WO2020080036A1 - Blower and air conditioning device - Google Patents

Blower and air conditioning device Download PDF

Info

Publication number
WO2020080036A1
WO2020080036A1 PCT/JP2019/037003 JP2019037003W WO2020080036A1 WO 2020080036 A1 WO2020080036 A1 WO 2020080036A1 JP 2019037003 W JP2019037003 W JP 2019037003W WO 2020080036 A1 WO2020080036 A1 WO 2020080036A1
Authority
WO
WIPO (PCT)
Prior art keywords
air intake
air
blower
door
outside air
Prior art date
Application number
PCT/JP2019/037003
Other languages
French (fr)
Japanese (ja)
Inventor
智光 長澤
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Publication of WO2020080036A1 publication Critical patent/WO2020080036A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Definitions

  • the present invention relates to a blower and an air conditioner including the blower.
  • blower used in an air conditioner for a vehicle one using an impeller is known.
  • the impeller is arranged in a scroll housing having a suction port and a discharge port. Then, by rotating the impeller, the blower discharges air through the discharge port while taking in air into the scroll housing through the suction port.
  • An air intake housing is connected to the suction port.
  • the air intake housing has an inside air intake communicating with the interior of the vehicle, an outside air intake communicating with the outside of the vehicle, and a switching door for opening and closing the inside air intake and the outside air intake. Through such an air intake housing, the blower can take in the inside air (air inside the vehicle) or the outside air (air taken in from the outside of the vehicle). ..
  • the above-described blower causes noise such as wind noise caused by the impeller. Therefore, it is required to prevent the noise from leaking into the vehicle cabin.
  • noise is reduced by providing a resonance chamber adjacent to the air flow path of the air intake housing. ..
  • the air intake housing (and thus the blower) is increased in size by the size of the resonance chamber, or the air flow path of the air intake housing is reduced, so that the air blower has a high blower capacity. Will fall.
  • An object of the present invention is to form a resonance chamber without increasing the size of a blower or reducing the air flow path of an air intake housing, and to suppress the leakage of noise into the vehicle interior.
  • a blower used in a vehicle air conditioner which has a plurality of blades forming a circumferential blade row and is driven to rotate by a rotation shaft of a motor.
  • a scroll housing having an internal space for accommodating the impeller, a suction opening that opens in the axial direction of the rotating shaft, and a discharge opening that opens in the circumferential direction of the impeller; and the suction of the scroll housing.
  • An air intake housing having an internal space communicating with a mouth, wherein at least one external air intake for taking in external air into the internal space of the air intake housing and internal air in the internal space of the air intake housing At least one inside air intake for providing the air intake housing, and at least one opening for opening and closing the outside air intake and the inside air intake
  • a door and a cylindrical outside air intake duct having openings at both ends, one opening is connected to the outside air intake, and the outside air intake is opposite from the internal space of the air intake housing.
  • a blower is provided that has an outside air intake duct that extends to the side and a duct opening / closing door that opens and closes the outside air intake duct at a position separated from the outside air intake port. ..
  • an air conditioner for a vehicle which includes the above-described blower and an air conditioner that blows out the air sent from the blower into the interior of the vehicle.
  • the resonance chamber without enlarging the blower and reducing the flow path of the air in the air intake housing, and suppressing the leakage of noise into the vehicle interior. it can.
  • FIG. 3 It is a figure which shows typically the structure of the air conditioning apparatus by one embodiment of this invention. It is a perspective view of the air blower shown in FIG. It is a figure which shows typically the cross section of the air blower shown in FIG. It is a figure which expands and shows the cross section of the air intake housing shown in FIG. 3, Comprising: It is a figure which shows the case where a switching door exists in a 1st position. It is a figure which shows the frequency characteristic curve of the noise obtained when using the air blower shown in FIG. 2, and when using the conventional air blower. It is a figure which shows the frequency characteristic curve of the noise obtained when operating an air conditioner in a foot mode and a vent mode. It is a figure corresponding to FIG.
  • FIG. 1 is a figure which shows typically the structure of the air conditioning apparatus by the modification 1 of this invention. It is a figure which shows the frequency characteristic curve of the noise obtained when the rotation speed of an impeller is high and when it is low.
  • FIG. 1 is a figure which shows typically the structure of the air conditioning apparatus by the modification 2 of this invention.
  • FIG. 4 is a figure which expands and shows the cross section of the air intake housing of the air blower by the modification 3 of this invention.
  • FIG. 4 is a figure which expands and shows the cross section of the air intake housing of the air blower by the modification 4 of this invention.
  • FIG. 4 is a figure which expands and shows the cross section of the air intake housing of the air blower by the modified example 5 of this invention.
  • FIG. 1 is a diagram schematically showing the structure of an air conditioner according to an embodiment of the present invention.
  • 2 and 3 are a perspective view of the blower shown in FIG. 1 and a diagram schematically showing a cross section of the blower shown in FIG. 2, respectively.
  • FIG. 3 shows a cross section perpendicular to a turning axis Bx of the switching door and a rotation axis of the duct opening / closing door, which will be described later.
  • FIG. 4 is an enlarged cross-sectional view of the air intake housing shown in FIG. 3, showing the case where the switching door is at the first position. Note that, for clarity of illustration, in FIGS. 2 and 3, illustration of a control device described later is omitted. Further, in FIG.
  • U means the upper side of the vehicle
  • D means the lower side of the vehicle
  • Fr means the front side of the vehicle
  • Rr means the rear side of the vehicle
  • R means the right side of the vehicle
  • L means the left side of the vehicle.
  • the installation direction of the blower and the air conditioner described below with respect to the vehicle is not limited to the illustrated example. ..
  • an air conditioner 1 for a vehicle includes a blower 2 and an air conditioner 3 that blows the air sent from the blower 2 into the interior of the vehicle. ..
  • the blower 2 has an impeller 4.
  • the impeller 4 has a plurality of blades 4a that form a row of blades arranged in the circumferential direction on the outer peripheral portion thereof.
  • the impeller 4 is connected to the rotating shaft 5a of the motor 5 and is driven to rotate about the rotation axis Ax, and sucked into the space inside the blade row of the impeller 4 from the upper side in the axial direction (one end side in the axial direction). Blows air out radially. ..
  • the direction of the rotation axis Ax of the motor 5 and the impeller 4 is referred to as “axial direction”.
  • the explanation will be made on the premise that the axial direction matches the vertical direction, but it should be noted that the air conditioner may be incorporated in the vehicle so that the axial direction forms an angle with the vertical direction. Should be.
  • the direction of the radius of a circle drawn on a plane orthogonal to the rotation axis Ax centering on an arbitrary point on the rotation axis Ax is called the radial direction
  • the circumferential direction is called the circumferential direction or the circumferential direction. ..
  • the impeller 4 includes a cone portion (inner deflection member) 4b integrally formed with the impeller 4.
  • the cone portion 4b is a rotating body in a geometric sense.
  • the rotating shaft 5a of the motor 5 is connected to the impeller 4 at the center of the cone portion 4b.
  • the rotation speed of the motor 5 is controlled by the motor controller 8a. ..
  • the impeller 4 is housed inside a scroll housing 6.
  • the scroll housing 6 has a suction port 6a that opens upward in the axial direction and a discharge port 6b.
  • the discharge port 6b extends substantially tangentially to the outer peripheral surface of the scroll housing 6. ..
  • the blower 2 also has an air intake housing 10 connected to the scroll housing 6.
  • the internal space of the air intake housing 10 communicates with the suction port 6 a of the scroll housing 6.
  • the air intake housing 10 has an outside air intake 11 that is open substantially forward and an inside air intake 12 that is open approximately rearward.
  • the inside air intake 12 may be directed toward the left and right sides or may be open.
  • a cylindrical outside air intake duct 20 having openings at both ends is connected to the outside air intake 11.
  • the outside air intake duct 20 is connected to the outside air intake 11 at one opening 21 thereof, and extends from the outside air intake 11 to the side opposite to the internal space of the air intake housing 10 (generally forward and upward). There is.
  • the outside air intake duct 20 may be integrated with the air intake housing 10, as shown in FIG.
  • the other opening 22 of the outside air intake duct 20 is connected to an outlet (not shown) of an outside air introduction passage provided in the vehicle or is near the outlet.
  • the outside air intake duct 20 Through the outside air intake duct 20, outside air (air taken in from the outside of the vehicle) can be efficiently introduced into the air intake housing 10.
  • the inside air intake 12 is open to the inside of the vehicle, and the inside air (air inside the vehicle) can be introduced into the air intake housing 10. ..
  • a switching door 50 that opens and closes the outside air intake 11 and the inside air intake 12 is provided in the air intake housing 10.
  • the switching door 50 is of a type called a rotary door and, as can be understood from FIG. 2, has a columnar shape having a fan-shaped bottom surface as a whole.
  • the switching door 50 has a peripheral surface 51 having an arcuate cross section centered on the turning axis Bx, and fan-shaped side surfaces 52 connected to both left and right sides of the peripheral surface 51.
  • the switching door 50 can be swung by an actuator (not shown) about a swivel axis Bx extending in the left-right direction, and opens the inside air intake 12 at the first position (see FIG. 4) and the outside air intake 11 to open the inside air. It is movable between a second position (see FIG. 3) that closes the intake 12. ..
  • the switching door 50 When the blower 2 is operated in the inside air mode, the switching door 50 is arranged at the first position as shown in FIG. At this time, the inside air AR is introduced into the air intake housing 10 from the inside air inlet 12. When the blower 2 is operated in the outside air mode, the switching door 50 is arranged at the second position as shown in FIG. At this time, the outside air AE is introduced into the air intake housing 10 from the outside air intake 11.
  • the inside air AR introduced into the air intake housing 10 from the inside air inlet 12 and the outside air AE introduced into the air intake housing 10 from the outside air inlet 11 are discharged from the suction port 6a of the scroll housing 6 to the impeller 4. It flows into the space radially inward of the blade row. ..
  • a filter 13 is provided for removing contaminants such as dust and particles contained in the air and offensive odors.
  • the filter 13 is inserted into a filter support portion 14 formed of a slot or a rail provided in the air intake housing 10 and is held at a position close to the suction port 6 a of the scroll housing 6. ..
  • the air conditioning unit 3 has an air conditioning case 30 that forms an air passage 3a through which air flows.
  • An inlet 31 connected to the outlet 6b of the blower 2 is formed at the upstream end (the left end in FIG. 1) of the air conditioning case 30, and the air sent from the blower 2 is conditioned through the inlet 31. It is designed to flow into the air passage 3a of the case 30.
  • a plurality of outlet passages 32a, 32b, 32c are formed at the downstream end portion (the right end portion in FIG. 1) of the air conditioning case 30, and the air flowing into the air passage 3a receives the outlet passages 32a, 32b, 32b. It is designed to flow out from 32c. ..
  • the plurality of outlet passages 32a, 32b, 32c of the air conditioning case 30 are It includes a foot outlet passage 32a, a vent outlet passage 32b, and a defrost outlet passage 32c.
  • the foot outlet passage 32a is provided in a lower portion of the downstream end surface 33a of the air conditioning case 30.
  • the downstream end of the foot outlet passage 32a is connected to a foot outlet (not shown) that blows air toward the feet of an occupant sitting in the driver's seat and the passenger seat (and in some cases, the rear seat).
  • the vent outlet passage 32b is provided in an upper portion of the downstream end surface 33a of the air conditioning case 30.
  • the downstream end of the vent outlet passage 32b is connected to a vent outlet (not shown) that blows air toward the upper half of the occupant sitting in the driver's seat and the passenger seat (also in the rear seat in some cases).
  • the defrost outlet passage 32c is provided on the top surface 33b of the air conditioning case 30.
  • the downstream end of the defrost outlet passage 32c is connected to a defrost outlet (not shown) that blows air toward the inner surface of the windshield in the vehicle compartment.
  • a cooling heat exchanger (evaporator) 35 Inside the air passage 3a of the air conditioning case 30, a cooling heat exchanger (evaporator) 35, a heating heat exchanger 36, and various doors (air mix door 7) for changing the flow of air flowing through the air passage 3a. And outlet passage doors 38a, 38b, 38c) are provided. ..
  • the cooling heat exchanger 35 is provided so that all of the air flowing into the air conditioning case 30 passes through the cooling heat exchanger 35.
  • the cooling heat exchanger 35 removes heat from the air passing therethrough, and when the humidity of the air is high, the moisture in the air is condensed to reduce the humidity of the air. ..
  • the heat exchanger 36 for heating is a detour between the inner side surface 33c of the air conditioning case 30 (above the heat exchanger 36 for heating in the example shown in FIG. 1) in the air passage 3a formed by the air conditioning case 30. It is arranged so as to form 3b. ..
  • the air mix door 7 is provided between the cooling heat exchanger 35 and the heating heat exchanger 36.
  • the air mix door 7 is a plate-shaped member and is arranged substantially parallel to the upstream surface of the heating heat exchanger 36.
  • the air mix door 7 can slide in the air passage 3a in the vertical direction, and the opening degree of the bypass 3b can be adjusted by changing its position. Then, the air mix door 7 adjusts the ratio of the air directed to the heating heat exchanger 36 and the air directed to the bypass 3b, depending on the position. ..
  • each of the air mix doors 7 is connected to a shaft 7s that extends in the air passage 3a in the left-right direction. By rotating the shaft 7s, the air mix door 7 moves in the up-down direction. You can slide along. More specifically, a rack (not shown) is provided on one surface of each air mix door 7 from the upper edge to the lower edge. In addition, a pinion that meshes with the rack is provided on the outer peripheral surface of each shaft 7s. Then, when the shaft 7s is rotated in the circumferential direction, the rotational motion of the shaft 7s is converted into a vertical motion by the pinion and the rack, and the air mix door 7 slides up and down. The shaft 7s is directly or indirectly driven to rotate by an actuator (not shown). ..
  • the blow-out passage doors 38a, 38b, 38c are provided in the above-mentioned blow-out passages 32a, 32b, 32c, respectively, and open and close the blow-out passages 32a, 32b, 32c.
  • the foot outlet passage 32a is provided with a foot outlet passage door 38a
  • the vent outlet passage 32b is provided with a vent outlet passage door 38b
  • the defrost outlet passage 32c is provided with a defrost outlet passage door 38c.
  • the outlet passage doors 38a, 38b, 38c are plate-shaped members and extend from shafts 38as, 38bs, 38cs extending in the left-right direction.
  • blow-out passage doors 38a, 38b, 38c rotate about the rotation axes of the shafts 38as, 38bs, 38cs, and the corresponding blow-out passages 32a, 32b, 38b. 32c can be opened and closed.
  • the shafts 38as, 38bs, 38cs are rotationally driven directly or indirectly by an actuator (not shown). ..
  • blowout passage doors 38a, 38b, 38c open or close the corresponding blowout passages 32a, 32b, 32c according to the operation mode (blowing mode) of the air conditioner 1.
  • the operation mode Blowing mode
  • the foot outlet passage 32a is opened
  • the defrost outlet passage 32c is opened and squeezed
  • the vent outlet passage 32b is closed.
  • the vent outlet passage 32b is opened and the foot outlet passage 32a and the defrost outlet passage 32c are closed. ..
  • the air conditioner 1 further controls the door in the air conditioning case that controls the actuator that rotationally drives the shaft 7s of the air mix door 7 and the shafts 38as, 38bs, 38cs of the outlet passage doors 38a, 38b, 38c. It has a part 8b.
  • the air-conditioning case inner door control unit 8b may be configured integrally with the motor control unit 8a. ..
  • a blower using an impeller causes noise such as wind noise caused by the impeller. Therefore, for such a blower and an air conditioner using the blower, it is required to suppress the noise from leaking into the vehicle interior.
  • a method of suppressing the above noise from leaking into the vehicle compartment a method is known in which a resonance chamber is provided adjacent to the air flow path of the air intake housing and the energy of the noise is attenuated in the resonance chamber.
  • the air intake housing (and hence the blower) is enlarged by the size of the resonance chamber, or the air flow path of the air intake housing is reduced by the amount of the resonance chamber, and the blower's blowing capacity is reduced. Will decrease. ..
  • blower 2 and air conditioner 1 are not accompanied by the enlargement of the air intake housing 10 or the blower 2 or the reduction of the air flow path of the air intake housing 10.
  • a device for forming a resonance chamber to prevent the noise from leaking into the vehicle cabin has been devised. ..
  • the inside air intake 12 that opens inside the vehicle as described above is opened (see FIG. 4).
  • the outside air intake 11 that opens toward the outlet of the outside air introduction passage provided in the vehicle is opened, while the inside air intake 12 is closed (Fig. 3). Therefore, the noise tends to reach the passenger compartment of the vehicle through the inside air intake 12 more when the blower 2 is operated in the outside air mode than when it is operated in the outside air mode. Therefore, if the noise obtained when the blower 2 is operated in the inside air mode is reduced, the noise leaking into the interior of the vehicle can be significantly suppressed.
  • the resonance chamber S is formed by utilizing the internal space of the outside air intake duct 20. ..
  • the outside air intake duct 20 is provided with a duct opening / closing door 25 that opens and closes the outside air intake duct 20 at a position separated from the outside air intake 11. Then, when the blower 2 is operated in the inside air mode, the outside air intake duct 20 is closed by the duct opening / closing door 25, and the first position of the switching door 50 is opened by partially opening the outside air intake 11.
  • the resonance chamber S can be formed inside the outside air intake duct 20 by arranging the internal space of the intake duct 20 and the internal space of the air intake housing 10 to communicate with each other.
  • the resonance chamber S is used to reduce the noise generated by the blower 2. ..
  • the outside air intake 11 When the blower 2 is operated in the inside air mode, the outside air intake 11 is partially opened as described above, but the outside air intake duct 20 is closed by the duct opening / closing door 25. The outside air is prevented from flowing into the air intake housing 10 through 11. As a result, when the blower 2 is operated in the inside air mode, it is possible to prevent a decrease in the air conditioning effect of the air conditioner 1 due to the outside air being mixed into the inside air. ..
  • the resonance chamber S can be formed without increasing the size of the air intake housing 10 and the blower 2 by utilizing the internal space of the outside air intake duct 20. it can. Even if the internal space of the outside air intake duct 20 is used as the resonance chamber S, the flow path of the inside air flowing into the internal space of the air intake housing 10 through the inside air inlet 12 is not reduced, so that the blower 2 has a blowing capacity. There is no fear that it will decrease. Further, when the blower 2 is operated in the inside air mode, the outside air intake 11 is partially opened, but since the outside air intake duct 20 is closed by the duct opening / closing door 25, the outside air may flow into the blower 2.
  • the blower 2 of the present embodiment by simply attaching the duct opening / closing door 25 to the outside air intake duct 20, noise can easily leak into the interior of the vehicle while the air blower 2 is operating in the inside air mode.
  • the resonance chamber S is formed and emitted by the blower 2 without increasing the size of the inlet housing 10 or the blower 2 or reducing the air flow path of the air intake housing 10 and without impairing the air conditioning effect of the air conditioner 1. Noise can be reduced, and as a result, noise can be suppressed from leaking into the vehicle interior. ..
  • the duct opening / closing door 25 is a plate-shaped member and extends from the shaft 25s extending in the left-right direction.
  • the duct opening / closing door 25 rotates around the rotation axis of the shaft 25s to open / close the outside air intake duct 20.
  • the shaft 25s is rotationally driven by an actuator (not shown). ..
  • the blower 2 further includes a control device 60 that controls the duct opening / closing door 25 and the switching door 50.
  • the control device 60 controls an actuator that rotationally drives the shaft 25s of the duct opening / closing door 25 and an actuator that swivels the switching door 50.
  • the control device 60 arranges the duct opening / closing door 25 in a position (position shown in FIG. 4) that closes the outside air intake duct 20.
  • the control device 60 may be configured integrally with either or both of the air conditioning case inner door control unit 8b and the motor control unit 8a. ..
  • outside air tries to flow into the vehicle through an outlet of an outside air introduction path provided in the vehicle.
  • the air pressure applied to the front surface of the vehicle while the vehicle is traveling is also called ram pressure.
  • the blower 2 is operated in the outside air mode, the outside air intake duct 20 and the outside air intake 11 of the blower 2 are largely open, and the inside of the outside air intake duct 20 is derived from the drive of the motor 5 and the impeller 4. In addition to the flowing air, the air flowing in according to the ram pressure also flows.
  • the duct opening / closing door 25 Even if the duct opening / closing door 25 is rotated to close the outside air intake duct 20 in this state, the duct opening / closing door 25 receives air resistance due to the air flow formed in the outside air intake duct 20 and easily rotates. I can't. Therefore, when the operation of the blower 2 is switched from the outside air mode to the inside air mode while the vehicle is traveling, the outside air intake duct 20 may not be closed by the duct opening / closing door 25. ..
  • the control device 60 controls the doors 25 and 50 as follows. That is, as shown in FIG. 4, the control device 60 controls the switching door 50 so that the switching door 50 is arranged at the first position and the duct opening / closing door 25 is arranged at the position for closing the outside air intake duct 20. And when controlling the duct opening / closing door 25, after controlling the switching door 50, The duct opening / closing door 25 is controlled. Thereby, most of the outside air intake 11 is closed before the duct opening / closing door 25 is rotated to close the outside air intake duct 20, and the flow rate of the air flowing through the outside air intake duct 20 per unit time is reduced. Will be reduced.
  • the switching door 50 is preferably a rotary door as shown in FIG.
  • the airflow flowing in the outside air intake duct 20 includes air derived from the ram pressure in addition to the air derived from the drive of the motor 5 and the impeller 4, that is, the amount of ventilation in the outside air intake duct 20 is large. Even in this case, if the switching door 50 is a rotary door type, the rotation direction of the switching door 50 is orthogonal to the air flow in the outside air intake duct 20, and therefore the switching door 50 is operated by the air flow. Power does not change.
  • the conventional blower for comparison has the same configuration as the blower 2 according to the present embodiment, except that the duct opening / closing door 25 is not provided.
  • both the blower 2 according to the present embodiment and the conventional blower were operated in the inside air mode.
  • the outside air intake is completely closed by the switching door in order to prevent outside air from flowing into the blower.
  • the outside air intake 11 is partially opened and the outside air intake duct 20 is closed by the duct opening / closing door 25.
  • FIG. 5 is a figure which shows the frequency characteristic of the noise obtained in the vicinity of the internal air intake of each blower operated on such conditions.
  • the horizontal axis represents frequency
  • the vertical axis represents the A characteristic sound pressure level of the 1/3 octave bandwidth filter. ..
  • the sound pressure level of noise is significantly reduced in the frequency band of 315 to 1000 Hz, and in the frequency band of 100 to 12500 Hz, as compared with the conventional blower.
  • the overall value of sound pressure level is also reduced. From this, it is understood that the blower 2 according to the present embodiment produces less noise in the vicinity of the inside air intake 12 than the conventional blower. Further, when the amount of air per hour pushed out from the discharge port of the scroll housing of the blower 2 according to the present embodiment and the conventional blower was measured, both were 480 m 3 / hour. This means that the blower 2 according to the present embodiment has a blowing capacity equivalent to that of the conventional blower. As described above, according to the blower 2 according to the present embodiment, noise is reduced without increasing the size of the blower or reducing the air flow path of the air intake housing, and without impairing its blowing ability. be able to.
  • the resonance frequency of the resonance chamber as described above (the frequency of the sound silenced in the resonance chamber) is generally expressed by the following equation.
  • f is a resonance frequency (frequency of sound muffled in the resonance chamber)
  • c is a sound velocity
  • A is an opening area of an opening of the resonance chamber
  • V is a volume of the resonance chamber
  • L is a length of the opening.
  • the opening area A of the opening of the resonance chamber S corresponds to the opening area of the outside air intake 11. Therefore, in the case of the blower 2 of the present embodiment, if the first position of the switching door 50 is changed and the opening area of the outside air intake 11 is changed, the frequency of the sound silenced in the outside air intake duct 20 (silence frequency). ) Can be changed. That is, according to the blower 2 of the present embodiment, the sound of the desired frequency can be silenced by changing the first position of the switching door 50. For example, as shown in FIG. 5, among the noises obtained by the conventional blower, the sound of the frequency having the maximum sound pressure level (sound near 630 Hz) is reliably adjusted by adjusting the first position of the switching door 50. Can be muted to. Furthermore, by changing the first position of the switching door 50, it is possible to arbitrarily change the frequency of the sound that is silenced in the resonance chamber S. ..
  • FIG. 6 is a diagram showing a frequency characteristic of noise obtained in the vicinity of the inside air intake port of a conventional blower operated under such conditions.
  • the horizontal axis represents frequency
  • the vertical axis represents the A characteristic sound pressure level of the 1/3 octave bandwidth filter. ..
  • the frequency characteristic curve forms a gentle peak as a whole over the frequency band of 63 to 10000 Hz.
  • the noise can be effectively reduced by silencing the sound of the frequency having the maximum sound pressure level (sound near 630 Hz in the example shown in FIG. 6).
  • the frequency characteristic curve forms a sharp peak near 130 Hz, and in other frequency bands, forms a gentle peak as a whole.
  • a sound near 130 Hz at which a sound pressure level forms a sharp peak is perceived as an offensive sound. Therefore, if the sound near 130 Hz is silenced, the noise can be effectively reduced. ..
  • the frequency of the sound to be muted differs depending on the position of the passage door. Even if the frequency of the sound to be muted differs depending on the operation mode of the air conditioner and the like, according to the blower 2 of the present embodiment, by changing the first position of the switching door 50, the resonance chamber is changed. The frequency of the sound muted by S can be arbitrarily changed. ..
  • the control device 60 determines the first position of the switching door 50 according to the position of at least one of the outlet passage doors 38a, 38b, 38c in consideration of the result shown in FIG. To do. Then, when the blower 2 is operated in the inside air mode, the switching door 50 is arranged at the determined first position. ..
  • the control device 60 of the present embodiment operates the outside air intake 11 when the switching door 50 is arranged at the first position when the air conditioner 1 is operated in the foot mode rather than in the vent mode.
  • the first position is determined so that the opening area becomes small. In other words, it is movable between the foot outlet passage 32a, the upper outlet passage (vent outlet passage) 32b provided above the foot outlet passage 32a, and the position where the foot outlet passage 32a is opened and closed.
  • an air conditioner 1 including a foot outlet passage door 38a and an upper outlet passage door (vent outlet passage door) 38b movable between a position where the upper outlet passage (vent outlet passage) 32b is opened and a position where the upper outlet passage 32b is closed.
  • the controller 60 is located at a position where the foot outlet passage door 38a closes the foot outlet passage 32a, and the upper outlet passage door (vent outlet passage door) 38b opens the upper outlet passage (vent outlet passage) 32b.
  • the foot outlet passage door 38a is located at a position where the foot outlet passage 32a is opened, and the upper outlet passage door 3 is opened.
  • the first position is set so that the opening area of the outside air intake 11 when the switching door 50 is arranged at the first position becomes small. decide.
  • the sound is suppressed in the resonance chamber S when operating in the foot mode rather than the frequency of the sound which is suppressed in the resonance chamber S when operating the air conditioner 1 in the vent mode. It is possible to lower the sound frequency. ..
  • the control device 60 determines the positions of the blow-out passage doors 38a, 38b, 38c (the blow-out passage doors 38a, 38b, 38c based on the information obtained from the air-conditioning case inside door control unit 8b). It is determined whether the corresponding outlet passages 32a, 32b, 32c are in the open position or the closed position), and the first position of the switching door 50 is determined.
  • the control device 60 and the air-conditioning case interior door control unit 8b are integrally configured as a combined control device (not shown)
  • the combined control device indicates the position of the blowout passage doors 38a, 38b, 38c.
  • the first position of the switching door 50 is determined based on the information. ..
  • the difference in the frequency of the sound to be silenced due to the difference in the operation mode shown in FIG. 6 is also understood to be due to the difference in the arrangement of the air mix doors. That is, in general, the air mix door is arranged so as to maximize the opening area of the bypass between the heat exchanger for heating and the inner surface of the air conditioning case when the air conditioner is operated in the vent mode. On the other hand, when operating in the foot mode, it is arranged so as to minimize the opening area of the bypass. Also in the example shown in FIG. 6, the air mix door is arranged so as to maximize the opening area of the bypass when operating in the vent mode, and minimizes the opening area of the bypass when operating in the foot mode. Was arranged to. Therefore, FIG.
  • the opening area 6 is arranged to minimize the opening area when the air mix door is arranged so as to maximize the opening area of the detour and when it is arranged so as to minimize the opening area. It can be understood that the case where the noise is suppressed indicates that the frequency of the sound to be silenced is lower. ..
  • the control device 60 may determine the first position of the switching door 50 according to the position of the air mix door 7. In other words, the control device 60 controls the outside air intake port 11 when the switching door 50 is arranged in the first position when the air mixing door 7 is in the closed position rather than in the opening position.
  • the first position may be determined so that the opening area of the.
  • control device 60 is located at the position of the air mix door 7 (the position where the air mix door 7 maximizes the opening area of the detour 3b) based on the information obtained from the air conditioning case interior door control unit 8b. Or whether it is in the position to be minimized). Further, when the control device 60 and the air-conditioning case interior door control unit 8b are integrally configured to be a combined control device, the combined control device may change the switching door based on the instruction information of the position of the air mix door 7. A first position of 50 may be determined. ..
  • the difference in frequency of the sound to be silenced due to the difference in operation mode shown in FIG. 6 is due to the difference in ventilation resistance in the air conditioning case. That is, as described above, in the example shown in FIG. 6, when the air conditioner is operated in the vent mode, the air mix door is arranged so as to maximize the opening area of the bypass, so that the ventilation resistance in the air conditioning case is increased. However, when operating in foot mode, the air mix door was placed so as to minimize the opening area of the above detour, so the ventilation resistance inside the air conditioning case became relatively high. . Therefore, it can be understood that FIG. 6 shows that, when the ventilation resistance in the air conditioning case is low and when it is high, the frequency of sound to be silenced is lower when the ventilation resistance is higher. . ..
  • the first position may be determined so that the opening area of the outside air intake 11 when arranged in the above is small.
  • the blower 2 used in the air conditioner 1 for a vehicle has a plurality of blades 4a forming a circumferential blade row, and is driven by a rotating shaft 5a of a motor 5 to rotate the impeller.
  • the blower 2 has a scroll housing 6 having an internal space for accommodating the impeller 4, a suction port 6a opening in the axial direction of the rotating shaft 5a, and a discharge port 6b opening in the circumferential direction of the impeller 4.
  • the blower 2 has an air intake housing 10 having an internal space communicating with the suction port 6 a of the scroll housing 6.
  • the air intake housing 10 has at least one outside air intake 11 for taking in outside air into the internal space of the air intake housing 10, and at least one inside air intake for taking in internal air into the internal space of the air intake housing 10.
  • An inlet 12 is provided.
  • the blower 2 has at least one switching door 50 that opens and closes the outside air intake 11 and the inside air intake 12.
  • the air intake housing 10 is a cylindrical outside air intake duct 20 having openings at both ends, one opening 21 is connected to the outside air intake 11, and the air intake is introduced from the outside air intake 11.
  • the housing 10 has an outside air intake duct 20 extending to the side opposite to the internal space, and a duct opening / closing door 25 that opens and closes the outside air intake duct 20 at a position separated from the outside air intake 11. .
  • the noise generated by the blower 2 easily leaks into the room when the blower 2 is operated in the inside air mode, but according to the blower 2 described above, when the blower 2 is operated in the inside air mode, the noise is generated inside the outside air intake duct 20.
  • the resonance chamber S By forming the resonance chamber S, the noise can be reduced, and the leakage of noise into the vehicle interior can be suppressed.
  • the outside air intake duct 20 is closed by the duct opening / closing door 25, and the switching door 50 is arranged so that the outside air intake 11 is partially opened.
  • the space surrounded by the outside air intake duct 20, the duct opening / closing door 25, and the switching door 50 can be used as the resonance chamber S.
  • the internal space of the outside air intake duct 20 is used as the resonance chamber S, it is possible to prevent the air intake housing 10 or the blower 2 from increasing in size.
  • the flow path of the internal air flowing into the internal space of the air intake housing 10 through the internal air intake port 12. Is not reduced. Therefore, there is no fear that the blowing capacity of the blower 2 will decrease.
  • the outside air intake 11 is partially opened when the blower 2 is operated in the inside air mode, the outside air is introduced into the blower 2 by closing the outside air intake duct 20 with the duct opening / closing door 25. Can be prevented.
  • the switching door 50 is movable between a first position that opens the inside air intake 12 and a second position that closes the inside air intake 12. Then, when the switching door 50 is in the first position, the outside air intake 11 is partially opened so that the inside space of the outside air intake duct 20 and the inside space of the air intake housing 10 communicate with each other. In this way, the resonance chamber S can be formed in the outside air intake duct 20 while the blower 2 is operating in the inside air mode. Further, by changing the first position to change the opening area of the outside air intake 11, it is possible to change the frequency of the sound silenced in the outside air intake duct 20. ..
  • the blower 2 further includes the control device 60 that controls the duct opening / closing door 25 and the switching door 50.
  • the control device 60 arranges the duct opening / closing door 25 at a position where the outside air intake duct 20 is closed. This prevents outside air from flowing into the air intake housing 10 through the partially opened outside air inlet 11 while the blower 2 is operating in the inside air mode, as described above. ..
  • the control device 60 controls the switching door 50 so that the switching door 50 is arranged at the first position and the duct opening / closing door 25 is arranged at the position closing the outside air intake duct 20.
  • the duct opening / closing door 25 is controlled after controlling the switching door 50.
  • the flow rate of the air flowing through the outside air intake duct 20 can be reduced before the outside air intake duct 20 is closed by the duct opening / closing door 25.
  • the duct opening / closing door 25 is driven, the air resistance received by the duct opening / closing door 25 by the air flowing through the outside air intake duct 20 can be reduced, and the duct opening / closing door 25 can be easily driven. . ..
  • the vehicle air conditioner 1 includes the blower 2 described above, and the air conditioner 3 that blows the air sent from the blower 2 into the cabin of the vehicle. ..
  • the vehicle air conditioner 1 includes the blower 2 including the control device 60, and the air conditioner 3 that blows the air sent from the blower 2 into the vehicle cabin.
  • the air conditioning unit 3 has an air conditioning case 30 that forms an air passage 3a through which air flows.
  • the air conditioning case 30 is connected to the discharge port 6b of the scroll housing 6 and has an inflow port 31 into which air from the blower 2 flows, and at least one blowout passage 32a, 32b, 32c through which air passing through the air passage 3a is blown out. And have.
  • the air conditioner 3 is provided for each of the at least one outlet passages 32a, 32b, 32c, and is movable between a position where the corresponding outlet passages 32a, 32b, 32c are opened and a position where they are closed. It has at least one outlet passage door 38a, 38b, 38c. Then, the control device 60 determines the first position according to the position of at least one of the outlet passage doors 38a, 38b, 38c. ..
  • At least one outlet passage 32a, 32b, 32c includes a foot outlet passage 32a and an upper outlet passage (vent outlet passage) 32b provided above the foot outlet passage 32a.
  • the at least one outlet passage door 38a, 38b, 38c is a foot outlet passage door 38a movable between a position where the foot outlet passage 32a is opened and a position where the foot outlet passage 32a is closed, and an upper outlet passage (vent outlet passage) 32b.
  • an upper outlet passage door (vent outlet passage door) 38b that is movable between an open position and a closed position.
  • the foot outlet passage door 38a is in a position to close the foot outlet passage 32a, and the upper outlet passage door (vent outlet passage door) 38b opens the upper outlet passage (vent outlet passage) 32b.
  • the foot outlet passage door 38a opens the foot outlet passage 32a more than when it is in the position, and the upper outlet passage door (vent outlet passage door) 38b closes the upper outlet passage (vent outlet passage) 32b.
  • the switching door 50 is in the position, the first position is determined so that the opening area of the outside air intake 11 when the switching door 50 is arranged in the first position is small. ..
  • the noise generated by the blower 2 causes the foot blowout more than when the air conditioner 1 is operated in an operation mode (for example, a vent mode) in which the foot blowout passage 32a is closed and the upper blowout passage (vent blowout passage) 32b is opened.
  • an operation mode for example, a foot mode
  • the frequency of sound to be silenced is lower.
  • the foot blowout is performed more than when the air blower 1 is operated in the operation mode (for example, the vent mode) in which the foot blowout passage 32a is closed and the upper blowout passage (vent blowout passage) 32b is opened.
  • an operation mode for example, a foot mode
  • the air conditioner 1 includes the blower 2 including the control device 60, and the air conditioner 3 that blows out the air sent from the blower 2 into the vehicle cabin.
  • the air conditioner 3 is arranged so as to form a detour 3b between the air conditioning case 30 that forms an air passage 3a through which air flows and the inner side surface 33c of the air conditioning case 30 in the air passage 3a.
  • a heat exchanger 36 for heating Further, the air conditioning unit 3 is arranged in the air passage 3a, moves between a position where the detour 3b is opened and a position where the detour 3b is closed, and goes to the air toward the heating heat exchanger 36 and the detour 3b.
  • the control device 60 sets the switching door 50 to the first position when the air mix door 7 is located at the position where the air mix door 7 closes the detour 3b rather than when the air mix door 7 is located at the position where the detour 3b is opened.
  • the first position is determined so that the opening area of the outside air intake 11 when arranged is small. ..
  • the noise generated by the blower 2 is generated by arranging the air mix door 7 at a position to close the bypass 3b as compared with the case of operating the air conditioner 1 by arranging the air mix door 7 at a position to open the bypass 3b.
  • the frequency of the sound to be silenced is lower.
  • the sound is muted in the resonance chamber S when the air mix door 7 is at the position where the air mix door 7 closes the bypass 3b, rather than when the air mix door 7 is at the position where the bypass 3b is open. It is possible to lower the sound frequency. ..
  • the control device 60 reduces the opening area of the outside air intake 11 when the switching door 50 is arranged at the first position as the ventilation resistance of the air flowing out from the discharge port 6b is higher.
  • the first position is determined.
  • the noise generated by the blower 2 has a lower frequency of sound to be silenced in order to effectively reduce the noise, when the ventilation resistance is high and when the ventilation resistance is high. Therefore, the higher the ventilation resistance, the smaller the opening area of the outside air intake 11 when the switching door 50 is arranged at the first position becomes. Can be properly silenced in the resonance chamber S. ..
  • FIG. 7 is a figure which shows typically the structure of the air conditioner 1a by the modification 1.
  • FIG. 8 is a diagram showing a difference in frequency characteristic of noise generated by a conventional blower due to a difference in rotation speed of an impeller.
  • the blowing mode is a foot mode. ..
  • Example 1 shown in FIGS. 7 and 8 compared to the air conditioner 1 shown in FIGS. 1 to 6, the control device 60a controls the switching door 50 and the duct opening / closing door 25 based on the rotation speed of the motor 5. They are different in that they do.
  • the other configurations of the blower 2a and the air conditioner 1a are substantially the same as those of the blower 2 and the air conditioner 1 shown in FIGS. 1 to 6.
  • Modification 1 shown in FIGS. 7 and 8 the same parts as those of the embodiment shown in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description thereof will be omitted. ..
  • FIG. 8 shows the frequency characteristics of noise obtained in the vicinity of the intake port of the blower when the impeller of the conventional blower described above is rotated at a rotation speed of 2900 rpm and when it is rotated at a rotation speed of 2000 rpm.
  • FIG. The horizontal axis represents frequency
  • the vertical axis represents the A characteristic sound pressure level of the 1/3 octave bandwidth filter. ..
  • the frequency characteristic curve forms a gentle peak as a whole over the range of 80 to 6300 Hz.
  • the noise can be effectively reduced by silencing the sound of the frequency having the highest sound pressure level (sound near 800 Hz in the example shown in FIG. 8).
  • the frequency characteristic curve forms a sharp peak in the vicinity of 130 Hz, and in other frequency bands, it forms a gentle peak as a whole.
  • a sound near 130 Hz at which a sound pressure level forms a sharp peak is perceived as an offensive sound. Therefore, if the sound near 130 Hz is silenced, the noise can be effectively reduced.
  • the characteristics of the noise generated by the blower differ depending on the rotation speed of the impeller, and thus the frequency of the sound to be silenced also depends on the rotation speed of the impeller. Then, as shown in FIG. 8, when the rotation speed of the impeller is high and when the rotation speed is low, the frequency of the sound to be silenced is lower when the rotation speed is higher. ..
  • control device 60a of the first modification determines the first position according to the rotation speed of the motor 5 that rotates the impeller 4. ..
  • control device 60a determines the first position such that the faster the rotation speed of the motor 5 is, the smaller the opening area of the outside air intake 11 is when the switching door 50 is arranged at the first position. .
  • control device 60a determines the rotation speed of the motor 5 based on the information obtained from the motor control unit 8a. ..
  • the control device 60a controls the opening area of the outside air intake 11 when the switching door 50 is arranged at the first position as the rotation speed of the motor 5 becomes faster. , Determine the first position.
  • the higher the rotational speed of the motor 5, the lower the frequency of the sound muffled in the resonance chamber S can be. ..
  • FIG. 9 is a figure which shows the structure of the air conditioning apparatus 1b by the modification 2 typically. ..
  • the blower 2b has a noise detecting means 65, and the control device 60b is based on the detection result of the noise detecting means 65. It is different in that it is possible to determine the first position by using.
  • the other configurations of the blower 2b and the air conditioner 1b are substantially the same as those of the blower 2 and the air conditioner 1 shown in FIGS. 1 to 6.
  • the same parts as those in the embodiment shown in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description thereof will be omitted. ..
  • the blower 2b further includes the noise detection unit 65 that detects the noise level.
  • the noise detection means 65 is arranged in the vicinity of the inside air intake 12, and detects the noise level at the inside air intake 12 for each frequency. Then, the control device 60b determines the first position according to the noise level for each frequency detected by the noise detecting means 65. Specifically, the lower the frequency of the sound to be silenced in order to effectively reduce the noise, the smaller the opening area of the outside air intake 11 when the switching door 50 is placed in the first position. , Determine the first position. ..
  • the blower 2b according to the second modification further includes the noise detection unit 65 that detects the noise level at the inside air intake 12 for each frequency. Then, the control device 60b determines the first position according to the noise level for each frequency detected by the noise detecting means 65. According to such a blower 2b, it is possible to appropriately muffle the sound to be silenced in the noise generated by the blower 2b in the resonance chamber S. ..
  • FIG. 10 is a cross-sectional view schematically showing the air intake housing 10c of the blower 2c according to Modification 3. ..
  • the modified example 3 shown in FIG. 10 is different from the air intake housing 10 shown in FIGS. 1 to 6 in that the switching door 55 is of a type called a cantilever type door or a butterfly door.
  • Other configurations of the air intake housing 10c and the blower 2c are substantially the same as those of the air intake housing 10 and the blower 2 shown in FIGS. 1 to 6.
  • Modification 3 shown in FIG. 10 the same parts as those of the embodiment shown in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description thereof will be omitted. ..
  • the switching door 55 is a flat plate-shaped member.
  • the switching door 55 extends from a shaft 55s extending in the left-right direction near the upper edges of the outside air intake 11 and the inside air intake 12.
  • the switching door 55 rotates the shaft 55s in the circumferential direction, the switching door 55 rotates about the rotation axis of the shaft 55s to open the inside air intake 12 (the position indicated by the solid line in FIG. 10) and the outside air intake. It is possible to move between a second position where 11 is opened (a position shown by a broken line in FIG. 10).
  • the shaft 55s is rotationally driven by an actuator (not shown). ..
  • the switching door 55 shown in FIG. 10 can also form the resonance chamber S in the outside air intake duct 20 while the blower 2c is operating in the inside air mode. ..
  • FIG. 11 is sectional drawing which shows typically the air intake housing 10d of the air blower 2d by the modification 4. As shown in FIG. ..
  • the modified example 4 shown in FIG. 11 is different from the air intake housing 10 shown in FIGS. 1 to 6 in that ribs 70 are arranged inside the outside air intake duct 20.
  • Other configurations of the air intake housing 10d and the blower 2d are substantially the same as those of the air intake housing 10 and the blower 2 shown in FIGS. 1 to 6.
  • Modification 4 shown in FIG. 11 the same parts as those of the embodiment shown in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description thereof will be omitted. ..
  • the rib 70 is arranged inside the outside air intake duct 20.
  • the rib 70 is a plate-shaped member and extends along the inner side surface 20a of the outside air intake duct 20 (more specifically, the lower side surface 20au located below the inner side surface 20a). ing.
  • the rib 70 is arranged such that the end portion of the air intake housing 10d on the inner space side is along the lower end edge 51s of the peripheral surface 51 of the switching door 50 arranged at the first position. Further, one end of the rib 70 is opened toward the inner space of the air intake housing 10d between the lower surface 20au of the inner side surface 20a and the other end of the rib 70 inside the outside air intake duct 20.
  • a passage 71 opened to the space is formed. ..
  • the length L70 of the rib 70 corresponds to the length L of the opening in the above equation. Therefore, according to such an air intake housing 10d, by adjusting the length L70 of the rib 70, as can be understood from the above formula, the frequency of the sound to be silenced in the resonance chamber S can be adjusted. You can That is, the noise can be reduced without depending on the frequency of the sound to be silenced in the resonance chamber S depending on the thickness of the lower end edge 51s of the peripheral surface 51 of the switching door 50. The longer the length L70 is, the smaller the frequency of the sound silenced in the resonance chamber S can be. ..
  • the inside of the outside air intake duct 20 extends along the inner side surface 20a of the outside air intake duct 20, and one end portion of the blower 2d is connected to the inside surface 20a.
  • a rib 70 is provided which forms a passage 71 which is open toward the internal space of the intake housing 10d and whose other end is open toward the internal space of the outside air intake duct 20. According to such a blower 2d, by adjusting the length L70 of the rib 70, it is possible to adjust the frequency of the sound silenced in the resonance chamber S. ..
  • FIG. 12 is a cross-sectional view schematically showing the air intake housing 10e of the blower 2e according to the modified example 5. ..
  • the modification 5 shown in FIG. 12 is different from the air intake housing 10c of the modification 3 shown in FIG. 10 in that a rib 75 is arranged inside the outside air intake duct 20.
  • Other configurations of the air intake housing 10e and the blower 2e are substantially the same as those of the air intake housing 10c and the blower 2c of the third modification shown in FIG.
  • the same parts as those in Modification 3 shown in FIG. 10 are designated by the same reference numerals, and detailed description thereof will be omitted. ..
  • the ribs 75 are arranged inside the outside air intake duct 20.
  • the rib 75 is a plate-shaped member and extends upward and rearward from the vicinity of the lower edge of the outside air intake 11.
  • the rib 75 extends along the switching door 55 arranged in the first position, and one end of the rib 75 is located inside the air intake housing 10c between the rib 75 and the switching door 55 arranged in the first position.
  • the passage 76 is open toward the outside and the other end is opened toward the internal space of the outside air intake duct 20. ..
  • the length L75 of the rib 75 corresponds to the length L of the opening in the above equation. Therefore, according to such an air intake housing 10e, by adjusting the length L75 of the rib 75, the resonance chamber S formed in the outside air intake duct 20 is adjusted, as can be understood from the above formula.
  • the frequency of the muted sound can be adjusted. That is, the noise can be reduced without depending on the frequency of the sound to be muffled in the resonance chamber S depending on the thickness of the peripheral wall portion of the outside air intake duct 20. It should be noted that as the length L75 is increased, the frequency of the sound silenced in the resonance chamber S can be decreased. ..
  • the blower 2e extends inside the outside air intake duct 20 along the switching door 55 arranged at the first position, and between the switching door 55 arranged at the first position.
  • a rib 75 forming a passage 76, one end of which is open toward the internal space of the air intake housing 10e and the other end of which is open toward the internal space of the outside air intake duct 20.
  • the frequency of the sound silenced in the resonance chamber S can be adjusted by adjusting the length L75 of the rib 75.
  • the air conditioner for a vehicle and the blower used in the air conditioner for a vehicle according to the present invention can be industrially manufactured and can be a target of commercial transactions, and thus have an economic value and are industrially advantageous. Can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

[Problem] To provide a blower in which a resonance chamber is formed without accompanying an increase in size of the blower and a reduction in air flow passage of an air intake housing. [Solution] This blower (2) is provided with: an impeller (4); a scroll housing (6) that houses the impeller (4); an air intake housing (10) which is connected to the scroll housing (6) and has an external air intake port (11) and an internal air intake port (12); and switching doors (50, 55) which open/close the external air intake port (11) and the internal air intake port (12). The air intake housing (10) further has: an external air intake duct (20) having one opening section connected to the external air intake port (11); and a duct opening/closing door (25) which opens/closes the external air intake duct (20) at a position spaced apart from the external air intake port (11).

Description

送風機および空調装置Blower and air conditioner
本発明は、送風機および送風機を備えた空調装置に関する。 The present invention relates to a blower and an air conditioner including the blower.
車両用の空調装置で用いられる送風機として、羽根車を用いたものが知られている。羽根車は、吸込口と吐出口とを有するスクロールハウジング内に配置されている。そして、羽根車を回転させることで、送風機は、空気を、吸込口を介してスクロールハウジング内に取り込みつつ、吐出口を通じて吐出する。吸込口には、空気取入ハウジングが接続されている。空気取入ハウジングは、車両の室内と連通する内気取入口と、車両外部と連通する外気取入口と、内気取入口及び外気取入口の開閉を行う切替ドアと、を有する。このような空気取入ハウジングを通じて、送風機は、内気(車室内空気)または外気(車両外部から取り入れた空気)を取り込むことができるようになっている。  As a blower used in an air conditioner for a vehicle, one using an impeller is known. The impeller is arranged in a scroll housing having a suction port and a discharge port. Then, by rotating the impeller, the blower discharges air through the discharge port while taking in air into the scroll housing through the suction port. An air intake housing is connected to the suction port. The air intake housing has an inside air intake communicating with the interior of the vehicle, an outside air intake communicating with the outside of the vehicle, and a switching door for opening and closing the inside air intake and the outside air intake. Through such an air intake housing, the blower can take in the inside air (air inside the vehicle) or the outside air (air taken in from the outside of the vehicle). ‥
ところで、上述した送風機は、羽根車による風切音等の騒音を発生させる。このため、車両の室内への上記騒音の漏れを抑制することが求められている。特許文献1に記載の送風機においては、空気取入ハウジングの空気の流路に隣接して共鳴室を設けることで、騒音を低減させている。  By the way, the above-described blower causes noise such as wind noise caused by the impeller. Therefore, it is required to prevent the noise from leaking into the vehicle cabin. In the blower described in Patent Document 1, noise is reduced by providing a resonance chamber adjacent to the air flow path of the air intake housing. ‥
しかしながら、このような送風機においては、空気取入ハウジングが(したがって送風機が)共鳴室の分だけ大型化するか、あるいは、空気取入ハウジングの空気の流路が縮小されて、送風機の送風能力が低下してしまう。 However, in such a blower, the air intake housing (and thus the blower) is increased in size by the size of the resonance chamber, or the air flow path of the air intake housing is reduced, so that the air blower has a high blower capacity. Will fall.
特開平7-228128号公報JP-A-7-228128
本発明は、送風機の大型化や空気取入ハウジングの空気の流路の縮小を伴うことなく共鳴室を形成して、車両の室内への騒音の漏れを抑制することを目的としている。 An object of the present invention is to form a resonance chamber without increasing the size of a blower or reducing the air flow path of an air intake housing, and to suppress the leakage of noise into the vehicle interior.
本発明の好適な一実施形態によれば、 車両用の空調装置で用いられる送風機であって、 周方向翼列を形成する複数の翼を有し、モータの回転軸により回転駆動される羽根車と、 前記羽根車を収容する内部空間と、前記回転軸の軸方向に開口する吸込口と、前記羽根車の周方向に開口する吐出口と、を有するスクロールハウジングと、 前記スクロールハウジングの前記吸込口に連通する内部空間を有する空気取入ハウジングであって、前記空気取入ハウジングの内部空間に外気を取り込むための少なくとも一つの外気取入口と、前記空気取入ハウジングの内部空間に内気を取り込むための少なくとも一つの内気取入口と、が設けられた前記空気取入ハウジングと、 前記外気取入口及び前記内気取入口の開閉を行う少なくとも一つの切替ドアと、 両端部に開口部を有する筒状の外気取入ダクトであって、一方の開口部が前記外気取入口に接続し、前記外気取入口から前記空気取入ハウジングの内部空間とは反対側に延び出す外気取入ダクトと、 前記外気取入口から離間した位置で前記外気取入ダクトの開閉を行うダクト開閉ドアと、を有する、送風機が提供される。  According to a preferred embodiment of the present invention, a blower used in a vehicle air conditioner, which has a plurality of blades forming a circumferential blade row and is driven to rotate by a rotation shaft of a motor. A scroll housing having an internal space for accommodating the impeller, a suction opening that opens in the axial direction of the rotating shaft, and a discharge opening that opens in the circumferential direction of the impeller; and the suction of the scroll housing. An air intake housing having an internal space communicating with a mouth, wherein at least one external air intake for taking in external air into the internal space of the air intake housing and internal air in the internal space of the air intake housing At least one inside air intake for providing the air intake housing, and at least one opening for opening and closing the outside air intake and the inside air intake A door and a cylindrical outside air intake duct having openings at both ends, one opening is connected to the outside air intake, and the outside air intake is opposite from the internal space of the air intake housing. A blower is provided that has an outside air intake duct that extends to the side and a duct opening / closing door that opens and closes the outside air intake duct at a position separated from the outside air intake port. ‥
あるいは、本発明の好適な実施形態によれば、上述した送風機と、前記送風機から送り出された空気を車両の室内に吹き出す空気調和部と、を備えた車両用の空調装置が提供される。 Alternatively, according to a preferred embodiment of the present invention, there is provided an air conditioner for a vehicle, which includes the above-described blower and an air conditioner that blows out the air sent from the blower into the interior of the vehicle.
上記本発明の実施形態によれば、送風機の大型化や空気取入ハウジングの空気の流路の縮小を伴うことなく共鳴室を形成して、車両の室内への騒音の漏れを抑制することができる。 According to the above-described embodiment of the present invention, it is possible to form the resonance chamber without enlarging the blower and reducing the flow path of the air in the air intake housing, and suppressing the leakage of noise into the vehicle interior. it can.
本発明の一実施の形態による空調装置の構造を模式的に示す図である。It is a figure which shows typically the structure of the air conditioning apparatus by one embodiment of this invention. 図1に示す送風機の斜視図である。It is a perspective view of the air blower shown in FIG. 図2に示す送風機の断面を模式的に示す図である。It is a figure which shows typically the cross section of the air blower shown in FIG. 図3に示す空気取入ハウジングの断面を拡大して示す図であって、切替ドアが第1位置にある場合を示す図である。It is a figure which expands and shows the cross section of the air intake housing shown in FIG. 3, Comprising: It is a figure which shows the case where a switching door exists in a 1st position. 図2に示す送風機と用いた場合および従来の送風機を用いた場合に得られる騒音の周波数特性曲線を示す図である。It is a figure which shows the frequency characteristic curve of the noise obtained when using the air blower shown in FIG. 2, and when using the conventional air blower. 空調装置をフットモードおよびベントモードで運転した場合に得られる騒音の周波数特性曲線を示す図である。It is a figure which shows the frequency characteristic curve of the noise obtained when operating an air conditioner in a foot mode and a vent mode. 図1に対応する図であって、本発明の変形例1による空調装置の構造を模式的に示す図である。It is a figure corresponding to FIG. 1, and is a figure which shows typically the structure of the air conditioning apparatus by the modification 1 of this invention. 羽根車の回転速度が速い場合と遅い場合に得られる騒音の周波数特性曲線を示す図である。It is a figure which shows the frequency characteristic curve of the noise obtained when the rotation speed of an impeller is high and when it is low. 図1に対応する図であって、本発明の変形例2による空調装置の構造を模式的に示す図である。It is a figure corresponding to FIG. 1, and is a figure which shows typically the structure of the air conditioning apparatus by the modification 2 of this invention. 図4に対応する図であって、本発明の変形例3による送風機の空気取入ハウジングの断面を拡大して示す図である。It is a figure corresponding to FIG. 4, and is a figure which expands and shows the cross section of the air intake housing of the air blower by the modification 3 of this invention. 図4に対応する図であって、本発明の変形例4による送風機の空気取入ハウジングの断面を拡大して示す図である。It is a figure corresponding to FIG. 4, and is a figure which expands and shows the cross section of the air intake housing of the air blower by the modification 4 of this invention. 図4に対応する図であって、本発明の変形例5による送風機の空気取入ハウジングの断面を拡大して示す図である。It is a figure corresponding to FIG. 4, and is a figure which expands and shows the cross section of the air intake housing of the air blower by the modified example 5 of this invention.
以下に添付図面を参照して本発明の一実施の形態について説明する。  An embodiment of the present invention will be described below with reference to the accompanying drawings. ‥
図1は、本発明の一実施の形態による空調装置の構造を模式的に示す図である。また、図2および図3は、それぞれ、図1に示す送風機の斜視図、および、図2に示す送風機の断面を模式的に示す図である。図3は、後述する切替ドアの旋回軸線Bxおよびダクト開閉ドアの回転軸線に垂直な断面を示している。図4は、図3に示す空気取入ハウジングの断面を拡大して示す図であって、切替ドアが第1位置にある場合を示す図である。なお、図示の明確化のため、図2および図3では、後述する制御装置の図示を省略している。さらに、図2では、後述する羽根車やフィルタなどの図示を省略している。各図では、Uが車両の上方、Dが車両の下方、Frが車両の前方、Rrが車両の後方、Rが車両の右方、Lが車両の左方を、それぞれ意味している。但し、車両に対する送風機および後述する空気調和部の設置方向は、図示例に限定されるものではない。  FIG. 1 is a diagram schematically showing the structure of an air conditioner according to an embodiment of the present invention. 2 and 3 are a perspective view of the blower shown in FIG. 1 and a diagram schematically showing a cross section of the blower shown in FIG. 2, respectively. FIG. 3 shows a cross section perpendicular to a turning axis Bx of the switching door and a rotation axis of the duct opening / closing door, which will be described later. FIG. 4 is an enlarged cross-sectional view of the air intake housing shown in FIG. 3, showing the case where the switching door is at the first position. Note that, for clarity of illustration, in FIGS. 2 and 3, illustration of a control device described later is omitted. Further, in FIG. 2, illustration of an impeller, a filter, etc. described later is omitted. In each drawing, U means the upper side of the vehicle, D means the lower side of the vehicle, Fr means the front side of the vehicle, Rr means the rear side of the vehicle, R means the right side of the vehicle, and L means the left side of the vehicle. However, the installation direction of the blower and the air conditioner described below with respect to the vehicle is not limited to the illustrated example. ‥
図1に示すように、車両用の空調装置1は、送風機2と、送風機2から送り出された空気を車両の室内に吹き出す空気調和部3と、を備えている。  As shown in FIG. 1, an air conditioner 1 for a vehicle includes a blower 2 and an air conditioner 3 that blows the air sent from the blower 2 into the interior of the vehicle. ‥
図1および図3に示すように、送風機2は、羽根車4を有する。羽根車4は、その外周部分に、周方向に並んだ翼列を形成する複数の翼4aを有している。羽根車4は、モータ5の回転軸5aに接続されて回転軸線Ax周りに回転駆動され、軸方向の上側(軸方向一端側)から羽根車4の翼列の半径方向内側の空間に吸入した空気を、半径方向外側に向けて吹き出す。  As shown in FIGS. 1 and 3, the blower 2 has an impeller 4. The impeller 4 has a plurality of blades 4a that form a row of blades arranged in the circumferential direction on the outer peripheral portion thereof. The impeller 4 is connected to the rotating shaft 5a of the motor 5 and is driven to rotate about the rotation axis Ax, and sucked into the space inside the blade row of the impeller 4 from the upper side in the axial direction (one end side in the axial direction). Blows air out radially. ‥
本明細書において、説明の便宜上、モータ5及び羽根車4の回転軸線Axの方向を「軸方向」と呼ぶ。以下の説明においては、軸方向が上下方向に一致している前提で説明を行うが、軸方向が上下方向に対して角度を成すように空調装置が車両に組み込まれることもあることに注意すべきである。本明細書においては、特別な注記が無い限り、回転軸線Ax上の任意の点を中心として回転軸線Axと直交する平面上に描かれた円の半径の方向を半径方向と呼び、当該円の円周方向を周方向または円周方向と呼ぶ。  In this specification, for convenience of description, the direction of the rotation axis Ax of the motor 5 and the impeller 4 is referred to as “axial direction”. In the following description, the explanation will be made on the premise that the axial direction matches the vertical direction, but it should be noted that the air conditioner may be incorporated in the vehicle so that the axial direction forms an angle with the vertical direction. Should be. In the present specification, unless otherwise noted, the direction of the radius of a circle drawn on a plane orthogonal to the rotation axis Ax centering on an arbitrary point on the rotation axis Ax is called the radial direction, and The circumferential direction is called the circumferential direction or the circumferential direction. ‥
図3に示すように、羽根車4は、当該羽根車4と一体成形されたコーン部(内側偏向部材)4bを含む。コーン部4bは、幾何学的な意味における回転体である。コーン部4bの中央部において、モータ5の回転軸5aが羽根車4に連結される。なお、図1に示された空調装置1においては、モータ5の回転速度は、モータ制御部8aによって制御される。  As shown in FIG. 3, the impeller 4 includes a cone portion (inner deflection member) 4b integrally formed with the impeller 4. The cone portion 4b is a rotating body in a geometric sense. The rotating shaft 5a of the motor 5 is connected to the impeller 4 at the center of the cone portion 4b. In the air conditioner 1 shown in FIG. 1, the rotation speed of the motor 5 is controlled by the motor controller 8a. ‥
図1に示すように、羽根車4は、スクロールハウジング6の内部に収容される。図2および図3に示すように、スクロールハウジング6は、軸方向上側に開口する吸込口6aと、吐出口6bとを有している。スクロールハウジング6を軸方向から見た場合、吐出口6bはスクロールハウジング6の外周面の概ね接線方向に延びている。  As shown in FIG. 1, the impeller 4 is housed inside a scroll housing 6. As shown in FIG. 2 and FIG. 3, the scroll housing 6 has a suction port 6a that opens upward in the axial direction and a discharge port 6b. When the scroll housing 6 is viewed from the axial direction, the discharge port 6b extends substantially tangentially to the outer peripheral surface of the scroll housing 6. ‥
図1に示すように、送風機2は、また、スクロールハウジング6に接続された空気取入ハウジング10を有する。空気取入ハウジング10の内部空間は、スクロールハウジング6の吸込口6aに連通している。図2に示すように、空気取入ハウジング10は、概ね前方に向けて開口する外気取入口11と、概ね後方に向けて開口する内気取入口12とを有している。内気取入口12は概ね左方及び右方に向けても開口していてもよい。外気取入口11には、両端部に開口部を有する筒状の外気取入ダクト20が接続されている。外気取入ダクト20は、その一方の開口部21において外気取入口11に接続し、外気取入口11から空気取入ハウジング10の内部空間とは反対側に(概ね前方且つ上方に)延び出している。外気取入ダクト20は、図2に示すように、空気取入ハウジング10と一体化されていてもよい。外気取入ダクト20の他方の開口部22は、車両に設けられた外気導入路の出口(図示せず)と連結されているかあるいは当該出口の近傍にある。外気取入ダクト20を通じて、外気(車両外部から取り入れた空気)を効率良く空気取入ハウジング10内に導入することができる。内気取入口12は車両の室内に開口しており、内気(車室内空気)を空気取入ハウジング10内に導入することができる。  As shown in FIG. 1, the blower 2 also has an air intake housing 10 connected to the scroll housing 6. The internal space of the air intake housing 10 communicates with the suction port 6 a of the scroll housing 6. As shown in FIG. 2, the air intake housing 10 has an outside air intake 11 that is open substantially forward and an inside air intake 12 that is open approximately rearward. The inside air intake 12 may be directed toward the left and right sides or may be open. A cylindrical outside air intake duct 20 having openings at both ends is connected to the outside air intake 11. The outside air intake duct 20 is connected to the outside air intake 11 at one opening 21 thereof, and extends from the outside air intake 11 to the side opposite to the internal space of the air intake housing 10 (generally forward and upward). There is. The outside air intake duct 20 may be integrated with the air intake housing 10, as shown in FIG. The other opening 22 of the outside air intake duct 20 is connected to an outlet (not shown) of an outside air introduction passage provided in the vehicle or is near the outlet. Through the outside air intake duct 20, outside air (air taken in from the outside of the vehicle) can be efficiently introduced into the air intake housing 10. The inside air intake 12 is open to the inside of the vehicle, and the inside air (air inside the vehicle) can be introduced into the air intake housing 10. ‥
空気取入ハウジング10内には、外気取入口11及び内気取入口12の開閉を行う切替ドア50が設けられている。図示された例では、切替ドア50は、ロータリードアと呼ばれる形式のものであり、図2から理解されるように、全体として、扇形の底面を有する柱体の形状を有している。切替ドア50は、旋回軸線Bxを中心とする円弧形の断面を有する周面51と、この周面51の左右両側に接続された扇形の側面52とを有している。上記周面51が外気取入口11(内気取入口12)を塞ぐことにより、外気取入口11(内気取入口12)が閉鎖される。切替ドア50は、左右方向に延びる旋回軸線Bxを中心として図示しないアクチュエータにより旋回させることができ、内気取入口12を開放する第1位置(図4参照)と、外気取入口11を開放し内気取入口12を閉鎖する第2位置(図3参照)と、の間を移動可能である。  A switching door 50 that opens and closes the outside air intake 11 and the inside air intake 12 is provided in the air intake housing 10. In the illustrated example, the switching door 50 is of a type called a rotary door and, as can be understood from FIG. 2, has a columnar shape having a fan-shaped bottom surface as a whole. The switching door 50 has a peripheral surface 51 having an arcuate cross section centered on the turning axis Bx, and fan-shaped side surfaces 52 connected to both left and right sides of the peripheral surface 51. By closing the outside air intake 11 (inside air intake 12) with the peripheral surface 51, the outside air intake 11 (inside air intake 12) is closed. The switching door 50 can be swung by an actuator (not shown) about a swivel axis Bx extending in the left-right direction, and opens the inside air intake 12 at the first position (see FIG. 4) and the outside air intake 11 to open the inside air. It is movable between a second position (see FIG. 3) that closes the intake 12. ‥
送風機2が内気モードで運転されるときには、図4に示すように、切替ドア50は第1位置に配置される。このとき、空気取入ハウジング10内には、内気取入口12から内気ARが導入される。また、送風機2が外気モードで運転される時には、図3に示すように、切替ドア50は第2位置に配置される。このとき、空気取入ハウジング10内には、外気取入口11から外気AEが導入される。内気取入口12から空気取入ハウジング10内に導入された内気ARおよび外気取入口11から空気取入ハウジング10内に導入された外気AEは、スクロールハウジング6の吸込口6aからから羽根車4の翼列の半径方向内側の空間に流入する。  When the blower 2 is operated in the inside air mode, the switching door 50 is arranged at the first position as shown in FIG. At this time, the inside air AR is introduced into the air intake housing 10 from the inside air inlet 12. When the blower 2 is operated in the outside air mode, the switching door 50 is arranged at the second position as shown in FIG. At this time, the outside air AE is introduced into the air intake housing 10 from the outside air intake 11. The inside air AR introduced into the air intake housing 10 from the inside air inlet 12 and the outside air AE introduced into the air intake housing 10 from the outside air inlet 11 are discharged from the suction port 6a of the scroll housing 6 to the impeller 4. It flows into the space radially inward of the blade row. ‥
空気取入ハウジング10内の、外気取入口11及び内気取入口12が設けられている領域と、空気取入ハウジング10の下端部(スクロールハウジング6の吸込口6aに接続する端部)との間に、空気中に含まれるダスト、パーティクル等の汚染物質や異臭を除去するためのフィルタ13が設けられている。フィルタ13は、空気取入ハウジング10内に設けられたスロットまたはレールからなるフィルタ支持部14に挿入されて、スクロールハウジング6の吸込口6aに近接する位置に保持されている。  Between the region of the air intake housing 10 where the outside air intake 11 and the inside air intake 12 are provided, and the lower end of the air intake housing 10 (the end connected to the suction port 6a of the scroll housing 6). In addition, a filter 13 is provided for removing contaminants such as dust and particles contained in the air and offensive odors. The filter 13 is inserted into a filter support portion 14 formed of a slot or a rail provided in the air intake housing 10 and is held at a position close to the suction port 6 a of the scroll housing 6. ‥
次に、図1を参照して、空気調和部3について説明する。空気調和部3は、内部に空気が流れる空気通路3aを形成する空調ケース30を有する。空調ケース30の上流側端部(図1の左側端部)には、送風機2の吐出口6bに接続する流入口31が形成されており、送風機2から送られた空気が流入口31を通じて空調ケース30の空気通路3aに流れ込むようになっている。また、空調ケース30の下流側端部(図1の右側端部)には、複数の吹出通路32a,32b,32cが形成されており、空気通路3aに流れ込んだ空気が吹出通路32a,32b,32cから流出するようになっている。  Next, the air conditioner 3 will be described with reference to FIG. The air conditioning unit 3 has an air conditioning case 30 that forms an air passage 3a through which air flows. An inlet 31 connected to the outlet 6b of the blower 2 is formed at the upstream end (the left end in FIG. 1) of the air conditioning case 30, and the air sent from the blower 2 is conditioned through the inlet 31. It is designed to flow into the air passage 3a of the case 30. Further, a plurality of outlet passages 32a, 32b, 32c are formed at the downstream end portion (the right end portion in FIG. 1) of the air conditioning case 30, and the air flowing into the air passage 3a receives the outlet passages 32a, 32b, 32b. It is designed to flow out from 32c. ‥
空調ケース30の複数の吹出通路32a,32b,32cは、
フット吹出通路32aと、ベント吹出通路32bと、デフロスト吹出通路32cとを含む。図1に示すように、フット吹出通路32aは、空調ケース30の下流側端面33aの下側部分に設けられている。フット吹出通路32aの下流端は、運転席及び助手席(場合によっては後席も)に座っている乗員の足元に向けて空気を吹き出す図示しないフット吹出口に接続されている。また、ベント吹出通路32bは、空調ケース30の下流側端面33aの上側部分に設けられている。ベント吹出通路32bの下流端は、運転席及び助手席(場合によっては後席も)に座っている乗員の上半身に向けて空気を吹き出す図示しないベント吹出口に接続されている。また、デフロスト吹出通路32cは、空調ケース30の天面33bに設けられている。デフロスト吹出通路32cの下流端は、車室内のフロントガラスの内面に向けて空気を吹き出す図示しないデフロスト吹出口に接続されている。 
The plurality of outlet passages 32a, 32b, 32c of the air conditioning case 30 are
It includes a foot outlet passage 32a, a vent outlet passage 32b, and a defrost outlet passage 32c. As shown in FIG. 1, the foot outlet passage 32a is provided in a lower portion of the downstream end surface 33a of the air conditioning case 30. The downstream end of the foot outlet passage 32a is connected to a foot outlet (not shown) that blows air toward the feet of an occupant sitting in the driver's seat and the passenger seat (and in some cases, the rear seat). Further, the vent outlet passage 32b is provided in an upper portion of the downstream end surface 33a of the air conditioning case 30. The downstream end of the vent outlet passage 32b is connected to a vent outlet (not shown) that blows air toward the upper half of the occupant sitting in the driver's seat and the passenger seat (also in the rear seat in some cases). The defrost outlet passage 32c is provided on the top surface 33b of the air conditioning case 30. The downstream end of the defrost outlet passage 32c is connected to a defrost outlet (not shown) that blows air toward the inner surface of the windshield in the vehicle compartment.
空調ケース30の空気通路3a内には、冷却用熱交換器(エバポレータ)35、加熱用熱交換器36、および、空気通路3aを通流する空気の流れを変更する各種ドア(エアミックスドア7及び吹出通路ドア38a,38b,38c)が設けられている。  Inside the air passage 3a of the air conditioning case 30, a cooling heat exchanger (evaporator) 35, a heating heat exchanger 36, and various doors (air mix door 7) for changing the flow of air flowing through the air passage 3a. And outlet passage doors 38a, 38b, 38c) are provided. ‥
冷却用熱交換器35は、空調ケース30内に流入した空気の全てが冷却用熱交換器35を通過するように設けられている。冷却用熱交換器35は、そこを通過する空気から熱を奪い、かつ、空気の湿度が高い場合には空気中の水分を凝縮させることにより空気の湿度を下げる。  The cooling heat exchanger 35 is provided so that all of the air flowing into the air conditioning case 30 passes through the cooling heat exchanger 35. The cooling heat exchanger 35 removes heat from the air passing therethrough, and when the humidity of the air is high, the moisture in the air is condensed to reduce the humidity of the air. ‥
加熱用熱交換器36は、空調ケース30が形成する空気通路3a内において、空調ケース30の内側面33cとの間に(図1に示す例では加熱用熱交換器36の上方に)迂回路3bを形成するように配置されている。  The heat exchanger 36 for heating is a detour between the inner side surface 33c of the air conditioning case 30 (above the heat exchanger 36 for heating in the example shown in FIG. 1) in the air passage 3a formed by the air conditioning case 30. It is arranged so as to form 3b. ‥
エアミックスドア7は、冷却用熱交換器35と加熱用熱交換器36との間に設けられている。図示された例では、エアミックスドア7は、板状の部材であり、加熱用熱交換器36の上流側の面に概ね平行に配置されている。エアミックスドア7は、空気通路3a内を上下方向に沿ってスライドすることができるようになっており、その位置を変更することで迂回路3bの開口度を調整することができる。そして、エアミックスドア7は、その位置に応じて、加熱用熱交換器36に向かう空気と、迂回路3bに向かう空気との比率を調整する。  The air mix door 7 is provided between the cooling heat exchanger 35 and the heating heat exchanger 36. In the illustrated example, the air mix door 7 is a plate-shaped member and is arranged substantially parallel to the upstream surface of the heating heat exchanger 36. The air mix door 7 can slide in the air passage 3a in the vertical direction, and the opening degree of the bypass 3b can be adjusted by changing its position. Then, the air mix door 7 adjusts the ratio of the air directed to the heating heat exchanger 36 and the air directed to the bypass 3b, depending on the position. ‥
図1に示すように、エアミックスドア7は、それぞれ、空気通路3a内を左右方向に沿って延びるシャフト7sに連結されており、シャフト7sを回転させることにより、空気通路3a内を上下方向に沿ってスライドすることができるようになっている。より具体的には、各エアミックスドア7の一方の面には、その上端縁から下端縁に亘って図示しないラックが設けられている。また、各シャフト7sの外周面には、このラックと噛み合うピニオンが設けられている。そして、シャフト7sを周方向に回転させると、シャフト7sの回転運動がピニオンとラックとによって上下方向の運動に変換され、エアミックスドア7が上下にスライドするようになっている。シャフト7sは、図示しないアクチュエータによって直接的に、あるいは間接的に回転駆動される。  As shown in FIG. 1, each of the air mix doors 7 is connected to a shaft 7s that extends in the air passage 3a in the left-right direction. By rotating the shaft 7s, the air mix door 7 moves in the up-down direction. You can slide along. More specifically, a rack (not shown) is provided on one surface of each air mix door 7 from the upper edge to the lower edge. In addition, a pinion that meshes with the rack is provided on the outer peripheral surface of each shaft 7s. Then, when the shaft 7s is rotated in the circumferential direction, the rotational motion of the shaft 7s is converted into a vertical motion by the pinion and the rack, and the air mix door 7 slides up and down. The shaft 7s is directly or indirectly driven to rotate by an actuator (not shown). ‥
図1に示すように、吹出通路ドア38a,38b,38cは、それぞれ、上述した吹出通路32a,32b,32cに設けられて、当該吹出通路32a,32b,32cを開閉する。具体的には、フット吹出通路32aにはフット吹出通路ドア38aが設けられ、ベント吹出通路32bにはベント吹出通路ドア38bが設けられ、デフロスト吹出通路32cにはデフロスト吹出通路ドア38cが設けられている。図示の例では、吹出通路ドア38a,38b,38cは板状の部材であり、左右方向に延びるシャフト38as,38bs,38csから延出している。そして、吹出通路ドア38a,38b,38cは、シャフト38as,38bs,38csを周方向に回転させると、シャフト38as,38bs,38csの回転軸線を中心に回転して、対応する吹出通路32a,32b,32cを開閉することができるようになっている。シャフト38as,38bs,38csは、図示しないアクチュエータによって直接的に、あるいは間接的に回転駆動される。  As shown in FIG. 1, the blow-out passage doors 38a, 38b, 38c are provided in the above-mentioned blow-out passages 32a, 32b, 32c, respectively, and open and close the blow-out passages 32a, 32b, 32c. Specifically, the foot outlet passage 32a is provided with a foot outlet passage door 38a, the vent outlet passage 32b is provided with a vent outlet passage door 38b, and the defrost outlet passage 32c is provided with a defrost outlet passage door 38c. There is. In the illustrated example, the outlet passage doors 38a, 38b, 38c are plate-shaped members and extend from shafts 38as, 38bs, 38cs extending in the left-right direction. Then, when the shafts 38as, 38bs, 38cs are rotated in the circumferential direction, the blow-out passage doors 38a, 38b, 38c rotate about the rotation axes of the shafts 38as, 38bs, 38cs, and the corresponding blow-out passages 32a, 32b, 38b. 32c can be opened and closed. The shafts 38as, 38bs, 38cs are rotationally driven directly or indirectly by an actuator (not shown). ‥
吹出通路ドア38a,38b,38cは、空調装置1の運転モード(吹出しモード)に応じて、対応する吹出通路32a,32b,32cを開放または閉鎖する。例えば、空調装置1がフットモードで運転される場合、フット吹出通路32aが開放され、デフロスト吹出通路32cが開放されつつも絞られ、ベント吹出通路32bが閉鎖される。また、空調装置1がベントモードで運転される場合、ベント吹出通路32bが開放され、フット吹出通路32aおよびデフロスト吹出通路32cが閉鎖される。  The blowout passage doors 38a, 38b, 38c open or close the corresponding blowout passages 32a, 32b, 32c according to the operation mode (blowing mode) of the air conditioner 1. For example, when the air conditioner 1 is operated in the foot mode, the foot outlet passage 32a is opened, the defrost outlet passage 32c is opened and squeezed, and the vent outlet passage 32b is closed. Further, when the air conditioner 1 is operated in the vent mode, the vent outlet passage 32b is opened and the foot outlet passage 32a and the defrost outlet passage 32c are closed. ‥
図1に示す例では、空調装置1は、さらに、エアミックスドア7のシャフト7sや吹出通路ドア38a,38b,38cのシャフト38as,38bs,38csを回転駆動するアクチュエータを制御する空調ケース内ドア制御部8bを有する。空調ケース内ドア制御部8bは、モータ制御部8aと一体的に構成されていてもよい。  In the example shown in FIG. 1, the air conditioner 1 further controls the door in the air conditioning case that controls the actuator that rotationally drives the shaft 7s of the air mix door 7 and the shafts 38as, 38bs, 38cs of the outlet passage doors 38a, 38b, 38c. It has a part 8b. The air-conditioning case inner door control unit 8b may be configured integrally with the motor control unit 8a. ‥
ところで、羽根車を用いた送風機は、羽根車による風切音等の騒音を発生させる。したがって、このような送風機および当該送風機を用いた空調装置に対しては、上記騒音が車両の室内に漏れることを抑制することが求められている。上記騒音が車両の室内に漏れることを抑制する方法として、空気取入ハウジングの空気の流路に隣接して共鳴室を設け、共鳴室で騒音のエネルギーを減衰させる方法が知られている。しかしながら、この場合、空気取入ハウジングが(したがって送風機が)共鳴室の分だけ大型化するか、あるいは、空気取入ハウジングの空気の流路が共鳴室の分だけ縮小されて、送風機の送風能力が低下してしまう。  By the way, a blower using an impeller causes noise such as wind noise caused by the impeller. Therefore, for such a blower and an air conditioner using the blower, it is required to suppress the noise from leaking into the vehicle interior. As a method of suppressing the above noise from leaking into the vehicle compartment, a method is known in which a resonance chamber is provided adjacent to the air flow path of the air intake housing and the energy of the noise is attenuated in the resonance chamber. However, in this case, the air intake housing (and hence the blower) is enlarged by the size of the resonance chamber, or the air flow path of the air intake housing is reduced by the amount of the resonance chamber, and the blower's blowing capacity is reduced. Will decrease. ‥
以上のような事情を考慮して、図示された送風機2および空調装置1には、空気取入ハウジング10あるいは送風機2の大型化や空気取入ハウジング10の空気の流路の縮小を伴うことなく共鳴室を形成して、上記騒音が車両の室内に漏れることを抑制するための工夫がなされている。  In consideration of the above circumstances, the illustrated blower 2 and air conditioner 1 are not accompanied by the enlargement of the air intake housing 10 or the blower 2 or the reduction of the air flow path of the air intake housing 10. A device for forming a resonance chamber to prevent the noise from leaking into the vehicle cabin has been devised. ‥
まず、送風機2を内気モードで運転する場合には、上述のように車両の室内に開口する内気取入口12が開放される(図4参照)。一方、送風機2を外気モードで運転する場合には、車両に設けられた外気導入路の出口に向けて開口する外気取入口11が開放される一方で、内気取入口12は閉鎖される(図3参照)。このため、送風機2を外気モードで運転する場合よりも内気モードで運転する場合の方が、上記騒音は、内気取入口12を通じて車両の室内に届きやすい傾向にある。したがって、送風機2を内気モードで運転する場合に得られる騒音を低減させれば、車両の室内に漏れる騒音を顕著に抑制することができる。この点を考慮して、図示された送風機2では、送風機2を内気モードで運転する場合に、外気取入ダクト20の内部空間を利用して共鳴室Sが形成されるようになっている。  First, when the blower 2 is operated in the inside air mode, the inside air intake 12 that opens inside the vehicle as described above is opened (see FIG. 4). On the other hand, when the blower 2 is operated in the outside air mode, the outside air intake 11 that opens toward the outlet of the outside air introduction passage provided in the vehicle is opened, while the inside air intake 12 is closed (Fig. 3). Therefore, the noise tends to reach the passenger compartment of the vehicle through the inside air intake 12 more when the blower 2 is operated in the outside air mode than when it is operated in the outside air mode. Therefore, if the noise obtained when the blower 2 is operated in the inside air mode is reduced, the noise leaking into the interior of the vehicle can be significantly suppressed. In consideration of this point, in the illustrated blower 2, when the blower 2 is operated in the inside air mode, the resonance chamber S is formed by utilizing the internal space of the outside air intake duct 20. ‥
具体的には、外気取入ダクト20に、外気取入口11から離間した位置で外気取入ダクト20の開閉を行うダクト開閉ドア25が設けられている。そして、送風機2を内気モードで運転する際、ダクト開閉ドア25で外気取入ダクト20を閉鎖し、さらに、切替ドア50の第1位置を、外気取入口11を部分的に開放して外気取入ダクト20の内部空間と空気取入ハウジング10の内部空間とを連通させる位置にすることにより、外気取入ダクト20の内部に共鳴室Sを形成することができるようになっている。すなわち、送風機2を内気モードで運転する際、外気取入ダクト20とダクト開閉ドア25と切替ドア50とによって囲まれる空間を、共鳴室Sとして利用する。そして、この共鳴室Sを利用して、送風機2が発する騒音を低減させる。  Specifically, the outside air intake duct 20 is provided with a duct opening / closing door 25 that opens and closes the outside air intake duct 20 at a position separated from the outside air intake 11. Then, when the blower 2 is operated in the inside air mode, the outside air intake duct 20 is closed by the duct opening / closing door 25, and the first position of the switching door 50 is opened by partially opening the outside air intake 11. The resonance chamber S can be formed inside the outside air intake duct 20 by arranging the internal space of the intake duct 20 and the internal space of the air intake housing 10 to communicate with each other. That is, when the blower 2 is operated in the inside air mode, the space surrounded by the outside air intake duct 20, the duct opening / closing door 25, and the switching door 50 is used as the resonance chamber S. Then, the resonance chamber S is used to reduce the noise generated by the blower 2. ‥
なお、送風機2を内気モードで運転する際、上述のように外気取入口11は部分的に開放されているが、外気取入ダクト20がダクト開閉ドア25で閉鎖されているため、外気取入口11を通じた外気の空気取入ハウジング10への流入が防止される。これにより、送風機2を内気モードで運転する際、外気が内気に混入することによる空調装置1の空調効果の低下を防止することができる。  When the blower 2 is operated in the inside air mode, the outside air intake 11 is partially opened as described above, but the outside air intake duct 20 is closed by the duct opening / closing door 25. The outside air is prevented from flowing into the air intake housing 10 through 11. As a result, when the blower 2 is operated in the inside air mode, it is possible to prevent a decrease in the air conditioning effect of the air conditioner 1 due to the outside air being mixed into the inside air. ‥
このように、送風機2を内気モードで運転する際、外気取入ダクト20の内部空間を利用することにより、空気取入ハウジング10および送風機2を大型化することなく共鳴室Sを形成することができる。なお、外気取入ダクト20の内部空間が共鳴室Sとして利用されても、内気取入口12を通じて空気取入ハウジング10の内部空間に流入する内気の流路は縮小されないため、送風機2の送風能力が低下してしまう虞がない。さらに、送風機2を内気モードで運転する際、外気取入口11は部分的に開放されるが、ダクト開閉ドア25によって外気取入ダクト20が閉鎖されるため、外気が送風機2内に流入することが防止され、外気が内気に混入することによる空調装置1の空調効果の低下も防止される。以上より、本実施の形態の送風機2によれば、外気取入ダクト20にダクト開閉ドア25を取り付けるだけで、騒音が車両の室内に漏れやすい送風機2の内気モードでの運転中に、空気取入ハウジング10あるいは送風機2の大型化や空気取入ハウジング10の空気の流路の縮小を伴うことなく、さらに空調装置1の空調効果を損なうことなく、共鳴室Sを形成して送風機2が発する騒音を低減させることができ、この結果、車両の室内への騒音の漏れを抑制することができる。  As described above, when the blower 2 is operated in the inside air mode, the resonance chamber S can be formed without increasing the size of the air intake housing 10 and the blower 2 by utilizing the internal space of the outside air intake duct 20. it can. Even if the internal space of the outside air intake duct 20 is used as the resonance chamber S, the flow path of the inside air flowing into the internal space of the air intake housing 10 through the inside air inlet 12 is not reduced, so that the blower 2 has a blowing capacity. There is no fear that it will decrease. Further, when the blower 2 is operated in the inside air mode, the outside air intake 11 is partially opened, but since the outside air intake duct 20 is closed by the duct opening / closing door 25, the outside air may flow into the blower 2. Is prevented, and the reduction of the air conditioning effect of the air conditioner 1 due to the mixing of outside air with the inside air is also prevented. As described above, according to the blower 2 of the present embodiment, by simply attaching the duct opening / closing door 25 to the outside air intake duct 20, noise can easily leak into the interior of the vehicle while the air blower 2 is operating in the inside air mode. The resonance chamber S is formed and emitted by the blower 2 without increasing the size of the inlet housing 10 or the blower 2 or reducing the air flow path of the air intake housing 10 and without impairing the air conditioning effect of the air conditioner 1. Noise can be reduced, and as a result, noise can be suppressed from leaking into the vehicle interior. ‥
図示された例では、ダクト開閉ドア25は板状の部材であり、左右方向に延びるシャフト25sから延出されている。そして、ダクト開閉ドア25は、シャフト25sを周方向に回転させると、シャフト25sの回転軸線を中心に回転して、外気取入ダクト20を開閉することができるようになっている。シャフト25sは、図示しないアクチュエータによって回転駆動される。  In the illustrated example, the duct opening / closing door 25 is a plate-shaped member and extends from the shaft 25s extending in the left-right direction. When the shaft 25s is rotated in the circumferential direction, the duct opening / closing door 25 rotates around the rotation axis of the shaft 25s to open / close the outside air intake duct 20. The shaft 25s is rotationally driven by an actuator (not shown). ‥
また、図示された例では、送風機2は、ダクト開閉ドア25および切替ドア50を制御する制御装置60をさらに備えている。具体的には、制御装置60は、ダクト開閉ドア25のシャフト25sを回転駆動するアクチュエータおよび切替ドア50を旋回させるアクチュエータを制御する。制御装置60は、切替ドア50を第1位置に配置するとき、ダクト開閉ドア25を、外気取入ダクト20を閉鎖する位置(図4に示す位置)に配置する。これにより、上述のように、送風機2を内気モードで運転する際に、部分的に開放された外気取入口11を通じて外気が空気取入ハウジング10内に流入することが防止される。ここで制御装置60は、空調ケース内ドア制御部8bとモータ制御部8aのいずれか一方、または両方と一体的に構成されていてもよい。  Further, in the illustrated example, the blower 2 further includes a control device 60 that controls the duct opening / closing door 25 and the switching door 50. Specifically, the control device 60 controls an actuator that rotationally drives the shaft 25s of the duct opening / closing door 25 and an actuator that swivels the switching door 50. When arranging the switching door 50 in the first position, the control device 60 arranges the duct opening / closing door 25 in a position (position shown in FIG. 4) that closes the outside air intake duct 20. Accordingly, as described above, when the blower 2 is operated in the inside air mode, outside air is prevented from flowing into the air intake housing 10 through the partially opened outside air intake 11. Here, the control device 60 may be configured integrally with either or both of the air conditioning case inner door control unit 8b and the motor control unit 8a. ‥
ところで、車両の走行中、車両に設けられた外気導入路の出口を通じて外気が車両内に流入しようとする。車両の走行中に車両の前方面が受ける空気圧は、ラム圧とも呼ばれる。送風機2を外気モードで運転している場合、送風機2の外気取入ダクト20および外気取入口11は大きく開放されており、外気取入ダクト20内は、モータ5及び羽根車4の駆動に由来する空気に加えてラム圧に応じて流入する空気も流れている。この状態でダクト開閉ドア25を回転させて外気取入ダクト20を閉鎖しようとしても、ダクト開閉ドア25は、外気取入ダクト20内に形成された空気流による空気抵抗を受け、容易に回転することができない。したがって、車両の走行中に送風機2の運転を外気モードから内気モードに切り換える際、ダクト開閉ドア25で外気取入ダクト20を閉鎖することができない虞がある。  By the way, while the vehicle is traveling, outside air tries to flow into the vehicle through an outlet of an outside air introduction path provided in the vehicle. The air pressure applied to the front surface of the vehicle while the vehicle is traveling is also called ram pressure. When the blower 2 is operated in the outside air mode, the outside air intake duct 20 and the outside air intake 11 of the blower 2 are largely open, and the inside of the outside air intake duct 20 is derived from the drive of the motor 5 and the impeller 4. In addition to the flowing air, the air flowing in according to the ram pressure also flows. Even if the duct opening / closing door 25 is rotated to close the outside air intake duct 20 in this state, the duct opening / closing door 25 receives air resistance due to the air flow formed in the outside air intake duct 20 and easily rotates. I can't. Therefore, when the operation of the blower 2 is switched from the outside air mode to the inside air mode while the vehicle is traveling, the outside air intake duct 20 may not be closed by the duct opening / closing door 25. ‥
この点を考慮して、制御装置60は、次のようにドア25,50を制御する。すなわち、制御装置60は、図4に示すように、切替ドア50が第1位置に配置され、且つ、ダクト開閉ドア25が外気取入ダクト20を閉鎖する位置に配置されるよう、切替ドア50およびダクト開閉ドア25を制御する際、切替ドア50を制御した後、
ダクト開閉ドア25を制御する。これにより、ダクト開閉ドア25が外気取入ダクト20を閉鎖するように回転される前に外気取入口11の大部分が閉鎖され、外気取入ダクト20内を流れる空気の単位時間当たりの流量が低減される。したがって、ダクト開閉ドア25を回転させる際にダクト開閉ドア25が受ける空気抵抗も低減され、ダクト開閉ドア25を容易に回転させることができる。なお、切替ドア50は、図2に示されるようにロータリードアであることが好ましい。外気取入ダクト20内に流れる空気流が、モータ5および羽根車4の駆動に由来する空気に加えてラム圧に由来する空気も含まれる場合、すなわち外気取入ダクト20内の通気量が多い場合であっても、切替ドア50がロータリードアの形式であれば、切替ドア50の回転方向が外気取入ダクト20内の空気流と直交する方向にあるので、空気流によって切替ドア50の操作力が変化することがない。 
In consideration of this point, the control device 60 controls the doors 25 and 50 as follows. That is, as shown in FIG. 4, the control device 60 controls the switching door 50 so that the switching door 50 is arranged at the first position and the duct opening / closing door 25 is arranged at the position for closing the outside air intake duct 20. And when controlling the duct opening / closing door 25, after controlling the switching door 50,
The duct opening / closing door 25 is controlled. Thereby, most of the outside air intake 11 is closed before the duct opening / closing door 25 is rotated to close the outside air intake duct 20, and the flow rate of the air flowing through the outside air intake duct 20 per unit time is reduced. Will be reduced. Therefore, the air resistance received by the duct opening / closing door 25 when the duct opening / closing door 25 is rotated is also reduced, and the duct opening / closing door 25 can be easily rotated. The switching door 50 is preferably a rotary door as shown in FIG. When the airflow flowing in the outside air intake duct 20 includes air derived from the ram pressure in addition to the air derived from the drive of the motor 5 and the impeller 4, that is, the amount of ventilation in the outside air intake duct 20 is large. Even in this case, if the switching door 50 is a rotary door type, the rotation direction of the switching door 50 is orthogonal to the air flow in the outside air intake duct 20, and therefore the switching door 50 is operated by the air flow. Power does not change.
次に、図5を参照して、本実施の形態による送風機2および従来の送風機の、内気モードでの運転時に発せられる騒音の音圧レベル(SPL)の違いについて説明する。比較対照となっている従来の送風機は、ダクト開閉ドア25が設けられていない点を除いて、本実施の形態による送風機2と同様に構成されている。図5に示す例において、本実施の形態による送風機2も従来の送風機も、内気モードで運転された。ただし、従来の送風機では、外気が送風機内に流入することを防止するため、外気取入口は切替ドアによって完全に閉鎖された。一方で、本実施の形態の送風機2では、外気取入口11は部分的に開放され、外気取入ダクト20がダクト開閉ドア25によって閉鎖された。図5は、このような条件で運転された各送風機の内気取入口の近傍で得られた騒音の周波数特性を示す図である。横軸は周波数を示し、縦軸は1/3オクターブ帯域幅フィルタのA特性音圧レベルを示す。  Next, with reference to FIG. 5, a difference in sound pressure level (SPL) of noise generated when the blower 2 according to the present embodiment and the conventional blower is operated in the inside air mode will be described. The conventional blower for comparison has the same configuration as the blower 2 according to the present embodiment, except that the duct opening / closing door 25 is not provided. In the example shown in FIG. 5, both the blower 2 according to the present embodiment and the conventional blower were operated in the inside air mode. However, in the conventional blower, the outside air intake is completely closed by the switching door in order to prevent outside air from flowing into the blower. On the other hand, in the blower 2 of the present embodiment, the outside air intake 11 is partially opened and the outside air intake duct 20 is closed by the duct opening / closing door 25. FIG. 5: is a figure which shows the frequency characteristic of the noise obtained in the vicinity of the internal air intake of each blower operated on such conditions. The horizontal axis represents frequency, and the vertical axis represents the A characteristic sound pressure level of the 1/3 octave bandwidth filter. ‥
図5に示すように、本実施の形態による送風機2では、従来の送風機と比較して、315~1000Hzの周波数帯域において、騒音の音圧レベルが顕著に低減され、100~12500Hzの周波数帯域における音圧レベルのオーバーオール値も低減されている。このことから、本実施の形態による送風機2は、従来の送風機と比較して、内気取入口12の近傍で得られる騒音が小さいことが理解される。さらに、本実施の形態による送風機2および従来の送風機のスクロールハウジングの吐出口から押し出される一時間当たりの空気量を測定したところ、どちらも毎時480mであった。このことは、本実施の形態による送風機2が、従来の送風機と同等の送風能力を有することを意味する。このように、本実施の形態による送風機2によれば、送風機の大型化や空気取入ハウジングの空気の流路の縮小を伴うことなく、また、その送風能力を損なうことなく、騒音を低減させることができる。  As shown in FIG. 5, in the blower 2 according to the present embodiment, the sound pressure level of noise is significantly reduced in the frequency band of 315 to 1000 Hz, and in the frequency band of 100 to 12500 Hz, as compared with the conventional blower. The overall value of sound pressure level is also reduced. From this, it is understood that the blower 2 according to the present embodiment produces less noise in the vicinity of the inside air intake 12 than the conventional blower. Further, when the amount of air per hour pushed out from the discharge port of the scroll housing of the blower 2 according to the present embodiment and the conventional blower was measured, both were 480 m 3 / hour. This means that the blower 2 according to the present embodiment has a blowing capacity equivalent to that of the conventional blower. As described above, according to the blower 2 according to the present embodiment, noise is reduced without increasing the size of the blower or reducing the air flow path of the air intake housing, and without impairing its blowing ability. be able to.
ところで、上述したような共鳴室の共鳴周波数(共鳴室で消音される音の周波数)は、一般に、次式で表される。ここで、fは共鳴周波数(共鳴室で消音される音の周波数)、cは音速、Aは共鳴室の開口の開口面積、Vは共鳴室の容積、Lは開口の長さである。  
Figure JPOXMLDOC01-appb-M000001
By the way, the resonance frequency of the resonance chamber as described above (the frequency of the sound silenced in the resonance chamber) is generally expressed by the following equation. Here, f is a resonance frequency (frequency of sound muffled in the resonance chamber), c is a sound velocity, A is an opening area of an opening of the resonance chamber, V is a volume of the resonance chamber, and L is a length of the opening.
Figure JPOXMLDOC01-appb-M000001
共鳴室Sの開口の開口面積Aは、外気取入口11の開口面積に対応している。したがって、本実施の形態の送風機2の場合、切替ドア50の第1位置を変更して外気取入口11の開口面積を変更すれば、外気取入ダクト20で消音される音の周波数(消音周波数)を変更することができる。すなわち、本実施の形態による送風機2によれば、切替ドア50の第1位置を変更することで、所望の周波数の音を消音することができる。例えば、図5に示すように、従来の送風機で得られる騒音のうち音圧レベルが最大となる周波数の音(630Hz近傍の音)を、切替ドア50の第1位置を調節することで、確実に消音することができる。さらに、切替ドア50の第1位置を変更することで、共鳴室Sで消音される音の周波数を任意に変更することができる。  The opening area A of the opening of the resonance chamber S corresponds to the opening area of the outside air intake 11. Therefore, in the case of the blower 2 of the present embodiment, if the first position of the switching door 50 is changed and the opening area of the outside air intake 11 is changed, the frequency of the sound silenced in the outside air intake duct 20 (silence frequency). ) Can be changed. That is, according to the blower 2 of the present embodiment, the sound of the desired frequency can be silenced by changing the first position of the switching door 50. For example, as shown in FIG. 5, among the noises obtained by the conventional blower, the sound of the frequency having the maximum sound pressure level (sound near 630 Hz) is reliably adjusted by adjusting the first position of the switching door 50. Can be muted to. Furthermore, by changing the first position of the switching door 50, it is possible to arbitrarily change the frequency of the sound that is silenced in the resonance chamber S. ‥
例えば、上述した従来の送風機を有する空調装置をフットモードおよびベントモードで運転して送風機の内気取入口の近傍で得られる騒音を測定したところ、図6に示す結果を得た。なお、図6に示す例において、従来の送風機は、内気モードで運転され、外気が送風機内に流入することを防止するため、外気取入口は切替ドアによって完全に閉鎖された。図6は、このような条件で運転された従来の送風機の内気取入口の近傍で得られた騒音の周波数特性を示す図である。横軸は周波数を示し、縦軸は1/3オクターブ帯域幅フィルタのA特性音圧レベルを示す。  For example, when the air conditioner having the conventional blower described above was operated in the foot mode and the vent mode and the noise obtained near the inside air intake of the blower was measured, the results shown in FIG. 6 were obtained. In the example shown in FIG. 6, the conventional blower is operated in the inside air mode, and the outside air intake is completely closed by the switching door in order to prevent outside air from flowing into the blower. FIG. 6 is a diagram showing a frequency characteristic of noise obtained in the vicinity of the inside air intake port of a conventional blower operated under such conditions. The horizontal axis represents frequency, and the vertical axis represents the A characteristic sound pressure level of the 1/3 octave bandwidth filter. ‥
図6に示すように、ベントモードの場合、周波数特性曲線は、63~10000Hzの周波数帯域に亘って、全体としてなだらかな山を形成している。このような周波数特性を有する騒音の場合、音圧レベルが最大となる周波数の音(図6に示す例では630Hz近傍の音)を消音すれば、騒音を効果的に低減させることができる。一方で、図6から理解されるように、フットモードの場合、周波数特性曲線は、130Hz近傍で鋭いピークを形成し、その他の周波数帯域では、全体としてなだらかな山を形成している。このような周波数特性を有する騒音の場合、音圧レベルが鋭いピークを形成する130Hz近傍の音が耳障りな音として知覚される。したがって、130Hz近傍の音を消音すれば、騒音を効果的に低減させることができる。  As shown in FIG. 6, in the vent mode, the frequency characteristic curve forms a gentle peak as a whole over the frequency band of 63 to 10000 Hz. In the case of noise having such a frequency characteristic, the noise can be effectively reduced by silencing the sound of the frequency having the maximum sound pressure level (sound near 630 Hz in the example shown in FIG. 6). On the other hand, as can be understood from FIG. 6, in the foot mode, the frequency characteristic curve forms a sharp peak near 130 Hz, and in other frequency bands, forms a gentle peak as a whole. In the case of noise having such frequency characteristics, a sound near 130 Hz at which a sound pressure level forms a sharp peak is perceived as an offensive sound. Therefore, if the sound near 130 Hz is silenced, the noise can be effectively reduced. ‥
このように、空調装置の運転モードによって、より具体的には、いずれの吹出通路が開放されるかによって、あるいは、対応する吹出通路を開放する位置と閉鎖する位置との間で移動可能な吹出通路ドアの位置によって、消音すべき音の周波数が異なる。このように空調装置の運転モード等によって消音すべき音の周波数が異なる場合であっても、本実施の形態の送風機2によれば、切替ドア50の第1位置を変更することで、共鳴室Sで消音される音の周波数を任意に変更することができる。  As described above, depending on the operation mode of the air conditioner, more specifically, which blowout passage is opened, or the blowout passage that is movable between the opening position and the closing position of the corresponding blowout passage. The frequency of the sound to be muted differs depending on the position of the passage door. Even if the frequency of the sound to be muted differs depending on the operation mode of the air conditioner and the like, according to the blower 2 of the present embodiment, by changing the first position of the switching door 50, the resonance chamber is changed. The frequency of the sound muted by S can be arbitrarily changed. ‥
そして、図1に示す例では、制御装置60は、図6に示す結果を考慮して、少なくとも一つの吹出通路ドア38a,38b,38cの位置に応じて、切替ドア50の第1位置を決定する。そして、送風機2が内気モードで運転される際、切替ドア50を決定された第1位置に配置する。  Then, in the example shown in FIG. 1, the control device 60 determines the first position of the switching door 50 according to the position of at least one of the outlet passage doors 38a, 38b, 38c in consideration of the result shown in FIG. To do. Then, when the blower 2 is operated in the inside air mode, the switching door 50 is arranged at the determined first position. ‥
具体的には、図6に示すように、空調装置1をベントモードで運転する場合とフットモードで運転する場合とでは、フットモードで運転する場合のほうが、消音すべき音の周波数が低い。したがって、本実施の形態の制御装置60は、空調装置1をベントモードで運転する場合よりもフットモードで運転する場合に、切替ドア50が第1位置に配置された際の外気取入口11の開口面積が小さくなるように、第1位置を決定する。言い換えると、フット吹出通路32aと、フット吹出通路32aよりも上方に設けられた上方吹出通路(ベント吹出通路)32bと、フット吹出通路32aを開放する位置と閉鎖する位置との間で移動可能なフット吹出通路ドア38aと、上方吹出通路(ベント吹出通路)32bを開放する位置と閉鎖する位置との間で移動可能な上方吹出通路ドア(ベント吹出通路ドア)38bと、を含む空調装置1において、制御装置60は、フット吹出通路ドア38aがフット吹出通路32aを閉鎖する位置にあり、且つ、上方吹出通路ドア(ベント吹出通路ドア)38bが上方吹出通路(ベント吹出通路)32bを開放する位置にある場合よりも、フット吹出通路ドア38aがフット吹出通路32aを開放する位置にあり、且つ、上方吹出通路ドア38bが上方吹出通路(ベント吹出通路)32bを閉鎖する位置にある場合に、切替ドア50が第1位置に配置された際の外気取入口11の開口面積が小さくなるように、第1位置を決定する。これにより、上述した式から理解されるように、空調装置1をベントモードで運転する場合に共鳴室Sで消音される音の周波数よりも、フットモードで運転する場合に共鳴室Sで消音される音の周波数を低くすることができる。  Specifically, as shown in FIG. 6, when the air conditioner 1 is operated in the vent mode and in the foot mode, the frequency of the sound to be silenced is lower in the foot mode. Therefore, the control device 60 of the present embodiment operates the outside air intake 11 when the switching door 50 is arranged at the first position when the air conditioner 1 is operated in the foot mode rather than in the vent mode. The first position is determined so that the opening area becomes small. In other words, it is movable between the foot outlet passage 32a, the upper outlet passage (vent outlet passage) 32b provided above the foot outlet passage 32a, and the position where the foot outlet passage 32a is opened and closed. In an air conditioner 1 including a foot outlet passage door 38a and an upper outlet passage door (vent outlet passage door) 38b movable between a position where the upper outlet passage (vent outlet passage) 32b is opened and a position where the upper outlet passage 32b is closed. The controller 60 is located at a position where the foot outlet passage door 38a closes the foot outlet passage 32a, and the upper outlet passage door (vent outlet passage door) 38b opens the upper outlet passage (vent outlet passage) 32b. The foot outlet passage door 38a is located at a position where the foot outlet passage 32a is opened, and the upper outlet passage door 3 is opened. When b is at a position that closes the upper outlet passage (vent outlet passage) 32b, the first position is set so that the opening area of the outside air intake 11 when the switching door 50 is arranged at the first position becomes small. decide. As a result, as understood from the above-described formula, the sound is suppressed in the resonance chamber S when operating in the foot mode rather than the frequency of the sound which is suppressed in the resonance chamber S when operating the air conditioner 1 in the vent mode. It is possible to lower the sound frequency. ‥
なお、図1に示す例では、制御装置60は、空調ケース内ドア制御部8bから得られる情報に基づいて、吹出通路ドア38a,38b,38cの位置(各吹出通路ドア38a,38b,38cが対応する吹出通路32a,32b,32cを開放する位置にあるのか閉鎖する位置にあるのか)を判断し、切替ドア50の第1位置を決定する。制御装置60と空調ケース内ドア制御部8bとが一体的に構成されて複合制御装置(図示せず)とされている場合、複合制御装置は、吹出通路ドア38a,38b,38cの位置の指示情報に基づいて、切替ドア50の第1位置を決定する。  In the example shown in FIG. 1, the control device 60 determines the positions of the blow-out passage doors 38a, 38b, 38c (the blow-out passage doors 38a, 38b, 38c based on the information obtained from the air-conditioning case inside door control unit 8b). It is determined whether the corresponding outlet passages 32a, 32b, 32c are in the open position or the closed position), and the first position of the switching door 50 is determined. When the control device 60 and the air-conditioning case interior door control unit 8b are integrally configured as a combined control device (not shown), the combined control device indicates the position of the blowout passage doors 38a, 38b, 38c. The first position of the switching door 50 is determined based on the information. ‥
なお、図6に示す運転モードの違いによる消音すべき音の周波数の違いは、エアミックスドアの配置の違いによるものとも理解される。すなわち、一般に、エアミックスドアは、空調装置をベントモードで運転する場合は、加熱用熱交換器と空調ケースの内側面との間の迂回路の開口面積を最大にするように配置されるのに対し、フットモードで運転する場合は、上記迂回路の開口面積を最小にするように配置される。図6に示す例でも、エアミックスドアは、ベントモードで運転中は、上記迂回路の開口面積を最大にするように配置され、フットモードで運転中は、上記迂回路の開口面積を最小にするように配置された。したがって、図6は、エアミックスドアが上記迂回路の開口面積を最大にするように配置される場合と最小にするように配置される場合とでは、上記開口面積を最小にするように配置される場合のほうが、消音すべき音の周波数が低いことを示している、と理解することもできる。  The difference in the frequency of the sound to be silenced due to the difference in the operation mode shown in FIG. 6 is also understood to be due to the difference in the arrangement of the air mix doors. That is, in general, the air mix door is arranged so as to maximize the opening area of the bypass between the heat exchanger for heating and the inner surface of the air conditioning case when the air conditioner is operated in the vent mode. On the other hand, when operating in the foot mode, it is arranged so as to minimize the opening area of the bypass. Also in the example shown in FIG. 6, the air mix door is arranged so as to maximize the opening area of the bypass when operating in the vent mode, and minimizes the opening area of the bypass when operating in the foot mode. Was arranged to. Therefore, FIG. 6 is arranged to minimize the opening area when the air mix door is arranged so as to maximize the opening area of the detour and when it is arranged so as to minimize the opening area. It can be understood that the case where the noise is suppressed indicates that the frequency of the sound to be silenced is lower. ‥
この点を考慮して、制御装置60は、エアミックスドア7の位置に応じて、切替ドア50の第1位置を決定してもよい。言い換えると、制御装置60は、エアミックスドア7が迂回路3bを開放する位置にある場合よりも閉鎖する位置にある場合に、切替ドア50が第1位置に配置された際の外気取入口11の開口面積が小さくなるように、第1位置を決定してもよい。これにより、上述した式から理解されるように、エアミックスドア7が迂回路3bの開口面積を最大にするように配置される場合に共鳴室Sで消音される音の周波数よりも、迂回路3bの開口面積を最小にするように配置される場合に共鳴室Sで消音される音の周波数を低くすることができる。  In consideration of this point, the control device 60 may determine the first position of the switching door 50 according to the position of the air mix door 7. In other words, the control device 60 controls the outside air intake port 11 when the switching door 50 is arranged in the first position when the air mixing door 7 is in the closed position rather than in the opening position. The first position may be determined so that the opening area of the. As a result, as understood from the above formula, when the air mix door 7 is arranged so as to maximize the opening area of the detour 3b, the detour is more than the frequency of the sound silenced in the resonance chamber S. When arranged so as to minimize the opening area of 3b, it is possible to lower the frequency of the sound that is silenced in the resonance chamber S. ‥
なお、この場合、制御装置60は、空調ケース内ドア制御部8bから得られる情報に基づいて、エアミックスドア7の位置(エアミックスドア7が迂回路3bの開口面積を最大にする位置にあるか最小にする位置にあるか)を判断してもよい。また、制御装置60と空調ケース内ドア制御部8bとが一体的に構成されて複合制御装置とされている場合、複合制御装置は、エアミックスドア7の位置の指示情報に基づいて、切替ドア50の第1位置を決定してもよい。  In this case, the control device 60 is located at the position of the air mix door 7 (the position where the air mix door 7 maximizes the opening area of the detour 3b) based on the information obtained from the air conditioning case interior door control unit 8b. Or whether it is in the position to be minimized). Further, when the control device 60 and the air-conditioning case interior door control unit 8b are integrally configured to be a combined control device, the combined control device may change the switching door based on the instruction information of the position of the air mix door 7. A first position of 50 may be determined. ‥
さらに、図6に示す運転モードの違いによる消音すべき音の周波数の違いは、空調ケース内の通気抵抗の違いによるものとも理解される。すなわち、上述のように、図6に示す例において、空調装置をベントモードで運転した際、エアミックスドアが上記迂回路の開口面積を最大にするように配置されたため、空調ケース内の通気抵抗が比較的低くなったのに対し、フットモードで運転した際は、エアミックスドアが上記迂回路の開口面積を最小にするように配置されたため、空調ケース内の通気抵抗が比較的高くなった。したがって、図6は、空調ケース内の通気抵抗が低い場合と高い場合とでは、上記通気抵抗が高い場合のほうが、消音すべき音の周波数が低いことを示している、と理解することもできる。  Further, it can be understood that the difference in frequency of the sound to be silenced due to the difference in operation mode shown in FIG. 6 is due to the difference in ventilation resistance in the air conditioning case. That is, as described above, in the example shown in FIG. 6, when the air conditioner is operated in the vent mode, the air mix door is arranged so as to maximize the opening area of the bypass, so that the ventilation resistance in the air conditioning case is increased. However, when operating in foot mode, the air mix door was placed so as to minimize the opening area of the above detour, so the ventilation resistance inside the air conditioning case became relatively high. . Therefore, it can be understood that FIG. 6 shows that, when the ventilation resistance in the air conditioning case is low and when it is high, the frequency of sound to be silenced is lower when the ventilation resistance is higher. . ‥
この点を考慮して、制御装置60は、空調ケース30内の通気抵抗が高いほど、あるいはスクロールハウジング6の吐出口6bを流出した空気が受ける通気抵抗が高いほど、切替ドア50が第1位置に配置された際の外気取入口11の開口面積が小さくなるように、第1位置を決定してもよい。これにより、上述した式から理解されるように、上記通気抵抗が高
いほど、共鳴室Sで消音される音の周波数を低くすることができる。 
In consideration of this point, in the control device 60, the higher the ventilation resistance in the air conditioning case 30, or the higher the ventilation resistance received by the air flowing out from the discharge port 6b of the scroll housing 6, the more the switching door 50 is in the first position. The first position may be determined so that the opening area of the outside air intake 11 when arranged in the above is small. As a result, as understood from the above equation, the higher the ventilation resistance, the lower the frequency of the sound muffled in the resonance chamber S can be.
以上に説明してきた実施形態において、車両用の空調装置1で用いられる送風機2は、周方向翼列を形成する複数の翼4aを有し、モータ5の回転軸5aにより回転駆動される羽根車4を有している。また、送風機2は、羽根車4を収容する内部空間と、上記回転軸5aの軸方向に開口する吸込口6aと、羽根車4の周方向に開口する吐出口6bと、を有するスクロールハウジング6を有している。また、送風機2は、スクロールハウジング6の吸込口6aに連通する内部空間を有する空気取入ハウジング10を有している。空気取入ハウジング10には、空気取入ハウジング10の内部空間に外気を取り込むための少なくとも一つの外気取入口11と、空気取入ハウジング10の内部空間に内気を取り込むための少なくとも一つの内気取入口12と、が設けられている。また、送風機2は、外気取入口11及び内気取入口12の開閉を行う少なくとも一つの切替ドア50を有している。そして、空気取入ハウジング10は、両端部に開口部を有する筒状の外気取入ダクト20であって、一方の開口部21が外気取入口11に接続し、外気取入口11から空気取入ハウジング10の内部空間とは反対側に延び出す外気取入ダクト20と、外気取入口11から離間した位置で外気取入ダクト20の開閉を行うダクト開閉ドア25と、を有している。  In the embodiment described above, the blower 2 used in the air conditioner 1 for a vehicle has a plurality of blades 4a forming a circumferential blade row, and is driven by a rotating shaft 5a of a motor 5 to rotate the impeller. Have four. Further, the blower 2 has a scroll housing 6 having an internal space for accommodating the impeller 4, a suction port 6a opening in the axial direction of the rotating shaft 5a, and a discharge port 6b opening in the circumferential direction of the impeller 4. have. Further, the blower 2 has an air intake housing 10 having an internal space communicating with the suction port 6 a of the scroll housing 6. The air intake housing 10 has at least one outside air intake 11 for taking in outside air into the internal space of the air intake housing 10, and at least one inside air intake for taking in internal air into the internal space of the air intake housing 10. An inlet 12 is provided. Further, the blower 2 has at least one switching door 50 that opens and closes the outside air intake 11 and the inside air intake 12. The air intake housing 10 is a cylindrical outside air intake duct 20 having openings at both ends, one opening 21 is connected to the outside air intake 11, and the air intake is introduced from the outside air intake 11. The housing 10 has an outside air intake duct 20 extending to the side opposite to the internal space, and a duct opening / closing door 25 that opens and closes the outside air intake duct 20 at a position separated from the outside air intake 11. ‥
送風機2が発する騒音は、送風機2が内気モードで運転される場合に室内に漏れやすいが、上述した送風機2によれば、送風機2を内気モードで運転する時に、外気取入ダクト20の内部に共鳴室Sを形成して、上記騒音を低減させることができ、車両の室内への騒音の漏れを抑制することができる。具体的には、送風機2を内気モードで運転する際、ダクト開閉ドア25で外気取入ダクト20を閉鎖し、外気取入口11が部分的に開放されるように切替ドア50を配置すれば、外気取入ダクト20とダクト開閉ドア25と切替ドア50とで囲まれる空間を、共鳴室Sとして利用することができる。なお、外気取入ダクト20の内部空間が共鳴室Sとして利用されるので、空気取入ハウジング10あるいは送風機2が大型化することが防止される。また、送風機2を内気モードで運転する際に外気取入ダクト20の内部空間を共鳴室Sとして利用しても、内気取入口12を通じて空気取入ハウジング10の内部空間に流入する内気の流路は縮小されない。このため、送風機2の送風能力が低下してしまう虞がない。さらに、送風機2を内気モードでの運転する際に外気取入口11が部分的に開放されても、ダクト開閉ドア25で外気取入ダクト20を閉鎖することにより、外気が送風機2内に流入することを防止することができる。したがって、送風機2を内気モードで運転中に送風機2内の内気に外気が混入して空調装置1の空調効果が損なわれる、ということが防止される。また、切替ドア50の位置を変更して外気取入口11の開口面積を変更すれば、共鳴室Sで消音される音の周波数を変更することができる。  The noise generated by the blower 2 easily leaks into the room when the blower 2 is operated in the inside air mode, but according to the blower 2 described above, when the blower 2 is operated in the inside air mode, the noise is generated inside the outside air intake duct 20. By forming the resonance chamber S, the noise can be reduced, and the leakage of noise into the vehicle interior can be suppressed. Specifically, when the blower 2 is operated in the inside air mode, the outside air intake duct 20 is closed by the duct opening / closing door 25, and the switching door 50 is arranged so that the outside air intake 11 is partially opened. The space surrounded by the outside air intake duct 20, the duct opening / closing door 25, and the switching door 50 can be used as the resonance chamber S. Since the internal space of the outside air intake duct 20 is used as the resonance chamber S, it is possible to prevent the air intake housing 10 or the blower 2 from increasing in size. In addition, even when the internal space of the outside air intake duct 20 is used as the resonance chamber S when the blower 2 is operated in the inside air mode, the flow path of the internal air flowing into the internal space of the air intake housing 10 through the internal air intake port 12. Is not reduced. Therefore, there is no fear that the blowing capacity of the blower 2 will decrease. Further, even when the outside air intake 11 is partially opened when the blower 2 is operated in the inside air mode, the outside air is introduced into the blower 2 by closing the outside air intake duct 20 with the duct opening / closing door 25. Can be prevented. Therefore, it can be prevented that the outside air is mixed into the inside air of the blower 2 and the air conditioning effect of the air conditioner 1 is impaired while the blower 2 is operating in the inside air mode. Further, if the position of the switching door 50 is changed and the opening area of the outside air intake 11 is changed, the frequency of the sound silenced in the resonance chamber S can be changed. ‥
具体的には、上述した実施形態において、切替ドア50は、内気取入口12を開放する第1位置と内気取入口12を閉鎖する第2位置との間を移動可能である。そして、切替ドア50が上記第1位置にあるとき、外気取入ダクト20の内部空間と空気取入ハウジング10の内部空間とが連通するように、外気取入口11は部分的に開放される。このようにして、送風機2を内気モードで運転中に、外気取入ダクト20内に共鳴室Sを形成することができる。また、上記第1位置を変更して外気取入口11の開口面積を変更することにより、外気取入ダクト20で消音される音の周波数を変更することができる。  Specifically, in the above-described embodiment, the switching door 50 is movable between a first position that opens the inside air intake 12 and a second position that closes the inside air intake 12. Then, when the switching door 50 is in the first position, the outside air intake 11 is partially opened so that the inside space of the outside air intake duct 20 and the inside space of the air intake housing 10 communicate with each other. In this way, the resonance chamber S can be formed in the outside air intake duct 20 while the blower 2 is operating in the inside air mode. Further, by changing the first position to change the opening area of the outside air intake 11, it is possible to change the frequency of the sound silenced in the outside air intake duct 20. ‥
また、上述した実施形態において、送風機2は、ダクト開閉ドア25および切替ドア50を制御する制御装置60をさらに備えている。そして、制御装置60は、切替ドア50を第1位置に配置するとき、ダクト開閉ドア25を、外気取入ダクト20を閉鎖する位置に配置する。これにより、上述のように、送風機2を内気モードで運転中に、部分的に開放された外気取入口11を通じて外気が空気取入ハウジング10内に流入することが防止される。  In addition, in the above-described embodiment, the blower 2 further includes the control device 60 that controls the duct opening / closing door 25 and the switching door 50. When the switching door 50 is arranged at the first position, the control device 60 arranges the duct opening / closing door 25 at a position where the outside air intake duct 20 is closed. This prevents outside air from flowing into the air intake housing 10 through the partially opened outside air inlet 11 while the blower 2 is operating in the inside air mode, as described above. ‥
また、上述した実施形態において、制御装置60は、切替ドア50が第1位置に配置され、且つ、ダクト開閉ドア25が外気取入ダクト20を閉鎖する位置に配置されるよう、切替ドア50およびダクト開閉ドア25を制御する際、切替ドア50を制御した後、ダクト開閉ドア25を制御する。これにより、ダクト開閉ドア25で外気取入ダクト20を閉鎖する前に、外気取入ダクト20内を流れる空気の流量を低減させることができる。この結果、ダクト開閉ドア25を駆動する際に、外気取入ダクト20内を流れる空気によってダクト開閉ドア25が受ける空気抵抗を低減させることができ、ダクト開閉ドア25を容易に駆動することができる。  Further, in the above-described embodiment, the control device 60 controls the switching door 50 so that the switching door 50 is arranged at the first position and the duct opening / closing door 25 is arranged at the position closing the outside air intake duct 20. When controlling the duct opening / closing door 25, the duct opening / closing door 25 is controlled after controlling the switching door 50. Thereby, the flow rate of the air flowing through the outside air intake duct 20 can be reduced before the outside air intake duct 20 is closed by the duct opening / closing door 25. As a result, when the duct opening / closing door 25 is driven, the air resistance received by the duct opening / closing door 25 by the air flowing through the outside air intake duct 20 can be reduced, and the duct opening / closing door 25 can be easily driven. . ‥
また、以上に説明してきた実施形態において、車両用の空調装置1は、上述した送風機2と、送風機2から送り出された空気を車両の室内に吹き出す空気調和部3と、を備えている。  Further, in the embodiment described above, the vehicle air conditioner 1 includes the blower 2 described above, and the air conditioner 3 that blows the air sent from the blower 2 into the cabin of the vehicle. ‥
また、上述した実施形態において、車両用の空調装置1は、上記制御装置60を有する送風機2と、送風機2から送り出された空気を車両の室内に吹き出す空気調和部3と、を備えている。そして、空気調和部3は、内部に空気が流れる空気通路3aを形成する空調ケース30を有している。空調ケース30は、スクロールハウジング6の吐出口6bに接続されて送風機2からの空気が流入する流入口31と、空気通路3aを通過した空気が吹き出される少なくとも一つの吹出通路32a,32b,32cと、を有している。また、空気調和部3は、少なくとも一つの吹出通路32a,32b,32cの各々に対して設けられ、対応する吹出通路32a,32b,32cを開放する位置と閉鎖する位置との間で移動可能な少なくとも一つの吹出通路ドア38a,38b,38cを有している。そして、制御装置60は、少なくとも一つの吹出通路ドア38a,38b,38cの位置に応じて第1位置を決定する。  Further, in the above-described embodiment, the vehicle air conditioner 1 includes the blower 2 including the control device 60, and the air conditioner 3 that blows the air sent from the blower 2 into the vehicle cabin. The air conditioning unit 3 has an air conditioning case 30 that forms an air passage 3a through which air flows. The air conditioning case 30 is connected to the discharge port 6b of the scroll housing 6 and has an inflow port 31 into which air from the blower 2 flows, and at least one blowout passage 32a, 32b, 32c through which air passing through the air passage 3a is blown out. And have. The air conditioner 3 is provided for each of the at least one outlet passages 32a, 32b, 32c, and is movable between a position where the corresponding outlet passages 32a, 32b, 32c are opened and a position where they are closed. It has at least one outlet passage door 38a, 38b, 38c. Then, the control device 60 determines the first position according to the position of at least one of the outlet passage doors 38a, 38b, 38c. ‥
このような空調装置1によれば、吹出通路ドア38a,38b,38cの位置に応じて異なる消音すべき音(言い換えると、いずれの吹出通路32a,32b,32cが開放(閉鎖)されるかに応じて異なる消音すべき音)を、適切に消音することができる。  According to such an air conditioner 1, different sounds to be silenced depending on the positions of the outlet passage doors 38a, 38b, 38c (in other words, which outlet passages 32a, 32b, 32c are opened (closed)). Different sounds to be muted) can be appropriately muted. ‥
具体的には、少なくとも一つの吹出通路32a,32b,32cは、フット吹出通路32aと、フット吹出通路32aよりも上方に設けられた上方吹出通路(ベント吹出通路)32bと、を含んでいる。また、少なくとも一つの吹出通路ドア38a,38b,38cは、フット吹出通路32aを開放する位置と閉鎖する位置との間で移動可能なフット吹出通路ドア38aと、上方吹出通路(ベント吹出通路)32bを開放する位置と閉鎖する位置との間で移動可能な上方吹出通路ドア(ベント吹出通路ドア)38bと、を含んでいる。そして、制御装置60は、フット吹出通路ドア38aがフット吹出通路32aを閉鎖する位置にあり、且つ、上方吹出通路ドア(ベント吹出通路ドア)38bが上方吹出通路(ベント吹出通路)32bを開放する位置にある場合よりも、フット吹出通路ドア38aがフット吹出通路32aを開放する位置にあり、且つ、上方吹出通路ドア(ベント吹出通路ドア)38bが上方吹出通路(ベント吹出通路)32bを閉鎖する位置にある場合に、切替ドア50が第1位置に配置された際の外気取入口11の開口面積が小さくなるように、第1位置を決定する。  Specifically, at least one outlet passage 32a, 32b, 32c includes a foot outlet passage 32a and an upper outlet passage (vent outlet passage) 32b provided above the foot outlet passage 32a. The at least one outlet passage door 38a, 38b, 38c is a foot outlet passage door 38a movable between a position where the foot outlet passage 32a is opened and a position where the foot outlet passage 32a is closed, and an upper outlet passage (vent outlet passage) 32b. And an upper outlet passage door (vent outlet passage door) 38b that is movable between an open position and a closed position. Then, in the control device 60, the foot outlet passage door 38a is in a position to close the foot outlet passage 32a, and the upper outlet passage door (vent outlet passage door) 38b opens the upper outlet passage (vent outlet passage) 32b. The foot outlet passage door 38a opens the foot outlet passage 32a more than when it is in the position, and the upper outlet passage door (vent outlet passage door) 38b closes the upper outlet passage (vent outlet passage) 32b. When the switching door 50 is in the position, the first position is determined so that the opening area of the outside air intake 11 when the switching door 50 is arranged in the first position is small. ‥
一般に、送風機2が発する騒音は、空調装置1を、フット吹出通路32aが閉鎖され上方吹出通路(ベント吹出通路)32bが開放される運転モード(例えばベントモード)で運転する場合よりも、フット吹出通路32aが開放され上方吹出通路(ベント吹出通路)32bが閉鎖される運転モード(例えばフットモード)で運転する場合のほうが、消音すべき音の周波数が低い。上述した空調装置1によれば、空調装置1を、フット吹出通路32aが閉鎖され上方吹出通路(ベント吹出通路)32bが開放される運転モード(例えばベントモード)で運転する場合よりも、フット吹出通路32aが開放され上方吹出通路(ベント吹出通路)32bが閉鎖される運転モード(例えばフットモード)で運転する場合に、共鳴室Sで消音される音の周波数を低くすることができる。  In general, the noise generated by the blower 2 causes the foot blowout more than when the air conditioner 1 is operated in an operation mode (for example, a vent mode) in which the foot blowout passage 32a is closed and the upper blowout passage (vent blowout passage) 32b is opened. When operating in an operation mode (for example, a foot mode) in which the passage 32a is opened and the upper outlet passage (vent outlet passage) 32b is closed, the frequency of sound to be silenced is lower. According to the air conditioner 1 described above, the foot blowout is performed more than when the air blower 1 is operated in the operation mode (for example, the vent mode) in which the foot blowout passage 32a is closed and the upper blowout passage (vent blowout passage) 32b is opened. When operating in an operation mode (for example, a foot mode) in which the passage 32a is opened and the upper outlet passage (vent outlet passage) 32b is closed, it is possible to lower the frequency of the sound muffled in the resonance chamber S. ‥
あるいは、上述した実施形態において、空調装置1は、上記制御装置60を有する送風機2と、送風機2から送り出された空気を車両の室内に吹き出す空気調和部3と、を備えている。空気調和部3は、内部に空気が流れる空気通路3aを形成する空調ケース30と、空気通路3a内に、空調ケース30の内側面33cとの間に迂回路3bを形成するように配置された加熱用熱交換器36と、を有する。また、空気調和部3は、空気通路3a内に配置され、迂回路3bを開放する位置と閉鎖する位置との間で移動して、加熱用熱交換器36に向かう空気と迂回路3bに向かう空気との比率を調整するエアミックスドア7を有する。そして、制御装置60は、エアミックスドア7が迂回路3bを開放する位置にある場合よりも、エアミックスドア7が迂回路3bを閉鎖する位置にある場合に、切替ドア50が第1位置に配置された際の外気取入口11の開口面積が小さくなるように、第1位置を決定する。  Alternatively, in the above-described embodiment, the air conditioner 1 includes the blower 2 including the control device 60, and the air conditioner 3 that blows out the air sent from the blower 2 into the vehicle cabin. The air conditioner 3 is arranged so as to form a detour 3b between the air conditioning case 30 that forms an air passage 3a through which air flows and the inner side surface 33c of the air conditioning case 30 in the air passage 3a. And a heat exchanger 36 for heating. Further, the air conditioning unit 3 is arranged in the air passage 3a, moves between a position where the detour 3b is opened and a position where the detour 3b is closed, and goes to the air toward the heating heat exchanger 36 and the detour 3b. It has an air mix door 7 for adjusting the ratio with air. Then, the control device 60 sets the switching door 50 to the first position when the air mix door 7 is located at the position where the air mix door 7 closes the detour 3b rather than when the air mix door 7 is located at the position where the detour 3b is opened. The first position is determined so that the opening area of the outside air intake 11 when arranged is small. ‥
一般に、送風機2が発する騒音は、エアミックスドア7を迂回路3bを開放する位置に配置して空調装置1を運転する場合よりも、エアミックスドア7を迂回路3bを閉鎖する位置に配置して空調装置1を運転する場合のほうが、消音すべき音の周波数が低い。上述した空調装置1によれば、エアミックスドア7が迂回路3bを開放する位置にある場合よりも、エアミックスドア7が迂回路3bを閉鎖する位置にある場合に、共鳴室Sで消音される音の周波数を低くすることができる。  Generally, the noise generated by the blower 2 is generated by arranging the air mix door 7 at a position to close the bypass 3b as compared with the case of operating the air conditioner 1 by arranging the air mix door 7 at a position to open the bypass 3b. When the air conditioner 1 is operated by using the air conditioner, the frequency of the sound to be silenced is lower. According to the air conditioner 1 described above, the sound is muted in the resonance chamber S when the air mix door 7 is at the position where the air mix door 7 closes the bypass 3b, rather than when the air mix door 7 is at the position where the bypass 3b is open. It is possible to lower the sound frequency. ‥
あるいは、上述した実施形態において、制御装置60は、吐出口6bを流出した空気が受ける通気抵抗が高いほど切替ドア50が第1位置に配置された際の外気取入口11の開口面積が小さくなるように、第1位置を決定する。一般に、送風機2が発する騒音は、上記通気抵抗が低い場合と高い場合とでは、上記通気抵抗が高い場合のほうが、当該騒音を効果的に低減させるために消音すべき音の周波数が低い。したがって、上記通気抵抗が高いほど、切替ドア50が第1位置に配置された際の外気取入口11の開口面積が小さくなるように、第1位置を決定することで、上記消音されるべき音を共鳴室Sで適切に消音することができる。  Alternatively, in the above-described embodiment, the control device 60 reduces the opening area of the outside air intake 11 when the switching door 50 is arranged at the first position as the ventilation resistance of the air flowing out from the discharge port 6b is higher. Thus, the first position is determined. In general, the noise generated by the blower 2 has a lower frequency of sound to be silenced in order to effectively reduce the noise, when the ventilation resistance is high and when the ventilation resistance is high. Therefore, the higher the ventilation resistance, the smaller the opening area of the outside air intake 11 when the switching door 50 is arranged at the first position becomes. Can be properly silenced in the resonance chamber S. ‥
<変形例1> 次に、図7および図8を参照して、上述の実施形態の空調装置の変形例1について説明する。図7は、変形例1による空調装置1aの構成を模式的に示す図である。また、図8は、従来の送風機が発する騒音の、羽根車の回転数の違いによる周波数特性の違いを示す図である。吹出しモードは、フットモードである。  <Modification 1> Next, Modification 1 of the air conditioner of the above-described embodiment will be described with reference to FIGS. 7 and 8. FIG. 7: is a figure which shows typically the structure of the air conditioner 1a by the modification 1. As shown in FIG. In addition, FIG. 8 is a diagram showing a difference in frequency characteristic of noise generated by a conventional blower due to a difference in rotation speed of an impeller. The blowing mode is a foot mode. ‥
図7および図8に示す変形例1では、図1乃至図6に示す空調装置1と比較して、制御装置60aが、モータ5の回転速度に基づいて切替ドア50およびダクト開閉ドア25を制御する点で異なっている。送風機2aおよび空調装置1aのその他の構成は、図1乃至図6に示す送風機2および空調装置1と略同一である。図7および図8に示す変形例1において、図1乃至図6に示す一実施の形態と同様の部分には同一符号を付して詳細な説明は省略する。  In Modified Example 1 shown in FIGS. 7 and 8, compared to the air conditioner 1 shown in FIGS. 1 to 6, the control device 60a controls the switching door 50 and the duct opening / closing door 25 based on the rotation speed of the motor 5. They are different in that they do. The other configurations of the blower 2a and the air conditioner 1a are substantially the same as those of the blower 2 and the air conditioner 1 shown in FIGS. 1 to 6. In Modification 1 shown in FIGS. 7 and 8, the same parts as those of the embodiment shown in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description thereof will be omitted. ‥
まず、図8を参照して、従来の送風機が発する騒音の、羽根車の回転速度の違いによる周波数特性の違いについて説明する。図8は、上述した従来の送風機の羽根車を、2900rpmの回転速度で回転させた場合および2000rpmの回転速度で回転させた場合に、送風機の内気取入口の近傍で得られた騒音の周波数特性を示す図である。横軸は周波数を示し、縦軸は1/3オクターブ帯域幅フィルタのA特性音圧レベルを示す。  First, with reference to FIG. 8, a difference in frequency characteristics of noise generated by a conventional blower due to a difference in rotation speed of an impeller will be described. FIG. 8 shows the frequency characteristics of noise obtained in the vicinity of the intake port of the blower when the impeller of the conventional blower described above is rotated at a rotation speed of 2900 rpm and when it is rotated at a rotation speed of 2000 rpm. FIG. The horizontal axis represents frequency, and the vertical axis represents the A characteristic sound pressure level of the 1/3 octave bandwidth filter. ‥
図8に示すように、羽根車を2000rpmの回転速度で回転させた場合、周波数特
性曲線は、80~6300Hzに亘って、全体としてなだらかな山を形成している。このような周波数特性を有する騒音の場合、音圧レベルが最も高い周波数の音(図8に示す例では800Hz近傍の音)を消音すれば、騒音を効果的に低減させることができる。一方で、羽根車を2900rpmの回転速度で回転させた場合、周波数特性曲線は、130Hz近傍で鋭いピークを形成し、その他の周波数帯域では、全体としてなだらかな山を形成している。このような周波数特性を有する騒音の場合、音圧レベルが鋭いピークを形成する130Hz近傍の音が耳障りな音として知覚される。したがって、130Hz近傍の音を消音すれば、騒音を効果的に低減させることができる。 
As shown in FIG. 8, when the impeller is rotated at a rotation speed of 2000 rpm, the frequency characteristic curve forms a gentle peak as a whole over the range of 80 to 6300 Hz. In the case of noise having such a frequency characteristic, the noise can be effectively reduced by silencing the sound of the frequency having the highest sound pressure level (sound near 800 Hz in the example shown in FIG. 8). On the other hand, when the impeller is rotated at a rotation speed of 2900 rpm, the frequency characteristic curve forms a sharp peak in the vicinity of 130 Hz, and in other frequency bands, it forms a gentle peak as a whole. In the case of noise having such frequency characteristics, a sound near 130 Hz at which a sound pressure level forms a sharp peak is perceived as an offensive sound. Therefore, if the sound near 130 Hz is silenced, the noise can be effectively reduced.
このように、送風機が発する騒音の特性は、羽根車の回転速度によって異なり、したがって、消音すべき音の周波数も、羽根車の回転速度によって異なる。そして、図8に示すように、羽根車の回転速度が速い場合と遅い場合とでは、速い場合の方が消音すべき音の周波数が低い。  As described above, the characteristics of the noise generated by the blower differ depending on the rotation speed of the impeller, and thus the frequency of the sound to be silenced also depends on the rotation speed of the impeller. Then, as shown in FIG. 8, when the rotation speed of the impeller is high and when the rotation speed is low, the frequency of the sound to be silenced is lower when the rotation speed is higher. ‥
この点を考慮して、変形例1の制御装置60aは、羽根車4を回転させるモータ5の回転速度に応じて第1位置を決定する。  Considering this point, the control device 60a of the first modification determines the first position according to the rotation speed of the motor 5 that rotates the impeller 4. ‥
具体的には、制御装置60aは、モータ5の回転速度が速いほど切替ドア50が第1位置に配置された際の外気取入口11の開口面積が小さくなるように、第1位置を決定する。これにより、上述した式から理解されるように、モータ5の回転速度が速いほど、共鳴室Sで消音される音の周波数を低くすることができる。  Specifically, the control device 60a determines the first position such that the faster the rotation speed of the motor 5 is, the smaller the opening area of the outside air intake 11 is when the switching door 50 is arranged at the first position. . As a result, as understood from the above formula, the higher the rotational speed of the motor 5, the lower the frequency of the sound muffled in the resonance chamber S can be. ‥
なお、図7に示す例では、制御装置60aは、モータ制御部8aから得られる情報に基づいて、モータ5の回転速度を判断する。  In the example shown in FIG. 7, the control device 60a determines the rotation speed of the motor 5 based on the information obtained from the motor control unit 8a. ‥
このように、変形例1による送風機2aにおいて、制御装置60aは、モータ5の回転速度が速いほど切替ドア50が第1位置に配置された際の外気取入口11の開口面積が小さくなるように、第1位置を決定する。一般に、送風機2が発する騒音は、モータ5の回転速度が速いほど、消音すべき音の周波数が低い。上述した送風機2aによれば、モータ5の回転速度が速いほど、上記共鳴室Sで消音される音の周波数を低くすることができる。  As described above, in the blower 2a according to the first modification, the control device 60a controls the opening area of the outside air intake 11 when the switching door 50 is arranged at the first position as the rotation speed of the motor 5 becomes faster. , Determine the first position. In general, the higher the rotational speed of the motor 5, the lower the frequency of the noise generated by the blower 2 should be. According to the blower 2a described above, the higher the rotational speed of the motor 5, the lower the frequency of the sound muffled in the resonance chamber S can be. ‥
<変形例2> 次に、図9を参照して、上述の実施形態の空調装置の変形例2について説明する。図9は、変形例2による空調装置1bの構成を模式的に示す図である。  <Modification 2> Next, with reference to FIG. 9, a modification 2 of the air conditioner of the above-described embodiment will be described. FIG. 9: is a figure which shows the structure of the air conditioning apparatus 1b by the modification 2 typically. ‥
図9に示す変形例2では、図1乃至図6に示す送風機2と比較して、送風機2bが騒音検出手段65を有しており、制御装置60bが、騒音検出手段65の検出結果に基づいて第1位置を決定することができるようになっている点で異なっている。送風機2bおよび空調装置1bのその他の構成は、図1乃至図6に示す送風機2および空調装置1と略同一である。図9に示す変形例2において、図1乃至図6に示す一実施の形態と同様の部分には同一符号を付して詳細な説明は省略する。  In Modified Example 2 shown in FIG. 9, compared to the blower 2 shown in FIGS. 1 to 6, the blower 2b has a noise detecting means 65, and the control device 60b is based on the detection result of the noise detecting means 65. It is different in that it is possible to determine the first position by using. The other configurations of the blower 2b and the air conditioner 1b are substantially the same as those of the blower 2 and the air conditioner 1 shown in FIGS. 1 to 6. In Modification 2 shown in FIG. 9, the same parts as those in the embodiment shown in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description thereof will be omitted. ‥
上述のように、送風機2bは、騒音レベルを検出する騒音検出手段65をさらに有している。図9に示す例では、騒音検出手段65は、内気取入口12の近傍に配置され、内気取入口12における騒音レベルを周波数毎に検出する。そして、制御装置60bは、騒音検出手段65により検出された周波数毎の騒音レベルに応じて、第1位置を決定する。具体的には、上記騒音を効果的に低減させるために消音すべき音の周波数が低いほど、切替ドア50が第1位置に配置された際の外気取入口11の開口面積が小さくなるように、第1位置を決定する。  As described above, the blower 2b further includes the noise detection unit 65 that detects the noise level. In the example shown in FIG. 9, the noise detection means 65 is arranged in the vicinity of the inside air intake 12, and detects the noise level at the inside air intake 12 for each frequency. Then, the control device 60b determines the first position according to the noise level for each frequency detected by the noise detecting means 65. Specifically, the lower the frequency of the sound to be silenced in order to effectively reduce the noise, the smaller the opening area of the outside air intake 11 when the switching door 50 is placed in the first position. , Determine the first position. ‥
このように、変形例2による送風機2bは、内気取入口12における騒音レベルを周波数毎に検出する騒音検出手段65をさらに備えている。そして、制御装置60bは、騒音検出手段65により検出された周波数毎の騒音レベルに応じて、第1位置を決定する。このような送風機2bによれば、送風機2bが発する騒音の中の消音すべき音を、共鳴室Sで適切に消音することができる。  As described above, the blower 2b according to the second modification further includes the noise detection unit 65 that detects the noise level at the inside air intake 12 for each frequency. Then, the control device 60b determines the first position according to the noise level for each frequency detected by the noise detecting means 65. According to such a blower 2b, it is possible to appropriately muffle the sound to be silenced in the noise generated by the blower 2b in the resonance chamber S. ‥
<変形例3> 次に、図10を参照して、上述の実施形態の空調装置の変形例3について説明する。図10は、変形例3による送風機2cの空気取入ハウジング10cを模式的に示す断面図である。  <Modification 3> Next, with reference to FIG. 10, a modification 3 of the air conditioner of the above-described embodiment will be described. FIG. 10 is a cross-sectional view schematically showing the air intake housing 10c of the blower 2c according to Modification 3. ‥
図10に示す変形例3では、図1乃至図6に示す空気取入ハウジング10と比較して、切替ドア55が片持ち式ドアあるいはバタフライドアと呼ばれる形式のものである点で異なっている。空気取入ハウジング10cおよび送風機2cのその他の構成は、図1乃至図6に示す空気取入ハウジング10および送風機2と略同一である。図10に示す変形例3において、図1乃至図6に示す一実施の形態と同様の部分には同一符号を付して詳細な説明は省略する。  The modified example 3 shown in FIG. 10 is different from the air intake housing 10 shown in FIGS. 1 to 6 in that the switching door 55 is of a type called a cantilever type door or a butterfly door. Other configurations of the air intake housing 10c and the blower 2c are substantially the same as those of the air intake housing 10 and the blower 2 shown in FIGS. 1 to 6. In Modification 3 shown in FIG. 10, the same parts as those of the embodiment shown in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description thereof will be omitted. ‥
切替ドア55は、平板な板状の部材である。切替ドア55は、外気取入口11および内気取入口12の上端縁の近傍において左右方向に延びるシャフト55sから延出している。切替ドア55は、シャフト55sを周方向に回転させると、シャフト55sの回転軸線を中心に回転して、内気取入口12を開放する第1位置(図10において実線で示す位置)と外気取入口11を開放する第2位置(図10において破線で示す位置)との間を移動することができるようになっている。シャフト55sは、図示しないアクチュエータによって回転駆動される。  The switching door 55 is a flat plate-shaped member. The switching door 55 extends from a shaft 55s extending in the left-right direction near the upper edges of the outside air intake 11 and the inside air intake 12. When the switching door 55 rotates the shaft 55s in the circumferential direction, the switching door 55 rotates about the rotation axis of the shaft 55s to open the inside air intake 12 (the position indicated by the solid line in FIG. 10) and the outside air intake. It is possible to move between a second position where 11 is opened (a position shown by a broken line in FIG. 10). The shaft 55s is rotationally driven by an actuator (not shown). ‥
図10に示す切替ドア55によっても、送風機2cを内気モードで運転中に、外気取入ダクト20内に共鳴室Sを形成することができる。  The switching door 55 shown in FIG. 10 can also form the resonance chamber S in the outside air intake duct 20 while the blower 2c is operating in the inside air mode. ‥
<変形例4> 次に、図11を参照して、上述の実施形態の空調装置の変形例4について説明する。図11は、変形例4による送風機2dの空気取入ハウジング10dを模式的に示す断面図である。  <Modification 4> Next, Modification 4 of the air conditioner of the above-described embodiment will be described with reference to FIG. FIG. 11: is sectional drawing which shows typically the air intake housing 10d of the air blower 2d by the modification 4. As shown in FIG. ‥
図11に示す変形例4では、図1乃至図6に示す空気取入ハウジング10と比較して、外気取入ダクト20の内部にリブ70が配置されている点で異なっている。空気取入ハウジング10dおよび送風機2dのその他の構成は、図1乃至図6に示す空気取入ハウジング10および送風機2と略同一である。図11に示す変形例4において、図1乃至図6に示す一実施の形態と同様の部分には同一符号を付して詳細な説明は省略する。  The modified example 4 shown in FIG. 11 is different from the air intake housing 10 shown in FIGS. 1 to 6 in that ribs 70 are arranged inside the outside air intake duct 20. Other configurations of the air intake housing 10d and the blower 2d are substantially the same as those of the air intake housing 10 and the blower 2 shown in FIGS. 1 to 6. In Modification 4 shown in FIG. 11, the same parts as those of the embodiment shown in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description thereof will be omitted. ‥
上述のように、外気取入ダクト20の内部には、リブ70が配置されている。図示された例では、リブ70は、板状の部材であり、外気取入ダクト20の内側面20a(より具体的には、内側面20aのうち下方に位置する下方面20au)に沿って延びている。リブ70は、その空気取入ハウジング10dの内部空間側の端部が、第1位置に配置された切替ドア50の周面51の下端縁51sに沿うように配置される。また、リブ70は、上記内側面20aの下方面20auとの間に、一方の端部が空気取入ハウジング10dの内部空間に向けて開放され、他方の端部が外気取入ダクト20の内部空間に向けて開放された通路71を形成している。  As described above, the rib 70 is arranged inside the outside air intake duct 20. In the illustrated example, the rib 70 is a plate-shaped member and extends along the inner side surface 20a of the outside air intake duct 20 (more specifically, the lower side surface 20au located below the inner side surface 20a). ing. The rib 70 is arranged such that the end portion of the air intake housing 10d on the inner space side is along the lower end edge 51s of the peripheral surface 51 of the switching door 50 arranged at the first position. Further, one end of the rib 70 is opened toward the inner space of the air intake housing 10d between the lower surface 20au of the inner side surface 20a and the other end of the rib 70 inside the outside air intake duct 20. A passage 71 opened to the space is formed. ‥
リブ70の長さL70は、上述した式における開口の長さLに対応する。したがって、このような空気取入ハウジング10dによれば、上述した式から理解されるように、リブ70の長さL70を調節することにより、共鳴室Sで消音される音の周波数を調節することができる。すなわち、共鳴室Sで消音される音の周波数を切替ドア50の周面51の下端縁51sの厚さに依存させることなく、騒音を低減させることができる。なお、長さL70を長くするほど、共鳴室Sで消音される音の周波数を小さくすることができる。  The length L70 of the rib 70 corresponds to the length L of the opening in the above equation. Therefore, according to such an air intake housing 10d, by adjusting the length L70 of the rib 70, as can be understood from the above formula, the frequency of the sound to be silenced in the resonance chamber S can be adjusted. You can That is, the noise can be reduced without depending on the frequency of the sound to be silenced in the resonance chamber S depending on the thickness of the lower end edge 51s of the peripheral surface 51 of the switching door 50. The longer the length L70 is, the smaller the frequency of the sound silenced in the resonance chamber S can be. ‥
このように、変形例4による送風機2dでは、外気取入ダクト20の内部に、外気取入ダクト20の内側面20aに沿って延び、当該内側面20aとの間に、一方の端部が空気取入ハウジング10dの内部空間に向けて開放され、他方の端部が外気取入ダクト20の内部空間に向けて開放された通路71を形成するリブ70が配置されている。このような送風機2dによれば、リブ70の長さL70を調節することにより、共鳴室Sで消音される音の周波数を調節することができる。  As described above, in the blower 2d according to the modified example 4, the inside of the outside air intake duct 20 extends along the inner side surface 20a of the outside air intake duct 20, and one end portion of the blower 2d is connected to the inside surface 20a. A rib 70 is provided which forms a passage 71 which is open toward the internal space of the intake housing 10d and whose other end is open toward the internal space of the outside air intake duct 20. According to such a blower 2d, by adjusting the length L70 of the rib 70, it is possible to adjust the frequency of the sound silenced in the resonance chamber S. ‥
<変形例5> 次に、図12を参照して、上述の実施形態の空調装置の変形例5について説明する。図12は、変形例5による送風機2eの空気取入ハウジング10eを模式的に示す断面図である。  <Fifth Modification> Next, a fifth modification of the air conditioner according to the above-described embodiment will be described with reference to FIG. FIG. 12 is a cross-sectional view schematically showing the air intake housing 10e of the blower 2e according to the modified example 5. ‥
図12に示す変形例5では、図10に示す変形例3の空気取入ハウジング10cと比較して、外気取入ダクト20の内部にリブ75が配置されている点で異なっている。空気取入ハウジング10eおよび送風機2eのその他の構成は、図10に示す変形例3の空気取入ハウジング10cおよび送風機2cと略同一である。図12に示す変形例5において、図10に示す変形例3と同様の部分には同一符号を付して詳細な説明は省略する。  The modification 5 shown in FIG. 12 is different from the air intake housing 10c of the modification 3 shown in FIG. 10 in that a rib 75 is arranged inside the outside air intake duct 20. Other configurations of the air intake housing 10e and the blower 2e are substantially the same as those of the air intake housing 10c and the blower 2c of the third modification shown in FIG. In Modification 5 shown in FIG. 12, the same parts as those in Modification 3 shown in FIG. 10 are designated by the same reference numerals, and detailed description thereof will be omitted. ‥
上述のように、外気取入ダクト20の内部には、リブ75が配置されている。図示された例では、リブ75は、板状の部材であり、外気取入口11の下端縁の近傍から、上方かつ後方に向けて延びている。リブ75は、第1位置に配置された切替ドア55に沿って延びており、第1位置に配置された切替ドア55との間に、一方の端部が空気取入ハウジング10cの内部空間に向けて開放され、他方の端部が外気取入ダクト20の内部空間に向けて開放された通路76を形成している。  As described above, the ribs 75 are arranged inside the outside air intake duct 20. In the illustrated example, the rib 75 is a plate-shaped member and extends upward and rearward from the vicinity of the lower edge of the outside air intake 11. The rib 75 extends along the switching door 55 arranged in the first position, and one end of the rib 75 is located inside the air intake housing 10c between the rib 75 and the switching door 55 arranged in the first position. The passage 76 is open toward the outside and the other end is opened toward the internal space of the outside air intake duct 20. ‥
リブ75の長さL75は、上述した式における開口の長さLに対応する。したがって、このような空気取入ハウジング10eによれば、上述した式から理解されるように、リブ75の長さL75を調節することにより、外気取入ダクト20内に形成される共鳴室Sで消音される音の周波数を調節することができる。すなわち、共鳴室Sで消音される音の周波数を外気取入ダクト20の周壁部の厚さに依存させることなく、騒音を低減させることができる。なお、長さL75を長くするほど、共鳴室Sで消音される音の周波数を小さくすることができる。  The length L75 of the rib 75 corresponds to the length L of the opening in the above equation. Therefore, according to such an air intake housing 10e, by adjusting the length L75 of the rib 75, the resonance chamber S formed in the outside air intake duct 20 is adjusted, as can be understood from the above formula. The frequency of the muted sound can be adjusted. That is, the noise can be reduced without depending on the frequency of the sound to be muffled in the resonance chamber S depending on the thickness of the peripheral wall portion of the outside air intake duct 20. It should be noted that as the length L75 is increased, the frequency of the sound silenced in the resonance chamber S can be decreased. ‥
このように、変形例5による送風機2eでは、外気取入ダクト20の内部に、第1位置に配置された切替ドア55に沿って延び、第1位置に配置された切替ドア55との間に、一方の端部が空気取入ハウジング10eの内部空間に向けて開放され、他方の端部が外気取入ダクト20の内部空間に向けて開放された通路76を形成するリブ75が配置されている。このような送風機2eによれば、リブ75の長さL75を調節することにより、共鳴室Sで消音される音の周波数を調節することができる。 As described above, in the blower 2e according to the modified example 5, the blower 2e extends inside the outside air intake duct 20 along the switching door 55 arranged at the first position, and between the switching door 55 arranged at the first position. There is a rib 75 forming a passage 76, one end of which is open toward the internal space of the air intake housing 10e and the other end of which is open toward the internal space of the outside air intake duct 20. There is. According to such a blower 2e, the frequency of the sound silenced in the resonance chamber S can be adjusted by adjusting the length L75 of the rib 75.
本発明に係る車両用の空調装置および車両用の空調装置で用いられる送風機は、工業的に製造することができ、また商取引の対象とすることができるから、経済的価値を有して産業上利用することができる。 INDUSTRIAL APPLICABILITY The air conditioner for a vehicle and the blower used in the air conditioner for a vehicle according to the present invention can be industrially manufactured and can be a target of commercial transactions, and thus have an economic value and are industrially advantageous. Can be used.
1、1a、1b 車両用の空調装置 2、2a、2b、2c、2d、2e 送風機 3 空気調和部 4 羽根車 6 スクロールハウジング 7 エアミックスドア 10、10c、10d、10e 空気取入ハウジング 11 外気取入口 12 内気取入口 20 外気取入ダクト 25 ダクト開閉ドア 30 空調ケース 32a、32b、32c 吹出通路 36 加熱用熱交換器 38a、38b、38c 吹出通路ドア 50、55 切替ドア 60、60a、60b 制御装置 65 騒音検出手段 70、75 リブ S 共鳴室 1, 1a, 1b Vehicle air conditioner 2, 2a, 2b, 2c, 2d, 2e Blower 3 Air conditioner 4 Impeller 6 Scroll housing 7 Air mix door 10, 10c, 10d, 10e Air intake housing 11 Outside air intake Inlet 12 Inside air intake 20 Outside air intake duct 25 Duct opening / closing door 30 Air conditioning case 32a, 32b, 32c Blowing passage 36 Heating heat exchangers 38a, 38b, 38c Blowing passage door 50, 55 switching door 60, 60a, 60b Control device 65 noise detection means 70, 75 rib S resonance chamber

Claims (13)

  1. 車両用の空調装置で用いられる送風機(2、2a、2b、2c、2d、2e)であって、 周方向翼列を形成する複数の翼(4a)を有し、モータ(5)の回転軸(5a)により回転駆動される羽根車(4)と、 前記羽根車(4)を収容する内部空間と、前記回転軸(5a)の軸方向に開口する吸込口(6a)と、前記羽根車の周方向に開口する吐出口(6b)と、を有するスクロールハウジング(6)と、 前記スクロールハウジング(6)の前記吸込口(6a)に連通する内部空間を有する空気取入ハウジング(10、10c、10d、10e)であって、前記空気取入ハウジングの内部空間に外気を取り込むための少なくとも一つの外気取入口(11)と、前記空気取入ハウジングの内部空間に内気を取り込むための少なくとも一つの内気取入口(12)と、が設けられた前記空気取入ハウジング(10、10c、10d、10e)と、 前記外気取入口(11)及び前記内気取入口(12)の開閉を行う少なくとも一つの切替ドア(50,55)と、 両端部に開口部を有する筒状の外気取入ダクト(20)であって、一方の開口部(21)が前記外気取入口(11)に接続し、前記外気取入口(11)から前記空気取入ハウジング(10、10c、10d、10e)の内部空間とは反対側に延び出す外気取入ダクト(20)と、 前記外気取入口(11)から離間した位置で前記外気取入ダクト(20)の開閉を行うダクト開閉ドア(25)と、を有する、送風機(2、2a、2b、2c、2d、2e)。 A blower (2, 2a, 2b, 2c, 2d, 2e) used in a vehicle air conditioner, having a plurality of blades (4a) forming a circumferential blade row, and a rotating shaft of a motor (5) An impeller (4) rotationally driven by (5a), an internal space for accommodating the impeller (4), a suction port (6a) opening in the axial direction of the rotating shaft (5a), and the impeller A scroll housing (6) having a discharge port (6b) opening in the circumferential direction of the scroll housing, and an air intake housing (10, 10c) having an internal space communicating with the suction port (6a) of the scroll housing (6). 10d, 10e), at least one outside air inlet (11) for taking in outside air into the internal space of the air intake housing and at least one for taking inside air into the internal space of the air intake housing. One The inside air intake (12) is provided with the air intake housing (10, 10c, 10d, 10e), and at least one for opening and closing the outside air intake (11) and the inside air intake (12) A switching door (50, 55) and a cylindrical outside air intake duct (20) having openings at both ends, one opening (21) being connected to the outside air intake (11), An outside air intake duct (20) extending from the outside air intake (11) to the side opposite to the internal space of the air intake housing (10, 10c, 10d, 10e) and separated from the outside air intake (11). A blower (2, 2a, 2b, 2c, 2d, 2e) having a duct opening / closing door (25) for opening and closing the outside air intake duct (20) at a position.
  2. 前記切替ドア(50,55)は、前記内気取入口(12)を開放する第1位置と前記内気取入口(12)を閉鎖する第2位置との間を移動可能であり、 前記切替ドア(50,55)が前記第1位置にあるとき、前記外気取入ダクト(20)の内部空間と前記空気取入ハウジング(10、10c、10d、10e)の内部空間とが連通するように、前記外気取入口(11)は部分的に開放される、請求項1に記載の送風機(2、2a、2b、2c、2d、2e)。 The switching doors (50, 55) are movable between a first position that opens the inside air intake port (12) and a second position that closes the inside air intake port (12). 50, 55) in the first position, the internal space of the outside air intake duct (20) communicates with the internal space of the air intake housings (10, 10c, 10d, 10e). Blower (2, 2a, 2b, 2c, 2d, 2e) according to claim 1, wherein the outside air intake (11) is partially open.
  3. 前記ダクト開閉ドア(25)および前記切替ドア(50,55)を制御する制御装置(60,60a,60b)をさらに備え、 前記制御装置(60,60a,60b)は、前記切替ドア(50,55)を前記第1位置に配置するとき、前記ダクト開閉ドア(25)を、前記外気取入ダクト(20)を閉鎖する位置に配置する、請求項2に記載の送風機(2、2a、2b、2c、2d、2e)。 The control device (60, 60a, 60b) further includes a control device (60, 60a, 60b) for controlling the duct opening / closing door (25) and the switching door (50, 55). The blower (2, 2a, 2b) according to claim 2, wherein the duct opening / closing door (25) is arranged at a position to close the outside air intake duct (20) when the 55) is arranged at the first position. 2c, 2d, 2e).
  4. 前記制御装置(60)は、前記吐出口(6b)を流出した空気が受ける通気抵抗が高いほど前記切替ドア(50,55)が前記第1位置に配置された際の前記外気取入口(11)の開口面積が小さくなるように、前記第1位置を決定する、請求項3に記載の送風機(2)。 The controller (60) controls the outside air intake (11) when the switching doors (50, 55) are arranged at the first position as the ventilation resistance of the air flowing out of the discharge port (6b) is higher. The blower (2) according to claim 3, wherein the first position is determined so that the opening area of) is small.
  5. 前記制御装置(60a)は、前記モータ(5)の回転速度が速いほど前記切替ドア(50,55)が前記第1位置に配置された際の前記外気取入口(11)の開口面積が小さくなるように、前記第1位置を決定する、請求項3に記載の送風機(2a)。 The control device (60a) has a smaller opening area of the outside air intake port (11) when the switching door (50, 55) is arranged at the first position as the rotation speed of the motor (5) is faster. The blower (2a) according to claim 3, wherein the first position is determined so that.
  6. 前記内気取入口(12)における騒音レベルを周波数毎に検出する騒音検出手段(65)をさらに備え、 前記制御装置(60b)は、前記騒音検出手段(65)により検出された周波数毎の騒音レベルに応じて、前記第1位置を決定する、請求項3に記載の送風機(2b)。 The control device (60b) further comprises noise detection means (65) for detecting the noise level at the inside air intake (12) for each frequency, and the noise level for each frequency detected by the noise detection means (65). The blower (2b) according to claim 3, wherein the first position is determined according to.
  7. 前記制御装置(60,60a,60b)は、前記切替ドア(50,55)が前記第1位置に配置され、且つ、前記ダクト開閉ドア(25)が前記外気取入ダクト(20)を閉鎖する位置に配置されるよう、前記切替ドア(50,55)および前記ダクト開閉ドア(25)を制御する際、前記切替ドア(50,55)を制御した後、前記ダクト開閉ドア(25)を制御する、請求項3乃至6のいずれか一項に記載の送風機(2、2a、2b、2c、2d、2e)。 In the control device (60, 60a, 60b), the switching door (50, 55) is arranged at the first position, and the duct opening / closing door (25) closes the outside air intake duct (20). When controlling the switching doors (50, 55) and the duct opening / closing door (25) so as to be arranged in a position, after controlling the switching door (50, 55), the duct opening / closing door (25) is controlled. The blower (2, 2a, 2b, 2c, 2d, 2e) according to any one of claims 3 to 6.
  8. 前記外気取入ダクト(20)の内部に、前記外気取入ダクト(20)の内側面に沿って延び、当該内側面(20a)との間に、一方の端部が前記空気取入ハウジング(10d)の内部空間に向けて開放され、他方の端部が前記外気取入ダクト(20)の内部空間に向けて開放された通路(71)を形成するリブ(70)が配置されている、請求項2に記載の送風機(2d)。 The inside of the outside air intake duct (20) extends along the inner side surface of the outside air intake duct (20), and one end of the outside air intake duct (20) is connected to the inside of the air intake housing (20a). A rib (70) forming a passage (71) open to the internal space of 10d) and the other end of which is open to the internal space of the outside air intake duct (20), The blower (2d) according to claim 2.
  9. 前記外気取入ダクト(20)の内部に、前記第1位置に配置された前記切替ドア(55)に沿って延び、前記第1位置に配置された前記切替ドア(55)との間に、一方の端部が前記空気取入ハウジング(10e)の内部空間に向けて開放され、他方の端部が前記外気取入ダクト(20)の内部空間に向けて開放された通路(76)を形成するリブ(75)が配置されている、請求項2に記載の送風機(2e)。 Inside the outside air intake duct (20), extending along the switching door (55) arranged at the first position, and between the switching door (55) arranged at the first position, A passage (76) is formed, one end of which is open toward the internal space of the air intake housing (10e) and the other end of which is open toward the internal space of the outside air intake duct (20). The blower (2e) according to claim 2, wherein the ribs (75) are arranged.
  10. 請求項1乃至9のいずれか一項に記載の送風機(2、2a、2b、2c、2d、2e)と、前記送風機から送り出された空気を車両の室内に吹き出す空気調和部(3)と、を備えた車両用の空調装置(1、1a、1b)。 The blower (2, 2a, 2b, 2c, 2d, 2e) according to any one of claims 1 to 9, and an air conditioner (3) that blows out the air sent from the blower into the interior of the vehicle. An air conditioner (1, 1a, 1b) for a vehicle, including:
  11. 請求項3に記載の送風機(2)と、前記送風機から送り出された空気を車両の室内に吹き出す空気調和部(3)と、を備えた車両用の空調装置(1)であって、 前記空気調和部(3)は、 内部に空気が流れる空気通路(3a)を形成する空調ケース(30)であって、前記スクロールハウジング(6)の吐出口(6b)に接続されて前記送風機(2)からの空気が流入する流入口(31)と、前記空気通路(3a)を通過した空気が吹き出される少なくとも一つの吹出通路(32a,32b,32c)と、を有する前記空調ケース(30)と、 前記少なくとも一つの吹出通路(32a,32b,32c)の各々に対して設けられ、対応する吹出通路を開放する位置と閉鎖する位置との間で移動可能な少なくとも一つの吹出通路ドア(38a,38b,38c)と、を有し、 前記制御装置(60)は、前記少なくとも一つの吹出通路ドアの位置に応じて前記第1位置を決定する、空調装置(1)。 An air conditioner (1) for a vehicle, comprising: the blower (2) according to claim 3; and an air conditioner (3) that blows the air sent out from the blower into the interior of the vehicle. The harmony part (3) is an air conditioning case (30) that forms an air passage (3a) through which air flows, and is connected to the discharge port (6b) of the scroll housing (6) and the blower (2). An air conditioner case (30) having an inflow port (31) into which air from the air flows in and at least one blowing passage (32a, 32b, 32c) through which the air passing through the air passage (3a) is blown out. , At least one outlet passage door (3 provided for each of the at least one outlet passages (32a, 32b, 32c) and movable between a position where the corresponding outlet passage is opened and a position where the corresponding outlet passage is closed) a, 38b, includes a 38c), the said control unit (60) determines said first position in response to the position of the at least one outlet passage door, the air conditioner (1).
  12. 前記少なくとも一つの吹出通路(32a,32b,32c)は、フット吹出通路(32a)と、前記フット吹出通路よりも上方に設けられた上方吹出通路(32b)と、を含み、 前記少なくとも一つの吹出通路ドアは、前記フット吹出通路(32a)を開放する位置と閉鎖する位置との間で移動可能なフット吹出通路ドア(38a)と、前記上方吹出通路(32b)を開放する位置と閉鎖する位置との間で移動可能な上方吹出通路ドア(38b)と、を含み、 前記制御装置(60)は、前記フット吹出通路ドア(38a)が前記フット吹出通路(32a)を閉鎖する位置にあり、且つ、前記上方吹出通路ドア(38b)が前記上方吹出通路(32b)を開放する位置にある場合よりも、前記フット吹出通路ドア(38a)が前記フット吹出通路(32a)を開放する位置にあり、且つ、前記上方吹出通路ドア(38b)が前記上方吹出通路(32b)を閉鎖する位置にある場合に、前記切替ドア(50,55)が前記第1位置に配置された際の前記外気取入口(11)の開口面積が小さくなるように、前記第1位置を決定する、請求項11に記載の空調装置(1)。 The at least one blowing passage (32a, 32b, 32c) includes a foot blowing passage (32a) and an upper blowing passage (32b) provided above the foot blowing passage, and the at least one blowing passage The passage doors are a foot outlet passage door (38a) movable between a position where the foot outlet passage (32a) is opened and a position where the foot outlet passage is closed, and a position where the upper outlet passage (32b) is opened and closed. And an upper blow-out passage door (38b) movable between the control device (60), the foot blow-out passage door (38a) closing the foot blow-out passageway (32a), In addition, the foot blowout passage door (38a) is positioned at a position where the foot blowout passage door (38a) opens the upper blowout passage (32b). When the passage (32a) is in the open position and the upper outlet passage door (38b) is in the position of closing the upper outlet passage (32b), the switching door (50, 55) is the first door. The air conditioner (1) according to claim 11, wherein the first position is determined such that the opening area of the outside air intake (11) when arranged in a position is small.
  13. 請求項3に記載の送風機(2)と、前記送風機から送り出された空気を車両の室内に吹き出す空気調和部(3)と、を備えた車両用の空調装置(1、1a、1b)であって、 前記空気調和部(3)は、 内部に空気が流れる空気通路(3a)を形成する空調ケース(30)と、 前記空気通路(3a)内に、前記空調ケース(30)の内側面との間に迂回路を形成するように配置された加熱用熱交換器(36)と、 前記空気通路(3a)内に配置され、前記迂回路を開放する位置と閉鎖する位置との間で移動して、前記加熱用熱交換器(36)に向かう空気と前記迂回路に向かう空気との比率を調整するエアミックスドア(7)と、を含み、 前記制御装置(60)は、前記エアミックスドア(7)が前記迂回路を開放する位置にある場合よりも、前記エアミックスドア(7)が前記迂回路を閉鎖する位置にある場合に、前記切替ドア(50,55)が前記第1位置に配置された際の前記外気取入口(11)の開口面積が小さくなるように、前記第1位置を決定する、空調装置(1)。 An air conditioner (1, 1a, 1b) for a vehicle, comprising: the blower (2) according to claim 3; and an air conditioner (3) that blows the air sent out from the blower into the interior of the vehicle. The air conditioning section (3) includes an air conditioning case (30) that forms an air passage (3a) through which air flows, and an inside surface of the air conditioning case (30) inside the air passage (3a). A heat exchanger (36) for heating arranged so as to form a detour between the two, and it is arranged in the air passage (3a) and moves between a position where the detour is opened and a position where the detour is closed. And an air mix door (7) for adjusting a ratio of air toward the heating heat exchanger (36) and air toward the detour, wherein the control device (60) includes the air mix. If the door (7) is in a position to open the detour Of the outside air intake (11) when the switching doors (50, 55) are arranged in the first position when the air mix door (7) is in a position to close the detour. An air conditioner (1) that determines the first position so that the opening area becomes small.
PCT/JP2019/037003 2018-10-16 2019-09-20 Blower and air conditioning device WO2020080036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-195123 2018-10-16
JP2018195123 2018-10-16

Publications (1)

Publication Number Publication Date
WO2020080036A1 true WO2020080036A1 (en) 2020-04-23

Family

ID=70283254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037003 WO2020080036A1 (en) 2018-10-16 2019-09-20 Blower and air conditioning device

Country Status (1)

Country Link
WO (1) WO2020080036A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255117A (en) * 1987-04-13 1988-10-21 Nippon Denso Co Ltd Forced air device for car air-conditioner
JP2000313221A (en) * 1999-04-28 2000-11-14 Denso Corp Fan unit
JP2006088863A (en) * 2004-09-24 2006-04-06 Valeo Thermal Systems Japan Corp Air introduction device of air-conditioner for automobile
JP2007008227A (en) * 2005-06-28 2007-01-18 Calsonic Kansei Corp Air conditioner for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255117A (en) * 1987-04-13 1988-10-21 Nippon Denso Co Ltd Forced air device for car air-conditioner
JP2000313221A (en) * 1999-04-28 2000-11-14 Denso Corp Fan unit
JP2006088863A (en) * 2004-09-24 2006-04-06 Valeo Thermal Systems Japan Corp Air introduction device of air-conditioner for automobile
JP2007008227A (en) * 2005-06-28 2007-01-18 Calsonic Kansei Corp Air conditioner for vehicle

Similar Documents

Publication Publication Date Title
JP3838200B2 (en) Centrifugal blower
JP3794098B2 (en) Centrifugal blower
CN113365856B (en) Air conditioner for vehicle
JP3921832B2 (en) Centrifugal blower
JP6976918B2 (en) Blower and air conditioner
WO2020080036A1 (en) Blower and air conditioning device
JP2002161896A (en) Centrifugal fan
JP3832009B2 (en) Centrifugal blower
JP4273564B2 (en) Centrifugal blower
JP2000127740A (en) Centrifugal blower
JP2001213134A (en) Air blowing unit of air conditioner for vehicle
JP2004068644A (en) Centrifugal blower
JP3817853B2 (en) Centrifugal blower
JP3873913B2 (en) Centrifugal blower
WO2021106406A1 (en) Blower
JP4314939B2 (en) Centrifugal blower and vehicle air conditioner using the same
JP2006298180A (en) Blower motor cooling structure
US11318808B2 (en) Blower noise suppressor for HVAC system
JP4411724B2 (en) Centrifugal blower
JP6794318B2 (en) Centrifugal blower for vehicle air conditioners
JP3814986B2 (en) Ventilation unit for vehicle air conditioner
JP4833511B2 (en) Small air conditioner for automobile
JP7255448B2 (en) Blower
WO2020218143A1 (en) Centrifugal blower
JP2002098096A (en) Centrifugal blower and air conditioning device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP