WO2020080205A1 - Thermoplastic resin composition, and optical lens or film using same - Google Patents

Thermoplastic resin composition, and optical lens or film using same Download PDF

Info

Publication number
WO2020080205A1
WO2020080205A1 PCT/JP2019/039730 JP2019039730W WO2020080205A1 WO 2020080205 A1 WO2020080205 A1 WO 2020080205A1 JP 2019039730 W JP2019039730 W JP 2019039730W WO 2020080205 A1 WO2020080205 A1 WO 2020080205A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
thermoplastic resin
resin composition
carboxylic acid
structural unit
Prior art date
Application number
PCT/JP2019/039730
Other languages
French (fr)
Japanese (ja)
Inventor
宗憲 白武
健太朗 石原
晃司 廣瀬
慎也 池田
加藤 宣之
近藤 光輝
章子 鈴木
健輔 大島
正大 神田
平川 学
勇太 中西
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020217010987A priority Critical patent/KR20210076002A/en
Priority to JP2020553098A priority patent/JPWO2020080205A1/en
Priority to CN201980067699.4A priority patent/CN112867762B/en
Publication of WO2020080205A1 publication Critical patent/WO2020080205A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/226General preparatory processes using carbonyl halides and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • C08L69/005Polyester-carbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a novel thermoplastic resin composition and an optical lens or film formed by it.
  • a preferred embodiment of the present invention relates to a thermoplastic resin composition excellent in at least one of Abbe number, refractive index, specific heat capacity, glass transition temperature (heat resistance), hue and haze.
  • Optical glass or optical transparent resin is used as a material for optical elements used in the optical system of various cameras such as cameras, film-integrated cameras, and video cameras.
  • Optical glass has excellent heat resistance, transparency, dimensional stability, chemical resistance, etc., and there are various types of materials with various refractive indices (nD) and Abbe numbers ( ⁇ D), but the material cost is high. In addition to being high, it has problems of poor moldability and low productivity. In particular, processing an aspherical lens used for aberration correction requires extremely high technology and high cost, which is a major obstacle to practical use.
  • transparent lenses for optics especially optical lenses made of thermoplastic transparent resin
  • Is used as. Examples thereof include polycarbonate made of bisphenol A, polystyrene, poly-4-methylpentene, polymethylmethacrylate, and amorphous polyolefin.
  • the transparent resin for optics is used as an optical lens
  • transparency, heat resistance, and low birefringence are required in addition to the refractive index and the Abbe number, so that the use location is limited by the characteristic balance of the resin.
  • polystyrene has low heat resistance and high birefringence
  • poly-4-methylpentene has low heat resistance
  • polymethylmethacrylate has low glass transition temperature, low heat resistance, and low refractive index, so its application area is limited.
  • Polycarbonate composed of bisphenol A is not preferable because it has weak points such as large birefringence and is limited in places of use.
  • a lens element having the same refractive index can be realized by a surface having a smaller curvature, so that the amount of aberration generated on this surface can be reduced, the number of lenses can be reduced, and Since it is possible to reduce the size and weight of the lens system by reducing the decentering sensitivity and the lens thickness, it is useful to increase the refractive index.
  • CMOS complementary metal-oxide-semiconductor
  • CMOS complementary metal-oxide-semiconductor
  • cycloolefin polymers have been widely used for optical lens applications because of their excellent heat resistance and excellent mechanical properties.
  • Polyester and polycarbonate are examples of low Abbe number resins.
  • the resin described in Patent Document 1 is characterized by a high refractive index and a low Abbe number.
  • Patent Documents 2 to 4 describe polycarbonate copolymers containing a perhydroxydimethanonaphthalene skeleton. However, since the positions of dihydroxymethyl groups are all at the 2 and 3 positions, the strength is weak and it is suitable for optical lens applications. Is not suitable. Furthermore, the polycarbonates described in Patent Documents 2 to 4 have a low glass transition temperature (Tg), and therefore have a problem in heat resistance. For example, the polycarbonate of HOMO described in Example 1 of Patent Document 4 has a low glass transition temperature (Tg) of 125 ° C. despite having a number average molecular weight of 38,000.
  • Tg glass transition temperature
  • the present invention aims to solve at least one of the above-mentioned conventional problems. Further, a preferred embodiment of the present invention aims to provide a thermoplastic resin composition excellent in at least one of Abbe number, refractive index, specific heat capacity, glass transition temperature (heat resistance), hue, and haze. .
  • thermoplastic resin composition can solve the above problems, and have reached the present invention.
  • thermoplastic resin composition containing a thermoplastic resin containing a structural unit represented by the following formula (1):
  • a terminal structure of the thermoplastic resin includes a structure represented by the following formula (A) or formula (B), and the thermoplastic resin has a polystyrene-reduced weight average molecular weight of 1,000 to 50,000. It is a plastic resin composition.
  • thermoplastic resin composition according to ⁇ 1> wherein the thermoplastic resin further contains a structural unit represented by the following formula (2).
  • R represents hydrogen, a methyl group, or an ethyl group.
  • thermoplastic resin further contains a structural unit represented by the following formula (3).
  • R represents hydrogen, a methyl group, or an ethyl group.
  • the mass ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (A) is represented by the structural unit represented by the formula (1): the formula (A).
  • the constitutional unit 97.0: 3.00 to 99.99: 0.01, which is the thermoplastic resin composition according to any one of ⁇ 1> to ⁇ 3> above.
  • the mass ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (B) is represented by the structural unit represented by the formula (1): the formula (B).
  • the constitutional unit is 99.00: 1.00 to 99.99: 0.01, and the thermoplastic resin composition according to any one of ⁇ 1> to ⁇ 3> above.
  • thermoplastic resin composition according to ⁇ 2> The mass ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (2) is represented by the structural unit represented by the formula (1): the formula (2).
  • the structural unit is 98.0: 2.00 to 99.99: 0.01.
  • the mass ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (3) is represented by the structural unit represented by the formula (1): the formula (3).
  • the constitutional unit is 98.0: 2.00 to 99.99: 0.01, and the thermoplastic resin composition according to ⁇ 3> above.
  • carboxylic acid salt in Ra is sodium carboxylate.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a carbon atom. Selected from the group consisting of a cycloalkoxyl group having 5 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and a halogen atom; and X's each independently being branched.
  • thermoplastic resin composition (A good alkylene group having 1 to 6 carbon atoms; n is each independently an integer of 0 to 5.)
  • n is each independently an integer of 0 to 5.
  • the additive contains two or more kinds of antioxidants and a release agent.
  • the content of the antioxidant is 0.50% by mass or less in the thermoplastic resin composition
  • the content of the release agent is 0.50% by mass or less in the thermoplastic resin composition.
  • thermoplastic resin composition according to any one of ⁇ 1> to ⁇ 14>, which contains at least one monomer selected from the group consisting of the compounds represented by (d).
  • thermoplastic resin composition according to any one of ⁇ 1> to ⁇ 15>, which has a specific heat capacity of 450 J / g ⁇ ° C or less.
  • thermoplastic resin composition according to any one of ⁇ 1> to ⁇ 16>, wherein the thermoplastic resin is polycarbonate, polyester carbonate, or polyester.
  • thermoplastic resin composition An optical lens using the thermoplastic resin composition according to any one of ⁇ 1> to ⁇ 17>.
  • ⁇ 19> A film using the thermoplastic resin composition according to any one of ⁇ 1> to ⁇ 17>.
  • ⁇ 20> At least a dihydroxy compound represented by the following formula (I), Selected from the group consisting of a compound represented by the following formula (a), a compound represented by the following formula (b), a compound represented by the following formula (c), and a compound represented by the following formula (d)
  • a method of producing a thermoplastic resin composition by reacting at least one compound with The production method is such that the total amount of the at least one compound is 10% or less with respect to the mass of the dihydroxy compound represented by the formula (I).
  • R represents hydrogen, a methyl group, or an ethyl group.
  • Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.
  • Rb represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.
  • thermoplastic resin composition excellent in at least one of Abbe number, refractive index, specific heat capacity, glass transition temperature (heat resistance), hue, and haze. Also, an optical lens or film produced from this resin composition can be obtained.
  • thermoplastic resin of the present invention contains a structural unit represented by the following formula (1) (hereinafter referred to as “structural unit (1)”). Examples thereof include structural units derived from decahydro-1,4: 5,8-dimethanonaphthalenediol (sometimes referred to as D-NDM). As will be described later, the structural unit (1) is obtained, for example, by reacting a diol compound represented by the formula (I) with a carbonic acid diester.
  • the thermoplastic resin of the present invention include polycarbonate, polyester carbonate, and polyester. Among them, polycarbonate resin is preferred.
  • R represents hydrogen, a methyl group, or an ethyl group, and preferably R represents hydrogen.
  • the terminal structure of the thermoplastic resin of the present invention includes a structure represented by the following formula (A) or formula (B).
  • Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.
  • the carboxylic acid ester include carboxylic acid methyl ester and carboxylic acid phenyl ester.
  • carboxylate sodium carboxylate is preferably mentioned.
  • the mass of the structural unit represented by the formula (A) is less than the above range, at least one of specific heat capacity, hue, and haze may be inferior.
  • the mass of the structural unit represented by the formula (A) is more than the above range, the hue and heat resistance of the polymer may be deteriorated.
  • the mass ratio of the constitutional unit represented by the formula (1) and the constitutional unit represented by the formula (B) is represented by the constitutional unit represented by the formula (1): the formula (B).
  • Structural unit 99.00: 1.00 to 99.99: 0.01 is preferable, 99.00: 1.00 to 99.95: 0.05 is more preferable, and 99.50: 0.50 to 99. 90: 0.10 is more preferable, and 99.70: 0.30 to 99.90: 0.10 is particularly preferable.
  • the mass of the structural unit represented by the formula (B) is less than the above range, at least one of specific heat capacity, hue, and haze may be inferior.
  • thermoplastic resin of the present invention preferably has both the structure represented by the formula (A) and the structure represented by the formula (B) from the viewpoint of specific heat capacity.
  • the thermoplastic resin of the present invention may contain other structural units in addition to the resin having only the structural unit (1) and the structure represented by the formula (A) or the formula (B).
  • Preferred examples of the other structural unit include a structural unit represented by the following formula (2), a structural unit represented by the following formula (3), and a structural unit represented by the following formula (4).
  • R represents hydrogen, a methyl group, or an ethyl group, and preferably R represents hydrogen.
  • R represents hydrogen, a methyl group, or an ethyl group, and preferably R represents hydrogen.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a carbon number. It is selected from the group consisting of a cycloalkoxyl group having 5 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and a halogen atom, and preferably selected from a hydrogen atom and a phenyl group.
  • X's each independently represent an optionally branched alkylene group having 1 to 6 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms, and more preferably ethylene.
  • n independently represents an integer of 0 to 5, preferably 1 or 2, and more preferably 1.
  • Constitutional unit represented by the formula (2) 99.00: 2.00 to 100: 0 is preferable, 99.00: 2.00 to 99.99: 0.01 is more preferable, and 99.00: 1.00 to 99.99: 0.01 is preferable. More preferably, 99.05: 0.95 to 99.99: 0.01 is particularly preferable.
  • Constitutional unit represented by the formula (3) 99.00: 2.00 to 100: 0 is preferable, 99.00: 2.0 to 99.99: 0.01 is more preferable, and 99.00: 1.00 to 99.99: 0.01 is preferable. More preferably, 99.05: 0.95 to 99.99: 0.01 is particularly preferable.
  • Constitutional unit represented by the formula (4) 99: 1 to 1:99 is preferable, 90:10 to 10:90 is more preferable, 75:25 to 50:50 is further preferable, and 70:30 to 60:40 is particularly preferable.
  • the mass of the structural unit represented by the above formula (4) is in the above range, the moldability is improved, and for example, the strength of the molded body such as impact strength is improved, which is preferable.
  • thermoplastic resin of the present invention may contain other structural units in addition to the above structural units.
  • Other constituent units that may be included include constituent units obtained by reacting a diol compound other than the formula (I) with a carbonic acid diester.
  • Examples of the diol compound other than the formula (I) include bisphenol A and bisphenol AP.
  • thermoplastic resin composition of the present invention is represented by the compound represented by the following formula (I), the compound represented by the following formula (a), the compound represented by the following formula (b), and the following formula (c). And a compound represented by the following formula (d), at least one of which is selected from the group consisting of compounds represented by the following formula (d), thereby reducing specific heat capacity, decreasing crystallinity, and reducing haze: It is preferable because the fluidity when melted for the molecular weight is improved and precision molding of an optical molded article or the like is facilitated.
  • R represents hydrogen, a methyl group, or an ethyl group, and preferably R represents hydrogen.
  • Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.
  • the carboxylic acid ester include carboxylic acid methyl ester and carboxylic acid phenyl ester.
  • sodium carboxylate is preferably mentioned.
  • Rb represents hydrogen, carboxylic acid, carboxylic acid ester, or carboxylic acid salt.
  • the carboxylic acid ester include carboxylic acid methyl ester and carboxylic acid phenyl ester.
  • sodium carboxylate is preferably mentioned.
  • the polystyrene equivalent weight average molecular weight (Mw) of the thermoplastic resin of the present invention is 1,000 to 50,000.
  • the weight average molecular weight (Mw) in terms of polystyrene is preferably 10,000 to 40,000, and more preferably 20,000 to 30,000. If the Mw is less than 1,000, the optical lens becomes brittle, which is not preferable. When the Mw is more than 50,000, the melt viscosity becomes high, so that it is difficult to remove the resin after production, and further, the fluidity is deteriorated and injection molding in a molten state becomes difficult, which is not preferable.
  • the thermoplastic resin composition of the present invention may contain additives.
  • the additive preferably contains two or more kinds of antioxidants and a release agent. The reason is that the antioxidant effect and the releasability are synergistically improved when two or more kinds of antioxidants and a release agent are added, rather than when they are added one by one.
  • Antioxidants include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] and 1,6-hexanediol-bis [3- (3,5-di -Tert-butyl-4-hydroxyphenyl) propionate], pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N, N-hexamethylene Bis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamide), 3,5-di-ter -Butyl-4-hydroxy-benzylphosphonate-diethyl este
  • the release agent it is preferable that 90% by weight or more thereof is composed of an ester of alcohol and fatty acid.
  • the ester of alcohol and fatty acid include an ester of monohydric alcohol and fatty acid, and a partial ester or total ester of polyhydric alcohol and fatty acid.
  • the ester of monohydric alcohol and fatty acid is preferably ester of monohydric alcohol having 1 to 20 carbon atoms and saturated fatty acid having 10 to 30 carbon atoms.
  • the partial ester or total ester of polyhydric alcohol and fatty acid partial ester or total ester of polyhydric alcohol having 1 to 25 carbon atoms and saturated fatty acid having 10 to 30 carbon atoms is preferable.
  • ester of monohydric alcohol and saturated fatty acid examples include stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate and isopropyl palmitate.
  • the content of the release agent in the thermoplastic resin composition is preferably 0.50% by mass or less, more preferably 0.01 to 0.10% by mass, and 0.03 to 0. It is particularly preferable that the content is 05% by mass.
  • thermoplastic resin composition of the present invention as other additives, an ultraviolet absorber, a fluidity modifier, a crystal nucleating agent, a reinforcing agent, a dye, an antistatic agent, a bluing agent or an antibacterial agent is added. You may.
  • the diol compound represented by the above formula (I) includes dicyclopentadiene or cyclopentadiene and an olefin having a functional group, as shown in WO2017 / 175693. It can be synthesized as a raw material.
  • thermoplastic resin of the present invention contains at least a dihydroxy compound represented by the following formula (I): Selected from the group consisting of a compound represented by the following formula (a), a compound represented by the following formula (b), a compound represented by the following formula (c), and a compound represented by the following formula (d)
  • a method of producing a thermoplastic resin composition by reacting at least one compound with It can be produced by a production method in which the total amount of the at least one compound is 10% or less based on the mass of the dihydroxy compound represented by the formula (I).
  • the total amount of the at least one compound is preferably 0.005 to 3.0%, and preferably 0.1 to 1.0, with respect to the mass of the dihydroxy compound represented by the formula (I).
  • the total amount of the at least one compound is more than 10% with respect to the mass of the dihydroxy compound represented by the formula (I), the reactivity during polymerization is lowered, the molecular weight does not increase, and the pellets are stable. Cannot be transformed. Even if it can be pelletized, it cannot be stably molded, and a desired molded product cannot be obtained in a mold.
  • the formula (a), the formula (b), and the formula (c) when Ra is hydrogen, the reactivity during the polymerization is lowered, and the molecular weight is difficult to increase.
  • Ra in the formula (c) is a carboxylic acid or a carboxylic acid ester
  • the hue of the resulting resin tends to deteriorate, and the heat resistance tends to deteriorate.
  • R represents hydrogen, a methyl group, or an ethyl group, and preferably R represents hydrogen.
  • Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.
  • carboxylic acid ester examples include carboxylic acid methyl ester and carboxylic acid phenyl ester. Further, as the carboxylate, sodium carboxylate is preferably mentioned.
  • Rb represents hydrogen, carboxylic acid, carboxylic acid ester, or carboxylic acid salt.
  • carboxylic acid ester examples include carboxylic acid methyl ester and carboxylic acid phenyl ester. Further, as the carboxylate, sodium carboxylate is preferably mentioned.
  • thermoplastic resin of the present invention is a polycarbonate resin
  • a diol compound represented by the formula (I) at least one of the compounds represented by the formulas (a) to (d), and a carbonic acid diester are used as raw materials. It can be produced by a melt polycondensation method.
  • 2,6-position isomer: 2,7-position isomer 20: 80 to 80:20
  • more preferably 2,6-position isomer: 2,7-position isomer 50: 50 to 80:20.
  • other diol compounds may be used together.
  • the polycondensation catalyst can be produced in the presence of a basic compound catalyst, a transesterification catalyst, or a mixed catalyst composed of both.
  • carbonic acid diesters examples include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate and the like.
  • diphenyl carbonate is particularly preferable from the viewpoint of reactivity and purity.
  • the carbonic acid diester is preferably used in a ratio of 0.97 to 1.20 mol, and more preferably 0.98 to 1.10 mol, based on 1 mol of the diol component.
  • the molecular weight of the polycarbonate resin is controlled by adjusting this molar ratio.
  • Examples of basic compound catalysts include alkali metal compounds, alkaline earth metal compounds, and nitrogen-containing compounds.
  • alkali metal compound used in the present invention examples include organic acid salts, inorganic salts, oxides, hydroxides, hydrides or alkoxides of alkali metals.
  • Sodium carbonate and sodium hydrogen carbonate are preferable from the viewpoints of catalytic effect, price, distribution amount, influence on the hue of resin, and the like.
  • alkaline earth metal compound examples include organic acid salts, inorganic salts, oxides, hydroxides, hydrides or alkoxides of alkaline earth metal compounds.
  • nitrogen-containing compounds include quaternary ammonium hydroxide and salts thereof, amines and the like.
  • salts of zinc, tin, zirconium and lead are preferably used, and these can be used alone or in combination. Further, it may be used in combination with the above-mentioned alkali metal compound or alkaline earth metal compound.
  • These catalysts are used in a ratio of 1 ⁇ 10 ⁇ 9 to 1 ⁇ 10 ⁇ 3 mol, preferably 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 4 mol, based on 1 mol of the total amount of the diol compound. .
  • the melt polycondensation method is a method of performing melt polycondensation using the above-mentioned raw materials and catalysts while removing by-products by transesterification under heating under normal pressure or reduced pressure.
  • the reaction is generally carried out in multiple stages of two or more stages.
  • the first stage reaction is carried out at a temperature of 120 to 260 ° C., preferably 180 to 240 ° C. for 0.1 to 5 hours, preferably 0.5 to 3 hours. Then, the reaction temperature is raised while raising the degree of vacuum in the reaction system to react the diol compound with the carbonic acid diester, and finally polycondensation is carried out under a reduced pressure of 1 mmHg or less at a temperature of 200 to 350 ° C for 0.05 to 2 hours. Perform the reaction. Such a reaction may be carried out continuously or batchwise.
  • the reactor used when carrying out the above reaction is a vertical type equipped with an anchor type stirring blade, Maxblend stirring blade, helical ribbon type stirring blade, etc., but equipped with paddle blades, lattice blades, eyeglass blades, etc. It may be a horizontal type or an extruder type equipped with a screw, and it is preferable to use a reactor in which these are appropriately combined in consideration of the viscosity of the polymer.
  • the catalyst may be removed or deactivated after the completion of the polymerization reaction in order to maintain thermal stability and hydrolysis stability.
  • a method of deactivating the catalyst by adding a known acidic substance is preferably carried out.
  • butyl p-toluenesulfonate is used in an amount of 0.01 to 50 times, preferably 0.3 to 20 times the molar amount of the catalyst.
  • the amount is less than 0.01 times the molar amount of the catalyst, the deactivating effect becomes insufficient, which is not preferable.
  • the amount is more than 50 times the molar amount of the catalyst, the heat resistance is lowered and the molded product is easily colored, which is not preferable.
  • a step of devolatilizing low-boiling compounds in the polymer at a pressure of 0.1 to 1 mmHg and a temperature of 200 to 350 ° C. may be provided.
  • paddle blades, lattice blades, glasses A horizontal device provided with a stirring blade having excellent surface renewal ability, such as a blade, or a thin film evaporator is preferably used.
  • the thermoplastic resin of the present invention is desired to have a foreign matter content as small as possible, and thus the molten raw material and the catalyst liquid are preferably filtered.
  • the mesh of the filter is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less. Further, filtration of the produced resin with a polymer filter is preferably carried out.
  • the mesh of the polymer filter is preferably 100 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the step of collecting the resin pellets must be in a low dust environment, and is preferably class 1000 or less, more preferably class 100 or less.
  • thermoplastic resin of a preferred embodiment of the present invention is excellent in at least one of Abbe number, refractive index, specific heat capacity, glass transition temperature (heat resistance), hue, and haze.
  • the specific heat capacity of the thermoplastic resin of the present invention is preferably 450 J / g ⁇ ° C. or less, more preferably 1 to 400 J / g ⁇ ° C. G, further preferably 50 to 300 J / g ⁇ ° C., further preferably 100 to 300 J / g ⁇ ° C. Is more preferable, and 200 to 300 J / g ⁇ ° C. is particularly preferable.
  • the specific heat capacity is 450 J / g ⁇ ° C.
  • the glass transition temperature (Tg) of the thermoplastic resin of the present invention is preferably 95 to 180 ° C, more preferably 110 to 160 ° C, and particularly preferably 120 to 160 ° C. If the Tg is lower than 95 ° C., the operating temperature range of the lens or camera becomes narrow, which is not preferable. Further, if the temperature exceeds 180 ° C., the molding conditions for injection molding become strict, which is not preferable.
  • the thermoplastic resin of the present invention preferably has a refractive index of 1.50 to 1.65 measured by the method of JIS-K-7142 after molding, and more preferably 1.53 to 1.58.
  • the thermoplastic resin of the present invention has an Abbe's number of 25 or more, preferably 35 or more, more preferably 45 or more, measured by the method of JIS-K-7142 after molding. The upper limit of the Abbe number is about 55.
  • the hue (YI) of the thermoplastic resin of the present invention is preferably 0.1 to 5.0, more preferably 1.0 to 3.5, and particularly preferably 2.0 to 3.0.
  • the haze (Hz) of the thermoplastic resin of the present invention is preferably 0.1 to 0.5, more preferably 0.1 to 0.2.
  • thermoplastic resin of the present invention phenol produced during production and carbonic acid diester remaining without reaction may be present as impurities.
  • the phenol content in the thermoplastic resin is preferably 0.1 to 3000 ppm, more preferably 0.1 to 2000 ppm, and 1 to 1000 ppm, 1 to 800 ppm, 1 to 500 ppm, or 1 to 300 ppm. Is particularly preferred.
  • the content of carbonic acid diester in the thermoplastic resin is preferably 0.1 to 1000 ppm, more preferably 0.1 to 500 ppm, and particularly preferably 1 to 100 ppm.
  • the strength of the obtained resin molded product may be reduced, and problems such as odor may occur.
  • the content of phenol or carbonic acid diester is less than the above range, the plasticity at the time of melting the resin may decrease.
  • the optical lens of the present invention can be obtained by injection molding the above-mentioned thermoplastic resin of the present invention into a lens shape by an injection molding machine or an injection compression molding machine.
  • the molding conditions for injection molding are not particularly limited, but the molding temperature is preferably 180 to 300 ° C, more preferably 180 to 290 ° C.
  • the injection pressure is preferably 50 to 1700 kg / cm 2 .
  • the molding environment In order to avoid foreign matter from entering the optical lens as much as possible, the molding environment must also be a low dust environment, and is preferably class 1000 or lower, more preferably class 100 or lower.
  • the optical lens of the present invention is preferably used in the form of an aspherical lens, if necessary. Since an aspherical lens can reduce the spherical aberration to substantially zero with one lens, it is not necessary to remove the spherical aberration by combining a plurality of spherical lenses, and it is possible to reduce the weight and the production cost. It will be possible. Therefore, the aspherical lens is particularly useful as a camera lens among optical lenses.
  • the astigmatism of the aspherical lens is preferably 0 to 15 m ⁇ , more preferably 0 to 10 m ⁇ .
  • the thickness of the optical lens of the present invention can be set in a wide range according to the application and is not particularly limited, but is preferably 0.01 to 30 mm, more preferably 0.1 to 15 mm.
  • a coating layer such as an antireflection layer or a hard coat layer may be provided on the surface of the optical lens of the present invention.
  • the antireflection layer may be a single layer or a multilayer, and may be an organic substance or an inorganic substance, but is preferably an inorganic substance. Specific examples include oxides or fluorides such as silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, cerium oxide, magnesium oxide and magnesium fluoride.
  • the antireflection layer is not particularly limited in the combination of single layer / multilayer and the combination of components and thickness thereof, but preferably has a two-layer structure or a three-layer structure, particularly preferably a three-layer structure.
  • the antireflection layer as a whole is preferably formed with a thickness of 0.0017 to 3.3% of the thickness of the optical lens, specifically 0.05 to 3 ⁇ m, particularly preferably 1 to 2 ⁇ m.
  • the content of the monomer was measured by gas chromatography (manufacturing equipment: Shimadzu Corporation GC-2010 Plus) using a mixture of 1 mass% methanol solution under a temperature-raising vaporization method of 50 to 300 ° C. It is the value that was performed. The same applies hereinafter.
  • Compound d 1.0000 mass%
  • Mixture I-1 A mixture I-1 was obtained by the same method as "monomer synthesis example 1" shown in WO2017 / 175693 (distillation purification x 1 time). In addition to the main product, Compound Ip, this mixture I-1 also contained the compounds a, b, c-1, c-2, and d as impurities as impurities in the following contents. Was there. Compound a: 1.4000 mass% Compound b: 0.5000 mass% Compound c-1: 1.8000 mass% Compound c-2: 0.0100% by mass Compound d: 0.0100 mass%
  • Mixture I-2 The mixture I-1 obtained above was distilled again (distillation purification: twice in total) to obtain a mixture I-2.
  • This mixture I-2 contained, as impurities, the compounds a, b, c-1 and c-2, which were monomers, in addition to the main product, the compound Ip, in the following contents.
  • Compound c-1 0.6100% by mass
  • Compound c-2 0.0100% by mass
  • Compound d below detection limit (less than 0.0001 mass%)
  • the mixture I-2 obtained above was distilled again (distillation purification: 3 times in total) to obtain a mixture I-3.
  • This mixture I-3 contained, as impurities, the compounds a, b and c-1 which were the monomers, in addition to the main product, the compound Ip, in the following contents.
  • Compound a 0.3400 mass%
  • Compound b 0.1100% by mass
  • Compound c-1 0.0200 mass%
  • Compound c-2 below detection limit (less than 0.0001 mass%)
  • Compound d below detection limit (less than 0.0001 mass%)
  • Mw ⁇ (Wi ⁇ Mi) ⁇ ⁇ (Wi)
  • i the i-th division point when the molecular weight M is divided
  • Wi the i-th weight
  • Mi the i-th molecular weight.
  • the molecular weight M represents the polystyrene molecular weight value at the same elution time of the calibration curve.
  • HLC-8320GPC manufactured by Tosoh Corporation was used as a GPC device, one TSKguardcolumn SuperMPHZ-M was used as a guard column, and three TSKgel SuperMultiporeHZ-M were connected in series as an analytical column. Other conditions are as follows.
  • thermoplastic resin composition was press-molded (molding conditions: 200 ° C., 100 kgf / cm 2 , 2 minutes) on a disc having a diameter of 40 mm and a thickness of 3 mm, cut out at a right angle, and measured by KPR-200 manufactured by Karnew.
  • ⁇ Glass transition temperature (Tg)> Based on JIS K7121-1987, it was measured by a differential scanning calorimeter (DSC). As the analyzer, Hitachi High-Tech Science X-DSC7000 was used. ⁇ Method of measuring hue (YI) and haze (Hz)> Using an injection molding machine SH50 manufactured by Sumitomo Heavy Industries, Ltd., injection molding was carried out at a cylinder temperature of 260 ° C. and a mold temperature of 30 ° C. lower than the glass transition temperature of the resin to obtain a 3 mm thick disc. Hue (YI) and haze (Hz) were measured using this disc. The hue (YI) was measured by SE2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the haze (Hz) was measured by NDH2000 manufactured by Nippon Denshoku.
  • BPEF represented by the following structural formula: 1.000 mol (438.52 g), sodium hydrogencarbonate: 1 ⁇ 10 ⁇ 6 mol (0.084 mg, added as a 1% by mass aqueous solution) and diphenyl carbonate.
  • Polycarbonate resin W was obtained by reacting and pelletizing in the same manner as the above-mentioned polycarbonate resin A except that 1.020 mol (218.50 g) was used. Subsequently, the pellets were dried at 110 ° C. for 3 hours.
  • Stearate (Riken Vitamin Co., Ltd .; Rikemal S-100A) 0.20% by mass, antioxidant pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] ( ADEKA CORPORATION; ADEKA STAB AO-60) 0.10% by weight, antioxidant 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10 -Tetraoxa-3,9-diphosphaspiro [5.5] undecane (A Co., Ltd.
  • Examples 2 to 11, Comparative Examples 1 and 2 Polycarbonate resins B to K were obtained in the same manner as in Example 1 except that the raw materials and the charged amounts shown in Table 2 were changed.
  • a polycarbonate resin composition was obtained in the same manner as in Example 1 except that the polycarbonate resins B to K were used instead of the polycarbonate resin A and the additives and the amounts of the additives shown in Table 1 were used instead.
  • the physical properties of the obtained polycarbonate resin composition are shown in Table 1.
  • S-100A Glycerin monostearate (Riken Vitamin Co., Ltd .; Rikemar S-100A) which is a release agent B-100A: Glycerin monobehenate as a release agent (manufactured by Riken Vitamin Co., Ltd .; Rikemar B-100A)
  • Poem M-100 Glycerin monocaprylate (Riken Vitamin Co., Ltd .; Poem M-100) as a release agent
  • Poem M-300 Glycerin monolaurate as a release agent (Riken Vitamin Co., Ltd .; Poem M-300)
  • AO-60 Antioxidant pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (manufactured by ADEKA Corporation; ADEKA STAB AO-60) AO-30: [4,4 ′, 4
  • Example A The same procedure as in Example 1 was repeated except that, instead of the compound Ip, the mixture I-1 obtained above was 222.33 g, sodium hydrogencarbonate was 8.4 mg, and diphenyl carbonate was 221.90 g. A polycarbonate resin composition was obtained. Table 3 shows the physical properties of the obtained polycarbonate resin composition.
  • Example A-1 to Example C-2) The same procedure as in Example A was carried out except that the raw materials and the charged amounts shown in Table 3 were changed. Table 3 shows the physical properties of the obtained polycarbonate resin composition.
  • an optical lens excellent in at least one of Abbe number, refractive index, specific heat capacity, glass transition temperature (heat resistance), hue, and haze can be obtained.
  • the optical lens of the present invention can be injection-molded, has high productivity, and is inexpensive. Therefore, it can be used in fields where expensive high-Abbe glass lenses have been conventionally used, such as cameras, telescopes, binoculars, and television projectors. It is useful. Further, since the difference in water absorption between the high Abbe lens and the low Abbe lens becomes small, it is particularly suitable for a small optical lens unit. Further, according to the present invention, a high Abbe aspherical lens, which is technically difficult to process with a glass lens, can be easily obtained by injection molding, which is extremely useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Optical Filters (AREA)
  • Eyeglasses (AREA)

Abstract

The present invention can provide a thermoplastic resin composition containing a thermoplastic resin having a constitutional unit represented by formula (1), wherein the terminal structure of the thermoplastic resin includes a structure represented by formula (A) or formula (B), and the polystyrene-equivalent weight average molecular weight of the thermoplastic resin is 1,000-50,000. Formula (1) (in formula (1), R represents hydrogen, a methyl group, or an ethyl group). Formula (A) (in formula (A), Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylate). Formula (B)

Description

熱可塑性樹脂組成物およびそれを用いた光学レンズまたはフィルムThermoplastic resin composition and optical lens or film using the same
 本発明は、新規な熱可塑性樹脂組成物、およびそれにより形成される光学レンズまたはフィルムに関するものである。また、本発明の好ましい態様は、アッベ数、屈折率、比熱容量、ガラス転移温度(耐熱性)、色相、およびヘーズの少なくとも一つに優れた熱可塑性樹脂組成物に関するものである。 The present invention relates to a novel thermoplastic resin composition and an optical lens or film formed by it. A preferred embodiment of the present invention relates to a thermoplastic resin composition excellent in at least one of Abbe number, refractive index, specific heat capacity, glass transition temperature (heat resistance), hue and haze.
 カメラ、フィルム一体型カメラ、ビデオカメラ等の各種カメラの光学系に使用される光学素子の材料として、光学ガラスあるいは光学用透明樹脂が使用されている。光学ガラスは、耐熱性や透明性、寸法安定性、耐薬品性等に優れ、様々な屈折率(nD)やアッベ数(νD)を有する多種類の材料が存在しているが、材料コストが高い上、成形加工性が悪く、また生産性が低いという問題点を有している。とりわけ、収差補正に使用される非球面レンズに加工するには、極めて高度な技術と高いコストがかかるため実用上大きな障害となっている。 Optical glass or optical transparent resin is used as a material for optical elements used in the optical system of various cameras such as cameras, film-integrated cameras, and video cameras. Optical glass has excellent heat resistance, transparency, dimensional stability, chemical resistance, etc., and there are various types of materials with various refractive indices (nD) and Abbe numbers (νD), but the material cost is high. In addition to being high, it has problems of poor moldability and low productivity. In particular, processing an aspherical lens used for aberration correction requires extremely high technology and high cost, which is a major obstacle to practical use.
 一方、光学用透明樹脂、中でも熱可塑性透明樹脂からなる光学レンズは、射出成形により大量生産が可能で、しかも非球面レンズの製造も容易であるという利点を有しており、現在カメラ用レンズ用途として使用されている。例えば、ビスフェノールAからなるポリカーボネート、ポリスチレン、ポリ-4-メチルペンテン、ポリメチルメタクリレートあるいは非晶質ポリオレフィンなどが例示される。 On the other hand, transparent lenses for optics, especially optical lenses made of thermoplastic transparent resin, have the advantages that they can be mass-produced by injection molding and that aspherical lenses are easy to manufacture. Is used as. Examples thereof include polycarbonate made of bisphenol A, polystyrene, poly-4-methylpentene, polymethylmethacrylate, and amorphous polyolefin.
 しかしながら、光学用透明樹脂を光学レンズとして用いる場合、屈折率やアッベ数以外にも、透明性、耐熱性、低複屈折性が求められるため、樹脂の特性バランスによって使用箇所が限定されてしまうという弱点がある。例えば、ポリスチレンは耐熱性が低く複屈折が大きい、ポリ-4-メチルペンテンは耐熱性が低い、ポリメチルメタクリレートはガラス転移温度が低く、耐熱性が低く、屈折率が小さいため使用領域が限られ、ビスフェノールAからなるポリカーボネートは複屈折が大きい等の弱点を有するため使用箇所が限られてしまい好ましくない。 However, when the transparent resin for optics is used as an optical lens, transparency, heat resistance, and low birefringence are required in addition to the refractive index and the Abbe number, so that the use location is limited by the characteristic balance of the resin. There is a weakness. For example, polystyrene has low heat resistance and high birefringence, poly-4-methylpentene has low heat resistance, and polymethylmethacrylate has low glass transition temperature, low heat resistance, and low refractive index, so its application area is limited. Polycarbonate composed of bisphenol A is not preferable because it has weak points such as large birefringence and is limited in places of use.
 一方、一般に光学材料の屈折率が高いと、同一の屈折率を有するレンズエレメントをより曲率の小さい面で実現できるため、この面で発生する収差量を小さくでき、レンズの枚数の低減、レンズの偏心感度の低減、レンズ厚の低減によるレンズ系の小型軽量化を可能にすることが出来るため、高屈折率化は有用である。 On the other hand, in general, when the refractive index of the optical material is high, a lens element having the same refractive index can be realized by a surface having a smaller curvature, so that the amount of aberration generated on this surface can be reduced, the number of lenses can be reduced, and Since it is possible to reduce the size and weight of the lens system by reducing the decentering sensitivity and the lens thickness, it is useful to increase the refractive index.
 また、光学ユニットの光学設計においては、互いにアッベ数が異なる複数のレンズを組み合わせて使用することにより色収差を補正することが知られている。例えば、アッベ数45~60の脂環式ポリオレフィン樹脂製のレンズと、低アッベ数のビスフェノールAからなるポリカーボネート(nD=1.59、νD=29)樹脂製のレンズとを組み合わせて色収差を補正することが行われている。 Also, in the optical design of the optical unit, it is known to correct chromatic aberration by combining and using a plurality of lenses having different Abbe numbers. For example, a lens made of an alicyclic polyolefin resin having an Abbe number of 45 to 60 and a lens made of a polycarbonate (nD = 1.59, νD = 29) resin made of bisphenol A having a low Abbe number are combined to correct chromatic aberration. Is being done.
 光学レンズ用途に実用化されている光学用透明樹脂の中でアッベ数が高いものとしては、ポリメチルメタクリレート(PMMA)、シクロオレフィンポリマーなどがある。とりわけ、シクロオレフィンポリマーは、優れた耐熱性および優れた機械特性を有するため光学レンズ用途に幅広く使用されてきた。 Among the transparent optical resins that have been put to practical use for optical lenses, those with a high Abbe number include polymethylmethacrylate (PMMA) and cycloolefin polymers. In particular, cycloolefin polymers have been widely used for optical lens applications because of their excellent heat resistance and excellent mechanical properties.
 低アッベ数の樹脂としては、ポリエステルやポリカーボネートが挙げられる。例えば特許文献1記載の樹脂は高屈折率かつ低アッベ数であることが特徴である。 Polyester and polycarbonate are examples of low Abbe number resins. For example, the resin described in Patent Document 1 is characterized by a high refractive index and a low Abbe number.
 高アッベ数であるシクロオレフィンポリマーと、低アッベ数のポリマーであるポリカーボネート樹脂の間には吸水膨張率に差があり、両者のレンズを組み合わせてレンズユニットを形成すると、スマートフォン等の使用環境で吸水した際にレンズの大きさに違いが発生する。この膨張率差によりレンズの性能が損なわれる。 There is a difference in the coefficient of water absorption expansion between cycloolefin polymer, which has a high Abbe number, and polycarbonate resin, which is a polymer with a low Abbe number, and when the lenses of both lenses are combined to form a lens unit, it absorbs water in a usage environment such as a smartphone. When doing so, a difference occurs in the size of the lens. Due to this difference in expansion coefficient, the performance of the lens is impaired.
 特許文献2~4には、ペルヒドロキシジメタノナフタレン骨格を含むポリカーボネート共重合体が記載されているが、ジヒドロキシメチル基の位置がいずれも2,3位であるため強度が弱く、光学レンズ用途には適していない。更に、特許文献2~4に記載のポリカーボネートは、ガラス転移温度(Tg)が低いため、耐熱性の面で問題がある。例えば、特許文献4の実施例1に記載のHOMOのポリカーボネートは、数平均分子量が38000であるにも拘わらず、ガラス転移温度(Tg)が125℃と低い。 Patent Documents 2 to 4 describe polycarbonate copolymers containing a perhydroxydimethanonaphthalene skeleton. However, since the positions of dihydroxymethyl groups are all at the 2 and 3 positions, the strength is weak and it is suitable for optical lens applications. Is not suitable. Furthermore, the polycarbonates described in Patent Documents 2 to 4 have a low glass transition temperature (Tg), and therefore have a problem in heat resistance. For example, the polycarbonate of HOMO described in Example 1 of Patent Document 4 has a low glass transition temperature (Tg) of 125 ° C. despite having a number average molecular weight of 38,000.
国際公開第2014/73496号International Publication No. 2014/73496 特開平5-70584号JP-A-5-70584 特開平2-69520号Japanese Patent Laid-Open No. 2-69520 特開平5-341124号JP-A-5-341124
 本発明は、上記従来における課題の少なくとも一つを解決することを課題とする。また、本発明の好ましい態様は、アッベ数、屈折率、比熱容量、ガラス転移温度(耐熱性)、色相、およびヘーズの少なくとも一つに優れた熱可塑性樹脂組成物を提供することを課題とする。 The present invention aims to solve at least one of the above-mentioned conventional problems. Further, a preferred embodiment of the present invention aims to provide a thermoplastic resin composition excellent in at least one of Abbe number, refractive index, specific heat capacity, glass transition temperature (heat resistance), hue, and haze. .
 本発明者らは、上記課題を解決するべく鋭意検討を重ねた結果、デカヒドロ-1、4:5、8-ジメタノナフタレンジオール(D-NDM)を原料とし、末端構造が特定の構造を有する熱可塑性樹脂組成物が上記課題を解決し得ることを見出し、本発明に到達した。 As a result of intensive studies to solve the above problems, the present inventors have used decahydro-1,4: 5,8-dimethanonaphthalenediol (D-NDM) as a raw material and have a specific terminal structure. The inventors have found that a thermoplastic resin composition can solve the above problems, and have reached the present invention.
 すなわち、本発明は、以下に示す熱可塑性樹脂組成物およびそれを用いた光学レンズまたはフィルムに関する。
<1> 下記式(1)で表される構成単位を含む熱可塑性樹脂を含有する熱可塑性樹脂組成物であって、
 前記熱可塑性樹脂の末端構造が、下記式(A)または式(B)で表される構造を含み、前記熱可塑性樹脂におけるポリスチレン換算の重量平均分子量が1,000~50,000である、熱可塑性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000013
(式(1)中、Rは、水素、メチル基、またはエチル基を表す。)
Figure JPOXMLDOC01-appb-C000014
(式(A)中、Raは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。)
Figure JPOXMLDOC01-appb-C000015
<2> 前記熱可塑性樹脂が、さらに、下記式(2)で表される構成単位を含む、上記<1>に記載の熱可塑性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000016
(式(2)中、Rは、水素、メチル基、またはエチル基を表す。)
<3> 前記熱可塑性樹脂が、さらに、下記式(3)で表される構成単位を含む、上記<1>に記載の熱可塑性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000017
(式(3)中、Rは、水素、メチル基、またはエチル基を表す。)
<4> 前記式(1)で表される構成単位と前記式(A)で表される構成単位との質量比が、式(1)で表される構成単位:式(A)で表される構成単位=97.00:3.00~99.99:0.01である、上記<1>から<3>のいずれかに記載の熱可塑性樹脂組成物である。
<5> 前記式(1)で表される構成単位と前記式(B)で表される構成単位との質量比が、式(1)で表される構成単位:式(B)で表される構成単位=99.00:1.00~99.99:0.01である、上記<1>から<3>のいずれかに記載の熱可塑性樹脂組成物である。
<6> 前記式(1)で表される構成単位と前記式(2)で表される構成単位との質量比が、式(1)で表される構成単位:式(2)で表される構成単位=98.00:2.00~99.99:0.01である、上記<2>に記載の熱可塑性樹脂組成物である。
<7> 前記式(1)で表される構成単位と前記式(3)で表される構成単位との質量比が、式(1)で表される構成単位:式(3)で表される構成単位=98.00:2.00~99.99:0.01である、上記<3>に記載の熱可塑性樹脂組成物である。
<8> 前記Rが、水素である、上記<1>から<7>のいずれかに記載の熱可塑性樹脂組成物である。
<9> 前記Raにおけるカルボン酸エステルが、カルボン酸メチルエステルまたはカルボン酸フェニルエステルである、上記<1>から<8>のいずれかに記載の熱可塑性樹脂組成物である。
<10> 前記Raにおけるカルボン酸塩が、カルボン酸ナトリウムである、上記<1>から<8>のいずれかに記載の熱可塑性樹脂組成物である。
<11> 前記熱可塑性樹脂が、さらに、下記式(4)で表される構成単位を含む、上記<1>から<10>のいずれかに記載の熱可塑性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000018
(式(4)中、R及びRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、およびハロゲン原子からなる群より選択され;Xは、それぞれ独立に、分岐していてもよい炭素数1~6のアルキレン基であり;nは、それぞれ独立に、0~5の整数である。)
<12> さらに、添加剤を含む、上記<1>から<11>のいずれかに記載の熱可塑性樹脂組成物である。
<13> 前記添加剤が、2種以上の酸化防止剤、及び離型剤を含む、上記<12>に記載の熱可塑性樹脂組成物である。
<14> 前記酸化防止剤の含有量が、熱可塑性樹脂組成物中に0.50質量%以下であり、前記離型剤の含有量が、熱可塑性樹脂組成物中に0.50質量%以下である、上記<13>に記載の熱可塑性樹脂組成物である。
<15> 下記式(I)で表される化合物、下記式(a)で表される化合物、下記式(b)で表される化合物、下記式(c)で表される化合物、及び下記式(d)で表される化合物からなる群より選択されるモノマーの少なくとも一つを含む、上記<1>から<14>のいずれかに記載の熱可塑性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000019
(式(I)中、Rは、水素、メチル基、またはエチル基を表す。)
Figure JPOXMLDOC01-appb-C000020
(式(c)中、Raは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。)
Figure JPOXMLDOC01-appb-C000021
(式(d)中、Rbは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。)
<16> 比熱容量が450J/g・℃以下である、上記<1>から<15>のいずれかに記載の熱可塑性樹脂組成物である。
<17> 前記熱可塑性樹脂が、ポリカーボネート、ポリエステルカーボネート、またはポリエステルである、上記<1>から<16>のいずれかに記載の熱可塑性樹脂組成物である。
<18> 上記<1>から<17>のいずれかに記載の熱可塑性樹脂組成物を用いた光学レンズである。
<19> 上記<1>から<17>のいずれかに記載の熱可塑性樹脂組成物を用いたフィルムである。
<20> 少なくとも、下記式(I)で表されるジヒドロキシ化合物と、
 下記式(a)で表される化合物、下記式(b)で表される化合物、下記式(c)で表される化合物、および下記式(d)で表される化合物からなる群より選択される少なくとも一つの化合物と、を反応させて熱可塑性樹脂組成物を製造する方法であって、
 前記少なくとも一つの化合物の合計量が、前記式(I)で表されるジヒドロキシ化合物の質量に対して10%以下である、製造方法である。
Figure JPOXMLDOC01-appb-C000022
(式(I)中、Rは、水素、メチル基、またはエチル基を表す。)
Figure JPOXMLDOC01-appb-C000023
(式(c)中、Raは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。)
Figure JPOXMLDOC01-appb-C000024
(式(d)中、Rbは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。)
<21> 前記式(a)~(d)で表される化合物を、前記式(I)で表されるジヒドロキシ化合物の質量に対して、各々3%以下用いる、上記<20>に記載の製造方法である。
That is, the present invention relates to the following thermoplastic resin composition and an optical lens or film using the same.
<1> A thermoplastic resin composition containing a thermoplastic resin containing a structural unit represented by the following formula (1):
A terminal structure of the thermoplastic resin includes a structure represented by the following formula (A) or formula (B), and the thermoplastic resin has a polystyrene-reduced weight average molecular weight of 1,000 to 50,000. It is a plastic resin composition.
Figure JPOXMLDOC01-appb-C000013
(In the formula (1), R represents hydrogen, a methyl group, or an ethyl group.)
Figure JPOXMLDOC01-appb-C000014
(In the formula (A), Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.)
Figure JPOXMLDOC01-appb-C000015
<2> The thermoplastic resin composition according to <1>, wherein the thermoplastic resin further contains a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000016
(In the formula (2), R represents hydrogen, a methyl group, or an ethyl group.)
<3> The thermoplastic resin composition according to <1>, wherein the thermoplastic resin further contains a structural unit represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000017
(In the formula (3), R represents hydrogen, a methyl group, or an ethyl group.)
<4> The mass ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (A) is represented by the structural unit represented by the formula (1): the formula (A). The constitutional unit = 97.0: 3.00 to 99.99: 0.01, which is the thermoplastic resin composition according to any one of <1> to <3> above.
<5> The mass ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (B) is represented by the structural unit represented by the formula (1): the formula (B). The constitutional unit is 99.00: 1.00 to 99.99: 0.01, and the thermoplastic resin composition according to any one of <1> to <3> above.
<6> The mass ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (2) is represented by the structural unit represented by the formula (1): the formula (2). In the thermoplastic resin composition according to <2>, the structural unit is 98.0: 2.00 to 99.99: 0.01.
<7> The mass ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (3) is represented by the structural unit represented by the formula (1): the formula (3). The constitutional unit is 98.0: 2.00 to 99.99: 0.01, and the thermoplastic resin composition according to <3> above.
<8> The thermoplastic resin composition according to any one of <1> to <7>, wherein R is hydrogen.
<9> The thermoplastic resin composition according to any one of <1> to <8>, wherein the carboxylic acid ester in Ra is a carboxylic acid methyl ester or a carboxylic acid phenyl ester.
<10> The thermoplastic resin composition according to any one of <1> to <8>, wherein the carboxylic acid salt in Ra is sodium carboxylate.
<11> The thermoplastic resin composition according to any one of <1> to <10>, wherein the thermoplastic resin further contains a structural unit represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000018
(In the formula (4), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a carbon atom. Selected from the group consisting of a cycloalkoxyl group having 5 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and a halogen atom; and X's each independently being branched. (A good alkylene group having 1 to 6 carbon atoms; n is each independently an integer of 0 to 5.)
<12> The thermoplastic resin composition according to any one of <1> to <11>, further containing an additive.
<13> The thermoplastic resin composition according to <12>, wherein the additive contains two or more kinds of antioxidants and a release agent.
<14> The content of the antioxidant is 0.50% by mass or less in the thermoplastic resin composition, and the content of the release agent is 0.50% by mass or less in the thermoplastic resin composition. The thermoplastic resin composition according to <13>.
<15> A compound represented by the following formula (I), a compound represented by the following formula (a), a compound represented by the following formula (b), a compound represented by the following formula (c), and the following formula The thermoplastic resin composition according to any one of <1> to <14>, which contains at least one monomer selected from the group consisting of the compounds represented by (d).
Figure JPOXMLDOC01-appb-C000019
(In the formula (I), R represents hydrogen, a methyl group, or an ethyl group.)
Figure JPOXMLDOC01-appb-C000020
(In the formula (c), Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.)
Figure JPOXMLDOC01-appb-C000021
(In the formula (d), Rb represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.)
<16> The thermoplastic resin composition according to any one of <1> to <15>, which has a specific heat capacity of 450 J / g · ° C or less.
<17> The thermoplastic resin composition according to any one of <1> to <16>, wherein the thermoplastic resin is polycarbonate, polyester carbonate, or polyester.
<18> An optical lens using the thermoplastic resin composition according to any one of <1> to <17>.
<19> A film using the thermoplastic resin composition according to any one of <1> to <17>.
<20> At least a dihydroxy compound represented by the following formula (I),
Selected from the group consisting of a compound represented by the following formula (a), a compound represented by the following formula (b), a compound represented by the following formula (c), and a compound represented by the following formula (d) A method of producing a thermoplastic resin composition by reacting at least one compound with
The production method is such that the total amount of the at least one compound is 10% or less with respect to the mass of the dihydroxy compound represented by the formula (I).
Figure JPOXMLDOC01-appb-C000022
(In the formula (I), R represents hydrogen, a methyl group, or an ethyl group.)
Figure JPOXMLDOC01-appb-C000023
(In the formula (c), Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.)
Figure JPOXMLDOC01-appb-C000024
(In the formula (d), Rb represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.)
<21> The production according to <20>, wherein the compounds represented by the formulas (a) to (d) are used in an amount of 3% or less based on the mass of the dihydroxy compound represented by the formula (I). Is the way.
 本発明の好ましい態様によれば、アッベ数、屈折率、比熱容量、ガラス転移温度(耐熱性)、色相、およびヘーズの少なくとも一つに優れた熱可塑性樹脂組成物を提供することができる。また、この樹脂組成物から製造された光学レンズまたはフィルムが得られる。 According to a preferred embodiment of the present invention, it is possible to provide a thermoplastic resin composition excellent in at least one of Abbe number, refractive index, specific heat capacity, glass transition temperature (heat resistance), hue, and haze. Also, an optical lens or film produced from this resin composition can be obtained.
(A)熱可塑性樹脂組成物
 本発明の熱可塑性樹脂は、下記式(1)で表される構成単位(以下、「構成単位(1)」という)を含む。これにはデカヒドロ-1、4:5、8-ジメタノナフタレンジオール(D-NDMと記載することがある)から誘導される構成単位が例示される。後述するように構成単位(1)は、例えば、式(I)で表されるジオール化合物と炭酸ジエステルを反応させて得られる。本発明の熱可塑性樹脂としては、ポリカーボネート、ポリエステルカーボネート、またはポリエステルが好ましく挙げられるが、中でもポリカーボネート樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000025
 式(1)中、Rは、水素、メチル基、またはエチル基を表し、好ましくは、Rは、水素を表す。
(A) Thermoplastic Resin Composition The thermoplastic resin of the present invention contains a structural unit represented by the following formula (1) (hereinafter referred to as “structural unit (1)”). Examples thereof include structural units derived from decahydro-1,4: 5,8-dimethanonaphthalenediol (sometimes referred to as D-NDM). As will be described later, the structural unit (1) is obtained, for example, by reacting a diol compound represented by the formula (I) with a carbonic acid diester. Preferred examples of the thermoplastic resin of the present invention include polycarbonate, polyester carbonate, and polyester. Among them, polycarbonate resin is preferred.
Figure JPOXMLDOC01-appb-C000025
In formula (1), R represents hydrogen, a methyl group, or an ethyl group, and preferably R represents hydrogen.
 本発明の熱可塑性樹脂は、その末端構造が、下記式(A)または式(B)で表される構造を含む。
Figure JPOXMLDOC01-appb-C000026
 式(A)中、Raは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。前記カルボン酸エステルとしては、カルボン酸メチルエステルまたはカルボン酸フェニルエステルが好ましく挙げられる。また、前記カルボン酸塩としては、カルボン酸ナトリウムが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000027
The terminal structure of the thermoplastic resin of the present invention includes a structure represented by the following formula (A) or formula (B).
Figure JPOXMLDOC01-appb-C000026
In formula (A), Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt. Preferable examples of the carboxylic acid ester include carboxylic acid methyl ester and carboxylic acid phenyl ester. Further, as the carboxylate, sodium carboxylate is preferably mentioned.
Figure JPOXMLDOC01-appb-C000027
 前記式(1)で表される構成単位と前記式(A)で表される構成単位との質量比は、式(1)で表される構成単位:式(A)で表される構成単位=97.00:3.00~99.99:0.01が好ましく、98.00:2.00~99.99:0.01がより好ましく、99.00:1.00~99.99:0.01が更に好ましく、99.50:0.50~99.80:0.20が特に好ましい。
 前記式(A)で表される構成単位の質量が、上記範囲より少ないと、比熱容量、色相、およびヘーズの少なくとも一つが劣ってしまうことがある。一方、前記式(A)で表される構成単位の質量が、上記範囲より多いと、ポリマーの色相や耐熱性が悪化してしまうことがある。
 また、前記式(1)で表される構成単位と前記式(B)で表される構成単位との質量比は、式(1)で表される構成単位:式(B)で表される構成単位=99.00:1.00~99.99:0.01が好ましく、99.00:1.00~99.95:0.05がより好ましく、99.50:0.50~99.90:0.10が更に好ましく、99.70:0.30~99.90:0.10が特に好ましい。
 前記式(B)で表される構成単位の質量が、上記範囲より少ないと、比熱容量、色相、およびヘーズの少なくとも一つが劣ってしまうことがある。一方、前記式(B)で表される構成単位の質量が、上記範囲より多いと、ポリマーの色相や耐熱性が悪化してしまうことがある。
 本発明の熱可塑性樹脂は、前記式(A)で表される構造と前記式(B)で表される構造の両方を有することが、比熱容量の点で好ましい。
The mass ratio of the constitutional unit represented by the formula (1) and the constitutional unit represented by the formula (A) is the constitutional unit represented by the formula (1): the constitutional unit represented by the formula (A). = 97.0: 3.00 to 99.99: 0.01 is preferable, 99.00: 2.00 to 99.99: 0.01 is more preferable, and 99.00: 1.00 to 99.99: 0.01 is more preferable, and 99.50: 0.50 to 99.80: 0.20 is particularly preferable.
When the mass of the structural unit represented by the formula (A) is less than the above range, at least one of specific heat capacity, hue, and haze may be inferior. On the other hand, when the mass of the structural unit represented by the formula (A) is more than the above range, the hue and heat resistance of the polymer may be deteriorated.
Further, the mass ratio of the constitutional unit represented by the formula (1) and the constitutional unit represented by the formula (B) is represented by the constitutional unit represented by the formula (1): the formula (B). Structural unit = 99.00: 1.00 to 99.99: 0.01 is preferable, 99.00: 1.00 to 99.95: 0.05 is more preferable, and 99.50: 0.50 to 99. 90: 0.10 is more preferable, and 99.70: 0.30 to 99.90: 0.10 is particularly preferable.
When the mass of the structural unit represented by the formula (B) is less than the above range, at least one of specific heat capacity, hue, and haze may be inferior. On the other hand, when the mass of the structural unit represented by the formula (B) is more than the above range, the hue and heat resistance of the polymer may be deteriorated.
The thermoplastic resin of the present invention preferably has both the structure represented by the formula (A) and the structure represented by the formula (B) from the viewpoint of specific heat capacity.
 本発明の熱可塑性樹脂は、構成単位(1)と式(A)または式(B)で表される構造のみからなる樹脂の他、他の構成単位を含んでもよい。
 他の構成単位としては、下記式(2)で表される構成単位や、下記式(3)で表される構成単位や、下記式(4)で表される構成単位が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000028
 式(2)中、Rは、水素、メチル基、またはエチル基を表し、好ましくは、Rは水素を表す。
Figure JPOXMLDOC01-appb-C000029
 式(3)中、Rは、水素、メチル基、またはエチル基を表し、好ましくは、Rは水素を表す。
Figure JPOXMLDOC01-appb-C000030
 式(4)中、R及びRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、およびハロゲン原子からなる群より選択され、好ましくは、水素原子およびフェニル基から選択される。
 式(4)中、Xは、それぞれ独立に、分岐していてもよい炭素数1~6のアルキレン基を表し、好ましくは、炭素数1~3のアルキレン基を表し、より好ましくはエチレンを表す。nは、それぞれ独立に、0~5の整数を表し、好ましくは、1または2を表し、より好ましくは1を表す。
The thermoplastic resin of the present invention may contain other structural units in addition to the resin having only the structural unit (1) and the structure represented by the formula (A) or the formula (B).
Preferred examples of the other structural unit include a structural unit represented by the following formula (2), a structural unit represented by the following formula (3), and a structural unit represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000028
In formula (2), R represents hydrogen, a methyl group, or an ethyl group, and preferably R represents hydrogen.
Figure JPOXMLDOC01-appb-C000029
In formula (3), R represents hydrogen, a methyl group, or an ethyl group, and preferably R represents hydrogen.
Figure JPOXMLDOC01-appb-C000030
In formula (4), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a carbon number. It is selected from the group consisting of a cycloalkoxyl group having 5 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and a halogen atom, and preferably selected from a hydrogen atom and a phenyl group.
In formula (4), X's each independently represent an optionally branched alkylene group having 1 to 6 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms, and more preferably ethylene. . Each n independently represents an integer of 0 to 5, preferably 1 or 2, and more preferably 1.
 前記式(1)で表される構成単位と前記式(2)で表される構成単位との質量比は、式(1)で表される構成単位:式(2)で表される構成単位=98.00:2.00~100:0が好ましく、98.00:2.00~99.99:0.01がより好ましく、99.00:1.00~99.99:0.01が更に好ましく、99.05:0.95~99.99:0.01が特に好ましい。
前記式(2)で表される構成単位の質量が、上記の範囲であると、ポリマーの比熱容量が小さくなり、結晶性が低下するので好ましい。
 前記式(1)で表される構成単位と前記式(3)で表される構成単位との質量比は、式(1)で表される構成単位:式(3)で表される構成単位=98.00:2.00~100:0が好ましく、98.00:2.0~99.99:0.01がより好ましく、99.00:1.00~99.99:0.01が更に好ましく、99.05:0.95~99.99:0.01が特に好ましい。
 前記式(3)で表される構成単位の質量が、上記の範囲であると、ポリマーの比熱容量が小さくなり、結晶性が低下するので好ましい。
 前記式(1)で表される構成単位と前記式(4)で表される構成単位との質量比は、式(1)で表される構成単位:式(4)で表される構成単位=99:1~1:99が好ましく、90:10~10:90がより好ましく、75:25~50:50が更に好ましく、70:30~60:40が特に好ましい。前記式(4)で表される構成単位の質量が、上記の範囲であると、成形性が向上し、たとえば、衝撃強度などの成形体の強度が向上する点で好ましい。
The mass ratio of the constitutional unit represented by the formula (1) and the constitutional unit represented by the formula (2) is as follows: Constitutional unit represented by the formula (1): Constitutional unit represented by the formula (2) = 99.00: 2.00 to 100: 0 is preferable, 99.00: 2.00 to 99.99: 0.01 is more preferable, and 99.00: 1.00 to 99.99: 0.01 is preferable. More preferably, 99.05: 0.95 to 99.99: 0.01 is particularly preferable.
When the mass of the structural unit represented by the formula (2) is in the above range, the specific heat capacity of the polymer becomes small, and the crystallinity decreases, which is preferable.
The mass ratio of the constitutional unit represented by the formula (1) and the constitutional unit represented by the formula (3) is as follows: Constitutional unit represented by the formula (1): Constitutional unit represented by the formula (3) = 99.00: 2.00 to 100: 0 is preferable, 99.00: 2.0 to 99.99: 0.01 is more preferable, and 99.00: 1.00 to 99.99: 0.01 is preferable. More preferably, 99.05: 0.95 to 99.99: 0.01 is particularly preferable.
When the mass of the structural unit represented by the above formula (3) is in the above range, the specific heat capacity of the polymer becomes small and the crystallinity decreases, which is preferable.
The mass ratio of the constitutional unit represented by the formula (1) and the constitutional unit represented by the formula (4) is as follows: Constitutional unit represented by the formula (1): Constitutional unit represented by the formula (4) = 99: 1 to 1:99 is preferable, 90:10 to 10:90 is more preferable, 75:25 to 50:50 is further preferable, and 70:30 to 60:40 is particularly preferable. When the mass of the structural unit represented by the above formula (4) is in the above range, the moldability is improved, and for example, the strength of the molded body such as impact strength is improved, which is preferable.
 本発明の熱可塑性樹脂は、上記構成単位以外にも、他の構成単位を含んでもよい。
 他に含んでもよい構成単位とは、式(I)以外のジオール化合物と炭酸ジエステルを反応させて得られる構成単位が挙げられ、式(I)以外のジオール化合物として、例えば、ビスフェノールA、ビスフェノールAP、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールPH、ビスフェノールTMC、ビスフェノールZ、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン等が例示される。この中でも9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレンが好適である。
The thermoplastic resin of the present invention may contain other structural units in addition to the above structural units.
Other constituent units that may be included include constituent units obtained by reacting a diol compound other than the formula (I) with a carbonic acid diester. Examples of the diol compound other than the formula (I) include bisphenol A and bisphenol AP. , Bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S, bisphenol P, bisphenol PH, bisphenol TMC, bisphenol Z, 9,9-bis (4- (2 -Hydroxyethoxy) phenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-methylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-tert-butyl Phenyl) Fluo , 9,9-bis (4- (2-hydroxyethoxy) -3-isopropylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-cyclohexylphenyl) fluorene, 9,9- Examples thereof include bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene. Among these, 9,9-bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene is preferable.
 本発明の熱可塑性樹脂組成物は、下記式(I)で表される化合物、下記式(a)で表される化合物、下記式(b)で表される化合物、下記式(c)で表される化合物、及び下記式(d)で表される化合物からなる群より選択されるモノマーの少なくとも一つを含むことにより、比熱容量が小さくなり結晶性が低下する点、ヘーズが小さくなる点、分子量の割に溶融した時の流動性が向上し光学成形体などの精密成形がしやすくなる点で好ましい。
Figure JPOXMLDOC01-appb-C000031
 式(I)中、Rは、水素、メチル基、またはエチル基を表し、好ましくは、Rは、水素を表す。
Figure JPOXMLDOC01-appb-C000032
 式(c)中、Raは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。前記カルボン酸エステルとしては、カルボン酸メチルエステルまたはカルボン酸フェニルエステルが好ましく挙げられる。また、前記カルボン酸塩としては、カルボン酸ナトリウムが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000033
 式(d)中、Rbは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。前記カルボン酸エステルとしては、カルボン酸メチルエステルまたはカルボン酸フェニルエステルが好ましく挙げられる。また、前記カルボン酸塩としては、カルボン酸ナトリウムが好ましく挙げられる。
The thermoplastic resin composition of the present invention is represented by the compound represented by the following formula (I), the compound represented by the following formula (a), the compound represented by the following formula (b), and the following formula (c). And a compound represented by the following formula (d), at least one of which is selected from the group consisting of compounds represented by the following formula (d), thereby reducing specific heat capacity, decreasing crystallinity, and reducing haze: It is preferable because the fluidity when melted for the molecular weight is improved and precision molding of an optical molded article or the like is facilitated.
Figure JPOXMLDOC01-appb-C000031
In formula (I), R represents hydrogen, a methyl group, or an ethyl group, and preferably R represents hydrogen.
Figure JPOXMLDOC01-appb-C000032
In formula (c), Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt. Preferable examples of the carboxylic acid ester include carboxylic acid methyl ester and carboxylic acid phenyl ester. Further, as the carboxylate, sodium carboxylate is preferably mentioned.
Figure JPOXMLDOC01-appb-C000033
In the formula (d), Rb represents hydrogen, carboxylic acid, carboxylic acid ester, or carboxylic acid salt. Preferable examples of the carboxylic acid ester include carboxylic acid methyl ester and carboxylic acid phenyl ester. Further, as the carboxylate, sodium carboxylate is preferably mentioned.
 本発明の熱可塑性樹脂におけるポリスチレン換算の重量平均分子量(Mw)は、1,000~50,000である。好ましいポリスチレン換算重量平均分子量(Mw)は10,000~40,000であり、より好ましくは20,000~30,000である。Mwが1,000より小さいと、光学レンズが脆くなるため好ましくない。Mwが50,000より大きいと、溶融粘度が高くなるため製造後の樹脂の抜き取りが困難になり、更には流動性が悪くなり溶融状態で射出成形しにくくなるため好ましくない。 The polystyrene equivalent weight average molecular weight (Mw) of the thermoplastic resin of the present invention is 1,000 to 50,000. The weight average molecular weight (Mw) in terms of polystyrene is preferably 10,000 to 40,000, and more preferably 20,000 to 30,000. If the Mw is less than 1,000, the optical lens becomes brittle, which is not preferable. When the Mw is more than 50,000, the melt viscosity becomes high, so that it is difficult to remove the resin after production, and further, the fluidity is deteriorated and injection molding in a molten state becomes difficult, which is not preferable.
 本発明の熱可塑性樹脂組成物は、添加剤を含んでもよい。該添加剤としては、2種以上の酸化防止剤、及び離型剤を含むことが好ましい。その理由としては、1種ずつ添加した場合より、2種以上の酸化防止剤、及び離型剤を添加した場合の方が、酸化防止効果や離型性が相乗的に向上するためである。 The thermoplastic resin composition of the present invention may contain additives. The additive preferably contains two or more kinds of antioxidants and a release agent. The reason is that the antioxidant effect and the releasability are synergistically improved when two or more kinds of antioxidants and a release agent are added, rather than when they are added one by one.
 酸化防止剤としては、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート及び3,9-ビス{1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}-2,4,8,10-テトラオキサスピロ(5,5)ウンデカンなどが挙げられる。
 前記酸化防止剤の含有量は、熱可塑性樹脂組成物中に0.50質量%以下であることが好ましく、0.10~0.40質量%であることがより好ましく、0.20~0.40質量%であることが特に好ましい。
Antioxidants include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] and 1,6-hexanediol-bis [3- (3,5-di -Tert-butyl-4-hydroxyphenyl) propionate], pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N, N-hexamethylene Bis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamide), 3,5-di-ter -Butyl-4-hydroxy-benzylphosphonate-diethyl ester, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate and 3,9-bis {1,1-dimethyl-2- [β- Examples include (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl} -2,4,8,10-tetraoxaspiro (5,5) undecane.
The content of the antioxidant in the thermoplastic resin composition is preferably 0.50% by mass or less, more preferably 0.10 to 0.40% by mass, and 0.20 to 0. It is particularly preferably 40% by mass.
 離型剤としては、その90重量%以上がアルコールと脂肪酸とのエステルからなるものが好ましい。アルコールと脂肪酸とのエステルとしては、具体的には一価アルコールと脂肪酸とのエステルや、多価アルコールと脂肪酸との部分エステルあるいは全エステルが挙げられる。上記一価アルコールと脂肪酸とのエステルとしては、炭素原子数1~20の一価アルコールと炭素原子数10~30の飽和脂肪酸とのエステルが好ましい。また、多価アルコールと脂肪酸との部分エステルあるいは全エステルとしては、炭素原子数1~25の多価アルコールと炭素原子数10~30の飽和脂肪酸との部分エステル又は全エステルが好ましい。 As the release agent, it is preferable that 90% by weight or more thereof is composed of an ester of alcohol and fatty acid. Specific examples of the ester of alcohol and fatty acid include an ester of monohydric alcohol and fatty acid, and a partial ester or total ester of polyhydric alcohol and fatty acid. The ester of monohydric alcohol and fatty acid is preferably ester of monohydric alcohol having 1 to 20 carbon atoms and saturated fatty acid having 10 to 30 carbon atoms. As the partial ester or total ester of polyhydric alcohol and fatty acid, partial ester or total ester of polyhydric alcohol having 1 to 25 carbon atoms and saturated fatty acid having 10 to 30 carbon atoms is preferable.
 具体的に、一価アルコールと飽和脂肪酸とのエステルとしては、ステアリルステアレート、パルミチルパルミテート、ブチルステアレート、メチルラウレート、イソプロピルパルミテート等が挙げられる。多価アルコールと飽和脂肪酸との部分エステル又は全エステルとしては、ステアリン酸モノグリセリド、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ベヘニン酸モノグリセリド、カプリン酸モノグリセリド、ラウリン酸モノグリセリド、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、ビフェニルビフェネ-ト、ソルビタンモノステアレート、2-エチルヘキシルステアレート、ジペンタエリスリトールヘキサステアレート等のジペンタエリスルトールの全エステル又は部分エステル等が挙げられる。
 前記離型剤の含有量は、熱可塑性樹脂組成物中に0.50質量%以下であることが好ましく、0.01~0.10質量%であることがより好ましく、0.03~0.05質量%であることが特に好ましい。
Specific examples of the ester of monohydric alcohol and saturated fatty acid include stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate and isopropyl palmitate. As a partial ester or a full ester of a polyhydric alcohol and a saturated fatty acid, stearic acid monoglyceride, stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbate, behenic acid monoglyceride, capric acid monoglyceride, lauric acid monoglyceride, Diesters such as pentaerythritol monostearate, pentaerythritol tetrastearate, pentaerythritol tetrapelargonate, propylene glycol monostearate, biphenyl biphenate, sorbitan monostearate, 2-ethylhexyl stearate, and dipentaerythritol hexastearate. Examples thereof include all-esters or partial-esters of pentaerythritol.
The content of the release agent in the thermoplastic resin composition is preferably 0.50% by mass or less, more preferably 0.01 to 0.10% by mass, and 0.03 to 0. It is particularly preferable that the content is 05% by mass.
 さらに本発明の熱可塑性樹脂組成物には、その他の添加剤として、紫外線吸収剤、流動性改質剤、結晶核剤、強化剤、染料、帯電防止剤、ブルーイング剤あるいは抗菌剤等を添加してもよい。 Further, to the thermoplastic resin composition of the present invention, as other additives, an ultraviolet absorber, a fluidity modifier, a crystal nucleating agent, a reinforcing agent, a dye, an antistatic agent, a bluing agent or an antibacterial agent is added. You may.
(B)式(I)で表されるジオール化合物の製造方法
 上記式(I)で表されるジオール化合物は、WO2017/175693に示すように、ジシクロペンタジエンまたはシクロペンタジエンと官能基を有するオレフィンを原料として合成することが可能である。
(B) Method for producing diol compound represented by formula (I) The diol compound represented by the above formula (I) includes dicyclopentadiene or cyclopentadiene and an olefin having a functional group, as shown in WO2017 / 175693. It can be synthesized as a raw material.
(C)熱可塑性樹脂の製造方法
 本発明の熱可塑性樹脂は、少なくとも、下記式(I)で表されるジヒドロキシ化合物と、
 下記式(a)で表される化合物、下記式(b)で表される化合物、下記式(c)で表される化合物、および下記式(d)で表される化合物からなる群より選択される少なくとも一つの化合物と、を反応させて熱可塑性樹脂組成物を製造する方法であって、
 前記少なくとも一つの化合物の合計量が、前記式(I)で表されるジヒドロキシ化合物の質量に対して10%以下である、製造方法によって製造することができる。
 前記少なくとも一つの化合物の合計量は、前記式(I)で表されるジヒドロキシ化合物の質量に対して0.005~3.0%であることが好ましく、0.1~1.0であることが更に好ましく、0.1~0.5%であることが特に好ましい。前記少なくとも一つの化合物の合計量が、前記式(I)で表されるジヒドロキシ化合物の質量に対して10%を超えると、重合時の反応性が低下し、分子量が上がらず、安定してペレット化することができない。ペレット化できたとしても、安定して成形できず、金型に対して、所望の成形体が得られない。特に、式(a)、式(b)、式(c)のうちRaが水素の場合、重合時の反応性が低下し、分子量が上がりにくくなる。式(c)のうちRaがカルボン酸またはカルボン酸エステルの場合、得られる樹脂の色相が悪化しやすく、耐熱性が悪化しやすくなる傾向がある。
 また、前記式(a)~(d)で表される化合物を、前記式(I)で表されるジヒドロキシ化合物の質量に対して、各々3%以下用いることが好ましい。
Figure JPOXMLDOC01-appb-C000034
 式(I)中、Rは、水素、メチル基、またはエチル基を表し、好ましくは、Rは水素を表す。
Figure JPOXMLDOC01-appb-C000035
 式(c)中、Raは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。前記カルボン酸エステルとしては、カルボン酸メチルエステルまたはカルボン酸フェニルエステルが好ましく挙げられる。また、前記カルボン酸塩としては、カルボン酸ナトリウムが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000036
 式(d)中、Rbは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。前記カルボン酸エステルとしては、カルボン酸メチルエステルまたはカルボン酸フェニルエステルが好ましく挙げられる。また、前記カルボン酸塩としては、カルボン酸ナトリウムが好ましく挙げられる。
(C) Method for producing thermoplastic resin The thermoplastic resin of the present invention contains at least a dihydroxy compound represented by the following formula (I):
Selected from the group consisting of a compound represented by the following formula (a), a compound represented by the following formula (b), a compound represented by the following formula (c), and a compound represented by the following formula (d) A method of producing a thermoplastic resin composition by reacting at least one compound with
It can be produced by a production method in which the total amount of the at least one compound is 10% or less based on the mass of the dihydroxy compound represented by the formula (I).
The total amount of the at least one compound is preferably 0.005 to 3.0%, and preferably 0.1 to 1.0, with respect to the mass of the dihydroxy compound represented by the formula (I). Is more preferable, and 0.1 to 0.5% is particularly preferable. When the total amount of the at least one compound is more than 10% with respect to the mass of the dihydroxy compound represented by the formula (I), the reactivity during polymerization is lowered, the molecular weight does not increase, and the pellets are stable. Cannot be transformed. Even if it can be pelletized, it cannot be stably molded, and a desired molded product cannot be obtained in a mold. In particular, in the formula (a), the formula (b), and the formula (c), when Ra is hydrogen, the reactivity during the polymerization is lowered, and the molecular weight is difficult to increase. When Ra in the formula (c) is a carboxylic acid or a carboxylic acid ester, the hue of the resulting resin tends to deteriorate, and the heat resistance tends to deteriorate.
Further, it is preferable to use each of the compounds represented by the formulas (a) to (d) in an amount of 3% or less based on the mass of the dihydroxy compound represented by the formula (I).
Figure JPOXMLDOC01-appb-C000034
In formula (I), R represents hydrogen, a methyl group, or an ethyl group, and preferably R represents hydrogen.
Figure JPOXMLDOC01-appb-C000035
In formula (c), Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt. Preferable examples of the carboxylic acid ester include carboxylic acid methyl ester and carboxylic acid phenyl ester. Further, as the carboxylate, sodium carboxylate is preferably mentioned.
Figure JPOXMLDOC01-appb-C000036
In the formula (d), Rb represents hydrogen, carboxylic acid, carboxylic acid ester, or carboxylic acid salt. Preferable examples of the carboxylic acid ester include carboxylic acid methyl ester and carboxylic acid phenyl ester. Further, as the carboxylate, sodium carboxylate is preferably mentioned.
 本発明の熱可塑性樹脂がポリカーボネート樹脂である場合、例えば、式(I)で表されるジオール化合物と前記式(a)~(d)で表される化合物の少なくとも一つと炭酸ジエステルとを原料として溶融重縮合法により製造することができる。式(I)で表されるジオール化合物には、ヒドロキシメチル基が2,6位の異性体および2,7位の異性体の混合物が存在する。これらの異性体は質量比で、2,6位の異性体:2,7位の異性体=0.1:99.9~99.9:0.1である。樹脂の強度、引張伸度、成形体の外観などの樹脂物性の観点から、2,6位の異性体:2,7位の異性体=1.0:99.0~99.0:1.0であることが好ましく、2,6位の異性体:2,7位の異性体=20:80~80:20であることがより好ましく、2,6位の異性体:2,7位の異性体=50:50~80:20であることが特に好ましい。さらに、他のジオール化合物を併用しても良い。この反応では重縮合触媒として、塩基性化合物触媒、エステル交換触媒もしくはその双方からなる混合触媒の存在下、製造することができる。 When the thermoplastic resin of the present invention is a polycarbonate resin, for example, a diol compound represented by the formula (I), at least one of the compounds represented by the formulas (a) to (d), and a carbonic acid diester are used as raw materials. It can be produced by a melt polycondensation method. The diol compound represented by the formula (I) has a mixture of isomers in which the hydroxymethyl group is in the 2,6-position and isomers in the 2,7-position. The mass ratio of these isomers is 2,6-position isomer: 2,7-position isomer = 0.1: 99.9 to 99.9: 0.1. From the viewpoint of resin physical properties such as resin strength, tensile elongation, and appearance of a molded product, 2,6-position isomer: 2,7-position isomer = 1.0: 99.0 to 99.0: 1. 0, preferably 2,6-position isomer: 2,7-position isomer = 20: 80 to 80:20, more preferably 2,6-position isomer: 2,7-position isomer It is particularly preferable that the isomers = 50: 50 to 80:20. Further, other diol compounds may be used together. In this reaction, the polycondensation catalyst can be produced in the presence of a basic compound catalyst, a transesterification catalyst, or a mixed catalyst composed of both.
 炭酸ジエステルとしては、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート等が挙げられる。これらの中でも特にジフェニルカーボネートが反応性と純度の観点から好ましい。炭酸ジエステルは、ジオール成分1モルに対して0.97~1.20モルの比率で用いられることが好ましく、更に好ましくは0.98~1.10モルの比率である。このモル比率を調整することにより、ポリカーボネート樹脂の分子量が制御される。 Examples of carbonic acid diesters include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate and the like. Among these, diphenyl carbonate is particularly preferable from the viewpoint of reactivity and purity. The carbonic acid diester is preferably used in a ratio of 0.97 to 1.20 mol, and more preferably 0.98 to 1.10 mol, based on 1 mol of the diol component. The molecular weight of the polycarbonate resin is controlled by adjusting this molar ratio.
 塩基性化合物触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、および含窒素化合物等が挙げられる。 Examples of basic compound catalysts include alkali metal compounds, alkaline earth metal compounds, and nitrogen-containing compounds.
 本発明に使用されるアルカリ金属化合物としては、例えばアルカリ金属の有機酸塩、無機塩、酸化物、水酸化物、水素化物又はアルコキシド等が挙げられる。触媒効果、価格、流通量、樹脂の色相への影響などの観点から、炭酸ナトリウム、及び炭酸水素ナトリウムが好ましい。 Examples of the alkali metal compound used in the present invention include organic acid salts, inorganic salts, oxides, hydroxides, hydrides or alkoxides of alkali metals. Sodium carbonate and sodium hydrogen carbonate are preferable from the viewpoints of catalytic effect, price, distribution amount, influence on the hue of resin, and the like.
 アルカリ土類金属化合物としては、例えばアルカリ土類金属化合物の有機酸塩、無機塩、酸化物、水酸化物、水素化物又はアルコキシド等が挙げられる。 Examples of the alkaline earth metal compound include organic acid salts, inorganic salts, oxides, hydroxides, hydrides or alkoxides of alkaline earth metal compounds.
 含窒素化合物としては、例えば4級アンモニウムヒドロキシドおよびそれらの塩、アミン類等が挙げられる。 Examples of nitrogen-containing compounds include quaternary ammonium hydroxide and salts thereof, amines and the like.
 エステル交換触媒としては、亜鉛、スズ、ジルコニウム、鉛の塩が好ましく用いられ、これらは単独もしくは組み合わせて用いることができる。また、上述したアルカリ金属化合物やアルカリ土類金属化合物と組み合わせて用いてもよい。 As the transesterification catalyst, salts of zinc, tin, zirconium and lead are preferably used, and these can be used alone or in combination. Further, it may be used in combination with the above-mentioned alkali metal compound or alkaline earth metal compound.
 これらの触媒は、ジオール化合物の合計1モルに対して、1×10-9~1×10-3モルの比率で、好ましくは1×10-7~1×10-4モルの比率で用いられる。 These catalysts are used in a ratio of 1 × 10 −9 to 1 × 10 −3 mol, preferably 1 × 10 −7 to 1 × 10 −4 mol, based on 1 mol of the total amount of the diol compound. .
 溶融重縮合法は、前記の原料および触媒を用いて、加熱下に常圧または減圧下にエステル交換反応により副生成物を除去しながら溶融重縮合を行うものである。反応は、一般には二段以上の多段行程で実施される。 The melt polycondensation method is a method of performing melt polycondensation using the above-mentioned raw materials and catalysts while removing by-products by transesterification under heating under normal pressure or reduced pressure. The reaction is generally carried out in multiple stages of two or more stages.
 具体的には、第一段目の反応を120~260℃、好ましくは180~240℃の温度で0.1~5時間、好ましくは0.5~3時間反応させる。次いで反応系の減圧度を上げながら反応温度を高めてジオール化合物と炭酸ジエステルとの反応を行い、最終的には1mmHg以下の減圧下、200~350℃の温度で0.05 ~2時間重縮合反応を行う。このような反応は、連続式で行っても良くまたバッチ式で行ってもよい。上記の反応を行うに際して用いられる反応装置は、錨型攪拌翼、マックスブレンド攪拌翼、ヘリカルリボン型攪拌翼等を装備した縦型であっても、パドル翼、格子翼、メガネ翼等を装備した横型であってもスクリューを装備した押出機型であってもよく、また、これらを重合物の粘度を勘案して適宜組み合わせた反応装置を使用することが好適に実施される。 Specifically, the first stage reaction is carried out at a temperature of 120 to 260 ° C., preferably 180 to 240 ° C. for 0.1 to 5 hours, preferably 0.5 to 3 hours. Then, the reaction temperature is raised while raising the degree of vacuum in the reaction system to react the diol compound with the carbonic acid diester, and finally polycondensation is carried out under a reduced pressure of 1 mmHg or less at a temperature of 200 to 350 ° C for 0.05 to 2 hours. Perform the reaction. Such a reaction may be carried out continuously or batchwise. The reactor used when carrying out the above reaction is a vertical type equipped with an anchor type stirring blade, Maxblend stirring blade, helical ribbon type stirring blade, etc., but equipped with paddle blades, lattice blades, eyeglass blades, etc. It may be a horizontal type or an extruder type equipped with a screw, and it is preferable to use a reactor in which these are appropriately combined in consideration of the viscosity of the polymer.
 本発明の熱可塑性樹脂の製造方法では、重合反応終了後、熱安定性および加水分解安定性を保持するために、触媒を除去もしくは失活させてもよい。一般的には、公知の酸性物質の添加による触媒の失活を行う方法が好適に実施される。失活効果、樹脂の色相や安定性の観点から、p-トルエンスルホン酸ブチルを用いるのが好ましい。また、これらの失活剤は、触媒量に対して0.01~50倍モル、好ましくは0.3~20倍モル使用される。触媒量に対して0.01倍モルより少ないと、失活効果が不充分となり好ましくない。また、触媒量に対して50倍モルより多いと、耐熱性が低下し、成形体が着色しやすくなるため好ましくない。 In the method for producing a thermoplastic resin of the present invention, the catalyst may be removed or deactivated after the completion of the polymerization reaction in order to maintain thermal stability and hydrolysis stability. Generally, a method of deactivating the catalyst by adding a known acidic substance is preferably carried out. From the viewpoints of deactivating effect, hue and stability of resin, it is preferable to use butyl p-toluenesulfonate. These deactivators are used in an amount of 0.01 to 50 times, preferably 0.3 to 20 times the molar amount of the catalyst. When the amount is less than 0.01 times the molar amount of the catalyst, the deactivating effect becomes insufficient, which is not preferable. On the other hand, if the amount is more than 50 times the molar amount of the catalyst, the heat resistance is lowered and the molded product is easily colored, which is not preferable.
 触媒失活後、ポリマー中の低沸点化合物を0.1~1mmHgの圧力、200~350℃の温度で脱揮除去する工程を設けても良く、このためには、パドル翼、格子翼、メガネ翼等、表面更新能の優れた攪拌翼を備えた横型装置、あるいは薄膜蒸発器が好適に用いられる。 After deactivating the catalyst, a step of devolatilizing low-boiling compounds in the polymer at a pressure of 0.1 to 1 mmHg and a temperature of 200 to 350 ° C. may be provided. For this purpose, paddle blades, lattice blades, glasses A horizontal device provided with a stirring blade having excellent surface renewal ability, such as a blade, or a thin film evaporator is preferably used.
 本発明の熱可塑性樹脂は、異物含有量が極力少ないことが望まれ、溶融原料の濾過、触媒液の濾過が好適に実施される。フィルターのメッシュは5μm以下であることが好ましく、より好ましくは1μm以下である。さらに、生成する樹脂のポリマーフィルターによる濾過が好適に実施される。ポリマーフィルターのメッシュは100μm以下であることが好ましく、より好ましくは30μm以下である。また、樹脂ペレットを採取する工程は当然低ダスト環境でなければならず、クラス1000以下であることが好ましく、より好ましくはクラス100以下である。 The thermoplastic resin of the present invention is desired to have a foreign matter content as small as possible, and thus the molten raw material and the catalyst liquid are preferably filtered. The mesh of the filter is preferably 5 μm or less, more preferably 1 μm or less. Further, filtration of the produced resin with a polymer filter is preferably carried out. The mesh of the polymer filter is preferably 100 μm or less, more preferably 30 μm or less. In addition, the step of collecting the resin pellets must be in a low dust environment, and is preferably class 1000 or less, more preferably class 100 or less.
(D)熱可塑性樹脂の物性
 本発明の好ましい態様の熱可塑性樹脂は、アッベ数、屈折率、比熱容量、ガラス転移温度(耐熱性)、色相、およびヘーズの少なくとも一つに優れる。
 本発明の熱可塑性樹脂の比熱容量は450J/g・℃以下が好ましく、1~400J/g・℃Gより好ましく、50~300J/g・℃が更に好ましく、100~300J/g・℃が更により好ましく、200~300J/g・℃が特に好ましい。比熱容量が450J/g・℃以下であると、結晶性が低下し、たとえばヘーズなどの物性が小さくなり、YIなどで示される色相が良好になる傾向がある。
 また、本発明の熱可塑性樹脂の好ましいガラス転移温度(Tg)は95~180℃であり、より好ましくは110~160℃であり、特に好ましくは120~160℃である。Tgが95℃より低いと、レンズやカメラの使用温度範囲が狭くなるため好ましくない。また、180℃を超えると射出成形を行う際の成形条件が厳しくなるため好ましくない。
(D) Physical Properties of Thermoplastic Resin The thermoplastic resin of a preferred embodiment of the present invention is excellent in at least one of Abbe number, refractive index, specific heat capacity, glass transition temperature (heat resistance), hue, and haze.
The specific heat capacity of the thermoplastic resin of the present invention is preferably 450 J / g · ° C. or less, more preferably 1 to 400 J / g · ° C. G, further preferably 50 to 300 J / g · ° C., further preferably 100 to 300 J / g · ° C. Is more preferable, and 200 to 300 J / g · ° C. is particularly preferable. When the specific heat capacity is 450 J / g · ° C. or less, the crystallinity is lowered, the physical properties such as haze are reduced, and the hue represented by YI tends to be good.
The glass transition temperature (Tg) of the thermoplastic resin of the present invention is preferably 95 to 180 ° C, more preferably 110 to 160 ° C, and particularly preferably 120 to 160 ° C. If the Tg is lower than 95 ° C., the operating temperature range of the lens or camera becomes narrow, which is not preferable. Further, if the temperature exceeds 180 ° C., the molding conditions for injection molding become strict, which is not preferable.
 本発明の熱可塑性樹脂は、成形後にJIS-K-7142の方法で測定した屈折率が1.50~1.65であることが好ましく、1.53~1.58であることがより好ましい。
 本発明の熱可塑性樹脂は、成形後にJIS-K-7142の方法で測定したアッベ数が25以上、好ましくは35以上、さらに好ましくは45以上である。アッベ数の上限は、55程度である。
 本発明の熱可塑性樹脂の色相(YI)は、0.1~5.0が好ましく、1.0~3.5がより好ましく、2.0~3.0が特に好ましい。
 本発明の熱可塑性樹脂のヘーズ(Hz)は、0.1~0.5が好ましく、0.1~0.2がより好ましい。
The thermoplastic resin of the present invention preferably has a refractive index of 1.50 to 1.65 measured by the method of JIS-K-7142 after molding, and more preferably 1.53 to 1.58.
The thermoplastic resin of the present invention has an Abbe's number of 25 or more, preferably 35 or more, more preferably 45 or more, measured by the method of JIS-K-7142 after molding. The upper limit of the Abbe number is about 55.
The hue (YI) of the thermoplastic resin of the present invention is preferably 0.1 to 5.0, more preferably 1.0 to 3.5, and particularly preferably 2.0 to 3.0.
The haze (Hz) of the thermoplastic resin of the present invention is preferably 0.1 to 0.5, more preferably 0.1 to 0.2.
 本発明の熱可塑性樹脂には、製造時に生成するフェノールや、反応せずに残存した炭酸ジエステルが不純物として存在していてもよい。熱可塑性樹脂中のフェノール含量は、0.1~3000ppmであることが好ましく、0.1~2000ppmであることがより好ましく、1~1000ppm、1~800ppm、1~500ppm、または1~300ppmであることが特に好ましい。また、熱可塑性樹脂中の炭酸ジエステル含量は、0.1~1000ppmであることが好ましく、0.1~500ppmであることがより好ましく、1~100ppmであることが特に好ましい。熱可塑性樹脂中に含まれるフェノールおよび炭酸ジエステルの量を調節することにより、目的に応じた物性を有する樹脂を得ることができる。フェノールおよび炭酸ジエステルの含量の調節は、重縮合の条件や装置を変更することにより適宜行うことができる。また、重縮合後の押出工程の条件によっても調節可能である。 In the thermoplastic resin of the present invention, phenol produced during production and carbonic acid diester remaining without reaction may be present as impurities. The phenol content in the thermoplastic resin is preferably 0.1 to 3000 ppm, more preferably 0.1 to 2000 ppm, and 1 to 1000 ppm, 1 to 800 ppm, 1 to 500 ppm, or 1 to 300 ppm. Is particularly preferred. The content of carbonic acid diester in the thermoplastic resin is preferably 0.1 to 1000 ppm, more preferably 0.1 to 500 ppm, and particularly preferably 1 to 100 ppm. By adjusting the amounts of phenol and carbonic acid diester contained in the thermoplastic resin, a resin having physical properties suitable for the purpose can be obtained. The phenol and carbonic acid diester contents can be adjusted appropriately by changing the polycondensation conditions and equipment. It can also be adjusted depending on the conditions of the extrusion process after polycondensation.
 フェノールまたは炭酸ジエステルの含量が上記範囲を上回ると、得られる樹脂成形体の強度が落ちたり、臭気が発生する等の問題が生じ得る。一方、フェノールまたは炭酸ジエステルの含量が上記範囲を下回ると、樹脂溶融時の可塑性が低下する虞がある。 When the content of phenol or carbonic acid diester exceeds the above range, the strength of the obtained resin molded product may be reduced, and problems such as odor may occur. On the other hand, when the content of phenol or carbonic acid diester is less than the above range, the plasticity at the time of melting the resin may decrease.
(E)光学レンズ
 本発明の光学レンズは、上述した本発明の熱可塑性樹脂を射出成形機あるいは射出圧縮成形機によりレンズ形状に射出成形することによって得ることができる。射出成形の成形条件は特に限定されないが、成形温度は好ましくは180~300℃、より好ましくは180~290℃である。また、射出圧力は好ましくは50~1700kg/cm2である。
(E) Optical Lens The optical lens of the present invention can be obtained by injection molding the above-mentioned thermoplastic resin of the present invention into a lens shape by an injection molding machine or an injection compression molding machine. The molding conditions for injection molding are not particularly limited, but the molding temperature is preferably 180 to 300 ° C, more preferably 180 to 290 ° C. The injection pressure is preferably 50 to 1700 kg / cm 2 .
 光学レンズへの異物の混入を極力避けるため、成形環境も当然低ダスト環境でなければならず、クラス1000以下であることが好ましく、より好ましくはクラス100以下である。 In order to avoid foreign matter from entering the optical lens as much as possible, the molding environment must also be a low dust environment, and is preferably class 1000 or lower, more preferably class 100 or lower.
 本発明の光学レンズは、必要に応じて非球面レンズの形で用いることが好適に実施される。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせで球面収差を取り除く必要がなく、軽量化および生産コストの低減化が可能になる。従って、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。非球面レンズの非点収差は0~15mλであることが好ましく、より好ましくは0~10mλである。 The optical lens of the present invention is preferably used in the form of an aspherical lens, if necessary. Since an aspherical lens can reduce the spherical aberration to substantially zero with one lens, it is not necessary to remove the spherical aberration by combining a plurality of spherical lenses, and it is possible to reduce the weight and the production cost. It will be possible. Therefore, the aspherical lens is particularly useful as a camera lens among optical lenses. The astigmatism of the aspherical lens is preferably 0 to 15 mλ, more preferably 0 to 10 mλ.
 本発明の光学レンズの厚みは、用途に応じて広範囲に設定可能であり特に制限はないが、好ましくは0.01~30mm、より好ましくは0.1~15mmである。本発明の光学レンズの表面には、必要に応じ、反射防止層あるいはハードコート層といったコート層が設けられていてもよい。反射防止層は、単層であっても多層であっても良く、有機物であっても無機物であっても構わないが、無機物であることが好ましい。具体的には、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化チタニウム、酸化セリウム、酸化マグネシウム、フッ化マグネシウム等の酸化物あるいはフッ化物が例示される。これらのうちでより好ましいものは酸化ケイ素、酸化ジルコニウムであり、更に好ましいものは酸化ケイ素と酸化ジルコニウムの組み合わせである。また、反射防止層に関しては、単層/多層の組み合わせ、またそれらの成分、厚みの組み合わせ等について特に限定はされないが、好ましくは2層構成又は3層構成、特に好ましくは3層構成である。また、該反射防止層全体として、光学レンズの厚みの0.00017~3.3%、具体的には0.05~3μm、特に好ましくは1~2μmとなる厚みで形成するのがよい。 The thickness of the optical lens of the present invention can be set in a wide range according to the application and is not particularly limited, but is preferably 0.01 to 30 mm, more preferably 0.1 to 15 mm. If necessary, a coating layer such as an antireflection layer or a hard coat layer may be provided on the surface of the optical lens of the present invention. The antireflection layer may be a single layer or a multilayer, and may be an organic substance or an inorganic substance, but is preferably an inorganic substance. Specific examples include oxides or fluorides such as silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, cerium oxide, magnesium oxide and magnesium fluoride. Of these, more preferred are silicon oxide and zirconium oxide, and even more preferred is a combination of silicon oxide and zirconium oxide. The antireflection layer is not particularly limited in the combination of single layer / multilayer and the combination of components and thickness thereof, but preferably has a two-layer structure or a three-layer structure, particularly preferably a three-layer structure. The antireflection layer as a whole is preferably formed with a thickness of 0.0017 to 3.3% of the thickness of the optical lens, specifically 0.05 to 3 μm, particularly preferably 1 to 2 μm.
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に何らの制限を受けるものではない。
<原料の製造>
混合物I-m
 WO2017/175693に示される「モノマー合成例1」において、蒸留精製をしなかった以外は当該「モノマー合成例1」と同様にして混合物I-mを得た。この混合物I-mには、主生成物である化合物I-pの他にも、不純物としてモノマーである化合物a、b、c-1、c-2、およびdが以下の含有量で含まれていた。モノマーの含有量は、ガスクロマトグラフィー(製造装置:株式会社 島津製作所製 GC-2010 Plus)を用い、混合物を1質量%のメタノール溶液とし、50~300℃の昇温気化法の下、測定を行った値である。以下、同様。
 化合物a:5.0000質量%
 化合物b:3.0000質量%
 化合物c-1:2.0000質量%
 化合物c-2:1.0000質量%
 化合物d:1.0000質量%
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
<Manufacture of raw materials>
Mixture Im
A mixture Im was obtained in the same manner as in “Monomer Synthesis Example 1” except that distillation purification was not performed in “Monomer Synthesis Example 1” shown in WO2017 / 175693. In addition to the main product, Compound Ip, this mixture Im contained the compounds a, b, c-1, c-2, and d as impurities as impurities in the following contents. Was there. The content of the monomer was measured by gas chromatography (manufacturing equipment: Shimadzu Corporation GC-2010 Plus) using a mixture of 1 mass% methanol solution under a temperature-raising vaporization method of 50 to 300 ° C. It is the value that was performed. The same applies hereinafter.
Compound a: 5.0000 mass%
Compound b: 3.0000 mass%
Compound c-1: 2.0000% by mass
Compound c-2: 1.0000 mass%
Compound d: 1.0000 mass%
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
混合物I-1
 WO2017/175693に示される「モノマー合成例1」と同様の方法(蒸留精製×1回)によって混合物I-1を得た。この混合物I-1には、主生成物である化合物I-pの他にも、不純物としてモノマーである化合物a、b、c-1、c-2、およびdが以下の含有量で含まれていた。
 化合物a:1.4000質量%
 化合物b:0.5000質量%
 化合物c-1:1.8000質量%
 化合物c-2:0.0100質量%
 化合物d:0.0100質量%
Mixture I-1
A mixture I-1 was obtained by the same method as "monomer synthesis example 1" shown in WO2017 / 175693 (distillation purification x 1 time). In addition to the main product, Compound Ip, this mixture I-1 also contained the compounds a, b, c-1, c-2, and d as impurities as impurities in the following contents. Was there.
Compound a: 1.4000 mass%
Compound b: 0.5000 mass%
Compound c-1: 1.8000 mass%
Compound c-2: 0.0100% by mass
Compound d: 0.0100 mass%
混合物I-2
 上記で得られた混合物I-1について、再度、蒸留することにより(蒸留精製:合計2回)、混合物I-2を得た。この混合物I-2には、主生成物である化合物I-pの他にも、不純物としてモノマーである化合物a、b、c-1およびc-2が以下の含有量で含まれていた。
 化合物a:0.9900質量%
 化合物b:0.4300質量%
 化合物c-1:0.6100質量%
 化合物c-2:0.0100質量%
 化合物d:検出限界以下(0.0001質量%未満)
Mixture I-2
The mixture I-1 obtained above was distilled again (distillation purification: twice in total) to obtain a mixture I-2. This mixture I-2 contained, as impurities, the compounds a, b, c-1 and c-2, which were monomers, in addition to the main product, the compound Ip, in the following contents.
Compound a: 0.9900 mass%
Compound b: 0.4300% by mass
Compound c-1: 0.6100% by mass
Compound c-2: 0.0100% by mass
Compound d: below detection limit (less than 0.0001 mass%)
 上記で得られた混合物I-2について、再度、蒸留することにより(蒸留精製:合計3回)、混合物I-3を得た。この混合物I-3には、主生成物である化合物I-pの他にも、不純物としてモノマーである化合物a、bおよびc-1が以下の含有量で含まれていた。
 化合物a:0.3400質量%
 化合物b:0.1100質量%
 化合物c-1:0.0200質量%
 化合物c-2:検出限界以下(0.0001質量%未満)
 化合物d:検出限界以下(0.0001質量%未満)
The mixture I-2 obtained above was distilled again (distillation purification: 3 times in total) to obtain a mixture I-3. This mixture I-3 contained, as impurities, the compounds a, b and c-1 which were the monomers, in addition to the main product, the compound Ip, in the following contents.
Compound a: 0.3400 mass%
Compound b: 0.1100% by mass
Compound c-1: 0.0200 mass%
Compound c-2: below detection limit (less than 0.0001 mass%)
Compound d: below detection limit (less than 0.0001 mass%)
化合物I-p
 上記で得られた混合物I-1について、モノマーである化合物a、b、c-1、c-2、およびdが検出限界以下になるまで蒸留精製を繰り返すことにより(蒸留精製:合計6回)、純粋な化合物I-pを得た。不純物のモノマーである化合物a、b、c-1、c-2、およびdの検出限界は、各々0.0001質量%であった。
 なお、化合物a、b、c-1、c-2、およびdは、上記化合物I-pを得る際、蒸留精製中に分留したものを分取カラムにより分取した。
Compound Ip
By repeating the distillation purification of the mixture I-1 obtained above until the monomers a, b, c-1, c-2, and d are below the detection limit (distillation purification: 6 times in total). , Pure compound Ip was obtained. The detection limits of the compounds a, b, c-1, c-2, and d, which are impurity monomers, were each 0.0001 mass%.
The compounds a, b, c-1, c-2, and d were fractionated during the distillation purification when the compound Ip was obtained, and fractionated by a fractionation column.
<重量平均分子量(Mw)の測定方法>
 予め作成した標準ポリスチレンの検量線からポリスチレン換算重量平均分子量を求めた。即ち、分子量既知(分子量分布=1)の標準ポリスチレン(東ソー株式会社製、“PStQuick MP-M”)を用いて検量線を作成し、測定した標準ポリスチレンから各ピークの溶出時間と分子量値をプロットし、3次式による近似を行い、較正曲線とした。Mwは、以下の計算式より求めた。
  Mw=Σ(Wi×Mi)÷Σ(Wi)
 ここで、iは分子量Mを分割した際のi番目の分割点、Wiはi番目の重量、Miはi番目の分子量を表す。また分子量Mとは、較正曲線の同溶出時間でのポリスチレン分子量値を表す。GPC装置として、東ソー株式会社製、HLC-8320GPCを用い、ガードカラムとして、TSKguardcolumn SuperMPHZ-Mを1本、分析カラムとしてTSKgel SuperMultiporeHZ-Mを3本直列に連結したものを用いた。その他の条件は以下の通りである。
  溶媒:HPLCグレードテトラヒドロフラン
  注入量:10μL
  試料濃度:0.2w/v% HPLCグレードクロロホルム溶液
  溶媒流速:0.35ml/min
  測定温度:40℃
  検出器:RI
<Measurement method of weight average molecular weight (Mw)>
The polystyrene-converted weight average molecular weight was determined from the calibration curve of standard polystyrene prepared in advance. That is, a calibration curve was created using standard polystyrene ("PStQuick MP-M" manufactured by Tosoh Corporation) of known molecular weight (molecular weight distribution = 1), and the elution time and molecular weight value of each peak were plotted from the measured standard polystyrene. Then, approximation by a cubic equation was performed to obtain a calibration curve. Mw was calculated from the following formula.
Mw = Σ (Wi × Mi) ÷ Σ (Wi)
Here, i represents the i-th division point when the molecular weight M is divided, Wi represents the i-th weight, and Mi represents the i-th molecular weight. The molecular weight M represents the polystyrene molecular weight value at the same elution time of the calibration curve. HLC-8320GPC manufactured by Tosoh Corporation was used as a GPC device, one TSKguardcolumn SuperMPHZ-M was used as a guard column, and three TSKgel SuperMultiporeHZ-M were connected in series as an analytical column. Other conditions are as follows.
Solvent: HPLC grade tetrahydrofuran Injection volume: 10 μL
Sample concentration: 0.2 w / v% HPLC grade chloroform solution Solvent flow rate: 0.35 ml / min
Measurement temperature: 40 ° C
Detector: RI
<屈折率nDおよびアッベ数νDの測定方法>
 得られた熱可塑性樹脂組成物を、40φ、3mm厚の円板にプレス成形(成形条件:200℃、100kgf/cm、2分)し、直角に切り出し、カルニュー製KPR-200により測定した。
<比熱容量(J/g*℃)の測定方法>
 JIS K7123-1987に基づき、示差走査熱量計(DSC)により測定した。該熱量計として、日立ハイテクサイエンスX-DSC7000を用いた。
<ガラス転移温度(Tg)>
 JIS K7121-1987に基づき、示差熱走査熱量分析計(DSC)により測定した。該分析計として、日立ハイテクサイエンスX-DSC7000を用いた。
<色相(YI)およびヘーズ(Hz)の測定方法>
 住友重機械工業(株)製射出成型機SH50にて、シリンダー温度260℃、金型温度を樹脂のガラス転移温度より30℃低い温度として射出成形し、3mm厚の円板を得た。この円板を用いて色相(YI)、ヘーズ(Hz)を測定した。
 色相(YI)は日本電色工業(株)製SE2000により測定し、ヘーズ(Hz)は日本電色製NDH2000により測定した。
<Method of measuring refractive index nD and Abbe number νD>
The obtained thermoplastic resin composition was press-molded (molding conditions: 200 ° C., 100 kgf / cm 2 , 2 minutes) on a disc having a diameter of 40 mm and a thickness of 3 mm, cut out at a right angle, and measured by KPR-200 manufactured by Karnew.
<Specific heat capacity (J / g * ° C) measurement method>
It was measured by a differential scanning calorimeter (DSC) based on JIS K7123-1987. Hitachi High-Tech Science X-DSC7000 was used as the calorimeter.
<Glass transition temperature (Tg)>
Based on JIS K7121-1987, it was measured by a differential scanning calorimeter (DSC). As the analyzer, Hitachi High-Tech Science X-DSC7000 was used.
<Method of measuring hue (YI) and haze (Hz)>
Using an injection molding machine SH50 manufactured by Sumitomo Heavy Industries, Ltd., injection molding was carried out at a cylinder temperature of 260 ° C. and a mold temperature of 30 ° C. lower than the glass transition temperature of the resin to obtain a 3 mm thick disc. Hue (YI) and haze (Hz) were measured using this disc.
The hue (YI) was measured by SE2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the haze (Hz) was measured by NDH2000 manufactured by Nippon Denshoku.
(実施例1)
 原料として、上記で得られた化合物I-p(エンド体:エキソ体=25:75):1.0000モル(222.3336g)、上記構造式で表される化合物a:0.0168モル(3.2343g)、化合物b:0.0050モル(1.1551g)、化合物c-1:0.0189モル(4.1584g)、化合物c-2:0.0005モル(0.1155g)、化合物d:0.0001モル(0.0231g)、炭酸水素ナトリウム:1×10-2モル(0.840000g)及びジフェニルカーボネート:1.0363モル(222.0000g)を攪拌機、加熱装置及び留出装置付きの2L反応機に入れ、窒素ガスにより反応機を置換した。この時点を反応開始とし、760Torrの下、1時間かけて210℃まで昇温した。目視にて原料が溶解したところで撹拌を開始した。180℃にてフェノールが留出装置へ回収された。反応開始から1時間20分後、フェノールが留出装置へ回収され始めた。反応開始1時間30分後、10分間で760Torrから200Torrまで減圧すると同時に温度を215℃まで加熱した。反応開始2時間後に220℃まで昇温、反応開始2時間30分後に30分かけて150Torrまで減圧すると同時に温度を250℃まで昇温した。引き続き、1Torrまで減圧したのち30分間保持した。反応機に窒素ガスを導入し、反応機内を常圧に戻した後、得られたポリカーボネート樹脂をペレット化し、引き続き、該ペレットを110℃で3時間乾燥して、ポリカーボネート樹脂Aを得た。
 別途、原料として、下記構造式で表されるBPEF:1.000モル(438.52g)、炭酸水素ナトリウム:1×10-6モル(0.084mg、1質量%の水溶液として投入)及びジフェニルカーボネート:1.020モル(218.50g)を用いる以外は、上述したポリカーボネート樹脂Aと同様に反応、ペレット化し、ポリカーボネート樹脂Wを得た。引き続き、該ペレットを110℃で3時間乾燥した。
(Example 1)
As raw materials, the compound Ip obtained above (endo form: exo form = 25: 75): 1.0000 mol (222.3336 g), compound a represented by the above structural formula: 0.0168 mol (3 .2343 g), compound b: 0.0050 mol (1.1551 g), compound c-1: 0.0189 mol (4.1584 g), compound c-2: 0.0005 mol (0.1155 g), compound d: 2 liters of 0.0001 mol (0.0231 g), sodium hydrogen carbonate: 1 × 10 -2 mol (0.840000 g) and diphenyl carbonate: 1.0363 mol (222.0000 g) with a stirrer, a heating device and a distillation device It was placed in a reactor and the reactor was replaced with nitrogen gas. At this point, the reaction was started, and the temperature was raised to 210 ° C. over 1 hour under 760 Torr. Stirring was started when the raw materials were visually dissolved. Phenol was recovered in the distillation device at 180 ° C. 1 hour and 20 minutes after the start of the reaction, phenol started to be collected in the distillation apparatus. After 1 hour and 30 minutes from the start of the reaction, the pressure was reduced from 760 Torr to 200 Torr in 10 minutes, and at the same time, the temperature was heated to 215 ° C. Two hours after the start of the reaction, the temperature was raised to 220 ° C, and 2 hours and 30 minutes after the start of the reaction, the pressure was reduced to 150 Torr over 30 minutes, and at the same time, the temperature was raised to 250 ° C. Subsequently, the pressure was reduced to 1 Torr and the pressure was maintained for 30 minutes. After introducing nitrogen gas into the reactor and returning the pressure inside the reactor to normal pressure, the obtained polycarbonate resin was pelletized, and then the pellet was dried at 110 ° C. for 3 hours to obtain a polycarbonate resin A.
Separately, as raw materials, BPEF represented by the following structural formula: 1.000 mol (438.52 g), sodium hydrogencarbonate: 1 × 10 −6 mol (0.084 mg, added as a 1% by mass aqueous solution) and diphenyl carbonate. : Polycarbonate resin W was obtained by reacting and pelletizing in the same manner as the above-mentioned polycarbonate resin A except that 1.020 mol (218.50 g) was used. Subsequently, the pellets were dried at 110 ° C. for 3 hours.
Figure JPOXMLDOC01-appb-C000038
 ポリカーボネート樹脂Aのペレット及びポリカーボネート樹脂Wのペレットを、ポリカーボネート樹脂A:ポリカーボネート樹脂W=68:32の質量比で混合し、さらに添加剤として、ポリカーボネート樹脂組成物中に、離型剤であるグリセリンモノステアレート(理研ビタミン株式会社製;リケマール S-100A)0.20質量%、酸化防止剤であるペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](株式会社ADEKA製;アデカスタブ AO-60)0.10重量%、酸化防止剤である3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(株式会社ADEKA製;アデカスタブ PEP-36)0.05質量%となるようにペレットに添着した後、ベント式二軸押出機(株式会社新潟鐵工所製IPEC;完全かみあい、同方向回転)により、280℃で溶融混合した。得られたポリカーボネート樹脂組成物の物性を表1に示した。
Figure JPOXMLDOC01-appb-C000038
Polycarbonate resin A pellets and polycarbonate resin W pellets were mixed in a mass ratio of polycarbonate resin A: polycarbonate resin W = 68: 32, and glycerin mono that was a release agent was added to the polycarbonate resin composition as an additive. Stearate (Riken Vitamin Co., Ltd .; Rikemal S-100A) 0.20% by mass, antioxidant pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] ( ADEKA CORPORATION; ADEKA STAB AO-60) 0.10% by weight, antioxidant 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10 -Tetraoxa-3,9-diphosphaspiro [5.5] undecane (A Co., Ltd. EKA; ADK STAB PEP-36) After impregnating the pellets to 0.05% by mass, it is heated at 280 ° C by a vent-type twin-screw extruder (IPEC manufactured by Niigata Iron Works Co., Ltd .; complete meshing and rotating in the same direction). And melt mixed. The physical properties of the obtained polycarbonate resin composition are shown in Table 1.
(実施例2~11、比較例1、2)
 表2に記載の原料と仕込み量に代える以外は、実施例1と同様に行い、各々ポリカーボネート樹脂B~Kを得た。
 ポリカーボネート樹脂Aの代わりにポリカーボネート樹脂B~Kを用い、表1に記載の添加剤と添加剤量に代える以外は、実施例1と同様にポリカーボネート樹脂組成物を得た。得られたポリカーボネート樹脂組成物の物性を表1に示した。
(Examples 2 to 11, Comparative Examples 1 and 2)
Polycarbonate resins B to K were obtained in the same manner as in Example 1 except that the raw materials and the charged amounts shown in Table 2 were changed.
A polycarbonate resin composition was obtained in the same manner as in Example 1 except that the polycarbonate resins B to K were used instead of the polycarbonate resin A and the additives and the amounts of the additives shown in Table 1 were used instead. The physical properties of the obtained polycarbonate resin composition are shown in Table 1.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 なお、表1及び表2における添加剤は以下の通りである。
S-100A:離型剤であるグリセリンモノステアレート(理研ビタミン株式会社製;リケマール S-100A)
B-100A:離型剤であるグリセリンモノベヘネート(理研ビタミン株式会社製;リケマール B-100A)
ポエム M-100:離型剤であるグリセリンモノカプリレート(理研ビタミン株式会社製;ポエム M-100)
ポエム M-300:離型剤であるグリセリンモノラウレート(理研ビタミン株式会社製;ポエム M-300)
AO-60:酸化防止剤であるペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](株式会社ADEKA製;アデカスタブ AO-60)
AO-30:酸化防止剤である[4,4',4''-(1-メチルプロパニル-3-イリデン)トリス(6-tert-ブチル-m-クレゾール)](株式会社ADEKA製;アデカスタブ AO-30)
AO-50:酸化防止剤であるオクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)(株式会社ADEKA製;アデカスタブ AO-50)
PEP-36:酸化防止剤である3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(株式会社ADEKA製;アデカスタブ PEP-36)
HP-10:酸化防止剤である2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)2-エチルヘキシルホスファイト(株式会社ADEKA製;アデカスタブ HP-10)
アデカスタブ2112:酸化防止剤であるトリス(2,4-ジ-tert-ブチルフェニル) ホスファイト(株式会社ADEKA製;アデカスタブ2112)
The additives in Tables 1 and 2 are as follows.
S-100A: Glycerin monostearate (Riken Vitamin Co., Ltd .; Rikemar S-100A) which is a release agent
B-100A: Glycerin monobehenate as a release agent (manufactured by Riken Vitamin Co., Ltd .; Rikemar B-100A)
Poem M-100: Glycerin monocaprylate (Riken Vitamin Co., Ltd .; Poem M-100) as a release agent
Poem M-300: Glycerin monolaurate as a release agent (Riken Vitamin Co., Ltd .; Poem M-300)
AO-60: Antioxidant pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (manufactured by ADEKA Corporation; ADEKA STAB AO-60)
AO-30: [4,4 ′, 4 ″-(1-methylpropanyl-3-ylidene) tris (6-tert-butyl-m-cresol) which is an antioxidant] (manufactured by ADEKA Corporation; ADEKA STAB) AO-30)
AO-50: Octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate which is an antioxidant (manufactured by ADEKA Corporation; ADEKA STAB AO-50)
PEP-36: Antioxidant 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5 ] Undecane (made by ADEKA Corporation; ADEKA STAB PEP-36)
HP-10: 2,2'-methylenebis (4,6-di-tert-butylphenyl) 2-ethylhexyl phosphite which is an antioxidant (manufactured by ADEKA Corporation; ADEKA STAB HP-10)
ADEKA STAB 2112: Tris (2,4-di-tert-butylphenyl) phosphite which is an antioxidant (manufactured by ADEKA Corporation; ADEKA STAB 2112)
(実施例A)
 原料として、化合物I-pの代わりに上記で得られた混合物I-1:222.33g、炭酸水素ナトリウム:8.4mg及びジフェニルカーボネート:221.90gとした以外は、実施例1と同様に行い、ポリカーボネート樹脂組成物を得た。得られたポリカーボネート樹脂組成物の物性を表3に示した。
(Example A)
The same procedure as in Example 1 was repeated except that, instead of the compound Ip, the mixture I-1 obtained above was 222.33 g, sodium hydrogencarbonate was 8.4 mg, and diphenyl carbonate was 221.90 g. A polycarbonate resin composition was obtained. Table 3 shows the physical properties of the obtained polycarbonate resin composition.
(実施例A-1~実施例C-2)
 表3に記載の原料と仕込み量に代える以外は、実施例Aと同様に行った。得られたポリカーボネート樹脂組成物の物性を表3に示した。
(Example A-1 to Example C-2)
The same procedure as in Example A was carried out except that the raw materials and the charged amounts shown in Table 3 were changed. Table 3 shows the physical properties of the obtained polycarbonate resin composition.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 本発明の好ましい態様により、アッベ数、屈折率、比熱容量、ガラス転移温度(耐熱性)、色相、およびヘーズの少なくとも一つに優れた光学レンズを得ることができる。本発明の光学レンズは、射出成形可能で生産性が高く安価であるため、カメラ、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高アッベガラスレンズが用いられていた分野に用いることができ極めて有用である。また、高アッベレンズと低アッベレンズの吸水率差が小さくなることから、小さな光学レンズユニットに特に好適である。さらに本発明により、ガラスレンズでは技術的に加工の困難な高アッベ非球面レンズを射出成形により簡便に得ることができ、極めて有用である。 According to the preferred embodiment of the present invention, an optical lens excellent in at least one of Abbe number, refractive index, specific heat capacity, glass transition temperature (heat resistance), hue, and haze can be obtained. The optical lens of the present invention can be injection-molded, has high productivity, and is inexpensive. Therefore, it can be used in fields where expensive high-Abbe glass lenses have been conventionally used, such as cameras, telescopes, binoculars, and television projectors. It is useful. Further, since the difference in water absorption between the high Abbe lens and the low Abbe lens becomes small, it is particularly suitable for a small optical lens unit. Further, according to the present invention, a high Abbe aspherical lens, which is technically difficult to process with a glass lens, can be easily obtained by injection molding, which is extremely useful.

Claims (21)

  1.  下記式(1)で表される構成単位を含む熱可塑性樹脂を含有する熱可塑性樹脂組成物であって、
     前記熱可塑性樹脂の末端構造が、下記式(A)または式(B)で表される構造を含み、前記熱可塑性樹脂におけるポリスチレン換算の重量平均分子量が1,000~50,000である、熱可塑性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、水素、メチル基、またはエチル基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(A)中、Raは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。)
    Figure JPOXMLDOC01-appb-C000003
    A thermoplastic resin composition containing a thermoplastic resin containing a structural unit represented by the following formula (1),
    A terminal structure of the thermoplastic resin includes a structure represented by the following formula (A) or formula (B), and the thermoplastic resin has a polystyrene-reduced weight average molecular weight of 1,000 to 50,000. Plastic resin composition.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R represents hydrogen, a methyl group, or an ethyl group.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (A), Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.)
    Figure JPOXMLDOC01-appb-C000003
  2.  前記熱可塑性樹脂が、さらに、下記式(2)で表される構成単位を含む、請求項1に記載の熱可塑性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(2)中、Rは、水素、メチル基、またはエチル基を表す。)
    The thermoplastic resin composition according to claim 1, wherein the thermoplastic resin further contains a structural unit represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (2), R represents hydrogen, a methyl group, or an ethyl group.)
  3.  前記熱可塑性樹脂が、さらに、下記式(3)で表される構成単位を含む、請求項1に記載の熱可塑性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(3)中、Rは、水素、メチル基、またはエチル基を表す。)
    The thermoplastic resin composition according to claim 1, wherein the thermoplastic resin further contains a structural unit represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (3), R represents hydrogen, a methyl group, or an ethyl group.)
  4.  前記式(1)で表される構成単位と前記式(A)で表される構成単位との質量比が、式(1)で表される構成単位:式(A)で表される構成単位=97.00:3.00~99.99:0.01である、請求項1から3のいずれかに記載の熱可塑性樹脂組成物。 The mass ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (A) is represented by the structural unit represented by the formula (1): the structural unit represented by the formula (A). The thermoplastic resin composition according to any one of claims 1 to 3, wherein: 97.0: 3.00 to 99.99: 0.01.
  5.  前記式(1)で表される構成単位と前記式(B)で表される構成単位との質量比が、式(1)で表される構成単位:式(B)で表される構成単位=99.00:1.00~99.99:0.01である、請求項1から3のいずれかに記載の熱可塑性樹脂組成物。 The mass ratio of the structural unit represented by the formula (1) to the structural unit represented by the formula (B) is represented by the structural unit represented by the formula (1): the structural unit represented by the formula (B). The thermoplastic resin composition according to any one of claims 1 to 3, wherein: 99.00: 1.00 to 99.99: 0.01.
  6.  前記式(1)で表される構成単位と前記式(2)で表される構成単位との質量比が、式(1)で表される構成単位:式(2)で表される構成単位=98.00:2.00~99.99:0.01である、請求項2に記載の熱可塑性樹脂組成物。 The mass ratio of the structural unit represented by the formula (1) to the structural unit represented by the formula (2) is represented by the structural unit represented by the formula (1): the structural unit represented by the formula (2). The thermoplastic resin composition according to claim 2, wherein: 98.00: 2.00 to 99.99: 0.01.
  7.  前記式(1)で表される構成単位と前記式(3)で表される構成単位との質量比が、式(1)で表される構成単位:式(3)で表される構成単位=98.00:2.00~99.99:0.01である、請求項3に記載の熱可塑性樹脂組成物。 The mass ratio of the structural unit represented by the formula (1) to the structural unit represented by the formula (3) is represented by the structural unit represented by the formula (1): the structural unit represented by the formula (3). The thermoplastic resin composition according to claim 3, wherein: 98.0: 2.00 to 99.99: 0.01.
  8.  前記Rが、水素である、請求項1から7のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 7, wherein R is hydrogen.
  9.  前記Raにおけるカルボン酸エステルが、カルボン酸メチルエステルまたはカルボン酸フェニルエステルである、請求項1から8のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 8, wherein the carboxylic acid ester in Ra is a carboxylic acid methyl ester or a carboxylic acid phenyl ester.
  10.  前記Raにおけるカルボン酸塩が、カルボン酸ナトリウムである、請求項1から8のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 8, wherein the carboxylate salt in Ra is sodium carboxylate.
  11.  前記熱可塑性樹脂が、さらに、下記式(4)で表される構成単位を含む、請求項1から10のいずれかに記載の熱可塑性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    (式(4)中、R及びRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、およびハロゲン原子からなる群より選択され;Xは、それぞれ独立に、分岐していてもよい炭素数1~6のアルキレン基であり;nは、それぞれ独立に、0~5の整数である。)
    The thermoplastic resin composition according to claim 1, wherein the thermoplastic resin further contains a structural unit represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000006
    (In the formula (4), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a carbon atom. Selected from the group consisting of a cycloalkoxyl group having 5 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and a halogen atom; and X's each independently being branched. (A good alkylene group having 1 to 6 carbon atoms; n is each independently an integer of 0 to 5.)
  12.  さらに、添加剤を含む、請求項1から11のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 11, further comprising an additive.
  13.  前記添加剤が、2種以上の酸化防止剤、及び離型剤を含む、請求項12に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 12, wherein the additive contains two or more kinds of antioxidants and a release agent.
  14.  前記酸化防止剤の含有量が、熱可塑性樹脂組成物中に0.50質量%以下であり、前記離型剤の含有量が、熱可塑性樹脂組成物中に0.50質量%以下である、請求項13に記載の熱可塑性樹脂組成物。 The content of the antioxidant is 0.50% by mass or less in the thermoplastic resin composition, and the content of the release agent is 0.50% by mass or less in the thermoplastic resin composition, The thermoplastic resin composition according to claim 13.
  15.  下記式(I)で表される化合物、下記式(a)で表される化合物、下記式(b)で表される化合物、下記式(c)で表される化合物、及び下記式(d)で表される化合物からなる群より選択されるモノマーの少なくとも一つを含む、請求項1から14のいずれかに記載の熱可塑性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式(I)中、Rは、水素、メチル基、またはエチル基を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式(c)中、Raは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。)
    Figure JPOXMLDOC01-appb-C000009
    (式(d)中、Rbは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。)
    A compound represented by the following formula (I), a compound represented by the following formula (a), a compound represented by the following formula (b), a compound represented by the following formula (c), and a following formula (d) The thermoplastic resin composition according to claim 1, comprising at least one monomer selected from the group consisting of compounds represented by:
    Figure JPOXMLDOC01-appb-C000007
    (In the formula (I), R represents hydrogen, a methyl group, or an ethyl group.)
    Figure JPOXMLDOC01-appb-C000008
    (In the formula (c), Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.)
    Figure JPOXMLDOC01-appb-C000009
    (In the formula (d), Rb represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.)
  16.  比熱容量が450J/g・℃以下である、請求項1から15のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 15, which has a specific heat capacity of 450 J / g · ° C or less.
  17.  前記熱可塑性樹脂が、ポリカーボネート、ポリエステルカーボネート、またはポリエステルである、請求項1から16のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 16, wherein the thermoplastic resin is polycarbonate, polyester carbonate, or polyester.
  18.  請求項1から17のいずれかに記載の熱可塑性樹脂組成物を用いた光学レンズ。 An optical lens using the thermoplastic resin composition according to any one of claims 1 to 17.
  19.  請求項1から17のいずれかに記載の熱可塑性樹脂組成物を用いたフィルム。 A film using the thermoplastic resin composition according to any one of claims 1 to 17.
  20.  少なくとも、下記式(I)で表されるジヒドロキシ化合物と、
     下記式(a)で表される化合物、下記式(b)で表される化合物、下記式(c)で表される化合物、および下記式(d)で表される化合物からなる群より選択される少なくとも一つの化合物と、を反応させて熱可塑性樹脂組成物を製造する方法であって、
     前記少なくとも一つの化合物の合計量が、前記式(I)で表されるジヒドロキシ化合物の質量に対して10%以下である、製造方法。
    Figure JPOXMLDOC01-appb-C000010
    (式(I)中、Rは、水素、メチル基、またはエチル基を表す。)
    Figure JPOXMLDOC01-appb-C000011
    (式(c)中、Raは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。)
    Figure JPOXMLDOC01-appb-C000012
    (式(d)中、Rbは、水素、カルボン酸、カルボン酸エステル、またはカルボン酸塩を表す。)
    At least a dihydroxy compound represented by the following formula (I):
    Selected from the group consisting of a compound represented by the following formula (a), a compound represented by the following formula (b), a compound represented by the following formula (c), and a compound represented by the following formula (d) A method of producing a thermoplastic resin composition by reacting at least one compound with
    The production method, wherein the total amount of the at least one compound is 10% or less based on the mass of the dihydroxy compound represented by the formula (I).
    Figure JPOXMLDOC01-appb-C000010
    (In the formula (I), R represents hydrogen, a methyl group, or an ethyl group.)
    Figure JPOXMLDOC01-appb-C000011
    (In the formula (c), Ra represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.)
    Figure JPOXMLDOC01-appb-C000012
    (In the formula (d), Rb represents hydrogen, a carboxylic acid, a carboxylic acid ester, or a carboxylic acid salt.)
  21.  前記式(a)~(d)で表される化合物を、前記式(I)で表されるジヒドロキシ化合物の質量に対して、各々3%以下用いる、請求項20に記載の製造方法。 21. The production method according to claim 20, wherein the compounds represented by the formulas (a) to (d) are used in an amount of 3% or less with respect to the mass of the dihydroxy compound represented by the formula (I).
PCT/JP2019/039730 2018-10-16 2019-10-09 Thermoplastic resin composition, and optical lens or film using same WO2020080205A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217010987A KR20210076002A (en) 2018-10-16 2019-10-09 Thermoplastic resin composition and optical lens or film using same
JP2020553098A JPWO2020080205A1 (en) 2018-10-16 2019-10-09 Thermoplastic resin composition and optical lens or film using it
CN201980067699.4A CN112867762B (en) 2018-10-16 2019-10-09 Thermoplastic resin composition and optical lens or film using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-195282 2018-10-16
JP2018195282 2018-10-16

Publications (1)

Publication Number Publication Date
WO2020080205A1 true WO2020080205A1 (en) 2020-04-23

Family

ID=70284606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039730 WO2020080205A1 (en) 2018-10-16 2019-10-09 Thermoplastic resin composition, and optical lens or film using same

Country Status (5)

Country Link
JP (1) JPWO2020080205A1 (en)
KR (1) KR20210076002A (en)
CN (1) CN112867762B (en)
TW (1) TWI819114B (en)
WO (1) WO2020080205A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260125A1 (en) * 2021-06-11 2022-12-15 Eneos株式会社 Polycarbonate and resin molded body
WO2023100777A1 (en) * 2021-11-30 2023-06-08 三菱瓦斯化学株式会社 Polycarbonate resin composition and optical lens using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147242A1 (en) * 2014-03-28 2015-10-01 三菱瓦斯化学株式会社 Bifunctional compound having norbornane skeleton and method for producing same
WO2016052370A1 (en) * 2014-09-30 2016-04-07 三菱瓦斯化学株式会社 Polycarbonate resin and optical lens
WO2017047555A1 (en) * 2015-09-18 2017-03-23 三菱瓦斯化学株式会社 Polyester resin
WO2017175693A1 (en) * 2016-04-05 2017-10-12 三菱瓦斯化学株式会社 Polycarbonate copolymer, optical lens and film in which said polycarbonate copolymer is used, and method for producing said copolymer
WO2018062327A1 (en) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 Optical lens
WO2018062328A1 (en) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 Optical polyester film and transparent electroconductive film
WO2018181157A1 (en) * 2017-03-31 2018-10-04 三菱瓦斯化学株式会社 Polycarbonate resin composition and optical lens using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269520A (en) 1988-09-02 1990-03-08 Kuraray Co Ltd Alicyclic polycarbonate and production thereof
JPH0570584A (en) 1991-09-11 1993-03-23 Kuraray Co Ltd Alicyclic polycarbonate and its production
JP2882716B2 (en) 1992-06-11 1999-04-12 株式会社クラレ Polarizer
KR102101161B1 (en) 2012-11-07 2020-04-16 미츠비시 가스 가가쿠 가부시키가이샤 Polycarbonate resin, production method therefor, and optical molded body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147242A1 (en) * 2014-03-28 2015-10-01 三菱瓦斯化学株式会社 Bifunctional compound having norbornane skeleton and method for producing same
WO2016052370A1 (en) * 2014-09-30 2016-04-07 三菱瓦斯化学株式会社 Polycarbonate resin and optical lens
WO2017047555A1 (en) * 2015-09-18 2017-03-23 三菱瓦斯化学株式会社 Polyester resin
WO2017175693A1 (en) * 2016-04-05 2017-10-12 三菱瓦斯化学株式会社 Polycarbonate copolymer, optical lens and film in which said polycarbonate copolymer is used, and method for producing said copolymer
WO2018062327A1 (en) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 Optical lens
WO2018062328A1 (en) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 Optical polyester film and transparent electroconductive film
WO2018181157A1 (en) * 2017-03-31 2018-10-04 三菱瓦斯化学株式会社 Polycarbonate resin composition and optical lens using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260125A1 (en) * 2021-06-11 2022-12-15 Eneos株式会社 Polycarbonate and resin molded body
WO2023100777A1 (en) * 2021-11-30 2023-06-08 三菱瓦斯化学株式会社 Polycarbonate resin composition and optical lens using same

Also Published As

Publication number Publication date
CN112867762B (en) 2023-04-04
TW202035512A (en) 2020-10-01
CN112867762A (en) 2021-05-28
TWI819114B (en) 2023-10-21
JPWO2020080205A1 (en) 2021-09-30
KR20210076002A (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JP6327151B2 (en) Polycarbonate resin, method for producing the same, and optical molded body
JP6904375B2 (en) Manufacturing method of thermoplastic resin
KR102478201B1 (en) Polycarbonate resin composition and optical lens using the same
JP2018002894A (en) Thermoplastic resin
JP6908026B2 (en) A polycarbonate copolymer, an optical lens and a film using the same, and a method for producing the copolymer.
JP2019143152A (en) Manufacturing method of thermoplastic resin
JP7342878B2 (en) Polyester carbonate resin and optical lenses
WO2020080205A1 (en) Thermoplastic resin composition, and optical lens or film using same
JP2024079821A (en) Thermoplastic resin, its method of manufacture, and optical lens containing said thermoplastic resin
CN115551942B (en) Resin composition, and optical lens and optical film containing the same
WO2020162533A1 (en) Polycarbonate resin composition and optical lens using this
CN118251460A (en) Polycarbonate resin composition and optical lens using the same
TW202328275A (en) Polyester carbonate resin, and optical lens and optical film which use same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553098

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872822

Country of ref document: EP

Kind code of ref document: A1