WO2020080162A1 - Glass plate - Google Patents

Glass plate Download PDF

Info

Publication number
WO2020080162A1
WO2020080162A1 PCT/JP2019/039489 JP2019039489W WO2020080162A1 WO 2020080162 A1 WO2020080162 A1 WO 2020080162A1 JP 2019039489 W JP2019039489 W JP 2019039489W WO 2020080162 A1 WO2020080162 A1 WO 2020080162A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass plate
plate
resin
less
Prior art date
Application number
PCT/JP2019/039489
Other languages
French (fr)
Japanese (ja)
Inventor
田中 歩
洋平 細田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2020553081A priority Critical patent/JPWO2020080162A1/en
Publication of WO2020080162A1 publication Critical patent/WO2020080162A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Definitions

  • the present invention relates to a glass plate for composite-integrating with a resin plate to produce a glass-resin composite, and particularly to a glass plate used for a glass-resin composite suitable for an automobile windshield or door glass.
  • Laminated glass which is a composite of multiple soda lime glass plates combined with an organic resin intermediate layer, is generally used for window glass of vehicles and the like.
  • a glass-resin composite in which a resin plate and a resin plate are integrally integrated with an organic resin intermediate layer may be used (see Patent Documents 1 to 4).
  • the soda lime glass plate used for window glass of vehicles etc. has the function of attenuating the collision energy of the flying pieces by deforming the tip shape of the flying pieces of flying stones and increasing their impact resistance.
  • soda lime glass plate is not enough to increase the impact resistance of the scattering pieces.
  • the soda-lime glass plate is made thicker or the number of laminated sheets is increased to increase the impact resistance of the scattered pieces, but this causes an increase in the thickness and mass of the window glass.
  • a crystallized glass plate instead of the soda-lime glass plate has been studied in order to increase the impact resistance of the scattered pieces.
  • the crystallinity of the crystallized glass is increased, the hardness of the crystallized glass is increased, and the collision energy of the scattered pieces may be attenuated, but since the precipitated crystals inhibit softening deformation, bending becomes difficult, It cannot be applied to windshields of automobiles. Further, by increasing the thickness of the crystallized glass, the collision energy of the scattered pieces can be attenuated, but in this case, the mass of the window glass is increased and the transparency may be impaired.
  • the present invention has been made in view of the above circumstances, the technical problem is excellent bending workability, even if the thickness and crystallinity is small, it is possible to effectively attenuate the collision energy of the flying pieces.
  • the idea is to create a glass plate.
  • the glass plate of the present invention is a glass plate for composite-integrating with a resin plate to produce a glass-resin composite, and has a glass composition of mol% of SiO 2 45 to 80% and Al 2 O. 3 5 ⁇ 30%, Li 2 O + Na 2 O + K 2 O 0 ⁇ 20%, MgO 3 ⁇ 35%, CaO 0.1 ⁇ 35%, characterized in that it contains SrO + BaO 0 ⁇ 15%.
  • Li 2 O + Na 2 O + K 2 O means, Li 2 O, refers to the total amount of Na 2 O and K 2 O.
  • “SrO + BaO” refers to the total amount of SrO and BaO.
  • the glass plate of the present invention is a glass plate for composite-integrating with a resin plate to produce a glass-resin composite.
  • the glass plate is a material that has transparency and enhances impact resistance.
  • the resin plate is a material that alleviates the impact caused by the collision of the scattered pieces and prevents the glass pieces from scattering due to the impact of the scattered pieces. By providing both, it becomes easy to ensure impact resistance.
  • FIG. 1 is a schematic diagram for explaining an example of a glass resin composite.
  • the glass resin composite 10 has a glass plate 11, a glass plate 12, and a resin plate 13 in this order from the outside, and these have a three-dimensionally curved curved surface shape and are not shown. It is compositely integrated by the organic resin intermediate layer.
  • the glass plate 11 has a glass composition of mol% of SiO 2 45 to 80%, Al 2 O 3 5 to 30%, Li 2 O + Na 2 O + K 2 O 0 to 20%, MgO 3 to 35%, CaO 0. It contains 1 to 35% and 0 to 15% of SrO + BaO.
  • the resin plate 13 is polycarbonate.
  • the present inventors analyzed the collision of the scattered pieces in detail, it was found that the glass plate was first damaged by the shock wave due to the collision of the scattered pieces, and then the scattered pieces penetrated through the glass plate. Then, it was found that when the shock waves generated by the collision of the flying pieces are dispersed, the collision energy of the flying pieces can be attenuated and the penetration of the flying pieces can be prevented. Furthermore, when the shock wave is analyzed in detail, when the shock wave disperses and attenuates in the traveling direction of the flying pieces and in the direction perpendicular thereto, the speed of the shock wave increases in proportion to the Young's modulus of the glass plate. Therefore, since the glass plate of the present invention has the above glass composition, the Young's modulus can be increased.
  • the glass sheet of the present invention preferably has a Young's modulus of 80 GPa or more. By doing so, since the velocity of the shock wave is increased in the glass plate, the dispersion region of the shock wave is expanded, and the collision energy of the flying object can be greatly attenuated.
  • Young's modulus refers to a value measured by a well-known resonance method.
  • the glass plate of the present invention preferably has a liquidus viscosity of 10 2.0 d ⁇ Pa or more. By doing so, it is difficult for the particles and devitrification to occur, and continuous melting is possible.
  • liquidus viscosity refers to a value obtained by measuring the viscosity of glass at a liquidus temperature by a platinum ball pulling method.
  • Liquid phase temperature refers to a temperature at which crystals precipitate after glass powder passing through a standard sieve of 30 mesh (500 ⁇ m) and remaining at 50 mesh (300 ⁇ m) is put into a platinum boat and kept in a temperature gradient furnace for 24 hours.
  • the glass plate of the present invention preferably has a crystallinity of 30% or less. By doing so, the bending workability of the glass plate can be improved.
  • the "crystallinity" is calculated by measuring the XRD by a powder method to calculate the area of the halo corresponding to the mass of the amorphous material and the area of the peak corresponding to the mass of the crystal. Area of peak] ⁇ 100 / [area of peak + area of halo] (%).
  • the glass plate of the present invention preferably has a plate thickness of 3 to 15 mm.
  • the glass plate of the present invention has a curved surface shape that is three-dimensionally curved. This makes it easy to apply it to the windshield of an automobile or the like.
  • the glass plate of the present invention has a glass composition of, in mol%, SiO 2 45 to 80%, Al 2 O 3 5 to 30%, Li 2 O + Na 2 O + K 2 O 0 to 20%, MgO 3 to 35%, CaO. It contains 0.1 to 35% and 0 to 15% of SrO + BaO.
  • the% indication means mol%.
  • SiO 2 is a component that forms a glass network.
  • the content of SiO 2 is preferably 45 to 80%, 52 to 75%, and particularly 58 to 72%. If the content of SiO 2 is too small, it becomes difficult to vitrify, and the weather resistance tends to decrease. On the other hand, if the content of SiO 2 is too large, the meltability and moldability are likely to be lowered, and the thermal expansion coefficient is too low, making it difficult to match the thermal expansion coefficient of the resin plate or the organic resin intermediate layer.
  • Al 2 O 3 is a component that enhances Young's modulus and weather resistance.
  • the content of Al 2 O 3 is preferably 5 to 30%, 9 to 25%, 10 to 20%, and particularly 12 to 18%.
  • Young's modulus and weather resistance are likely to decrease.
  • the content of Al 2 O 3 is too large, the meltability, moldability, and devitrification resistance tend to decrease.
  • Li 2 O, Na 2 O and K 2 O are components that lower the high temperature viscosity and enhance the meltability, moldability and bendability.
  • the total amount of Li 2 O, Na 2 O and K 2 O is preferably 0 to 20%, 1 to 15%, especially 2 to 10%.
  • the content of Li 2 O is preferably 0 to 15%, 1 to 12%, and particularly 2 to 10%.
  • the respective contents of Na 2 O and K 2 O are preferably 0 to 15%, 0 to 3%, in particular 0 to less than 1%. If the total amount of Li 2 O, Na 2 O and K 2 O is too large, the weather resistance tends to decrease. If the content of Li 2 O is too large, the devitrification resistance tends to decrease. If the contents of Na 2 O and K 2 O are too large, the Young's modulus tends to decrease.
  • MgO is a component that significantly increases the Young's modulus, and also lowers the high temperature viscosity to enhance the meltability, moldability, and bendability.
  • the content of MgO is preferably 3 to 35%, 8 to 30%, 12 to 25%, and particularly 14 to 20%. If the content of MgO is too small, it becomes difficult to enjoy the above effects. On the other hand, if the content of MgO is too large, the devitrification resistance tends to decrease.
  • CaO is a component that increases the Young's modulus and also a component that lowers the high temperature viscosity and enhances the meltability, moldability, and bending workability.
  • the content of CaO is preferably 0.1 to 35%, 1 to 25%, 2 to 20%, particularly 4 to 15%. If the content of CaO is too small, it becomes difficult to enjoy the above effects. On the other hand, when the content of CaO is too large, the balance of the glass composition is lost and the devitrification resistance is rather lowered.
  • SrO and BaO are components that lower the high temperature viscosity and improve the meltability, moldability and bending workability.
  • the total amount of SrO and BaO is preferably 0 to 15%, 0 to 5%, particularly 0 to less than 1%.
  • the respective contents of SrO and BaO are preferably 0 to 12%, 0 to 5%, 0 to 2%, and particularly 0 to less than 1%. If the contents of SrO and BaO are too large, the devitrification resistance, Young's modulus, etc. tend to decrease, and the density increases, so the mass of the glass resin composite may increase too much.
  • the molar ratio MgO / (MgO + CaO + SrO + BaO) is preferably 0.95 or less, 0.9 or less, and particularly 0.85 or less.
  • MgO / (MgO + CaO + SrO + BaO) is a value obtained by dividing the content of MgO by the total amount of MgO, CaO, SrO, and BaO.
  • the molar ratio CaO / (CaO + SrO + BaO) is preferably 0.5 or more, 0.7 or more, 0.8 or more, and particularly 0.9 or more.
  • “CaO / (CaO + SrO + BaO)” refers to a value obtained by dividing the content of CaO by the contents of CaO, SrO, and BaO.
  • B 2 O 3 is a component that forms a glass network and lowers the high temperature viscosity to enhance the meltability, moldability and bending workability. Therefore, the content of B 2 O 3 is preferably 0 to 15%, 0 to 10%, and particularly 0 to 5%. On the other hand, when the content of B 2 O 3 is too large, Young's modulus and weather resistance are likely to be lowered.
  • P 2 O 5 is a component that forms a glass network and enhances meltability, moldability, and bending workability, and is a component that enhances viscosity particularly near the liquidus temperature.
  • the content of P 2 O 5 is preferably 0 to 15%, 0 to 10%, and particularly 0 to 5%.
  • Young's modulus and weather resistance are likely to be lowered, and phase separation is likely to occur.
  • Y 2 O 3 and La 2 O 3 are components that significantly increase the Young's modulus and also components that enhance the meltability.
  • the total and individual contents of Y 2 O 3 and La 2 O 3 are preferably 0 to 15%, 0 to 10%, and particularly 0 to 5%.
  • the contents of Y 2 O 3 and La 2 O 3 are too large, the devitrification resistance tends to decrease, and the density increases, so the mass of the glass resin composite may increase too much.
  • TiO 2 is a component that enhances weather resistance, but is a component that colors glass. Therefore, the content of TiO 2 is preferably 0 to 0.5%, particularly 0 to less than 0.1%.
  • ZrO 2 is a component that improves Young's modulus and weather resistance, but is a component that reduces devitrification resistance. Therefore, the content of ZrO 2 is preferably 0 to 0.5%, particularly 0 to less than 0.1%.
  • 0.05 to 0.5% of one or more selected from the group of SnO 2 , Cl, SO 3 , and CeO 2 may be added. .
  • Fe 2 O 3 is a component that is inevitably mixed in the glass raw material as an impurity, and is a coloring component. Therefore, the content of Fe 2 O 3 is preferably 0.5% or less, particularly 0.01 to 0.07%.
  • V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO are coloring components. Therefore, the content of each of V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO is preferably 0.1% or less, and particularly less than 0.01%.
  • the glass composition does not substantially contain As 2 O 3 , Sb 2 O 3 , PbO, Bi 2 O 3 and F.
  • substantially does not contain means that the case where the explicit component is not positively added as a glass component, but the case where the glass component is mixed as an impurity is allowed. It means that the content is less than 0.05%.
  • the glass plate of the present invention preferably has the following characteristics.
  • the Young's modulus is preferably 80 GPa or more, 85 GPa or more, 90 GPa or more, and particularly 95 to 150 GPa. If the Young's modulus is too low, the velocity of the shock wave due to the collision of the flying pieces becomes slow, so that the shock wave spreads only in a narrow region, and it becomes difficult to attenuate the collision energy of the flying pieces.
  • the liquidus viscosity is preferably 10 2.0 dPa ⁇ s or more, 10 2.5 dPa ⁇ s or more, 10 3.0 dPa ⁇ s or more, 10 3.5 dPa ⁇ s or more, and particularly 10 4.0 dPa ⁇ s. s or more.
  • the upper limit of the liquidus viscosity is not particularly limited, but considering the balance for satisfying various properties required for the glass plate, it is a standard to design it to be 10 6.5 dPa ⁇ s or less.
  • the strain point is preferably 600 ° C. or higher, 650 ° C. or higher, 700 ° C. or higher, particularly 720 to 850 ° C. If the strain point is too low, the heat resistance tends to decrease.
  • the softening point is preferably 1100 ° C or lower, 1020 ° C or lower, 980 ° C or lower, and particularly 950 ° C or lower. If the softening point is too high, bending workability tends to decrease.
  • the glass temperature at a high temperature viscosity of 10 2.0 dPa ⁇ s is preferably 1600 ° C. or lower, 1580 ° C. or lower, 1560 ° C. or lower, and particularly 1550 ° C. or lower. If the temperature of the glass at a high temperature viscosity of 10 2.0 dPa ⁇ s is too high, the meltability and moldability are likely to deteriorate.
  • the crystallinity is preferably 30% or less, 10% or less, 5% or less, 1% or less, particularly 0%, that is, amorphous. If the crystallinity is too high, bending workability tends to decrease.
  • the plate thickness of the glass plate is preferably 15 mm or less, 12 mm or less, 10 mm or less, particularly 8 mm or less, preferably 3 mm or more, 4 mm or more, 5 mm or more, 6 mm or more, particularly 7 mm or more. If the glass plate is too thin, it becomes difficult to ensure impact resistance. On the other hand, if the thickness of the glass plate is too large, it is difficult to make the window glass thinner, and the visibility is likely to decrease. In addition, the mass of the window glass increases, and the fuel efficiency of automobiles and the like increases.
  • the glass plate of the present invention is a glass plate for composite-integrating with a resin plate to produce a glass-resin composite.
  • the number of glass plates is plural.
  • the glass resin composite may include a glass plate other than the glass plate of the present invention (for example, a soda glass plate), but from the viewpoint of properly enjoying the effect of the present invention. Therefore, it is preferable that all the glass plates are the glass plates of the present invention.
  • a plurality of resin plates may be used, but one is preferable from the viewpoint of improving visibility.
  • various resins such as acrylic and polycarbonate can be used for the resin plate, polycarbonate is particularly preferable from the viewpoint of transparency, impact relaxation and weight reduction.
  • the plate thickness of the resin plate is preferably 10 mm or less, 8 mm or less, 7 mm or less, 6 mm or less, particularly 5 mm or less, and preferably 0.5 mm or more, 0.7 mm or more, 1 mm or more, 2 mm or more, especially 3 mm or more. . If the thickness of the resin plate is too small, it becomes difficult to absorb the impact when the flying pieces collide. On the other hand, if the thickness of the resin plate is too large, it becomes difficult to make the window glass thinner, and the visibility of the window glass is likely to deteriorate.
  • the glass plates, or the glass plate and the resin plate are combined and integrated by an organic resin intermediate layer.
  • the thickness of the organic resin intermediate layer is preferably 0.1 to 2 mm, 0.3 to 1.5 mm, 0.5 to 1.2 mm, and particularly 0.6 to 0.9 mm. If the thickness of the organic resin intermediate layer is too small, the energy of the shock wave easily propagates to the inside of the room when the flying pieces collide. On the other hand, if the thickness of the organic resin intermediate layer is too large, the visibility of the window glass tends to deteriorate.
  • the thermal expansion coefficient of the organic resin intermediate layer is preferably not less than the coefficient of thermal expansion of the glass plate and not more than the coefficient of thermal expansion of the resin plate. With this configuration, when the window glass is heated by direct sunlight, the glass plate and the resin plate are difficult to separate and deform.
  • the "coefficient of thermal expansion” refers to the average coefficient of linear thermal expansion in the temperature range of 0 to 300 ° C.
  • organic resin intermediate layer various organic resins can be used, and for example, polyethylene (PE), ethylene vinyl acetate copolymer (EVA), polypropylene (PP), polystyrene (PS), methacrylic resin (PMA), poly Vinyl chloride (PVC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), cellulose acetate (CA), diallyl phthalate resin (DAP), urea resin (UP), melamine resin (MF), unsaturated polyester (UP) , Polyvinyl butyral (PVB), polyvinyl formal (PVF), polyvinyl alcohol (PVAL), vinyl acetate resin (PVAc), ionomer (IO), polymethylpentene (TPX), vinylidene chloride (PVDC), polysulfone (PSF), Po Vinylidene fluoride (PVDF), methacryl-styrene copolymer resin (MS), polyalate (PAR), polyallyl s
  • a colorant may be added to the organic resin intermediate layer, or an absorber that absorbs light of a specific wavelength such as infrared rays and ultraviolet rays may be added.
  • the organic resin intermediate layer a combination of a plurality of the above organic resins may be used.
  • the glass plate and the resin plate are fixed by different organic resins, so that the warp of the window glass can be easily reduced.
  • the total plate thickness of the glass resin composite is preferably 65 mm or less, 60 mm or less, 55 mm or less, preferably 4 mm or more, 5 mm or more, 7 mm or more, and particularly 10 mm or more. If the total thickness of the glass-resin composite is too small, the impact resistance of the window glass tends to deteriorate. On the other hand, when the total plate thickness of the glass resin composite is too large, the weight of the window glass becomes heavy, and the visibility of the window glass is likely to decrease.
  • the glass plate can be manufactured as follows.
  • a glass raw material prepared to have a predetermined glass composition is charged into a continuous melting furnace, heated and melted at 1500 to 1700 ° C., clarified and stirred, and then supplied to a molding device to be molded into a plate shape, and then gradually cooled.
  • a glass plate can be produced by cooling.
  • the float method is a method capable of inexpensively producing a glass plate.
  • the overflow downdraw method is a method capable of producing a large number of thin glass plates with the surface not polished. If the surface is not polished, the manufacturing cost of the glass plate can be reduced.
  • the glass plate is preferably chamfered if necessary. In that case, it is preferable to perform C chamfering with a # 800 metal bond grindstone or the like. By doing so, the end face strength can be increased. If necessary, it is also preferable to etch the end face of the glass plate to reduce the crack source existing on the end face.
  • the obtained glass plate is subjected to curved surface processing if necessary.
  • Various methods can be adopted as the curved surface processing method.
  • a method of press-molding glass plates one by one or by stacking them with a mold is preferable, and it is preferable to pass through a heat treatment furnace with the glass plates sandwiched by molds of a predetermined shape. By doing so, it is possible to improve the dimensional accuracy of the curved surface shape.
  • a method of deforming is also preferable. By doing so, the efficiency of curved surface processing can be improved.
  • a glass plate preferably a plurality of glass plates
  • a resin plate can be compositely integrated with an organic resin intermediate layer to produce a glass resin composite.
  • a method of composite integration a method of injecting an organic resin between glass plates or between a glass plate and a resin plate and then curing the organic resin, pressurizing and heating after placing an organic resin sheet between the glass plates or between the glass plate and the resin plate Examples include a method of treatment (thermocompression bonding).
  • the former method can suppress the deformation of the resin plate due to the expansion mismatch between the glass plate and the resin plate.
  • the latter method is easier for complex integration.
  • a functional film such as a hard coat film or an infrared reflection film may be formed on the outer surface of the outermost glass plate.
  • a functional film may be formed on the inner surface of the outermost glass plate before the composite integration.
  • Table 1 shows examples (Sample Nos. 1 to 12) of the present invention and comparative examples (Sample Nos. 13 to 16).
  • a glass plate was produced as follows.
  • the glass raw materials were prepared so that the glass plate described in Table 1 was obtained.
  • the prepared glass batch was put into a continuous melting furnace, melted at 1600 ° C. for 20 hours, clarified and stirred to obtain a homogeneous molten glass, and then a plate having a thickness of 8.0 mm was formed. Molded.
  • the density, Young's modulus, liquidus temperature, liquidus viscosity, strain point, softening point, glass temperature and crystallinity at a high temperature viscosity of 10 2.0 dPa ⁇ s were evaluated for the obtained glass plate.
  • the density is a value measured by the well-known Archimedes method.
  • Young's modulus is a value measured by the well-known resonance method.
  • strain point and softening point are values measured based on the method of ASTM C336.
  • the crystallinity is calculated by measuring the XRD by a powder method to calculate the area of the halo corresponding to the mass of the amorphous material and the area of the peak corresponding to the mass of the crystal. The value obtained by the formula of 100 / [area of peak + area of halo] (%).
  • Sample Nos. 1 to 12 have high Young's modulus, high impact resistance, and low crystallinity, so bending is easy. Further, since the liquidus viscosity is high, it is considered that continuous melting is possible. Therefore, the sample No. It is considered that 1 to 12 are suitable as a glass plate for composite-integrating with a resin plate to produce a glass-resin composite. On the other hand, sample No. Since Nos. 13 to 15 have a low Young's modulus, they have low impact resistance. Sample No. Since No. 16 has a low liquidus viscosity, it is considered that continuous melting is difficult.
  • sample No. By passing through the heat treatment furnace with the glass plate according to No. 1 sandwiched between molds of a predetermined shape, the entire plate width direction is curved in an arc shape, and the entire length direction is curved in an arc shape.
  • the curved surface was processed. After that, the C-chamfering process and the polishing process were performed on the end surface of the glass plate after the curved surface processing with a # 800 metal bond grindstone.
  • sample No. No. 1 glass plate glass plate of the outer layer
  • Sample No. Sample No. 1 was composited and integrated by autoclave treatment so that the glass plate (inner layer glass plate) according to No. 1 and the polycarbonate plate were laminated in this order.
  • a glass resin composite according to No. 1 was obtained.
  • the sample No. The same experiment was performed for Sample Nos. 2 to 12, and Sample No. Glass resin composites according to 2 to 12 were obtained.
  • the glass plate of the present invention is suitable as a glass plate for composite-integrating with a resin plate to produce a glass-resin composite, and the glass-resin composite is suitable for window glass of automobiles, railways, aircrafts, etc. Besides, it is also suitable for window glass of buildings such as high-rise buildings.

Abstract

This glass plate is integrated with a resin plate to produce a glass-resin composite, and is characterized in that the glass composition contains, on a molar basis: 45-80% of SiO2; 5-30% of Al2O3; 0-20% of Li2O + Na2O + K2O; 3-35% of MgO; 1-35% of CaO; and 0-15% of SrO + BaO.

Description

ガラス板Glass plate
 本発明は、樹脂板と複合一体化して、ガラス樹脂複合体を作製するためのガラス板に関し、特に自動車のフロントガラスやドアガラスに好適なガラス樹脂複合体に用いるガラス板に関する。 The present invention relates to a glass plate for composite-integrating with a resin plate to produce a glass-resin composite, and particularly to a glass plate used for a glass-resin composite suitable for an automobile windshield or door glass.
 車両等の窓ガラスには、一般的に、複数枚のソーダライムガラス板を有機樹脂中間層で複合一体化した合わせガラスが使用されており、軽量化を目的として、複数枚のソーダライムガラス板と樹脂板とを有機樹脂中間層で複合一体化したガラス樹脂複合体が用いられることもある(特許文献1~4参照)。 Laminated glass, which is a composite of multiple soda lime glass plates combined with an organic resin intermediate layer, is generally used for window glass of vehicles and the like. A glass-resin composite in which a resin plate and a resin plate are integrally integrated with an organic resin intermediate layer may be used (see Patent Documents 1 to 4).
 車両等の窓ガラスに使用されるソーダライムガラス板は、走行中の飛び石等の飛散片の先端形状を変形させて、その衝撃抵抗を増大させることで、飛散片の衝突エネルギーを減衰する機能を有している。 The soda lime glass plate used for window glass of vehicles etc. has the function of attenuating the collision energy of the flying pieces by deforming the tip shape of the flying pieces of flying stones and increasing their impact resistance. Have
 しかし、ソーダライムガラス板は、飛散片の衝撃抵抗を増大させる効果が十分であるとは言えない。現状、ソーダライムガラス板の板厚を大きくするか、積層枚数を多くして、飛散片の衝撃抵抗を高めているが、これに伴い、窓ガラスの厚みや質量の増大を招いている。 However, soda lime glass plate is not enough to increase the impact resistance of the scattering pieces. At present, the soda-lime glass plate is made thicker or the number of laminated sheets is increased to increase the impact resistance of the scattered pieces, but this causes an increase in the thickness and mass of the window glass.
 そこで、飛散片の衝撃抵抗を高めるために、ソーダライムガラス板の代わりに結晶化ガラス板を用いることが検討されている。例えば、主結晶としてβ-石英固溶体(LiO・Al・nSiO[但し、n≧2])等のLiO-Al-SiO系結晶を析出してなる結晶化ガラス板が検討されている。 Therefore, using a crystallized glass plate instead of the soda-lime glass plate has been studied in order to increase the impact resistance of the scattered pieces. For example, a crystal formed by precipitating a Li 2 O—Al 2 O 3 —SiO 2 -based crystal such as β-quartz solid solution (Li 2 O · Al 2 O 3 · nSiO 2 [where n ≧ 2]) as the main crystal. Glass plates are under consideration.
特開2012-144217号公報JP, 2012-144217, A 特開2004-196184号公報JP, 2004-196184, A 特開2001-151539号公報Japanese Patent Laid-Open No. 2001-151539 実開平1-8821号公報Japanese Utility Model Publication No. 1-8821
 ところで、結晶化ガラスの結晶化度を高めると、結晶化ガラスの硬度が上昇し、飛散片の衝突エネルギーを減衰し得るが、析出結晶が軟化変形を阻害するため、曲げ加工が困難になり、自動車のフロントガラス等に適用できなくなる。また、結晶化ガラスの厚みを大きくすることでも、飛散片の衝突エネルギーを減衰し得るが、この場合、窓ガラスの質量が増大してしまい、また透明性を損なう虞がある。 By the way, when the crystallinity of the crystallized glass is increased, the hardness of the crystallized glass is increased, and the collision energy of the scattered pieces may be attenuated, but since the precipitated crystals inhibit softening deformation, bending becomes difficult, It cannot be applied to windshields of automobiles. Further, by increasing the thickness of the crystallized glass, the collision energy of the scattered pieces can be attenuated, but in this case, the mass of the window glass is increased and the transparency may be impaired.
 そこで、本発明は、上記事情に鑑みなされたものであり、その技術的課題は、曲げ加工性に優れると共に、厚みや結晶化度が小さくても、飛散片の衝突エネルギーを有効に減衰し得るガラス板を創案することである。 Therefore, the present invention has been made in view of the above circumstances, the technical problem is excellent bending workability, even if the thickness and crystallinity is small, it is possible to effectively attenuate the collision energy of the flying pieces. The idea is to create a glass plate.
 本発明者等は、ガラス板のガラス組成範囲を厳密に規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明のガラス板は、樹脂板と複合一体化して、ガラス樹脂複合体を作製するためのガラス板であって、ガラス組成として、モル%で、SiO 45~80%、Al 5~30%、LiO+NaO+KO 0~20%、MgO 3~35%、CaO 0.1~35%、SrO+BaO 0~15%を含有することを特徴とする。ここで、「LiO+NaO+KO」は、LiO、NaO及びKOの合量を指す。「SrO+BaO」は、SrOとBaOの合量を指す。 The present inventors have found that the above technical problems can be solved by strictly controlling the glass composition range of the glass plate, and propose as the present invention. That is, the glass plate of the present invention is a glass plate for composite-integrating with a resin plate to produce a glass-resin composite, and has a glass composition of mol% of SiO 2 45 to 80% and Al 2 O. 3 5 ~ 30%, Li 2 O + Na 2 O + K 2 O 0 ~ 20%, MgO 3 ~ 35%, CaO 0.1 ~ 35%, characterized in that it contains SrO + BaO 0 ~ 15%. Here, "Li 2 O + Na 2 O + K 2 O " means, Li 2 O, refers to the total amount of Na 2 O and K 2 O. “SrO + BaO” refers to the total amount of SrO and BaO.
 本発明のガラス板は、樹脂板と複合一体化して、ガラス樹脂複合体を作製するためのガラス板である。ガラス樹脂複合体において、ガラス板は、透明性を有し、衝撃抵抗を高める材料である。樹脂板は、飛散片の衝突による衝撃を緩和し、また飛散片の衝撃によるガラス片の飛散を防止する材料である。両者を備えることにより、耐衝撃性能を確保し易くなる。 The glass plate of the present invention is a glass plate for composite-integrating with a resin plate to produce a glass-resin composite. In the glass resin composite, the glass plate is a material that has transparency and enhances impact resistance. The resin plate is a material that alleviates the impact caused by the collision of the scattered pieces and prevents the glass pieces from scattering due to the impact of the scattered pieces. By providing both, it becomes easy to ensure impact resistance.
 図1は、ガラス樹脂複合体の一例を説明するための概略図である。ガラス樹脂複合体10は、外側から順に、ガラス板11と、ガラス板12と、樹脂板13と、を有しており、これらは3次元的に湾曲した曲面形状を有しており、図示しない有機樹脂中間層により複合一体化されている。ガラス板11は、ガラス組成として、モル%で、SiO 45~80%、Al 5~30%、LiO+NaO+KO 0~20%、MgO 3~35%、CaO 0.1~35%、SrO+BaO 0~15%を含有している。樹脂板13は、ポリカーボネートである。 FIG. 1 is a schematic diagram for explaining an example of a glass resin composite. The glass resin composite 10 has a glass plate 11, a glass plate 12, and a resin plate 13 in this order from the outside, and these have a three-dimensionally curved curved surface shape and are not shown. It is compositely integrated by the organic resin intermediate layer. The glass plate 11 has a glass composition of mol% of SiO 2 45 to 80%, Al 2 O 3 5 to 30%, Li 2 O + Na 2 O + K 2 O 0 to 20%, MgO 3 to 35%, CaO 0. It contains 1 to 35% and 0 to 15% of SrO + BaO. The resin plate 13 is polycarbonate.
 本発明者等が飛散片の衝突を詳細に解析したところ、まずガラス板が飛散片の衝突による衝撃波により破損した後、飛散片がガラス板内を貫通していくことが判明した。そして、飛散片の衝突による衝撃波を分散させると、飛散片の衝突エネルギーを減衰させ、飛散片の貫通を防止し得ることが判明した。更にその衝撃波について詳細に解析したところ、衝撃波が飛散片の進行方向とその垂直方向に対して分散して減衰していく時、衝撃波の速度は、ガラス板のヤング率に比例して速くなる。そこで、本発明のガラス板は、上記のガラス組成を有するため、ヤング率を高めることができる。これにより、飛散片の衝突を受けた時に、衝撃波の分散領域が広くなって、衝撃波のエネルギー吸収が大きくなり、飛散片自体の速度を有効に低下させることができる。結果として、飛散片がガラス板内を貫通し難くなる。 When the present inventors analyzed the collision of the scattered pieces in detail, it was found that the glass plate was first damaged by the shock wave due to the collision of the scattered pieces, and then the scattered pieces penetrated through the glass plate. Then, it was found that when the shock waves generated by the collision of the flying pieces are dispersed, the collision energy of the flying pieces can be attenuated and the penetration of the flying pieces can be prevented. Furthermore, when the shock wave is analyzed in detail, when the shock wave disperses and attenuates in the traveling direction of the flying pieces and in the direction perpendicular thereto, the speed of the shock wave increases in proportion to the Young's modulus of the glass plate. Therefore, since the glass plate of the present invention has the above glass composition, the Young's modulus can be increased. As a result, when the scattering pieces collide with each other, the dispersion area of the shock waves becomes wider, the energy absorption of the shock waves increases, and the speed of the scattering pieces themselves can be effectively reduced. As a result, it becomes difficult for the scattered pieces to penetrate through the glass plate.
 また、本発明のガラス板は、ヤング率が80GPa以上であることが好ましい。このようにすれば、ガラス板中で衝撃波の速度が速くなるため、衝撃波の分散領域が広がり、飛散体の衝突エネルギーを大きく減衰させることができる。ここで、「ヤング率」は、周知の共振法で測定した値を指す。 Also, the glass sheet of the present invention preferably has a Young's modulus of 80 GPa or more. By doing so, since the velocity of the shock wave is increased in the glass plate, the dispersion region of the shock wave is expanded, and the collision energy of the flying object can be greatly attenuated. Here, "Young's modulus" refers to a value measured by a well-known resonance method.
 また、本発明のガラス板は、液相粘度が102.0d・Pa以上であることが好ましい。このようにすれば、ブツや失透が生じ難くなり、連続的な溶融が可能となる。ここで、「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値を指す。「液相温度」は標準篩30メッシュ(500μm)を通過し50メッシュ(300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉で24時間保持した後、結晶が析出する温度を指す。 Further, the glass plate of the present invention preferably has a liquidus viscosity of 10 2.0 d · Pa or more. By doing so, it is difficult for the particles and devitrification to occur, and continuous melting is possible. Here, "liquidus viscosity" refers to a value obtained by measuring the viscosity of glass at a liquidus temperature by a platinum ball pulling method. “Liquid phase temperature” refers to a temperature at which crystals precipitate after glass powder passing through a standard sieve of 30 mesh (500 μm) and remaining at 50 mesh (300 μm) is put into a platinum boat and kept in a temperature gradient furnace for 24 hours.
 また、本発明のガラス板は、結晶化度が30%以下であることが好ましい。このようにすれば、ガラス板の曲げ加工性を高めることができる。ここで、「結晶化度」は、粉末法によりXRDを測定することにより、非晶質の質量に相当するハローの面積と、結晶の質量に相当するピークの面積とをそれぞれ算出した後、[ピークの面積]×100/[ピークの面積+ハローの面積](%)の式により求めた値を指す。 Further, the glass plate of the present invention preferably has a crystallinity of 30% or less. By doing so, the bending workability of the glass plate can be improved. Here, the "crystallinity" is calculated by measuring the XRD by a powder method to calculate the area of the halo corresponding to the mass of the amorphous material and the area of the peak corresponding to the mass of the crystal. Area of peak] × 100 / [area of peak + area of halo] (%).
 また、本発明のガラス板は、板厚が3~15mmであることが好ましい。 Also, the glass plate of the present invention preferably has a plate thickness of 3 to 15 mm.
 また、本発明のガラス板は、3次元的に湾曲した曲面形状を有することが好ましい。このようにすれば、自動車のフロントガラス等に適用し易くなる。 Moreover, it is preferable that the glass plate of the present invention has a curved surface shape that is three-dimensionally curved. This makes it easy to apply it to the windshield of an automobile or the like.
ガラス樹脂複合体の一例を説明するための概略図である。It is a schematic diagram for explaining an example of a glass resin composite.
 本発明のガラス板は、ガラス組成として、モル%で、SiO 45~80%、Al 5~30%、LiO+NaO+KO 0~20%、MgO 3~35%、CaO 0.1~35%、SrO+BaO 0~15%を含有する。上記のように各成分の含有範囲を規制した理由を下記に示す。なお、各成分の含有範囲の説明において、%表示はモル%を指すものとする。 The glass plate of the present invention has a glass composition of, in mol%, SiO 2 45 to 80%, Al 2 O 3 5 to 30%, Li 2 O + Na 2 O + K 2 O 0 to 20%, MgO 3 to 35%, CaO. It contains 0.1 to 35% and 0 to 15% of SrO + BaO. The reasons for limiting the content range of each component as described above are shown below. In the description of the content range of each component, the% indication means mol%.
 SiOは、ガラスのネットワークを形成する成分である。SiOの含有量は、好ましくは45~80%、52~75%、特に58~72%である。SiOの含有量が少な過ぎると、ガラス化し難くなり、また耐候性が低下し易くなる。一方、SiOの含有量が多過ぎると、溶融性や成形性が低下し易くなり、また熱膨張係数が低くなり過ぎて、樹脂板や有機樹脂中間層の熱膨張係数に整合させ難くなる。 SiO 2 is a component that forms a glass network. The content of SiO 2 is preferably 45 to 80%, 52 to 75%, and particularly 58 to 72%. If the content of SiO 2 is too small, it becomes difficult to vitrify, and the weather resistance tends to decrease. On the other hand, if the content of SiO 2 is too large, the meltability and moldability are likely to be lowered, and the thermal expansion coefficient is too low, making it difficult to match the thermal expansion coefficient of the resin plate or the organic resin intermediate layer.
 Alは、ヤング率や耐候性を高める成分である。Alの含有量は、好ましくは5~30%、9~25%、10~20%、特に12~18%である。Alの含有量が少な過ぎると、ヤング率や耐候性が低下し易くなる。一方、Alの含有量が多過ぎると、溶融性、成形性及び耐失透性が低下し易くなる。 Al 2 O 3 is a component that enhances Young's modulus and weather resistance. The content of Al 2 O 3 is preferably 5 to 30%, 9 to 25%, 10 to 20%, and particularly 12 to 18%. When the content of Al 2 O 3 is too small, Young's modulus and weather resistance are likely to decrease. On the other hand, if the content of Al 2 O 3 is too large, the meltability, moldability, and devitrification resistance tend to decrease.
 LiO、NaO及びKOは、高温粘度を低下させて、溶融性、成形性及び曲げ加工性を高める成分である。LiO、NaO及びKOの合量は、好ましくは0~20%、1~15%、特に2~10%である。LiOの含有量は、好ましくは0~15%、1~12%、特に2~10%である。NaO及びKOのそれぞれの含有量は、好ましくは0~15%、0~3%、特に0~1%未満である。LiO、NaO及びKOの合量が多過ぎると、耐候性が低下し易くなる。LiOの含有量が多過ぎると、耐失透性が低下し易くなる。NaO及びKOの含有量が多過ぎると、ヤング率が低下し易くなる。 Li 2 O, Na 2 O and K 2 O are components that lower the high temperature viscosity and enhance the meltability, moldability and bendability. The total amount of Li 2 O, Na 2 O and K 2 O is preferably 0 to 20%, 1 to 15%, especially 2 to 10%. The content of Li 2 O is preferably 0 to 15%, 1 to 12%, and particularly 2 to 10%. The respective contents of Na 2 O and K 2 O are preferably 0 to 15%, 0 to 3%, in particular 0 to less than 1%. If the total amount of Li 2 O, Na 2 O and K 2 O is too large, the weather resistance tends to decrease. If the content of Li 2 O is too large, the devitrification resistance tends to decrease. If the contents of Na 2 O and K 2 O are too large, the Young's modulus tends to decrease.
 MgOは、ヤング率を大幅に高める成分であり、また高温粘度を低下させて、溶融性、成形性及び曲げ加工性を高める成分である。MgOの含有量は、好ましくは3~35%、8~30%、12~25%、特に14~20%である。MgOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、MgOの含有量が多過ぎると、耐失透性が低下し易くなる。 MgO is a component that significantly increases the Young's modulus, and also lowers the high temperature viscosity to enhance the meltability, moldability, and bendability. The content of MgO is preferably 3 to 35%, 8 to 30%, 12 to 25%, and particularly 14 to 20%. If the content of MgO is too small, it becomes difficult to enjoy the above effects. On the other hand, if the content of MgO is too large, the devitrification resistance tends to decrease.
 CaOは、ヤング率を高める成分であり、また高温粘度を低下させて、溶融性、成形性及び曲げ加工性を高める成分である。また、MgOを含有量が多い組成領域において、CaOを導入すると、液相温度が低下し、耐失透性の低下が緩和される。CaOの含有量は、好ましくは0.1~35%、1~25%、2~20%、特に4~15%である。CaOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、CaOの含有量が多過ぎると、ガラス組成のバランスが崩れて、かえって耐失透性が低下し易くなる。 CaO is a component that increases the Young's modulus and also a component that lowers the high temperature viscosity and enhances the meltability, moldability, and bending workability. In addition, when CaO is introduced in the composition region where the content of MgO is high, the liquidus temperature is lowered and the reduction of devitrification resistance is alleviated. The content of CaO is preferably 0.1 to 35%, 1 to 25%, 2 to 20%, particularly 4 to 15%. If the content of CaO is too small, it becomes difficult to enjoy the above effects. On the other hand, when the content of CaO is too large, the balance of the glass composition is lost and the devitrification resistance is rather lowered.
 SrO及びBaOは、高温粘度を低下させて、溶融性、成形性及び曲げ加工性を高める成分である。SrO及びBaOの合量は、好ましくは0~15%、0~5%、特に0~1%未満である。SrO及びBaOのそれぞれの含有量は、好ましくは0~12%、0~5%、0~2%、特に0~1%未満である。SrOとBaOの含有量が多過ぎると、耐失透性、ヤング率等が低下し易くなり、また密度が増加するため、ガラス樹脂複合体の質量が増大し過ぎる慮がある。 SrO and BaO are components that lower the high temperature viscosity and improve the meltability, moldability and bending workability. The total amount of SrO and BaO is preferably 0 to 15%, 0 to 5%, particularly 0 to less than 1%. The respective contents of SrO and BaO are preferably 0 to 12%, 0 to 5%, 0 to 2%, and particularly 0 to less than 1%. If the contents of SrO and BaO are too large, the devitrification resistance, Young's modulus, etc. tend to decrease, and the density increases, so the mass of the glass resin composite may increase too much.
 液相温度を下げる観点から、モル比MgO/(MgO+CaO+SrO+BaO)は、好ましくは0.95以下、0.9以下、特に0.85以下である。なお、「MgO/(MgO+CaO+SrO+BaO)」は、MgOの含有量をMgO、CaO、SrO及びBaOの合量で除した値である。 From the viewpoint of lowering the liquidus temperature, the molar ratio MgO / (MgO + CaO + SrO + BaO) is preferably 0.95 or less, 0.9 or less, and particularly 0.85 or less. Note that “MgO / (MgO + CaO + SrO + BaO)” is a value obtained by dividing the content of MgO by the total amount of MgO, CaO, SrO, and BaO.
 ヤング率を高める観点から、モル比CaO/(CaO+SrO+BaO)は、好ましくは0.5以上、0.7以上、0.8以上、特に0.9以上である。「CaO/(CaO+SrO+BaO)」は、CaOの含有量をCaO、SrO及びBaOの含量で除した値を指す。 From the viewpoint of increasing the Young's modulus, the molar ratio CaO / (CaO + SrO + BaO) is preferably 0.5 or more, 0.7 or more, 0.8 or more, and particularly 0.9 or more. “CaO / (CaO + SrO + BaO)” refers to a value obtained by dividing the content of CaO by the contents of CaO, SrO, and BaO.
 上記成分以外にも、例えば以下の成分を添加してもよい。 In addition to the above components, the following components may be added.
 Bは、ガラスのネットワークを形成すると共に、高温粘度を低下させて、溶融性、成形性及び曲げ加工性を高める成分である。よって、Bの含有量は、好ましくは0~15%、0~10%、特に0~5%である。一方、Bの含有量が多過ぎると、ヤング率や耐候性が低下し易くなる。 B 2 O 3 is a component that forms a glass network and lowers the high temperature viscosity to enhance the meltability, moldability and bending workability. Therefore, the content of B 2 O 3 is preferably 0 to 15%, 0 to 10%, and particularly 0 to 5%. On the other hand, when the content of B 2 O 3 is too large, Young's modulus and weather resistance are likely to be lowered.
 Pは、ガラスのネットワークを形成すると共に、溶融性、成形性及び曲げ加工性を高める成分であり、特に液相温度付近における粘度を高める成分である。Pの含有量は、好ましくは0~15%、0~10%、特に0~5%である。一方、Pの含有量が多過ぎると、ヤング率や耐候性が低下し易くなり、また分相が生じ易くなる。 P 2 O 5 is a component that forms a glass network and enhances meltability, moldability, and bending workability, and is a component that enhances viscosity particularly near the liquidus temperature. The content of P 2 O 5 is preferably 0 to 15%, 0 to 10%, and particularly 0 to 5%. On the other hand, when the content of P 2 O 5 is too large, Young's modulus and weather resistance are likely to be lowered, and phase separation is likely to occur.
 YとLaは、ヤング率を大幅に高める成分であり、また溶融性を高める成分である。YとLaの合量及び個別含有量は、好ましくは0~15%、0~10%、特に0~5%である。一方、YとLaの含有量が多過ぎると、耐失透性が低下し易くなり、また密度が増加するため、ガラス樹脂複合体の質量が増大し過ぎる慮がある。 Y 2 O 3 and La 2 O 3 are components that significantly increase the Young's modulus and also components that enhance the meltability. The total and individual contents of Y 2 O 3 and La 2 O 3 are preferably 0 to 15%, 0 to 10%, and particularly 0 to 5%. On the other hand, if the contents of Y 2 O 3 and La 2 O 3 are too large, the devitrification resistance tends to decrease, and the density increases, so the mass of the glass resin composite may increase too much.
 TiOは、耐候性を高める成分であるが、ガラスを着色させる成分である。よって、TiOの含有量は、好ましくは0~0.5%、特に0~0.1%未満である。 TiO 2 is a component that enhances weather resistance, but is a component that colors glass. Therefore, the content of TiO 2 is preferably 0 to 0.5%, particularly 0 to less than 0.1%.
 ZrOは、ヤング率や耐候性を高める成分であるが、耐失透性を低下させる成分である。よってZrOの含有量は、好ましくは0~0.5%、特に0~0.1%未満である。 ZrO 2 is a component that improves Young's modulus and weather resistance, but is a component that reduces devitrification resistance. Therefore, the content of ZrO 2 is preferably 0 to 0.5%, particularly 0 to less than 0.1%.
 清澄剤として、SnO、Cl、SO、CeOの群(好ましくはSnO、SOの群)から選択された一種又は二種以上を0.05~0.5%添加してもよい。 As a fining agent, 0.05 to 0.5% of one or more selected from the group of SnO 2 , Cl, SO 3 , and CeO 2 (preferably the group of SnO 2 and SO 3 ) may be added. .
 Feは、ガラス原料に不純物として不可避的に混入する成分であり、着色成分である。よって、Feの含有量は、好ましくは0.5%以下、特に0.01~0.07%である。 Fe 2 O 3 is a component that is inevitably mixed in the glass raw material as an impurity, and is a coloring component. Therefore, the content of Fe 2 O 3 is preferably 0.5% or less, particularly 0.01 to 0.07%.
 V、Cr、CoO及びNiOは、着色成分である。よって、V、Cr、CoO及びNiOのそれぞれの含有量は、好ましくは0.1%以下、特に0.01%未満である。 V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO are coloring components. Therefore, the content of each of V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO is preferably 0.1% or less, and particularly less than 0.01%.
 環境的配慮から、ガラス組成として、実質的にAs、Sb、PbO、Bi、Fを含有しないことが好ましい。ここで、「実質的に~を含有しない」とは、ガラス成分として積極的に明示の成分を添加しないものの、不純物として混入する場合を許容する趣旨であり、具体的には、明示の成分の含有量が0.05%未満であることを指す。 From an environmental consideration, it is preferable that the glass composition does not substantially contain As 2 O 3 , Sb 2 O 3 , PbO, Bi 2 O 3 and F. Here, “substantially does not contain” means that the case where the explicit component is not positively added as a glass component, but the case where the glass component is mixed as an impurity is allowed. It means that the content is less than 0.05%.
 本発明のガラス板は、以下の特性を有することが好ましい。 The glass plate of the present invention preferably has the following characteristics.
 ヤング率は、好ましくは80GPa以上、85GPa以上、90GPa以上、特に95~150GPaである。ヤング率が低過ぎると、飛散片の衝突による衝撃波の速度が遅くなるため、衝撃波が狭い領域にしか広がらず、飛散片の衝突エネルギーを減衰し難くなる。 The Young's modulus is preferably 80 GPa or more, 85 GPa or more, 90 GPa or more, and particularly 95 to 150 GPa. If the Young's modulus is too low, the velocity of the shock wave due to the collision of the flying pieces becomes slow, so that the shock wave spreads only in a narrow region, and it becomes difficult to attenuate the collision energy of the flying pieces.
 液相粘度は、好ましくは102.0dPa・s以上、102.5dPa・s以上、103.0dPa・s以上、103.5dPa・s以上、特に104.0dPa・s以上である。このようにすれば、失透結晶が発生し難くなるため、フロート法やロールアウト法で成形し易くなる。結果として、ガラス板の製造コストを低廉化し得ると共に、ガラス板の品位を高めることができる。液相粘度の上限は特に限定されてないが、ガラス板に要求される種々の特性を満たすためのバランスを考慮すると、106.5dPa・s以下に設計することが目安となる。 The liquidus viscosity is preferably 10 2.0 dPa · s or more, 10 2.5 dPa · s or more, 10 3.0 dPa · s or more, 10 3.5 dPa · s or more, and particularly 10 4.0 dPa · s. s or more. In this way, devitrification crystals are less likely to occur, making it easier to mold by the float method or roll-out method. As a result, the manufacturing cost of the glass plate can be reduced and the quality of the glass plate can be improved. The upper limit of the liquidus viscosity is not particularly limited, but considering the balance for satisfying various properties required for the glass plate, it is a standard to design it to be 10 6.5 dPa · s or less.
 歪点は、好ましくは600℃以上、650℃以上、700℃以上、特に720~850℃である。歪点が低過ぎると、耐熱性が低下し易くなる。 The strain point is preferably 600 ° C. or higher, 650 ° C. or higher, 700 ° C. or higher, particularly 720 to 850 ° C. If the strain point is too low, the heat resistance tends to decrease.
 軟化点は、好ましくは1100℃以下、1020℃以下、980℃以下、特に950℃以下である。軟化点が高過ぎると、曲げ加工性が低下し易くなる。 The softening point is preferably 1100 ° C or lower, 1020 ° C or lower, 980 ° C or lower, and particularly 950 ° C or lower. If the softening point is too high, bending workability tends to decrease.
 高温粘度102.0dPa・sにおけるガラスのおける温度は、好ましくは1600℃以下、1580℃以下、1560℃以下、特に1550℃以下である。高温粘度102.0dPa・sにおけるガラスの温度が高過ぎると、溶融性や成形性が低下し易くなる。 The glass temperature at a high temperature viscosity of 10 2.0 dPa · s is preferably 1600 ° C. or lower, 1580 ° C. or lower, 1560 ° C. or lower, and particularly 1550 ° C. or lower. If the temperature of the glass at a high temperature viscosity of 10 2.0 dPa · s is too high, the meltability and moldability are likely to deteriorate.
 結晶化度は、好ましくは30%以下、10%以下、5%以下、1%以下、特に0%、つまり非晶質である。結晶化度が高過ぎると、曲げ加工性が低下し易くなる。 The crystallinity is preferably 30% or less, 10% or less, 5% or less, 1% or less, particularly 0%, that is, amorphous. If the crystallinity is too high, bending workability tends to decrease.
 ガラス板の板厚は、好ましくは15mm以下、12mm以下、10mm以下、特に8mm以下であり、好ましくは3mm以上、4mm以上、5mm以上、6mm以上、特に7mm以上である。ガラス板の板厚が小さ過ぎると、耐衝撃性能を確保し難くなる。一方、ガラス板の板厚が大き過ぎると、窓ガラスを薄型化し難くなり、視認性が低下し易くなる。また窓ガラスの質量が増大して、自動車等の燃費が高騰してしまう。 The plate thickness of the glass plate is preferably 15 mm or less, 12 mm or less, 10 mm or less, particularly 8 mm or less, preferably 3 mm or more, 4 mm or more, 5 mm or more, 6 mm or more, particularly 7 mm or more. If the glass plate is too thin, it becomes difficult to ensure impact resistance. On the other hand, if the thickness of the glass plate is too large, it is difficult to make the window glass thinner, and the visibility is likely to decrease. In addition, the mass of the window glass increases, and the fuel efficiency of automobiles and the like increases.
 本発明のガラス板は、樹脂板と複合一体化して、ガラス樹脂複合体を作製するためのガラス板である。ガラス樹脂複合体において、ガラス板は複数枚であることが好ましい。なお、ガラス樹脂複合体中に複数のガラス板を有する場合、本発明のガラス板以外のガラス板(例えば、ソーダガラス板)を含んでいてもよいが、本発明の効果を的確に享受する観点から、全てのガラス板が本発明のガラス板であることが好ましい。 The glass plate of the present invention is a glass plate for composite-integrating with a resin plate to produce a glass-resin composite. In the glass resin composite, it is preferable that the number of glass plates is plural. When the glass resin composite has a plurality of glass plates, it may include a glass plate other than the glass plate of the present invention (for example, a soda glass plate), but from the viewpoint of properly enjoying the effect of the present invention. Therefore, it is preferable that all the glass plates are the glass plates of the present invention.
 ガラス樹脂複合体において、樹脂板は複数枚でもよいが、視認性を高める観点から、1枚であることが好ましい。樹脂板はアクリル、ポリカーボネート等の種々の樹脂が使用可能であるが、透明性、衝撃緩和性、軽量化の観点から、ポリカーボネートが特に好ましい。 In the glass-resin composite, a plurality of resin plates may be used, but one is preferable from the viewpoint of improving visibility. Although various resins such as acrylic and polycarbonate can be used for the resin plate, polycarbonate is particularly preferable from the viewpoint of transparency, impact relaxation and weight reduction.
 樹脂板の板厚は、好ましくは10mm以下、8mmm以下、7mm以下、6mm以下、特に5mm以下であり、好ましくは0.5mm以上、0.7mm以上、1mm以上、2mm以上、特に3mm以上である。樹脂板の板厚が小さ過ぎると、飛散片が衝突した時にその衝撃を緩和し難くなる。一方、樹脂板の板厚が大き過ぎると、窓ガラスを薄型化し難くなり、また窓ガラスの視認性が低下し易くなる。 The plate thickness of the resin plate is preferably 10 mm or less, 8 mm or less, 7 mm or less, 6 mm or less, particularly 5 mm or less, and preferably 0.5 mm or more, 0.7 mm or more, 1 mm or more, 2 mm or more, especially 3 mm or more. . If the thickness of the resin plate is too small, it becomes difficult to absorb the impact when the flying pieces collide. On the other hand, if the thickness of the resin plate is too large, it becomes difficult to make the window glass thinner, and the visibility of the window glass is likely to deteriorate.
 ガラス樹脂複合体において、ガラス板同士、ガラス板と樹脂板は、有機樹脂中間層により複合一体化されていることが好ましい。有機樹脂中間層の厚みは、好ましくは0.1~2mm、0.3~1.5mm、0.5~1.2mm、特に0.6~0.9mmである。有機樹脂中間層の厚みが小さ過ぎると、飛散片が衝突した時に、衝撃波のエネルギーが室内側に伝搬し易くなる。一方、有機樹脂中間層の厚みが大き過ぎると、窓ガラスの視認性が低下し易くなる。 In the glass-resin composite, it is preferable that the glass plates, or the glass plate and the resin plate are combined and integrated by an organic resin intermediate layer. The thickness of the organic resin intermediate layer is preferably 0.1 to 2 mm, 0.3 to 1.5 mm, 0.5 to 1.2 mm, and particularly 0.6 to 0.9 mm. If the thickness of the organic resin intermediate layer is too small, the energy of the shock wave easily propagates to the inside of the room when the flying pieces collide. On the other hand, if the thickness of the organic resin intermediate layer is too large, the visibility of the window glass tends to deteriorate.
 有機樹脂中間層の熱膨張係数は、ガラス板の熱膨張係数以上、且つ樹脂板の熱膨張係数以下であることが好ましい。このようにすれば、窓ガラスが直射日光で加熱された時に、ガラス板と樹脂板が分離、変形し難くなる。なお、「熱膨張係数」は、0~300℃の温度範囲における平均線熱膨張係数を指す。 The thermal expansion coefficient of the organic resin intermediate layer is preferably not less than the coefficient of thermal expansion of the glass plate and not more than the coefficient of thermal expansion of the resin plate. With this configuration, when the window glass is heated by direct sunlight, the glass plate and the resin plate are difficult to separate and deform. The "coefficient of thermal expansion" refers to the average coefficient of linear thermal expansion in the temperature range of 0 to 300 ° C.
 有機樹脂中間層として、種々の有機樹脂が使用可能であり、例えば、ポリエチレン(PE)、エチレン酢酸ビニル共重合体(EVA)、ポリプロピレン(PP)、ポリスチレン(PS)、メタクリル樹脂(PMA)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、セルロースアセテート(CA)、ジアリルフタレート樹脂(DAP)、ユリア樹脂(UP)、メラミン樹脂(MF)、不飽和ポリエステル(UP)、ポリビニルブチラール(PVB)、ポリビニルホルマール(PVF)、ポリビニルアルコール(PVAL)、酢酸ビニル樹脂(PVAc)、アイオノマー(IO)、ポリメチルペンテン(TPX)、塩化ビニリデン(PVDC)、ポリスルフォン(PSF)、ポリフッ化ビニリデン(PVDF)、メタクリル-スチレン共重合樹脂(MS)、ポリアレート(PAR)、ポリアリルスルフォン(PASF)、ポリブタジエン(BR)、ポリエーテルスルフォン(PESF)、又はポリエーテルエーテルケトン(PEEK)、ポリウレタン(PU)等が使用可能である。その中でも、透明性と固着性の観点から、EVA、PVB、PUが好適であり、特にPVBは遮音性を付与し得るため好ましい。 As the organic resin intermediate layer, various organic resins can be used, and for example, polyethylene (PE), ethylene vinyl acetate copolymer (EVA), polypropylene (PP), polystyrene (PS), methacrylic resin (PMA), poly Vinyl chloride (PVC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), cellulose acetate (CA), diallyl phthalate resin (DAP), urea resin (UP), melamine resin (MF), unsaturated polyester (UP) , Polyvinyl butyral (PVB), polyvinyl formal (PVF), polyvinyl alcohol (PVAL), vinyl acetate resin (PVAc), ionomer (IO), polymethylpentene (TPX), vinylidene chloride (PVDC), polysulfone (PSF), Po Vinylidene fluoride (PVDF), methacryl-styrene copolymer resin (MS), polyalate (PAR), polyallyl sulfone (PASF), polybutadiene (BR), polyether sulfone (PESF), or polyether ether ketone (PEEK), Polyurethane (PU) or the like can be used. Among them, EVA, PVB, and PU are preferable from the viewpoint of transparency and adhesion, and PVB is particularly preferable because it can impart sound insulation.
 有機樹脂中間層中に着色剤を添加してもよく、赤外線、紫外線等の特定波長光線を吸収する吸収剤を添加してもよい。 A colorant may be added to the organic resin intermediate layer, or an absorber that absorbs light of a specific wavelength such as infrared rays and ultraviolet rays may be added.
 有機樹脂中間層には、上記有機樹脂を複数種類組み合わせたものを用いてもよい。例えば、ガラス板と樹脂板の複合一体化に2層の有機樹脂中間層を用いると、ガラス板と樹脂板が異なる有機樹脂で固着されるため、窓ガラスの反りを低減し易くなる。 For the organic resin intermediate layer, a combination of a plurality of the above organic resins may be used. For example, when two organic resin intermediate layers are used for composite integration of a glass plate and a resin plate, the glass plate and the resin plate are fixed by different organic resins, so that the warp of the window glass can be easily reduced.
 ガラス樹脂複合体の総板厚は、好ましくは65mm以下、60mm以下、55mm以下であり、好ましくは4mm以上、5mm以上、7mm以上、特に10mm以上である。ガラス樹脂複合体の総板厚が小さ過ぎると、窓ガラスの耐衝撃性能が低下し易くなる。一方、ガラス樹脂複合体の総板厚が大き過ぎると、窓ガラスの質量が重くなり、また窓ガラスの視認性が低下し易くなる。 The total plate thickness of the glass resin composite is preferably 65 mm or less, 60 mm or less, 55 mm or less, preferably 4 mm or more, 5 mm or more, 7 mm or more, and particularly 10 mm or more. If the total thickness of the glass-resin composite is too small, the impact resistance of the window glass tends to deteriorate. On the other hand, when the total plate thickness of the glass resin composite is too large, the weight of the window glass becomes heavy, and the visibility of the window glass is likely to decrease.
 以下のようにして、ガラス板を作製することができる。 The glass plate can be manufactured as follows.
 まず所定のガラス組成になるように調合したガラス原料を連続溶融炉に投入して、1500~1700℃で加熱溶融し、清澄、攪拌した後、成形装置に供給して板状に成形し、徐冷することにより、ガラス板を作製することができる。 First, a glass raw material prepared to have a predetermined glass composition is charged into a continuous melting furnace, heated and melted at 1500 to 1700 ° C., clarified and stirred, and then supplied to a molding device to be molded into a plate shape, and then gradually cooled. A glass plate can be produced by cooling.
 ガラス板を成形する方法として、フロート法を採用することが好ましい。フロート法は、ガラス板を安価に作製し得る方法である。 It is preferable to adopt the float method as a method for forming a glass plate. The float method is a method capable of inexpensively producing a glass plate.
 フロート法以外にも、ロールアウト法やオーバーフローダウンドロー法を採用してもよい。オーバーフローダウンドロー法は、表面が未研磨の状態で、薄いガラス板を大量に作製し得る方法である。なお、表面が未研磨であると、ガラス板の製造コストを低廉化することができる。 Besides the float method, the rollout method or the overflow downdraw method may be adopted. The overflow downdraw method is a method capable of producing a large number of thin glass plates with the surface not polished. If the surface is not polished, the manufacturing cost of the glass plate can be reduced.
 ガラス板は、必要に応じて、面取り加工されていることが好ましい。その場合、#800のメタルボンド砥石等により、C面取り加工を行うことが好ましい。このようにすれば、端面強度を高めることができる。必要に応じて、ガラス板の端面をエッチングして、端面に存在するクラックソースを低減することも好ましい。 The glass plate is preferably chamfered if necessary. In that case, it is preferable to perform C chamfering with a # 800 metal bond grindstone or the like. By doing so, the end face strength can be increased. If necessary, it is also preferable to etch the end face of the glass plate to reduce the crack source existing on the end face.
 次に、得られたガラス板について、必要に応じて、曲面加工を行う。曲面加工の方法として、種々の方法を採用することができる。特に、金型によりガラス板を1枚ずつ或いは積層してプレス成形する方法が好ましく、所定の形状の金型でガラス板を挟み込んだ状態で熱処理炉を通過させることが好ましい。このようにすれば、曲面形状の寸法精度を高めることができる。また、所定形状の金型上にガラス板を1枚ずつ或いは積層して配置した後、ガラス板の一部又は全体を熱処理することにより、金型の形状に沿って、ガラス板を自重で軟化変形させる方法も好ましい。このようにすれば、曲面加工の効率を高めることができる。 Next, the obtained glass plate is subjected to curved surface processing if necessary. Various methods can be adopted as the curved surface processing method. In particular, a method of press-molding glass plates one by one or by stacking them with a mold is preferable, and it is preferable to pass through a heat treatment furnace with the glass plates sandwiched by molds of a predetermined shape. By doing so, it is possible to improve the dimensional accuracy of the curved surface shape. In addition, after arranging the glass plates one by one or stacking them on the mold of a predetermined shape, heat-treating a part or the whole of the glass plates to soften the glass plates by their own weight along the shape of the mold. A method of deforming is also preferable. By doing so, the efficiency of curved surface processing can be improved.
 次に、ガラス板(好ましくは複数枚のガラス板)と樹脂板とを有機樹脂中間層で複合一体化して、ガラス樹脂複合体を作製することができる。複合一体化の方法として、ガラス板同士又はガラス板と樹脂板の間に有機樹脂を注入した後に有機樹脂を硬化させる方法、ガラス板同士又はガラス板と樹脂板の間に有機樹脂シートを配置した後に加圧加熱処理(熱圧着)する方法等が挙げられる。前者の方法は、ガラス板と樹脂板の膨張不整合による樹脂板の変形を抑制することができる。後者の方法の方は、複合一体化が容易である。 Next, a glass plate (preferably a plurality of glass plates) and a resin plate can be compositely integrated with an organic resin intermediate layer to produce a glass resin composite. As a method of composite integration, a method of injecting an organic resin between glass plates or between a glass plate and a resin plate and then curing the organic resin, pressurizing and heating after placing an organic resin sheet between the glass plates or between the glass plate and the resin plate Examples include a method of treatment (thermocompression bonding). The former method can suppress the deformation of the resin plate due to the expansion mismatch between the glass plate and the resin plate. The latter method is easier for complex integration.
 また、複合一体化した後に、最外層のガラス板の外表面に、ハードコート膜、赤外線反射膜等の機能膜を形成してもよい。また複合一体化する前に、最外層のガラス板の内表面に、機能膜を形成してもよい。 After the composite integration, a functional film such as a hard coat film or an infrared reflection film may be formed on the outer surface of the outermost glass plate. A functional film may be formed on the inner surface of the outermost glass plate before the composite integration.
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は以下の実施例に何ら限定されない。 The present invention will be described in detail below based on examples. The following embodiments are merely examples. The present invention is not limited to the following examples.
 表1は、本発明の実施例(試料No.1~12)と比較例(試料No.13~16)を示している。 Table 1 shows examples (Sample Nos. 1 to 12) of the present invention and comparative examples (Sample Nos. 13 to 16).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次のようにしてガラス板を作製した。表1に記載のガラス板が得られるように、ガラス原料を調合した。次に、調合済みのガラスバッチを連続溶融炉に投入し、1600℃で20時間溶融した後、清澄、攪拌して、均質な溶融ガラスを得た上で、板厚8.0mmの板状に成形した。得られたガラス板について、密度、ヤング率、液相温度、液相粘度、歪点、軟化点、高温粘度102.0dPa・sにおけるガラスの温度及び結晶化度を評価した。なお、試料No.1~12に係るガラス板は、Feの混入不純物量が0.05モル%であり、V、Cr、CoO及びNiOの混入不純物量がそれぞれ0.01モル%未満であった。 A glass plate was produced as follows. The glass raw materials were prepared so that the glass plate described in Table 1 was obtained. Next, the prepared glass batch was put into a continuous melting furnace, melted at 1600 ° C. for 20 hours, clarified and stirred to obtain a homogeneous molten glass, and then a plate having a thickness of 8.0 mm was formed. Molded. The density, Young's modulus, liquidus temperature, liquidus viscosity, strain point, softening point, glass temperature and crystallinity at a high temperature viscosity of 10 2.0 dPa · s were evaluated for the obtained glass plate. Sample No. In the glass plates according to Nos. 1 to 12, the amount of Fe 2 O 3 mixed impurities was 0.05 mol%, and the amount of V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO mixed impurities was 0.01 mol each. Was less than%.
 密度は、周知のアルキメデス法で測定した値である。 The density is a value measured by the well-known Archimedes method.
 ヤング率は、周知の共振法で測定した値である。 Young's modulus is a value measured by the well-known resonance method.
 各試料を粉砕し、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、白金ボートを取出し、ガラス中に失透(結晶異物)が認められた温度を液相温度とした。更に、液相温度における粘度を白金球引き上げ法で測定し、これを液相粘度とした。 Each sample was crushed, passed through a standard sieve of 30 mesh (500 μm), and the glass powder remaining on 50 mesh (300 μm) was put into a platinum boat and kept in a temperature gradient furnace for 24 hours, and then the platinum boat was taken out and the glass was removed. The temperature at which devitrification (crystalline foreign matter) was recognized was defined as the liquidus temperature. Further, the viscosity at the liquidus temperature was measured by the platinum ball pull-up method, and this was defined as the liquidus viscosity.
 歪点、軟化点はASTM C336の方法に基づいて測定した値である。 The strain point and softening point are values measured based on the method of ASTM C336.
 高温粘度102.0dPa・sにおけるガラスのおける温度を白金球引き上げ法で測定した値である。 It is a value obtained by measuring the temperature of the glass at a high temperature viscosity of 10 2.0 dPa · s by a platinum ball pulling method.
 結晶化度は、粉末法によりXRDを測定することにより、非晶質の質量に相当するハローの面積と、結晶の質量に相当するピークの面積とをそれぞれ算出した後、[ピークの面積]×100/[ピークの面積+ハローの面積](%)の式により求めた値を指す。 The crystallinity is calculated by measuring the XRD by a powder method to calculate the area of the halo corresponding to the mass of the amorphous material and the area of the peak corresponding to the mass of the crystal. The value obtained by the formula of 100 / [area of peak + area of halo] (%).
 表1から分かるように、試料No.1~12は、ヤング率が高いため、耐衝撃性能が高く、結晶化度が低いため、曲げ加工も容易である。また液相粘度が高いため、連続的な溶融が可能であると考えられる。よって、試料No.1~12は、樹脂板と複合一体化して、ガラス樹脂複合体を作製するためのガラス板として好適であると考えられる。一方、試料No.13~15は、ヤング率が低いため、耐衝撃性能が低い。試料No.16は液相粘度が低いため、連続的な溶融が困難であると考えられる。 As can be seen from Table 1, Sample Nos. 1 to 12 have high Young's modulus, high impact resistance, and low crystallinity, so bending is easy. Further, since the liquidus viscosity is high, it is considered that continuous melting is possible. Therefore, the sample No. It is considered that 1 to 12 are suitable as a glass plate for composite-integrating with a resin plate to produce a glass-resin composite. On the other hand, sample No. Since Nos. 13 to 15 have a low Young's modulus, they have low impact resistance. Sample No. Since No. 16 has a low liquidus viscosity, it is considered that continuous melting is difficult.
 次に、試料No.1に係るガラス板を所定の形状の金型で挟み込んだ状態で熱処理炉を通過させることにより、板幅方向の全体が円弧状に湾曲し、且つ長さ方向の全体が円弧状に湾曲した曲面形状に曲面加工した。その後、曲面加工後のガラス板の端面について#800のメタルボンド砥石によりC面取り加工及び研磨加工を行った。 Next, sample No. By passing through the heat treatment furnace with the glass plate according to No. 1 sandwiched between molds of a predetermined shape, the entire plate width direction is curved in an arc shape, and the entire length direction is curved in an arc shape. The curved surface was processed. After that, the C-chamfering process and the polishing process were performed on the end surface of the glass plate after the curved surface processing with a # 800 metal bond grindstone.
 続いて、ガラス板と同様の曲面形状を有するポリカーボネート板(板厚4.0mm)を用意した。 Next, a polycarbonate plate (4.0 mm thick) having the same curved surface shape as the glass plate was prepared.
 最後に、厚み0.8mmのポリビニルブチラール(PVB)を用いて、外側(大気側)から、試料No.1に係るガラス板(外層のガラス板)、試料No.1に係るガラス板(内層のガラス板)、ポリカーボネート板の順になるように、オートクレーブ処理により複合一体化して、試料No.1に係るガラス樹脂複合体を得た。更に、試料No.2~12についても、同様の実験を行い、試料No.2~12に係るガラス樹脂複合体を得た。 Finally, using polyvinyl butyral (PVB) with a thickness of 0.8 mm, from the outside (atmosphere side), sample No. No. 1 glass plate (glass plate of the outer layer), Sample No. Sample No. 1 was composited and integrated by autoclave treatment so that the glass plate (inner layer glass plate) according to No. 1 and the polycarbonate plate were laminated in this order. A glass resin composite according to No. 1 was obtained. Further, the sample No. The same experiment was performed for Sample Nos. 2 to 12, and Sample No. Glass resin composites according to 2 to 12 were obtained.
 本発明のガラス板は、樹脂板と複合一体化して、ガラス樹脂複合体を作製するためのガラス板として好適であり、そのガラス樹脂複合体は、自動車、鉄道、航空機等の窓ガラスに好適であり、それ以外にも、高層ビル等の建築物の窓ガラスにも好適である。 The glass plate of the present invention is suitable as a glass plate for composite-integrating with a resin plate to produce a glass-resin composite, and the glass-resin composite is suitable for window glass of automobiles, railways, aircrafts, etc. Besides, it is also suitable for window glass of buildings such as high-rise buildings.
10 ガラス樹脂複合体
11 ガラス板
12 ガラス板
13 樹脂板
10 glass-resin composite 11 glass plate 12 glass plate 13 resin plate

Claims (6)

  1.  樹脂板と複合一体化して、ガラス樹脂複合体を作製するためのガラス板であって、
     ガラス組成として、モル%で、SiO 45~80%、Al 5~30%、LiO+NaO+KO 0~20%、MgO 3~35%、CaO 0.1~35%、SrO+BaO 0~15%を含有することを特徴とするガラス板。
    A glass plate for composite-integrating with a resin plate to produce a glass-resin composite,
    As a glass composition, in mol%, SiO 2 45 to 80%, Al 2 O 3 5 to 30%, Li 2 O + Na 2 O + K 2 O 0 to 20%, MgO 3 to 35%, CaO 0.1 to 35%, A glass plate containing 0 to 15% of SrO + BaO.
  2.  ヤング率が80GPa以上であることを特徴とする請求項1に記載のガラス板。 The glass plate according to claim 1, which has a Young's modulus of 80 GPa or more.
  3.  液相粘度が102.0d・Pa以上であることを特徴とする請求項1又は2に記載のガラス板。 Liquid glass viscosity is 10 2.0 dPa or more, The glass plate of Claim 1 or 2 characterized by the above-mentioned.
  4.  結晶化度が30%以下であることを特徴とする請求項1~3の何れかに記載のガラス板。 The glass plate according to any one of claims 1 to 3, which has a crystallinity of 30% or less.
  5.  板厚が3~15mmであることを特徴とする請求項1~4の何れかに記載のガラス板。 The glass plate according to any one of claims 1 to 4, wherein the glass plate has a thickness of 3 to 15 mm.
  6.  3次元的に湾曲した曲面形状を有することを特徴とする請求項1~5の何れかに記載のガラス板。 The glass plate according to any one of claims 1 to 5, which has a curved surface shape curved three-dimensionally.
PCT/JP2019/039489 2018-10-15 2019-10-07 Glass plate WO2020080162A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553081A JPWO2020080162A1 (en) 2018-10-15 2019-10-07 Glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018194037 2018-10-15
JP2018-194037 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020080162A1 true WO2020080162A1 (en) 2020-04-23

Family

ID=70284327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039489 WO2020080162A1 (en) 2018-10-15 2019-10-07 Glass plate

Country Status (2)

Country Link
JP (1) JPWO2020080162A1 (en)
WO (1) WO2020080162A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143182A (en) * 2013-12-25 2015-08-06 旭硝子株式会社 Glass substrate for movable home fence and glass laminate
JP2016052990A (en) * 2012-05-11 2016-04-14 旭硝子株式会社 Front glass plate for laminate, and laminate
JP2017520496A (en) * 2014-05-02 2017-07-27 コーニング インコーポレイテッド Tempered glass and composition thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016052990A (en) * 2012-05-11 2016-04-14 旭硝子株式会社 Front glass plate for laminate, and laminate
JP2015143182A (en) * 2013-12-25 2015-08-06 旭硝子株式会社 Glass substrate for movable home fence and glass laminate
JP2017520496A (en) * 2014-05-02 2017-07-27 コーニング インコーポレイテッド Tempered glass and composition thereof

Also Published As

Publication number Publication date
JPWO2020080162A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP6256763B2 (en) Laminated glass
JP2020128331A (en) Light-weight hybrid glass laminates
JP2019503963A (en) Asymmetric glass laminate
JP2017508693A (en) Laminated glass
WO2017183381A1 (en) Laminated glass for vehicles
JP2016539890A (en) Glass laminate structure with improved edge strength
WO2018030093A1 (en) Laminated glass for vehicles
JP2019182692A (en) Glass plate and glass resin composite including the same
EP4265579A2 (en) Fusion-formable automotive glass compositions, articles, and laminates
WO2018030095A1 (en) Laminated glass for vehicles
WO2017183382A1 (en) Laminated glass for vehicles
JP2018145082A (en) Glass resin composite body
JP7011227B2 (en) Laminated glass for vehicles
WO2018193788A1 (en) Glass-resin composite
WO2020080162A1 (en) Glass plate
WO2019151000A1 (en) Glass/resin composite
WO2018193721A1 (en) Glass plate
WO2018163903A1 (en) Glass-resin composite
WO2019070788A1 (en) Glass laminate with low cs, high depth of layer, chemically strengthened inner glass layer and method
JP2019131430A (en) Glass sheet
JP6959566B2 (en) Glass plate
WO2018163904A1 (en) Glass-resin composite
WO2018163902A1 (en) Glass-resin composite
JP2019172566A (en) Glass resin complex
JP2019198980A (en) Glass resin composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553081

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873643

Country of ref document: EP

Kind code of ref document: A1