Further, it is preferable that the data driver 204 of the display device 100 and the data driver 802 of the mirror device 102 have the same drive timing and the scanning directions are opposite.
  • the scanning direction along the gate line GL1 by the data driver 204 in FIGS. 25A and 25B and the scanning direction along the gate line GL2 by the data driver 802 in FIGS. 26A and 26B are indicated by arrows. Further, the scanning direction along the data line SL1 by the gate driver 206 in FIGS. 25A and 25B and the scanning direction along the data line SL2 by the gate driver 804 in FIGS. 26A and 26B are shown by arrows.
  • the augmented reality (AR) of the projected image of the display device 100 and the object OB located on the opposite side of the eye E with the mirror device 102 interposed therebetween is overlapped.
  • AR augmented reality
  • FIG. 27A is a schematic diagram showing the relationship between a display device, a mirror device, an object, and an eye when the mirror device is controlled so as to maximize the reflection of graphics.
  • 27B is a schematic diagram showing the contents visually recognized in the case of FIG. 27A.
  • the reflectance of the mirror element MPIX included in the area RF is set. Is maximizing.
  • the object OB is not visually recognized in the area RF. That is, the non-transparent region RF that reflects the graphic GR is visually recognized.
  • the mirror element signal MES of the mirror element MPIX included in the region CL corresponding to the background BG is the minimum value (0 [%]).
  • the transmittance of the mirror element MPIX included in the region CL of the mirror device 102 corresponding to the pixel PIX of the display device 100 that draws the background BG is maximized.
  • the object OB is visually recognized in the region CL. Therefore, the non-transparent region RF with the background of the object OB is visually recognized.
  • FIG. 28A is a schematic diagram showing a relationship between a display device, a mirror device, an object, and an eye when controlling the mirror device so as to minimize reflection of graphics.
  • FIG. 28B is a schematic diagram showing the contents visually recognized in the case of FIG. 28A.
  • the mirror element signal MES of the mirror element MPIX included in the area RF corresponding to the graphic GR is set to the minimum value (0 [%]).
  • the transmittance of the region RF of the mirror device 102 corresponding to the pixel PIX of the display device 100 that draws the graphic GR is maximized.
  • FIG. 28B even in the region RF corresponding to the graphic GR, the image light DL corresponding to the graphic GR is prevented from being transmitted and visually recognized by the eye E.
  • the mirror image signal MDS of the background BG has the minimum value (0 [%]) as in the case of FIG. 27A.
  • the image in which the display image DDI of the display device 100 is reflected is not visually recognized, but the object OB is visually recognized.
  • the display image DDI of the display device 100 is limited to the area where the graphic GR is displayed. Instead, it is possible to control the content visually recognized via the mirror device 102.
  • FIG. 29A is a schematic diagram showing the relationship between the display device, the mirror device, the object, and the eye when the mirror device is controlled so that the reflectance and the transmittance of the pixel that reflects the graphic are 50%.
  • FIG. 29B is a schematic diagram showing the contents visually recognized in the case of FIG. 29A.
  • FIG. 29A by setting the mirror element signal MES of the mirror element MPIX included in the area RF corresponding to the graphic GR to 50 [%], the image light DL and the object OB corresponding to the graphic GR in the area RF are generated. Both of the outside light OL for visual recognition are visible.
  • FIG. 29B a mirror image of the graphic GR in which the object OB can be seen through is visually recognized in the region RF. This indicates that the reflective region HRF is in a semi-transmissive state.
  • reference numeral HDL indicates that 50 [%] of the image light DL is reflected by the reflective region HRF in the semi-transmissive state.
  • the external light OL that transmits the reflection region HRF in the semi-transmissive state at a transmittance of 50 [%] is denoted by the symbol HOL.
  • the light including the reflected light and the transmitted light corresponding to the mirror image of the graphic GR in a state where the object OB can be seen through is represented as “HDL + HOL”.
  • the mirror image signal MDS of the background BG has the minimum value (0 [%]) as in the case of FIG. 27A. Therefore, the mirror image of the graphic GR with the object OB in the background and the object OB can be seen through is visually recognized.
  • the object OB can be made transparent in the display image of the display device 100.
  • the case where the transmittance and the reflectance are 50 [%] is taken as an example, but the reflectance of the region RF is k [%] (0 ⁇ k ⁇ 100). can do.
  • the reflectance is the opacity (k [%]) of the mirror image signal MDS.
  • the transmittance of the area RF is (100-k) [%].
  • the processing circuit 104 controls the mirror image signal MDS described above with reference to FIGS. 27A to 29B.
  • the software program corresponding to the control content is stored in the memory 1042.
  • FIG. 30 is a schematic diagram showing a mirror device in which a margin area is set.
  • FIG. 31 is an explanatory diagram showing a mechanism for determining the width of the margin area.
  • the mirror image signal MDS may be controlled so that the margin region MR is added to the region RF.
  • the margin region MR is a region where the transmittance is not the maximum value (100 [%]).
  • the reflectance of the margin area MR may be the same as the reflectance of the area RF, or may be lower than the reflectance of the area RF.
  • the eye E1 and the eye E2 which are at different positions with respect to the region RF, have different reflection positions and reflection angles of light from the graphic GR by the margin region MR. Therefore, when only the area RF is set in the mirror image signal MDS that directly corresponds to the mirror image of the display image DDI displayed on the display device 100, the shape of the image of the area RF depends on the position and the angle at which the user visually recognizes the mirror device 102. And the width may look different. Therefore, the margin region MR is set in addition to the region RF so that the light from the graphic GR is well reflected by the mirror device 102 and reaches the eye E regardless of the position and angle of the user who visually recognizes the mirror device 102. As a result, the visibility and viewing angle characteristics of the reflected image by the mirror device 102 can be further improved.
  • the margin area MR is set corresponding to the expected viewing angle of the mirror device 102.
  • 30 and 31 exemplify a case where the horizontal viewing angle of the mirror device 102 is ⁇ [°].
  • the viewing angle ( ⁇ [°]) may be determined based on the optical characteristics of the mirror device 102 (for example, the angle range in which reflection is favorably performed), or the optical characteristics of the mirror device 102. It may be determined based on a rule irrelevant to (for example, a range of a place where the user can enter the installation position of the mirror device 102).
  • a first margin region MR1 having a width M1 is set at one end of the region RF in the horizontal direction. Further, in FIG. 30, the second margin region MR2 having the width M2, the third margin region MR3 having the width M3, and the width M4 are provided on the other end side in the horizontal direction of the region RF at positions different from the one end side.
  • the fourth margin region MR4 is set. M1, M2, M3, and M4 may have a common width M or may have individual widths.
  • the value of D may be a representative value.
  • the value of D can be, for example, the distance between the center of the image projection surface 100s of the display device 100 and the center of the arrangement area of the mirror element MPIX of the mirror device 102.
  • the representative value it is possible to more easily determine the width M and set the margin region MR.
  • each pixel PIX whose vertical position is different is individually recorded.
  • the value of D may be set to.
  • the width M is not unified in the vertical direction unlike the example schematically shown in FIG. 30, but a better viewing angle characteristic can be obtained.
  • the arithmetic circuit 1041 controls the margin region MR and the width M described above with reference to FIGS. 30 and 31.
  • the software program corresponding to the control content is stored in the memory 1042.
  • the horizontal viewing angle ( ⁇ [°]) is taken into consideration, but the vertical viewing angle can also be handled by the same mechanism.
  • the display system 10 displays the display device 100 that projects an image, the mirror device 102 that faces the display device 100 at a predetermined angle A, and the display image signal DDS. And a processing circuit 104 for outputting the mirror image signal MDS corresponding to the display image signal DDS to the mirror device 102. Therefore, since the mirror device 102 capable of setting the reflectance and the transmittance higher than that of the half mirror is adopted, a clearer image can be visually recognized.
  • the mirror device 102 also includes a plurality of mirror elements MPIX provided in a matrix, and a reflective polarizing plate 500 provided on the opposite side of the surface facing the display device 100.
  • the reflectance and transmittance of the reflective polarizing plate 500 change depending on the phase of incoming light.
  • the mirror element MPIX is controlled such that the higher the opacity indicated by the mirror image signal MDS, the higher the opacity of the reflective polarizing plate 500 is, the more the phase of the light is transmitted. Therefore, the light from the graphic GR having a relatively high opacity can be better reflected, and the light from the background BG having a relatively low opacity can be better transmitted. That is, an image in which the object OB can be seen through as a background can be visually recognized.
  • the opacity of the background BG of the image drawn by the display image signal DDS is lower than that of the graphic GR. Therefore, the object OB can be visually recognized by transmitting light in the portion corresponding to the background BG.
  • the mirror device 102 is controlled so that the mirror element MPIX in the region RF corresponding to the graphic GR becomes a reflection region that reflects light from the display device 100 above a certain level.
  • the fixed value or more is, for example, 50% or more, but is not limited to this and may be a value corresponding to the reflectance of the region RF higher than the reflectance of the region CL. Therefore, a clearer image can be visually recognized by further increasing the reflectance of the region RF.
  • the margin region MR is set in the direction in which the viewing angle ( ⁇ [°]) widens according to the viewing angle ( ⁇ [°]) of the image reflected on the mirror device 102. Therefore, the reflection area (including the area RF and the margin area MR) corresponding to the viewing angle ( ⁇ [°]) can be set.
  • the display image DDI output by the display device 100 based on the display image signal DDS is a mirror image of the mirror image MDI that the user who views the mirror device 102 wants to view. Therefore, an intended image can be visually recognized through the reflection by the mirror device 102.
  • the predetermined angle A is determined based on the image projection surface 100s of the display device 100 and the position of the user's eye E that is assumed to visually recognize the image reflected on the mirror device 102. Therefore, the image reflected on the mirror device 102 can be more visually recognized.
  • the processing circuit 104 associates the number and arrangement of the pixels PIX with the number and arrangement of the mirror elements MPIX. Perform processing (scale up or scale down). For example, when the number of the mirror elements MPIX in the row direction is 1/2 of the number of the pixel PIX in the row direction, two consecutive pixels PIX in the row direction are associated with one mirror element MPIX.
  • the mirror element signal MES of the mirror element MPIX may be assigned the average value of the reflectance signals included in the basic pixel signal BPS of the basic pixel BPIX associated with the two pixels PIX, or the maximum value or The minimum value may be assigned.

Abstract

The present invention provides: a head-mounted display which discriminates added information from a real space and causes said information to be displayed appropriately; a display system; and a mirror device. The head-mounted display (30) according to the present invention is provided with: a display device (100) on which an image is displayed; a mirror device (102) which is irradiated with light from the display device (100); and a processing circuit (104) which performs control on the mirror device (102) and the display device (100). The mirror device (102), on the basis of the control performed by the processing circuit (104), switches between a first mode which allows transmission of light emitted from the display device (100) and a second mode which allows reflection of light emitted from the display device (100).

Description

ヘッドマウントディスプレイ、表示システム及びミラー装置Head mounted display, display system and mirror device
 本発明は、ヘッドマウントディスプレイ、表示システム及びミラー装置に関する。 The present invention relates to a head mounted display, a display system and a mirror device.
 実空間に文字等の付加情報を重畳して表示するゴーグル型表示装置が知られている(例えば特許文献1)。 A goggle type display device is known in which additional information such as characters is superimposed and displayed in the real space (for example, Patent Document 1).
特開2011-48375号公報JP, 2011-48375, A 特開2005-10226号公報Japanese Patent Laid-Open No. 2005-10226
 従来のゴーグル型表示装置では、付加情報を実空間と区別して適切に表示することが困難であった。 With conventional goggle type display devices, it was difficult to properly display the additional information by distinguishing it from the real space.
 また、ハーフミラーに画像を投射して、ハーフミラーの背面側に広がる光景を背景とした画像を視認可能にするホログラムディスプレイ装置が知られている(例えば特許文献2)。ハーフミラーは、光の透過と光の反射を半々で行う。このため、ハーフミラーに投射された画像の光及び背景からハーフミラーを透過する光の半分以下しかユーザの眼に到達せず、薄暗い画像になってしまう。 Also, a hologram display device is known in which an image is projected on a half mirror to make it possible to visually recognize an image of the scene spreading on the back side of the half mirror (for example, Patent Document 2). The half mirror transmits and reflects light in half. For this reason, only half or less of the light of the image projected on the half mirror and the light transmitted from the background through the half mirror reaches the eyes of the user, resulting in a dim image.
 本発明は、上記の課題に鑑みてなされたもので、付加情報を実空間と区別して適切に表示するヘッドマウントディスプレイ、表示システム及びミラー装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a head mount display, a display system, and a mirror device that appropriately display additional information by distinguishing it from the real space.
 第1の態様によるヘッドマウントディスプレイは、画像を表示する表示装置と、少なくとも前記表示装置を制御する処理回路と、前記表示装置から光が照射される位置にあり、かつ前記処理回路の制御に応じて、前記表示装置から照射された光を透過する第1モードと、前記表示装置から照射された光を反射する第2モードとを切り替えるミラー装置と、を備える。 A head mounted display according to a first aspect is a display device that displays an image, a processing circuit that controls at least the display device, a position where light is emitted from the display device, and a control circuit that controls the processing circuit. And a mirror device that switches between a first mode of transmitting the light emitted from the display device and a second mode of reflecting the light emitted from the display device.
 第2の態様による表示システムは、画像を送信する送信装置と、前記送信装置から送信されてきた画像を受信するヘッドマウントディスプレイとから構成される表示システムにおいて、前記ヘッドマウントディスプレイは、前記送信装置から送信されてきた画像を受信する受信回路と、前記受信回路で受信した画像を表示する表示装置と、少なくとも前記表示装置を制御する処理回路と、前記表示装置から光が照射される位置にあり、かつ前記処理回路の制御に応じて、前記表示装置から照射された光を透過する第1モードと、前記表示装置から照射された光を反射する第2モードとを切り替えるミラー装置と、を備える。 A display system according to a second aspect is a display system including a transmission device that transmits an image and a head-mounted display that receives the image transmitted from the transmission device, wherein the head-mounted display is the transmission device. A receiving circuit that receives an image transmitted from the display device, a display device that displays the image received by the receiving circuit, a processing circuit that controls at least the display device, and a position where light is emitted from the display device. And a mirror device that switches between a first mode in which the light emitted from the display device is transmitted and a second mode in which the light emitted from the display device is reflected, according to the control of the processing circuit. .
 第3の態様による表示システムは、画像を表示する表示装置と、前記表示装置の主面に対して、主面が鋭角で傾いて位置するミラー装置と、画像データを前記表示装置に出力し、前記画像データに対応する不透明度データを前記ミラー装置に出力する処理回路と、を備える。 A display system according to a third aspect, a display device for displaying an image, a mirror device in which a main surface is inclined at an acute angle with respect to a main surface of the display device, and image data is output to the display device, And a processing circuit that outputs opacity data corresponding to the image data to the mirror device.
 第4の態様によるミラー装置は、画像を表示する表示装置の主面に対して、主面が鋭角で傾いて位置するミラー装置であって、マトリクス状に設けられた複数のミラー素子と、前記表示装置と対向する面の反対側に設けられた反射型偏光板とを備え、前記反射型偏光板は、進入する光の位相によって反射率及び透過率が変わり、前記画像に対応する不透明度データが示す不透明度が高いほど前記反射型偏光板の反射率がより高い位相の光を透過させるように画素が制御される。 A mirror device according to a fourth aspect is a mirror device in which a main surface is inclined with respect to a main surface of a display device for displaying an image at an acute angle, and a plurality of mirror elements provided in a matrix form, A reflective polarizing plate provided on the opposite side of the surface facing the display device, wherein the reflective polarizing plate changes the reflectance and the transmittance depending on the phase of the incoming light, and the opacity data corresponding to the image. The higher the opacity, the higher the opacity is, and the more the reflectance of the reflection type polarizing plate is higher.
図1は、実施形態1による表示システムの構成を模式的に示す図である。FIG. 1 is a diagram schematically showing the configuration of the display system according to the first embodiment. 図2は、表示装置とミラー装置との配置例を示す図である。FIG. 2 is a diagram showing an arrangement example of the display device and the mirror device. 図3は、ヘッドマウントディスプレイの構成を示す機能ブロック図である。FIG. 3 is a functional block diagram showing the configuration of the head mounted display. 図4は、表示装置の構成を示す図である。FIG. 4 is a diagram showing the configuration of the display device. 図5は、ヘッドマウントディスプレイの構成を示す図である。FIG. 5 is a diagram showing the configuration of the head mounted display. 図6は、ヘッドマウントディスプレイの構成を示す図である。FIG. 6 is a diagram showing the configuration of the head mounted display. 図7Aは、透過モードにおいてヘッドマウントディスプレイを介してユーザに視認される様子を模式的に示す図である。FIG. 7A is a diagram schematically showing a state of being visually recognized by the user via the head mounted display in the transmissive mode. 図7Bは、図7Aにおいて、ヘッドマウントディスプレイを介してユーザに視認される画像例を示す図である。FIG. 7B is a diagram showing an example of an image visually recognized by the user via the head mounted display in FIG. 7A. 図8Aは、鏡面モードにおいてヘッドマウントディスプレイを介してユーザに視認される様子を模式的に示す図である。FIG. 8A is a diagram schematically showing how a user visually recognizes a head-mounted display in the mirror surface mode. 図8Bは、図8Aにおいて、ヘッドマウントディスプレイを介してユーザに視認される画像例を示す図である。FIG. 8B is a diagram showing an example of an image visually recognized by the user via the head mounted display in FIG. 8A. 図9は、ミラー装置の構成を示す図である。FIG. 9 is a diagram showing the configuration of the mirror device. 図10は、ミラー素子の回路構成例を示す図である。FIG. 10 is a diagram showing a circuit configuration example of a mirror element. 図11Aは、ヘッドマウントディスプレイを介してユーザに視認される様子を模式的に示す図である。FIG. 11A is a diagram schematically illustrating how a user visually recognizes the head-mounted display. 図11Bは、図11Aにおいて、ヘッドマウントディスプレイを介してユーザに視認される画像例を示す図である。FIG. 11B is a diagram showing an example of an image visually recognized by the user via the head mounted display in FIG. 11A. 図12は、ヘッドマウントディスプレイの構成を示す図である。FIG. 12 is a diagram showing the configuration of the head mounted display. 図13は、ヘッドマウントディスプレイに供給される基礎画像信号、表示装置に供給される表示画像信号、及び、ミラー装置に供給されるミラー画像信号の対応関係を示した図である。FIG. 13 is a diagram showing the correspondence relationship between the basic image signal supplied to the head mounted display, the display image signal supplied to the display device, and the mirror image signal supplied to the mirror device. 図14Aは、ミラー装置がミラー素子を駆動し、表示装置に表示されている表示画像を反射する様子を模式的に示す図である。FIG. 14A is a diagram schematically showing how a mirror device drives a mirror element and reflects a display image displayed on a display device. 図14Bは、表示装置が画素を駆動することで表示画像の表示する様子を模式的に示す図である。FIG. 14B is a diagram schematically showing how a display device displays a display image by driving pixels. 図15は、ユーザの操作に応じてミラー装置の反射率を変更する動作についての説明に供する図である。FIG. 15 is a diagram for explaining the operation of changing the reflectance of the mirror device according to the operation of the user. 図16は、ヘッドマウントディスプレイの構成を示す図である。FIG. 16 is a diagram showing the configuration of the head mounted display. 図17は、実施形態3の表示システムの主要構成を示す模式図である。FIG. 17 is a schematic diagram showing the main configuration of the display system of the third embodiment. 図18は、処理回路の構成及び処理回路の入出力を示すブロック図である。FIG. 18 is a block diagram showing the configuration of the processing circuit and the input / output of the processing circuit. 図19は、ミラー装置の積層構造例を示す模式図である。FIG. 19 is a schematic diagram showing an example of a laminated structure of a mirror device. 図20は、図19に示すミラー装置の回路構成例を示す模式図である。20 is a schematic diagram showing a circuit configuration example of the mirror device shown in FIG. 図21は、反射型偏光板と、反射型偏光板を最大限透過する位相の光と、反射型偏光板によって最大限反射される位相の光とを示す模式図である。FIG. 21 is a schematic diagram showing a reflection-type polarizing plate, light having a phase that transmits the reflection-type polarizing plate to the maximum extent, and light having a phase that is maximally reflected by the reflection-type polarizing plate. 図22は、ミラー装置が光の透過率及び光の反射率をミラー素子単位で切り替える仕組みを示す模式図である。FIG. 22 is a schematic diagram showing a mechanism in which the mirror device switches the light transmittance and the light reflectance for each mirror element. 図23は、図19とは異なるミラー装置の積層構造例を示す模式図である。FIG. 23 is a schematic diagram showing an example of a laminated structure of a mirror device different from that of FIG. 図24は、図23に示すミラー装置の回路構成例を示す模式図である。FIG. 24 is a schematic diagram showing a circuit configuration example of the mirror device shown in FIG. 図25Aは、第1タイミングにおける表示画像を表示する表示装置を示す図である。FIG. 25A is a diagram showing a display device that displays a display image at the first timing. 図25Bは、第2タイミングにおける表示画像を表示する表示装置を示す図である。FIG. 25B is a diagram showing a display device which displays a display image at the second timing. 図26Aは、第1タイミングにおいて図25Aに示す表示装置の表示画像を反射するためのミラー装置の動作を示す図である。FIG. 26A is a diagram showing an operation of the mirror device for reflecting the display image on the display device shown in FIG. 25A at the first timing. 図26Bは、第2タイミングにおいて図25Bに示す表示装置の表示画像を反射するためのミラー装置の動作を示す図である。FIG. 26B is a diagram showing an operation of the mirror device for reflecting the display image on the display device shown in FIG. 25B at the second timing. 図27Aは、グラフィックの反射を最大限にするようにミラー装置を制御する場合の表示装置、ミラー装置、オブジェクト及び眼の関係を示す模式図である。FIG. 27A is a schematic diagram showing a relationship between a display device, a mirror device, an object, and an eye when controlling the mirror device so as to maximize reflection of graphics. 図27Bは、図27Aの場合に視認される内容を示す模式図である。27B is a schematic diagram showing the contents visually recognized in the case of FIG. 27A. 図28Aは、グラフィックの反射を最小限にするようにミラー装置を制御する場合の表示装置、ミラー装置、オブジェクト及び眼の関係を示す模式図である。FIG. 28A is a schematic diagram showing a relationship between a display device, a mirror device, an object, and an eye when controlling the mirror device so as to minimize reflection of graphics. 図28Bは、図28Aの場合に視認される内容を示す模式図である。FIG. 28B is a schematic diagram showing the contents visually recognized in the case of FIG. 28A. 図29Aは、グラフィックを反射する画素の反射率及び透過率をそれぞれ50[%]にするようにミラー装置を制御する場合の表示装置、ミラー装置、オブジェクト及び眼の関係を示す模式図である。FIG. 29A is a schematic diagram showing the relationship between the display device, the mirror device, the object, and the eye when the mirror device is controlled so that the reflectance and the transmittance of the pixel that reflects the graphic are 50%. 図29Bは、図29Aの場合に視認される内容を示す模式図である。FIG. 29B is a schematic diagram showing the contents visually recognized in the case of FIG. 29A. 図30は、マージン領域が設定されたミラー装置を示す模式図である。FIG. 30 is a schematic diagram showing a mirror device in which a margin area is set. 図31は、マージン領域の幅を決定する仕組みを示す説明図である。FIG. 31 is an explanatory diagram showing a mechanism for determining the width of the margin area.
 以下に、実施の形態について、図面を参照しつつ説明する。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 The embodiments will be described below with reference to the drawings. It should be noted that the disclosure is merely an example, and a person skilled in the art can easily think of appropriate modifications while keeping the gist of the invention, and are naturally included in the scope of the invention. Further, in order to make the description clearer, the drawings may schematically show the width, thickness, shape, etc. of each part as compared with the actual mode, but this is merely an example, and the interpretation of the present invention will be understood. It is not limited. In the specification and the drawings, the same elements as those described above with reference to the already-existing drawings are designated by the same reference numerals, and detailed description thereof may be appropriately omitted.
(実施形態1)
 図1は、実施形態1による表示システムの構成を模式的に示す図である。表示システム10は、画像情報(基礎画像信号BDS)を送信する送信装置20と、送信装置20から送信されてきた画像情報(基礎画像信号BDS)を受信するヘッドマウントディスプレイ30とから構成される。
(Embodiment 1)
FIG. 1 is a diagram schematically showing the configuration of the display system according to the first embodiment. The display system 10 includes a transmitter 20 that transmits image information (basic image signal BDS) and a head mounted display 30 that receives the image information (basic image signal BDS) transmitted from the transmitter 20.
 画像情報(基礎画像信号BDS)とは、仮想現実(VR:Virtual Reality)用の画像、及び拡張現実(AR:Augmented Reality)用の画像である。仮想現実とは、人間の感覚器官に働きかけ、現実ではないが実質的に現実のように感じられる環境を人工的に作り出す技術である。拡張現実とは、実空間に存在する物体や建造物などに情報を付加して表示する技術である。 The image information (basic image signal BDS) is an image for virtual reality (VR: Virtual Reality) and an image for augmented reality (AR: Augmented Reality). Virtual reality is a technology that works on human senses to artificially create an environment that is not real, but that actually feels like reality. Augmented reality is a technology that adds information to and displays objects and structures that exist in the real space.
 送信装置20は、個人又は映像コンテンツを作成する作成者のPC(Personal Computer)、スマートフォン、タブレットなどの端末装置である。 The transmission device 20 is a terminal device such as a personal computer (PC), a smartphone, or a tablet of an individual or a creator who creates video content.
 送信装置20は、無線通信を利用して画像情報をヘッドマウントディスプレイ30に送信するが、無線通信に限られず、有線通信を利用して画像情報をヘッドマウントディスプレイ30に送信してもよい。 The transmitting device 20 transmits the image information to the head mounted display 30 by using wireless communication, but it is not limited to the wireless communication and may transmit the image information to the head mounted display 30 by using wired communication.
 ヘッドマウントディスプレイ30は、右目用表示装置100aと、左目用表示装置100bと、右目用ミラー装置102aと、左目用ミラー装置102bと、処理回路104と、カバー106とを備える。 The head mounted display 30 includes a right-eye display device 100a, a left-eye display device 100b, a right-eye mirror device 102a, a left-eye mirror device 102b, a processing circuit 104, and a cover 106.
 右目用表示装置100aに、右目用画像が表示され、左目用表示装置100bに、左目用画像が表示される。右目用ミラー装置102aは、右目用表示装置100aからの光を反射することにより、ヘッドマウントディスプレイ30を装着したユーザの右目に右目用画像を映すことができる。左目用ミラー装置102bは、左目用表示装置100bからの光を反射することにより、ヘッドマウントディスプレイ30を装着したユーザの左目に左目用画像を映すことができる。左目用画像と右目用画像とは、互いに異なる視差画像であって、ヘッドマウントディスプレイ30は、両眼視差を利用して画像の立体感を生じさせている。 An image for the right eye is displayed on the display device 100a for the right eye, and an image for the left eye is displayed on the display device 100b for the left eye. The right-eye mirror device 102a can project the right-eye image on the right eye of the user wearing the head mounted display 30 by reflecting the light from the right-eye display device 100a. The left-eye mirror device 102b reflects the light from the left-eye display device 100b, so that the left-eye image can be displayed on the left eye of the user wearing the head mounted display 30. The image for the left eye and the image for the right eye are parallax images different from each other, and the head mounted display 30 uses the binocular parallax to generate the stereoscopic effect of the images.
 なお、右目用表示装置100aと左目用表示装置100bは、表示される画像はそれぞれ異なるが、動作は同様であるため、以下では、表示装置100として説明する。 Note that the right-eye display device 100a and the left-eye display device 100b have different images to be displayed, but operate in the same manner. Therefore, the display device 100 will be described below.
 また、右目用ミラー装置102aと左目用ミラー装置102bは、反射する表示装置100に表示される画像はそれぞれ異なるが、動作は同様であるため、以下では、ミラー装置102として説明する。 Further, the right-eye mirror device 102a and the left-eye mirror device 102b have different images displayed on the display device 100 that reflect, but the operations are similar, and hence the mirror device 102 will be described below.
 表示装置100は、画像を表示する。ミラー装置102は、表示装置100からの光を反射する。言い換えると、ミラー装置102は、表示装置100に表示されている画像が投映される。ミラー装置102は、カバー106により覆われている。処理回路104は、ミラー装置102と表示装置100とを制御する。 The display device 100 displays an image. The mirror device 102 reflects the light from the display device 100. In other words, the mirror device 102 projects the image displayed on the display device 100. The mirror device 102 is covered with a cover 106. The processing circuit 104 controls the mirror device 102 and the display device 100.
 ここで、表示装置100が配置される位置と、ミラー装置102が配置される位置について説明する。図2は、表示装置とミラー装置との配置例を示す図である。 Here, the position where the display device 100 is arranged and the position where the mirror device 102 is arranged will be described. FIG. 2 is a diagram showing an arrangement example of the display device and the mirror device.
 図2に示す例では、表示装置100は、ミラー装置102の斜め前方であって、所定の角度により互いに表示面が向き合う位置に配置される。ミラー装置102は、ユーザの視線Sの正面にミラー装置102の反射面が位置するように配置される。また、表示装置100は、ユーザの視線Sを妨げない位置に配置される。 In the example shown in FIG. 2, the display device 100 is arranged diagonally in front of the mirror device 102 and at positions where the display surfaces face each other at a predetermined angle. The mirror device 102 is arranged such that the reflection surface of the mirror device 102 is located in front of the line of sight S of the user. Further, the display device 100 is arranged at a position that does not hinder the line of sight S of the user.
 ヘッドマウントディスプレイ30は、ユーザの頭部に装着されて使用される。なお、図1に示すヘッドマウントディスプレイ30の外観形状は、一例であり、図1に示す外観形状に限られない。 The head mounted display 30 is used by being attached to the user's head. The external shape of the head mounted display 30 shown in FIG. 1 is an example, and the external shape is not limited to the external shape shown in FIG.
 ヘッドマウントディスプレイ30は、表示装置100に表示されているVR用の画像又はAR用の画像をミラー装置102で反射することによってユーザに視認させる。 The head-mounted display 30 allows the user to visually recognize the VR image or the AR image displayed on the display device 100 by reflecting the image on the mirror device 102.
 図3は、ヘッドマウントディスプレイの構成を示す機能ブロック図である。ヘッドマウントディスプレイ30は、表示装置100と、ミラー装置102と、処理回路104とを備える。ヘッドマウントディスプレイ30には、操作入力回路120が接続されている。操作入力回路120は、ユーザの操作に応じた入力信号ISを制御回路108に出力する。 FIG. 3 is a functional block diagram showing the configuration of the head mounted display. The head mounted display 30 includes a display device 100, a mirror device 102, and a processing circuit 104. An operation input circuit 120 is connected to the head mounted display 30. The operation input circuit 120 outputs an input signal IS according to a user operation to the control circuit 108.
 処理回路104は、制御回路108と、画像出力回路110と、画像処理回路112とを備える。画像出力回路110は、画像処理回路112に基礎画像信号BDSを供給する。画像出力回路110は、例えば、受信回路1101とメモリ1102で構成される。受信回路1101は、送信装置20(図1参照)から送信されてきた画像情報(以下、基礎画像信号BDSという。)を受信し、メモリ1102は、受信回路1101が受信した基礎画像信号BDSを保存する。 The processing circuit 104 includes a control circuit 108, an image output circuit 110, and an image processing circuit 112. The image output circuit 110 supplies the basic image signal BDS to the image processing circuit 112. The image output circuit 110 includes, for example, a receiving circuit 1101 and a memory 1102. The receiving circuit 1101 receives the image information (hereinafter referred to as the basic image signal BDS) transmitted from the transmitting device 20 (see FIG. 1), and the memory 1102 stores the basic image signal BDS received by the receiving circuit 1101. To do.
 画像処理回路112は、画像出力回路110から基礎画像信号BDSを受信する。画像処理回路112は、表示画像処理回路114及びミラー画像処理回路116を含む。表示画像処理回路114は、基礎画像信号BDSに基づいて、表示装置100用の表示画像信号DDSを生成する。ミラー画像処理回路116は、基礎画像信号BDSに基づいて、ミラー装置102用のミラー画像信号MDSを生成する。画像処理回路112は、生成した表示画像信号DDS及びミラー画像信号MDSを制御回路108に供給する。 The image processing circuit 112 receives the basic image signal BDS from the image output circuit 110. The image processing circuit 112 includes a display image processing circuit 114 and a mirror image processing circuit 116. The display image processing circuit 114 generates the display image signal DDS for the display device 100 based on the basic image signal BDS. The mirror image processing circuit 116 generates a mirror image signal MDS for the mirror device 102 based on the basic image signal BDS. The image processing circuit 112 supplies the generated display image signal DDS and mirror image signal MDS to the control circuit 108.
 制御回路108は、制御回路108A(表示装置制御回路)と制御回路108B(ミラー装置制御回路)を含む。制御回路108Aは、表示画像処理回路114から供給された表示画像信号DDSに基づく表示がなされるように表示装置100を制御する。言い換えると、制御回路108Aは、表示画像信号DDSに基づいて、後述する画像光が出射されるように表示装置100を制御する。また、制御回路108Bは、ミラー画像処理回路116から供給されたミラー画像信号MDSに基づきミラー装置102を制御する。言い換えると、制御回路108Bは、ミラー画像信号MDSに基づき反射面を形成するように、ミラー装置102を制御する。 The control circuit 108 includes a control circuit 108A (display device control circuit) and a control circuit 108B (mirror device control circuit). The control circuit 108A controls the display device 100 so that display is performed based on the display image signal DDS supplied from the display image processing circuit 114. In other words, the control circuit 108A controls the display device 100 based on the display image signal DDS so that the image light described later is emitted. Further, the control circuit 108B controls the mirror device 102 based on the mirror image signal MDS supplied from the mirror image processing circuit 116. In other words, the control circuit 108B controls the mirror device 102 so as to form a reflecting surface based on the mirror image signal MDS.
 ここで、表示装置100の構成と動作について説明する。なお、実施形態1では、表示装置100は、各画素に液晶素子を含んで構成される液晶表示装置であるとして説明するが、液晶表示装置に限られない。例えば、表示装置100は、各画素が有機エレクトロルミネセンス素子で構成される有機エレクトロルミネセンス表示装置、量子ドットを含んで構成される量子ドット表示装置、各画素がマイクロLEDを具備する素子で構成されるマイクロLED表示装置等であってもよい。 Here, the configuration and operation of the display device 100 will be described. In the first embodiment, the display device 100 is described as a liquid crystal display device in which each pixel includes a liquid crystal element, but the display device 100 is not limited to the liquid crystal display device. For example, the display device 100 includes an organic electroluminescence display device in which each pixel is formed of an organic electroluminescence element, a quantum dot display device in which quantum dots are included, and an element in which each pixel includes a micro LED. It may be a micro LED display device or the like.
 図4は、表示装置の構成を示す図である。表示装置100は、表示パネル200と、バックライト202と、データドライバ204と、ゲートドライバ206とを備える。 FIG. 4 is a diagram showing the configuration of the display device. The display device 100 includes a display panel 200, a backlight 202, a data driver 204, and a gate driver 206.
 バックライト202は、表示パネル200に対して光を照射する光源であり、例えば、LED(Light Emitting Diode)やCCFL(Cold Cathode Fluorescent Lamp)等により構成される。 The backlight 202 is a light source that irradiates the display panel 200 with light, and is composed of, for example, an LED (Light Emitting Diode), a CCFL (Cold Cathode Fluorescent Lamp), or the like.
 制御回路108Aは、ゲートドライバ206及びデータドライバ204の駆動タイミングを制御すると共に、表示画像信号DDSをデータドライバ204に供給する。また、制御回路108Aは、バックライト202の点灯期間のタイミングを制御する。 The control circuit 108A controls the drive timing of the gate driver 206 and the data driver 204, and also supplies the display image signal DDS to the data driver 204. Further, the control circuit 108A controls the timing of the lighting period of the backlight 202.
 表示パネル200は、ゲートドライバ206から供給される駆動信号と、データドライバ204から供給される表示画像信号DDSとに基づいて、バックライト202から発せられる光を変調し、画像の表示を行う。表示パネル200は、画素PIXと、ゲート線GL1と、データ線SL1を含む。画素PIXは、X方向(行方向)、及び、X方向と交差するY方向(列方向)にマトリクス状に配置されている。より具体的には、表示装置100は、行方向(X方向)にn個の画素PIX、列方向(Y方向)にm個の画素PIXがマトリクス状に配置される。ここで、n及びmは、1以上の自然数である。データ線SL1は、列方向に延在し、列方向の複数の画素PIXと接続されている。また、ゲート線GL1は、行方向に延在し、行方向の複数の画素PIXと接続されている。 The display panel 200 modulates the light emitted from the backlight 202 based on the drive signal supplied from the gate driver 206 and the display image signal DDS supplied from the data driver 204 to display an image. The display panel 200 includes a pixel PIX, a gate line GL1, and a data line SL1. The pixels PIX are arranged in a matrix in the X direction (row direction) and the Y direction (column direction) intersecting the X direction. More specifically, in the display device 100, n pixels PIX in the row direction (X direction) and m pixels PIX in the column direction (Y direction) are arranged in a matrix. Here, n and m are natural numbers of 1 or more. The data line SL1 extends in the column direction and is connected to the plurality of pixels PIX in the column direction. The gate line GL1 extends in the row direction and is connected to the plurality of pixels PIX in the row direction.
 ゲートドライバ206は、制御回路108Aによるタイミング制御にしたがって、表示パネル200内の各画素PIXにゲート線GL1を介して駆動信号を供給する。データドライバ204は、ゲートドライバ206によって駆動信号が供給された表示パネル200の各画素PIXへそれぞれ、制御回路108Aから供給される表示画像信号DDSに基づく表示画素信号DPS(画素電圧)を供給する。言い換えると、表示パネル200は、ゲートドライバ206によって選択された画素PIXに対して、データドライバ204を介して表示画素信号DPSを供給する。なお、ゲートドライバ206は、ゲート線GL1の配列方向に沿って線順次で駆動する。 The gate driver 206 supplies a drive signal to each pixel PIX in the display panel 200 via the gate line GL1 according to the timing control by the control circuit 108A. The data driver 204 supplies the display pixel signal DPS (pixel voltage) based on the display image signal DDS supplied from the control circuit 108A to each pixel PIX of the display panel 200 to which the drive signal is supplied by the gate driver 206. In other words, the display panel 200 supplies the display pixel signal DPS to the pixel PIX selected by the gate driver 206 via the data driver 204. The gate driver 206 drives line-sequentially along the arrangement direction of the gate lines GL1.
 また、詳細は後述するが、表示パネル200に表示された画像は、ミラー装置102により鏡面反射され、ユーザに視認される。言い換えると、ユーザに視認される画像は、表示パネル200に表示された画像を鏡面反転した画像となる。ここで、鏡面反転とは、左右反転又は上下反転を意味する。なお、ミラー装置102によって反射される画像が左右反転するのか、上下反転するのかは、表示パネル200に表示される画像がミラー装置102によって反射される際の光路によって決まる。言い換えると、ミラー装置102によって反射される画像が左右反転するのか、上下反転するのかは、表示装置100とミラー装置102の位置関係に応じて決まる。 Also, as will be described in detail later, the image displayed on the display panel 200 is specularly reflected by the mirror device 102 and is visually recognized by the user. In other words, the image visually recognized by the user is an image obtained by mirror-reversing the image displayed on the display panel 200. Here, the mirror surface inversion means horizontal inversion or vertical inversion. It should be noted that whether the image reflected by the mirror device 102 is horizontally or vertically inverted depends on the optical path when the image displayed on the display panel 200 is reflected by the mirror device 102. In other words, whether the image reflected by the mirror device 102 is horizontally or vertically inverted is determined according to the positional relationship between the display device 100 and the mirror device 102.
 ここで、ミラー装置102によって反射されてユーザに視認される画像を基準にすると、表示パネル200に表示される画像を反転画像にする必要がある。 Here, based on the image reflected by the mirror device 102 and visually recognized by the user, the image displayed on the display panel 200 needs to be an inverted image.
 具体的には、表示画像処理回路114は、画像出力回路110のメモリ1102に保存されている基礎画像信号BDSを読み出す。表示画像処理回路114は、ミラー装置102に対して表示装置100が配置される位置に基づいて、基礎画像信号BDSの示す画像を反転した反転画像に対応する表示画像信号DDSを出力する。制御回路108Aは、表示画像処理回路114により反転画像を表示装置100に表示する。 Specifically, the display image processing circuit 114 reads out the basic image signal BDS stored in the memory 1102 of the image output circuit 110. The display image processing circuit 114 outputs a display image signal DDS corresponding to an inverted image obtained by inverting the image represented by the basic image signal BDS based on the position where the display device 100 is arranged with respect to the mirror device 102. The control circuit 108A causes the display image processing circuit 114 to display a reverse image on the display device 100.
 なお、送信装置20から送信されてきた画像が反転画像であれば、画像出力回路110から反転画像に対応する基礎画像信号BDSが供給されるため、表示画像処理回路114による画像の反転処理は不要になる。言い換えると、表示画像処理回路114は、基礎画像信号BDSを表示画像信号DDSとしてそのまま出力することができる。この場合には、ヘッドマウントディスプレイ30の処理負担の軽減を図ることができる。 If the image transmitted from the transmission device 20 is a reverse image, the basic image signal BDS corresponding to the reverse image is supplied from the image output circuit 110, and thus the image reverse process by the display image processing circuit 114 is unnecessary. become. In other words, the display image processing circuit 114 can directly output the basic image signal BDS as the display image signal DDS. In this case, the processing load on the head mounted display 30 can be reduced.
 また、ミラー装置102は、制御回路108Bの制御に基づいて、表示装置100から照射された光を透過する第1モードと、表示装置100から照射された光を反射する第2モードを切り替える。なお、実施形態1では、第1モードは、「透過モード」といい、第2モードは、「鏡面モード」又は「反射モード」という場合がある。 Further, the mirror device 102 switches between the first mode in which the light emitted from the display device 100 is transmitted and the second mode in which the light emitted from the display device 100 is reflected, under the control of the control circuit 108B. In the first embodiment, the first mode may be referred to as a “transmission mode”, and the second mode may be referred to as a “mirror surface mode” or a “reflection mode”.
 図5及び図6は、ヘッドマウントディスプレイの構成を示す図である。図5は、透過モードに切り替えられた場合を示す図である。図6は、鏡面モードに切り替えられた場合を示す図である。ヘッドマウントディスプレイ30は、光学素子130と、表示装置100と、ミラー装置102とを備える。表示装置100の前面には、偏光板100cが配置される。 5 and 6 are diagrams showing the configuration of the head mounted display. FIG. 5 is a diagram showing a case where the mode is switched to the transparent mode. FIG. 6 is a diagram showing a case where the mode is switched to the mirror surface mode. The head mounted display 30 includes an optical element 130, a display device 100, and a mirror device 102. A polarizing plate 100c is arranged on the front surface of the display device 100.
 光学素子130は、ミラー装置102から出射される光を屈折させる素子であり、例えば、凹型レンズである。ミラー装置102から出射される光とは、ヘッドマウントディスプレイ30の外部から入射し、ミラー装置102を透過した光(外光OL)と、表示装置100からの光がミラー装置102により反射された光(画像光DL2b)とを含む。 The optical element 130 is an element that refracts the light emitted from the mirror device 102, and is, for example, a concave lens. The light emitted from the mirror device 102 is light that is incident from the outside of the head mounted display 30 and that is transmitted through the mirror device 102 (outside light OL) and light that is reflected from the display device 100 by the mirror device 102. (Image light DL2b).
 ここで、ミラー装置102の構成について説明する。ミラー装置102は、電気的なエネルギーで透過する光の光学的な性質を変化させることができる装置である。より具体的には、ミラー装置102は、光の入射方向に応じ、面内の少なくとも一部分を入射光に対して反射の状態又は透過の状態に選択的に変化させる透過反射制御装置である。ミラー装置102は、例えば、電気的なエネルギーで光学的な性質が変化する電気光学物質が含まれる。電気光学物質には、液晶等が含まれる。 Here, the configuration of the mirror device 102 will be described. The mirror device 102 is a device capable of changing the optical property of light transmitted by electric energy. More specifically, the mirror device 102 is a transmission / reflection control device that selectively changes at least a part of the in-plane into a reflective state or a transmissive state with respect to the incident light according to the incident direction of the light. The mirror device 102 includes, for example, an electro-optical material whose optical properties change with electrical energy. The electro-optical material includes liquid crystal and the like.
 ミラー装置102は、視認側から、第1偏光板300と、偏光軸変換部400と、反射型偏光板500と、第2偏光板600とが配置された構成を有する。なお、図5及び図6は、説明のために各部が間隙を持って配置されているように表示するが、実際には各部が近接し、又は密接して配置される。 The mirror device 102 has a configuration in which a first polarizing plate 300, a polarization axis conversion unit 400, a reflective polarizing plate 500, and a second polarizing plate 600 are arranged from the viewing side. 5 and 6 are illustrated such that the respective parts are arranged with a gap for the sake of explanation, in reality, the respective parts are arranged close to or in close contact with each other.
 第1偏光板300は、第1方向の直線偏光成分(以下、「第1直線偏光成分」ともいう)を透過し、第2方向の直線偏光成分(以下、「第2直線偏光成分」ともいう)を吸収する。第1偏光板300を透過する光の偏光方向を、詳述すれば第1偏光板300を透過する光が含む偏光成分のうち最も強い成分である直線偏光の方向を、透過偏光軸という。また、第1偏光板300に吸収される光の偏光方向を、詳述すれば第1偏光板300に吸収される光が含む偏光成分のうち最も強い成分である直線偏光の方向を、吸収偏光軸という。すなわち、第1偏光板300は、第1方向に透過偏光軸を有し、第2方向に吸収偏光軸を有する。第1偏光板300は、吸収型偏光子を有する偏光板又は偏光フィルムによって実現される。 The first polarizing plate 300 transmits a linearly polarized light component in the first direction (hereinafter, also referred to as “first linearly polarized light component”), and a linearly polarized light component in the second direction (hereinafter also referred to as “second linearly polarized light component”). ) Is absorbed. The polarization direction of the light passing through the first polarizing plate 300 will be described in detail. The direction of linearly polarized light, which is the strongest component of the polarization components included in the light passing through the first polarizing plate 300, is called a transmission polarization axis. In addition, the polarization direction of the light absorbed by the first polarizing plate 300, in detail, the direction of the linearly polarized light, which is the strongest component among the polarization components included in the light absorbed by the first polarizing plate 300, is the absorption polarization. Called the axis. That is, the first polarizing plate 300 has a transmission polarization axis in the first direction and an absorption polarization axis in the second direction. The first polarizing plate 300 is realized by a polarizing plate or a polarizing film having an absorptive polarizer.
 ここで、表示装置100に液晶表示パネルが用いられる場合、表示装置100は、光の出射面側に偏光板100cを含み、偏光板100cは、直線偏光板が用いられる。例えば、偏光板100cは、第1方向に透過偏光軸を有し、第2方向に吸収偏光軸を有する。偏光板100cは、吸収型偏光子を有する偏光板又は偏光フィルムによって実現される。また、直線偏光板である偏光板100cの透過偏光軸と第1偏光板300の透過偏光軸とは、平行に、あるいは略平行に配置される。 Here, when a liquid crystal display panel is used for the display device 100, the display device 100 includes a polarizing plate 100c on the light emission surface side, and the polarizing plate 100c is a linear polarizing plate. For example, the polarizing plate 100c has a transmission polarization axis in the first direction and an absorption polarization axis in the second direction. The polarizing plate 100c is realized by a polarizing plate or a polarizing film having an absorptive polarizer. Further, the transmission polarization axis of the polarization plate 100c, which is a linear polarization plate, and the transmission polarization axis of the first polarization plate 300 are arranged in parallel or substantially in parallel.
 表示装置100から出射される画像光DLは、偏光板100cにより第1偏光板300の透過偏光軸と一致した偏光軸を有する直線偏光となる。言い換えると、表示装置100から出射される画像光DLは、第1直線偏光成分からなる光である。 The image light DL emitted from the display device 100 becomes linearly polarized light having a polarization axis that matches the transmission polarization axis of the first polarization plate 300 by the polarization plate 100c. In other words, the image light DL emitted from the display device 100 is light including the first linearly polarized light component.
 偏光軸変換部400は、入射光の偏光軸を変化させる状態と変化させない状態との少なくとも2つの状態を取り得る。偏光軸変換部400は、この2つの状態を電気的な切り替えにより選択できるように構成される。具体的には、偏光軸変換部400は、一方向に直線偏光された光の偏光方向を90度回転させる状態と、回転させない状態とを取り得る。このような機能を有する偏光軸変換部400は、例えば、液晶の電気光学効果を利用して実現される。なお、後述するように、偏光軸変換部400は、入射光の偏光軸を変化させる状態と変化させない状態とが混在する状態も取り得る。 The polarization axis conversion unit 400 can take at least two states, that is, a state in which the polarization axis of incident light is changed and a state in which it is not changed. The polarization axis conversion unit 400 is configured so that these two states can be selected by electrical switching. Specifically, the polarization axis conversion unit 400 can take a state in which the polarization direction of light linearly polarized in one direction is rotated by 90 degrees and a state in which it is not rotated. The polarization axis conversion unit 400 having such a function is realized, for example, by utilizing the electro-optical effect of liquid crystal. Note that, as will be described later, the polarization axis conversion unit 400 can also be in a state in which a state in which the polarization axis of incident light is changed and a state in which it is not changed are mixed.
 偏光軸変換部400は、第2電極404が設けられた第1基板402と、第1電極408が設けられた第2基板406と、液晶層410とを含んで構成される。第1基板402と第2基板406とは、第2電極404と第1電極408とが間隙を持って対面するように配置される。液晶層410は、第1基板402と第2基板406との間隙に配置される。第1基板402及び第2基板406には、例えばガラス基板や可撓性を有する樹脂基板を用いることができる。偏光軸変換部400は、複数のミラー素子MPIXを有し、第2電極404は、複数のミラー素子MPIXに対向するように配置され、第1電極408は、ミラー素子MPIX毎に配置される。なお、第2電極404と第1電極408の配置位置は、逆でもよい。つまり、第1基板402上に第1電極408が配置され、第2基板406上に第2電極404が配置されてもよい。 The polarization axis conversion unit 400 includes a first substrate 402 provided with a second electrode 404, a second substrate 406 provided with a first electrode 408, and a liquid crystal layer 410. The first substrate 402 and the second substrate 406 are arranged so that the second electrode 404 and the first electrode 408 face each other with a gap. The liquid crystal layer 410 is arranged in the gap between the first substrate 402 and the second substrate 406. For the first substrate 402 and the second substrate 406, for example, a glass substrate or a flexible resin substrate can be used. The polarization axis conversion unit 400 has a plurality of mirror elements MPIX, the second electrode 404 is arranged so as to face the plurality of mirror elements MPIX, and the first electrode 408 is arranged for each mirror element MPIX. The positions of the second electrode 404 and the first electrode 408 may be reversed. That is, the first electrode 408 may be arranged on the first substrate 402 and the second electrode 404 may be arranged on the second substrate 406.
 また、図5及び図6には図示されないが、偏光軸変換部400は、第2電極404と第1電極408との間に電位差を与えるために信号供給回路が接続される。また、信号供給回路には、印加される電圧のオンオフを切り替えるためにスイッチが設けられる。信号供給回路は、第2電極404と第1電極408との間に正極及び負極の両極の電圧が印加されるように、極性反転回路を含んで構成されることが好ましい。なお、信号供給回路は、後述するデータドライバ802と、ゲートドライバ804と、第2電極404を駆動する第2電極駆動回路とを含む。 Although not shown in FIGS. 5 and 6, the polarization axis conversion unit 400 is connected to a signal supply circuit for applying a potential difference between the second electrode 404 and the first electrode 408. Further, the signal supply circuit is provided with a switch for switching on and off of the applied voltage. The signal supply circuit is preferably configured to include a polarity reversal circuit so that voltages of both positive and negative electrodes are applied between the second electrode 404 and the first electrode 408. The signal supply circuit includes a data driver 802, which will be described later, a gate driver 804, and a second electrode drive circuit which drives the second electrode 404.
 第2電極404及び第1電極408は、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の透明性のある導電材料で形成される。また、図5及び図6には図示されないが、第2電極404及び第1電極408の表面には液晶を配向させるための配向膜が形成される。言い換えると液晶層と直接接触する位置に配向膜が形成される。 The second electrode 404 and the first electrode 408 are formed of a transparent conductive material such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide). Although not shown in FIGS. 5 and 6, alignment films for aligning liquid crystals are formed on the surfaces of the second electrode 404 and the first electrode 408. In other words, the alignment film is formed at the position where it is in direct contact with the liquid crystal layer.
 液晶層410は、第2電極404及び第1電極408によって与えられる電位差に応じて配向方向が変化する。液晶層410は、与えられる電圧に応じて配向方向が変化する液晶分子412を含む。液晶層410は、例えば、ポジ型のネマティック液晶が用いられる。偏光軸変換部400は、例えば、ツイストネマティック方式(TN方式)で液晶層410を駆動する。具体的には、液晶層410に電圧が印加されないとき、第2電極404と第1電極408との間で、液晶分子412が第1基板402及び第2基板406の主面に略平行方向に配列し、かつ液晶分子412の向きが、詳しくは棒状の液晶分子412の長軸の向きが、90度捩れて配向している。すなわち、液晶分子412の配向は、電圧が印加されない状態において、第2電極404から第1電極408にかけて少しずつ一方向に回転しながら90度捩れた構造になっている。また、第2電極404と第1電極408との間に電圧が印加されると、液晶分子412の配向は、図6に示すように、電界が作用する方向に、すなわち第1基板402及び第2基板406の主面に略垂直方向に揃った構造になる。 The alignment direction of the liquid crystal layer 410 changes according to the potential difference given by the second electrode 404 and the first electrode 408. The liquid crystal layer 410 includes liquid crystal molecules 412 whose alignment direction changes according to an applied voltage. For the liquid crystal layer 410, for example, a positive type nematic liquid crystal is used. The polarization axis conversion unit 400 drives the liquid crystal layer 410 by, for example, a twist nematic method (TN method). Specifically, when no voltage is applied to the liquid crystal layer 410, the liquid crystal molecules 412 are arranged between the second electrode 404 and the first electrode 408 in a direction substantially parallel to the main surfaces of the first substrate 402 and the second substrate 406. The liquid crystal molecules 412 are aligned, and more specifically, the rod-shaped liquid crystal molecules 412 are oriented with their major axes twisted by 90 degrees. That is, the orientation of the liquid crystal molecules 412 has a structure in which the liquid crystal molecules 412 are twisted by 90 degrees while gradually rotating in one direction from the second electrode 404 to the first electrode 408 when no voltage is applied. When a voltage is applied between the second electrode 404 and the first electrode 408, the alignment of the liquid crystal molecules 412 is in the direction in which the electric field acts, that is, the first substrate 402 and the first substrate 402, as shown in FIG. The structure is such that the main surface of the two substrates 406 is aligned substantially vertically.
 図5に示すように、液晶層410は、第2電極404及び第1電極408によって電圧が印加される状態(第1状態)と電圧が印加されない状態(第2状態)で、液晶層を通る光の偏光状態を変化させる。より具体的には、電圧が印加されていない状態であって、液晶分子412の向きが90度捩れて配向している液晶層410に、第1直線偏光成分の光が入射すると、液晶分子412の回転に沿って偏光の向きが回転する。液晶分子412は、90度捩れているので、液晶層410を透過した光は、実質的に第2直線偏光成分の光に変換される。一方、図6に示すように、電圧が印加されている状態であって、第1基板402及び第2基板406の主面に略垂直方向に配向している液晶層410に、第1直線偏光成分の光が入射しても、液晶分子412の捩れは解消しているので、入射光の偏光方向は変化しない。このように、偏光軸変換部400は、直線偏光された入射光が透過する際に、その偏光軸を変化させる状態(第1状態)と、変化させない状態(第2状態)とを、電気的な切り替えにより選択できる機能を有する。 As shown in FIG. 5, the liquid crystal layer 410 passes through the liquid crystal layer in a state where a voltage is applied by the second electrode 404 and the first electrode 408 (first state) and a state in which no voltage is applied (second state). Change the polarization state of light. More specifically, when the light of the first linearly polarized component is incident on the liquid crystal layer 410 in which the voltage is not applied and the liquid crystal molecules 412 are twisted and oriented by 90 degrees, the liquid crystal molecules 412 are The direction of polarized light rotates along with the rotation of. Since the liquid crystal molecules 412 are twisted by 90 degrees, the light transmitted through the liquid crystal layer 410 is substantially converted into the light of the second linear polarization component. On the other hand, as shown in FIG. 6, the first linearly polarized light is applied to the liquid crystal layer 410 which is aligned in a direction substantially perpendicular to the main surfaces of the first substrate 402 and the second substrate 406 in a state where a voltage is applied. Even if the component light is incident, the twist of the liquid crystal molecules 412 is eliminated, so that the polarization direction of the incident light does not change. As described above, the polarization axis conversion section 400 electrically changes the polarization axis of the linearly polarized incident light when the incident light is transmitted (first state) and does not change it (second state). It has a function that can be selected by simple switching.
 なお、偏光軸変換部400の液晶層410を駆動する方式は、ツイストネマティック方式に限定されるものではない。例えば、液晶層410の液晶分子412として、ネガ型のネマティック液晶を用いて、液晶分子412の初期配向が第1基板402及び第2基板406の主面の略垂直方向となるような縦電界方式で液晶層410を駆動してもよい。又は、偏光軸変換部400は、液晶層410の液晶分子412の初期配向が、第1基板402及び第2基板406の主面の略平行方向にホモジニアス配向するような横電界方式で液晶層410を駆動してもよい。横電界方式は、例えば、当該主面に平行な横方向の電界で液晶分子412を駆動するインプレーンスイッチング(IPS:In Plane Switching)、又はフリンジ電界で液晶分子412を駆動するフリンジフィールドスイッチング(FFS:Fringe Field Switching)等の方式が挙げられる。偏光軸変換部400としてIPSやFFS等の横電界方式で液晶層410を駆動する場合は、第2電極404及び第1電極408は、第1基板402又は第2基板406のいずれか一方の基板に配置される。例えば、液晶層410と第1基板402の間に第2電極404及び第1電極408が配置される。また、第2電極404と第1電極408は、同一の導電層で形成されてもよいし、絶縁層を介して異なる導電層で形成されてもよい。さらに、第2電極404及び第1電極408の形状は矩形状でも櫛歯状でもよい。 The method of driving the liquid crystal layer 410 of the polarization axis conversion unit 400 is not limited to the twist nematic method. For example, a negative type nematic liquid crystal is used as the liquid crystal molecules 412 of the liquid crystal layer 410, and a vertical electric field method in which the initial alignment of the liquid crystal molecules 412 is substantially vertical to the main surfaces of the first substrate 402 and the second substrate 406. The liquid crystal layer 410 may be driven by. Alternatively, the polarization axis conversion unit 400 uses the horizontal electric field method in which the initial alignment of the liquid crystal molecules 412 of the liquid crystal layer 410 is a homogeneous alignment in a direction substantially parallel to the main surfaces of the first substrate 402 and the second substrate 406. May be driven. The horizontal electric field method is, for example, in-plane switching (IPS: In Plane Switching) for driving the liquid crystal molecules 412 by a horizontal electric field parallel to the main surface, or fringe field switching (FFS) for driving the liquid crystal molecules 412 by a fringe electric field. : Fringe Field Switching) and the like. When the liquid crystal layer 410 is driven by the horizontal electric field method such as IPS or FFS as the polarization axis conversion unit 400, the second electrode 404 and the first electrode 408 are either the first substrate 402 or the second substrate 406. Is located in. For example, the second electrode 404 and the first electrode 408 are disposed between the liquid crystal layer 410 and the first substrate 402. The second electrode 404 and the first electrode 408 may be formed of the same conductive layer or may be formed of different conductive layers with an insulating layer interposed therebetween. Further, the shapes of the second electrode 404 and the first electrode 408 may be rectangular or comb-shaped.
 反射型偏光板500は、入射光のうち、第1直線偏光成分を反射し、第2直線偏光成分を透過する。反射型偏光板500で反射する光の偏光方向を、詳述すれば反射型偏光板500で反射する光が含む偏光成分のうち最も強い成分である直線偏光の方向を、反射偏光軸という。すなわち、反射型偏光板500は、第1方向に反射偏光軸を有し、第2方向に透過偏光軸を有する。このような特性を有する反射型偏光板500は、例えば、金属ナノワイヤを用いたワイヤグリッド偏光子を有する偏光板、又は高分子フィルムの積層体からなる偏光フィルムによって実現される。ワイヤグリッド偏光子を有する偏光板は、例えば、ワイヤグリッドで形成される偏光子と、偏光子を支持する基材と、保護フィルムを含んで構成される。高分子フィルムの積層体からなる偏光フィルムには、例えば、互いに異なる複屈折を有する複屈折性高分子フィルムを交互に複数積層した構造からなる複屈折反射型偏光フィルムを用いることができる。 The reflective polarizing plate 500 reflects the first linearly polarized light component and transmits the second linearly polarized light component of the incident light. The polarization direction of the light reflected by the reflective polarizing plate 500 will be described in detail. The direction of linearly polarized light, which is the strongest component of the polarization components included in the light reflected by the reflective polarizing plate 500, is called the reflective polarization axis. That is, the reflective polarizing plate 500 has a reflection polarization axis in the first direction and a transmission polarization axis in the second direction. The reflective polarizing plate 500 having such characteristics is realized by, for example, a polarizing plate having a wire grid polarizer using metal nanowires, or a polarizing film made of a laminate of polymer films. A polarizing plate having a wire grid polarizer includes, for example, a polarizer formed of a wire grid, a base material that supports the polarizer, and a protective film. A birefringent reflective polarizing film having a structure in which a plurality of birefringent polymer films having mutually different birefringences are alternately laminated can be used as the polarizing film composed of a laminate of polymer films.
 第2偏光板600は、入射光のうち、第1直線偏光成分を吸収し、第2直線偏光成分を透過する。第2偏光板600に吸収される光の偏光方向を、詳述すれば第2偏光板600に吸収される光が含む偏光成分のうち最も強い成分である直線偏光の方向を、吸収偏光軸という。また、第2偏光板600を透過する光の偏光方向を、詳述すれば第2偏光板600を透過する光が含む偏光成分のうち最も強い成分である直線偏光の方向を、透過偏光軸という。すなわち、第2偏光板600は、第1方向に吸収偏光軸を有し、第2方向に透過偏光軸を有する。 The second polarizing plate 600 absorbs the first linearly polarized light component of the incident light and transmits the second linearly polarized light component. The polarization direction of the light absorbed by the second polarizing plate 600 will be described in detail. The direction of the linearly polarized light, which is the strongest component of the polarization components included in the light absorbed by the second polarizing plate 600, is called the absorption polarization axis. . Further, the polarization direction of the light passing through the second polarizing plate 600 will be described in detail. The direction of the linearly polarized light, which is the strongest component of the polarization components included in the light passing through the second polarizing plate 600, is called the transmission polarization axis. . That is, the second polarizing plate 600 has an absorption polarization axis in the first direction and a transmission polarization axis in the second direction.
 図5に示すように、第2偏光板600に外光OL(自然光又は人工の照明光)が入射すると、第2直線偏光成分の光が透過光として得られ、その他の成分の光は吸収される。このような特性を有する第2偏光板600は、吸収型偏光子を有する偏光板又は偏光フィルムによって実現される。 As shown in FIG. 5, when external light OL (natural light or artificial illumination light) is incident on the second polarizing plate 600, light of the second linearly polarized light component is obtained as transmitted light, and light of other components is absorbed. It The second polarizing plate 600 having such characteristics is realized by a polarizing plate or a polarizing film having an absorptive polarizer.
 本実施形態に係るミラー装置102は、偏光軸変換部400の一方に第1偏光板300が配置され、他方に反射型偏光板500及び第2偏光板600が配置された構成を有する。そして、第1偏光板300の透過偏光軸と反射型偏光板500の反射偏光軸とは平行に、あるいは略平行に配置される。さらに、第1偏光板300の吸収偏光軸と反射型偏光板500の透過偏光軸とは平行に、あるいは略平行に配置される。反射型偏光板500の反射偏光軸と第2偏光板600の吸収偏光軸とは平行に、あるいは略平行に配置される。さらに、反射型偏光板500の透過偏光軸と第2偏光板600の透過偏光軸とは平行に、あるいは略平行に配置される。ミラー装置102は、このような第1偏光板300及び反射型偏光板500が有する偏光軸の組み合わせにより、鏡面モードと透過モードとを切り替える機能を有する。 The mirror device 102 according to the present embodiment has a configuration in which the first polarizing plate 300 is arranged on one side of the polarization axis conversion section 400, and the reflective polarizing plate 500 and the second polarizing plate 600 are arranged on the other side. The transmission polarization axis of the first polarization plate 300 and the reflection polarization axis of the reflection-type polarization plate 500 are arranged in parallel or substantially in parallel. Further, the absorption polarization axis of the first polarizing plate 300 and the transmission polarization axis of the reflective polarizing plate 500 are arranged in parallel or substantially in parallel. The reflective polarization axis of the reflective polarizing plate 500 and the absorption polarization axis of the second polarizing plate 600 are arranged in parallel or substantially in parallel. Further, the transmission polarization axis of the reflective polarization plate 500 and the transmission polarization axis of the second polarization plate 600 are arranged in parallel or substantially in parallel. The mirror device 102 has a function of switching between the specular mode and the transmissive mode depending on the combination of the polarization axes of the first polarizing plate 300 and the reflective polarizing plate 500.
 ここで、透過モードについて説明する。図5に示すように、表示装置100から出射された画像光DL1は、視認側から第1偏光板300に入射する。第1偏光板300に入射した画像光DL1は、第1直線偏光成分の光なので、第1偏光板300を透過する。偏光軸変換部400は、スイッチがオフであり、電源から電圧が印加されない状態にある。よって、液晶層410の液晶分子412は、第2電極404と第1電極408との間で90度捩れた状態となっている。したがって、偏光軸変換部400に入射した画像光DL1は、液晶層410を透過すると、偏光方向が90度回転する。その結果、偏光軸変換部400を透過した画像光DL1は、第2直線偏光成分の光に変換される。 Here, the transparent mode will be explained. As shown in FIG. 5, the image light DL1 emitted from the display device 100 enters the first polarizing plate 300 from the viewing side. The image light DL1 incident on the first polarizing plate 300 is the light of the first linearly polarized light component, and therefore passes through the first polarizing plate 300. The switch of the polarization axis conversion unit 400 is off, and no voltage is applied from the power supply. Therefore, the liquid crystal molecules 412 of the liquid crystal layer 410 are twisted by 90 degrees between the second electrode 404 and the first electrode 408. Therefore, when the image light DL1 incident on the polarization axis conversion unit 400 passes through the liquid crystal layer 410, the polarization direction is rotated by 90 degrees. As a result, the image light DL1 that has passed through the polarization axis converter 400 is converted into light of the second linearly polarized light component.
 偏光軸変換部400を透過した画像光DL1は、第2直線偏光成分の光なので、反射型偏光板500を透過する。また、反射型偏光板500を透過した画像光DL1は、同様に、第2直線偏光成分の光なので、第2偏光板600を透過する。 The image light DL1 that has passed through the polarization axis converter 400 is the light of the second linearly polarized light component, and therefore passes through the reflective polarizing plate 500. The image light DL1 that has passed through the reflective polarizing plate 500 is also the light of the second linearly polarized light component, and therefore passes through the second polarizing plate 600.
 また、ヘッドマウントディスプレイ30の外部から第2偏光板600に入射した外光OLは、第2直線偏光成分の光のみが透過し、その他の成分の光は吸収される。したがって、第2偏光板600を透過した外光OL1は、第2直線偏光成分の光となる。 In addition, as for the external light OL incident on the second polarizing plate 600 from the outside of the head mounted display 30, only the light of the second linearly polarized light component is transmitted and the light of the other components is absorbed. Therefore, the external light OL1 that has passed through the second polarizing plate 600 becomes the light of the second linear polarization component.
 第2偏光板600を透過した外光OL1は、第2直線偏光成分の光なので、反射型偏光板500を透過する。 The external light OL1 that has passed through the second polarizing plate 600 is the light of the second linearly polarized light component, and therefore passes through the reflective polarizing plate 500.
 偏光軸変換部400は、スイッチがオフであり、電源から電圧が印加されない状態にあるので、液晶層410の液晶分子412は、第2電極404と第1電極408との間で90度捩れた状態となっている。したがって、反射型偏光板500を透過した第2直線偏光成分の光である外光OL1は、液晶層410を透過すると、偏光方向が90度回転する。その結果、偏光軸変換部400の液晶層410を透過した外光OL1は、第1直線偏光成分の光に変換される。 Since the polarization axis conversion unit 400 is in a state in which the switch is off and the voltage is not applied from the power source, the liquid crystal molecules 412 of the liquid crystal layer 410 are twisted by 90 degrees between the second electrode 404 and the first electrode 408. It is in a state. Therefore, when the external light OL1 that is the light of the second linearly polarized light component that has passed through the reflective polarizing plate 500 passes through the liquid crystal layer 410, the polarization direction is rotated by 90 degrees. As a result, the external light OL1 that has passed through the liquid crystal layer 410 of the polarization axis conversion unit 400 is converted into the light of the first linear polarization component.
 偏光軸変換部400の液晶層410を透過した外光OL1は、第1直線偏光成分の光なので、第1偏光板300を透過する。 The external light OL1 that has passed through the liquid crystal layer 410 of the polarization axis conversion unit 400 is the light of the first linearly polarized light component, and therefore passes through the first polarizing plate 300.
 図7Aは、透過モードにおいてヘッドマウントディスプレイを介してユーザに視認される様子を模式的に示す図であり、図7Bは、図7Aにおいて、ヘッドマウントディスプレイを介してユーザに視認される画像例を示す図である。虚像Iは、表示装置100から出射される画像光DLがミラー装置102によって反射されることでユーザに視認される画像である。虚像Iは、例えば、歌唱している人物画像を含むVR画像である。実像Rは、外光OLを介して視認される実空間に存在し、ユーザによって視認される画像である。実像Rには、例えば、実空間に存在する物体や建造物が含まれる。透過モードにおいて、表示装置100から出射された画像光DL1は、ミラー装置102によって反射されないため、画像光DL1によって表示される虚像Iは、ユーザに視認されない。また、透過モードにおいて、ヘッドマウントディスプレイ30の外部から入射した外光OL1は、ミラー装置102を透過し、ユーザに視認されるため、実像Rは、ユーザに視認される。 FIG. 7A is a diagram schematically showing how the image is viewed by the user through the head mounted display in the transmissive mode, and FIG. 7B is an example of an image viewed by the user through the head mounted display in FIG. 7A. FIG. The virtual image I is an image visually recognized by the user when the image light DL emitted from the display device 100 is reflected by the mirror device 102. The virtual image I is, for example, a VR image including an image of a person who is singing. The real image R is an image that is present in the real space viewed through the outside light OL and is viewed by the user. The real image R includes, for example, an object or a building existing in the real space. In the transmissive mode, the image light DL1 emitted from the display device 100 is not reflected by the mirror device 102, so the virtual image I displayed by the image light DL1 is not visually recognized by the user. Further, in the transmissive mode, the external light OL1 incident from the outside of the head mounted display 30 passes through the mirror device 102 and is visually recognized by the user, so that the real image R is visually recognized by the user.
 よって、ヘッドマウントディスプレイ30を装着しているユーザは、ヘッドマウントディスプレイ30を介して、実空間に存在する物体や建造物などの実像Rのみを視認することができる。 Therefore, the user wearing the head mounted display 30 can see only the real image R of an object or a building existing in the real space via the head mounted display 30.
 つぎに、鏡面モード(反射モード)について説明する。図6に示すように、表示装置100から出射された画像光DL2aは、視認側から第1偏光板300に入射する。第1偏光板300に入射した画像光DL2aは、第1直線偏光成分の光なので、第1偏光板300を透過する。偏光軸変換部400は、スイッチがオンであり、電源から電圧が印加された状態にある。よって、液晶層410の液晶分子412は、第2電極404と第1電極408との間で電界と平行な方向に配向している状態である。したがって、偏光軸変換部400に入射した画像光DL2aは、液晶層410を透過しても偏光方向が変化しない。 Next, the specular mode (reflection mode) will be explained. As shown in FIG. 6, the image light DL2a emitted from the display device 100 enters the first polarizing plate 300 from the viewing side. The image light DL2a that has entered the first polarizing plate 300 is the light of the first linearly polarized light component and therefore passes through the first polarizing plate 300. The polarization axis conversion unit 400 is in a state where the switch is on and a voltage is applied from the power supply. Therefore, the liquid crystal molecules 412 of the liquid crystal layer 410 are in a state of being aligned between the second electrode 404 and the first electrode 408 in a direction parallel to the electric field. Therefore, the polarization direction of the image light DL2a that has entered the polarization axis conversion unit 400 does not change even though it passes through the liquid crystal layer 410.
 偏光軸変換部400を透過した画像光DL2aは、第1直線偏光成分の光なので、反射型偏光板500により反射される。反射型偏光板500に反射された画像光DL2b(反射画像光)は、再び偏光軸変換部400に入射する。再び偏光軸変換部400に入射した画像光DL2bは、偏光方向が変化せず、第1直線偏光成分のまま偏光軸変換部400を透過する。 The image light DL2a that has passed through the polarization axis conversion unit 400 is the light of the first linear polarization component, and thus is reflected by the reflective polarizing plate 500. The image light DL2b (reflected image light) reflected by the reflective polarizing plate 500 enters the polarization axis conversion unit 400 again. The image light DL2b that has entered the polarization axis conversion unit 400 again does not change its polarization direction and passes through the polarization axis conversion unit 400 as the first linear polarization component.
 偏光軸変換部400を透過した画像光DL2bは、第1直線偏光成分の光なので、第1偏光板300を透過する。 The image light DL2b that has passed through the polarization axis converter 400 is the light of the first linearly polarized light component, and therefore passes through the first polarizing plate 300.
 また、ヘッドマウントディスプレイ30の外部から第2偏光板600に入射した外光OL2は、第2直線偏光成分の光のみが透過し、その他の成分の光は吸収される。 In addition, the external light OL2 that enters the second polarizing plate 600 from the outside of the head mounted display 30 transmits only the light of the second linearly polarized light component and absorbs the light of the other components.
 第2偏光板600を透過した外光OL2は、第2直線偏光成分の光なので、反射型偏光板500を透過する。 The external light OL2 that has passed through the second polarizing plate 600 is the light of the second linearly polarized light component, and therefore passes through the reflective polarizing plate 500.
 偏光軸変換部400は、スイッチがオンであり、電源から電圧が印加された状態にある。よって、液晶層410の液晶分子412は、第2電極404と第1電極408との間で電界と平行な方向に配向している状態である。したがって、偏光軸変換部400に入射した外光OL2は、偏光方向が変化せず、第2直線偏光成分のまま偏光軸変換部400を透過する。 The polarization axis conversion unit 400 is in a state where the switch is on and a voltage is applied from the power supply. Therefore, the liquid crystal molecules 412 of the liquid crystal layer 410 are in a state of being aligned between the second electrode 404 and the first electrode 408 in a direction parallel to the electric field. Therefore, the external light OL2 that has entered the polarization axis conversion unit 400 does not change its polarization direction and passes through the polarization axis conversion unit 400 as the second linear polarization component.
 偏光軸変換部400を透過した外光OL2は、第2直線偏光成分の光なので、第1偏光板300に吸収される。 The external light OL2 that has passed through the polarization axis conversion unit 400 is the light of the second linearly polarized light component, and thus is absorbed by the first polarizing plate 300.
 なお、反射型偏光板500がワイヤグリッド偏光子を備える場合、ワイヤグリッド偏光子の表面に、反射率の高い金属膜を設けることで、反射光の色相を調節することができる。例えば、ワイヤグリッド偏光子の表面に金(Au)や窒化チタン(TiN)等でコーティングしておくことで、反射光を金色又は金色に近い色相にすることができる。反射型偏光板500が複屈折反射型偏光フィルムの場合、積層された複数のフィルムの各々の厚さを適宜調整することで、任意の波長領域の光を複屈折反射型偏光フィルムで反射させることができる。例えば複屈折反射型偏光フィルムが反射する光の波長領域を、短波長領域に限定すれば反射光の色を青色にすることができ、長波長側に限定すれば反射光を赤色にすることができる。また、金色に相当する波長領域に限定すれば、反射光を金色にすることができる。 If the reflective polarizing plate 500 includes a wire grid polarizer, the hue of the reflected light can be adjusted by providing a metal film having high reflectance on the surface of the wire grid polarizer. For example, by coating the surface of the wire grid polarizer with gold (Au), titanium nitride (TiN), or the like, it is possible to make reflected light a golden color or a hue close to a golden color. When the reflective polarizing plate 500 is a birefringent reflective polarizing film, the birefringent reflective polarizing film reflects light in an arbitrary wavelength region by appropriately adjusting the thickness of each of the laminated films. You can For example, if the wavelength range of the light reflected by the birefringent reflective polarizing film is limited to the short wavelength range, the color of the reflected light can be blue, and if limited to the long wavelength side, the reflected light can be red. it can. Further, if the wavelength range corresponding to gold is limited, the reflected light can be gold.
 図8Aは、鏡面モードにおいてヘッドマウントディスプレイを介してユーザに視認される様子を模式的に示す図である。図8Bは、図8Aにおいて、ヘッドマウントディスプレイを介してユーザに視認される画像例を示す図である。鏡面モードにおいて、表示装置100から出射された画像光DL2aは、ミラー装置102によって反射され、ミラー装置102によって反射された画像光DL2bがユーザに視認される。また、鏡面モードにおいて、ヘッドマウントディスプレイ30の外部から入射した外光OL2は、ミラー装置102により吸収され、ユーザに視認されない。 FIG. 8A is a diagram schematically showing a state of being visually recognized by the user via the head mounted display in the mirror surface mode. FIG. 8B is a diagram showing an example of an image visually recognized by the user via the head mounted display in FIG. 8A. In the mirror surface mode, the image light DL2a emitted from the display device 100 is reflected by the mirror device 102, and the image light DL2b reflected by the mirror device 102 is visually recognized by the user. Further, in the mirror surface mode, external light OL2 incident from the outside of the head mounted display 30 is absorbed by the mirror device 102 and is not visually recognized by the user.
 よって、ヘッドマウントディスプレイ30を装着しているユーザは、ヘッドマウントディスプレイ30を介して、ミラー装置102により反射された画像(VR画像)に基づく虚像Iのみを視認することができ、VR空間に没入することができる。 Therefore, the user wearing the head mounted display 30 can visually recognize only the virtual image I based on the image (VR image) reflected by the mirror device 102 through the head mounted display 30, and is immersed in the VR space. can do.
 図9は、ミラー装置の構成を示す図である。ミラー装置102は、ミラーパネル800と、データドライバ802と、ゲートドライバ804とを備える。なお、ミラー装置102の駆動方式は、アクティブマトリクス方式であるとするが、パッシブ方式あるいは単純マトリクス方式でもよい。 FIG. 9 is a diagram showing the configuration of the mirror device. The mirror device 102 includes a mirror panel 800, a data driver 802, and a gate driver 804. Although the driving method of the mirror device 102 is the active matrix method, it may be a passive method or a simple matrix method.
 ミラーパネル800は、全体としてマトリクス状に配列された複数のミラー素子MPIXを含む。より具体的には、ミラー装置102は、行方向(X方向)にn個のミラー素子MPIX、列方向(Y方向)にm個のミラー素子MPIXがマトリクス状に配置されている。ここで、n及びmは、1以上の自然数である。また、ミラー素子MPIXは、左右が反転する位置の画素PIXが対応するように配置される。例えば、1行目の任意のa列目の画素PIX(1,a)は、ミラー素子MPIX(1,n―(a-1))に対向するように配置される(aは1以上n以下の自然数)。ここで、図10を参照して、ミラー素子MPIXの詳細構成について説明する。図10は、ミラー素子の回路構成例を示す図である。 The mirror panel 800 includes a plurality of mirror elements MPIX arranged in a matrix as a whole. More specifically, in the mirror device 102, n mirror elements MPIX in the row direction (X direction) and m mirror elements MPIX in the column direction (Y direction) are arranged in a matrix. Here, n and m are natural numbers of 1 or more. Further, the mirror element MPIX is arranged so that the pixel PIX at the position where the left and right are inverted corresponds to the mirror element MPIX. For example, a pixel PIX (1, a) in an arbitrary column a on the first row is arranged so as to face the mirror element MPIX (1, n- (a-1)) (a is 1 or more and n or less). Natural number). Here, the detailed configuration of the mirror element MPIX will be described with reference to FIG. FIG. 10 is a diagram showing a circuit configuration example of a mirror element.
 ミラー素子MPIXは、液晶素子810と、スイッチ素子808とを有している。ミラー素子MPIXには、駆動対象のミラー素子を線順次で選択するためのゲート線GL2と、駆動対象のミラー素子に対して電圧を供給するためのデータ線SL2とが接続されている。スイッチ素子808は、液晶素子810に対し、電圧を供給するためのスイッチング素子であり、例えば、薄膜トランジスタ(TFT:Thin Film Transistor;)である。より具体的には、スイッチ素子808は、MOS-FET(Metal Oxide Semiconductor-Field Effect Transistor)により構成されている。スイッチ素子808のソース及びドレインの一方は、データ線SL2と接続されており、スイッチ素子808のソース及びドレインの他方は、液晶素子810と接続されている。また、スイッチ素子808のゲートとゲート線GL2が接続されている。また、スイッチ素子808は、ゲート線GL2からの走査信号に基づき選択され、選択されたスイッチ素子808は、データ線SL2からのミラー素子信号MESを液晶素子810に供給する。 The mirror element MPIX has a liquid crystal element 810 and a switch element 808. A gate line GL2 for line-sequentially selecting a mirror element to be driven and a data line SL2 for supplying a voltage to the mirror element to be driven are connected to the mirror element MPIX. The switch element 808 is a switching element for supplying a voltage to the liquid crystal element 810, and is, for example, a thin film transistor (TFT: Thin Film Transistor). More specifically, the switch element 808 is composed of a MOS-FET (Metal Oxide Semiconductor-Field Effect Transistor). One of the source and the drain of the switch element 808 is connected to the data line SL2, and the other of the source and the drain of the switch element 808 is connected to the liquid crystal element 810. Further, the gate of the switch element 808 and the gate line GL2 are connected. Further, the switch element 808 is selected based on the scanning signal from the gate line GL2, and the selected switch element 808 supplies the mirror element signal MES from the data line SL2 to the liquid crystal element 810.
 液晶素子810は、第1電極408と、第2電極404と、第1電極408と第2電極404の間の電圧に応じて駆動される液晶分子412を含む。本実施形態において、第1電極408は、ミラー素子MPIX毎に配置され、スイッチ素子808のソース又はドレインの他方と接続される。液晶素子810は、データ線SL2からスイッチ素子808を介して第1電極408に供給される電圧と、第2電極404に与えられる電圧に応じて、ミラー動作を行う。本実施形態において、第2電極404は、基準電位(例えば、接地電位)が供給されている。なお、第2電極404に与えられる信号は、電位が固定された直流電位に限らず、所定の期間(例えば、1フレーム)毎に変化する交流信号であってもよい。 The liquid crystal element 810 includes a first electrode 408, a second electrode 404, and liquid crystal molecules 412 driven according to a voltage between the first electrode 408 and the second electrode 404. In the present embodiment, the first electrode 408 is arranged for each mirror element MPIX and is connected to the other of the source and the drain of the switch element 808. The liquid crystal element 810 performs a mirror operation according to the voltage supplied from the data line SL2 to the first electrode 408 via the switch element 808 and the voltage supplied to the second electrode 404. In the present embodiment, the second electrode 404 is supplied with the reference potential (eg, ground potential). The signal given to the second electrode 404 is not limited to the DC potential whose potential is fixed, but may be an AC signal that changes every predetermined period (for example, one frame).
 制御回路108Bは、ゲートドライバ804及びデータドライバ802の駆動タイミングを制御すると共に、ミラー画像信号MDSをデータドライバ802に供給する。 The control circuit 108B controls the drive timing of the gate driver 804 and the data driver 802, and supplies the mirror image signal MDS to the data driver 802.
 ゲートドライバ804は、制御回路108Bによるタイミング制御にしたがって、ミラーパネル800内の各ミラー素子MPIXをゲート線GL2に沿って線順次駆動する。 The gate driver 804 line-sequentially drives each mirror element MPIX in the mirror panel 800 along the gate line GL2 according to the timing control by the control circuit 108B.
 データドライバ802は、ミラーパネル800の各ミラー素子MPIXへそれぞれ、データ線SL2を介して制御回路108Bから供給されるミラー素子信号MESに対応する電圧を供給する。 The data driver 802 supplies a voltage corresponding to the mirror element signal MES supplied from the control circuit 108B via the data line SL2 to each mirror element MPIX of the mirror panel 800.
 また、ミラー装置102は、複数のミラー素子MPIXを備えている。隣り合うミラー素子MPIXのうち一方が表示装置100から照射された光を透過し、表示装置100から照射された光を反射することもある。隣り合うミラー素子MPIXのうち両方が表示装置100から照射された光を透過することもある。また、隣り合うミラー素子MPIXのうち両方が表示装置100から照射された光を反射することもある。このように、ミラー装置102では、ミラー素子MPIXがそれぞれ、独立して動作する。そして、制御回路108Bの制御に応じて、各々のミラー素子MPIXが表示装置100から照射された光を透過し、又は表示装置100から照射された光を反射する。 Also, the mirror device 102 includes a plurality of mirror elements MPIX. One of the adjacent mirror elements MPIX may transmit the light emitted from the display device 100 and reflect the light emitted from the display device 100. Both of the adjacent mirror elements MPIX may transmit the light emitted from the display device 100. Further, both of the adjacent mirror elements MPIX may reflect the light emitted from the display device 100. As described above, in the mirror device 102, the mirror elements MPIX operate independently. Then, under the control of the control circuit 108B, each mirror element MPIX transmits the light emitted from the display device 100 or reflects the light emitted from the display device 100.
 図11Aは、ヘッドマウントディスプレイを介してユーザに視認される様子を模式的に示す図である。図11Bは、図11Aにおいて、ヘッドマウントディスプレイを介してユーザに視認される画像例を示す図である。図12は、ヘッドマウントディスプレイの構成を示す図である。ミラー装置102は、外光OLを透過させる第1状態X10のミラー素子MPIXaが配置された部分ミラー領域PMAa(透過領域)と、表示装置100からの画像光DLを反射させる第2状態X12のミラー素子MPIXbが配置された部分ミラー領域PMAb(反射領域)を有する。ミラー装置102は、表示装置100の部分ミラー領域PMAbに対応する位置に表示される画像光DLと、部分ミラー領域PMAaに対応する位置の外光OLとが組み合わさった光を出力することとなる。これにより、図11A及び図11Bに示す通り、画像光DLに基づく実像Rと、外光OLに基づく虚像Iとが組み合わさった画像がユーザに視認される。 FIG. 11A is a diagram schematically showing how the image is viewed by the user via the head mounted display. FIG. 11B is a diagram showing an example of an image visually recognized by the user via the head mounted display in FIG. 11A. FIG. 12 is a diagram showing the configuration of the head mounted display. The mirror device 102 includes a partial mirror area PMAa (transmissive area) in which the mirror element MPIXa in the first state X10 that transmits the external light OL is arranged and a mirror in the second state X12 that reflects the image light DL from the display device 100. It has a partial mirror area PMAb (reflection area) in which the element MPIXb is arranged. The mirror device 102 outputs light that is a combination of the image light DL displayed at the position corresponding to the partial mirror area PMAb of the display device 100 and the external light OL at the position corresponding to the partial mirror area PMAa. . As a result, as shown in FIGS. 11A and 11B, the user visually recognizes an image in which the real image R based on the image light DL and the virtual image I based on the outside light OL are combined.
 ミラー装置102は、視認側から、第1偏光板300と、偏光軸変換部400と、反射型偏光板500と、第2偏光板600とが配置された構成を有する。なお、図12は、説明のために各部が間隙を持って配置されているように表示するが、実際には各部が近接し、あるいは密接して配置される。 The mirror device 102 has a configuration in which a first polarizing plate 300, a polarization axis conversion unit 400, a reflective polarizing plate 500, and a second polarizing plate 600 are arranged from the viewing side. Note that, although FIG. 12 is illustrated such that the respective parts are arranged with a gap therebetween for the sake of explanation, the respective parts are actually arranged close to or close to each other.
 また、図12では、ミラー素子MPIXa(第1液晶分子412a)には電圧を印加せず、ミラー素子MPIXb(第2液晶分子412b)には電圧を印加する一例が示されている。 Further, FIG. 12 shows an example in which a voltage is not applied to the mirror element MPIXa (first liquid crystal molecule 412a) but a voltage is applied to the mirror element MPIXb (second liquid crystal molecule 412b).
 すなわち、ミラー素子MPIXaの第1液晶分子412aの配向は、第2電極404から第1電極408にかけて少しずつ一方向に回転しながら90度捩れた構造になっている。ミラー素子MPIXbの第2液晶分子412bの配向は、第1基板402及び第2基板406の主面に略垂直方向に揃った構造になっている。 That is, the orientation of the first liquid crystal molecules 412a of the mirror element MPIXa is such that the first liquid crystal molecules 412a are twisted by 90 degrees while gradually rotating in one direction from the second electrode 404 to the first electrode 408. The second liquid crystal molecules 412b of the mirror element MPIXb are aligned in a direction substantially perpendicular to the main surfaces of the first substrate 402 and the second substrate 406.
 表示装置100から出射された画像光DL10は、視認側から第1偏光板300に入射する。第1偏光板300に入射した画像光DL10は、第1直線偏光成分の光なので、第1偏光板300を透過する。 The image light DL10 emitted from the display device 100 enters the first polarizing plate 300 from the viewing side. The image light DL10 that has entered the first polarizing plate 300 is the light of the first linearly polarized light component, and therefore passes through the first polarizing plate 300.
 ミラー素子MPIXaの第1液晶分子412aの配向は、第2電極404と第1電極408との間で90度捩れた状態になっている。したがって、画像光DL10は、第1液晶分子412aを透過すると、偏光方向が90度回転する。その結果、偏光軸変換部400を透過した画像光DL10は、第2直線偏光成分の光に変換される。 The orientation of the first liquid crystal molecules 412a of the mirror element MPIXa is twisted by 90 degrees between the second electrode 404 and the first electrode 408. Therefore, when the image light DL10 passes through the first liquid crystal molecules 412a, the polarization direction is rotated by 90 degrees. As a result, the image light DL10 that has passed through the polarization axis conversion unit 400 is converted into the light of the second linear polarization component.
 偏光軸変換部400を透過した画像光DL10は、第2直線偏光成分の光なので、反射型偏光板500を透過する。また、反射型偏光板500を透過した画像光DL10は、同様に、第2直線偏光成分の光なので、第2偏光板600を透過する。 The image light DL10 that has passed through the polarization axis conversion unit 400 is the light of the second linearly polarized light component, and therefore passes through the reflective polarizing plate 500. The image light DL10 that has passed through the reflective polarizing plate 500 is also the light of the second linearly polarized light component, and therefore passes through the second polarizing plate 600.
 また、表示装置100から出射された画像光DL12aは、視認側から第1偏光板300に入射する。第1偏光板300に入射した画像光DL12aは、第1直線偏光成分の光なので、第1偏光板300を透過する。 The image light DL12a emitted from the display device 100 enters the first polarizing plate 300 from the viewer side. The image light DL12a that has entered the first polarizing plate 300 is the light of the first linearly polarized light component and therefore passes through the first polarizing plate 300.
 ミラー素子MPIXbの第2液晶分子412bの配向は、第1基板402及び第2基板406の主面に略垂直方向に揃った状態になっている。したがって、画像光DL12aは、偏光方向が変化せず、第1直線偏光成分のまま偏光軸変換部400を透過する。 The second liquid crystal molecules 412b of the mirror element MPIXb are aligned in a direction substantially perpendicular to the main surfaces of the first substrate 402 and the second substrate 406. Therefore, the polarization direction of the image light DL12a does not change, and the image light DL12a passes through the polarization axis conversion unit 400 as the first linear polarization component.
 偏光軸変換部400を透過した画像光DL12aは、第1直線偏光成分の光なので、反射型偏光板500により反射される。反射型偏光板500により反射された画像光DL12bは、再び偏光軸変換部400に入射する。再び偏光軸変換部400に入射した画像光DL12bは、偏光方向が変化せず、第1直線偏光成分のまま偏光軸変換部400を透過する。 The image light DL12a that has passed through the polarization axis converter 400 is the light of the first linearly polarized light component, and thus is reflected by the reflective polarizing plate 500. The image light DL12b reflected by the reflective polarizing plate 500 is incident on the polarization axis conversion unit 400 again. The image light DL12b that has entered the polarization axis conversion unit 400 again does not change its polarization direction, and passes through the polarization axis conversion unit 400 as the first linear polarization component.
 偏光軸変換部400を透過した画像光DL12bは、第1直線偏光成分の光なので、第1偏光板300を透過する。 The image light DL12b that has passed through the polarization axis converter 400 is the light of the first linearly polarized light component, and therefore passes through the first polarizing plate 300.
 また、ヘッドマウントディスプレイ30の外部から第2偏光板600に入射した外光OL20は、第2直線偏光成分の光のみが透過し、その他の成分の光は吸収される。 In addition, the external light OL20 that enters the second polarizing plate 600 from the outside of the head mounted display 30 transmits only the light of the second linearly polarized light component and absorbs the light of the other components.
 第2偏光板600を透過した外光OL20は、第2直線偏光成分の光なので、反射型偏光板500を透過する。 The external light OL20 that has passed through the second polarizing plate 600 is the light of the second linearly polarized light component, and therefore passes through the reflective polarizing plate 500.
 ミラー素子MPIXaの第1液晶分子412aの配向は、第2電極404と第1電極408との間で90度捩れた状態になっている。したがって、外光OL20は、第1液晶分子412aを透過すると、偏光方向が90度回転する。その結果、偏光軸変換部400を透過した外光OL20は、第1直線偏光成分の光に変換される。 The orientation of the first liquid crystal molecules 412a of the mirror element MPIXa is twisted by 90 degrees between the second electrode 404 and the first electrode 408. Therefore, when the outside light OL20 passes through the first liquid crystal molecules 412a, the polarization direction is rotated by 90 degrees. As a result, the external light OL20 that has passed through the polarization axis conversion unit 400 is converted into the light of the first linear polarization component.
 偏光軸変換部400を透過した外光OL20は、第1直線偏光成分の光なので、第1偏光板300を透過する。 The external light OL20 that has passed through the polarization axis conversion unit 400 is the light of the first linearly polarized light component, and therefore passes through the first polarizing plate 300.
 また、ヘッドマウントディスプレイ30の外部から第2偏光板600に入射した外光OL22は、第2直線偏光成分の光のみが透過し、その他の成分の光は吸収される。 The external light OL22 that enters the second polarizing plate 600 from the outside of the head mounted display 30 transmits only the light of the second linearly polarized light component and absorbs the light of the other components.
 第2偏光板600を透過した外光OL22は、第2直線偏光成分の光なので、反射型偏光板500を透過する。 The external light OL22 that has passed through the second polarizing plate 600 is the light of the second linearly polarized light component, and therefore passes through the reflective polarizing plate 500.
 ミラー素子MPIXbの第2液晶分子412bの配向は、第1基板402及び第2基板406の主面に略垂直方向に揃った状態になっている。したがって、外光OL22は、偏光方向が変化せず、第2直線偏光成分のまま偏光軸変換部400を透過する。 The second liquid crystal molecules 412b of the mirror element MPIXb are aligned in a direction substantially perpendicular to the main surfaces of the first substrate 402 and the second substrate 406. Therefore, the outside light OL22 does not change its polarization direction and passes through the polarization axis conversion unit 400 as the second linear polarization component.
 偏光軸変換部400を透過した外光OL22は、第2直線偏光成分の光なので、第1偏光板300に吸収される。 The external light OL22 that has passed through the polarization axis conversion unit 400 is the light of the second linearly polarized light component, and thus is absorbed by the first polarizing plate 300.
 ミラー素子MPIXaが第1状態X10である部分ミラー領域PMAaでは、表示装置100から出射された画像光は、ミラー装置102によって反射されないため、ユーザに視認されない。また、ヘッドマウントディスプレイ30の外部から入射した外光OL20は、ミラー装置102を透過し、ユーザに視認される。 In the partial mirror area PMAa in which the mirror element MPIXa is in the first state X10, the image light emitted from the display device 100 is not reflected by the mirror device 102, and thus is not visually recognized by the user. In addition, the external light OL 20 incident from the outside of the head mounted display 30 passes through the mirror device 102 and is visually recognized by the user.
 ミラー素子MPIXbが第2状態X12である部分ミラー領域PMAbでは、表示装置100から出射された画像光DL12は、ミラー装置102によって反射され、ユーザに視認される。また、ヘッドマウントディスプレイ30の外部から入射した外光OL22は、ミラー装置102により吸収され、ユーザに視認されない。 In the partial mirror area PMAb in which the mirror element MPIXb is in the second state X12, the image light DL12 emitted from the display device 100 is reflected by the mirror device 102 and is visually recognized by the user. In addition, the external light OL22 incident from the outside of the head mounted display 30 is absorbed by the mirror device 102 and is not visually recognized by the user.
 よって、ヘッドマウントディスプレイ30を装着しているユーザは、ヘッドマウントディスプレイ30を介して、部分ミラー領域PMAaに対応する位置に配置された実空間に存在する物体や建造物などの実像Rとともに、部分ミラー領域PMAbに対応する位置で表示装置100によって表示された画像光DLに基づいて、ミラー装置102により反射された画像(AR画像)に基づく虚像Iを視認することができる。また、ヘッドマウントディスプレイ30は、表示装置100から出射された画像光DLが反射される場合、同じ方向から入射された外光OLが第1偏光板300により吸収されるため、ミラー装置102により反射された画像(AR画像)に基づく虚像Iをユーザに鮮明に視認させることができる。 Therefore, the user wearing the head-mounted display 30 can see through the head-mounted display 30 with the real image R of an object or a building existing in the real space arranged at a position corresponding to the partial mirror area PMAa, together with the partial image. The virtual image I based on the image (AR image) reflected by the mirror device 102 can be visually recognized based on the image light DL displayed by the display device 100 at the position corresponding to the mirror region PMAb. Further, in the head mounted display 30, when the image light DL emitted from the display device 100 is reflected, the external light OL incident from the same direction is absorbed by the first polarizing plate 300, and thus is reflected by the mirror device 102. The virtual image I based on the captured image (AR image) can be clearly recognized by the user.
 また、本実施形態において、ミラー装置102は、制御回路108の制御に基づいて、一部の領域の反射率と、一部の領域以外の領域の反射率とを異ならせて変化させる。また、一部の領域の形状は、表示装置100により表示される画像の形状を鏡面反転させた形状と同じである。 Further, in the present embodiment, the mirror device 102 changes the reflectance of a partial region and the reflectance of a region other than the partial region differently based on the control of the control circuit 108. The shape of a part of the area is the same as the shape of the image displayed by the display device 100, which is mirror-inverted.
 図13は、ヘッドマウントディスプレイに供給される基礎画像信号、表示装置に供給される表示画像信号、及び、ミラー装置に供給されるミラー画像信号の対応関係を示した図である。なお、説明の簡易化のために、ミラー素子MPIXや画素PIXの行方向の数を21、列方向の数を18として説明するが、ミラー素子MPIXや画素PIXの行方向の数及び列方向の数は1以上の任意の自然数であればよい。 FIG. 13 is a diagram showing a correspondence relationship between the basic image signal supplied to the head mounted display, the display image signal supplied to the display device, and the mirror image signal supplied to the mirror device. For simplification of description, the number of mirror elements MPIX and pixels PIX in the row direction is 21 and the number in the column direction is 18, but the number of mirror elements MPIX and pixels PIX in the row direction and the column direction will be described. The number may be any natural number of 1 or more.
 ヘッドマウントディスプレイ30の画像出力回路110から供給される基礎画像信号BDSは、マトリクス状に配置された基礎画素BPIXを含む基礎画像BDIに対応する。本実施形態において、基礎画像BDIは、文字を示すオブジェクトA10及び図形を示すオブジェクトA12を含む。オブジェクトA10及びオブジェクトA12は、虚像Iとしてユーザに視認させる画像に対応し、オブジェクトA10に対応する領域を領域B10として、オブジェクトA12に対応する領域を領域B12とする。基礎画像信号BDSは、各基礎画素BPIXに対応する基礎画素信号BPSからなる。また、基礎画像信号BDSは、基礎画素BPIX毎に階調値を示す階調信号BDS-G、及び、基礎画素BPIX毎に反射率を示す反射率信号BDS-Rを含む。基礎画像BDI-Gは、基礎画像信号BDSに含まれる階調信号BDS-Gに対応する画像であって、基礎画像BDI-Rは、基礎画像信号BDSに含まれる反射率信号BDS-Rに対応する画像である。なお、基礎画像BDI(基礎画像BDI-G)は、表示装置100によって表示される表示画像DDIがミラー装置102によって反射され、ユーザに視認させる画像に対応する。 The basic image signal BDS supplied from the image output circuit 110 of the head mounted display 30 corresponds to the basic image BDI including the basic pixels BPIX arranged in a matrix. In the present embodiment, the basic image BDI includes an object A10 indicating a character and an object A12 indicating a figure. The object A10 and the object A12 correspond to the image visually recognized by the user as the virtual image I, and an area corresponding to the object A10 is an area B10 and an area corresponding to the object A12 is an area B12. The basic image signal BDS includes a basic pixel signal BPS corresponding to each basic pixel BPIX. The basic image signal BDS includes a gradation signal BDS-G indicating a gradation value for each basic pixel BPIX and a reflectance signal BDS-R indicating a reflectance for each basic pixel BPIX. The basic image BDI-G corresponds to the gradation signal BDS-G included in the basic image signal BDS, and the basic image BDI-R corresponds to the reflectance signal BDS-R included in the basic image signal BDS. Image. The basic image BDI (basic image BDI-G) corresponds to an image that the display image DDI displayed by the display device 100 is reflected by the mirror device 102 and is visually recognized by the user.
 基礎画像信号BDSに含まれる階調信号BDS-Gは、例えば、0~255の256階調を示す信号である。本実施形態において、オブジェクトA10に対応する基礎画素BPIXの階調値信号として「50」が設定され、オブジェクトA12に対応する基礎画素BPIXの階調値信号として「150」が設定され、オブジェクトA10及びオブジェクトA12のいずれも対応しない基礎画素BPIXの階調値信号として「0」が設定される。 The gradation signal BDS-G included in the basic image signal BDS is a signal indicating 256 gradations of 0 to 255, for example. In the present embodiment, “50” is set as the gradation value signal of the basic pixel BPIX corresponding to the object A10, and “150” is set as the gradation value signal of the basic pixel BPIX corresponding to the object A12. “0” is set as the gradation value signal of the basic pixel BPIX which does not correspond to any of the objects A12.
 例えば、オブジェクトA10及びオブジェクトA12のいずれにも対応しない基礎画素BPIX(2,1)、BPIX(2,3)、BPIX(11,1)、及び、BPIX(11,3)において、基礎画素信号BPS(2,1)、BPS(2,3)、BPS(11,1)、及び、BPS(11,3)の階調値信号として「0」がそれぞれ設定されている。オブジェクトA10に対応する基礎画素BPIX(2,2)及びBPIX(2,7)には、基礎画素信号BPS(2,2)及びBPS(2,7)の階調値信号として「50」がそれぞれ設定されている。また、オブジェクトA12に対応する基礎画素BPIX(11,2)及びBPIX(11,20)には、基礎画素信号BPS(11,2)及びBPS(11,20)の階調値信号として「150」が設定されている。 For example, in the basic pixels BPIX (2,1), BPIX (2,3), BPIX (11,1), and BPIX (11,3) that do not correspond to either the object A10 or the object A12, the basic pixel signal BPS “0” is set as the tone value signals of (2,1), BPS (2,3), BPS (11,1), and BPS (11,3), respectively. In the basic pixels BPIX (2,2) and BPIX (2,7) corresponding to the object A10, “50” is input as the gradation value signals of the basic pixel signals BPS (2,2) and BPS (2,7), respectively. It is set. In addition, the basic pixels BPIX (11, 2) and BPIX (11, 20) corresponding to the object A12 have “150” as the gradation value signal of the basic pixel signals BPS (11, 2) and BPS (11, 20). Is set.
 なお、オブジェクトA10及びオブジェクトA12が対応づけられていない基礎画素BPIXの階調値信号を「0」としたが、これに限られず、0~255の任意の階調値であってもよい。また、基礎画素BPIXの階調値信号が示す階調値は、256階調に限らず、2以上の階調値を示すことができればよく、「0」又は「1」の2階調であってもよい。 Note that the gradation value signal of the basic pixel BPIX which is not associated with the object A10 and the object A12 is set to “0”, but the gradation value signal is not limited to this and may be any gradation value of 0 to 255. Further, the grayscale value indicated by the grayscale value signal of the basic pixel BPIX is not limited to 256 grayscales and may be any grayscale value of 2 or more, and may be two grayscales of “0” or “1”. May be.
 基礎画像信号BDSに含まれる反射率信号BDS-Rは、例えば、「0」「100」の2段階の反射率を示す信号である。本実施形態において、オブジェクトA10及びオブジェクトA12のいずれかに対応する基礎画素BPIXの反射率信号として「100」が設定される。また、オブジェクトA10及びオブジェクトA12のいずれにも対応しない基礎画素BPIXの反射率信号として「0」が設定される。 The reflectance signal BDS-R included in the basic image signal BDS is, for example, a signal indicating two-step reflectance of “0” and “100”. In the present embodiment, “100” is set as the reflectance signal of the basic pixel BPIX corresponding to either the object A10 or the object A12. Further, “0” is set as the reflectance signal of the basic pixel BPIX which does not correspond to either the object A10 or the object A12.
 例えば、オブジェクトA10及びオブジェクトA12のいずれにも対応しない基礎画素BPIX(2,1)、BPIX(2,3)、BPIX(11,1)、及び、BPIX(11,3)には、基礎画素信号BPS(2,1)、BPS(2,3)、BPS(11,1)、及び、BPS(11,3)の反射率信号として「0」がそれぞれ設定されている。オブジェクトA10及びオブジェクトA12に対応する基礎画素BPIX(2,2)、BPIX(2,7)、BPIX(11,2)、及び、BPIX(11,20)には、基礎画素信号BPS(2,2)、BPS(2,7)、BPS(11,2)、及び、BPS(11,20)の反射率信号として「100」が設定されている。 For example, basic pixel signals BPIX (2,1), BPIX (2,3), BPIX (11,1), and BPIX (11,3) that do not correspond to either the object A10 or the object A12 have basic pixel signals. “0” is set as the reflectance signal of each of BPS (2,1), BPS (2,3), BPS (11,1), and BPS (11,3). Basic pixel signals BPS (2,2), BPIX (2,7), BPIX (11,20), and BPIX (11,20) corresponding to the object A10 and the object A12 are included in the basic pixel signals BPS (2,2). ), BPS (2,7), BPS (11,20), and "100" are set as the reflectance signals of BPS (11,20).
 なお、反射率信号は、2段階に限らず、2以上の段階を有してもよい。基礎画素BPIXの反射率信号は、例えば、0から100までの101段階であってもよい。 Note that the reflectance signal is not limited to two stages and may have two or more stages. The reflectance signal of the basic pixel BPIX may be 101 steps from 0 to 100, for example.
 処理回路104の画像出力回路110は、基礎画像信号BDSを画像処理回路112に出力する。画像処理回路112の表示画像処理回路114は、基礎画像信号BDSに基づき、表示画像信号DDSを制御回路108に供給する。より具体的には、画像出力回路110は、受信回路1101が受信した基礎画像信号BDSをメモリ1102に格納し、表示画像処理回路114は、画像出力回路110のメモリ1102に格納された基礎画像信号BDSの階調信号BDS-Gに基づき、基礎画像BDIを左右反転させた表示画像DDIに対応する表示画像信号DDSを生成し、制御回路108に表示画像信号DDSを供給する。制御回路108Aは、表示画像信号DDSに基づき、表示装置100を制御する。 The image output circuit 110 of the processing circuit 104 outputs the basic image signal BDS to the image processing circuit 112. The display image processing circuit 114 of the image processing circuit 112 supplies the display image signal DDS to the control circuit 108 based on the basic image signal BDS. More specifically, the image output circuit 110 stores the basic image signal BDS received by the receiving circuit 1101 in the memory 1102, and the display image processing circuit 114 stores the basic image signal BDS stored in the memory 1102 of the image output circuit 110. Based on the grayscale signal BDS-G of BDS, the display image signal DDS corresponding to the display image DDI obtained by horizontally reversing the basic image BDI is generated, and the display image signal DDS is supplied to the control circuit 108. The control circuit 108A controls the display device 100 based on the display image signal DDS.
 図13に示す通り、表示画像信号DDSは、表示装置100によって表示される表示画像DDIに対応する信号である。本実施形態において、表示画像DDIは、基礎画像BDIの反転画像に対応する。表示画像信号DDSは、基礎画像信号BDSに含まれる階調信号BDS-Gの行方向の座標が左右で反転された信号である。表示画像信号DDSは、画素PIX毎の表示画素信号DPSを含む。 As shown in FIG. 13, the display image signal DDS is a signal corresponding to the display image DDI displayed by the display device 100. In the present embodiment, the display image DDI corresponds to the reverse image of the basic image BDI. The display image signal DDS is a signal in which the row-direction coordinates of the grayscale signal BDS-G included in the basic image signal BDS are inverted left and right. The display image signal DDS includes the display pixel signal DPS for each pixel PIX.
 表示画像処理回路114は、基礎画像信号BDSに基づき、表示画像信号DDSを生成する。より具体的には、任意のp行q列目の基礎画素信号BPS(p,q)の階調信号が表示画素信号DPS(p,n-(q-1))に置き換えられる。ここで、pは1以上m以下の自然数、qは1以上n以下の自然数である。 The display image processing circuit 114 generates a display image signal DDS based on the basic image signal BDS. More specifically, the grayscale signal of the basic pixel signal BPS (p, q) in the p-th row and the q-th column is replaced with the display pixel signal DPS (p, n- (q-1)). Here, p is a natural number of 1 or more and m or less, and q is a natural number of 1 or more and n or less.
 例えば、オブジェクトA10及びオブジェクトA12のいずれにも対応しない基礎画素BPIX(2,1)、BPIX(2,3)、BPIX(11,1)、及び、BPIX(11,3)は、画素PIX(2,21)、PIX(2,19)、PIX(11,21)、及び、PIX(11,19)にそれぞれ対応し、それぞれに入力される表示画素信号DPS(2,21)、DPS(2,19)、DPS(11,21)、及び、DPS(11,19)は、階調値として「0」がそれぞれ対応づけられる。オブジェクトA10に対応する基礎画素BPIX(2,2)及びBPIX(2,7)には、画素PIX(2,20)及びPIX(2,15)にそれぞれ対応し、それぞれに入力される表示画素信号DPS(2,20)及びDPS(2,15)は階調値として「50」がそれぞれ対応づけられる。また、オブジェクトA12に対応する基礎画素BPIX(11,2)及びBPIX(11,20)には、画素PIX(11,20)及びPIX(11,2)にそれぞれ対応し、それぞれに入力される表示画素信号DPS(11,20)及びDPS(11,2)は階調値として「150」がそれぞれ対応づけられる。 For example, the basic pixels BPIX (2,1), BPIX (2,3), BPIX (11,1), and BPIX (11,3) that do not correspond to either the object A10 or the object A12 are the pixel PIX (2 , 21), PIX (2, 19), PIX (11, 21), and PIX (11, 19), respectively, and display pixel signals DPS (2, 21) and DPS (2, which are respectively input. 19), DPS (11, 21), and DPS (11, 19) are associated with “0” as the gradation value. The basic pixels BPIX (2,2) and BPIX (2,7) corresponding to the object A10 correspond to the pixels PIX (2,20) and PIX (2,15), respectively, and display pixel signals input to the respective pixels. “50” is associated with each of the gradation values of DPS (2,20) and DPS (2,15). Further, the basic pixels BPIX (11, 2) and BPIX (11, 20) corresponding to the object A12 respectively correspond to the pixels PIX (11, 20) and PIX (11, 2), and are displayed respectively. The pixel signals DPS (11, 20) and DPS (11, 2) are associated with “150” as the gradation value, respectively.
 制御回路108A及び表示装置100は、表示画像信号DDSに基づき、表示画像DDIを表示する。具体的には、各画素PIXに表示画素信号DPSの階調値に応じた画像光DLが出射される。 The control circuit 108A and the display device 100 display the display image DDI based on the display image signal DDS. Specifically, the image light DL corresponding to the gradation value of the display pixel signal DPS is emitted to each pixel PIX.
 なお、本実施形態において、基礎画像BDIとしてミラー装置102によって反射されてユーザに視認される画像を画像出力回路110の受信回路1101が受信する場合について例示したが、これに限られない。画像出力回路110の受信回路1101がユーザに視認される画像を反転した反転画像を基礎画像BDIとした基礎画像信号BDSが入力された場合、画像処理回路112は、基礎画像信号BDSの階調信号をそのまま表示画像信号DDSとして出力する。 Note that, in the present embodiment, the case where the receiving circuit 1101 of the image output circuit 110 receives the image that is reflected by the mirror device 102 and visually recognized by the user as the basic image BDI is illustrated, but the present invention is not limited to this. When the basic image signal BDS, which is an inverted image obtained by inverting the image visually recognized by the user by the receiving circuit 1101 of the image output circuit 110, is input as the basic image signal BDS, the image processing circuit 112 causes the gradation signal of the basic image signal BDS to be input. Is output as is as the display image signal DDS.
 また、画像処理回路112のミラー画像処理回路116は、基礎画像信号BDSに基づき、ミラー画像信号MDSを制御回路108に供給する。より具体的には、画像出力回路110は、受信回路1101が受信した基礎画像信号BDSをメモリ1102に格納し、ミラー画像処理回路116は、画像出力回路110のメモリ1102に格納された基礎画像信号BDSの反射率信号BDS-Rに基づき、基礎画像BDIに対応するミラー画像MDIに対応するミラー画像信号MDSを変換し、制御回路108にミラー画像信号MDSを供給する。制御回路108Bは、ミラー画像信号MDSに基づき、ミラー装置102を制御する。 Further, the mirror image processing circuit 116 of the image processing circuit 112 supplies the mirror image signal MDS to the control circuit 108 based on the basic image signal BDS. More specifically, the image output circuit 110 stores the basic image signal BDS received by the receiving circuit 1101 in the memory 1102, and the mirror image processing circuit 116 stores the basic image signal BDS stored in the memory 1102 of the image output circuit 110. The mirror image signal MDS corresponding to the mirror image MDI corresponding to the basic image BDI is converted based on the reflectance signal BDS-R of the BDS, and the mirror image signal MDS is supplied to the control circuit 108. The control circuit 108B controls the mirror device 102 based on the mirror image signal MDS.
 図13に示す通り、ミラー画像信号MDSは、マトリクス状に配置されたミラー素子MPIX毎のミラー素子信号MESを含む信号である。ミラー画像MDIは、ミラー素子MPIX毎のミラー素子信号MESが示す反射率に対応する画像である。言い換えると、ミラー画像MDIは、表示装置100によって表示される表示画像DDIの画像光DL12a(出射画像光)がミラー装置102によって反射された後の画像光DL12b(反射画像光)によって視認される画像である。本実施形態において、ミラー画像MDIの反射率が設定されている領域は、基礎画像BDIのオブジェクトA10及びオブジェクトA12が配置される領域B10及びB12に対応する。ミラー画像信号MDSは、基礎画像信号BDSに含まれる反射率信号BDS-Rをそのまま示す信号である。 As shown in FIG. 13, the mirror image signal MDS is a signal including the mirror element signal MES for each mirror element MPIX arranged in a matrix. The mirror image MDI is an image corresponding to the reflectance indicated by the mirror element signal MES for each mirror element MPIX. In other words, the mirror image MDI is an image visually recognized by the image light DL12b (reflected image light) after the image light DL12a (emitted image light) of the display image DDI displayed by the display device 100 is reflected by the mirror device 102. Is. In the present embodiment, the area where the reflectance of the mirror image MDI is set corresponds to the areas B10 and B12 in which the object A10 and the object A12 of the basic image BDI are arranged. The mirror image signal MDS is a signal that directly represents the reflectance signal BDS-R included in the basic image signal BDS.
 また、ミラー画像MDIは、表示画像DDIを反転した画像に対応する。より具体的には、任意のp行q列目の画素PIX(p,q)は、ミラー素子MPIX(p,n-(q-1))に対応する。 Also, the mirror image MDI corresponds to an image obtained by inverting the display image DDI. More specifically, an arbitrary pixel PIX (p, q) in the p-th row and the q-th column corresponds to the mirror element MPIX (p, n- (q-1)).
 ミラー画像処理回路116は、基礎画像信号BDSの反射率信号BDS-Rに基づき、ミラー画像信号MDSを生成する。 The mirror image processing circuit 116 generates a mirror image signal MDS based on the reflectance signal BDS-R of the basic image signal BDS.
 例えば、オブジェクトA10及びオブジェクトA12のいずれにも対応しない基礎画素BPIX(2,1)、BPIX(2,3)、BPIX(11,1)、及び、BPIX(11,3)には、ミラー素子MPIX(2,1)、MPIX(2,3)、MPIX(11,1)、及び、MPIX(11,3)にそれぞれ対応し、それぞれに入力されるミラー素子信号MES(2,1)、MES(2,3)、MES(11,1)、及び、MES(11,3)は反射率として「0」がそれぞれ対応づけられている。オブジェクトA10及びオブジェクトA12に対応する基礎画素BPIX(2,2)、BPIX(2,7)、BPIX(11,2)、及び、BPIX(11,20)には、ミラー素子MPIX(2,2)、MPIX(2,7)、MPIX(11,2)、及び、MPIX(11,20)にそれぞれ対応し、それぞれに入力されるミラー素子信号MES(2,2)、MES(2,7)、MES(11,2)、及び、MES(11,20)は反射率として「100」がそれぞれ対応づけられている。 For example, the basic elements BPIX (2,1), BPIX (2,3), BPIX (11,1), and BPIX (11,3) that do not correspond to either the object A10 or the object A12 have mirror elements MPIX. (2,1), MPIX (2,3), MPIX (11,1), and MPIX (11,3) respectively corresponding to the mirror element signals MES (2,1) and MES (input to them). 2, 3), MES (11, 1), and MES (11, 3) are associated with "0" as the reflectance. The basic pixels BPIX (2,2), BPIX (2,7), BPIX (11,2), and BPIX (11,20) corresponding to the object A10 and the object A12 have mirror elements MPIX (2,2). , MPIX (2,7), MPIX (11,2), and MPIX (11,20) respectively, and the mirror element signals MES (2,2), MES (2,7), which are respectively input to them, The MES (11, 2) and the MES (11, 20) are associated with "100" as the reflectance.
 制御回路108B及びミラー装置102は、ミラー画像信号MDSに基づき、ミラー画像MDIに対応する反射率を有するようにミラー素子MPIXを制御する。具体的には、各ミラー素子MPIX毎に、ミラー素子信号MESの値が「0」の場合に第1状態X10とし、「100」の場合に第2状態X12に変化させる。これによって、ミラー装置102は、第2状態のミラー素子MPIXが配置された領域に対応する画像光DLを反射し、ユーザに視認させる。これによって、オブジェクトA10及びオブジェクトA12に対応する位置に配置されたミラー素子MPIXによって表示装置100からの画像光DLを反射し、オブジェクトA10及びオブジェクトA12に対応する位置以外に配置されたミラー素子MPIXを介して外光OLが透過される。これによって、ユーザに外光OLと画像光DLを組み合わせた画像が視認される。 The control circuit 108B and the mirror device 102 control the mirror element MPIX based on the mirror image signal MDS so as to have a reflectance corresponding to the mirror image MDI. Specifically, for each mirror element MPIX, the first state X10 is set when the value of the mirror element signal MES is “0”, and the second state X12 is changed when the value is “100”. As a result, the mirror device 102 reflects the image light DL corresponding to the region where the mirror element MPIX in the second state is arranged, and allows the user to visually recognize it. Accordingly, the image light DL from the display device 100 is reflected by the mirror elements MPIX arranged at the positions corresponding to the objects A10 and A12, and the mirror elements MPIX arranged at positions other than the positions corresponding to the objects A10 and A12 are reflected. The outside light OL is transmitted through the outside. As a result, the user can visually recognize the image in which the outside light OL and the image light DL are combined.
 なお、ミラー画像処理回路116は、基礎画像信号BDSが反射率信号BDS-Rを含まない場合に、基礎画像信号BDSに含まれる階調信号BDS-Gから反射率信号を生成してもよい。例えば、階調信号の値が「0」より大きい基礎画素BPIXに対応するミラー素子MPIXのミラー素子信号MESを「100」として、階調信号の値が「0」の基礎画素BPIXに対応するミラー素子MPIXのミラー素子信号MESを「0」としてもよい。また、基礎画像信号BDSとしてユーザの視認する画像の反転画像に対応する信号が入力された場合、ミラー画像処理回路116は、基礎画素BPIX(p,q)に対して左右反転した位置にあるミラー素子(p,n-(q-1))に、基礎画素信号BPSの反射率信号をミラー素子信号MESとして供給する。 The mirror image processing circuit 116 may generate the reflectance signal from the gradation signal BDS-G included in the basic image signal BDS when the basic image signal BDS does not include the reflectance signal BDS-R. For example, the mirror element signal MES of the mirror element MPIX corresponding to the basic pixel BPIX whose gradation signal value is larger than “0” is set to “100”, and the mirror corresponding to the basic pixel BPIX whose gradation signal value is “0” is set. The mirror element signal MES of the element MPIX may be “0”. Further, when a signal corresponding to an inverted image of the image visually recognized by the user is input as the basic image signal BDS, the mirror image processing circuit 116 causes the mirror image processing circuit 116 to have a mirror at a position horizontally inverted with respect to the basic pixel BPIX (p, q). The reflectance signal of the basic pixel signal BPS is supplied to the element (p, n- (q-1)) as the mirror element signal MES.
 なお、表示画像処理回路114又はミラー画像処理回路116は、基礎画像信号BDSから表示画像信号DDS及びミラー画像信号MDSをそれぞれ生成する場合、フレームメモリを用いて、1つの基礎画像信号BDSに含まれる全ての基礎画素BPIXに対応する基礎画素信号BPSを記憶して変換してもよいが、ラインメモリを用いて、1つの基礎画像信号BDSに含まれる一部の行に対応する基礎画素BPIX単位で変換を行い、順次、制御回路108に供給してもよい。 When the display image processing circuit 114 or the mirror image processing circuit 116 respectively generates the display image signal DDS and the mirror image signal MDS from the basic image signal BDS, the display image processing circuit 114 or the mirror image processing circuit 116 includes one basic image signal BDS by using a frame memory. The basic pixel signals BPS corresponding to all the basic pixels BPIX may be stored and converted, but by using a line memory, basic pixel signals BPIX corresponding to some rows included in one basic image signal BDS The conversion may be performed and the control circuit 108 may be sequentially supplied.
 また、ミラー装置102のミラー素子MPIXは、外光OLを透過する第1状態X10と画像光DLを反射する第2状態X12で切り替わる場合について説明したが、より多段階に状態変化してもよい。 Further, the case where the mirror element MPIX of the mirror device 102 is switched between the first state X10 that transmits the external light OL and the second state X12 that reflects the image light DL has been described, but the state may be changed in more stages. .
 例えば、図12に示すように、ミラー装置102の偏光軸変換部400に含まれる第1電極408と第2電極404の間に与えられる電圧が多段階に変化されてもよい。より具体的には、ミラー素子MPIXcの液晶分子412cに対して、第1電極408及び第2電極404を介して、第1状態X10と第2状態X12との間の中間電圧が供給される。 For example, as shown in FIG. 12, the voltage applied between the first electrode 408 and the second electrode 404 included in the polarization axis converter 400 of the mirror device 102 may be changed in multiple steps. More specifically, an intermediate voltage between the first state X10 and the second state X12 is supplied to the liquid crystal molecules 412c of the mirror element MPIXc via the first electrode 408 and the second electrode 404.
 これによって、液晶分子412cを透過する光の一部は偏光軸が変更され、他の一部は偏光軸が変更されないまま透過する。より具体的には、表示装置100から出射された第1直線偏光成分を有する画像光DL14は、一部の光が第2直線偏光成分の光に変換されることで反射型偏光板500によって反射され、第2偏光板600によって第2直線偏光成分を有する外光OLは、一部の光が偏光軸変換部400で変換されずに透過する。 With this, a part of the light passing through the liquid crystal molecule 412c has its polarization axis changed, and the other part of the light passes without changing its polarization axis. More specifically, the image light DL14 having the first linear polarization component emitted from the display device 100 is reflected by the reflective polarizing plate 500 by converting a part of the light into the light of the second linear polarization component. The outside light OL having the second linear polarization component is transmitted by the second polarizing plate 600 without being converted by the polarization axis conversion unit 400.
 したがって、ミラー素子MPIXcを介してユーザに視認される光は、外光OLと画像光DLが重畳した光となる。言い換えると、外光OLによって視認される実像Rと、画像光DLによって視認される虚像Iが同一領域で重畳した画像を視認することになる。 Therefore, the light visually recognized by the user via the mirror element MPIXc is light in which the external light OL and the image light DL are superimposed. In other words, an image in which the real image R visually recognized by the outside light OL and the virtual image I visually recognized by the image light DL are superimposed in the same region is visually recognized.
 なお、偏光軸変換部400の偏光軸変換率は、ミラー素子MPIXによって画像光DLを反射する反射率に対応する。言い換えると、偏光軸変換部400の偏光軸変換率は、基礎画像信号BDSの反射率信号、又は、ミラー画像信号MDSが示す反射率に対応する。 The polarization axis conversion rate of the polarization axis conversion unit 400 corresponds to the reflectance rate at which the image light DL is reflected by the mirror element MPIX. In other words, the polarization axis conversion rate of the polarization axis conversion unit 400 corresponds to the reflectance signal of the basic image signal BDS or the mirror image signal MDS.
 反射率が最も低いミラー素子MPIXが第1状態X10に対応し、反射率が最も高いミラー素子MPIXが第2状態X12に対応する。また、反射率が高いほど、画像光DLをより反射することになり、外光OLと重畳する場合であっても画像光DLが視認しやすくなる。 Mirror element MPIX having the lowest reflectance corresponds to the first state X10, and mirror element MPIX having the highest reflectance corresponds to the second state X12. Further, the higher the reflectance is, the more the image light DL is reflected, and the image light DL becomes easy to be visually recognized even when the image light DL is superposed on the outside light OL.
 例えば、オブジェクトA10に対応するミラー素子信号MESの反射率は「100(第1反射率)」が設定され、オブジェクトA12に対応するミラー素子信号MESの反射率は「50(第2反射率)」が設定され、オブジェクトA10及びオブジェクトA12以外のミラー素子信号MESの反射率は「0(第3反射率)」が設定されてもよい。この場合において、ユーザは、外光OLによる影響の少ないオブジェクトA10を示す画像光DLと、外光OLの影響を受けたオブジェクトA12を示す画像光DLと、オブジェクトA10及びオブジェクトA12以外の領域に対応する外光OLを視認することとなる。このように、反射率はオブジェクト毎に設定してもよいし、ミラー画像単位毎、又は、ミラー素子毎に設定してもよい。 For example, the reflectance of the mirror element signal MES corresponding to the object A10 is set to "100 (first reflectance)", and the reflectance of the mirror element signal MES corresponding to the object A12 is "50 (second reflectance)". May be set, and the reflectance of the mirror element signal MES other than the objects A10 and A12 may be set to “0 (third reflectance)”. In this case, the user corresponds to the image light DL showing the object A10 less affected by the outside light OL, the image light DL showing the object A12 affected by the outside light OL, and the areas other than the objects A10 and A12. The outside light OL to be viewed is visually recognized. In this way, the reflectance may be set for each object, for each mirror image unit, or for each mirror element.
 また、制御回路108は、ミラー画像信号MDSに基づいて、オブジェクトA10に対応するミラー素子MPIXの反射率を徐々に増加又は減少させるようにミラー装置102を制御してもよい。この場合、ヘッドマウントディスプレイ30を装着しているユーザは、時間経過に伴ってオブジェクトA10に対応する虚像Iが実像Rの中に徐々に浮かび上がってくる、若しくは、消えていくように視認させることができる。 The control circuit 108 may control the mirror device 102 so as to gradually increase or decrease the reflectance of the mirror element MPIX corresponding to the object A10 based on the mirror image signal MDS. In this case, the user wearing the head-mounted display 30 visually recognizes the virtual image I corresponding to the object A10 gradually rising or disappearing in the real image R over time. You can
 また、基礎画像信号BDSは、左上端の基礎画素BPIX(1,1)に対応する基礎画素信号BPS(1,1)から順に、1行目の右端の基礎画素BPIX(1,n)に対応する基礎画素信号BPS(1,n)が連続し、続いて、2行目の左端の基礎画素BPIX(2,1)に対応する基礎画素信号BPS(2,1)から右端の基礎画素BPIX(2,n)に対応する基礎画素信号BPS(2,n)が連続し、同様に行毎に左端から右端までの基礎画素信号BPSが連続し、m行目の基礎画素BPIX(m,n)に対応する基礎画素信号BPS(m,n)まで連続した一連の信号である。 The basic image signal BDS corresponds to the basic pixel BPIX (1, n) at the right end of the first row in order from the basic pixel signal BPS (1,1) corresponding to the basic pixel BPIX (1,1) at the upper left corner. The basic pixel signals BPS (1, n) are continuously provided, and subsequently, the basic pixel signals BPS (2,1) corresponding to the basic pixels BPIX (2,1) at the left end of the second row are transferred to the basic pixels BPIX (at the right end. 2, n), the basic pixel signals BPS (2, n) are continuous, and similarly, the basic pixel signals BPS from the left end to the right end are continuous for each row, and the basic pixel BPIX (m, n) of the mth row is continuous. Is a continuous series of signals up to the basic pixel signal BPS (m, n) corresponding to.
 表示画像信号DDSは、左上端の画素PIX(1,1)に対応する表示画素信号DPS(1,1)から順に、1行目の右端の画素PIX(1,n)に対応する表示画素信号DPS(1,n)が連続し、続いて、2行目の左端の画素PIX(2,1)に対応する表示画素信号DPS(2,1)から右端の画素PIX(2,n)に対応する表示画素信号DPS(2,n)が連続し、同様に行毎に左端から右端までの表示画素信号DPSが連続し、m行目の画素PIX(m,n)に対応する表示画素信号DPS(m,n)まで連続した一連の信号である。 The display image signal DDS is a display pixel signal corresponding to the pixel PIX (1, n) at the right end of the first row in order from the display pixel signal DPS (1,1) corresponding to the pixel PIX (1,1) at the upper left end. The DPS (1, n) is continuous, and subsequently, the display pixel signal DPS (2,1) corresponding to the leftmost pixel PIX (2,1) in the second row corresponds to the rightmost pixel PIX (2, n). The display pixel signal DPS (2, n) is continuously displayed, and similarly, the display pixel signal DPS from the left end to the right end is continuous for each row, and the display pixel signal DPS corresponding to the pixel PIX (m, n) in the m-th row is It is a series of continuous signals up to (m, n).
 ミラー画像信号MDSは、左上端のミラー素子MPIX(1,1)に対応するミラー素子信号MES(1,1)から順に、1行目の右端のミラー素子MPIX(1,n)に対応するミラー素子信号MES(1,n)が連続し、続いて、2行目の左端のミラー素子MPIX(2,1)に対応するミラー素子信号MES(2,1)から右端のミラー素子MPIX(2,n)に対応するミラー素子信号MES(2,n)が連続し、同様に行毎に左端から右端までのミラー素子信号MESが連続し、m行目のミラー素子MPIX(m,n)に対応するミラー素子信号MES(m,n)まで連続した一連の信号である。 The mirror image signal MDS corresponds to the mirror element MPIX (1, n) at the right end of the first row in order from the mirror element signal MES (1,1) corresponding to the mirror element MPIX (1,1) at the upper left corner. The element signals MES (1, n) are continuous, and subsequently, from the mirror element signal MES (2,1) corresponding to the leftmost mirror element MPIX (2,1) in the second row to the rightmost mirror element MPIX (2,1). n), the mirror element signals MES (2, n) corresponding to each other, and similarly, the mirror element signals MES from the left end to the right end continue for each row, corresponding to the m-th row mirror element MPIX (m, n). It is a continuous series of signals up to the mirror element signal MES (m, n).
 実施形態1において、処理回路104は、タイミングコントローラ118を備える。処理回路104は、タイミングコントローラ118からの同期信号に基づいて、同一の基礎画像信号BDSに基づく表示画像信号DDS及びミラー画像信号MDSに基づいて、表示装置100及びミラー装置102を同時に駆動する。ここで、1つの基礎画像信号BDSに基づく駆動が完了するまでの時間を1フレームとする。 In the first embodiment, the processing circuit 104 includes the timing controller 118. The processing circuit 104 drives the display device 100 and the mirror device 102 at the same time based on the synchronization signal from the timing controller 118 and the display image signal DDS based on the same basic image signal BDS and the mirror image signal MDS. Here, the time required to complete driving based on one basic image signal BDS is one frame.
 第1のフレームにおいて、表示装置100のデータドライバ204が、左端の画素PIX(1,1)から右端の画素PIX(1,n)の順に書き込み、ミラー装置102のデータドライバ802が、同様に、左端のミラー素子MPIX(1,1)からミラー素子MPIX(1,n)の順に書き込むと、画素PIX(1,1)に対応するミラー素子MPIXは、ミラー素子MPIX(1,n)であるため、第1のフレームの画素PIX(1,1)に表示画素信号DPS(1,1)が供給されてから、第1のフレームのミラー素子MPIX(1,n)にミラー素子信号MES(1,n)が表示されるまで、1つ前のフレーム(第2のフレーム)のミラー画像信号MDSに含まれるミラー素子信号MES(1,n)に基づき、第1のフレームの画素PIX(1,1)からの画像光DLが制御された光が視認されることになる。 In the first frame, the data driver 204 of the display device 100 writes in order from the leftmost pixel PIX (1,1) to the rightmost pixel PIX (1, n), and the data driver 802 of the mirror device 102 similarly. When writing is performed in order from the leftmost mirror element MPIX (1,1) to the mirror element MPIX (1, n), the mirror element MPIX corresponding to the pixel PIX (1,1) is the mirror element MPIX (1, n). , The display pixel signal DPS (1,1) is supplied to the pixel PIX (1,1) of the first frame, and then the mirror element signal MES (1, n) is supplied to the mirror element MPIX (1, n) of the first frame. n) is displayed, the image of the first frame is displayed based on the mirror element signal MES (1, n) included in the mirror image signal MDS of the immediately preceding frame (second frame). Light image light DL from the PIX (1, 1) is controlled is to be visually recognized.
 そこで、表示装置100のデータドライバ204及びミラー装置102のデータドライバ802は、いずれも1行分のバッファ領域を設け、1行分の表示画素信号DPS及び1行分のミラー素子信号MESをバッファ領域で一旦保持し、1行分の画素PIX及び1行分のミラー素子MPIXに同時に出力してもよい。このようにすることで、画素PIXとミラー素子MPIXで対応する基礎画像信号BDSが異なることを抑制することができる。 Therefore, each of the data driver 204 of the display device 100 and the data driver 802 of the mirror device 102 has a buffer area for one row, and a display pixel signal DPS for one row and a mirror element signal MES for one row are buffer areas. May be once held and output to one row of pixels PIX and one row of mirror elements MPIX at the same time. By doing so, it is possible to suppress the difference between the basic image signals BDS corresponding to the pixel PIX and the mirror element MPIX.
 図14A及び図14Bは、表示装置とミラー装置の走査開始位置と走査方向についての変形例について説明に供する図である。図14Aは、ミラー装置がミラー素子を駆動し、表示装置に表示されている表示画像を反射する様子を模式的に示す図である。図14Bは、表示装置が画素を駆動することで表示画像の表示する様子を模式的に示す図である。以下では、ミラー装置102に表示されているミラー画像MDIは、表示装置100に表示されている表示画像DDIの左右反転した画像である場合を一例として説明する。 FIGS. 14A and 14B are diagrams for explaining a modification example of the scanning start position and the scanning direction of the display device and the mirror device. FIG. 14A is a diagram schematically showing how a mirror device drives a mirror element and reflects a display image displayed on a display device. FIG. 14B is a diagram schematically showing how a display device displays a display image by driving pixels. Hereinafter, a case where the mirror image MDI displayed on the mirror device 102 is an image obtained by horizontally reversing the display image DDI displayed on the display device 100 will be described as an example.
 ミラー装置102のゲートドライバ804は、ミラーパネル800の上端に配置されるゲート線GL2(1)からミラーパネル800の下端に配置されるゲート線GL2(18)に向かって、各ゲート線GL2に接続されるミラー素子MPIXを行単位で選択する走査信号を順次供給する。また、データドライバ802は、ゲートドライバ804によって選択された行に配置された各ミラー素子MPIXに対して、ミラーパネル800の左端に位置するデータ線SL2(1)からミラーパネル800の右端に位置するデータ線SL2(21)に向かって、各データ線SL2からミラー素子信号MESを供給する。具体的には、ゲートドライバ804によってミラーパネル800の上端のゲート線GL2(1)に走査信号が供給される水平期間(1)において、ミラーパネル800の左端に配置されるデータ線SL2(1)からミラーパネル800の右端に配置されるデータ線SL2(21)までの順番でミラー素子信号MESが順次供給される。このようにすることで、1行目に配置されるミラー素子MPIX(1,1)からミラー素子MPIX(1,21)までのミラー素子MPIXが、ミラー素子信号MES(1,1)からミラー素子信号MES(1,21)までのミラー素子信号MESに対応する反射率で制御される。続いて、水平期間(2)において、ゲート線GL2(2)に走査信号が供給され、同様に、データ線SL2(1)からデータ線SL2(21)までの順番でミラー素子信号MESが順次供給される。このようにすることで、2行目に配置されるミラー素子MPIX(2,1)からミラー素子MPIX(2,21)までのミラー素子MPIXが、ミラー素子信号MES(2,1)からミラー素子信号MES(2,21)までのミラー素子信号MESに対応する反射率で制御される。ゲート線GL2(18)まで同様の走査がなされる。 The gate driver 804 of the mirror device 102 is connected to each gate line GL2 from the gate line GL2 (1) arranged at the upper end of the mirror panel 800 to the gate line GL2 (18) arranged at the lower end of the mirror panel 800. The scan signals for selecting the mirror elements MPIX to be selected are sequentially supplied in units of rows. Further, the data driver 802 is located from the data line SL2 (1) located at the left end of the mirror panel 800 to the right end of the mirror panel 800 with respect to each mirror element MPIX arranged in the row selected by the gate driver 804. The mirror element signal MES is supplied from each data line SL2 toward the data line SL2 (21). Specifically, in the horizontal period (1) in which the scanning signal is supplied to the gate line GL2 (1) at the upper end of the mirror panel 800 by the gate driver 804, the data line SL2 (1) arranged at the left end of the mirror panel 800. To the data line SL2 (21) arranged at the right end of the mirror panel 800, the mirror element signal MES is sequentially supplied. By doing so, the mirror elements MPIX (1,1) to the mirror elements MPIX (1,21) arranged in the first row are changed from the mirror element signal MES (1,1) to the mirror elements MPIX (1,1). It is controlled by the reflectance corresponding to the mirror element signal MES up to the signal MES (1, 21). Subsequently, in the horizontal period (2), the scanning signal is supplied to the gate line GL2 (2), and similarly, the mirror element signal MES is sequentially supplied in the order from the data line SL2 (1) to the data line SL2 (21). To be done. By doing this, the mirror elements MPIX from the mirror element MPIX (2,1) to the mirror element MPIX (2,21) arranged in the second row are changed from the mirror element signal MES (2,1) to the mirror element MPES (2,1). It is controlled by the reflectance corresponding to the mirror element signal MES up to the signal MES (2,21). Similar scanning is performed up to the gate line GL2 (18).
 本変形例において、表示装置100のゲートドライバ206は、表示パネル200の上端に配置されるゲート線GL1(1)から表示パネル200の下端に配置されるゲート線GL1(18)に向かって、各ゲート線GL1に接続される画素PIXを行単位で選択する走査信号を順次供給する。また、データドライバ204は、ゲートドライバ206によって選択された行に配置された各画素PIXに対して、表示パネル200の右端に位置するデータ線SL1(21)から表示パネル200の左端に位置するデータ線SL1(1)に向かって、各データ線SL1から表示画素信号DPSを供給する。 In this modification, the gate driver 206 of the display device 100 extends from the gate line GL1 (1) arranged at the upper end of the display panel 200 toward the gate line GL1 (18) arranged at the lower end of the display panel 200. Scanning signals for sequentially selecting the pixels PIX connected to the gate line GL1 in units of rows are sequentially supplied. Further, the data driver 204, for each pixel PIX arranged in the row selected by the gate driver 206, outputs data from the data line SL1 (21) located at the right end of the display panel 200 to the data located at the left end of the display panel 200. The display pixel signal DPS is supplied from each data line SL1 toward the line SL1 (1).
 具体的には、ゲートドライバ206によって表示パネル200の上端のゲート線GL1(1)に走査信号が供給される水平期間(1)において、表示パネル200の右端に配置されるデータ線SL1(1)から表示パネル200の左端に配置されるデータ線SL1(21)までの順番で表示画素信号DPSが順次供給される。このようにすることで、1行目に配置される画素PIX(1,21)から画素PIX(1,1)までの画素PIXが、表示画素信号DPS(1,21)から表示画素信号DPS(1,1)までの表示画素信号DPSに対応する階調値で制御される。続いて、水平期間(2)において、ゲート線GL1(2)に走査信号が供給され、同様に、データ線SL1(21)からデータ線SL1(1)までの順番で表示画素信号DPSが順次供給される。このようにすることで、2行目に配置される画素PIX(2,21)から画素PIX(2,1)までの画素PIXが、表示画素信号DPS(2,21)から表示画素信号DPS(2,1)までの表示画素信号DPSに対応する階調値で制御される。ゲート線GL1(18)まで同様の走査がなされる。 Specifically, in the horizontal period (1) in which the scanning signal is supplied to the gate line GL1 (1) at the upper end of the display panel 200 by the gate driver 206, the data line SL1 (1) arranged at the right end of the display panel 200. To the data line SL1 (21) arranged at the left end of the display panel 200, the display pixel signal DPS is sequentially supplied. By doing so, the pixel PIX from the pixel PIX (1,21) to the pixel PIX (1,1) arranged in the first row is changed from the display pixel signal DPS (1,21) to the display pixel signal DPS ( The gradation values corresponding to the display pixel signals DPS up to 1, 1) are controlled. Subsequently, in the horizontal period (2), the scanning signal is supplied to the gate line GL1 (2), and similarly, the display pixel signal DPS is sequentially supplied in the order from the data line SL1 (21) to the data line SL1 (1). To be done. By doing so, the pixel PIX from the pixel PIX (2,21) to the pixel PIX (2,1) arranged in the second row is changed from the display pixel signal DPS (2,21) to the display pixel signal DPS ( The gradation values corresponding to the display pixel signals DPS up to 2, 1) are controlled. Similar scanning is performed up to the gate line GL1 (18).
 制御回路108は、タイミングコントローラ118の同期信号に基づいて、同一の基礎画像信号BDSに基づく表示画像信号DDS及びミラー画像信号MDSに基づいて、表示装置100及びミラー装置102を同時に駆動する。本実施形態において、ミラー装置102のミラー素子MPIXに対向する表示装置100の画素PIXの位置は左右反転した位置に対応する。具体的には、画素PIX(1,1)により出射される画像光DLは、ミラー素子(1,21)によって反射される。本実施形態において、表示装置100のデータドライバ204の走査方向が表示パネル200の左端から右端へ向かう第2走査方向であるのに対して、ミラー装置102のデータドライバ802の走査方向がミラーパネル800の右端から左端へ向かう第1走査方向である。第2走査方向は、第1走査方向の反対方向である。そのため、画素PIX(p,q)に対応するミラー素子(p,n-(q-1))が同一タイミングで駆動される。このようにすることでデータドライバ204及びデータドライバ802に1行分の表示画素信号DPS又はミラー素子信号MESを保持するバッファが設けられなくてもよくなる。 The control circuit 108 drives the display device 100 and the mirror device 102 at the same time based on the synchronization signal of the timing controller 118 and the display image signal DDS based on the same basic image signal BDS and the mirror image signal MDS. In the present embodiment, the position of the pixel PIX of the display device 100 facing the mirror element MPIX of the mirror device 102 corresponds to the left-right inverted position. Specifically, the image light DL emitted from the pixel PIX (1,1) is reflected by the mirror element (1,21). In the present embodiment, the scanning direction of the data driver 204 of the display device 100 is the second scanning direction from the left end to the right end of the display panel 200, whereas the scanning direction of the data driver 802 of the mirror device 102 is the mirror panel 800. Is the first scanning direction from the right end to the left end. The second scanning direction is opposite to the first scanning direction. Therefore, the mirror element (p, n- (q-1)) corresponding to the pixel PIX (p, q) is driven at the same timing. By doing so, the data driver 204 and the data driver 802 need not be provided with a buffer for holding the display pixel signal DPS or the mirror element signal MES for one row.
 また、データドライバ802が、ミラーパネル800の右端から左端に向かう第1走査方向に走査する場合、ミラー画像信号MDSは、右上端のミラー素子MPIX(1,n)に対応するミラー素子信号MES(1,n)から順に、1行目の左端のミラー素子MPIX(1,1)に対応するミラー素子信号MES(1,1)が連続し、続いて、2行目の右端のミラー素子MPIX(2,n)に対応するミラー素子信号MES(2,n)から左端のミラー素子MPIX(2,1)に対応するミラー素子信号MES(2,1)が連続し、同様に行毎に右端から左端までのミラー素子信号MESが連続し、m行目のミラー素子MPIX(m,1)に対応するミラー素子信号MES(m,1)まで連続した一連の信号であることが望ましい。 Further, when the data driver 802 scans in the first scanning direction from the right end to the left end of the mirror panel 800, the mirror image signal MDS corresponds to the mirror element signal MES (corresponding to the mirror element MPIX (1, n) at the upper right end. 1, n), the mirror element signal MES (1, 1) corresponding to the leftmost mirror element MPIX (1, 1) in the first row is continuous, and subsequently, the rightmost mirror element MPIX (in the second row). 2, n) corresponding to the mirror element signal MES (2,1) corresponding to the leftmost mirror element MPIX (2,1), and similarly from the right end for each row. It is desirable that the mirror element signal MES up to the left end is continuous, and the mirror element signal MES (m, 1) corresponding to the mirror element MPIX (m, 1) in the m-th row is a continuous series of signals.
 ミラー素子MPIX(p,n-(q-1))は、基礎画素BPIX(p,q)に対応する。そのため、ミラー画像信号MDSは、左上端の基礎画素BPIX(1,1)に対応する基礎画素信号BPS(1,1)の階調値信号に基づくミラー素子信号MESから順に、1行目の右端の基礎画素BPIX(1,n)に対応する基礎画素信号BPS(1,n)の階調値信号に基づくミラー素子信号MESが連続し、続いて、2行目の左端の基礎画素BPIX(2,1)に対応する基礎画素信号BPS(2,1)の階調値信号に基づくミラー素子信号MESから右端の基礎画素BPIX(2,n)に対応する基礎画素信号BPS(2,n)の階調値信号に基づくミラー素子信号MESが連続し、同様に行毎に左端から右端までの基礎画素信号BPSの階調値信号に基づくミラー素子信号MESが連続し、m行目の基礎画素BPIX(m,n)に対応する基礎画素信号BPS(m,n)の階調値信号に基づくミラー素子信号MESまで連続した一連の信号である。 The mirror element MPIX (p, n- (q-1)) corresponds to the basic pixel BPIX (p, q). Therefore, the mirror image signal MDS is sequentially arranged from the mirror element signal MES based on the gradation value signal of the basic pixel signal BPS (1,1) corresponding to the basic pixel BPIX (1,1) at the upper left end in the right end of the first row. Of the basic pixel signal BPIX (1, n) corresponding to the basic pixel signal BPS (1, n) based on the gradation value signal of the basic pixel signal BPS (1, n), and subsequently, the basic pixel BPIX (2 , 1) of the basic pixel signal BPS (2,1) corresponding to the basic pixel signal BPS (2, n) of the rightmost basic pixel BPIX (2, n) based on the grayscale value signal of the basic pixel signal BPS (2,1). The mirror element signal MES based on the gradation value signal is continuous, and similarly, the mirror element signal MES based on the gradation value signal of the basic pixel signal BPS from the left end to the right end is continuous for each row, and the basic pixel BPIX on the m-th row is continuous. (M, n) It is a series of signals that are continuous to the mirror element signal MES based on the gradation value signal of the corresponding basic pixel signal BPS (m, n).
 これは、実施形態1において、表示画像処理回路114によって反転される前の基礎画像信号BDSに含まれる階調信号と等しい。つまり、表示パネル200のデータドライバ204とミラーパネル800のデータドライバ802の走査方向を左右反転させることで、基礎画像BDIと表示画像DDIが互いに反転する反転画像であっても、表示画像処理回路114は、基礎画像信号BDSを左右反転させる必要はなく、基礎画像信号BDSに含まれる階調値信号をそのまま表示画像信号DDSとして出力することができる。 This is equal to the gradation signal included in the basic image signal BDS before being inverted by the display image processing circuit 114 in the first embodiment. That is, even if the basic image BDI and the display image DDI are reversed images by reversing the scanning directions of the data driver 204 of the display panel 200 and the data driver 802 of the mirror panel 800, the display image processing circuit 114. Does not need to horizontally invert the basic image signal BDS, and the gradation value signal included in the basic image signal BDS can be output as it is as the display image signal DDS.
 また、ユーザの操作によってミラー装置102の反射率が変更されてもよい。図15は、ユーザの操作に応じてミラー装置の反射率を変更する動作についての説明に供する図である。 Also, the reflectance of the mirror device 102 may be changed by a user operation. FIG. 15 is a diagram for explaining the operation of changing the reflectance of the mirror device according to the operation of the user.
 ヘッドマウントディスプレイ30は、操作入力回路120を備える。操作入力回路120は、ユーザの操作に応じた入力信号ISを制御回路108に出力する。制御回路108は、補正回路108Cを備える。補正回路108Cは、ミラー装置102に入力されるミラー画像信号MDSを操作入力回路120から出力された入力信号ISで補正する。 The head mounted display 30 includes an operation input circuit 120. The operation input circuit 120 outputs an input signal IS according to a user operation to the control circuit 108. The control circuit 108 includes a correction circuit 108C. The correction circuit 108C corrects the mirror image signal MDS input to the mirror device 102 with the input signal IS output from the operation input circuit 120.
 入力信号ISは、例えば、ミラーパネル800の反射率を一律に制御するための信号である。補正回路108Cは、例えば、各ミラー素子信号MESが示す反射率を、操作入力回路120からの入力信号ISが示す値で一律に乗算する。補正回路108Cは、補正後のミラー画像信号AMDSを制御回路108Bに送信する。 The input signal IS is, for example, a signal for uniformly controlling the reflectance of the mirror panel 800. The correction circuit 108C uniformly multiplies, for example, the reflectance indicated by each mirror element signal MES by the value indicated by the input signal IS from the operation input circuit 120. The correction circuit 108C transmits the corrected mirror image signal AMDS to the control circuit 108B.
 制御回路108Bは、補正後のミラー画像信号AMDSに基づいて、ミラー装置102を制御する。ミラー装置102は、補正後のミラー画像信号AMDSに基づいて、ミラー素子MPIXの反射率を制御する。 The control circuit 108B controls the mirror device 102 based on the corrected mirror image signal AMDS. The mirror device 102 controls the reflectance of the mirror element MPIX based on the corrected mirror image signal AMDS.
 なお、補正回路108Cにおける入力信号ISに基づくミラー画像信号MDSの補正方法はこれに限られず、入力信号ISが一定の反射率を示し、当該反射率をミラー画像信号MDSが示す反射率に加算してもよい。 The correction method of the mirror image signal MDS based on the input signal IS in the correction circuit 108C is not limited to this, and the input signal IS exhibits a constant reflectance, and the reflectance is added to the reflectance indicated by the mirror image signal MDS. May be.
 例えば、ミラー装置102の制御範囲及びミラー素子信号MESの範囲を0以上100以下とし、操作入力回路120の入力信号ISの範囲をー100以上100以下とすると、入力信号ISが-100の場合、ミラー素子信号MESに入力信号を加算すると、加算後の値は全て0以下の数値となる。ミラー装置102の範囲は0以上100以下であるため、補正後のミラー画像信号AMDSに含まれる全てのミラー素子信号MESの値は0となる。この場合、ミラー装置102の全てのミラー素子MPIXが第1状態X10となる。これによって、ユーザは、ミラーパネル800の全領域を透過する外光OLを視認する(第1モード)。一方で、入力信号が100の場合、ミラー素子信号MESに入力信号を加算すると、加算後の値は全て100以上の数値となる。ミラー装置102の範囲は0以上100以下であるため、補正後のミラー画像信号AMDSに含まれる全てのミラー素子信号MESの値は100となる。この場合、ミラー装置102の全てのミラー素子MPIXが第2状態X12となる。これによって、ユーザは、ミラーパネル800の全領域で反射された画像光DLを視認する(第2モード)。 For example, when the control range of the mirror device 102 and the range of the mirror element signal MES are 0 or more and 100 or less and the range of the input signal IS of the operation input circuit 120 is -100 or more and 100 or less, when the input signal IS is -100, When the input signal is added to the mirror element signal MES, the values after the addition are all 0 or less. Since the range of the mirror device 102 is 0 or more and 100 or less, the values of all the mirror element signals MES included in the corrected mirror image signal AMDS are 0. In this case, all the mirror elements MPIX of the mirror device 102 are in the first state X10. As a result, the user visually recognizes the external light OL that passes through the entire area of the mirror panel 800 (first mode). On the other hand, when the input signal is 100, when the input signal is added to the mirror element signal MES, the values after addition are all 100 or more. Since the range of the mirror device 102 is 0 or more and 100 or less, the values of all the mirror element signals MES included in the corrected mirror image signal AMDS are 100. In this case, all the mirror elements MPIX of the mirror device 102 are in the second state X12. As a result, the user visually recognizes the image light DL reflected in the entire area of the mirror panel 800 (second mode).
 また、操作入力回路120は、例えば、透過モードと鏡面モード(反射モード)を切り替えるスイッチで構成されてもよいし、反射率を多段階で調整できるボリューム調整つまみで構成されてもよい。 The operation input circuit 120 may be composed of, for example, a switch that switches between a transmission mode and a specular mode (reflection mode), or may be composed of a volume adjustment knob that can adjust the reflectance in multiple stages.
(実施形態2)
 実施形態2において、実施形態1と共通する構成には、実施形態1と同一の符号を付し、重複する説明を省略する。図16は、ヘッドマウントディスプレイの構成を示す図である。
(Embodiment 2)
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description will be omitted. FIG. 16 is a diagram showing the configuration of the head mounted display.
 ヘッドマウントディスプレイ30Aは、表示装置100と、ミラー装置102と、光学素子130と、反射装置140とを備える。 The head mounted display 30A includes a display device 100, a mirror device 102, an optical element 130, and a reflection device 140.
 表示装置100は、画像を表示する。反射装置140は、表示装置100から照射される光を反射する。ミラー装置102には、反射装置140により反射された光が照射され、表示装置100に表示されている画像がユーザに視認される。 The display device 100 displays an image. The reflection device 140 reflects the light emitted from the display device 100. The mirror device 102 is irradiated with the light reflected by the reflection device 140, and the image displayed on the display device 100 is visually recognized by the user.
 このような構成によれば、ヘッドマウントディスプレイ30Aは、表示装置100に表示されている画像を直接、ミラー装置102に照射しなくてよいので、表示装置100の配置場所の自由度が増し、設計上有利になる。 With such a configuration, the head-mounted display 30A does not have to directly illuminate the image displayed on the display device 100 onto the mirror device 102, so that the degree of freedom in the location of the display device 100 is increased, and the design is improved. It will be an advantage.
(実施形態3)
 実施形態3において、実施形態1及び実施形態2と共通する構成には、実施形態1及び実施形態2と同一の符号を付し、重複する説明を省略する。図17は、実施形態3の表示システムの主要構成を示す模式図である。表示システム10は、処理回路104と、表示装置100と、ミラー装置102とを備える。
(Embodiment 3)
In the third embodiment, configurations common to those of the first and second embodiments are denoted by the same reference numerals as those of the first and second embodiments, and redundant description will be omitted. FIG. 17 is a schematic diagram showing the main configuration of the display system of the third embodiment. The display system 10 includes a processing circuit 104, a display device 100, and a mirror device 102.
 図18は、処理回路の構成及び処理回路の入出力を示すブロック図である。処理回路104は、画像出力回路110から基礎画像信号BDSが入力される。基礎画像信号BDSは、基礎画像BDIに対応する信号であって、基礎画像BDIを構成する複数の基礎画素BPIX毎の階調値を示す階調信号BDS-G(画像データ)又は反射率(不透明度)を示す反射率信号BDS-R(不透明度データ)が含まれる。処理回路104は、入力された基礎画像信号BDSの階調値を示す階調信号BDS-Gに基づく表示画像信号DDSを表示装置100に出力する。また、処理回路104は、基礎画像信号BDSの反射率を示す反射率信号BDS-Rに基づきミラー画像信号MDSをミラー装置102に出力する。 FIG. 18 is a block diagram showing the configuration of the processing circuit and the input / output of the processing circuit. The basic image signal BDS is input from the image output circuit 110 to the processing circuit 104. The basic image signal BDS is a signal corresponding to the basic image BDI, and is a gradation signal BDS-G (image data) or a reflectance (non-existence) which indicates a gradation value for each of a plurality of basic pixels BPIX forming the basic image BDI. A reflectance signal BDS-R (opacity data) indicating transparency is included. The processing circuit 104 outputs the display image signal DDS based on the gradation signal BDS-G indicating the gradation value of the input basic image signal BDS to the display device 100. The processing circuit 104 also outputs the mirror image signal MDS to the mirror device 102 based on the reflectance signal BDS-R indicating the reflectance of the basic image signal BDS.
 基礎画像信号BDSに含まれる反射率信号BDS-Rは、ミラー装置102を構成する各ミラー素子MPIXの反射率を指定するための信号であって、例えば、各ミラー素子MPIXの不透明度を指定するデータ、いわゆるアルファチャンネルデータである。また、表示画像信号DDSの示す表示画像DDIとミラー画像信号MDSが示すミラー画像MDIは、鏡像の関係である。画像出力回路110から出力される基礎画像信号BDSは、反射率を示す反射率信号BDS-Rを含まなくてもよい。基礎画像信号BDSの反射率信号BDS-Rは、画像出力回路110から出力される基礎画像信号BDSに反射率信号BDS-Rが含まれていない場合に画像処理回路112によって作成されてもよい。図18では、反射率信号BDS-Rを含まない基礎画像信号BDSに符号BDSaを付し、作成された反射率信号BDS-Rを含む基礎画像信号BDSに符号BDSbを付している。 The reflectance signal BDS-R included in the basic image signal BDS is a signal for designating the reflectance of each mirror element MPIX that constitutes the mirror device 102, and, for example, designates the opacity of each mirror element MPIX. The data is so-called alpha channel data. The display image DDI indicated by the display image signal DDS and the mirror image MDI indicated by the mirror image signal MDS have a mirror image relationship. The basic image signal BDS output from the image output circuit 110 may not include the reflectance signal BDS-R indicating the reflectance. The reflectance signal BDS-R of the basic image signal BDS may be created by the image processing circuit 112 when the basic image signal BDS output from the image output circuit 110 does not include the reflectance signal BDS-R. In FIG. 18, the basic image signal BDS that does not include the reflectance signal BDS-R is denoted by the reference symbol BDSa, and the created basic image signal BDS that includes the reflectance signal BDS-R is denoted by the reference symbol BDSb.
 画像処理回路112は、反射率信号BDS-Rを含まない基礎画像信号BDSの反射率信号BDS-Rを作成する。画像処理回路112は、例えば、基礎画像信号BDSに含まれる階調信号BDS-Gに基づき、反射率信号BDS-Rを作成する。例えば、基礎画像信号BDSaに基づく基礎画像信号BDSを構成する複数の基礎画素BPIXの各々のRGBデータが含む各色の階調値(r,g,b)のうち、最小値(min)に基づいて反射率信号BDS-Rを生成する。この例の場合、反射率信号BDS-Rは、各色の階調値が取り得る最高値(MAX)で1つの基礎画素BPIXの当該最小値(min)を除した値を当該1つの基礎画素BPIXの反射率信号BDS-Rとする。当該最高値(MAX)は、階調値のビット数における最高値である。例えば階調値が8ビットであれば、当該最高値(MAX)は255であり、最小値(min)は0~255の範囲内の値である。一例を記載すると、階調値が8ビットであるものとして、(r,g,b)=(85,125,255)の場合、1つの基礎画素BPIXの最小値(min)は、85である。最高値(MAX)は、255であるので、反射率信号BDS-Rは、各色の階調値が取り得る最高値(MAX)で1つの基礎画素BPIXの当該最小値(min)を除した値であるから、85/255である。ここで説明した反射率信号BDS-Rの作成方法はあくまで一例であってこれに限られるものでなく、適宜変更可能である。画像処理回路112は、画像に含まれる被写体の画像領域を判別し、当該画像における被写体以外の画像領域を背景とみなして当該背景に対応する反射率信号BDS-Rを設定する構成であってもよい。画像処理回路112は、処理回路104に含まれる構成であってもよいし、画像出力回路110に含まれる構成であってもよいし、画像出力回路110及び処理回路104から独立した構成であってもよい。 The image processing circuit 112 creates the reflectance signal BDS-R of the basic image signal BDS that does not include the reflectance signal BDS-R. The image processing circuit 112 creates, for example, the reflectance signal BDS-R based on the grayscale signal BDS-G included in the basic image signal BDS. For example, based on the minimum value (min) of the gradation values (r, g, b) of each color included in the RGB data of each of the plurality of basic pixels BPIX that form the basic image signal BDS based on the basic image signal BDSa. The reflectance signal BDS-R is generated. In the case of this example, the reflectance signal BDS-R has a value obtained by dividing the minimum value (min) of one basic pixel BPIX by the maximum value (MAX) that the gradation value of each color can take, and the one basic pixel BPIX. Reflectance signal BDS-R. The highest value (MAX) is the highest value in the number of bits of the gradation value. For example, if the gradation value is 8 bits, the maximum value (MAX) is 255 and the minimum value (min) is a value within the range of 0 to 255. To describe one example, assuming that the gradation value is 8 bits and (r, g, b) = (85, 125, 255), the minimum value (min) of one basic pixel BPIX is 85. . Since the maximum value (MAX) is 255, the reflectance signal BDS-R is a value obtained by dividing the minimum value (min) of one basic pixel BPIX by the maximum value (MAX) that the gradation value of each color can take. Therefore, it is 85/255. The method of creating the reflectance signal BDS-R described here is merely an example, and the method is not limited to this, and can be changed as appropriate. The image processing circuit 112 may be configured to determine the image area of the subject included in the image, regard the image area other than the subject in the image as the background, and set the reflectance signal BDS-R corresponding to the background. Good. The image processing circuit 112 may be included in the processing circuit 104, may be included in the image output circuit 110, or may be independent of the image output circuit 110 and the processing circuit 104. Good.
 処理回路104は、演算回路1041、メモリ1042及び制御回路108を含むMPU(Micro Processor Unit)である。演算回路1041は、CPU(Central Processing Unit)を含み、処理回路104の動作に関する各種の処理を行う。メモリ1042は、フラッシュメモリ等の記憶装置を含み、演算回路1041の処理に用いられるデータ等を記憶する。制御回路108は、演算回路1041の制御下で、画像出力回路110(又は画像処理回路112)から入力された反射率信号BDS-Rを含む基礎画像信号BDS(又は基礎画像信号BDSb)に基づいて、表示装置100とミラー装置102に個別にデータを出力する。具体的には、制御回路108は、基礎画像信号BDSに含まれる階調信号BDS-Gに基づき、表示画像信号DDSとして表示装置100に出力する。基礎画像信号BDSの階調信号BDS-Gに基づく基礎画像BDIと、表示画像信号DDSの示す表示画像DDIは、鏡面画像である。基礎画像BDIと表示画像DDIが鏡面画像となるように、基礎画像信号BDSの階調信号BDS-Gから表示画像信号DDSを生成する処理は、演算回路1041が行ってもよいし、画像処理回路112が行ってもよい。制御回路108は、基礎画像信号BDSに含まれる反射率信号BDS-Rに基づき、ミラー画像信号MDSをミラー装置102に出力する。 The processing circuit 104 is an MPU (Micro Processor Unit) including an arithmetic circuit 1041, a memory 1042, and a control circuit 108. The arithmetic circuit 1041 includes a CPU (Central Processing Unit), and performs various processes related to the operation of the processing circuit 104. The memory 1042 includes a storage device such as a flash memory and stores data and the like used for the processing of the arithmetic circuit 1041. Under the control of the arithmetic circuit 1041, the control circuit 108 is based on the basic image signal BDS (or basic image signal BDSb) including the reflectance signal BDS-R input from the image output circuit 110 (or image processing circuit 112). , And outputs data individually to the display device 100 and the mirror device 102. Specifically, the control circuit 108 outputs the display image signal DDS to the display device 100 based on the gradation signal BDS-G included in the basic image signal BDS. The basic image BDI based on the gradation signal BDS-G of the basic image signal BDS and the display image DDI indicated by the display image signal DDS are mirror images. The arithmetic circuit 1041 may perform the process of generating the display image signal DDS from the gradation signal BDS-G of the basic image signal BDS so that the basic image BDI and the display image DDI become mirror images. 112 may do. The control circuit 108 outputs the mirror image signal MDS to the mirror device 102 based on the reflectance signal BDS-R included in the basic image signal BDS.
 表示装置100は、画像を表示する。実施形態3の表示装置100は、透過型のカラー液晶表示装置であるが、これに限られるものでない。その他の表示装置の適用例として、半透過型又は反射型の液晶表示装置、有機又は無機のエレクトロルミネセンス(EL:Electroluminescence)を利用した表示装置、その他の自発光型表示装置等、あらゆるフラットパネル型の画像表示装置が挙げられる。また、表示装置100は、プロジェクタ等、光を投射して画像を表示することに特化した構成であってもよい。また、表示装置100は、中小型から大型まで、特に限定することなく適用が可能であることはいうまでもない。 The display device 100 displays an image. The display device 100 of the third embodiment is a transmissive color liquid crystal display device, but is not limited to this. As other application examples of the display device, any flat panel such as a semi-transmissive or reflective liquid crystal display device, a display device using organic or inorganic electroluminescence (EL), and other self-luminous display device Type image display device. In addition, the display device 100 may have a configuration specialized in displaying an image by projecting light, such as a projector. Further, it goes without saying that the display device 100 can be applied to a medium to small size to a large size without any particular limitation.
 表示装置100の画像投射面100s(主面ともいう)は、ミラー装置102側に向いている。ミラー装置102は、所定角度Aをつけて表示装置100と対向する。図17に示すように、表示装置100の主面とミラー装置102の主面とがなす角度(所定角度A)は鋭角である。即ち、ミラー装置102の主面は、表示装置100の主面に対して所定角度Aで傾いている。ミラー装置102の一部もしくは全体が鏡として機能して表示装置100からの画像光DLを反射した場合、ユーザの眼Eに当該画像光DLが到達して表示装置100に表示された表示画像DDIの鏡面画像が視認される。 The image projection surface 100s (also referred to as the main surface) of the display device 100 faces the mirror device 102 side. The mirror device 102 faces the display device 100 at a predetermined angle A. As shown in FIG. 17, the angle (predetermined angle A) formed by the main surface of the display device 100 and the main surface of the mirror device 102 is an acute angle. That is, the main surface of the mirror device 102 is inclined at a predetermined angle A with respect to the main surface of the display device 100. When part or all of the mirror device 102 functions as a mirror and reflects the image light DL from the display device 100, the image light DL reaches the user's eye E and the display image DDI displayed on the display device 100. The specular image of is visible.
 図19は、ミラー装置の積層構造例を示す模式図である。図20は、図19に示すミラー装置の回路構成例を示す模式図である。ミラー装置102は、光を透過させるか反射させるかを変更可能に設けられたミラーパネルである。図19では、表示装置100から出射された画像光DLaがミラー装置102に入射して、ミラー装置102の反射型偏光板500によって画像光DLbが反射する。また、図19では、外光OLがミラー装置102を透過する。外光OLがミラー装置102を透過し眼Eに到達することで、ミラー装置102を挟んで眼Eの反対側に位置するオブジェクトOB(図17参照)が視認される。ミラー装置102は、例えば、第1基板402と、第2基板406とを備える。第1基板402と第2基板406とは対向する。第1基板402及び第2基板406は、例えばガラス基板等、透光性を有する基板である。第2基板406の一面側には、第1電極408がマトリクス状に配置されている。第1電極408は、ミラー装置102が備える複数のミラー素子MPIXの各々に設けられる。 FIG. 19 is a schematic diagram showing an example of a laminated structure of the mirror device. 20 is a schematic diagram showing a circuit configuration example of the mirror device shown in FIG. The mirror device 102 is a mirror panel provided so as to be able to change whether light is transmitted or reflected. In FIG. 19, the image light DLa emitted from the display device 100 is incident on the mirror device 102, and the image light DLb is reflected by the reflective polarizing plate 500 of the mirror device 102. Further, in FIG. 19, external light OL passes through the mirror device 102. When the external light OL passes through the mirror device 102 and reaches the eye E, the object OB (see FIG. 17) located on the opposite side of the eye E with the mirror device 102 interposed therebetween is visually recognized. The mirror device 102 includes, for example, a first substrate 402 and a second substrate 406. The first substrate 402 and the second substrate 406 face each other. The first substrate 402 and the second substrate 406 are light-transmitting substrates such as a glass substrate. First electrodes 408 are arranged in a matrix on one surface side of the second substrate 406. The first electrode 408 is provided on each of the plurality of mirror elements MPIX included in the mirror device 102.
 また、第2基板406には、図20に示すデータ線SL2、ゲート線GL2、スイッチング素子Trが設けられている。スイッチング素子Trは、薄膜トランジスタ(TFT:Thin Film Transistor)を用いたスイッチング素子である。TFTのソース又はドレインの一方は、データ線SL2と接続されている。TFTのゲートは、ゲート線GL2と接続されている。TFTのソース又はドレインの他方は、第1電極408と接続されている。ミラー素子MPIXは、2つのデータ線SL2と2つのゲート線GL2に囲われた領域に対応し、ミラー素子MPIX毎にスイッチング素子Trが配置される。 Further, the second substrate 406 is provided with the data line SL2, the gate line GL2, and the switching element Tr shown in FIG. The switching element Tr is a switching element using a thin film transistor (TFT: Thin Film Transistor). One of the source and the drain of the TFT is connected to the data line SL2. The gate of the TFT is connected to the gate line GL2. The other of the source and the drain of the TFT is connected to the first electrode 408. The mirror element MPIX corresponds to a region surrounded by the two data lines SL2 and the two gate lines GL2, and the switching element Tr is arranged for each mirror element MPIX.
 データ線SL2は、データドライバ802と接続されている(図26参照)。ゲート線GL2は、ゲートドライバ804と接続されている(図26参照)。ゲートドライバ804は、各ゲート線GL2に順次駆動信号を供給する。駆動信号が供給されたゲート線GL2と接続されているスイッチング素子Trのソース-ドレイン間の接続がONになることで、駆動信号が供給されたゲート線GL2の行に配置されている第1電極408とデータ線SL2とが接続される。データドライバ802は、当該行の第1電極408の各々に対するミラー素子信号MESをデータ線SL2に供給する。当該ミラー素子信号MESの電位は、ミラー画像信号MDSに基づいて決定される。 The data line SL2 is connected to the data driver 802 (see FIG. 26). The gate line GL2 is connected to the gate driver 804 (see FIG. 26). The gate driver 804 sequentially supplies a drive signal to each gate line GL2. When the connection between the source and the drain of the switching element Tr connected to the gate line GL2 to which the drive signal is supplied is turned on, the first electrode arranged in the row of the gate line GL2 to which the drive signal is supplied. 408 and the data line SL2 are connected. The data driver 802 supplies the mirror element signal MES for each of the first electrodes 408 of the row to the data line SL2. The potential of the mirror element signal MES is determined based on the mirror image signal MDS.
 第1基板402には、第1電極408と対向する側の面に第2電極404が設けられている。第1電極408と第2電極404との間には、液晶層410が封入されている。第2電極404には、基準電位が与えられる。第1電極408の各々に対してミラー素子信号MESによって与えられた電位と第2電極404の基準電位との電位差に応じて、ミラー素子MPIXの反射率が決定する。より具体的には、第1電極408の各々の位置の液晶分子412の配向が、基準電位とミラー素子信号MESの電位差によって変化する。 The second electrode 404 is provided on the surface of the first substrate 402 opposite to the first electrode 408. A liquid crystal layer 410 is sealed between the first electrode 408 and the second electrode 404. A reference potential is applied to the second electrode 404. The reflectance of the mirror element MPIX is determined according to the potential difference between the potential given to each of the first electrodes 408 by the mirror element signal MES and the reference potential of the second electrode 404. More specifically, the orientation of the liquid crystal molecules 412 at each position of the first electrode 408 changes depending on the potential difference between the reference potential and the mirror element signal MES.
 図21は、反射型偏光板と、反射型偏光板を最大限透過する位相の光と、反射型偏光板によって最大限反射される位相の光とを示す模式図である。第2基板406の他面側には、図19に示すように、反射型偏光板500が配置されている。反射型偏光板500は、光の位相によって透過率及び反射率が変ずるよう設けられた板状又は膜状の部材である。 FIG. 21 is a schematic diagram showing a reflective polarizing plate, light having a phase that transmits the reflective polarizing plate to the maximum extent, and light having a phase that is maximally reflected by the reflective polarizing plate. On the other surface side of the second substrate 406, as shown in FIG. 19, a reflective polarizing plate 500 is arranged. The reflective polarizing plate 500 is a plate-shaped or film-shaped member provided so that the transmittance and the reflectance change depending on the phase of light.
 図21では、反射型偏光板500を最大限透過する位相の光L1(第2直線偏光成分の光)と、反射型偏光板500によって最大限反射される位相の光L2(第1直線偏光成分の光)とを例示している。光L1と光L2とは、反射型偏光板500に対する光の位相が90度[°]又は270度[°]異なる直線偏光である。 In FIG. 21, the light L1 (the second linearly polarized light component) having the phase that is transmitted through the reflective polarizing plate 500 to the maximum and the light L2 (the first linearly polarized light component) having the phase that is reflected by the reflective polarizing plate 500 to the maximum. Of light). The light L1 and the light L2 are linearly polarized lights having different phases of light with respect to the reflective polarizing plate 500 by 90 degrees [°] or 270 degrees [°].
 図22は、ミラー装置が光の透過率及び光の反射率をミラー素子単位で切り替える仕組みを示す模式図である。上述の通り、第1電極408の各々に対してミラー素子信号MESによって与えられた電位と第2電極404の基準電位との電位差に応じて、第1電極408の各々の位置の液晶分子の配向が決定する。 FIG. 22 is a schematic diagram showing a mechanism in which the mirror device switches the light transmittance and the light reflectance for each mirror element. As described above, according to the potential difference between the potential given to each of the first electrodes 408 by the mirror element signal MES and the reference potential of the second electrode 404, the alignment of the liquid crystal molecules at each position of the first electrode 408. Will be decided.
 ミラー装置102は、表示装置に対向する面に第1偏光板300を有し、第1偏光板300は、第1直線偏光成分の光L2を最大限透過し、それ以外の位相の光を吸収する直線偏光板である。表示装置100は、ミラー装置102と対向する面に偏光板100cを有する。偏光板100cは、第1直線偏光成分の光L2を透過し、それ以外の位相の光を吸収する偏光板である。表示装置100から出射される画像光DLは、偏光板100c又は第1偏光板300を介して、第1直線偏光成分の光L2が最大限透過する。なお、表示装置100は、表示装置100から出射される画像光DLに第1直線偏光成分の光が含まれていれば、偏光板100cを有さなくてもよい。 The mirror device 102 has a first polarizing plate 300 on the surface facing the display device, and the first polarizing plate 300 transmits the light L2 of the first linearly polarized light component to the maximum extent and absorbs the light of other phases. It is a linear polarizing plate. The display device 100 has a polarizing plate 100c on the surface facing the mirror device 102. The polarizing plate 100c is a polarizing plate that transmits the light L2 of the first linearly polarized light component and absorbs light of other phases. The image light DL emitted from the display device 100 is such that the light L2 of the first linearly polarized light component is maximally transmitted through the polarizing plate 100c or the first polarizing plate 300. The display device 100 does not need to have the polarizing plate 100c as long as the image light DL emitted from the display device 100 includes the light of the first linearly polarized light component.
 また、ミラー装置102は、外光OLの入射面に第2偏光板600を有し、第2偏光板600は、第2直線偏光成分の光L1を最大限透過し、それ以外の位相の光を吸収する直線偏光板である。外光OLは、第2偏光板600を介して、第2直線偏光成分の光L1が透過する。 Further, the mirror device 102 has the second polarizing plate 600 on the incident surface of the outside light OL, and the second polarizing plate 600 transmits the light L1 of the second linearly polarized component to the maximum and the light of other phases. Is a linear polarizing plate that absorbs. The external light OL passes through the second polarizing plate 600 and the light L1 of the second linearly polarized light component is transmitted.
 例えば、図22の第1ミラー素子MPIX1に含まれる液晶素子LQ1は、第1電極408及び第2電極404を介して与えられた電位差によって、光L1を最大限透過させ、光L2を最大限遮蔽する液晶分子の配向に対応する液晶素子LQである(第1状態X10)。このため、第1ミラー素子MPIX1の液晶素子LQ1では、第2基板406側から入射して第1基板402側に向かう外光OLに含まれる光L1が、反射型偏光板500及び液晶素子LQ1の液晶を最大限透過することができる。また、第1ミラー素子MPIX1の液晶素子LQ1では、第1基板402側から入射して第2基板406側に向かう画像光DLに含まれる光L1も最大限透過する。また、画像光DLに含まれる光L2は第1偏光板300によって最大限遮蔽される。このため、第1基板402側から入射した画像光DLが反射されて第1基板402側に戻る割合は最小限になる。なお、外光OLに含まれる光L2は、反射型偏光板500によって最大限反射され、第1基板402側に透過する度合いが最小限になる。より具体的には、外光OLは、第2偏光板600を介して、第2直線偏光成分の光L1が透過し、反射型偏光板500を透過する。第2偏光板600及び反射型偏光板500を透過した第2直線偏光成分の光L1は、液晶素子LQ1を介して、第1直線偏光成分の光L2に変換される。第1直線偏光成分の光L2に変換された外光OLは、第1偏光板300を透過して、ユーザに視認される。また、画像光DLは、第1偏光板300を介して、第1直線偏光成分の光L2が透過し、第1偏光板300を透過した第1直線偏光成分の光L2は、液晶素子LQ1を介して、第2直線偏光成分の光L1に変換される。第2直線偏光成分の光L1に変換された画像光DLは、反射型偏光板500及び第2偏光板600を透過する。 For example, the liquid crystal element LQ1 included in the first mirror element MPIX1 in FIG. 22 transmits the light L1 to the maximum and shields the light L2 to the maximum due to the potential difference given through the first electrode 408 and the second electrode 404. The liquid crystal element LQ corresponds to the alignment of the liquid crystal molecules (first state X10). Therefore, in the liquid crystal element LQ1 of the first mirror element MPIX1, the light L1 included in the external light OL that enters from the second substrate 406 side and travels toward the first substrate 402 side is reflected by the reflective polarizing plate 500 and the liquid crystal element LQ1. The liquid crystal can be maximally transmitted. Further, in the liquid crystal element LQ1 of the first mirror element MPIX1, the light L1 included in the image light DL entering from the first substrate 402 side and traveling toward the second substrate 406 side is also maximally transmitted. Further, the light L2 included in the image light DL is shielded by the first polarizing plate 300 as much as possible. Therefore, the ratio of the image light DL incident from the first substrate 402 side to be reflected and returned to the first substrate 402 side is minimized. The light L2 included in the outside light OL is maximally reflected by the reflective polarizing plate 500, and is minimally transmitted to the first substrate 402 side. More specifically, the outside light OL passes through the second polarizing plate 600, the light L1 of the second linearly polarized light component, and passes through the reflective polarizing plate 500. The light L1 of the second linearly polarized light component that has passed through the second polarizing plate 600 and the reflective polarizing plate 500 is converted into the light L2 of the first linearly polarized light component via the liquid crystal element LQ1. The external light OL converted into the light L2 of the first linearly polarized component passes through the first polarizing plate 300 and is visually recognized by the user. The image light DL is transmitted through the first polarization plate 300 as the light L2 having the first linear polarization component, and the light L2 having the first linear polarization component transmitted through the first polarization plate 300 is transmitted through the liquid crystal element LQ1. The light is converted into the light L1 of the second linearly polarized light component via. The image light DL converted into the light L1 of the second linearly polarized light component passes through the reflective polarizing plate 500 and the second polarizing plate 600.
 図22の第2ミラー素子MPIX2に含まれる液晶素子LQ2は、第1電極408及び第2電極404を介して与えられた電位差によって、光L2を最大限透過させ、光L1を最大限遮蔽する液晶分子の配向に対応する液晶素子LQである(第2状態X12)。このため、第2ミラー素子MPIX2の液晶素子LQ2では、外光OLに含まれる光L1は、反射型偏光板500を透過するが、第1偏光板300に遮蔽されて第1基板402側に透過する割合が最小限になる。また、上述の通り、外光OLに含まれる光L2は、反射型偏光板500によって最大限反射され、第1基板402側に透過する度合いが最小限になる。したがって、第2ミラー素子MPIX2の液晶素子LQ2では、外光OLの透過率が最小限になる。一方、第2ミラー素子MPIX2の液晶素子LQ2では、画像光DLに含まれる光L2が液晶素子LQ2の液晶を最大限透過するため、反射型偏光板500によって最大限反射され、第1基板402側に戻る割合が最大限になる。なお、画像光DLに含まれる光L1は、第1偏光板300によって最大限遮蔽されることに加えて、液晶を透過したとしても反射型偏光板500を最大限透過する。より具体的には、外光OLは、第2偏光板600を介して、第2直線偏光成分の光L1が透過し、反射型偏光板500を透過する。第2偏光板600及び反射型偏光板500を透過した第2直線偏光成分の光L1は、液晶素子LQ2を介して、第2直線偏光成分の光L1のまま透過する。第2直線偏光成分の光L1のまま透過した外光OLは、第1偏光板300で吸収され、ユーザに視認されることが抑制される。また、画像光DLは、第1偏光板300を介して、第1直線偏光成分の光L2が透過し、第1偏光板300を透過した第1直線偏光成分の光L2は、液晶素子LQ2を介して、第1直線偏光成分の光L2のまま透過される。第1直線偏光成分の光L2に変換された画像光DLは、反射型偏光板500によって反射される。反射型偏光板500によって反射された画像光DLは、第1直線偏光成分の光L2のまま液晶素子LQ2を透過する。液晶素子LQ2を透過した第1直線偏光成分の光L2を有する画像光DLは、第1偏光板300を透過してユーザに視認される。 The liquid crystal element LQ2 included in the second mirror element MPIX2 of FIG. 22 is a liquid crystal that transmits the light L2 to the maximum and shields the light L1 to the maximum due to the potential difference given through the first electrode 408 and the second electrode 404. The liquid crystal element LQ corresponds to the orientation of the molecules (second state X12). Therefore, in the liquid crystal element LQ2 of the second mirror element MPIX2, the light L1 included in the external light OL is transmitted through the reflective polarizing plate 500, but is shielded by the first polarizing plate 300 and transmitted to the first substrate 402 side. The ratio to do is minimized. Further, as described above, the light L2 included in the outside light OL is maximally reflected by the reflective polarizing plate 500, and the degree of transmission to the first substrate 402 side is minimized. Therefore, in the liquid crystal element LQ2 of the second mirror element MPIX2, the transmittance of the outside light OL is minimized. On the other hand, in the liquid crystal element LQ2 of the second mirror element MPIX2, the light L2 included in the image light DL is maximally transmitted through the liquid crystal of the liquid crystal element LQ2, and thus is maximally reflected by the reflective polarizing plate 500, and the first substrate 402 side. Maximize the proportion of returning to. The light L1 included in the image light DL is maximally shielded by the first polarizing plate 300, and is maximally transmitted through the reflective polarizing plate 500 even though it is transmitted through the liquid crystal. More specifically, the outside light OL passes through the second polarizing plate 600, the light L1 of the second linearly polarized light component, and passes through the reflective polarizing plate 500. The light L1 of the second linearly polarized light component that has passed through the second polarizing plate 600 and the reflective polarizing plate 500 is directly transmitted through the liquid crystal element LQ2 as the light L1 of the second linearly polarized light component. The external light OL that has been transmitted as the light L1 of the second linearly polarized light component is absorbed by the first polarizing plate 300 and is suppressed from being visually recognized by the user. The image light DL is transmitted through the first polarizing plate 300 as the light L2 having the first linear polarization component, and the light L2 having the first linear polarization component having passed through the first polarizing plate 300 is transmitted through the liquid crystal element LQ2. The light L2 of the first linearly polarized light component is transmitted therethrough as it is. The image light DL converted into the light L2 having the first linear polarization component is reflected by the reflective polarizing plate 500. The image light DL reflected by the reflective polarizing plate 500 passes through the liquid crystal element LQ2 as the light L2 of the first linearly polarized light component. The image light DL having the light L2 of the first linearly polarized component that has passed through the liquid crystal element LQ2 passes through the first polarizing plate 300 and is visually recognized by the user.
 なお、第1状態X10のミラー素子MPIXに含まれる液晶素子LQ1が透過する偏光軸を変換する場合について例示したがこれに限られない。第1偏光板300及び表示装置100の偏光板100cが第2直線偏光成分の光L1を最大限透過し、それ以外の位相の光を吸収する直線偏光板として、第1状態X10の液晶素子LQ1が透過する光の偏光軸を変換せず、第2状態X12の液晶素子LQ2が透過する光の偏光軸を変換するようにしてもよい。 The case where the polarization axis transmitted by the liquid crystal element LQ1 included in the mirror element MPIX in the first state X10 is converted has been illustrated, but the invention is not limited to this. The first polarizing plate 300 and the polarizing plate 100c of the display device 100 are liquid crystal elements LQ1 in the first state X10 as a linear polarizing plate that transmits the light L1 of the second linearly polarized light component to the maximum and absorbs light of other phases. Alternatively, the polarization axis of the light passing through may be changed, and the polarization axis of the light passing through the liquid crystal element LQ2 in the second state X12 may be changed.
 なお、図22では、説明を分かりやすくする目的で光L1又は光L2の一方を最大限透過させ、他方を最大限遮蔽する液晶素子LQ1及び液晶素子LQ2を例示しているが、液晶素子LQは、液晶素子LQ1及び液晶素子LQ2に限られるものでない。液晶素子LQは、液晶分子による光L1及び光L2の透過率及び遮蔽率を最大限と最小限との間で任意に変更可能に設けられる。したがって、ミラー装置102による外光OLの透過率及び画像光DLの反射率は、ミラー素子MPIX単位で任意に変更可能である。ただし、液晶分子による光L1又は光L2の一方の透過率が最大限により近い(遮蔽率が最小限により近い)場合、他方の透過率が最小限により近い(遮蔽率が最大限により近い)ものになる。 Note that FIG. 22 exemplifies the liquid crystal element LQ1 and the liquid crystal element LQ2 that transmit the light L1 or the light L2 to the maximum and shield the other to the maximum for the sake of easy understanding of the description. It is not limited to the liquid crystal element LQ1 and the liquid crystal element LQ2. The liquid crystal element LQ is provided so that the transmittance and the blocking rate of the light L1 and the light L2 by the liquid crystal molecules can be arbitrarily changed between maximum and minimum. Therefore, the transmittance of the external light OL and the reflectance of the image light DL by the mirror device 102 can be arbitrarily changed in units of the mirror element MPIX. However, when the transmittance of one of the light L1 and the light L2 by the liquid crystal molecules is closer to the maximum (the shielding rate is closer to the minimum), the transmittance of the other is closer to the minimum (the shielding rate is closer to the maximum). become.
 図23は、図19とは異なるミラー装置の積層構造例を示す模式図である。図24は、図23に示すミラー装置の回路構成例を示す模式図である。図1のミラー装置102は、ミラー装置40に置換可能である。ミラー装置40は、ミラー装置102と同様、光を透過させるか反射させるかを変更可能に設けられた液晶パネルである。 FIG. 23 is a schematic diagram showing an example of a laminated structure of a mirror device different from that of FIG. FIG. 24 is a schematic diagram showing a circuit configuration example of the mirror device shown in FIG. The mirror device 102 in FIG. 1 can be replaced with the mirror device 40. Similar to the mirror device 102, the mirror device 40 is a liquid crystal panel that can change whether light is transmitted or reflected.
 ミラー装置40は、第1基板41と、第2基板45とを備える。第1基板41及び第2基板45は、例えばガラス基板等、透光性を有する基板である。第1基板41と第2基板45とは対向する。第1基板41の一面側には、第1電極42が配置されている。第2基板45には、第1電極42と対向する側の面に第2電極46が設けられている。第1電極42は、長手方向がX方向に沿う電極である。第1基板41には、X方向に交差するY方向に沿って、複数の第1電極42が並んでいる。第2電極46は、長手方向がY方向に沿う電極である。第2基板45には、X方向に沿って、複数の第2電極46が並んでいる。第1電極42と第2電極46とは平面視で交差するねじれの位置関係にある。 The mirror device 40 includes a first substrate 41 and a second substrate 45. The first substrate 41 and the second substrate 45 are translucent substrates such as glass substrates. The first substrate 41 and the second substrate 45 face each other. The first electrode 42 is arranged on one surface side of the first substrate 41. A second electrode 46 is provided on the surface of the second substrate 45 that faces the first electrode 42. The first electrode 42 is an electrode whose longitudinal direction is along the X direction. A plurality of first electrodes 42 are arranged on the first substrate 41 along the Y direction intersecting the X direction. The second electrode 46 is an electrode whose longitudinal direction is along the Y direction. A plurality of second electrodes 46 are arranged on the second substrate 45 along the X direction. The first electrode 42 and the second electrode 46 have a twisted positional relationship where they intersect each other in a plan view.
 第1電極42と第2電極46との間には、液晶が封入されている。図24に示すように、平面視で第1電極42と第2電極46とが交差する位置に液晶素子LQが形成される。第1電極42又は第2電極46の一方には、基準電位が与えられる。第1電極42又は第2電極46の他方に対してミラー素子信号MESによって与えられた電位と第2電極46の基準電位との電位差に応じて、液晶素子LQに応じた液晶分子の配向が決定する。なお、ミラー装置40では、制御対象となる液晶素子LQが間に位置する第1電極42と第2電極46との組み合わせが個別に駆動される。 Liquid crystal is sealed between the first electrode 42 and the second electrode 46. As shown in FIG. 24, the liquid crystal element LQ is formed at a position where the first electrode 42 and the second electrode 46 intersect in a plan view. A reference potential is applied to one of the first electrode 42 and the second electrode 46. The orientation of the liquid crystal molecules according to the liquid crystal element LQ is determined according to the potential difference between the potential given to the other of the first electrode 42 and the second electrode 46 by the mirror element signal MES and the reference potential of the second electrode 46. To do. In the mirror device 40, the combination of the first electrode 42 and the second electrode 46 between which the liquid crystal element LQ to be controlled is located is individually driven.
 図25Aは、第1タイミングにおける表示画像を表示する表示装置を示す図である。図25Bは、第2タイミングにおける表示画像を表示する表示装置を示す図である。図26Aは、第1タイミングにおいて図25Aに示す表示装置の表示画像を反射するためのミラー装置の動作を示す図である。図26Bは、第2タイミングにおいて図25Bに示す表示装置の表示画像を反射するためのミラー装置102の動作を示す図である。図1に示す表示装置100と、ミラー装置102と、眼Eとの位置関係では、表示装置100のうち眼E側(手前側)がミラー装置102で相対的に上側に写り、オブジェクトOB側(奥側)がミラー装置102で相対的に下側に写る。 FIG. 25A is a diagram showing a display device for displaying a display image at the first timing. FIG. 25B is a diagram showing a display device which displays a display image at the second timing. FIG. 26A is a diagram showing an operation of the mirror device for reflecting the display image on the display device shown in FIG. 25A at the first timing. FIG. 26B is a diagram showing an operation of the mirror device 102 for reflecting the display image on the display device shown in FIG. 25B at the second timing. In the positional relationship among the display device 100, the mirror device 102, and the eye E illustrated in FIG. 1, the eye E side (front side) of the display device 100 is relatively reflected on the mirror device 102 and the object OB side ( The rear side) is relatively reflected on the lower side by the mirror device 102.
 図25A及び図25Bに示す通り、表示装置100は、マトリクス状に配置された画素PIXからなる。画素PIXは行方向(第1方向)にn個配列され、行方向と交差する列方向(第2方向)にm個配列される。図25A及び図25Bにおいて、n=21、m=18として記載するが、n、mは1以上の自然数であればよい。表示装置100は、複数のゲート線GL1及び複数のデータ線SL1を有し、ゲート線GL1はスイッチ素子等を介して行方向の複数の画素PIXと接続されており、データ線SL1はスイッチ素子等を介して列方向の複数の画素PIXと接続される。表示装置100は、ゲート線GL1と接続されるゲートドライバ206を有し、ゲートドライバ206は、ゲート線GL1を順次選択して走査信号を供給することで、行方向に配列された複数の画素PIXを選択する。また、表示装置100は、データ線SL1と接続されたデータドライバ204を有し、データドライバ204は、ゲートドライバ206によって選択された画素PIXに対して、データ線SL1を介して表示画素信号DPSを出力する。 As shown in FIGS. 25A and 25B, the display device 100 includes pixels PIX arranged in a matrix. N pixels PIX are arranged in the row direction (first direction), and m pixels PIX are arranged in the column direction (second direction) intersecting the row direction. In FIGS. 25A and 25B, n = 21 and m = 18 are described, but n and m may be natural numbers of 1 or more. The display device 100 has a plurality of gate lines GL1 and a plurality of data lines SL1, the gate line GL1 is connected to a plurality of pixels PIX in the row direction via switch elements or the like, and the data line SL1 is a switch element or the like. Is connected to a plurality of pixels PIX in the column direction. The display device 100 includes a gate driver 206 connected to the gate line GL1, and the gate driver 206 sequentially selects the gate line GL1 and supplies a scan signal to the plurality of pixels PIX arranged in the row direction. Select. Further, the display device 100 has a data driver 204 connected to the data line SL1, and the data driver 204 sends the display pixel signal DPS to the pixel PIX selected by the gate driver 206 via the data line SL1. Output.
 図25A及び図25Bに示す表示装置100の表示画像DDIは、ミラー装置102に反射させて眼Eに視認させることが想定されたグラフィックGR(図27A参照)と、ミラー装置102に反射させず眼Eに視認されることが抑制されることが想定された背景BG(図27A参照)とを含む。 The display image DDI of the display device 100 illustrated in FIGS. 25A and 25B is a graphic GR (see FIG. 27A) that is supposed to be reflected by the mirror device 102 and visually recognized by the eye E, and an image that is not reflected by the mirror device 102 and is not reflected by the eye. The background BG (see FIG. 27A) that is supposed to be visually recognized by E is included.
 ミラー画像信号MDSは、グラフィックGR及び背景BGの其々に対応する画素PIX毎に表示画素信号DPSを含む。なお、眼Eに視認されることが抑制される部位(背景BG)に対応する画素PIXに対応する表示画素信号DPSが示す階調値は、所定の固定値でもよい。例えば、最小階調値「0」又は最大階調値「255」のいずれかとしてもよい。また、ゲートドライバ206は、1行目(上端)からm行目(下端)に向かってゲート線GL1を順次駆動し、データドライバ204は、n列目(右端)から1行目(左端)に向かって駆動する。本実施形態において、処理回路104に入力される基礎画像信号BDSに対応する基礎画像BDIは、眼Eによって視認されることが想定される視認画像に対応する。基礎画像BDIは、表示画像DDIと同様に、行方向にn行、列方向にm列の基礎画素BPIXがマトリクス状に配置された画像に対応する。基礎画像信号BDSは、左上端の基礎画素BPIX(1,1)から右上端の基礎画素BPIX(1,n)までの基礎画素BPIXに対応する基礎画素信号BPSが連続し、さらに、2行目からm行目までも同様に、左端から右端までの基礎画素BPIXに対応する基礎画素信号BPSが連続する信号からなる。表示画像DDIは、基礎画像BDIの左右の反転画像であるため、画素PIX(p,q)は、基礎画素BPIX(p,n-q+1)に対応する。なお、p、qは1以上の自然数である。表示装置100のデータドライバ204は、右端から左端に向かって表示画素信号DPSを各画素PIXに供給すると、基礎画像信号BDSの階調信号BDS-Gに基づき表示画像信号DDSを生成する際に鏡面画像となるように変換しなくても、基礎画素BPIX(p,n-q+1)に対応する基礎画素信号BPS(p,n-q+1)に基づく表示画素信号DPSが画素PIX(p,q)に供給されることとなり、結果として、表示装置100に表示画像DDIの反転画像が表示されることとなる。 The mirror image signal MDS includes the display pixel signal DPS for each pixel PIX corresponding to each of the graphic GR and the background BG. Note that the gradation value indicated by the display pixel signal DPS corresponding to the pixel PIX corresponding to the part (background BG) that is suppressed from being visually recognized by the eye E may be a predetermined fixed value. For example, it may be either the minimum gradation value "0" or the maximum gradation value "255". The gate driver 206 sequentially drives the gate line GL1 from the first row (upper end) to the m-th row (lower end), and the data driver 204 changes from the n-th column (right end) to the first row (left end). Drive towards. In the present embodiment, the basic image BDI corresponding to the basic image signal BDS input to the processing circuit 104 corresponds to the visually recognized image that is supposed to be visually recognized by the eye E. Similar to the display image DDI, the basic image BDI corresponds to an image in which basic pixels BPIX of n rows in the row direction and m columns in the column direction are arranged in a matrix. In the basic image signal BDS, basic pixel signals BPS corresponding to the basic pixels BPIX from the upper left basic pixel BPIX (1,1) to the upper right basic pixel BPIX (1, n) are continuous, and further the second row Similarly, the basic pixel signals BPS corresponding to the basic pixels BPIX from the left end to the right end consist of continuous signals from to the m-th row. Since the display image DDI is a left-right inverted image of the basic image BDI, the pixel PIX (p, q) corresponds to the basic pixel BPIX (p, nq + 1). Note that p and q are natural numbers of 1 or more. The data driver 204 of the display device 100 supplies the display pixel signal DPS to each pixel PIX from the right end to the left end, and when generating the display image signal DDS based on the gradation signal BDS-G of the basic image signal BDS, The display pixel signal DPS based on the basic pixel signal BPS (p, nq + 1) corresponding to the basic pixel BPIX (p, nq + 1) is converted into the pixel PIX (p, q) without conversion into an image. As a result, the reverse image of the display image DDI is displayed on the display device 100.
 図26A及び図26Bに示す通り、ミラー装置102は、マトリクス状に配置されたミラー素子MPIXからなる。ミラー素子MPIXは、表示装置100の画素PIXと同様に、行方向(第1方向)にn個配列され、行方向と交差する列方向(第2方向)にm個配列される。図26A及び図26Bにおいて、n=21、m=18として記載するが、n、mは1以上の自然数であればよい。ミラー装置102は、複数のゲート線GL2及び複数のデータ線SL2を有し、ゲート線GL2はスイッチ素子等を介して行方向の複数のミラー素子MPIXと接続されており、データ線SL2はスイッチ素子等を介して列方向の複数のミラー素子MPIXと接続される。ミラー装置102は、ゲート線GL2と接続されるゲートドライバ804を有し、ゲートドライバ804は、ゲート線GL2を1行目からm行目に向かって順次選択して駆動信号を供給することで、行方向に配列された複数のミラー素子MPIXを選択する。また、ミラー装置102は、データ線SL2と接続されたデータドライバ802を有し、データドライバ802は、ゲートドライバ804によって選択されたミラー素子MPIXに対して、1列目からn列目に向かってデータ線SL2を介してミラー素子信号MESを出力する。 As shown in FIGS. 26A and 26B, the mirror device 102 is composed of mirror elements MPIX arranged in a matrix. Similar to the pixels PIX of the display device 100, n mirror elements MPIX are arranged in the row direction (first direction), and m mirror elements MPIX are arranged in the column direction (second direction) intersecting the row direction. 26A and 26B, n = 21 and m = 18 are described, but n and m may be natural numbers of 1 or more. The mirror device 102 has a plurality of gate lines GL2 and a plurality of data lines SL2, the gate line GL2 is connected to a plurality of mirror elements MPIX in the row direction via a switch element or the like, and the data line SL2 is a switch element. And the like are connected to a plurality of mirror elements MPIX in the column direction. The mirror device 102 has a gate driver 804 connected to the gate line GL2, and the gate driver 804 sequentially selects the gate line GL2 from the first row to the m-th row to supply a drive signal. A plurality of mirror elements MPIX arranged in the row direction are selected. Further, the mirror device 102 has a data driver 802 connected to the data line SL2, and the data driver 802 goes from the first column to the n-th column with respect to the mirror element MPIX selected by the gate driver 804. The mirror element signal MES is output via the data line SL2.
 また、表示装置100で投射された画像を鏡面反射して眼Eに導くミラー装置102が眼Eに視認されるため、ミラー装置102を動作するためのミラー画像信号MDSの示すミラー画像MDIは、表示装置100の表示画像DDIを水平方向に反転した画像に対応する。つまり、ミラー装置102のミラー素子MPIX(p,q)は、左右反転した位置に存在する表示装置100の画素PIX(p,n-q+1)に対応し、図26A及び図26Bに示すように、ミラー画像信号MDSに対応するミラー画像MDIは、グラフィックGR(図27A参照)及び背景BG(図27A参照)にそれぞれ対応する領域RF(反射領域、図27A参照)及び領域CL(透過領域、図27A参照)を含む。 Further, since the mirror device 102 that specularly reflects the image projected by the display device 100 and guides it to the eye E is visually recognized by the eye E, the mirror image MDI indicated by the mirror image signal MDS for operating the mirror device 102 is: It corresponds to an image obtained by horizontally inverting the display image DDI of the display device 100. In other words, the mirror element MPIX (p, q) of the mirror device 102 corresponds to the pixel PIX (p, n−q + 1) of the display device 100 existing at the horizontally inverted position, and as shown in FIGS. 26A and 26B, The mirror image MDI corresponding to the mirror image signal MDS includes a region RF (reflection region, see FIG. 27A) and a region CL (transmission region, FIG. 27A) corresponding to the graphic GR (see FIG. 27A) and the background BG (see FIG. 27A), respectively. Reference).
 本実施形態において、グラフィックGRに対応するミラー素子MPIXのミラー素子信号MESが示す不透明度(反射率)は、背景BGのミラー画像信号MDSが示す不透明度以上である。例えば、グラフィックGRに対応するミラー素子MPIXのミラー素子信号MESは、100[%]であり、背景BGに対応するミラー素子MPIXのミラー画像信号MDSは、0%である。すなわち、グラフィックGRのミラー画像信号MDSは、不透明度が100[%]であり、ミラー装置102に設定されることで画像光DLを反射するよう制御される。また、背景BGのミラー画像信号MDSは、不透明度が0%であり、ミラー装置102に設定されることで画像光DLを透過するよう制御される。 In the present embodiment, the opacity (reflectance) indicated by the mirror element signal MES of the mirror element MPIX corresponding to the graphic GR is equal to or higher than the opacity indicated by the mirror image signal MDS of the background BG. For example, the mirror element signal MES of the mirror element MPIX corresponding to the graphic GR is 100 [%], and the mirror image signal MDS of the mirror element MPIX corresponding to the background BG is 0%. That is, the mirror image signal MDS of the graphic GR has an opacity of 100 [%] and is set in the mirror device 102 to be controlled so as to reflect the image light DL. In addition, the mirror image signal MDS of the background BG has an opacity of 0%, and is set in the mirror device 102 to be controlled so as to transmit the image light DL.
 表示装置100で表示されるグラフィックGRに対応する領域RFに含まれるミラー装置102のミラー素子MPIXは、第2状態X12となるように制御され(図22参照)る。また、表示装置100で表示される背景BGに対応する領域CLに含まれるミラー装置102のミラー素子MPIXは、第1状態X10となるように制御される。 The mirror element MPIX of the mirror device 102 included in the area RF corresponding to the graphic GR displayed on the display device 100 is controlled to be in the second state X12 (see FIG. 22). Further, the mirror element MPIX of the mirror device 102 included in the region CL corresponding to the background BG displayed on the display device 100 is controlled to be in the first state X10.
 表示装置100の投射画像とミラー装置102で視認される内容とが鏡像の関係になるため、グラフィックGRの描画位置が変位した場合、領域RFの変位方向はグラフィックGRの変位方向を水平方向に反転した方向になる。例えば、グラフィックGRの描画位置が図25Aに示す位置から図25Bに示す位置に変位した場合、領域RFは、図26Aに示す位置から図26Bに示す位置に変位する。また、グラフィックGRの描画位置が図25Bに示す位置から図25Aに示す位置に変位した場合、領域RFは、図26Bに示す位置から図26Aに示す位置に変位する。言い換えると、グラフィックGRが表示画像DDI内で左右方向の一方に向かって変化した場合、グラフィックGRに対応する領域RFは、ミラー画像MDI内で左右方向の他方に向かって変化する。なお、グラフィックGRが表示画像DDI内で上方向に向かって変化した場合、グラフィックGRに対応する領域RFは、ミラー画像MDI内で上方向に向かって変化する。また、グラフィックGRが表示画像DDI内で下方向に向かって変化した場合、グラフィックGRに対応する領域RFは、ミラー画像MDI内で下方向に向かって変化する。 Since the projection image of the display device 100 and the content visually recognized by the mirror device 102 have a mirror image relationship, when the drawing position of the graphic GR is displaced, the displacement direction of the region RF is the horizontal direction of the displacement direction of the graphic GR. It will be the direction you did. For example, when the drawing position of the graphic GR is displaced from the position shown in FIG. 25A to the position shown in FIG. 25B, the region RF is displaced from the position shown in FIG. 26A to the position shown in FIG. 26B. When the drawing position of the graphic GR is displaced from the position shown in FIG. 25B to the position shown in FIG. 25A, the region RF is displaced from the position shown in FIG. 26B to the position shown in FIG. 26A. In other words, when the graphic GR changes in one of the left and right directions in the display image DDI, the region RF corresponding to the graphic GR changes in the other of the left and right directions in the mirror image MDI. When the graphic GR changes upward in the display image DDI, the region RF corresponding to the graphic GR changes upward in the mirror image MDI. When the graphic GR changes downward in the display image DDI, the region RF corresponding to the graphic GR changes downward in the mirror image MDI.
 なお、ミラー装置102の各ミラー素子MPIXの駆動タイミングは、各ミラー素子MPIXが対応する表示装置100の画素PIXの各々の駆動タイミングと同時であることが望ましい。ミラー装置102のミラー素子MPIX(p,q)は、左右反転した位置に存在する表示装置100の画素PIX(p,n-q+1)に対応するため、表示装置100のゲートドライバ206と、ミラー装置102のゲートドライバ804の駆動タイミングが同一、かつ、同一方向であることが好ましい。さらに、表示装置100のデータドライバ204と、ミラー装置102のデータドライバ802の駆動タイミングが同一、かつ、走査方向が逆方向であることが好ましい。図25A、図25Bにおけるデータドライバ204によるゲート線GL1に沿う走査方向と図26A、図26Bにおけるデータドライバ802によるゲート線GL2に沿う走査方向を矢印で図示している。また、図25A、図25Bにおけるゲートドライバ206によるデータ線SL1に沿う走査方向と図26A、図26Bにおけるゲートドライバ804によるデータ線SL2に沿う走査方向を矢印で図示している。 The drive timing of each mirror element MPIX of the mirror device 102 is preferably the same as the drive timing of each pixel PIX of the display device 100 corresponding to each mirror element MPIX. Since the mirror element MPIX (p, q) of the mirror device 102 corresponds to the pixel PIX (p, n−q + 1) of the display device 100 that is present at the horizontally inverted position, the gate driver 206 of the display device 100 and the mirror device It is preferable that the drive timings of the gate drivers 804 of 102 are the same and in the same direction. Further, it is preferable that the data driver 204 of the display device 100 and the data driver 802 of the mirror device 102 have the same drive timing and the scanning directions are opposite. The scanning direction along the gate line GL1 by the data driver 204 in FIGS. 25A and 25B and the scanning direction along the gate line GL2 by the data driver 802 in FIGS. 26A and 26B are indicated by arrows. Further, the scanning direction along the data line SL1 by the gate driver 206 in FIGS. 25A and 25B and the scanning direction along the data line SL2 by the gate driver 804 in FIGS. 26A and 26B are shown by arrows.
 以下、図27Aから図29Bを参照して、表示装置100の投射画像と、ミラー装置102を挟んで眼Eの反対側に位置するオブジェクトOBとを重ねることによる拡張現実(AR:Augmented Reality)の例について説明する。 27A to 29B, the augmented reality (AR) of the projected image of the display device 100 and the object OB located on the opposite side of the eye E with the mirror device 102 interposed therebetween is overlapped. An example will be described.
 図27Aは、グラフィックの反射を最大限にするようにミラー装置を制御する場合の表示装置、ミラー装置、オブジェクト及び眼の関係を示す模式図である。図27Bは、図27Aの場合に視認される内容を示す模式図である。 FIG. 27A is a schematic diagram showing the relationship between a display device, a mirror device, an object, and an eye when the mirror device is controlled so as to maximize the reflection of graphics. 27B is a schematic diagram showing the contents visually recognized in the case of FIG. 27A.
 図27Aに示す例では、グラフィックGRに対応する領域RFに含まれるミラー素子MPIXのミラー素子信号MESを最大値(100[%])にすることで、領域RFに含まれるミラー素子MPIXの反射率を最大限にしている。これによって、図27Bに示すように、領域RFではオブジェクトOBが視認されない。すなわち、グラフィックGRを反射する非透過の領域RFが視認される。一方、背景BGに対応する領域CLに含まれるミラー素子MPIXのミラー素子信号MESは最小値(0[%])である。このため、背景BGを描画する表示装置100の画素PIXに対応するミラー装置102の領域CLに含まれるミラー素子MPIXの透過率を最大限にしている。これによって、図27Bに示すように、領域CLではオブジェクトOBが視認される。したがって、オブジェクトOBを背景にした非透過の領域RFが視認される。 In the example illustrated in FIG. 27A, by setting the mirror element signal MES of the mirror element MPIX included in the area RF corresponding to the graphic GR to the maximum value (100 [%]), the reflectance of the mirror element MPIX included in the area RF is set. Is maximizing. As a result, as shown in FIG. 27B, the object OB is not visually recognized in the area RF. That is, the non-transparent region RF that reflects the graphic GR is visually recognized. On the other hand, the mirror element signal MES of the mirror element MPIX included in the region CL corresponding to the background BG is the minimum value (0 [%]). Therefore, the transmittance of the mirror element MPIX included in the region CL of the mirror device 102 corresponding to the pixel PIX of the display device 100 that draws the background BG is maximized. As a result, as shown in FIG. 27B, the object OB is visually recognized in the region CL. Therefore, the non-transparent region RF with the background of the object OB is visually recognized.
 図28Aは、グラフィックの反射を最小限にするようにミラー装置を制御する場合の表示装置、ミラー装置、オブジェクト及び眼の関係を示す模式図である。図28Bは、図28Aの場合に視認される内容を示す模式図である。 FIG. 28A is a schematic diagram showing a relationship between a display device, a mirror device, an object, and an eye when controlling the mirror device so as to minimize reflection of graphics. FIG. 28B is a schematic diagram showing the contents visually recognized in the case of FIG. 28A.
 図28Aに示す例では、図27Aとは異なるミラー装置102の制御の例として、グラフィックGRに対応する領域RFに含まれるミラー素子MPIXのミラー素子信号MESを最小値(0[%])にしている。すなわち、背景BGに対応する領域CLと同様に、グラフィックGRを描画する表示装置100の画素PIXに対応するミラー装置102の領域RFの透過率を最大限にしている。これによって、図28Bに示すように、グラフィックGRに対応する領域RFにおいても、グラフィックGRに対応する画像光DLが透過し、眼Eによって視認されることが抑制される。なお、背景BGのミラー画像信号MDSは、図27Aの場合と同様に最小値(0[%])である。これによって、図28Bに示すように、表示装置100の表示画像DDIが反射された画像は視認されず、オブジェクトOBが視認される。 In the example shown in FIG. 28A, as an example of control of the mirror device 102 different from that in FIG. 27A, the mirror element signal MES of the mirror element MPIX included in the area RF corresponding to the graphic GR is set to the minimum value (0 [%]). There is. That is, like the region CL corresponding to the background BG, the transmittance of the region RF of the mirror device 102 corresponding to the pixel PIX of the display device 100 that draws the graphic GR is maximized. As a result, as shown in FIG. 28B, even in the region RF corresponding to the graphic GR, the image light DL corresponding to the graphic GR is prevented from being transmitted and visually recognized by the eye E. The mirror image signal MDS of the background BG has the minimum value (0 [%]) as in the case of FIG. 27A. As a result, as shown in FIG. 28B, the image in which the display image DDI of the display device 100 is reflected is not visually recognized, but the object OB is visually recognized.
 図28A及び図28Bを参照して説明したように、ミラー装置102に対して出力されるミラー画像信号MDSを変更することで、表示装置100の表示画像DDIでグラフィックGRが表示される領域に限定されずにミラー装置102を介して視認される内容を制御することができる。 As described with reference to FIGS. 28A and 28B, by changing the mirror image signal MDS output to the mirror device 102, the display image DDI of the display device 100 is limited to the area where the graphic GR is displayed. Instead, it is possible to control the content visually recognized via the mirror device 102.
 図29Aは、グラフィックを反射する画素の反射率及び透過率をそれぞれ50[%]にするようにミラー装置を制御する場合の表示装置、ミラー装置、オブジェクト及び眼の関係を示す模式図である。図29Bは、図29Aの場合に視認される内容を示す模式図である。 FIG. 29A is a schematic diagram showing the relationship between the display device, the mirror device, the object, and the eye when the mirror device is controlled so that the reflectance and the transmittance of the pixel that reflects the graphic are 50%. FIG. 29B is a schematic diagram showing the contents visually recognized in the case of FIG. 29A.
 図29Aに示す例では、グラフィックGRに対応する領域RFに含まれるミラー素子MPIXのミラー素子信号MESを50[%]にすることで、領域RFにおいてグラフィックGRに対応する画像光DLとオブジェクトOBを視認するための外光OLの両方が視認されるようにしている。これによって、図29Bに示すように、領域RFではオブジェクトOBが透けて見える状態のグラフィックGRの鏡像が視認される。これは、半透過状態の反射領域HRFになっていることを示す。図29A及び図29Bでは、半透過状態の反射領域HRFによって画像光DLの50[%]が反射されていることを符号HDLで示している。また、半透過状態の反射領域HRFを50[%]の透過率で透過する外光OLに符号HOLを付している。また、オブジェクトOBが透けて見える状態のグラフィックGRの鏡像に対応する、反射光及び透過光を含む光を「HDL+HOL」のように表している。なお、背景BGのミラー画像信号MDSは、図27Aの場合と同様に最小値(0[%])である。したがって、オブジェクトOBを背景にした、オブジェクトOBが透けて見える状態のグラフィックGRの鏡像が視認される。 In the example illustrated in FIG. 29A, by setting the mirror element signal MES of the mirror element MPIX included in the area RF corresponding to the graphic GR to 50 [%], the image light DL and the object OB corresponding to the graphic GR in the area RF are generated. Both of the outside light OL for visual recognition are visible. As a result, as shown in FIG. 29B, a mirror image of the graphic GR in which the object OB can be seen through is visually recognized in the region RF. This indicates that the reflective region HRF is in a semi-transmissive state. In FIGS. 29A and 29B, reference numeral HDL indicates that 50 [%] of the image light DL is reflected by the reflective region HRF in the semi-transmissive state. Further, the external light OL that transmits the reflection region HRF in the semi-transmissive state at a transmittance of 50 [%] is denoted by the symbol HOL. Further, the light including the reflected light and the transmitted light corresponding to the mirror image of the graphic GR in a state where the object OB can be seen through is represented as “HDL + HOL”. The mirror image signal MDS of the background BG has the minimum value (0 [%]) as in the case of FIG. 27A. Therefore, the mirror image of the graphic GR with the object OB in the background and the object OB can be seen through is visually recognized.
 図29A及び図29Bを参照して説明したように、表示装置100の表示画像にオブジェクトOBを透けさせることができる。なお、図29A及び図29Bを参照した説明では、透過率及び反射率が50[%]である場合を例としているが、領域RFの反射率はk[%](0≦k≦100)とすることができる。反射率は、ミラー画像信号MDSの不透明度(k[%])である。この場合、領域RFの透過率は、(100-k)[%]である。 As described with reference to FIGS. 29A and 29B, the object OB can be made transparent in the display image of the display device 100. In the description with reference to FIGS. 29A and 29B, the case where the transmittance and the reflectance are 50 [%] is taken as an example, but the reflectance of the region RF is k [%] (0 ≦ k ≦ 100). can do. The reflectance is the opacity (k [%]) of the mirror image signal MDS. In this case, the transmittance of the area RF is (100-k) [%].
 以上、図27Aから図29Bを参照して説明したミラー画像信号MDSの制御は、処理回路104が行う。当該制御内容に対応するソフトウェア・プログラムは、メモリ1042に記憶される。 The processing circuit 104 controls the mirror image signal MDS described above with reference to FIGS. 27A to 29B. The software program corresponding to the control content is stored in the memory 1042.
 図30は、マージン領域が設定されたミラー装置を示す模式図である。図31は、マージン領域の幅を決定する仕組みを示す説明図である。図30に示すように、領域RFにマージン領域MRを付加するようミラー画像信号MDSを制御してもよい。マージン領域MRは、透過率が最大値(100[%])でない領域である。マージン領域MRの反射率は、領域RFの反射率と同じであってもよいし、領域RFの反射率よりも低い反射率であってもよい。 FIG. 30 is a schematic diagram showing a mirror device in which a margin area is set. FIG. 31 is an explanatory diagram showing a mechanism for determining the width of the margin area. As shown in FIG. 30, the mirror image signal MDS may be controlled so that the margin region MR is added to the region RF. The margin region MR is a region where the transmittance is not the maximum value (100 [%]). The reflectance of the margin area MR may be the same as the reflectance of the area RF, or may be lower than the reflectance of the area RF.
 図31に例示するように、領域RFに対して異なる位置にある眼E1と眼E2では、マージン領域MRによるグラフィックGRからの光の反射位置及び反射角度が異なる。このため、表示装置100に表示される表示画像DDIの鏡像に直接対応するミラー画像信号MDSに領域RFのみを設定した場合、ユーザがミラー装置102を視認する位置、角度によって領域RFの画像の形や幅が異なって見えることがある。そこで、ミラー装置102を視認するユーザの位置及び角度に関わらず、グラフィックGRからの光がミラー装置102で良好に反射されて眼Eに到達するよう、領域RFに加えてマージン領域MRを設定することで、ミラー装置102による反射画像の視認性及び視野角特性をより向上させることができる。 As illustrated in FIG. 31, the eye E1 and the eye E2, which are at different positions with respect to the region RF, have different reflection positions and reflection angles of light from the graphic GR by the margin region MR. Therefore, when only the area RF is set in the mirror image signal MDS that directly corresponds to the mirror image of the display image DDI displayed on the display device 100, the shape of the image of the area RF depends on the position and the angle at which the user visually recognizes the mirror device 102. And the width may look different. Therefore, the margin region MR is set in addition to the region RF so that the light from the graphic GR is well reflected by the mirror device 102 and reaches the eye E regardless of the position and angle of the user who visually recognizes the mirror device 102. As a result, the visibility and viewing angle characteristics of the reflected image by the mirror device 102 can be further improved.
 マージン領域MRは、想定されるミラー装置102の視野角に対応して設定される。図30及び図31では、ミラー装置102の水平方向の視野角がθ[°]である場合を例示している。視野角(θ[°])は、ミラー装置102の光学的な特性(例えば、反射が良好に行われる角度範囲等)に基づいて定めるようにしてもよいし、ミラー装置102の光学的な特性とは無関係なルール(例えば、ミラー装置102の設置位置に対してユーザが進入可能な場所の範囲等)に基づいて定められてもよい。 The margin area MR is set corresponding to the expected viewing angle of the mirror device 102. 30 and 31 exemplify a case where the horizontal viewing angle of the mirror device 102 is θ [°]. The viewing angle (θ [°]) may be determined based on the optical characteristics of the mirror device 102 (for example, the angle range in which reflection is favorably performed), or the optical characteristics of the mirror device 102. It may be determined based on a rule irrelevant to (for example, a range of a place where the user can enter the installation position of the mirror device 102).
 図30では、領域RFの水平方向の一端側に幅M1の第1マージン領域MR1が設定されている。また、図30では、領域RFの水平方向の他端側には、一端側に対する位置が異なるそれぞれの箇所で、幅M2の第2マージン領域MR2、幅M3の第3マージン領域MR3及び幅M4の第4マージン領域MR4が設定されている。M1、M2、M3、M4は共通の幅Mであってもよいし、個別の幅であってもよい。 In FIG. 30, a first margin region MR1 having a width M1 is set at one end of the region RF in the horizontal direction. Further, in FIG. 30, the second margin region MR2 having the width M2, the third margin region MR3 having the width M3, and the width M4 are provided on the other end side in the horizontal direction of the region RF at positions different from the one end side. The fourth margin region MR4 is set. M1, M2, M3, and M4 may have a common width M or may have individual widths.
 図31を参照して、幅Mの決定方法の一例について説明する。幅Mは、グラフィックGRと領域RFとの間の距離をDとすると、以下の式(1)で算出可能である。
 M=D×tan(θ/2)…(1)
An example of a method of determining the width M will be described with reference to FIG. The width M can be calculated by the following equation (1), where D is the distance between the graphic GR and the region RF.
M = D × tan (θ / 2) (1)
 なお、Dの値は代表値であってもよい。この場合、Dの値は、例えば表示装置100の画像投射面100sの中心とミラー装置102のミラー素子MPIXの配置領域の中心との距離とすることができる。代表値を採用することで、幅Mの決定及びマージン領域MRの設定をより容易にすることができる。また、グラフィックGRに含まれる各画素PIXと、当該各画素PIXに対応する領域RFの各ミラー素子MPIXとの距離を個別に記録したデータに基づいて、垂直方向の位置が異なる画素PIX毎に個別にDの値を設定してもよい。この場合、幅Mは、図30で模式的に示す例と異なり、垂直方向に統一されなくなるが、より良好な視野角特性を得られる。 Note that the value of D may be a representative value. In this case, the value of D can be, for example, the distance between the center of the image projection surface 100s of the display device 100 and the center of the arrangement area of the mirror element MPIX of the mirror device 102. By adopting the representative value, it is possible to more easily determine the width M and set the margin region MR. Further, based on the data in which the distance between each pixel PIX included in the graphic GR and each mirror element MPIX in the area RF corresponding to the pixel PIX is individually recorded, each pixel PIX whose vertical position is different is individually The value of D may be set to. In this case, the width M is not unified in the vertical direction unlike the example schematically shown in FIG. 30, but a better viewing angle characteristic can be obtained.
 以上、図30及び図31を参照して説明したマージン領域MR及び幅Mの制御は、演算回路1041が行う。当該制御内容に対応するソフトウェア・プログラムは、メモリ1042に記憶される。なお、図30及び図31を参照した説明では、水平方向の視野角(θ[°])を考慮しているが、垂直方向の視野角についても同様の仕組みで対応可能である。 The arithmetic circuit 1041 controls the margin region MR and the width M described above with reference to FIGS. 30 and 31. The software program corresponding to the control content is stored in the memory 1042. In the description with reference to FIGS. 30 and 31, the horizontal viewing angle (θ [°]) is taken into consideration, but the vertical viewing angle can also be handled by the same mechanism.
 以上説明したように、実施形態3によれば、表示システム10は、画像を投射する表示装置100と、表示装置100に所定角度Aをつけて対向するミラー装置102と、表示画像信号DDSを表示装置100に出力し、表示画像信号DDSに対応するミラー画像信号MDSをミラー装置102に出力する処理回路104とを備える。したがって、ハーフミラーよりも反射率及び透過率をより高く設定可能なミラー装置102を採用しているため、よりクリアな画像を視認可能になる。 As described above, according to the third embodiment, the display system 10 displays the display device 100 that projects an image, the mirror device 102 that faces the display device 100 at a predetermined angle A, and the display image signal DDS. And a processing circuit 104 for outputting the mirror image signal MDS corresponding to the display image signal DDS to the mirror device 102. Therefore, since the mirror device 102 capable of setting the reflectance and the transmittance higher than that of the half mirror is adopted, a clearer image can be visually recognized.
 また、ミラー装置102は、マトリクス状に設けられた複数のミラー素子MPIXと、表示装置100と対向する面の反対側に設けられた反射型偏光板500とを備える。反射型偏光板500は、進入する光の位相によって反射率及び透過率が変わる。ミラー装置102は、ミラー画像信号MDSが示す不透明度が高いほど反射型偏光板500の反射率がより高い位相の光を透過させるようにミラー素子MPIXが制御される。したがって、不透明度が相対的に高いグラフィックGRからの光をより良好に反射し、不透明度が相対的に低い背景BGからの光をより良好に透過させることができる。すなわち、背景としてオブジェクトOBがクリアに透けて見える画像を視認可能になる。 The mirror device 102 also includes a plurality of mirror elements MPIX provided in a matrix, and a reflective polarizing plate 500 provided on the opposite side of the surface facing the display device 100. The reflectance and transmittance of the reflective polarizing plate 500 change depending on the phase of incoming light. In the mirror device 102, the mirror element MPIX is controlled such that the higher the opacity indicated by the mirror image signal MDS, the higher the opacity of the reflective polarizing plate 500 is, the more the phase of the light is transmitted. Therefore, the light from the graphic GR having a relatively high opacity can be better reflected, and the light from the background BG having a relatively low opacity can be better transmitted. That is, an image in which the object OB can be seen through as a background can be visually recognized.
 また、ミラー画像信号MDSは、表示画像信号DDSによって描画される画像の背景BGの不透明度がグラフィックGRの不透明度よりも低い。したがって、背景BGに対応する部分で光を透過させてオブジェクトOBを視認させることができる。 In the mirror image signal MDS, the opacity of the background BG of the image drawn by the display image signal DDS is lower than that of the graphic GR. Therefore, the object OB can be visually recognized by transmitting light in the portion corresponding to the background BG.
 また、ミラー装置102は、グラフィックGRに対応する領域RFのミラー素子MPIXが表示装置100からの光を一定以上反射する反射領域になるよう制御される。ここで、一定以上とは、例えば50[%]以上であるが、これに限られるものでなく、領域CLの反射率よりも高い領域RFの反射率に対応する値であればよい。したがって、領域RFの反射率をより高めることでよりクリアな画像を視認可能になる。 Further, the mirror device 102 is controlled so that the mirror element MPIX in the region RF corresponding to the graphic GR becomes a reflection region that reflects light from the display device 100 above a certain level. Here, the fixed value or more is, for example, 50% or more, but is not limited to this and may be a value corresponding to the reflectance of the region RF higher than the reflectance of the region CL. Therefore, a clearer image can be visually recognized by further increasing the reflectance of the region RF.
 また、ミラー装置102に映る画像の視野角(θ[°])に応じて、視野角(θ[°])が広がる方向にマージン領域MRが設定される。したがって、視野角(θ[°])に対応した反射領域(領域RF及びマージン領域MRを含む)を設定することができる。 Further, the margin region MR is set in the direction in which the viewing angle (θ [°]) widens according to the viewing angle (θ [°]) of the image reflected on the mirror device 102. Therefore, the reflection area (including the area RF and the margin area MR) corresponding to the viewing angle (θ [°]) can be set.
 また、表示画像信号DDSに基づいて表示装置100が出力する表示画像DDIは、ミラー装置102を視認するユーザに視認させたいミラー画像MDIの鏡像である。したがって、ミラー装置102による反射を経て、意図した画像を視認させることができる。 The display image DDI output by the display device 100 based on the display image signal DDS is a mirror image of the mirror image MDI that the user who views the mirror device 102 wants to view. Therefore, an intended image can be visually recognized through the reflection by the mirror device 102.
 また、所定角度Aは、表示装置100の画像投射面100sと、ミラー装置102に映る画像を視認することが想定されるユーザの眼Eの位置とに基づいて決定される。したがって、より良好にミラー装置102に映る画像を視認可能になる。 Further, the predetermined angle A is determined based on the image projection surface 100s of the display device 100 and the position of the user's eye E that is assumed to visually recognize the image reflected on the mirror device 102. Therefore, the image reflected on the mirror device 102 can be more visually recognized.
 なお、本実施形態において、表示装置100の画素PIXの数及び配置と、ミラー装置102のミラー素子MPIXの数及び配置とが一致する場合について例示したが、これに限られない。例えば、画素PIXの数及び配置と、ミラー素子MPIXの数及び配置が一致しない場合、処理回路104は、画素PIXの数及び配置と、ミラー素子MPIXの数及び配置との対応関係を定める対応付け処理(スケールアップ又はスケールダウン)を行う。例えば、ミラー素子MPIXの行方向の数が、画素PIXの行方向の数の1/2である場合、行方向に連続する2つの画素PIXと1つのミラー素子MPIXを対応付ける。この場合において、ミラー素子MPIXのミラー素子信号MESは、2つの画素PIXに対応付けられる基礎画素BPIXの基礎画素信号BPSに含まれる反射率信号の平均値が割り当てられてもよいし、最大値又は最小値が割り当てられてもよい。表示装置100の画素PIXの数及び配置と、ミラー装置102のミラー素子MPIXの数及び配置とが一致する場合、当該対応付け処理は省略される。 Note that, in the present embodiment, the case where the number and the arrangement of the pixel PIX of the display device 100 and the number and the arrangement of the mirror elements MPIX of the mirror device 102 are illustrated as an example, but the present invention is not limited to this. For example, when the number and arrangement of the pixels PIX do not match the number and arrangement of the mirror elements MPIX, the processing circuit 104 associates the number and arrangement of the pixels PIX with the number and arrangement of the mirror elements MPIX. Perform processing (scale up or scale down). For example, when the number of the mirror elements MPIX in the row direction is 1/2 of the number of the pixel PIX in the row direction, two consecutive pixels PIX in the row direction are associated with one mirror element MPIX. In this case, the mirror element signal MES of the mirror element MPIX may be assigned the average value of the reflectance signals included in the basic pixel signal BPS of the basic pixel BPIX associated with the two pixels PIX, or the maximum value or The minimum value may be assigned. When the number and the arrangement of the pixels PIX of the display device 100 and the number and the arrangement of the mirror elements MPIX of the mirror device 102 match, the association process is omitted.
 また、実施形態において述べた態様によりもたらされる他の作用効果について本明細書記載から明らかなもの、又は当業者において適宜想到し得るものについては、当然に本発明によりもたらされるものと解される。 Further, it is understood that other actions and effects which are brought about by the modes described in the embodiments are apparent from the description of the present specification, or can be appropriately conceived by those skilled in the art, by the present invention.
10 表示システム
20 送信装置
30、30A ヘッドマウントディスプレイ
40 ミラー装置
41 第1基板
42 第1電極
45 第2基板
46 第2電極
100 表示装置
100a 右目用表示装置
100b 左目用表示装置
100c 偏光板
100s 画像投射面
102 ミラー装置
102a 右目用ミラー装置
102b 左目用ミラー装置
104 処理回路
106 カバー
108 制御回路
108A 制御回路
108B 制御回路
108C 補正回路
110 画像出力回路
112 画像処理回路
114 表示画像処理回路
116 ミラー画像処理回路
118 タイミングコントローラ
120 操作入力回路
130 光学素子
140 反射装置
200 表示パネル
202 バックライト
204 データドライバ
206 ゲートドライバ
300 第1偏光板
400 偏光軸変換部
402 第1基板
404 第2電極
406 第2基板
408 第1電極
410 液晶層
412 液晶分子
412a 第1液晶分子
412b 第2液晶分子
412c 液晶分子
500 反射型偏光板
600 第2偏光板
800 ミラーパネル
802 データドライバ
804 ゲートドライバ
808 スイッチ素子
810 液晶素子
1041 演算回路
1042 メモリ
1101 受信回路
1102 メモリ
A  所定角度
A10 オブジェクト
A12 オブジェクト
AMDS ミラー画像信号
B10 領域
B12 領域
BDI 基礎画像
BDI-G 基礎画像
BDI-R 基礎画像
BDS 基礎画像信号
BDS-G 階調信号
BDS-R 反射率信号
BDSa 基礎画像信号
BDSb 基礎画像信号
BG 背景
BPIX 基礎画素
BPS 基礎画素信号
CL 領域
DDI 表示画像
DDS 表示画像信号
DL 画像光
DL1 画像光
DL10 画像光
DL12 画像光
DL12a 画像光
DL12b 画像光
DL14 画像光
DL2a 画像光
DL2b 画像光
DLa 画像光
DLb 画像光
DPS 表示画素信号
E  眼
E1 眼
E2 眼
GL1 ゲート線
GL2 ゲート線
GR グラフィック
HRF 反射領域
I  虚像
IS 入力信号
L1 光
L2 光
LQ 液晶素子
LQ1 液晶素子
LQ2 液晶素子
MDI ミラー画像
MDS ミラー画像信号
MES ミラー素子信号
MPIX ミラー素子
MPIX1 第1ミラー素子
MPIX2 第2ミラー素子
MPIXa ミラー素子
MPIXb ミラー素子
MPIXc ミラー素子
MR マージン領域
MR1 第1マージン領域
MR2 第2マージン領域
MR3 第3マージン領域
MR4 第4マージン領域
OB オブジェクト
OL 外光
OL1 外光
OL2 外光
OL20 外光
OL22 外光
PMAa 部分ミラー領域
PMAb 部分ミラー領域
R  実像
RF 領域
S  視線
SL1 データ線
SL2 データ線
Tr スイッチング素子
X10 第1状態
X12 第2状態
10 display system 20 transmitter 30, 30A head mount display 40 mirror device 41 first substrate 42 first electrode 45 second substrate 46 second electrode 100 display device 100a right eye display device 100b left eye display device 100c polarizing plate 100s image projection Surface 102 Mirror device 102a Right eye mirror device 102b Left eye mirror device 104 Processing circuit 106 Cover circuit 108 Control circuit 108A Control circuit 108B Control circuit 108C Correction circuit 110 Image output circuit 112 Image processing circuit 114 Display image processing circuit 116 Mirror image processing circuit 118 Timing controller 120 Operation input circuit 130 Optical element 140 Reflector 200 Display panel 202 Backlight 204 Data driver 206 Gate driver 300 First polarizing plate 400 Polarization axis converter 402 1 substrate 404 second electrode 406 second substrate 408 first electrode 410 liquid crystal layer 412 liquid crystal molecule 412a first liquid crystal molecule 412b second liquid crystal molecule 412c liquid crystal molecule 500 reflective polarizing plate 600 second polarizing plate 800 mirror panel 802 data driver 804 Gate driver 808 Switch element 810 Liquid crystal element 1041 Arithmetic circuit 1042 Memory 1101 Reception circuit 1102 Memory A Predetermined angle A10 Object A12 Object AMDS Mirror image signal B10 Region B12 Region BDI Basic image BDI-G Basic image BDI-R Basic image BDS Basic image signal BDS-G gradation signal BDS-R reflectance signal BDSa basic image signal BDSb basic image signal BG background BPIX basic pixel BPS basic pixel signal CL area DDI display image DDS display image signal DL image DL1 image light DL10 image light DL12 image light DL12a image light DL12b image light DL14 image light DL2a image light DL2b image light DLa image light DLb image light DPS display pixel signal E eye E1 eye E2 eye GL1 gate line GL2 gate line GR graphic HRF reflection Region I Virtual image IS Input signal L1 Light L2 Light LQ Liquid crystal element LQ1 Liquid crystal element LQ2 Liquid crystal element MDI Mirror image MDS Mirror image signal MES Mirror element signal MPIX Mirror element MPIX1 First mirror element MPIX2 Second mirror element MPIXa Mirror element MPIXb Mirror element MPIXc Mirror element MR Margin region MR1 First margin region MR2 Second margin region MR3 Third margin region MR4 Fourth margin region OB Object OL Outside light OL1 Outside light OL2 Outside light OL2 0 Outside light OL22 Outside light PMAa Partial mirror area PMAb Partial mirror area R Real image RF area S Line of sight SL1 Data line SL2 Data line Tr Switching element X10 First state X12 Second state

Claims (21)

  1.  画像を表示する表示装置と、
     少なくとも前記表示装置を制御する処理回路と、
     前記表示装置から光が照射される位置にあり、かつ前記処理回路の制御に応じて、前記表示装置から照射された光を透過する第1モードと、前記表示装置から照射された光を反射する第2モードとを切り替えるミラー装置と、を備える
     ヘッドマウントディスプレイ。
    A display device for displaying an image,
    A processing circuit for controlling at least the display device;
    A first mode in which the light emitted from the display device is irradiated and the light emitted from the display device is transmitted according to the control of the processing circuit, and the light emitted from the display device is reflected. A head mount display, comprising: a mirror device for switching between the second mode and the second mode.
  2.  前記ミラー装置は、面内に複数のミラー素子を備え、
     前記処理回路の制御に基づいて、各々の前記ミラー素子が前記第1モードにおいて前記表示装置から照射された光を透過し、前記第2モードにおいて前記表示装置から照射された光を反射する
     請求項1に記載のヘッドマウントディスプレイ。
    The mirror device includes a plurality of mirror elements in a plane,
    The respective mirror elements transmit the light emitted from the display device in the first mode and reflect the light emitted from the display device in the second mode under the control of the processing circuit. The head mounted display according to 1.
  3.  前記ミラー装置は、前記処理回路の制御に基づいて、一部の領域の反射率と、前記一部の領域以外の領域の反射率と、を異ならせる
     請求項2に記載のヘッドマウントディスプレイ。
    The head mount display according to claim 2, wherein the mirror device makes the reflectance of a part of the region different from the reflectance of a region other than the part of the region under the control of the processing circuit.
  4.  前記一部の領域の形状は、前記表示装置により投映される画像の形状と同じである
     請求項3に記載のヘッドマウントディスプレイ。
    The head mounted display according to claim 3, wherein the shape of the partial area is the same as the shape of an image projected by the display device.
  5.  前記ミラー装置の走査開始位置は、前記表示装置の走査開始位置に対して異なる位置であり、
     前記処理回路は、前記ミラー装置の走査開始位置から第1走査方向に走査を行い、前記表示装置の走査開始位置から前記第1走査方向と反対方向である第2走査方向に走査を行う
     請求項1から4のいずれか一項に記載のヘッドマウントディスプレイ。
    The scanning start position of the mirror device is a position different from the scanning start position of the display device,
    The processing circuit performs scanning from a scanning start position of the mirror device in a first scanning direction, and performs scanning from a scanning start position of the display device in a second scanning direction which is a direction opposite to the first scanning direction. The head mounted display according to any one of 1 to 4.
  6.  前記処理回路は、反転画像を前記表示装置に表示する
     請求項1から5のいずれか一項に記載のヘッドマウントディスプレイ。
    The head mounted display according to claim 1, wherein the processing circuit displays a reverse image on the display device.
  7.  前記ミラー装置から出射される光を屈折させる光学素子を備える
     請求項1から6のいずれか一項に記載のヘッドマウントディスプレイ。
    The head mounted display according to claim 1, further comprising an optical element that refracts light emitted from the mirror device.
  8.  前記処理回路は、送信装置から送信されてきた画像情報に基づいて前記ミラー装置を制御する
     請求項1から7のいずれか一項に記載のヘッドマウントディスプレイ。
    The head mounted display according to claim 1, wherein the processing circuit controls the mirror device based on image information transmitted from a transmission device.
  9.  前記表示装置に表示する画像に基づいて画像情報を生成する画像処理回路を備え、
     前記処理回路は、前記画像処理回路により生成された画像情報に基づいて前記ミラー装置を制御する
     請求項1から8のいずれか一項に記載のヘッドマウントディスプレイ。
    An image processing circuit for generating image information based on an image displayed on the display device,
    The head mounted display according to claim 1, wherein the processing circuit controls the mirror device based on image information generated by the image processing circuit.
  10.  反射装置を備え、
     前記反射装置は、前記表示装置から照射される光を反射し、
     前記ミラー装置には、前記反射装置により反射された光が照射される
     請求項1に記載のヘッドマウントディスプレイ。
    Equipped with a reflector,
    The reflection device reflects the light emitted from the display device,
    The head mounted display according to claim 1, wherein the mirror device is irradiated with the light reflected by the reflecting device.
  11.  画像を送信する送信装置と、前記送信装置から送信されてきた画像を受信するヘッドマウントディスプレイとから構成される表示システムにおいて、
     前記ヘッドマウントディスプレイは、
     前記送信装置から送信されてきた画像を受信する受信回路と、
     前記受信回路で受信した画像を表示する表示装置と、
     少なくとも前記表示装置を制御する処理回路と、
     前記表示装置から光が照射される位置にあり、かつ前記処理回路の制御に応じて、前記表示装置から照射された光を透過する第1モードと、前記表示装置から照射された光を反射する第2モードとを切り替えるミラー装置と、を備える
     表示システム。
    In a display system composed of a transmitting device for transmitting an image and a head mounted display for receiving the image transmitted from the transmitting device,
    The head mounted display is
    A receiving circuit for receiving the image transmitted from the transmitting device,
    A display device for displaying an image received by the receiving circuit,
    A processing circuit for controlling at least the display device;
    A first mode in which the light emitted from the display device is irradiated and the light emitted from the display device is transmitted according to the control of the processing circuit, and the light emitted from the display device is reflected. And a mirror device for switching between the second mode and the display system.
  12.  前記受信回路は、前記送信装置から送信されてきた画像情報を受信し、
     前記処理回路は、前記受信回路で受信した前記画像情報に基づいて前記ミラー装置を制御する
     請求項11に記載の表示システム。
    The receiving circuit receives the image information transmitted from the transmitting device,
    The display system according to claim 11, wherein the processing circuit controls the mirror device based on the image information received by the receiving circuit.
  13.  前記表示装置に表示する画像に基づいて画像情報を生成する画像処理回路を備え、
     前記処理回路は、前記画像処理回路により生成された画像情報に基づいて前記ミラー装置を制御する
     請求項11に記載の表示システム。
    An image processing circuit for generating image information based on an image displayed on the display device,
    The display system according to claim 11, wherein the processing circuit controls the mirror device based on image information generated by the image processing circuit.
  14.  画像を表示する表示装置と、
     前記表示装置の主面に対して、主面が鋭角で傾いて位置するミラー装置と、
     画像データを前記表示装置に出力し、前記画像データに対応する不透明度データを前記ミラー装置に出力する処理回路と、を備える
     表示システム。
    A display device for displaying an image,
    With respect to the main surface of the display device, a mirror device whose main surface is positioned at an acute angle,
    A processing circuit that outputs image data to the display device and outputs opacity data corresponding to the image data to the mirror device.
  15.  前記ミラー装置は、
     マトリクス状に設けられた複数のミラー素子と、
     前記表示装置と対向する面の反対側に設けられた反射型偏光板とを備え、
     前記反射型偏光板は、進入する光の位相によって反射率及び透過率が異なり、
     前記不透明度データが示す不透明度が高いほど前記反射型偏光板の反射率がより高い位相の光を透過させるように前記ミラー素子が制御される
     請求項14に記載の表示システム。
    The mirror device is
    A plurality of mirror elements provided in a matrix,
    A reflective polarizing plate provided on the opposite side of the surface facing the display device,
    The reflective polarizing plate has different reflectance and transmittance depending on the phase of incoming light,
    The display system according to claim 14, wherein the mirror element is controlled such that light having a higher reflectance of the reflective polarizing plate is transmitted as the opacity indicated by the opacity data is higher.
  16.  前記不透明度データは、前記画像データによって描画される画像の背景の不透明度が背景以外の画像領域の不透明度よりも低い
     請求項15に記載の表示システム。
    The display system according to claim 15, wherein in the opacity data, the opacity of the background of the image drawn by the image data is lower than the opacity of the image region other than the background.
  17.  前記ミラー装置は、前記背景以外の画像領域に対応する領域の前記ミラー素子が前記表示装置からの光を一定以上反射する反射領域になるよう制御される
     請求項16に記載の表示システム。
    The display system according to claim 16, wherein the mirror device is controlled so that the mirror element in a region corresponding to an image region other than the background is a reflective region that reflects light from the display device by a certain amount or more.
  18.  前記ミラー装置に映る画像の視野角に応じて、視野角が広がる方向に反射領域のマージンが設定される
     請求項17に記載の表示システム。
    The display system according to claim 17, wherein a margin of the reflective region is set in a direction in which the viewing angle widens in accordance with the viewing angle of the image displayed on the mirror device.
  19.  前記画像データに基づいて前記表示装置が出力する画像は、前記ミラー装置を視認するユーザに視認させたい画像の鏡像である
     請求項14から18のいずれか一項に記載の表示システム。
    The display system according to any one of claims 14 to 18, wherein the image output by the display device based on the image data is a mirror image of an image desired to be visually recognized by a user who visually recognizes the mirror device.
  20.  前記鋭角は、前記表示装置の画像投射面と、前記ミラー装置に映る画像を視認することが想定されるユーザの眼の位置とに基づいて決定される
     請求項14から19のいずれか一項に記載の表示システム。
    The acute angle is determined based on an image projection surface of the display device and a position of an eye of a user who is expected to visually recognize an image reflected on the mirror device. Display system described.
  21.  画像を表示する表示装置の主面に対して、主面が鋭角で傾いて位置するミラー装置であって、
     マトリクス状に設けられた複数のミラー素子と、
     前記表示装置と対向する面の反対側に設けられた反射型偏光板とを備え、
     前記反射型偏光板は、進入する光の位相によって反射率及び透過率が変わり、
     前記画像に対応する不透明度データが示す不透明度が高いほど前記反射型偏光板の反射率がより高い位相の光を透過させるように画素が制御される
     ミラー装置。
    A mirror device in which a main surface is inclined at an acute angle with respect to a main surface of a display device for displaying an image,
    A plurality of mirror elements provided in a matrix,
    A reflective polarizing plate provided on the opposite side of the surface facing the display device,
    The reflective polarizing plate has a reflectance and a transmittance which change depending on the phase of incoming light,
    A pixel device is controlled so that the higher the opacity indicated by the opacity data corresponding to the image is, the more the phase of which the reflectance of the reflective polarizing plate is higher is transmitted.
PCT/JP2019/040992 2018-10-19 2019-10-17 Head-mounted display, display system, and mirror device WO2020080498A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018197821A JP2020064264A (en) 2018-10-19 2018-10-19 Head mounted display and display system
JP2018-197821 2018-10-19
JP2018-197822 2018-10-19
JP2018197822A JP2020065235A (en) 2018-10-19 2018-10-19 Display system and mirror device

Publications (1)

Publication Number Publication Date
WO2020080498A1 true WO2020080498A1 (en) 2020-04-23

Family

ID=70283026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040992 WO2020080498A1 (en) 2018-10-19 2019-10-17 Head-mounted display, display system, and mirror device

Country Status (1)

Country Link
WO (1) WO2020080498A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328260A (en) * 1992-05-26 1993-12-10 Olympus Optical Co Ltd Head mount type display device
JPH08292394A (en) * 1995-01-24 1996-11-05 Matsushita Electric Ind Co Ltd Head-mounted image display device
JP2001318374A (en) * 2000-02-29 2001-11-16 Hitachi Ltd Device which can be switched between image display state and mirror state and apparatus equipped with the same
JP2002244074A (en) * 2001-02-15 2002-08-28 Mixed Reality Systems Laboratory Inc Picture display device
US20060274218A1 (en) * 2005-03-15 2006-12-07 Jiuzhi Xue Windows with electrically controllable transmission and reflection
JP2011017969A (en) * 2009-07-10 2011-01-27 Shimadzu Corp Display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328260A (en) * 1992-05-26 1993-12-10 Olympus Optical Co Ltd Head mount type display device
JPH08292394A (en) * 1995-01-24 1996-11-05 Matsushita Electric Ind Co Ltd Head-mounted image display device
JP2001318374A (en) * 2000-02-29 2001-11-16 Hitachi Ltd Device which can be switched between image display state and mirror state and apparatus equipped with the same
JP2002244074A (en) * 2001-02-15 2002-08-28 Mixed Reality Systems Laboratory Inc Picture display device
US20060274218A1 (en) * 2005-03-15 2006-12-07 Jiuzhi Xue Windows with electrically controllable transmission and reflection
JP2011017969A (en) * 2009-07-10 2011-01-27 Shimadzu Corp Display device

Similar Documents

Publication Publication Date Title
US10578866B2 (en) Head up display device with a polarization separation element
US10841546B2 (en) Display device
US20220365361A1 (en) Directional backlight
US9899001B2 (en) Display panel, display device having the same, and controlling method thereof
KR101255711B1 (en) 3d image display device and driving method thereof
US8743298B2 (en) Display device
KR101962964B1 (en) Display device
US9049441B2 (en) 3D image display apparatus and method
JP2004258631A (en) Stereoscopic picture display device
WO2017208896A1 (en) Display device
US8982040B2 (en) Liquid crystal display device and method of displaying the same
US9013388B2 (en) Liquid crystal display device and display apparatus
JP4152912B2 (en) Dual LCD using a dual front light unit
US10192493B2 (en) Display device
US10983347B2 (en) Augmented reality device
WO2020080498A1 (en) Head-mounted display, display system, and mirror device
JP2020064264A (en) Head mounted display and display system
JP2020065235A (en) Display system and mirror device
JP2008261944A (en) Liquid crystal display
US11605321B2 (en) Three-dimensional-image display device
WO2018068449A1 (en) Control method and apparatus, and head-mounted device
CN218767599U (en) Head-up display and vehicle
KR100942842B1 (en) Method of controling brightness for each position and liquid crystal display using the same
JP2023141956A (en) Electronic apparatus
JP2023125465A (en) Electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873573

Country of ref document: EP

Kind code of ref document: A1