WO2020080198A1 - Film forming device - Google Patents

Film forming device Download PDF

Info

Publication number
WO2020080198A1
WO2020080198A1 PCT/JP2019/039685 JP2019039685W WO2020080198A1 WO 2020080198 A1 WO2020080198 A1 WO 2020080198A1 JP 2019039685 W JP2019039685 W JP 2019039685W WO 2020080198 A1 WO2020080198 A1 WO 2020080198A1
Authority
WO
WIPO (PCT)
Prior art keywords
film forming
substrate
electron
holding surface
forming apparatus
Prior art date
Application number
PCT/JP2019/039685
Other languages
French (fr)
Japanese (ja)
Inventor
亦周 長江
詩流 尹
図騰 馬
充祐 宮内
Original Assignee
株式会社シンクロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シンクロン filed Critical 株式会社シンクロン
Priority to JP2020542026A priority Critical patent/JP6859007B2/en
Publication of WO2020080198A1 publication Critical patent/WO2020080198A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment

Definitions

  • the present invention relates to the field of thin film formation, and particularly to a film forming apparatus.
  • a vapor deposition device ion auxiliary vapor deposition device
  • a vapor deposition device that densifies a vapor deposition layer deposited on a substrate by irradiating ions when a thin film material is evaporated on the surface of the substrate in a vacuum container.
  • the ion gun irradiates the substrate with low-energy gas ions
  • the neutralization gun irradiates the substrate with neutralizing electrons (electrons) to neutralize the charge offset in the substrate due to the gas ions.
  • it is possible to produce a dense film with the kinetic energy of gas ions for example, Patent Documents 1 and 2).
  • the high-refractive index substance and the low-refractive index substance are alternately evaporated by a plurality of evaporation sources and stacked to obtain an antireflection film including a plurality of layers.
  • argon ions and oxygen ions irradiated from an ion gun simultaneously densify the evaporated material attached to the substrate, and at the same time, The neutralizing electrons emitted from the neutralizing gun prevent the substrate from being charged.
  • the conventional substrate holder has a region that is not covered by the irradiation region of the electron source, and the region of the substrate holder that is irradiated by the electron source (the lower shaded region) is negatively charged and is not irradiated ( It has been discovered that the positively charged region (the deeper region of the color) is irradiated with ions, which creates regions with different potentials in the substrate holder, resulting in abnormal discharge and affecting the film formation quality. .
  • a vacuum container a substrate holder having a substrate holding surface for holding a substrate, which is located in the vacuum container; a film forming unit for forming a thin film on the substrate, which is located in the vacuum container; An irradiation unit for irradiating particles to the substrate holder, which is located in a vacuum container, and the irradiation unit causes the substrate holding surface to have a single potential.
  • the single potential comprises one of a negative potential, a positive potential and a zero potential.
  • the irradiation unit is an ion source located in the vacuum container for emitting ions to the substrate, and an electron source located in the vacuum container for emitting electrons to the substrate. And, including.
  • the irradiation area of the substrate holding surface by the ion source is located within the irradiation area of the substrate holding surface by the electron source.
  • the electron source irradiates the entire area of the substrate holding surface, and the ion source irradiates a partial area of the substrate holding surface.
  • the electron source is located within the projection range of the substrate holding surface along the vertical direction of the vacuum container or the rotation axis direction of the substrate holder.
  • the vacuum container is provided with an exhaust unit, and the electron source is provided in proximity to an intermediate position of the exhaust unit along the movement direction of the substrate holder.
  • the film forming means includes a vapor deposition source having two or more electron guns, and the electron source is located between the two electron guns.
  • the film forming means includes a vapor deposition source having two or more electron guns, and in the two electron guns, one of them is provided along a direction of a connecting line between the two electron guns.
  • the distance between the electron gun and the electron source and the distance between the other electron gun and the electron source are both smaller than the distance between the two electron guns.
  • the ion source is located within the projection range of the substrate holding surface along the vertical direction or the rotation axis direction of the substrate holder.
  • the film forming apparatus further includes adjusting means for adjusting a radiation parameter of the electron source, and by adjusting a radiation parameter of the electron source, the electron is emitted from the electron source to the substrate holding surface.
  • Adjusting the electron density, the emission parameters include at least one of position, emission diameter, emission shape, orientation, bias current, and number of the electron sources.
  • the film forming apparatus further includes a potential detection unit, the potential detection unit can detect a potential state of the substrate holding surface, and the electron source is configured to detect the substrate based on the potential state.
  • the electron density emitted to the holding surface can be adjusted.
  • the effects of the present invention are as follows.
  • the film forming apparatus according to the present invention while making the electric potential state of the substrate holding surface a single electric potential by the irradiation means, it becomes difficult for regions having different electric potential states to exist, and further, generation of abnormal discharge in the substrate holder is suppressed.
  • the stability of the thin film formation process can be guaranteed, and the film formation quality can be improved.
  • Features described and / or shown in one embodiment are used in the same or similar manner in one or more other embodiments, combined with features in other embodiments, or characterized in other embodiments. Can be replaced.
  • the term "comprise / include” as used herein refers to a feature, an entire member, a step or the presence of one or more other features, an entire member, a step or the presence / addition of a member. Do not exclude.
  • FIG. 7 is a distribution diagram of charges on a substrate holding surface. It is a structural schematic diagram of the film-forming apparatus provided in this embodiment.
  • FIG. 3 is a charge distribution diagram of a substrate holding surface in the film forming process of FIG. 2. 3 is a simplified schematic plan view of FIG. 2.
  • FIG. 3 is a simplified schematic plan view of FIG. 2.
  • a film forming apparatus 1 is provided in the embodiment of the present application.
  • the film forming apparatus 1 is used for forming a thin film (the thin film may include a thin film such as an antifouling film or a hard film), and the substrate 4 with the thin film is a touch used in smartphones and tablet computers. It is applied to screens, displays, optical elements, satellite equipment, etc.
  • the film forming apparatus 1 forms a thin film on a vacuum container 2, a substrate holder 3 for holding a substrate 4 located inside the vacuum container 2, and a substrate 4 located inside the vacuum container 2.
  • the vacuum vessel 2 is the well-known film forming apparatus 1, is a generally used stainless steel vessel having a substantially cylindrical shape, and has a ground potential.
  • the vacuum container 2 provides a vacuum chamber for forming a thin film.
  • the vacuum chamber is formed inside the vacuum container 2.
  • the vacuum container 2 is provided with an exhaust port (exhaust part), and an exhaust mechanism is connected through this exhaust port.
  • the exhaust mechanism can exhaust the inside of the vacuum chamber by communicating with the vacuum chamber through the exhaust port, and the vacuum container 2 thereby forms the vacuum chamber on its inner wall.
  • the exhaust mechanism (not shown) may be a vacuum pump, and by operating the vacuum pump, the inside of the vacuum chamber becomes a predetermined pressure (for example, about 1 ⁇ 10 ⁇ 4 Pa to 3 ⁇ 10 ⁇ 2 Pa). Exhaust to.
  • the substrate holder 3 is provided above the vacuum chamber.
  • the substrate holder 3 rotates about one rotation axis.
  • the substrate holder 3 (that is, the holding mechanism of the substrate 4) may be a dome-shaped member made of stainless steel that is rotatably held about a vertical axis, and may be an output shaft of a motor (moving mechanism). Connected.
  • the substrate holder 3 may be held on the upper side inside the vacuum container 2 along the vertical axis.
  • the bottom surface (lower surface) of the substrate holder 3 is the substrate holding surface 12.
  • two or more substrates 4 are supported on the substrate holding surface 12, so that a large amount of film is formed and applied to industrial manufacturing.
  • an opening is provided at the center of the substrate holder 3 of the present embodiment, and the crystal monitor 10 (also referred to as a crystal film thickness meter) may be arranged there.
  • the crystal monitor 10 the resonance frequency is changed by depositing a vapor deposition material (evaporation material of the film forming material) on the surface thereof, and based on the change of the resonance frequency, it is formed on the surface of the substrate 4 by the film thickness detection unit.
  • the physical film thickness is detected.
  • the detection result of the film thickness may be transmitted to the controller (not shown).
  • An electric heater 11 (heating means) is arranged above the vacuum chamber so as to wrap the substrate holder 3 from above, and specifically, a filament heater may be used.
  • the temperature of the substrate holder 3 is detected by a temperature sensor such as a thermocouple, and the result is sent to the controller.
  • the controller controls the opening / closing state of the flap of the vapor deposition source 5 described later based on the output from the film thickness detection unit, and appropriately controls the film thickness of the thin film formed on the substrate 4. Further, the controller controls the electric heater 11 based on the output from the temperature sensor, and appropriately manages the temperature of the substrate 4. Further, the controller further manages the start and stop of the operation of the vapor deposition source 5.
  • the film forming means is arranged below the vacuum chamber.
  • the film forming means may be a film forming source.
  • the vapor deposition source 5 may be a vapor deposition source 5 of a resistance heating type (the resistance heating type may be a direct heating type, an indirect heating type, etc.).
  • the vapor deposition source 5 is provided with a crucible 5b and a flap 5a, the crucible 5b is provided with a concave groove for placing a film forming material on the upper part thereof, and the flap 5a is formed from the crucible 5b in the direction of the substrate 4 to evaporate all the film forming material. It is provided so as to be openable and closable at a position where it blocks the discharge of.
  • the flap 5a is controlled to open and close according to a command from the controller.
  • the vapor deposition source 5 is not limited to the resistance heating type, and may be the electron beam heating type vapor deposition source 5.
  • the vapor deposition source 5 when the vapor deposition source 5 is in the electron beam heating mode, the vapor deposition source 5 includes the same crucible 5b and flap 5a as described above, and the electron beam (e An electron gun 5c for irradiating ⁇ ) and evaporating it may be further provided with an electron gun power source (not shown).
  • the electron gun 5c may be disposed below the inside of the vacuum container 2.
  • the film forming means may include the vapor deposition source 5 having two or more electron guns 5c and 5c '.
  • a thin film may be applied (coated) on the substrate 4 after the film formation, and the thin film may have an (organic) silicon compound component.
  • the thin film is formed by the below-described silicon compound on the film formation surface of the substrate 4 (the substrate 4 may be transparent) by the following hydrolysis-condensation reaction, and has water repellency and oil repellency (
  • the thin film may be an antifouling film, which may include an oleophobic film, an oil repellent film, a hydrophobic film, etc.).
  • the irradiation unit includes an ion source 6 located in the vacuum container 2 for irradiating the substrate 4 with ions.
  • a shutter 6a that can be opened and closed is attached above the ion source 6.
  • the shutter 6a is appropriately opened and closed by a controller (not shown).
  • the ion source 6 is a device that emits ions toward the substrate 4, and induces charged ions (O 2 + , Ar + ) by plasma of a reactive gas (for example, O 2 ) or a rare gas (for example, Ar). Then, it is accelerated by the acceleration voltage and emitted to the substrate holder 3 (substrate 4).
  • the ion source 6 may be a device such as an ion gun.
  • the ions emitted by the ion source 6 can densify the vapor deposition material attached to the substrate 4 and improve the performance of the thin film.
  • the irradiation area of the substrate holding surface 12 by the ion source 6 is located within the irradiation area of the substrate holding surface 12 by the electron source 8.
  • the ion source 6 irradiates a partial area of the substrate holding surface 12.
  • the ion source 6 is provided so as to be offset from the rotation axis of a part of the substrate holder 3. As shown in FIG. 4, the ion source 6 is located within the projection range of the substrate holding surface 12 along the vertical direction or the rotation axis direction of the substrate holder 3.
  • the irradiation means includes an electron source 8 located in the vacuum container 2 for emitting electrons into the vacuum container 2.
  • the electron source 8 is a device that emits electrons (e ⁇ ) toward the substrate 4.
  • the electrons are induced by plasma of a rare gas such as Ar, accelerated by an accelerating voltage, and emitted.
  • the electrons emitted by the electron source 8 neutralize the ions attached to the surface of the substrate 4.
  • the ion source 6 and the electron source 8 are arranged on the bottom surface of the vacuum container 2.
  • the electron source 8 is closer to the rotation axis of the substrate holder 3 than the ion source 6 in the horizontal direction (direction perpendicular to the rotation axis of the substrate holder 3).
  • the electron source 8 is located on one side of the rotation axis.
  • the angle between the direction of the electron source 8 (electron emission direction) and the rotation axis is an acute angle.
  • the orientation of the electron source 8 and the axis of rotation are not parallel or perpendicular.
  • the ion source 6 is located on one side of the rotation axis.
  • the angle between the orientation of the ion source 6 and the axis of rotation is an acute angle.
  • the ion source 6 of the present embodiment operates toward the substrate holder 3, only a part of the ion beam can irradiate a partial region of the substrate holding surface 12 (for example, curvature of electrodes), arrangement, and / Or arrange based on orientation.
  • a partial region of the substrate holding surface 12 for example, curvature of electrodes
  • the potential state of the substrate holding surface 12 is made to be a single potential by the irradiation means, the regions having different potential states are reduced, and further, abnormal discharge is suppressed from occurring in the substrate holder 3, and the thin film formation process is performed. It is possible to guarantee stability and improve film formation quality.
  • the single potential may be one of negative potential, positive potential and zero potential.
  • the irradiation means can bring the potential state of the substrate holding surface 12 to a negative potential.
  • the potentials may be different in different regions on the substrate holding surface 12, and for example, when the substrate holding face 12 is in a positive potential state, the positive potential values in different regions may be different. When the substrate holding surface 12 is in a negative potential state, the negative potential values of different regions may be different.
  • the irradiation means is a radiation parameter for irradiating the substrate holding surface 12 from the ion source 6 and the electron source 8, for example, the position, orientation, radiation port shape, bias current, etc. of the ion source 6 and / or the electron source 8.
  • the electric potential state of the substrate holding surface 12 is held at a single electric potential, the occurrence of abnormal discharge can be avoided.
  • the electron source 8 is provided within the projection range of the substrate holding surface 12 (substrate holder 3) and at the intermediate position of the exhaust port (exhaust part) of the vacuum container 2. By providing them close to each other, the directivity of electrons emitted from the electron source 8 is improved, and the charged state of the substrate holding surface 12 is made constant (preferably negatively charged) during the film formation process. Further, the maximum value of the bias current of the electron source 8 is increased to bring the substrate holding surface 12 into a negatively charged state (negative potential state).
  • the film forming apparatus 1 further includes potential detecting means, and the potential detecting means can detect the potential state of the substrate holding surface 12.
  • the potential detection means may include one or more Faraday cups located on the substrate holder 3.
  • the potential state of the substrate holding surface 12 is measured with a Faraday cup, and the plurality of black points are different potential measurement points.
  • FIG. 3 shows a potential state diagram of the substrate holding surface 12 of the film forming apparatus 1 shown in FIGS. 2 and 4, and it can be seen that all the colors of the entire potential of the substrate holding surface 12 are light (in the figures, the lighter the color, the lighter the color). , Indicates that the potential is low), and exhibits a single negative potential state.
  • the potential state of the substrate holding surface 12 can be easily controlled, and in order to obtain a desired potential state, the electron source 8 can adjust the electron density emitted to the substrate holding surface 12 according to the potential state.
  • the potential detecting means can detect the potential states of different regions of the substrate holding surface 12, and when positive and negative potentials exist in the potential states of different regions of the substrate holding surface 12, the electron source 8 adjusts the emitted electron density. By doing so, the substrate holding surface 12 can be brought to a single potential state.
  • the substrate holding surface 12 (substrate holder 3) is located within the irradiation area of the electron source 8.
  • the potential state of the substrate holder 3 (substrate holding surface 12) can be set to a negative potential. Since the entire substrate holder 3 is located within the irradiation area of the electron source 8, the ions existing within the coverage of the entire substrate holder 3 can be neutralized by the electrons, and the electrons are continuously supplied.
  • a negative potential state (that is, the entire substrate holder 3 is a single potential) is made in the entire substrate holder 3 so that regions having different potential states are unlikely to exist, and further abnormal discharge is suppressed in the substrate holder 3 to form a thin film forming process. Guarantee the stability of and improve the film quality.
  • the electron source 8 irradiates the entire area of the substrate holding surface 12. In this way, the ions existing within the coating range of the entire substrate holder 3 can be neutralized by the electrons, and the electrons are continuously supplied to bring the entire substrate holder 3 into the negative potential state.
  • the electron source 8 When the electron source 8 is located outside the projection range of the substrate holding surface 12, the electron source 8 deviates far from the rotation axis and it becomes difficult to irradiate the entire substrate holding surface 12, and at the same time, the substrate holding surface 12 becomes It was thought that if it is located in a region far away from the source 8, it is difficult to be covered or the irradiated electron density is low and it is difficult to form a single potential state.
  • the ion source 8 irradiates the whole of the substrate holding surface 12 to form a single potential, so that the ion source 8 is moved along the vertical direction or the rotation axis direction of the substrate holder 3. It is located within the projection range of the substrate holding surface 12. The distance between the electron source 8 and the rotation axis is smaller than the radius of the substrate holding surface 12.
  • the vacuum container 2 is provided with an exhaust unit.
  • the electron source 8 is provided close to an intermediate position along the movement direction of the substrate holder of the exhaust unit.
  • the film forming means includes a vapor deposition source 5 having two or more electron guns.
  • the electron source 8 is located between the two electron guns 5c and 5c '.
  • the exhaust unit may include the exhaust port communicating with the inside of the vacuum container 2.
  • the exhaust side of the vacuum container 2 is formed, and the one side facing the exhaust side is the door side of the vacuum container 2. This door side is opened for convenient operation in the vacuum and for loading / unloading the substrate 4.
  • the exhaust port has a long hole structure on one side of the vacuum container 2.
  • the electron source 8 is close to the intermediate position of the exhaust port.
  • the electron source 8 may also be provided near the intermediate position on the exhaust side.
  • the direction of the connecting line between the two electron guns 5c and 5c ′ (the straight line connecting the positions of the electron guns 5c and 5c ′)
  • the distance between one of the electron guns and the electron source 8 and the distance between the other electron gun and the electron source 8 are smaller than the distance between the two electron guns. That is, the distance between one electron gun 5c of the two electron guns 5c and 5c 'and the electron source 8 and the distance between the other electron gun 5c' of the two electron guns 5c and 5c 'and the electron source 8. Is smaller than the distance between the two electron guns 5c, 5c '.
  • the electron source 8 is closer to the exhaust than the two electron guns.
  • the substrate holding surface 12 is set to a single potential state, Abnormal discharge can be avoided.
  • the potential state of the substrate holding surface 12 may be as shown in FIG.
  • the electron source 8 projects the substrate holding surface 12 along the vertical direction or the rotation axis direction of the substrate holder 3. Located within range.
  • the electron source 8 of the present embodiment emits electrons toward the substrate holder 3, only a part of the electron beam can irradiate the entire area of the substrate holding surface 12 (for example, curvature of electrodes), arrangement. And / or based on orientation.
  • the irradiation unit can adjust the potential state in the substrate holder 3.
  • the irradiation unit can change the potential state of the substrate holder 3 by changing the area of the irradiation region, the positions of the electron source 8 and / or the ion source 6, and the like.
  • the irradiation means adjusts the potential state in the substrate holder 3 by being arranged so that the particle density on the substrate holding surface 12 can be adjusted. At least one of the electron source 8 and the ion source 6 is arranged so that the particle density on the substrate holding surface 12 can be adjusted.
  • the film forming apparatus 1 may include a position adjusting member that is connected to the electron source 8. By adjusting the position of the electron source 8 by using the position adjusting member, the density of electrons emitted from the electron source 8 to the substrate holding surface 12 can be adjusted. Can be adjustable. Among them, the position adjusting member makes it possible to adjust the horizontal position and / or the height position of the electron source 8 with respect to the ion source 6.
  • the position adjusting member includes a mounting hole located at the bottom of the vacuum container 2 and a connecting bolt that connects the electron source 8 and the mounting hole.
  • the electron source 8 is positioned via the connection between the connecting bolt and the mounting hole. Is adjustable.
  • the mounting hole is a long hole. Further, the number of mounting holes is plural. Since the different mounting holes are distributed in different positions in the vacuum container 2, the electron source 8 is connected to the different mounting holes via the connection bolts, and different fixing positions are adjusted.
  • the film forming apparatus 1 includes an orientation adjusting unit that adjusts the orientation of the electron source 8.
  • the orientation adjusting means adjusts the orientation of the electron source 8 so that the density of electrons emitted from the electron source 8 to the substrate holding surface 12 can be adjusted.
  • a first support structure 9 (mounting base) is provided at the bottom of the electron source 8, and the first support structure 9 can mount the electron source 8 on the vacuum container 2.
  • the first support structure 9 can change the direction of the electron source 8.
  • a second support structure 7 (mounting base) is provided at the bottom of the ion source 6, which allows the ion source 6 to be mounted on the vacuum vessel 2.
  • the second support structure 7 can change the orientation of the ion source 6.
  • any of the numerical values quoted in the text include all lower and upper values that increase in one unit from the lower limit to the upper limit. It suffices if there is an interval of at least two units between them. For example, if the number of one member or the value of a process variable (for example, temperature, pressure, time, etc.) is 1 to 90, preferably 20 to 80, more preferably 30 to 70, Also, the values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32, etc. are explicitly listed. For values less than one, one unit is appropriately considered to be 0.0001, 0.001, 0.01, 0.1. These are merely examples which are intended to be stated explicitly and all possible combinations of the numerical values listed between the lowest and the highest values are considered to be stated explicitly in a similar manner in the description. To be

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present application discloses a film forming device that includes: a vacuum container; a substrate holder that is located inside the vacuum container and that has a substrate holding surface for holding a substrate; a film forming means that is located inside the vacuum chamber and is for forming a thin-film on the substrate; and an irradiating means that is located inside the vacuum chamber and is for emitting particles toward the substrate holder, wherein the electric potential state of the substrate holding surface becomes one of a single electric potential due to the irradiating means. The film forming device provided in the present application suppresses the generation of abnormal discharge in a film forming process, ensures stability of a thin-film forming process, and improves film formation quality.

Description

成膜装置Film forming equipment
 本発明は、薄膜形成の分野、特に成膜装置に関する。 The present invention relates to the field of thin film formation, and particularly to a film forming apparatus.
 従来、真空容器内で基板の表面へ薄膜材料を蒸発するとき、基板に堆積された蒸着層にイオンを照射して緻密化を行う蒸着装置(イオン補助蒸着装置)が公知されている。このような蒸着装置において、イオンガンで基板に低エネルギーのガスイオンを照射すると同時に、中和銃で基板に中和電子(電子)を照射することにより、ガスイオンによる基板における電荷のオフセットを中和することができると同時に、ガスイオンの運動エネルギーで緻密な膜を製作する(例えば特許文献1、2)。 Conventionally, there is known a vapor deposition device (ion auxiliary vapor deposition device) that densifies a vapor deposition layer deposited on a substrate by irradiating ions when a thin film material is evaporated on the surface of the substrate in a vacuum container. In such a vapor deposition apparatus, the ion gun irradiates the substrate with low-energy gas ions, and at the same time, the neutralization gun irradiates the substrate with neutralizing electrons (electrons) to neutralize the charge offset in the substrate due to the gas ions. At the same time, it is possible to produce a dense film with the kinetic energy of gas ions (for example, Patent Documents 1 and 2).
 特許文献1、2に示す技術において、高屈折率物質と低屈折率物質は複数の蒸発源により交替に蒸発され、積層されることによって、複数層膜からなる反射防止膜を取得することができる。このような技術において、高屈折率物質と低屈折率物質のそれぞれが成膜されるとき、イオンガンから照射されるアルゴンイオン、酸素イオンで、基板に付着された蒸発物質を緻密化させると同時に、中和銃から照射される中和電子で基板などの帯電を防止している。 In the techniques disclosed in Patent Documents 1 and 2, the high-refractive index substance and the low-refractive index substance are alternately evaporated by a plurality of evaporation sources and stacked to obtain an antireflection film including a plurality of layers. . In such a technique, when a high-refractive index material and a low-refractive index material are respectively formed, argon ions and oxygen ions irradiated from an ion gun simultaneously densify the evaporated material attached to the substrate, and at the same time, The neutralizing electrons emitted from the neutralizing gun prevent the substrate from being charged.
特開平10-123301号公報JP, 10-123301, A 特開2007-248828号公報JP, 2007-248828, A
 しかしながら、上記特許文献1または特許文献2に示す技術で成膜する過程で、真空容器で異常放電が発生しやすく、これらの異常放電により均一な薄膜の形成に影響し、成膜品質を降下させてしまうことが発見された。図1を参照し、基板ホルダにおける電位を測定して(黒色点50が電位測定点)、従来の基板ホルダに正負電位領域が存在することがわかる。さらに研究した結果、従来の基板ホルダに電子源の照射領域に被覆されない領域が存在し、基板ホルダで電子源に照射される領域(色の浅い下部領域)が負に帯電され、照射されない領域(色のより深い上部領域)がイオンで照射されるため正に帯電されることで、基板ホルダに異なる電位を有する領域が形成され異常放電となり、成膜品質に影響してしまうことが発見される。 However, in the process of forming a film by the technique described in Patent Document 1 or Patent Document 2 above, abnormal discharge is likely to occur in the vacuum container, and these abnormal discharges affect the formation of a uniform thin film, which deteriorates the film formation quality. It was discovered that Referring to FIG. 1, the potential at the substrate holder is measured (black point 50 is the potential measurement point), and it can be seen that the positive and negative potential regions exist in the conventional substrate holder. As a result of further research, the conventional substrate holder has a region that is not covered by the irradiation region of the electron source, and the region of the substrate holder that is irradiated by the electron source (the lower shaded region) is negatively charged and is not irradiated ( It has been discovered that the positively charged region (the deeper region of the color) is irradiated with ions, which creates regions with different potentials in the substrate holder, resulting in abnormal discharge and affecting the film formation quality. .
 上記課題を解決するために、以下の成膜装置が提供される。 In order to solve the above problems, the following film deposition equipment is provided.
 真空容器と、前記真空容器内に位置する、基板を保持するための基板保持面を有する基板ホルダと、前記真空容器内に位置する、前記基板に薄膜を形成するための成膜手段と、前記真空容器内に位置する、前記基板ホルダへ粒子を放射するための照射手段と、を含み、前記照射手段により前記基板保持面の電位状態が単一電位になる成膜装置。好ましい実施形態として、前記単一電位は負電位、正電位及び零電位の1つを含む。 A vacuum container; a substrate holder having a substrate holding surface for holding a substrate, which is located in the vacuum container; a film forming unit for forming a thin film on the substrate, which is located in the vacuum container; An irradiation unit for irradiating particles to the substrate holder, which is located in a vacuum container, and the irradiation unit causes the substrate holding surface to have a single potential. In a preferred embodiment, the single potential comprises one of a negative potential, a positive potential and a zero potential.
 好ましい実施形態として、前記照射手段は、前記真空容器内に位置する、前記基板へイオンを放射するためのイオン源と、前記真空容器内に位置する、前記基板へ電子を放射するための電子源と、を含む。好ましい実施形態として、前記イオン源による前記基板保持面における照射領域は前記電子源による前記基板保持面における照射領域内に位置する。 As a preferred embodiment, the irradiation unit is an ion source located in the vacuum container for emitting ions to the substrate, and an electron source located in the vacuum container for emitting electrons to the substrate. And, including. In a preferred embodiment, the irradiation area of the substrate holding surface by the ion source is located within the irradiation area of the substrate holding surface by the electron source.
 好ましい実施形態として、前記電子源は前記基板保持面の全部の領域を照射し、前記イオン源は前記基板保持面の一部の領域を照射する。 In a preferred embodiment, the electron source irradiates the entire area of the substrate holding surface, and the ion source irradiates a partial area of the substrate holding surface.
 好ましい実施形態として、前記真空容器の鉛直方向または前記基板ホルダの回転軸線方向に沿って、前記電子源は前記基板保持面の投影範囲内に位置する。 In a preferred embodiment, the electron source is located within the projection range of the substrate holding surface along the vertical direction of the vacuum container or the rotation axis direction of the substrate holder.
 好ましい実施形態として、前記真空容器に、排気部が設けられており、前記電子源は前記排気部の前記基板ホルダの運動方向に沿った中間位置に近接して設けられている。 As a preferred embodiment, the vacuum container is provided with an exhaust unit, and the electron source is provided in proximity to an intermediate position of the exhaust unit along the movement direction of the substrate holder.
 好ましい実施形態として、前記成膜手段は2つ以上の電子銃を有する蒸着源を含み、前記電子源は2つの前記電子銃の間に位置する。 In a preferred embodiment, the film forming means includes a vapor deposition source having two or more electron guns, and the electron source is located between the two electron guns.
 好ましい実施形態として、前記成膜手段は2つ以上の電子銃を有する蒸着源を含み、2つの前記電子銃において、2つの前記電子銃の間の連結線の方向に沿って、そのうちの1つの電子銃と前記電子源との距離、もう1つの電子銃と前記電子源との距離は、何れも2つの電子銃の間の距離よりも小さい。 As a preferred embodiment, the film forming means includes a vapor deposition source having two or more electron guns, and in the two electron guns, one of them is provided along a direction of a connecting line between the two electron guns. The distance between the electron gun and the electron source and the distance between the other electron gun and the electron source are both smaller than the distance between the two electron guns.
 好ましい実施形態として、鉛直方向または前記基板ホルダの回転軸線方向に沿って、前記イオン源は前記基板保持面の投影範囲内に位置する。 As a preferred embodiment, the ion source is located within the projection range of the substrate holding surface along the vertical direction or the rotation axis direction of the substrate holder.
 好ましい実施形態として、該成膜装置は、前記電子源の放射パラメータを調整する調整手段をさらに含み、前記電子源の放射パラメータを調整することによって、前記電子源から前記基板保持面に放射される電子密度を調整し、前記放射パラメータは前記電子源の位置、放射直径、放射口形状、向き、バイアス電流、個数の少なくとも1つを含む。 As a preferred embodiment, the film forming apparatus further includes adjusting means for adjusting a radiation parameter of the electron source, and by adjusting a radiation parameter of the electron source, the electron is emitted from the electron source to the substrate holding surface. Adjusting the electron density, the emission parameters include at least one of position, emission diameter, emission shape, orientation, bias current, and number of the electron sources.
 好ましい実施形態として、該成膜装置は、電位検出手段をさらに含み、前記電位検出手段は前記基板保持面の電位状態を検出することができ、前記電子源は前記電位状態に基づいて、前記基板保持面に放射される電子密度を調整することができる。 As a preferred embodiment, the film forming apparatus further includes a potential detection unit, the potential detection unit can detect a potential state of the substrate holding surface, and the electron source is configured to detect the substrate based on the potential state. The electron density emitted to the holding surface can be adjusted.
 本発明による効果は以下の通りである。
 本発明に係る成膜装置において、照射手段により前記基板保持面の電位状態を単一電位にしつつ、電位状態の異なる領域が存在し難くなり、さらに基板ホルダで異常放電を発生することを抑制し、薄膜形成過程の安定性を保証し、成膜品質を向上することができる。
 一つの実施形態に記載及び/又は示される特徴について、同一又は類似の態様で、一つ又は複数のほかの実施形態で使用され、ほかの実施形態における特徴と組み合わせ、又はほかの実施形態における特徴を代替することができる。
 「含む/含める」という用語は、本文で使用される場合、特徴、部材全体、ステップ或いは部材の存在を指すが、一つ又は複数の他の特徴、部材全体、ステップ或いは部材の存在/付加を除外しない。
The effects of the present invention are as follows.
In the film forming apparatus according to the present invention, while making the electric potential state of the substrate holding surface a single electric potential by the irradiation means, it becomes difficult for regions having different electric potential states to exist, and further, generation of abnormal discharge in the substrate holder is suppressed. The stability of the thin film formation process can be guaranteed, and the film formation quality can be improved.
Features described and / or shown in one embodiment are used in the same or similar manner in one or more other embodiments, combined with features in other embodiments, or characterized in other embodiments. Can be replaced.
The term "comprise / include" as used herein refers to a feature, an entire member, a step or the presence of one or more other features, an entire member, a step or the presence / addition of a member. Do not exclude.
基板保持面の電荷の分布図である。FIG. 7 is a distribution diagram of charges on a substrate holding surface. 本実施形態に提供される成膜装置の構造概略図である。It is a structural schematic diagram of the film-forming apparatus provided in this embodiment. 図2の成膜過程における基板保持面の電荷の分布図である。FIG. 3 is a charge distribution diagram of a substrate holding surface in the film forming process of FIG. 2. 図2の簡素化された平面概略図である。3 is a simplified schematic plan view of FIG. 2. FIG.
 当業者が本願における技術内容をより良好に理解するために、以下、本願の実施形態における図面を参照して、本願の実施形態における技術内容を説明する。説明する実施形態は必ずしも全ての形態ではなく、一部の形態にすぎない。 In order for those skilled in the art to better understand the technical content of the present application, the technical content of the embodiment of the present application will be described below with reference to the drawings in the embodiment of the present application. The described embodiments are not necessarily all forms, but only some forms.
 なお、素子がほかの素子に「設けられる」と称される場合、ほかの素子に直接に位置してもよく、又は真ん中にほかの素子が存在してもよい。一つの素子がほかの素子に「接続される」と考えられる場合、ほかの素子に直接に接続されてもよく、又は真ん中にほかの素子が同時に存在する可能性もある。本文で使用される用語である「垂直な」、「水平な」、「左」、「右」及び類似する表現は説明のためのものに過ぎず、唯一の実施形態であることを表すものではない。 Note that when an element is referred to as "provided" on another element, it may be located directly on the other element, or another element may be present in the middle. If one element is considered to be "connected" to another element, it may be directly connected to another element, or there may be other elements in the middle at the same time. The terms "vertical," "horizontal," "left," "right," and similar phrases used in this text are for illustration purposes only and are not meant to be the only embodiment. Absent.
 特に定義のない限り、本文で使用される全ての技術と科学用語は、当業者が一般的に理解する意味と同一である。本文において、本実用新案の明細書で使用される用語は、具体的な実施形態を説明することを目的とするだけで、本実用新案を制限するためではない。本文で使用される用語である「及び/又は」は、一つ又は複数の関連の列記された項目の任意及び全部の組み合わせを含む。 Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In the text, the terms used in the specification of the present utility model are only for describing specific embodiments, and not for limiting the present utility model. The term "and / or" as used herein includes any and all combinations of one or more of the associated listed items.
 図2~図4を参照する。本願の実施形態には成膜装置1が提供される。成膜装置1は、薄膜(薄膜は防汚膜、硬質膜などの薄膜を含んでもよいもの)の形成に用いられ、そのうち、薄膜付きの基板4は、スマートフォンとタブレット型コンピュータなどで用いられるタッチスクリーン、ディスプレイ、光学素子、衛星設備などに適用される。 Refer to FIGS. 2 to 4. A film forming apparatus 1 is provided in the embodiment of the present application. The film forming apparatus 1 is used for forming a thin film (the thin film may include a thin film such as an antifouling film or a hard film), and the substrate 4 with the thin film is a touch used in smartphones and tablet computers. It is applied to screens, displays, optical elements, satellite equipment, etc.
 本実施形態において、成膜装置1は、真空容器2と、真空容器2内に位置する、基板4を保持するための基板ホルダ3と、真空容器2内に位置する、基板4に薄膜を形成するための成膜手段と、真空容器2内に位置する、基板ホルダ3へ粒子を放射するための照射手段と、を含む。 In the present embodiment, the film forming apparatus 1 forms a thin film on a vacuum container 2, a substrate holder 3 for holding a substrate 4 located inside the vacuum container 2, and a substrate 4 located inside the vacuum container 2. Film forming means for performing the irradiation, and irradiation means for irradiating particles to the substrate holder 3 which are located in the vacuum container 2.
 そのうち、真空容器2は公知の成膜装置1であり、通常に使用される、略円筒形状を有するステンレス鋼製の容器であり、接地電位をとる。真空容器2は薄膜の形成に真空チャンバを提供する。真空チャンバは真空容器2の内部に形成される。 Among them, the vacuum vessel 2 is the well-known film forming apparatus 1, is a generally used stainless steel vessel having a substantially cylindrical shape, and has a ground potential. The vacuum container 2 provides a vacuum chamber for forming a thin film. The vacuum chamber is formed inside the vacuum container 2.
 真空容器2には、排気口(排気部)が設けられているとともに、この排気口を介して排気機構が接続されている。排気機構は排気口を介して真空チャンバと連通することによって、真空チャンバ内を排気することができ、真空容器2はこれによりその内壁に真空チャンバを形成する。具体的には、排気機構(不図示)は真空ポンプでもよく、真空ポンプを運転させることによって、真空チャンバ内を所定圧力(例えば1×10-4Pa~3×10-2Pa程度)になるまで排気する。 The vacuum container 2 is provided with an exhaust port (exhaust part), and an exhaust mechanism is connected through this exhaust port. The exhaust mechanism can exhaust the inside of the vacuum chamber by communicating with the vacuum chamber through the exhaust port, and the vacuum container 2 thereby forms the vacuum chamber on its inner wall. Specifically, the exhaust mechanism (not shown) may be a vacuum pump, and by operating the vacuum pump, the inside of the vacuum chamber becomes a predetermined pressure (for example, about 1 × 10 −4 Pa to 3 × 10 −2 Pa). Exhaust to.
 真空チャンバの上方に基板ホルダ3が設けられている。基板ホルダ3は1つの回転軸のまわりを回動する。具体的には、基板ホルダ3(即ち基板4の保持機構)は垂直軸まわりに回転可能に保持され、ドーム状に形成されたステンレス鋼製の部材でもよく、モータ(移動機構)の出力軸と接続される。基板ホルダ3は垂直軸に沿って真空容器2内部の上側に保持されてもよい。 The substrate holder 3 is provided above the vacuum chamber. The substrate holder 3 rotates about one rotation axis. Specifically, the substrate holder 3 (that is, the holding mechanism of the substrate 4) may be a dome-shaped member made of stainless steel that is rotatably held about a vertical axis, and may be an output shaft of a motor (moving mechanism). Connected. The substrate holder 3 may be held on the upper side inside the vacuum container 2 along the vertical axis.
 基板ホルダ3の底面(下面)は基板保持面12である。成膜時に、基板保持面12には2つ以上の基板4が支持されることによって、大量に成膜され、工業製造に適用される。また、本実施形態の基板ホルダ3の中心に開口が設けられており、ここに水晶モニタ10(水晶膜厚計ともいい)が配設されてもよい。水晶モニタ10について、その表面に蒸着物質(成膜材料の蒸発物)が付着することで共振周波数が変更し、この共振周波数の変化に基づいて、膜厚検出部で基板4の表面に形成された物理的な膜厚を検出する。膜厚の検出結果をコントローラ(不図示)に送信してもよい。 The bottom surface (lower surface) of the substrate holder 3 is the substrate holding surface 12. At the time of film formation, two or more substrates 4 are supported on the substrate holding surface 12, so that a large amount of film is formed and applied to industrial manufacturing. Further, an opening is provided at the center of the substrate holder 3 of the present embodiment, and the crystal monitor 10 (also referred to as a crystal film thickness meter) may be arranged there. Regarding the crystal monitor 10, the resonance frequency is changed by depositing a vapor deposition material (evaporation material of the film forming material) on the surface thereof, and based on the change of the resonance frequency, it is formed on the surface of the substrate 4 by the film thickness detection unit. The physical film thickness is detected. The detection result of the film thickness may be transmitted to the controller (not shown).
 真空チャンバの上方で上方から基板ホルダ3を包むように電気ヒータ11(加熱手段)が配設されており、具体的にはフィラメントヒータを用いてもよい。基板ホルダ3の温度について、熱電対などの温度センサで検出され、その結果をコントローラに送信する。コントローラは膜厚検出部からの出力に基づいて後述の蒸着源5のフラップの開閉状態を制御し、基板4に形成された薄膜の膜厚を適宜に制御する。また、コントローラは温度センサからの出力に基づいて電気ヒータ11を制御し、基板4の温度を適宜に管理する。また、コントローラはさらに蒸着源5の運転開始及び運転停止を管理する。 An electric heater 11 (heating means) is arranged above the vacuum chamber so as to wrap the substrate holder 3 from above, and specifically, a filament heater may be used. The temperature of the substrate holder 3 is detected by a temperature sensor such as a thermocouple, and the result is sent to the controller. The controller controls the opening / closing state of the flap of the vapor deposition source 5 described later based on the output from the film thickness detection unit, and appropriately controls the film thickness of the thin film formed on the substrate 4. Further, the controller controls the electric heater 11 based on the output from the temperature sensor, and appropriately manages the temperature of the substrate 4. Further, the controller further manages the start and stop of the operation of the vapor deposition source 5.
 本実施形態において、真空チャンバの下方に成膜手段が配設されている。成膜手段は成膜源でもよい。成膜源の1つの例として、蒸着源5は抵抗加熱形態(抵抗加熱形態は直接加熱形態、間接加熱形態などでもよい)の蒸着源5が採用されてもよい。蒸着源5は、ルツボ5bとフラップ5aを備え、ルツボ5bは上部に成膜材料を載置するための凹溝を備え、フラップ5aはルツボ5bから基板4方向へ成膜材料の全ての蒸発物を放出するのを遮断する位置に開閉可能に設けられる。フラップ5aはコントローラからの指令によって開閉制御される。 In the present embodiment, the film forming means is arranged below the vacuum chamber. The film forming means may be a film forming source. As one example of the film forming source, the vapor deposition source 5 may be a vapor deposition source 5 of a resistance heating type (the resistance heating type may be a direct heating type, an indirect heating type, etc.). The vapor deposition source 5 is provided with a crucible 5b and a flap 5a, the crucible 5b is provided with a concave groove for placing a film forming material on the upper part thereof, and the flap 5a is formed from the crucible 5b in the direction of the substrate 4 to evaporate all the film forming material. It is provided so as to be openable and closable at a position where it blocks the discharge of. The flap 5a is controlled to open and close according to a command from the controller.
 また、蒸着源5は、抵抗加熱形態に限られず、電子ビーム加熱形態の蒸着源5でもよい。図2、図4に示す例において、蒸着源5は電子ビーム加熱形態の場合に、その蒸着源5は上記と同様なルツボ5bとフラップ5aを備えるほか、成膜材料に対して電子ビーム(e-)を照射してそれを蒸発させる電子銃5cと電子銃電源(不図示)をさらに備えればよい。電子銃5cは真空容器2内部の下側に配設されてもよい。そのうち、成膜手段は、2つ以上の電子銃5c、5c’を有する蒸着源5を含んでもよい。 Further, the vapor deposition source 5 is not limited to the resistance heating type, and may be the electron beam heating type vapor deposition source 5. In the example shown in FIGS. 2 and 4, when the vapor deposition source 5 is in the electron beam heating mode, the vapor deposition source 5 includes the same crucible 5b and flap 5a as described above, and the electron beam (e An electron gun 5c for irradiating −) and evaporating it may be further provided with an electron gun power source (not shown). The electron gun 5c may be disposed below the inside of the vacuum container 2. The film forming means may include the vapor deposition source 5 having two or more electron guns 5c and 5c '.
 本実施形態において、成膜後の基板4に薄膜が塗布(被覆)され、薄膜は、(有機)ケイ素化合物成分を有してもよい。薄膜は後述のケイ素化合物が基板4(基板4は透明なものでもよい)の被成膜面に、下記のような加水分解縮合反応により形成されるものであり、撥水性及び撥油性を有する(例えば、薄膜は防汚膜でもよい。防汚膜は、疎油性の膜、撥油膜、疎水性の膜等を含んでもよい)。 In the present embodiment, a thin film may be applied (coated) on the substrate 4 after the film formation, and the thin film may have an (organic) silicon compound component. The thin film is formed by the below-described silicon compound on the film formation surface of the substrate 4 (the substrate 4 may be transparent) by the following hydrolysis-condensation reaction, and has water repellency and oil repellency ( For example, the thin film may be an antifouling film, which may include an oleophobic film, an oil repellent film, a hydrophobic film, etc.).
 照射手段は、真空容器2内に位置する、基板4にイオンを照射するためのイオン源6を含む。イオン源6の上方に開閉操作可能なシャッタ6aが取り付けられている。シャッタ6aは不図示のコントローラによって適宜に開閉される。イオン源6は基板4に向かってイオン(ion)を放出する装置であり、反応ガス(例えばO)または希ガス(例えばAr)のプラズマにより帯電のイオン(O 、Ar)を誘導し、加速電圧で加速するとともに基板ホルダ3(基板4)へ出射させる。具体的には、イオン源6はイオンガンなどの機器でもよい。イオン源6により出射されるイオンは基板4に付着された蒸着物質を緻密化させ、薄膜の性能を向上させることができる。 The irradiation unit includes an ion source 6 located in the vacuum container 2 for irradiating the substrate 4 with ions. A shutter 6a that can be opened and closed is attached above the ion source 6. The shutter 6a is appropriately opened and closed by a controller (not shown). The ion source 6 is a device that emits ions toward the substrate 4, and induces charged ions (O 2 + , Ar + ) by plasma of a reactive gas (for example, O 2 ) or a rare gas (for example, Ar). Then, it is accelerated by the acceleration voltage and emitted to the substrate holder 3 (substrate 4). Specifically, the ion source 6 may be a device such as an ion gun. The ions emitted by the ion source 6 can densify the vapor deposition material attached to the substrate 4 and improve the performance of the thin film.
 具体的には、イオン源6による基板保持面12における照射領域は電子源8による基板保持面12における照射領域内に位置する。そのうち、イオン源6は基板保持面12の一部の領域を照射する。イオン源6は一部の基板ホルダ3の回転軸線からずれて設けられる。図4に示すように、鉛直方向または基板ホルダ3の回転軸線方向に沿って、イオン源6は基板保持面12の投影範囲内に位置する。 Specifically, the irradiation area of the substrate holding surface 12 by the ion source 6 is located within the irradiation area of the substrate holding surface 12 by the electron source 8. Among them, the ion source 6 irradiates a partial area of the substrate holding surface 12. The ion source 6 is provided so as to be offset from the rotation axis of a part of the substrate holder 3. As shown in FIG. 4, the ion source 6 is located within the projection range of the substrate holding surface 12 along the vertical direction or the rotation axis direction of the substrate holder 3.
 本願実施形態において、照射手段は、真空容器2内に位置する、真空容器2内に電子を放射するための電子源8を含む。電子源8は基板4に向かって電子(e)を放射する装置であり、Arなどの希ガスのプラズマにより電子を誘導し、加速電圧で加速して、電子を放出する。電子源8により出射される電子は基板4の表面に付着されたイオンを中和する。 In the present embodiment, the irradiation means includes an electron source 8 located in the vacuum container 2 for emitting electrons into the vacuum container 2. The electron source 8 is a device that emits electrons (e ) toward the substrate 4. The electrons are induced by plasma of a rare gas such as Ar, accelerated by an accelerating voltage, and emitted. The electrons emitted by the electron source 8 neutralize the ions attached to the surface of the substrate 4.
 イオン源6と電子源8は真空容器2の底面に配設される。電子源8の電子指向性を改善するために、水平方向(基板ホルダ3の回転軸に対して垂直な方向)において、電子源8はイオン源6よりも基板ホルダ3の回転軸線に近い。 The ion source 6 and the electron source 8 are arranged on the bottom surface of the vacuum container 2. In order to improve the electron directivity of the electron source 8, the electron source 8 is closer to the rotation axis of the substrate holder 3 than the ion source 6 in the horizontal direction (direction perpendicular to the rotation axis of the substrate holder 3).
 電子源8は回転軸線の一方側に位置する。電子源8の向き(電子の放出方向)と回転軸線との間の角は鋭角である。相応的に、電子源8の向きと回転軸線とは平行及び垂直の関係にない。イオン源6は回転軸線の一方側に位置する。イオン源6の向きと回転軸線との間の角は鋭角である。相応的に、イオン源6の向きと回転軸線とは平行及び垂直の関係にない。本実施形態のイオン源6が基板ホルダ3に向かって作動する場合に、イオンビームは一部のみが基板保持面12の一部の領域に対して照射できる構成(例えば電極の曲率)、配置及び/あるいは向きに基づいて配置する。 The electron source 8 is located on one side of the rotation axis. The angle between the direction of the electron source 8 (electron emission direction) and the rotation axis is an acute angle. Correspondingly, the orientation of the electron source 8 and the axis of rotation are not parallel or perpendicular. The ion source 6 is located on one side of the rotation axis. The angle between the orientation of the ion source 6 and the axis of rotation is an acute angle. Correspondingly, there is no parallel or vertical relationship between the orientation of the ion source 6 and the axis of rotation. When the ion source 6 of the present embodiment operates toward the substrate holder 3, only a part of the ion beam can irradiate a partial region of the substrate holding surface 12 (for example, curvature of electrodes), arrangement, and / Or arrange based on orientation.
 本実施形態において、照射手段により基板保持面12の電位状態を単一電位にしつつ、電位状態の異なる領域を少なくし、さらに基板ホルダ3で異常放電を発生することを抑制し、薄膜形成過程の安定性を保証し、成膜品質を向上することができる。そのうち、単一電位は負電位、正電位及び零電位の1つでもい。好ましくは、照射手段により基板保持面12の電位状態を負電位にすることができる。 In the present embodiment, while the potential state of the substrate holding surface 12 is made to be a single potential by the irradiation means, the regions having different potential states are reduced, and further, abnormal discharge is suppressed from occurring in the substrate holder 3, and the thin film formation process is performed. It is possible to guarantee stability and improve film formation quality. The single potential may be one of negative potential, positive potential and zero potential. Preferably, the irradiation means can bring the potential state of the substrate holding surface 12 to a negative potential.
 単一電位状態で、基板保持面12における異なる領域で電位は異なってもよく、例えば、基板保持面12は正電位状態とするとき、異なる領域の正電位値は異なってもよい。基板保持面12は負電位状態とするとき、異なる領域の負電位値は異なってもよい。 In a single potential state, the potentials may be different in different regions on the substrate holding surface 12, and for example, when the substrate holding face 12 is in a positive potential state, the positive potential values in different regions may be different. When the substrate holding surface 12 is in a negative potential state, the negative potential values of different regions may be different.
 本実施形態において、照射手段はイオン源6、電子源8から基板保持面12に照射される放射パラメータ、例えば、イオン源6及び/あるいは電子源8の位置、向き、放射口形状、バイアス電流等を変更することによって、本実施形態では唯一に制限されず、基板保持面12の電位状態が単一電位に保持されれば、異常放電の発生を避けることができる。 In the present embodiment, the irradiation means is a radiation parameter for irradiating the substrate holding surface 12 from the ion source 6 and the electron source 8, for example, the position, orientation, radiation port shape, bias current, etc. of the ion source 6 and / or the electron source 8. However, if the electric potential state of the substrate holding surface 12 is held at a single electric potential, the occurrence of abnormal discharge can be avoided.
 好ましい実施形態において、電子源8の位置を好ましくすることにより、電子源8を基板保持面12(基板ホルダ3)の投影範囲内に設けるとともに、真空容器2排気口(排気部)の中間位置に近接して設けることによって、電子源8により放射される電子の指向性を改善し、成膜過程で、基板保持面12の帯電状態を一定にする(負に帯電するのが好ましい)。さらに、電子源8のバイアス電流の最大値を増大させることによって、基板保持面12を負に帯電する状態(負電位状態)にする。 In a preferred embodiment, by making the position of the electron source 8 preferable, the electron source 8 is provided within the projection range of the substrate holding surface 12 (substrate holder 3) and at the intermediate position of the exhaust port (exhaust part) of the vacuum container 2. By providing them close to each other, the directivity of electrons emitted from the electron source 8 is improved, and the charged state of the substrate holding surface 12 is made constant (preferably negatively charged) during the film formation process. Further, the maximum value of the bias current of the electron source 8 is increased to bring the substrate holding surface 12 into a negatively charged state (negative potential state).
 基板保持面12の電位状態を検出しやすいために、成膜装置1は、電位検出手段をさらに含み、電位検出手段は基板保持面12の電位状態を検出できる。電位検出手段は、基板ホルダ3に位置する1つ以上のファラディカップを含んでもよい。ファラディカップで基板保持面12の電位状態を測定し、複数の黒色点は異なる電位測定点である。図3は、図2、図4に示す成膜装置1の基板保持面12の電位状態図を示し、基板保持面12の電位全体の色が全て浅いことが見え(図中、色が浅いほど、電位が低いことを示し)、単一の負電位状態を呈する。 In order to easily detect the potential state of the substrate holding surface 12, the film forming apparatus 1 further includes potential detecting means, and the potential detecting means can detect the potential state of the substrate holding surface 12. The potential detection means may include one or more Faraday cups located on the substrate holder 3. The potential state of the substrate holding surface 12 is measured with a Faraday cup, and the plurality of black points are different potential measurement points. FIG. 3 shows a potential state diagram of the substrate holding surface 12 of the film forming apparatus 1 shown in FIGS. 2 and 4, and it can be seen that all the colors of the entire potential of the substrate holding surface 12 are light (in the figures, the lighter the color, the lighter the color). , Indicates that the potential is low), and exhibits a single negative potential state.
 基板保持面12の電位状態を制御しやすく、所望の電位状態を取得するために、電子源8は電位状態に応じて基板保持面12に放射される電子密度を調整することができる。電位検出手段は基板保持面12の異なる領域の電位状態を検出することができ、基板保持面12の異なる領域の電位状態で正負電位が存在するとき、電子源8は放射される電子密度を調整することによって、基板保持面12を単一電位状態にすることができる。 The potential state of the substrate holding surface 12 can be easily controlled, and in order to obtain a desired potential state, the electron source 8 can adjust the electron density emitted to the substrate holding surface 12 according to the potential state. The potential detecting means can detect the potential states of different regions of the substrate holding surface 12, and when positive and negative potentials exist in the potential states of different regions of the substrate holding surface 12, the electron source 8 adjusts the emitted electron density. By doing so, the substrate holding surface 12 can be brought to a single potential state.
 図2に示す実施形態において、基板保持面12(基板ホルダ3)は電子源8の照射領域内に位置する。これにより、基板ホルダ3(基板保持面12)の電位状態を負電位にすることができる。基板ホルダ3全体が電子源8の照射領域内に位置することによって、基板ホルダ3全体の被覆範囲内で存在するイオンは電子に中和されることができるとともに、電子が持続的に供給され、基板ホルダ3全体に負電位状態(即ち、基板ホルダ3全体が単一電位)にして、電位状態が異なる領域が存在し難くなり、さらに基板ホルダ3で異常放電の発生を抑制し、薄膜形成過程の安定性を保証し、成膜品質を向上する。 In the embodiment shown in FIG. 2, the substrate holding surface 12 (substrate holder 3) is located within the irradiation area of the electron source 8. As a result, the potential state of the substrate holder 3 (substrate holding surface 12) can be set to a negative potential. Since the entire substrate holder 3 is located within the irradiation area of the electron source 8, the ions existing within the coverage of the entire substrate holder 3 can be neutralized by the electrons, and the electrons are continuously supplied. A negative potential state (that is, the entire substrate holder 3 is a single potential) is made in the entire substrate holder 3 so that regions having different potential states are unlikely to exist, and further abnormal discharge is suppressed in the substrate holder 3 to form a thin film forming process. Guarantee the stability of and improve the film quality.
 本実施形態において、電子源8は基板保持面12の全ての領域を照射する。このように、基板ホルダ3全体の被覆範囲内に存在するイオンは電子に中和されることができるとともに、電子が持続的に供給され、基板ホルダ3全体に負電位状態にする。 In this embodiment, the electron source 8 irradiates the entire area of the substrate holding surface 12. In this way, the ions existing within the coating range of the entire substrate holder 3 can be neutralized by the electrons, and the electrons are continuously supplied to bring the entire substrate holder 3 into the negative potential state.
 電子源8が基板保持面12の投影範囲外部に位置するとき、電子源8が回転軸線から遠くずれて、基板保持面12の全部を照射するには難しくなり、同時に、基板保持面12が電子源8からかなり遠く離れた領域に位置すると、被覆されにくく、又は照射される電子密度が小さく、単一電位状態を形成しにくいことが考えられた。 When the electron source 8 is located outside the projection range of the substrate holding surface 12, the electron source 8 deviates far from the rotation axis and it becomes difficult to irradiate the entire substrate holding surface 12, and at the same time, the substrate holding surface 12 becomes It was thought that if it is located in a region far away from the source 8, it is difficult to be covered or the irradiated electron density is low and it is difficult to form a single potential state.
 上記を考慮に入れると、電子源8が基板保持面12の全部を照射することによって、単一電位を形成するために、鉛直方向または基板ホルダ3の回転軸線方向に沿って、イオン源8は基板保持面12の投影範囲内に位置する。電子源8と回転軸線との間の距離が基板保持面12の半径よりも小さい。 Taking the above into consideration, the ion source 8 irradiates the whole of the substrate holding surface 12 to form a single potential, so that the ion source 8 is moved along the vertical direction or the rotation axis direction of the substrate holder 3. It is located within the projection range of the substrate holding surface 12. The distance between the electron source 8 and the rotation axis is smaller than the radius of the substrate holding surface 12.
 具体的には、真空容器2には排気部が設けられている。電子源8は排気部の基板ホルダの運動方向に沿った中間位置に近接して設けられている。成膜手段は、2つ以上の電子銃を有する蒸着源5を含む。電子源8は2つの電子銃5c、5c’の間に位置する。 Specifically, the vacuum container 2 is provided with an exhaust unit. The electron source 8 is provided close to an intermediate position along the movement direction of the substrate holder of the exhaust unit. The film forming means includes a vapor deposition source 5 having two or more electron guns. The electron source 8 is located between the two electron guns 5c and 5c '.
 具体的な実施例において、排気部は、真空容器2内に連通する上記排気口を含んでもよい。排気部を設けることによって、真空容器2の排気側を形成し、排気側と対向する一方側が真空容器2のドア側である。真空内部に対する操作及び基板4の出し入れを便利にするために、このドア側は開けられる。排気口は真空容器2の一方側で長孔構造である。電子源8は排気口の中間位置に近接する。電子源8も排気側の中間位置に近接して設けられてもよい。 In a specific embodiment, the exhaust unit may include the exhaust port communicating with the inside of the vacuum container 2. By providing the exhaust part, the exhaust side of the vacuum container 2 is formed, and the one side facing the exhaust side is the door side of the vacuum container 2. This door side is opened for convenient operation in the vacuum and for loading / unloading the substrate 4. The exhaust port has a long hole structure on one side of the vacuum container 2. The electron source 8 is close to the intermediate position of the exhaust port. The electron source 8 may also be provided near the intermediate position on the exhaust side.
 具体的には、図4に示すように、2つの電子銃5c、5c’において、2つの電子銃5c、5c’の間の連結線の方向(電子銃5c、5c’の位置を結んだ直線の方向)に沿って、そのうちの1つの電子銃と電子源8との距離、もう1つの電子銃と電子源8との距離は、何れも2つの電子銃の間の距離よりも小さい。すなわち、2つの電子銃5c、5c’のうち一方の電子銃5cと電子源8との距離、及び、2つの電子銃5c、5c’のうち他方の電子銃5c’と電子源8との距離は、2つの電子銃5c、5c’の間の距離よりも小さい。電子源8は2つの電子銃よりも排気部に近い。このように電子源8の位置を最適化することによって、電子源8とイオン源6により基板ホルダ3(基板保持面12)に粒子を照射するとき、基板保持面12を単一電位状態にし、異常放電を避けることができる。基板保持面12の電位状態は図3に示す通りでもよい。 Specifically, as shown in FIG. 4, in the two electron guns 5c and 5c ′, the direction of the connecting line between the two electron guns 5c and 5c ′ (the straight line connecting the positions of the electron guns 5c and 5c ′) The distance between one of the electron guns and the electron source 8 and the distance between the other electron gun and the electron source 8 are smaller than the distance between the two electron guns. That is, the distance between one electron gun 5c of the two electron guns 5c and 5c 'and the electron source 8 and the distance between the other electron gun 5c' of the two electron guns 5c and 5c 'and the electron source 8. Is smaller than the distance between the two electron guns 5c, 5c '. The electron source 8 is closer to the exhaust than the two electron guns. By optimizing the position of the electron source 8 in this way, when the substrate holder 3 (substrate holding surface 12) is irradiated with particles by the electron source 8 and the ion source 6, the substrate holding surface 12 is set to a single potential state, Abnormal discharge can be avoided. The potential state of the substrate holding surface 12 may be as shown in FIG.
 電子源8から出射される電子ビームの指向性を最適化し、安定な電位を形成しやすいために、鉛直方向または基板ホルダ3の回転軸線方向に沿って、電子源8は基板保持面12の投影範囲内に位置する。本実施形態の電子源8が基板ホルダ3に向かって電子を放射する場合に、電子ビームは一部のみが基板保持面12の全部の領域に対して照射できる構成(例えば電極の曲率)、配置及び/あるいは向きに基づいて配置する。 In order to optimize the directivity of the electron beam emitted from the electron source 8 and to easily form a stable potential, the electron source 8 projects the substrate holding surface 12 along the vertical direction or the rotation axis direction of the substrate holder 3. Located within range. When the electron source 8 of the present embodiment emits electrons toward the substrate holder 3, only a part of the electron beam can irradiate the entire area of the substrate holding surface 12 (for example, curvature of electrodes), arrangement. And / or based on orientation.
 本願の実施形態において、照射手段は基板ホルダ3における電位状態を調整することができる。照射手段は照射領域の面積、電子源8及び/あるいはイオン源6の位置などを変更することなどによって、基板ホルダ3における電位状態の変更を実現することができる。 In the embodiment of the present application, the irradiation unit can adjust the potential state in the substrate holder 3. The irradiation unit can change the potential state of the substrate holder 3 by changing the area of the irradiation region, the positions of the electron source 8 and / or the ion source 6, and the like.
 具体的には、照射手段は、基板保持面12における粒子密度を調整可能に配置されることによって、基板ホルダ3における電位状態を調整する。そのうち、電子源8とイオン源6の少なくとも1つが、基板保持面12における粒子の密度を調整可能に配置される。 Specifically, the irradiation means adjusts the potential state in the substrate holder 3 by being arranged so that the particle density on the substrate holding surface 12 can be adjusted. At least one of the electron source 8 and the ion source 6 is arranged so that the particle density on the substrate holding surface 12 can be adjusted.
 成膜装置1は、電子源8に接続される位置調整部材を含んでもよく、それにより電子源8の位置を調整することによって、電子源8から基板保持面12に放射される電子の密度を調整可能にすることができる。そのうち、位置調整部材は、電子源8のイオン源6に対する水平位置及び/あるいは高さ位置を調整可能にする。 The film forming apparatus 1 may include a position adjusting member that is connected to the electron source 8. By adjusting the position of the electron source 8 by using the position adjusting member, the density of electrons emitted from the electron source 8 to the substrate holding surface 12 can be adjusted. Can be adjustable. Among them, the position adjusting member makes it possible to adjust the horizontal position and / or the height position of the electron source 8 with respect to the ion source 6.
 位置調整部材は、真空容器2の底部に位置する取付孔と、電子源8と取付孔とを接続する接続ボルトと、を含み、電子源8は接続ボルトと取付孔との接続を介して位置が調整可能である。具体的には、取付孔は長孔である。さらに、取付孔の数は複数個である。異なる取付孔は真空容器2内の異なる位置に分布することによって、電子源8は接続ボルトを介して異なる取付孔に接続され、異なる固定位置の調整を実現する。 The position adjusting member includes a mounting hole located at the bottom of the vacuum container 2 and a connecting bolt that connects the electron source 8 and the mounting hole. The electron source 8 is positioned via the connection between the connecting bolt and the mounting hole. Is adjustable. Specifically, the mounting hole is a long hole. Further, the number of mounting holes is plural. Since the different mounting holes are distributed in different positions in the vacuum container 2, the electron source 8 is connected to the different mounting holes via the connection bolts, and different fixing positions are adjusted.
 本願の実施形態において、成膜装置1は、電子源8の向きを調整する向き調整手段を含む。向き調整手段は電子源8の向きを調整することによって、電子源8から基板保持面12に放射される電子の密度を調整可能にする。 In the embodiment of the present application, the film forming apparatus 1 includes an orientation adjusting unit that adjusts the orientation of the electron source 8. The orientation adjusting means adjusts the orientation of the electron source 8 so that the density of electrons emitted from the electron source 8 to the substrate holding surface 12 can be adjusted.
 図2に示すように、電子源8の底部に、第1の支持構造9(取付ベース)が設けられており、第1の支持構造9は電子源8を真空容器2に取り付けることができる。第1の支持構造9は電子源8の向きを変更することができる。相応的に、イオン源6の底部に、第2の支持構造7(取付ベース)が設けられており、第2の支持構造7はイオン源6を真空容器2に取り付けることができる。第2の支持構造7はイオン源6の向きを変更することができる。 As shown in FIG. 2, a first support structure 9 (mounting base) is provided at the bottom of the electron source 8, and the first support structure 9 can mount the electron source 8 on the vacuum container 2. The first support structure 9 can change the direction of the electron source 8. Correspondingly, a second support structure 7 (mounting base) is provided at the bottom of the ion source 6, which allows the ion source 6 to be mounted on the vacuum vessel 2. The second support structure 7 can change the orientation of the ion source 6.
 本文で引用されている何れかの数字値は全て下限値から上限値まで1つの単位でアップする下位値と上位値の全ての値を含み、何れかの下位値と何れかの上位値との間に少なくとも2つの単位の間隔があればよい。例を挙げると、もし1つの部材の数または過程変数(例えば温度、圧力、時間等)の値は1から90で、20から80が好ましく、30から70がより好ましくと記載すると、明細書にも、例えば15から85、22から68、43から51、30から32などの値も明確に列挙されていることを説明することを目的とする。1より小さい値について、1つの単位が0.0001、0.001、0.01、0.1であると適宜に考えられる。こられは明確に記載しようとする例示に過ぎず、最低値と最高値との間に列挙されている数値の全ての可能な組合せは類似する方式で明細書に明確に記載されていると考えられる。 Any of the numerical values quoted in the text include all lower and upper values that increase in one unit from the lower limit to the upper limit. It suffices if there is an interval of at least two units between them. For example, if the number of one member or the value of a process variable (for example, temperature, pressure, time, etc.) is 1 to 90, preferably 20 to 80, more preferably 30 to 70, Also, the values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32, etc. are explicitly listed. For values less than one, one unit is appropriately considered to be 0.0001, 0.001, 0.01, 0.1. These are merely examples which are intended to be stated explicitly and all possible combinations of the numerical values listed between the lowest and the highest values are considered to be stated explicitly in a similar manner in the description. To be
 特に説明されるほか、全ての範囲は端点及び端点間の全ての数字を含む。範囲とともに使用される「約」又は「近似」は範囲の2つの端点に適合される。従って、「約20から30」は、「約20から約30」をカバーしようとし、少なくとも明記されている端点を含む。 Unless otherwise stated, all ranges include endpoints and all numbers between endpoints. “About” or “approximate” used with a range fits the two endpoints of the range. Thus, "about 20 to 30" is intended to cover "about 20 to about 30" and includes at least the specified endpoints.
 開示された全ての文章及び参考資料(特許出願と出版物を含む)は、種々の目的のために引用によってここに記載されている。組み合わせを説明するための用語である「基本的に…からなる」は、確定した素子、成分、部品又はステップ及び実質的に組み合わせの基本的な新規性要件に影響を及ぼさないほかの素子、成分、部品又はステップを含むと考えられる。用語である「含む」又は「含める」などでここの素子、成分、部品又はステップの組合せを説明することについて、基本的にこれらの素子、成分、部品又はステップからなる実施形態も考えられる。ここで、用語である「でもよい」を使用することによって、「でもよい」に含まれる説明したいかなる属性も選択可能であると説明することを図る。 All text and references (including patent applications and publications) disclosed are hereby incorporated by reference for various purposes. The term “consisting essentially of”, which is a term used to describe a combination, refers to a defined element, component, part or step and other elements or components that do not substantially affect the basic novelty requirements of the combination. , Parts or steps. For the purpose of describing combinations of elements, components, parts or steps herein with the terms "comprising" or "including" etc., embodiments basically consisting of these elements, components, parts or steps are also contemplated. Here, it is intended to explain that any of the described attributes included in “may be” can be selected by using the term “may be”.
 複数の素子、成分、部品又はステップは単独な集積素子、成分、部品又はステップによって提供されることができる。又は、単独な集積素子、成分、部品又はステップは分離した複数の素子、成分、部品又はステップに分けることができる。素子、成分、部品又はステップを説明するために開示した「ある」又は「一つ」は、ほかの素子、成分、部品又はステップを除外するものではない。 Multiple elements, components, parts or steps can be provided by a single integrated element, component, part or step. Alternatively, a single integrated element, component, component or step can be divided into separate elements, components, components or steps. "A" or "one" disclosed to describe an element, component, component or step does not exclude other elements, components, components or steps.

Claims (12)

  1.  真空容器と、
     前記真空容器内に位置する、基板を保持するための基板保持面を有する基板ホルダと、
     前記真空容器内に位置する、前記基板に薄膜を形成するための成膜手段と、
     前記真空容器内に位置する、前記基板ホルダへ粒子を放射するための照射手段と、を含み、
    前記照射手段により前記基板保持面の電位状態が単一電位になることを特徴とする成膜装置。
    A vacuum container,
    A substrate holder having a substrate holding surface for holding a substrate, which is located in the vacuum container;
    A film forming means for forming a thin film on the substrate, which is located in the vacuum container;
    Irradiation means for irradiating particles to the substrate holder, the irradiation means being located in the vacuum container;
    A film forming apparatus, wherein the irradiation means brings the substrate holding surface into a single potential state.
  2. 前記単一電位は負電位、正電位及び零電位の1つを含むことを特徴とする請求項1に記載の成膜装置。 The film forming apparatus according to claim 1, wherein the single potential includes one of a negative potential, a positive potential, and a zero potential.
  3.  前記照射手段は、
    前記真空容器内に位置する、前記基板へイオンを放射するためのイオン源と、
    前記真空容器内に位置する、前記基板へ電子を放射するための電子源と、を含むことを特徴とする請求項1または2に記載の成膜装置。
    The irradiation means,
    An ion source located in the vacuum vessel for emitting ions to the substrate;
    3. The film forming apparatus according to claim 1, further comprising: an electron source located inside the vacuum container for emitting electrons to the substrate.
  4.  前記イオン源による前記基板保持面における照射領域は、前記電子源による前記基板保持面における照射領域内に位置することを特徴とする請求項3に記載の成膜装置。 The film forming apparatus according to claim 3, wherein an irradiation region of the substrate holding surface by the ion source is located within an irradiation region of the substrate holding surface by the electron source.
  5.  前記電子源は前記基板保持面の全部の領域を照射し、前記イオン源は前記基板保持面の一部の領域を照射することを特徴とする請求項3に記載の成膜装置。 The film forming apparatus according to claim 3, wherein the electron source irradiates the entire area of the substrate holding surface, and the ion source irradiates a partial area of the substrate holding surface.
  6.  前記真空容器の鉛直方向または前記基板ホルダの回転軸線方向に沿って、前記電子源は前記基板保持面の投影範囲内に位置することを特徴とする請求項3に記載の成膜装置。 The film forming apparatus according to claim 3, wherein the electron source is located within a projection range of the substrate holding surface along a vertical direction of the vacuum container or a rotation axis direction of the substrate holder.
  7.  前記真空容器に、排気部が設けられており、
     前記電子源は前記排気部の前記基板ホルダの運動方向に沿った中間位置に近接して設けられていることを特徴とする請求項3に記載の成膜装置。
    An exhaust unit is provided in the vacuum container,
    The film forming apparatus according to claim 3, wherein the electron source is provided close to an intermediate position of the exhaust unit along the movement direction of the substrate holder.
  8.  前記成膜手段は2つ以上の電子銃を有する蒸着源を含み、
     前記電子源は2つの前記電子銃の間に位置することを特徴とする請求項3に記載の成膜装置。
    The film forming means includes a vapor deposition source having two or more electron guns,
    The film forming apparatus according to claim 3, wherein the electron source is located between the two electron guns.
  9.  前記成膜手段は2つ以上の電子銃を有する蒸着源を含み、前記2つの電子銃うち一方の電子銃と前記電子源との距離、前記2つの電子銃うち他方の電子銃と前記電子源との距離は、前記2つの電子銃の間の距離よりも小さいことを特徴とする請求項3に記載の成膜装置。 The film forming means includes a vapor deposition source having two or more electron guns, the distance between one of the two electron guns and the electron source, the other electron gun of the two electron guns and the electron source. 4. The film forming apparatus according to claim 3, wherein the distance between and is smaller than the distance between the two electron guns.
  10.  鉛直方向または前記基板ホルダの回転軸線方向に沿って、前記イオン源は前記基板保持面の投影範囲内に位置することを特徴とする請求項3に記載の成膜装置。 The film forming apparatus according to claim 3, wherein the ion source is located within a projection range of the substrate holding surface along a vertical direction or a rotation axis direction of the substrate holder.
  11.  該成膜装置は、前記電子源の放射パラメータを調整する調整手段を含み、
     前記電子源の放射パラメータを調整することによって、前記電子源から前記基板保持面に放射される電子密度を調整し、
     前記放射パラメータは、前記電子源の位置、放射直径、放射口形状、向き、バイアス電流、個数の少なくとも1つを含むことを特徴とする請求項3に記載の成膜装置。
    The film forming apparatus includes adjusting means for adjusting a radiation parameter of the electron source,
    By adjusting the emission parameter of the electron source, to adjust the electron density emitted from the electron source to the substrate holding surface,
    The film forming apparatus according to claim 3, wherein the radiation parameter includes at least one of a position, a radiation diameter, a radiation shape, a direction, a bias current, and a number of the electron source.
  12.  前記成膜装置は、電位検出手段を含み、
     前記電位検出手段は前記基板保持面の電位状態を検出し、前記電子源は前記電位状態に基づいて、前記基板保持面に放射される電子密度を調整可能であることを特徴とする請求項11に記載の成膜装置。
    The film forming apparatus includes a potential detecting unit,
    12. The potential detecting means detects a potential state of the substrate holding surface, and the electron source can adjust an electron density emitted to the substrate holding surface based on the potential state. The film forming apparatus according to.
PCT/JP2019/039685 2018-10-15 2019-10-08 Film forming device WO2020080198A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020542026A JP6859007B2 (en) 2018-10-15 2019-10-08 Film deposition equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821666566.8U CN209065995U (en) 2018-10-15 2018-10-15 Film formation device
CN201821666566.8 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020080198A1 true WO2020080198A1 (en) 2020-04-23

Family

ID=67094857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039685 WO2020080198A1 (en) 2018-10-15 2019-10-08 Film forming device

Country Status (4)

Country Link
JP (1) JP6859007B2 (en)
CN (1) CN209065995U (en)
TW (1) TWI720651B (en)
WO (1) WO2020080198A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204799A (en) * 2006-01-31 2007-08-16 Showa Shinku:Kk Vacuum apparatus and film-forming method
WO2013046918A1 (en) * 2011-09-30 2013-04-04 株式会社シンクロン Film formation method and film formation apparatus
JP2017214607A (en) * 2016-05-30 2017-12-07 コニカミノルタ株式会社 Method for manufacturing light reflection mirror, and vapor deposition apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6533511B2 (en) * 2015-06-17 2019-06-19 株式会社シンクロン Film forming method and film forming apparatus
JP6392912B2 (en) * 2017-01-31 2018-09-19 学校法人東海大学 Deposition method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204799A (en) * 2006-01-31 2007-08-16 Showa Shinku:Kk Vacuum apparatus and film-forming method
WO2013046918A1 (en) * 2011-09-30 2013-04-04 株式会社シンクロン Film formation method and film formation apparatus
JP2017214607A (en) * 2016-05-30 2017-12-07 コニカミノルタ株式会社 Method for manufacturing light reflection mirror, and vapor deposition apparatus

Also Published As

Publication number Publication date
JP6859007B2 (en) 2021-04-14
TW202035744A (en) 2020-10-01
CN209065995U (en) 2019-07-05
JPWO2020080198A1 (en) 2021-02-15
TWI720651B (en) 2021-03-01

Similar Documents

Publication Publication Date Title
KR100984221B1 (en) Optical thin film deposition device and optical thin film fabrication method
JP4512669B2 (en) Vapor deposition apparatus and thin film device manufacturing method
WO2010041524A1 (en) Film-forming method
JP7461427B2 (en) Film forming apparatus and method for manufacturing electronic device
US20140199493A1 (en) Film formation method and film formation apparatus
JP2009003348A (en) Film forming method of dimmer filter, manufacturing device of dimmer filter, dimmer filter and imaging diaphragm device using the same
JP4823293B2 (en) Film forming method and film forming apparatus
WO2020080198A1 (en) Film forming device
WO2021075385A1 (en) Film forming method and film forming apparatus
JP4503701B2 (en) Vapor deposition apparatus and thin film device manufacturing method
JP5543251B2 (en) Film forming method using ion plating method and apparatus used therefor
JP2009179828A (en) Vapor deposition method and vapor deposition device
JP2010049137A (en) Dimmer filter and film forming method and film forming device of dimmer filter
JP6219594B2 (en) Thin film forming apparatus and thin film forming method
KR100684739B1 (en) Apparatus for sputtering organic matter
RU172351U1 (en) Device for electron beam deposition of oxide coatings
US20100313811A1 (en) Evaporation source and film-forming device
JP2009007651A (en) Method of film-coating neutral-density filter, apparatus for forming neutral-density filter, neutral-density filter using the same, and image pick-up light quantity diaphragm device
JP2526182B2 (en) Method and apparatus for forming compound thin film
JP2009001889A (en) Film deposition method for neutral density filter, neutral density filter using the same, and image pick-up light quantity diaphragm device
JP2004244722A (en) Thin film deposition apparatus, thin film deposition method, and optical element
WO2022220015A1 (en) Film forming device and film forming method using same
JP2005290464A (en) Sputtering apparatus and method
JP2006219698A (en) Ion-assisted film-forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873839

Country of ref document: EP

Kind code of ref document: A1