WO2020080299A1 - 医療画像処理システム及び学習方法 - Google Patents

医療画像処理システム及び学習方法 Download PDF

Info

Publication number
WO2020080299A1
WO2020080299A1 PCT/JP2019/040247 JP2019040247W WO2020080299A1 WO 2020080299 A1 WO2020080299 A1 WO 2020080299A1 JP 2019040247 W JP2019040247 W JP 2019040247W WO 2020080299 A1 WO2020080299 A1 WO 2020080299A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical image
area
region
learning
effective diagnosis
Prior art date
Application number
PCT/JP2019/040247
Other languages
English (en)
French (fr)
Inventor
青山 達也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP19873567.2A priority Critical patent/EP3868281A4/en
Priority to JP2020553158A priority patent/JP7092888B2/ja
Priority to CN201980068112.1A priority patent/CN112867430A/zh
Publication of WO2020080299A1 publication Critical patent/WO2020080299A1/ja
Priority to US17/225,872 priority patent/US11830185B2/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30028Colon; Small intestine
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Definitions

  • the present invention relates to a medical image processing system and a learning method that use analysis results of medical images.
  • medical image processing systems that use medical images have become widespread, such as endoscope systems that include a light source device, an endoscope, and a processor device. Further, in recent years, diagnostic information regarding a pathological condition has been acquired by extracting a region of interest having a possibility of a lesion from a medical image and performing image analysis on the extracted region of interest.
  • the target area is detected based on the color feature, the contour, the shape, the texture, etc. after the target area is excluded from the color characteristics and the frequency components.
  • Patent Document 2 when the attention area is a mucous membrane area, one of the mucous membrane area and the non-mucous membrane area such as a residue is discriminated using the color and edge feature amounts. Further, in Patent Document 3, an abnormal area such as shine is removed from a medical image, and then an abnormal area in the image corresponding to the attention area is detected. In Patent Document 3, a region in which the pixel value exceeds the threshold value T is removed as an inappropriate region.
  • the present invention provides a medical image processing system and a learning method capable of specifying a target area other than a target area other than the target area without specifying the image feature amount of the medical image when the target area is detected from the medical image.
  • the purpose is to do.
  • the medical image processing system of the present invention includes a medical image acquisition unit that acquires a first medical image obtained by imaging an observation target and a first medical image from which a target region other than the target region other than the target region is removed.
  • the effective diagnosis area detection unit that detects the effective diagnosis area and the attention area detection unit that detects the attention area from the effective diagnosis area, and the effective diagnosis area detection unit is an effective diagnosis related to the first medical image and the effective diagnosis area.
  • An effective diagnosis area is detected from the first medical image using the effective diagnosis area detection model obtained by learning using the first learning data including area information.
  • the attention area detection unit preferably detects the attention area from the effective diagnosis area by using the attention area detection model obtained by learning using the second learning data including the effective diagnosis area and the attention area.
  • the first medical image is preferably obtained by capturing an observation target illuminated with white light. It is preferable that the medical image acquisition unit acquires a second medical image different from the first medical image, and the attention area detection unit detects the attention area from the effective diagnosis area of the second medical image.
  • the second medical image is preferably obtained by imaging the observation target illuminated with blue narrow band light.
  • the target area of interest does not include puddles, blood pools, dark areas, specular reflection, distortion, image blur, bubbles, caps, residues, and residual liquid.
  • the medical image processing system of the present invention includes a first medical image obtained by capturing an image of an observation target, and effective diagnosis region information regarding an effective diagnosis region in which the non-target region of interest other than the attention region of the observation target is removed.
  • a registration unit that registers the first learning data and a plurality of the first learning data are used to perform learning for generating an effective diagnosis area detection model that outputs an effective diagnosis area with respect to the input of the first medical image.
  • a learning unit is used to perform learning for generating an effective diagnosis area detection model that outputs an effective diagnosis area with respect to the input of the first medical image.
  • the registration unit registers the second learning data including the effective diagnosis region and the attention region, and the learning unit uses the second learning data to output the attention region to the input of the effective diagnosis region. It is preferable to perform learning for generating the region detection model.
  • a learning unit includes: a first medical image obtained by capturing an image of an observation target; and effective diagnosis region information regarding an effective diagnosis region in which the target region other than the target region of the observation target is removed.
  • a first learning step for generating an effective diagnostic region detection model that outputs an effective diagnostic region for the input of the first medical image using a plurality of first learning data including
  • a learning unit performs learning for generating an attention area detection model that outputs the attention area with respect to an input of the effective diagnosis area, using a plurality of second learning data including the effective diagnosis area and the attention area. It has two learning steps.
  • the attention area when the attention area is detected from the medical image, it is possible to specify the attention area outside the attention area other than the attention area without specifying the image feature amount of the medical image.
  • FIG. 7 is an image view of a first medical image having bubbles. It is an image figure of the 1st medical image in which the edge part of the cap was reflected.
  • a diagnostic support device including an image processing system.
  • the medical operation support apparatus includes an image processing system.
  • the image processing system 10 includes a medical image acquisition unit 11, a medical image analysis processing unit 12, a display unit 13, a display control unit 15, an input reception unit 16, a general control unit 17, and a storage unit 18. Equipped with.
  • the medical image acquisition unit 11 includes a medical image including a subject image directly from the endoscope system 21 which is a medical device or through a management system such as PACS (Picture Archiving and Communication System) 22 or other information system. To get.
  • the medical image is a still image or a moving image (so-called examination moving image).
  • the medical image acquisition unit 11 can acquire the frame images forming the moving image as a still image after the examination.
  • displaying the medical image includes displaying a still image of one representative frame forming the moving image and reproducing the moving image one or more times.
  • the medical image acquired by the medical image acquisition unit 11 is not only an image taken by a doctor using a medical device such as the endoscope system 21, but also a medical device such as the endoscope system 21 is a doctor's imaging instruction. Includes images taken automatically regardless of In the present embodiment, both the image processing system 10 and the endoscope system 21 perform image processing using medical images, so both the image processing system 10 and the endoscope system 21 correspond to a medical image processing system. .
  • the medical imaging system also includes an ultrasonic diagnostic apparatus that acquires and displays an image in real time.
  • the medical image acquisition unit 11 can selectively acquire one or more medical images among these medical images. Further, the medical image acquisition unit 11 can acquire a plurality of medical images acquired in a plurality of different examinations. For example, one or both of a medical image acquired by an examination performed in the past and a medical image acquired by the latest examination can be acquired. That is, the medical image acquisition unit 11 can arbitrarily acquire a medical image.
  • a plurality of medical images including a subject image are acquired. More specifically, when a medical image captured in one specific examination is acquired and there are a plurality of medical images captured in one specific examination, a plurality of medical images in a series of medical images are acquired. Get an image. Further, in the present embodiment, the image processing system 10 is connected to the endoscope system 21 and acquires a medical image from the endoscope system 21. That is, in the present embodiment, the medical image is an endoscopic image.
  • the display unit 13 is a display that displays the medical image acquired by the medical image acquisition unit 11 and the analysis result of the medical image analysis processing unit 12.
  • a monitor or a display included in a device or the like connected to the image processing system 10 can be shared and used as the display unit 13 of the image processing system 10.
  • the display control unit 15 controls the display mode of the medical image and the analysis result on the display unit 13.
  • the input receiving unit 16 receives inputs from a mouse, a keyboard, and other operating devices connected to the image processing system 10. The operation of each unit of the image processing system 10 can be controlled using these operation devices.
  • the overall control unit 17 comprehensively controls the operation of each unit of the image processing system 10.
  • the overall control unit 17 controls each unit of the image processing system 10 according to the operation input.
  • the storage unit 18 stores a still image of a medical image in a storage device (not shown) such as a memory included in the image processing system 10 or a medical device such as the endoscope system 21 or a storage device (not illustrated) included in the PACS 22. To save.
  • a storage device such as a memory included in the image processing system 10 or a medical device such as the endoscope system 21 or a storage device (not illustrated) included in the PACS 22.
  • the endoscope system 21 to which the image processing system 10 is connected in the present embodiment shoots a subject by irradiating at least one of light of a white wavelength band and light of a specific wavelength band.
  • An endoscope 31 that acquires an image by the above, a light source device 32 that illuminates the inside of a subject with illumination light through the endoscope 31, a processor device 33, and an endoscopic image taken using the endoscope 31. It has a monitor 34 for displaying a medical image of.
  • the light in the specific wavelength band used for the illumination light by the endoscope 31 is, for example, light in the wavelength band shorter than the green wavelength band, particularly light in the visible blue band or violet band.
  • the processor device 33 includes a medical image acquisition unit 35, a medical image analysis processing unit 36, and a display control unit 37.
  • the medical image acquisition unit 35 acquires the medical image output from the endoscope 31.
  • the medical image analysis processing unit 36 performs an analysis process on the medical image acquired by the medical image acquisition unit 35.
  • the processing content of the medical image analysis processing unit 36 is the same as the processing content of the medical image analysis processing unit 12 of the image processing system 10.
  • the display control unit 37 displays the medical image obtained by the medical image analysis processing unit 36 on the monitor 34 (display unit).
  • the processor device 33 is connected to the image processing system 10.
  • the medical image acquisition unit 35 is similar to the medical image acquisition unit 11
  • the medical image analysis processing unit 36 is similar to the medical image analysis processing unit 12
  • the display control unit 37 is similar to the display control unit 15.
  • the medical image analysis processing unit 36 performs analysis processing using the medical image acquired by the medical image acquisition unit 11. As shown in FIG. 3, the medical image analysis processing unit 36 includes an effective diagnosis region detection unit 40, an attention region detection unit 42, a registration unit 44, and a learning unit 46.
  • the effective diagnosis area detection unit 40 is an area that may include an attention area to be diagnosed by the user from the first medical image used for detecting the effective diagnosis area in the medical image, and the attention area of the observation target.
  • the effective diagnosis area in which the non-target area other than the area is removed is detected.
  • the attention area is an area that the user pays attention to, and if the user is a doctor, the attention area is shown when making a diagnosis. Specifically, it is a lesion or the like.
  • the non-target area target is an object that is obviously different from the target object included in the target area that is the diagnosis target by the user.
  • a specific pool 48 such as a puddle or a blood pool covering the target to be observed is included.
  • the effective diagnosis area detection unit 40 detects an area from which the specific reservoir 48 is removed as an effective diagnosis area.
  • the non-target area target includes distortion (distortion caused by an objective lens used for imaging an observation target) and image blur generated in the image peripheral portion 50.
  • the non-target area target includes the specular reflection 52 caused by the observation target being covered with the transparent mucous membrane.
  • the effective diagnosis area detection unit 40 detects an area in which the distortion of the image peripheral portion 50 and the image blur are removed as an effective diagnosis area.
  • bubbles 54 are included outside the attention area.
  • the effective diagnosis area detection unit 40 detects an area from which the bubbles 54 are removed as an effective diagnosis area in the first medical image shown in FIG.
  • the effective diagnosis area detection unit 40 detects an area where the edge 56 of the cap is removed as an effective diagnosis area.
  • the first medical image used for detection of the effective diagnosis area is an image of the observation target illuminated with white light. It is preferable to use an image obtained by Further, the first medical image may be an image obtained by imaging an observation target illuminated with blue narrow band light, like a second medical image described later.
  • the effective diagnosis area detection unit 40 executes the effective diagnosis area detection model 40a obtained by learning using the first learning data including the first medical image and the effective diagnosis area information on the effective diagnosis area. I have it.
  • the effective diagnosis area detection model 40a outputs effective diagnosis area information 62 regarding the effective diagnosis area, specifically, position information occupied by the effective diagnosis area in the first medical image, in response to the input of the first medical image 60. To do.
  • the outputted effective diagnosis area information 62 enables detection of the effective diagnosis area.
  • the effective diagnosis area detecting model 40a is generated in the learning unit 46 by using a machine learning method such as deep learning. Specifically, the learning unit 46 uses the first learning data 44a registered in the registration unit 44 as teacher data to train the effective diagnosis area detecting model 40a.
  • the region of the specific reservoir 48 in the first medical image is not an effective diagnosis region.
  • the binarized data in which the flag “0” is set and the region other than the specific reservoir 48 is set as the flag “1” indicating the valid diagnosis region is set as the valid diagnosis region information 62.
  • the user designates the flags “0” and “1” by operating a user interface (not shown) connected to the endoscope system 21.
  • flags “0” and “1” are automatically specified for those that can be detected by the image processing of the processor device 33, such as dark areas and specular reflections 52 (see FIG. 5), which are not the target area of interest.
  • the first medical image 60 and the effective diagnosis area information 62 described above are registered in the registration unit 44 as the first learning data 44a in which they are associated with each other.
  • the first learning data 44a registered in the registration unit 44 is used for the effective diagnosis area detecting model 40a.
  • the endoscope system 21 As described above, not only the specific pool portion 48, but also the image blur (see FIG. 5), the specular reflection 52 (see FIG. 5), the bubble 54 (see FIG. 6), the edge portion 56 of the cap (see FIG. 7), It is possible for a researcher or the like who develops the endoscope system 21 to discriminate a target area such as a residue or a residual liquid, which is not a target for diagnosing a lesion or the like. Therefore, the number of the first learning data 44a can be made larger than that of the second learning data 44b which will be described later, because the effective diagnosis area can be designated by a larger number of researchers and the like. It will be possible.
  • the attention area detection unit 42 detects the attention area from the effective diagnosis area RX of the second medical image used for detecting the attention area in the medical image based on the detection result of the effective diagnosis area detection unit 40. Specifically, the attention area detection unit 42 detects the attention area only in the effective diagnosis area RX (flag “1”) in the second medical image, and detects the area RY (flag “0”) other than the effective diagnosis area. The attention area is not detected.
  • the attention area detected by the attention area detection unit 42 includes, for example, a lesion represented by cancer, a benign tumor portion, an inflammatory portion (so-called inflammation, and a portion having a change such as bleeding or atrophy).
  • EMR Endoscopic mucosal section
  • ESD Endoscopic Submucosal Dissection
  • clip location bleeding point
  • perforation vascular anomaly
  • cauterization trace by heating or coloring with fluorescent agent etc.
  • the attention area detection unit 42 includes the lesion, the benign tumor, the inflammation, the large intestine diverticulum, the treatment scar, the bleeding point, the perforation, the blood vessel atypical marking portion, or the biopsy execution portion. A region including at least one of them is detected as a region of interest.
  • the second medical image used for detecting the region of interest is an image obtained by imaging the observation target illuminated by the blue narrowband light, because it becomes easier to detect structural information useful for specifying the region of the lesion. It is preferable that
  • the first medical image is a white light image and the second medical image is a blue narrow band light image, white light and blue narrow band light are alternately illuminated and imaged. Therefore, the first medical image and the second medical image have different imaging timings.
  • the effective diagnostic region for the first medical image and the second medical image after the first medical image and the second medical image are aligned.
  • the effective diagnosis area of the first medical image is detected first
  • image registration it is preferable to perform registration processing on the first medical image so as to match the shape of the second medical image.
  • the second medical image may be an image obtained by capturing an observation target illuminated with white light, as in the first medical image.
  • the attention area detection unit 42 includes an attention area detection model 42a obtained by learning using second learning data including a second medical image and attention area information about the attention area.
  • the attention area detection model 42a outputs attention area information 72 regarding the effective diagnosis area, specifically, position information of the attention area in the second medical image, in response to the input of the second medical image 70.
  • the output attention area information 72 enables detection of the attention area.
  • the attention area detection model 42a is generated by the learning unit 46 using a machine learning method such as deep learning. Specifically, the learning unit 46 uses the first learning data 44a registered in the registration unit 44 as teacher data to train the attention area detection model 42a.
  • the area other than the specific lesion portion 74 in the second medical image 70 is not the attention area.
  • the binarized data in which the flag “0” is set and the region of the specific lesion portion 74 is the flag “1” indicating the region of interest is set as the region-of-interest information 72.
  • a user interface (not shown) connected to the endoscope system 21 is operated in accordance with an instruction of a user who has knowledge in diagnosis of a region of interest such as a doctor. Is preferably carried out.
  • the above-described second medical image 70 and attention area information 72 are registered in the registration unit 44 as second learning data 44b in which they are associated with each other.
  • the second learning data 44b registered in the registration unit 44 is used for learning the attention area detection model 42a.
  • the attention area detection unit 42 detects the attention area from the effective diagnosis area in which the outside of the attention area is removed, and thus detects the attention area from the image in which the outside of the attention area is not removed. Compared with the case, the accuracy of detection of the attention area is improved by eliminating the feature that becomes the learning noise. That is, in the present embodiment, the learning data necessary for detecting a region of interest such as a lesion is obtained by separately performing “detection of the target region outside the target (detection of a region other than the effective diagnosis region)” and “detection of the target region”. Since it is possible to reduce the number of, the detection accuracy of the attention area can be finally improved.
  • the diagnosis support apparatus 610 that uses the endoscope system 21 and other modalities and the PACS 22 in combination may include the image processing system 10 of the above-described embodiment and other modifications. Further, as shown in FIG. 15, for example, various inspection devices such as the first inspection device 621, the second inspection device 622, ..., The Nth inspection device 633 including the endoscope system 21 and the arbitrary network 626 are used.
  • the medical service support apparatus 630 to be connected can include the image processing system 10 of the above-described embodiment and other modifications.
  • the effective diagnosis area detection unit 40 distinguishes between the effective diagnosis area and other areas outside the target area of interest, but also detects outside the target area of interest by distinguishing into a plurality of types. You may do it. For example, bubbles, specular reflections, images of the periphery of the cap, or normal squamous epithelium, etc., are detected as distinct from the target region of interest. In this case, an area in which the detected bubbles, specular reflection, an image of the periphery of the cap, or normal squamous epithelium is removed is set as an effective diagnosis area, and the attention area is detected from this effective diagnosis area.
  • the image processing system 10 the endoscope system 21, and various devices or systems including the image processing system 10 can be used with various modifications as described below.
  • a white band light or a normal light image obtained by irradiating light of a plurality of wavelength bands as the white band light can be used.
  • the specific wavelength band can be narrower than the white wavelength band.
  • the specific wavelength band is, for example, the visible blue band or green band.
  • the specific wavelength band is a visible blue band or a green band
  • the specific wavelength band includes a wavelength band of 390 nm or more and 450 nm or less or 530 nm or more and 550 nm or less, and the light of the specific wavelength band is 390 nm or more. It is preferable to have a peak wavelength in the wavelength band of 450 nm or less or 530 nm or more and 550 nm or less.
  • the specific wavelength band is, for example, the visible red band.
  • the specific wavelength band is the visible red band
  • the specific wavelength band includes a wavelength band of 585 nm or more and 615 nm or 610 nm or more and 730 nm or less, and the light of the specific wavelength band is 585 nm or more and 615 nm or less or 610 nm. It is preferable to have a peak wavelength in the wavelength band of 730 nm or less.
  • the specific wavelength band includes, for example, a wavelength band having a different absorption coefficient between oxyhemoglobin and reduced hemoglobin, and light of a specific wavelength band has a peak wavelength in a wavelength band having a different absorption coefficient between oxyhemoglobin and reduced hemoglobin.
  • a wavelength band having a different absorption coefficient between oxyhemoglobin and reduced hemoglobin includes, for example, a wavelength band having a different absorption coefficient between oxyhemoglobin and reduced hemoglobin
  • light of a specific wavelength band has a peak wavelength in a wavelength band having a different absorption coefficient between oxyhemoglobin and reduced hemoglobin.
  • the specific wavelength band includes a wavelength band having a different absorption coefficient between oxyhemoglobin and reduced hemoglobin, and the light of the specific wavelength band has a peak wavelength in a wavelength band having a different absorption coefficient between oxyhemoglobin and reduced hemoglobin.
  • the specific wavelength band includes 400 ⁇ 10 nm, 440 ⁇ 10 nm, 470 ⁇ 10 nm, or a wavelength band of 600 nm or more and 750 nm or less, and the light of the specific wavelength band is 400 ⁇ 10 nm, 440 ⁇ 10 nm, It is preferable to have a peak wavelength in a wavelength band of 470 ⁇ 10 nm or 600 nm or more and 750 nm or less.
  • this in-vivo image can have information on the fluorescence emitted by the fluorescent substance in the living body.
  • Fluorescence can be obtained by irradiating the living body with excitation light having a peak wavelength of 390 nm or more and 470 nm or less.
  • the wavelength band of infrared light can be used as the specific wavelength band.
  • the specific wavelength band is 790 nm or more and 820 nm or 905 nm or more and 970 nm or less. It is preferable that the light having a specific wavelength band including a peak wavelength in the wavelength band of 790 nm to 820 nm or 905 nm to 970 nm.
  • the medical image acquisition unit 11 acquires a special light image having a signal in a specific wavelength band, based on white band light or a normal light image obtained by irradiating light in a plurality of wavelength bands as white band light.
  • a special light image acquisition unit can be included. In this case, a special light image can be used as the medical image.
  • a signal in a specific wavelength band can be obtained by calculation based on RGB or CMY color information included in a normal light image.
  • a feature amount image generation unit that generates a feature amount image can be provided.
  • the feature amount image can be used as the medical image.
  • a capsule endoscope can be used as the endoscope 31.
  • the light source device 32 and a part of the processor device 33 can be mounted on the capsule endoscope.
  • the hardware structure of is a processor of the following types. For various processors, change the circuit configuration after manufacturing CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), etc., which are general-purpose processors that execute software (programs) and function as various processing units.
  • Programmable Logic Device that is a possible processor, dedicated electrical circuit that is a processor with a circuit configuration designed specifically to execute various processes, GPU (Graphical Processing Unit), etc. are included. .
  • One processing unit may be configured by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs, a combination of CPU and FPGA, a CPU and Combination of GPUs). Further, the plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, firstly, one processor is configured with a combination of one or more CPUs and software, as represented by a computer such as a client or a server. There is a form in which this processor functions as a plurality of processing units.
  • SoC system-on-chip
  • a processor that realizes the functions of the entire system including a plurality of processing units by one IC (Integrated Circuit) chip is used.
  • IC Integrated Circuit
  • the various processing units are configured using one or more of the above various processors as a hardware structure.
  • the hardware-like structure of these various processors is more specifically an electrical circuit (circuitry) in which circuit elements such as semiconductor elements are combined.
  • the hardware structure of the storage unit is a storage device such as an HDD (hard disc drive) or SSD (solid state drive).
  • the present invention can be implemented by the following other modes.
  • the medical image acquisition unit acquires the first medical image obtained by imaging the observation target
  • the effective diagnosis area detection unit detects, from the first medical image, an effective diagnosis area in which the areas other than the attention area other than the attention area of the observation target are removed
  • the attention area detection unit detects the attention area from the effective diagnosis area
  • the effective diagnosis area detection unit obtains by learning using the first learning data including the first medical image and the effective diagnosis area information regarding the effective diagnosis area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Endoscopes (AREA)
  • Image Analysis (AREA)

Abstract

医療画像から注目領域を検出する場合において、医療画像の画像特徴量を特定することなく、注目領域以外の注目領域対象外を特定することができる医療画像処理システム及び学習方法を提供する。 有効領域検出部(40)は、有効診断領域検出用モデル(40a)を用いて、第1医療画像(60)から、観察対象のうち注目領域以外の注目領域対象外が除去された有効診断領域を検出する。有効診断領域検出用モデル(40a)は、第1医療画像60と有効診断領域に関する有効診断領域情報(62)とを含む第1学習データ(44a)を用いた学習によって得られる。注目領域検出部(42)は、有効診断領域から注目領域を検出する。

Description

医療画像処理システム及び学習方法
 本発明は、医療画像の解析結果を用いる医療画像処理システム及び学習方法に関する。
 現在の医療分野においては、光源装置、内視鏡、及びプロセッサ装置を備える内視鏡システムなどのように、医療画像を用いる医療画像処理システムが普及している。また、近年においては、医療画像から病変部の可能性のある注目領域を抽出し、抽出した注目領域に対して画像解析を行うことによって、病態に関する診断情報を取得することが行われている。
 注目領域の検出に用いる医療画像においては、病変などの注目領域の他に、暗部、ぼけ、残渣、鏡面反射などの注目領域以外の注目領域対象外が写り込むことがある。このような注目領域対象外の存在は、注目領域の検出の妨げになり、注目領域の検出精度を低下させる要因の一つである。これに対して、特許文献1では、注目領域対象外を色特徴、周波数成分をもとに除去してから、色特徴、輪郭、形状、テクスチャ等によって注目領域を検出している。また、特許文献2では、注目領域を粘膜領域とした場合において、粘膜領域と残渣などの非粘膜領域とのいずれかを色、エッジの特徴量を用いて判別している。また、特許文献3では、医療画像からテカリなどの不適当領域を除去してから、注目領域に相当する画像内の異常領域の検出を行っている。特許文献3では、画素値が閾値Tを超える領域を不適当領域として除去を行っている。
国際公開第2017/002184号 特開2012-143340号公報 国際公開第2018/008593号
 上記のように、注目領域対象外を医療画像から除去する場合において、上記特許文献1~3のように、色特徴量、画素値などの特定の画像特徴量を用いる場合、観察状態、照明状態などによる注目領域対象外の変化に個別に対処しなければならず、注目領域対象外を確実に除去することは難しい。したがって、特許文献1~3のように医療画像の画像特徴量を特定して用いるのではなく、注目領域対象外を特定し、且つ、注目領域対象外が除去された領域から注目領域を検出することによって、注目領域の検出精度を向上させることが求められていた。
 本発明は、医療画像から注目領域を検出する場合において、医療画像の画像特徴量を特定することなく、注目領域以外の注目領域対象外を特定することができる医療画像処理システム及び学習方法を提供することを目的とする。
 本発明の医療画像処理システムは、観察対象を撮像して得られる第1医療画像を取得する医療画像取得部と、第1医療画像から、観察対象のうち注目領域以外の注目領域対象外が除去された有効診断領域を検出する有効診断領域検出部と、有効診断領域から注目領域を検出する注目領域検出部とを備え、有効診断領域検出部は、第1医療画像と有効診断領域に関する有効診断領域情報とを含む第1学習データを用いた学習によって得られる有効診断領域検出用モデルを用いて、第1医療画像から有効診断領域を検出する。
 注目領域検出部は、有効診断領域と注目領域とを含む第2学習データを用いた学習によって得られる注目領域検出用モデルを用いて、有効診断領域から注目領域を検出することが好ましい。第1医療画像は白色光が照明された観察対象を撮像して得られることが好ましい。医療画像取得部は、第1医療画像と異なる第2医療画像を取得し、注目領域検出部は、第2医療画像の有効診断領域から注目領域を検出することが好ましい。第2医療画像は青色の狭帯域光が照明された観察対象を撮像して得られることが好ましい。注目領域対象外には、水たまり、血たまり、暗部、鏡面反射、ひずみ、画像ぼけ、泡、キャップ、残渣、残液が含まれる。
 本発明の医療画像処理システムは、観察対象を撮像して得られる第1医療画像と、観察対象のうち注目領域以外の注目領域対象外が除去された有効診断領域に関する有効診断領域情報とを含む第1学習データを登録する登録部と、第1学習データを複数用いて、第1医療画像の入力に対して、有効診断領域を出力する有効診断領域検出用モデルを生成するための学習を行う学習部とを備える。
 登録部は、有効診断領域と注目領域とを含む第2学習データを登録しており、学習部は、第2学習データを用いて、有効診断領域の入力に対して、注目領域を出力する注目領域検出用モデルを生成するための学習を行うことが好ましい。
 本発明の学習方法は、学習部が、観察対象を撮像して得られる第1医療画像と、観察対象のうち注目領域以外の注目領域対象外が除去された有効診断領域に関する有効診断領域情報とを含む第1学習データを複数用いて、第1医療画像の入力に対して、有効診断領域を出力する有効診断領域検出用モデルを生成するための第1学習ステップを有する。
 学習部が、有効診断領域と注目領域とを含む第2学習データを複数用いて、有効診断領域の入力に対して、注目領域を出力する注目領域検出用モデルを生成するための学習を行う第2学習ステップを有する。
 本発明によれば、医療画像から注目領域を検出する場合において、医療画像の画像特徴量を特定することなく、注目領域以外の注目領域対象外を特定することができる。
画像処理システムと内視鏡システムなどを示すブロック図である。 内視鏡システムを示すブロック図である。 医療画像解析処理部の機能を示すブロック図である。 特定のたまり部を有する第1医療画像の画像図である。 画像周辺部及び鏡面反射部を有する第1医療画像の画像図である。 泡を有する第1医療画像の画像図である。 キャップの縁部が写り込んだ第1医療画像の画像図である。 有効診断領域検出用モデル、有効診断領域検出用モデルに対して入力される第1医療画像、及び有効診断領域検出用モデルから出力される有効診断領域情報を示す説明図である。 有効診断領域検出用モデルに対する学習の説明に用いられる説明図である。 第1学習データを示す説明図である。 注目領域検出用モデル、注目領域検出用モデルに対して入力される第2医療画像、及び注目領域検出用モデルから出力される注目領域情報を示す説明図である。 注目領域検出用モデルに対する学習の説明に用いられる説明図である。 第2学習データを示す説明図である。 画像処理システムを含む診断支援装置である。 画像処理システムを含む医療業務支援装置である。
 図1に示すように、画像処理システム10は、医療画像取得部11、医療画像解析処理部12、表示部13、表示制御部15、入力受信部16、統括制御部17、及び、保存部18を備える。
 医療画像取得部11は、医療装置である内視鏡システム21等から直接に、または、PACS(Picture Archiving and Communication System)22等の管理システムもしくはその他情報システムを介して、被写体像を含む医療画像を取得する。医療画像は静止画像または動画(いわゆる検査動画)である。医療画像が動画である場合、医療画像取得部11は、検査後に動画を構成するフレーム画像を静止画像として取得することができる。また、医療画像が動画である場合、医療画像の表示には、動画を構成する1つの代表フレームの静止画像を表示することのほか、動画を1または複数回、再生することを含む。また、医療画像取得部11が取得する医療画像には、内視鏡システム21等の医療装置を用いて医師が撮影した画像の他、内視鏡システム21等の医療装置が医師の撮影指示に依らず自動的に撮影した画像を含む。なお、本実施形態では、画像処理システム10及び内視鏡システム21ともに医療画像を用いて画像処理を行うことから、画像処理システム10及び内視鏡システム21はいずれも医療画像処理システムに相当する。医療画像システムとしては、その他、リアルタイムに画像を取得して表示する超音波診断装置も含まれる。
 医療画像取得部11は、複数の医療画像を取得し得る場合、これらの医療画像のうち1または複数の医療画像を選択的に取得できる。また、医療画像取得部11は、複数の互いに異なる検査において取得した複数の医療画像を取得できる。例えば、過去に行った検査で取得した医療画像と、最新の検査で取得した医療画像と、の一方または両方を取得できる。すなわち、医療画像取得部11は、任意に医療画像を取得できる。
 本実施形態においては、被写体像を含む医療画像を複数取得する。より具体的には、1回の特定の検査において撮影した医療画像を取得し、かつ、1回の特定の検査において撮影した医療画像が複数ある場合には、一連の医療画像のうち複数の医療画像を取得する。また、本実施形態においては、画像処理システム10は、内視鏡システム21と接続し、内視鏡システム21から医療画像を取得する。すなわち、本実施形態において医療画像は、内視鏡画像である。
 表示部13は、医療画像取得部11が取得した医療画像、及び、医療画像解析処理部12の解析結果を表示するディスプレイである。画像処理システム10が接続するデバイス等が含むモニタまたはディスプレイを共用し、画像処理システム10の表示部13として使用できる。表示制御部15は、表示部13における医療画像及び解析結果の表示態様を制御する。
 入力受信部16は、画像処理システム10に接続するマウス、キーボード、その他操作デバイスからの入力を受け付ける。画像処理システム10の各部の動作はこれらの操作デバイスを用いて制御できる。
 統括制御部17は、画像処理システム10の各部の動作を統括的に制御する。入力受信部16が操作デバイスを用いた操作入力を受信した場合には、統括制御部17は、その操作入力にしたがって画像処理システム10の各部を制御する。
 保存部18は、画像処理システム10が含むメモリ等の記憶デバイス(図示しない)、または、内視鏡システム21等の医療装置もしくはPACS22が含む記憶デバイス(図示しない)に、医療画像の静止画等を保存する。
 図2に示すように、本実施形態において画像処理システム10が接続する内視鏡システム21は、白色の波長帯域の光もしくは特定の波長帯域の光の少なくともいずれかを照射して被写体を撮影することにより画像を取得する内視鏡31、内視鏡31を介して被写体内に照明光を照射する光源装置32、プロセッサ装置33、及び、内視鏡31を用いて撮影した内視鏡画像等の医療画像を表示するモニタ34を有する。内視鏡31が照明光に使用する特定の波長帯域の光は、例えば、緑色波長帯域よりも短波長帯域の光、特に可視域の青色帯域または紫色帯域の光である。
 プロセッサ装置33は、医療画像取得部35、医療画像解析処理部36、表示制御部37を備えている。医療画像取得部35は、内視鏡31から出力される医療画像を取得する。医療画像解析処理部36は、医療画像取得部35で取得した医療画像に対して、解析処理を行う。医療画像解析処理部36での処理内容は、画像処理システム10の医療画像解析処理部12での処理内容と同様である。表示制御部37は、医療画像解析処理部36で得られた医療画像をモニタ34(表示部)に表示する。プロセッサ装置33は画像処理システム10と接続される。なお、医療画像取得部35は医療画像取得部11と同様であり、医療画像解析処理部36は医療画像解析処理部12と同様であり、表示制御部37は表示制御部15と同様である。
 医療画像解析処理部36は、医療画像取得部11が取得した医療画像を用いて解析処理をする。図3に示すように、医療画像解析処理部36は、有効診断領域検出部40と、注目領域検出部42と、登録部44と、学習部46とを備える。
 有効診断領域検出部40は、医療画像のうち有効診断領域の検出に用いる第1医療画像から、ユーザーが診断対象とする注目領域が含まる可能性がある領域であって、観察対象のうち注目領域以外の注目領域対象外が除去された有効診断領域を検出する。ここで、注目領域とは、ユーザーが注目する領域であって、ユーザーが医師であれば診断を行う上で注目する領域を示す。具体的には、病変部などである。注目領域対象外は、ユーザーが診断対象とする注目領域に含まれる対象物とは明らかに異なる対象物である。注目領域対象外としては、例えば、注目領域が病変部であれば、図4に示すように、観察対象を覆う水たまり、血だまりなどの特定のたまり部48が含まれる。有効診断領域検出部40は、図4に示す第1医療画像に対しては、特定のたまり部48が除去された領域を有効診断領域として検出する。
 また、注目領域対象外には、図5に示すように、画像周辺部50に発生するひずみ(観察対象の撮像に用いられる対物レンズによるひずみ)や画像ぼけが含まれる。また、注目領域対象外には、観察対象が透明の粘膜に覆われていることによって生じる鏡面反射52が含まれる。有効診断領域検出部40は、図5に示す第1医療画像に対しては、画像周辺部50のひずみ、画像ぼけが除かれた領域を有効診断領域として検出する。また、注目領域対象外には、図6に示すように、泡54が含まれる。有効診断領域検出部40は、図6に示す第1医療画像に対しては、泡54が除かれた領域を有効診断領域として検出する。
 また、内視鏡31の挿入部の先端部にキャップを装着し、図7に示すように、医療画像上にキャップの縁部56が写り込んでいる場合には、注目領域対象外にはキャップの縁部56の画像も含まれる。有効診断領域検出部40は、図7に示す第1医療画像に対しては、キャップの縁部56が除かれた領域を有効診断領域として検出する。なお、以上のような注目領域対象外は、白色光を照明した場合に検出し易くなることから、有効診断領域の検出に用いる第1医療画像は、白色光によって照明された観察対象を撮像して得られる画像とすることが好ましい。また、第1医療画像については、後述する第2医療画像のように、青色の狭帯域光によって照明された観察対象を撮像して得られる画像としてもよい。
 有効診断領域検出部40は、図8に示すように、第1医療画像と有効診断領域に関する有効診断領域情報とを含む第1学習データを用いた学習によって得られる有効診断領域検出用モデル40aを備えている。有効診断領域検出用モデル40aは、第1医療画像60の入力に対して、有効診断領域に関する有効診断領域情報62、具体的には、第1医療画像のうち有効診断領域が占める位置情報を出力する。この出力された有効診断領域情報62によって、有効診断領域の検出が可能となる。有効診断領域検出用モデル40aは、図9に示すように、学習部46において、ディープラーニングなどの機械学習手法を用いて生成される。具体的には、学習部46は、登録部44に登録された第1学習データ44aを教師データとして用いて、有効診断領域検出用モデル40aを学習させる。
 例えば、図10に示すような、特定のたまり部48を有する第1医療画像60の場合であれば、第1医療画像のうち、特定のたまり部48の領域を、有効診断領域でないことを示すフラグ「0」とし、特定のたまり部48以外の領域を、有効診断領域であることを示すフラグ「1」とした二値化のデータを、有効診断領域情報62とすることが好ましい。ここで、フラグ「0」、「1」の指定については、ユーザーが、内視鏡システム21に接続されるユーザーインタフェース(図示しない)を操作して行われることが好ましい。また、注目領域対象外のうち暗部、鏡面反射52(図5参照)などのように、プロセッサ装置33の画像処理によって検出可能なものについては、フラグ「0」、「1」の指定を自動的に行うことで、第1医療画像を自動的に生成することも可能である。以上の第1医療画像60と有効診断領域情報62とは、それぞれを関連付けた第1学習データ44aとして、登録部44に登録される。登録部44に登録された第1学習データ44aが、有効診断領域検出用モデル40aに用いられる。
 以上のように、特定のたまり部48に限らず、画像ぼけ(図5参照)、鏡面反射52(図5参照)、泡54(図6参照)、キャップの縁部56(図7参照)、残渣、残液などの注目領域対象外については、病変等の診断を行うドクターでなくとも、内視鏡システム21を開発する研究者等でも、判別することが可能である。したがって、研究者等のより多くの関係者によって、有効診断領域の指定が可能になることから、第1学習データ44aは、後述する第2学習データ44bと比較して、より多く作成することが可能となる。
 注目領域検出部42は、有効診断領域検出部40での検出結果に基づいて、医療画像のうち注目領域の検出に用いる第2医療画像の有効診断領域RXから注目領域を検出する。具体的には、注目領域検出部42は、第2医療画像のうち有効診断領域RX(フラグ「1」)のみ注目領域の検出を行い、有効診断領域以外の領域RY(フラグ「0」)は注目領域の検出を行わない。ここで、注目領域検出部42で検出される注目領域は、例えば、がんに代表される病変部、良性腫瘍部、炎症部(いわゆる炎症の他、出血または萎縮等の変化がある部分を含む)、大腸憩室、治療痕(EMR(Endoscopic mucosal resection)瘢痕、ESD(Endoscopic Submucosal Dissection)瘢痕、クリップ箇所)、出血点、穿孔、血管異形性、加熱による焼灼跡もしくは着色剤、蛍光薬剤等による着色によってマーキングしたマーキング部、または、生体検査(いわゆる生検)を実施した生検実施部を含む領域である。すなわち、病変を含む領域、病変の可能性がある領域、生検等の何らかの処置をした領域、クリップやかん子などの処置具、または、暗部領域(ヒダ(襞)の裏、管腔奥のため観察光が届きにくい領域)など病変の可能性にかかわらず詳細な観察が必要である領域等が注目領域になり得る。内視鏡システム21においては、注目領域検出部42は、病変部、良性腫瘍部、炎症部、大腸憩室、治療痕、出血点、穿孔、血管異形性マーキング部、または、生検実施部のうち少なくともいずれかを含む領域を注目領域として検出する。
 なお、注目領域の中でも病変の領域を検出する場合には、青色の狭帯域光、例えば、波長帯域が400nm~450nmの狭帯域光を照明した場合に、血管構造又は腺管構造のように、病変の領域を特定するために有用な構造情報など検出し易くなることから、注目領域の検出に用いる第2医療画像は、青色の狭帯域光によって照明された観察対象を撮像して得られる画像とすることが好ましい。ここで、第1医療画像を白色光の画像とし、第2医療画像を青色の狭帯域光の画像とする場合、白色光と青色の狭帯域光とを交互に照明して撮像することになるため、第1医療画像と第2医療画像とは撮影のタイミングが異なる。そのため、第1医療画像と第2医療画像の位置合わせを行ってから、第1医療画像と第2医療画像に対して有効診断領域の設定を行うことが好ましい。例えば、第1医療画像の有効診断領域の検出を先に行った場合には、第2医療画像のうち第1医療画像の有効診断領域に対応する領域を、有効診断領域とすることが好ましい。画像の位置合わせでは、第2医療画像の形状に合うように、第1医療画像に対して位置合わせ処理を行うことが好ましい。なお、第2医療画像についても、第1医療画像と同様に、白色光によって照明された観察対象を撮像して得られる画像としてもよい。
 注目領域検出部42は、図11に示すように、第2医療画像と注目領域に関する注目領域情報とを含む第2学習データを用いた学習によって得られる注目領域検出用モデル42aを備えている。注目領域検出用モデル42aは、第2医療画像70の入力に対して、有効診断領域に関する注目領域情報72、具体的には、第2医療画像のうち注目領域が占める位置情報を出力する。この出力された注目領域情報72によって、注目領域の検出が可能となる。注目領域検出用モデル42aは、図12に示すように、学習部46において、ディープラーニングなどの機械学習手法を用いて生成される。具体的には、学習部46は、登録部44に登録された第1学習データ44aを教師データとして用いて、注目領域検出用モデル42aを学習させる。
 例えば、図13に示すような、特定の病変部74を有する第2医療画像70の場合であれば、第2医療画像70のうち、特定の病変部74以外領域を、注目領域でないことを示すフラグ「0」とし、特定の病変部74の領域を、注目領域であることを示すフラグ「1」とした二値化のデータを、注目領域情報72とすることが好ましい。ここで、フラグ「0」、「1」の指定については、医師など、注目領域の診断に知見を有するユーザーの指示に従って、内視鏡システム21に接続されるユーザーインタフェース(図示しない)を操作して行われることが好ましい。以上の第2医療画像70と注目領域情報72とは、それぞれを関連付けた第2学習データ44bとして、登録部44に登録される。登録部44に登録された第2学習データ44bが、注目領域検出用モデル42aの学習に用いられる。
 以上のように、注目領域検出部42は、注目領域対象外が除去された有効診断領域から注目領域を検出しているため、注目領域対象外が除去されていない画像から注目領域の検出を行う場合と比較して、学習のノイズとなる特徴が除かれていることによって、注目領域の検出精度が向上している。即ち、本実施形態では、「注目領域対象外の検出(有効診断領域以外の検出)」と「注目領域の検出」とを分けて行うことにより、病変などの注目領域の検出に必要な学習データの数を減らすことが可能となるため、最終的に注目領域の検出精度を向上させることができる。
 なお、図14に示すように、内視鏡システム21その他モダリティやPACS22とを組み合わせて使用する診断支援装置610は、上記実施形態及びその他変形例の画像処理システム10を含むことができる。また、図15に示すように、例えば内視鏡システム21を含む、第1検査装置621、第2検査装置622、…、第N検査装置633等の各種検査装置と任意のネットワーク626を介して接続する医療業務支援装置630は、上記実施形態及びその他変形例の画像処理システム10を含むことができる。
 なお、上記実施形態では、有効診断領域検出部40において、有効診断領域とそれ以外の注目領域対象外の領域とを区別して検出しているが、注目領域対象外についても複数種類に区別して検出するようにしてもよい。例えば、注目領域対象外として、泡、鏡面反射、キャップの周縁の画像、又は、正常な扁平上皮などそれぞれを区別して検出する。この場合には、検出された泡、鏡面反射、キャップの周縁の画像、又は、正常な扁平上皮などをそれぞれ除去した領域を有効診断領域とし、この有効診断領域から注目領域を検出する。
 この他、画像処理システム10、内視鏡システム21、及び、画像処理システム10を含む各種装置またはシステムは、以下の種々の変更等をして使用できる。
 医療画像としては、白色帯域の光、または白色帯域の光として複数の波長帯域の光を照射して得る通常光画像を用いることができる。
 医療画像としては、特定の波長帯域の光を照射して得た画像を使用する場合、特定の波長帯域は、白色の波長帯域よりも狭い帯域を用いることができる。
 特定の波長帯域は、例えば、可視域の青色帯域または緑色帯域である。
 特定の波長帯域が可視域の青色帯域または緑色帯域である場合、特定の波長帯域は、390nm以上450nm以下または530nm以上550nm以下の波長帯域を含み、かつ、特定の波長帯域の光は、390nm以上450nm以下または530nm以上550nm以下の波長帯域内にピーク波長を有することが好ましい。
 特定の波長帯域は、例えば、可視域の赤色帯域である。
 特定の波長帯域が可視域の赤色帯域である場合、特定の波長帯域は、585nm以上615nmまたは610nm以上730nm以下の波長帯域を含み、かつ、特定の波長帯域の光は、585nm以上615nm以下または610nm以上730nm以下の波長帯域内にピーク波長を有することが好ましい。
 特定の波長帯域は、例えば、酸化ヘモグロビンと還元ヘモグロビンとで吸光係数が異なる波長帯域を含み、かつ、特定の波長帯域の光は、酸化ヘモグロビンと還元ヘモグロビンとで吸光係数が異なる波長帯域にピーク波長を有することができる。
 特定の波長帯域が、酸化ヘモグロビンと還元ヘモグロビンとで吸光係数が異なる波長帯域を含み、かつ、特定の波長帯域の光は、酸化ヘモグロビンと還元ヘモグロビンとで吸光係数が異なる波長帯域にピーク波長を有する場合、特定の波長帯域は、400±10nm、440±10nm、470±10nm、または、600nm以上750nm以下の波長帯域を含み、かつ、特定の波長帯域の光は、400±10nm、440±10nm、470±10nm、または、600nm以上750nm以下の波長帯域にピーク波長を有することが好ましい。
 医療画像が生体内を写した生体内画像である場合、この生体内画像は、生体内の蛍光物質が発する蛍光の情報を有することができる。
 また、蛍光は、ピーク波長が390nm以上470nm以下である励起光を生体内に照射して得る蛍光を利用できる。
 医療画像が生体内を写した生体内画像である場合、前述の特定の波長帯域は、赤外光の波長帯域を利用することができる。
 医療画像が生体内を写した生体内画像であり、前述の特定の波長帯域として、赤外光の波長帯域を利用する場合、特定の波長帯域は、790nm以上820nmまたは905nm以上970nm以下の波長帯域を含み、かつ、特定の波長帯域の光は、790nm以上820nm以下または905nm以上970nm以下の波長帯域にピーク波長を有することが好ましい。
 医療画像取得部11は、白色帯域の光、または白色帯域の光として複数の波長帯域の光を照射して得る通常光画像に基づいて、特定の波長帯域の信号を有する特殊光画像を取得する特殊光画像取得部を有することができる。この場合、医療画像として特殊光画像を利用できる。
 特定の波長帯域の信号は、通常光画像に含むRGBまたはCMYの色情報に基づく演算により得ることができる。
 白色帯域の光、または白色帯域の光として複数の波長帯域の光を照射して得る通常光画像と、特定の波長帯域の光を照射して得る特殊光画像との少なくとも一方に基づく演算によって、特徴量画像を生成する特徴量画像生成部を備えることができる。この場合、医療画像として特徴量画像を利用できる。
 内視鏡システム21については、内視鏡31としてカプセル内視鏡を使用できる。この場合、光源装置32と、プロセッサ装置33の一部と、はカプセル内視鏡に搭載できる。
 上記実施形態及び変形例において、医療画像取得部11、医療画像解析処理部12及び医療画像解析処理部12を構成する各部、表示制御部15、入力受信部16、統括制御部17、並びに、医療画像取得部35、医療画像解析処理部36、表示制御部37、有効診断領域検出部40、注目領域検出部42、登録部44、学習部46といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウエア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA (Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、各種の処理を実行するために専用に設計された回路構成を有するプロセッサである専用電気回路、GPU (Graphical Processing Unit)などが含まれる。
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合せ(例えば、複数のFPGAや、CPUとFPGAの組み合わせ、CPUとGPUの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウエアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた形態の電気回路(circuitry)である。また、記憶部のハードウェア的な構造はHDD(hard disc drive)やSSD(solid state drive)等の記憶装置である。
 本発明は、以下の別形態により実施可能である。
 プロセッサ装置において、
 医療画像取得部によって、観察対象を撮像して得られる第1医療画像を取得し、
 有効診断領域検出部によって、第1医療画像から、観察対象のうち注目領域以外の注目領域対象外が除去された有効診断領域を検出し、
 注目領域検出部によって、有効診断領域から注目領域を検出し、
 有効診断領域検出部によって有効診断領域を検出する際には、有効診断領域検出部によって、第1医療画像と有効診断領域に関する有効診断領域情報とを含む第1学習データを用いた学習によって得られる有効診断領域検出用モデルを用いて、第1医療画像から有効診断領域を検出するプロセッサ装置。
10 画像処理システム
11 医療画像取得部
12 医療画像解析処理部
13 表示部
15 表示制御部
16 入力受信部
17 統括制御部
18 保存部
21 内視鏡システム
22 PACS
31 内視鏡
32 光源装置
33 プロセッサ装置
34 モニタ
35 医療画像取得部
36 医療画像解析処理部
37 表示制御部
40 有効診断領域検出部
40a 有効診断領域検出用モデル
42 注目領域検出部
42a 注目領域検出用モデル
44 登録部
44a 第1学習データ
44b 第2学習データ
46 学習部
48 特定のたまり部
50 画像周辺部
52 鏡面反射
54 泡
56 縁部
60 第1医療画像
62 有効診断領域情報
70 第2医療画像
72 注目領域情報
74 病変部
610 診断支援装置
621 第1検査装置
622 第2検査装置
623 第N検査装置
626 ネットワーク
630 医療業務支援装置

Claims (10)

  1.  観察対象を撮像して得られる第1医療画像を取得する医療画像取得部と、
     前記第1医療画像から、前記観察対象のうち注目領域以外の注目領域対象外が除去された有効診断領域を検出する有効診断領域検出部と、
     前記有効診断領域から前記注目領域を検出する注目領域検出部とを備え、
     前記有効診断領域検出部は、前記第1医療画像と前記有効診断領域に関する有効診断領域情報とを含む第1学習データを用いた学習によって得られる有効診断領域検出用モデルを用いて、前記第1医療画像から前記有効診断領域を検出する医療画像処理システム。
  2.  前記注目領域検出部は、前記有効診断領域と前記注目領域とを含む第2学習データを用いた学習によって得られる注目領域検出用モデルを用いて、前記有効診断領域から前記注目領域を検出する請求項1記載の医療画像処理システム。
  3.  前記第1医療画像は白色光が照明された観察対象を撮像して得られる請求項1または2記載の医療画像処理システム。
  4.  前記医療画像取得部は、前記第1医療画像と異なる第2医療画像を取得し、
     前記注目領域検出部は、前記第2医療画像の前記有効診断領域から前記注目領域を検出する請求項1ないし3いずれか1項記載の医療画像処理システム。
  5.  前記第2医療画像は青色の狭帯域光が照明された観察対象を撮像して得られる請求項4記載の医療画像処理システム。
  6.  前記注目領域対象外には、水たまり、血たまり、暗部、鏡面反射、ひずみ、画像ぼけ、泡、キャップ、残渣、残液が含まれる請求項1ないし5いずれか1項記載の医療画像処理システム。
  7.  観察対象を撮像して得られる第1医療画像と、前記観察対象のうち注目領域以外の注目領域対象外が除去された有効診断領域に関する有効診断領域情報とを含む第1学習データを登録する登録部と、
     前記第1学習データを複数用いて、前記第1医療画像の入力に対して、前記有効診断領域を出力する有効診断領域検出用モデルを生成するための学習を行う学習部とを備える医療画像処理システム。
  8.  前記登録部は、前記有効診断領域と前記注目領域とを含む第2学習データを登録しており、
     前記学習部は、前記第2学習データを用いて、前記有効診断領域の入力に対して、前記注目領域を出力する注目領域検出用モデルを生成するための学習を行う請求項7記載の医療画像処理システム。
  9.  学習部が、観察対象を撮像して得られる第1医療画像と、前記観察対象のうち注目領域以外の注目領域対象外が除去された有効診断領域に関する有効診断領域情報とを含む第1学習データを複数用いて、前記第1医療画像の入力に対して、前記有効診断領域を出力する有効診断領域検出用モデルを生成するための第1学習ステップを有する学習方法。
  10.  前記学習部が、前記有効診断領域と前記注目領域とを含む第2学習データを複数用いて、前記有効診断領域の入力に対して、前記注目領域を出力する注目領域検出用モデルを生成するための学習を行う第2学習ステップを有する請求項9記載の学習方法。
PCT/JP2019/040247 2018-10-16 2019-10-11 医療画像処理システム及び学習方法 WO2020080299A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19873567.2A EP3868281A4 (en) 2018-10-16 2019-10-11 MEDICAL IMAGE PROCESSING SYSTEM AND LEARNING PROCESS
JP2020553158A JP7092888B2 (ja) 2018-10-16 2019-10-11 医療画像処理システム及び学習方法
CN201980068112.1A CN112867430A (zh) 2018-10-16 2019-10-11 医疗图像处理系统及学习方法
US17/225,872 US11830185B2 (en) 2018-10-16 2021-04-08 Medical image processing system and learning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-195034 2018-10-16
JP2018195034 2018-10-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/225,872 Continuation US11830185B2 (en) 2018-10-16 2021-04-08 Medical image processing system and learning method

Publications (1)

Publication Number Publication Date
WO2020080299A1 true WO2020080299A1 (ja) 2020-04-23

Family

ID=70284621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040247 WO2020080299A1 (ja) 2018-10-16 2019-10-11 医療画像処理システム及び学習方法

Country Status (5)

Country Link
US (1) US11830185B2 (ja)
EP (1) EP3868281A4 (ja)
JP (1) JP7092888B2 (ja)
CN (1) CN112867430A (ja)
WO (1) WO2020080299A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143340A (ja) 2011-01-11 2012-08-02 Olympus Corp 画像処理装置、画像処理方法、及び画像処理プログラム
WO2017002184A1 (ja) 2015-06-29 2017-01-05 オリンパス株式会社 画像処理装置、内視鏡システム、画像処理方法、及び画像処理プログラム
WO2018008593A1 (ja) 2016-07-04 2018-01-11 日本電気株式会社 画像診断学習装置、画像診断装置、方法およびプログラムを格納する記憶媒体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5959168B2 (ja) * 2011-08-31 2016-08-02 オリンパス株式会社 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
JP5662623B1 (ja) * 2013-03-27 2015-02-04 富士フイルム株式会社 画像処理装置及び内視鏡システムの作動方法
EP3248528A4 (en) * 2015-01-21 2018-09-12 HOYA Corporation Endoscope system
US20190236497A1 (en) * 2018-01-31 2019-08-01 Koninklijke Philips N.V. System and method for automated model selection for key performance indicator forecasting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143340A (ja) 2011-01-11 2012-08-02 Olympus Corp 画像処理装置、画像処理方法、及び画像処理プログラム
WO2017002184A1 (ja) 2015-06-29 2017-01-05 オリンパス株式会社 画像処理装置、内視鏡システム、画像処理方法、及び画像処理プログラム
WO2018008593A1 (ja) 2016-07-04 2018-01-11 日本電気株式会社 画像診断学習装置、画像診断装置、方法およびプログラムを格納する記憶媒体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN, HONGHAN ET AL.: "Automatic content understanding with cascaded spatial-temporal deep framework for capsule endoscopy videos", NEUROCOMPUTING, vol. 229, 2017, pages 77 - 87, XP029894416, ISSN: 0925-2312, DOI: 10.1016/j.neucom.2016.06.077 *
FUNKE, ISABEL ET AL.: "Generative adversarial networks for specular highlight removal in endoscopic images", PROCEEDINGS OF SPIE, vol. 10576, 12 March 2018 (2018-03-12), pages 1 - 9, XP060106745, ISSN: 0277-786X, DOI: 10.1117/12.2293755 *
RODRIGUEZ-SANCHEZ, ANTONIO ET AL.: "A deep learning approach for detecting and correcting highlights in endoscopic images", 2017 SEVENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY , TOOLS AND APPLICATIONS (IPTA, 2017, XP033328182, ISSN: 2154-512X *
See also references of EP3868281A4

Also Published As

Publication number Publication date
JPWO2020080299A1 (ja) 2021-09-30
US11830185B2 (en) 2023-11-28
JP7092888B2 (ja) 2022-06-28
US20210224989A1 (en) 2021-07-22
EP3868281A1 (en) 2021-08-25
EP3868281A4 (en) 2021-12-08
CN112867430A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
US20210153722A1 (en) Medical image processing system
US11867896B2 (en) Endoscope system and medical image processing system
CN111050628B (zh) 医疗图像处理装置
EP3841953B1 (en) Medical image processing system
CN112512398B (zh) 医疗图像处理装置
CN112584739B (zh) 医疗图像处理系统
WO2020039685A1 (ja) 医療画像処理装置
US11954897B2 (en) Medical image processing system, recognition processing processor device, and operation method of medical image processing system
US11830185B2 (en) Medical image processing system and learning method
WO2022065301A1 (ja) 医療画像装置及びその作動方法
JP6866497B2 (ja) 医療画像処理装置、及び、内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019873567

Country of ref document: EP

Effective date: 20210517