WO2020079932A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2020079932A1
WO2020079932A1 PCT/JP2019/031530 JP2019031530W WO2020079932A1 WO 2020079932 A1 WO2020079932 A1 WO 2020079932A1 JP 2019031530 W JP2019031530 W JP 2019031530W WO 2020079932 A1 WO2020079932 A1 WO 2020079932A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
subframe
period
signal data
light emitting
Prior art date
Application number
PCT/JP2019/031530
Other languages
French (fr)
Japanese (ja)
Inventor
匡史 尾崎
冨沢 一成
池田 雅延
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2020079932A1 publication Critical patent/WO2020079932A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present invention relates to a display device.
  • an inorganic EL display using an inorganic light emitting diode (micro LED) as a display element has been receiving attention (for example, refer to Patent Document 1).
  • an inorganic EL display a plurality of light emitting elements that emit light of different colors are arranged on an array substrate. Since the inorganic EL display uses a self-luminous element, it does not require a light source, and light is emitted without passing through a color filter, so that the light utilization efficiency is high. Further, the inorganic EL display is superior in environment resistance to organic EL displays using organic light emitting diodes (OLED: Organic Light Emitting Diode) as display elements.
  • OLED Organic Light Emitting Diode
  • the front inorganic light emitting diode is gradation controlled by current drive.
  • the current value is controlled to express a low gradation, the current value becomes unstable, and thus there is a possibility that the variation in luminance between pixels becomes large.
  • the gradation is expressed by controlling the lighting time with a constant current value, it takes on / off operation of the switching element and driving time until the current value rises to a desired current value.
  • the gradation is expressed by controlling the lighting time with a constant current value, it takes on / off operation of the switching element and driving time until the current value rises to a desired current value.
  • An object of the present invention is to provide a display device capable of excellent gradation control.
  • a display device includes an inorganic light emitting element provided in each of a plurality of pixels, and a drive circuit that supplies a drive signal to the plurality of inorganic light emitting elements based on a period control signal and an amplitude control signal.
  • One frame period for displaying an image for one frame includes a plurality of time-divided subframes, and the period control signal is associated with the first signal data for each of the plurality of subframes.
  • the amplitude control signal is associated with second signal data indicating one of a plurality of second signal values having different signal values, and the inorganic light emitting element, for each subframe,
  • the drive signal corresponding to the third signal data which is the combination of the first signal data and the second signal data, is supplied to express a gray scale.
  • FIG. 1 is a plan view showing a display device according to the first embodiment.
  • FIG. 2 is a plan view showing a plurality of pixels.
  • FIG. 3 is a circuit diagram showing a configuration example of a pixel circuit of a display device. 4 is a sectional view taken along the line IV-IV 'of FIG.
  • FIG. 5 is sectional drawing which shows the structural example of an inorganic light emitting element.
  • FIG. 6 is a cross-sectional view showing a modified example of the inorganic light emitting element.
  • FIG. 7 is a block diagram showing the configuration of the display device.
  • FIG. 8 is an explanatory diagram for explaining the relationship between subframes and video signals.
  • FIG. 9 is a table showing the relationship between the video signal and the period and current value.
  • FIG. 9 is a table showing the relationship between the video signal and the period and current value.
  • FIG. 10 is an explanatory diagram showing waveforms of the first signal data for different period control signals.
  • FIG. 11 is a graph showing the relationship between the second signal data and the subframe for each different amplitude control signal.
  • FIG. 12 is an explanatory diagram showing the waveform of the third signal data for each different video signal.
  • FIG. 13 is a graph showing voltage-current characteristics of the inorganic light emitting device.
  • FIG. 14 is a graph showing the relationship between the second signal data and the subframe for each different video signal in the display device according to the second embodiment.
  • FIG. 15 is an explanatory diagram showing the waveform of the third signal data of the display device according to the second embodiment.
  • FIG. 16 is a block diagram showing the configuration of the display device according to the third embodiment.
  • FIG. 17 is a table showing the relationship between the correction signal and the period and current value.
  • FIG. 18 is an explanatory diagram showing the waveform of the fourth signal data for each correction signal.
  • FIG. 19 is an explanatory diagram showing the waveform of the third signal data according to the third embodiment.
  • FIG. 20 is an explanatory diagram for explaining the relationship between subframes and video signals according to the fourth embodiment.
  • FIG. 21 is a circuit diagram showing a configuration example of the pixel circuit according to the fourth embodiment.
  • FIG. 22 is a circuit diagram showing a modified example of the pixel circuit.
  • FIG. 1 is a plan view showing a configuration example of the display device according to the first embodiment.
  • the display device 1 includes an array substrate 2, a pixel Pix, a gate driver 12, a drive IC (Integrated Circuit) 210, and a cathode wiring 60.
  • the array substrate 2 is a drive circuit substrate for driving each pixel Pix, and is also called a backplane or an active matrix substrate.
  • the display device 1 has a display area AA and a peripheral area GA.
  • the display area AA is an area in which a plurality of pixels Pix are arranged, and is an area for displaying an image.
  • the peripheral area GA is an area that does not overlap the plurality of pixels Pix, and is arranged outside the display area AA.
  • the plurality of pixels Pix are arranged in the first direction Dx and the second direction Dy in the display area AA.
  • the first direction Dx and the second direction Dy are parallel to the first surface 10a (see FIG. 4) of the substrate 10 of the array substrate 2.
  • the first direction Dx is orthogonal to the second direction Dy.
  • the first direction Dx may intersect with the second direction Dy instead of being orthogonal to each other.
  • the third direction Dz is a direction orthogonal to the first direction Dx and the second direction Dy.
  • the third direction Dz corresponds to the normal line direction of the substrate 10, for example.
  • the plan view refers to a positional relationship when viewed from the third direction Dz.
  • the gate driver 12 is a circuit that drives a plurality of gate lines GCL (see FIG. 3) based on various control signals from the drive IC 210.
  • the gate driver 12 sequentially or simultaneously selects a plurality of gate lines GCL and supplies a gate drive signal to the selected gate line GCL. As a result, the gate driver 12 selects the plurality of pixels Pix connected to the gate line GCL.
  • the drive IC 210 is a circuit that controls the display of the display device 1.
  • the drive IC 210 may be mounted as a COG (Chip On Glass) in the peripheral area GA of the substrate 10.
  • the drive IC 210 is not limited to this, and may be mounted as a COF (Chip On Film) on a flexible printed board or a rigid board connected to the peripheral area GA of the board 10.
  • the cathode wiring 60 is provided in the peripheral area GA of the substrate 10.
  • the cathode wiring 60 is provided so as to surround the plurality of pixels Pix in the display area AA and the gate driver 12 in the peripheral area GA.
  • the cathodes (cathode terminals 90p (see FIG. 4)) of the plurality of inorganic light emitting elements 100 are connected to a common cathode wiring 60 and are supplied with a fixed potential (eg, ground potential). More specifically, the cathode terminal 90p (second terminal) of the inorganic light emitting device 100 is connected to the cathode wiring 60 via the cathode electrode 90e (second electrode) on the TFT substrate side.
  • FIG. 2 is a plan view showing a plurality of pixels.
  • one pixel Pix includes a plurality of pixels 49.
  • the pixel Pix has a first pixel 49R, a second pixel 49G, and a third pixel 49B.
  • the first pixel 49R displays the primary color red as the first color.
  • the second pixel 49G displays the primary color green as the second color.
  • the third pixel 49B displays the primary color blue as the third color.
  • the first pixel 49R and the third pixel 49B are arranged in the first direction Dx.
  • the second pixel 49G and the third pixel 49B are arranged in the second direction Dy.
  • the first color, the second color, and the third color are not limited to red, green, and blue, respectively, and any color such as a complementary color can be selected.
  • a pixel 49 when it is not necessary to distinguish the first pixel 49R, the second pixel 49G, and the third pixel 49B from each other, it is referred to as a pixel 49.
  • the number of pixels 49 included in one pixel Pix is not limited to three, and four or more pixels 49 may be associated with each other.
  • the fourth pixel 49W associated with white as the fourth color may be included.
  • Each pixel 49 has an inorganic light emitting element 100.
  • the display device 1 displays an image by emitting different light for each inorganic light emitting element 100 in the first pixel 49R, the second pixel 49G, and the third pixel 49B.
  • the inorganic light emitting element 100 is an inorganic light emitting diode (LED: Light Emitting Diode) chip having a size of 3 ⁇ m or more and 300 ⁇ m or less in a plan view, and is called a micro LED (micro LED) or a mini LED (mini LED). .
  • a display device having a micro LED in each pixel is also called a micro LED display device. Note that the size of the inorganic light emitting element 100 is not limited by the size of the micro of the micro LED.
  • FIG. 3 is a circuit diagram showing a configuration example of a pixel circuit of a display device.
  • the pixel circuit PIC is a drive circuit that drives the inorganic light emitting element 100.
  • the pixel circuit PIC includes a driving transistor Tr1, a current switching transistor Tr2, and an inorganic light emitting element 100.
  • the transistors Tr1 and Tr2, and a transistor Tr5 are thin film transistors (Thin Film Transistors: TFTs).
  • the transistor Tr1 has a gate connected to the drain of the transistor Tr2, a source connected to the power supply line LVCC, and a drain connected to the anode of the inorganic light emitting element 100.
  • the transistor Tr2 has a gate connected to the gate line GCL, a source connected to the signal line SGL, and a drain connected to the gate of the transistor Tr1.
  • the capacitor CS has one end connected to the gate of the transistor Tr1 and the drain of the transistor Tr2, and the other end connected to the power supply line LVCC.
  • the capacitor CS is added to the pixel circuit PIC in order to suppress the fluctuation of the gate voltage due to the parasitic capacitance of the transistor Tr1 and the leak current.
  • the cathode of the inorganic light emitting element 100 is connected to the cathode wiring 60 and is supplied with the reference potential VCOM.
  • a ground potential is exemplified as the reference potential VCOM.
  • the power line LVCC is connected to a constant voltage source.
  • the power supply line LVCC supplies the DC constant voltage VCC to the source of the transistor Tr1 and one end of the capacitor CS.
  • the signal line SGL is connected to a constant current source.
  • the signal line SGL supplies a DC constant current Idata to the source of the transistor Tr2.
  • the gate line GCL is connected to the gate driver 12 (see FIG. 1).
  • the gate line GCL supplies the voltage Vgcl as a gate drive signal to the gate of the transistor Tr2.
  • the display device 1 makes the potential of the gate line GCL high, the transistors Tr1 and Tr2 are turned on. As a result, the constant current Idata is supplied to the inorganic light emitting element 100 from the signal line SGL.
  • the display device 1 sets the potential of the gate line GCL to low (Low)
  • the transistor Tr2 is turned off and the transistor Tr1 is turned on.
  • the constant voltage VCC is supplied to the inorganic light emitting element 100 from the power supply line LVCC.
  • the reference potential VCOM which is a reverse bias, is supplied from the reference potential line LVCOM to the cathode of the inorganic light emitting element 100.
  • FIG. 4 is a sectional view taken along the line IV-IV ′ of FIG.
  • the display device 1 includes a substrate 10, an undercoat layer 20, and a plurality of transistors.
  • the substrate 10 has a first surface 10a and a second surface 10b opposite to the first surface 10a.
  • the substrate 10 is, for example, a glass substrate, a quartz substrate, or a flexible substrate made of acrylic resin, epoxy resin, polyimide resin, or polyethylene terephthalate (PET) resin.
  • the undercoat layer 20 is provided on the first surface 10 a of the substrate 10.
  • the plurality of transistors are provided on the undercoat layer 20.
  • transistors Tr1 and Tr2 included in the pixel 49 are provided as a plurality of transistors, respectively.
  • a transistor Tr5 included in the gate driver 12 is provided as a plurality of transistors.
  • the transistors Tr1, Tr2, Tr5 are, for example, double-sided gate structure TFTs.
  • Each of the transistors Tr1, Tr2, Tr5 has a first gate electrode 21, a second gate electrode 31, a semiconductor layer 25, a source electrode 41s, and a drain electrode 41d.
  • the first gate electrode 21 is provided on the undercoat layer 20.
  • the insulating film 24 is provided on the undercoat layer 20 and covers the first gate electrode 21.
  • the semiconductor layer 25 is provided on the insulating film 24.
  • the insulating film 29 is provided on the semiconductor layer 25.
  • the second gate electrode 31 is provided on the insulating film 29.
  • the insulating films 24 and 29 are inorganic insulating films, and are made of, for example, silicon oxide (SiO 2 ) or silicon nitride (SiN).
  • the first gate electrode 21 and the second gate electrode 31 face each other with the insulating film 24, the semiconductor layer 25, and the insulating film 29 in between.
  • the portion sandwiched between the first gate electrode 21 and the second gate electrode 31 functions as a gate insulating film.
  • a portion sandwiched between the first gate electrode 21 and the second gate electrode 31 becomes a channel 27 of the TFT.
  • the portion connected to the source electrode 41s is the source of the TFT
  • the portion connected to the drain electrode 41d is the drain of the TFT.
  • the gate line 31a is connected to the second gate electrode 31 of the transistor Tr1.
  • the insulating film 29 is provided between the substrate 10 and the gate line 31a, and the capacitor CS is formed between the gate line 31a and the substrate 10.
  • the transistors Tr1, Tr2, Tr5 are not limited to the double-sided gate structure.
  • the transistors Tr1, Tr2, Tr5 may be of a bottom gate type in which the gate electrode is composed of only the first gate electrode 21. Further, the transistors Tr1, Tr2, Tr5 may be of a top gate type in which the gate electrode is composed of only the second gate electrode 31. Further, the undercoat layer 20 may be omitted.
  • the display device 1 has an insulating film 35 provided on the first surface 10a of the substrate 10 and covering the plurality of transistors Tr1, Tr2, Tr5.
  • the source electrode 41s is provided on the insulating film 35, and is connected to each source of the plurality of transistors Tr1, Tr2, Tr5 via a through hole provided in the insulating film 35.
  • the drain electrode 41d is provided on the insulating film 35 and is connected to the drains of the plurality of transistors Tr1, Tr2, Tr5 via the through holes provided in the insulating film 35.
  • the cathode wiring 60 is provided on the insulating film 35.
  • the insulating film 42 covers the source electrode 41s, the drain electrode 41d, and the cathode wiring 60.
  • the insulating film 35 is an inorganic insulating film, and the insulating film 42 is an organic insulating film.
  • the display device 1 includes a source connection wiring 43s, a drain connection wiring 43d, an insulating film 45, an anode electrode 50e (first electrode), an insulating film 70, a flattening film 80, and a cathode electrode 90e.
  • the source connection wiring 43s is provided on the insulating film 42 and is connected to the source electrode 41s via a through hole provided in the insulating film 42.
  • the drain connection wiring 43d is provided on the insulating film 42 and is connected to the drain electrode 41d through a through hole provided in the insulating film 42.
  • the insulating film 45 is provided on the insulating film 42 and covers the source connection wiring 43s and the drain connection wiring 43d.
  • the anode electrode 50e is provided on the insulating film 45 and is connected to the drain connection wiring 43d of the transistor Tr1 via a through hole provided in the insulating film 45.
  • the inorganic light emitting element 100 is provided on the anode electrode 50e (first electrode), and the anode electrode 50e is connected to the anode terminal 50p (first terminal) of the inorganic light emitting element 100.
  • the insulating film 70 is provided on the insulating film 45 and covers the side surface of the anode electrode 50e.
  • the planarization film 80 is provided on the insulating film 70 and covers the side surface of the inorganic light emitting device 100.
  • the cathode electrode 90e is provided on the flattening film 80.
  • the insulating film 70 is an inorganic insulating film and is made of, for example, a silicon nitride film (SiN).
  • the flattening film 80 is an organic insulating film or an inorganic-organic hybrid insulating film (a material in which an organic group (methyl group or phenyl group) is bonded to the Si—O main chain).
  • the upper surface (cathode terminal 90p) of the inorganic light emitting device 100 is exposed from the flattening film 80.
  • the cathode electrode 90e is connected to the cathode terminal 90p of the inorganic light emitting device 100.
  • FIG. 5 is sectional drawing which shows the structural example of an inorganic light emitting element.
  • the inorganic light emitting device 100 includes a p-type clad layer 101, an active layer 102 provided on the p-type clad layer 101, an n-type clad layer 103 provided on the active layer 102, It has a p-type electrode layer 104 and an n-type electrode layer 105.
  • the p-type electrode layer 104 includes the anode terminal 50p.
  • the p-type electrode layer 104 is located between the anode electrode 50e and the p-type cladding layer 101, and is in contact with the anode electrode 50e and the p-type cladding layer 101.
  • a p-type clad layer 101, an active layer 102, an n-type clad layer 103, and an n-type electrode layer 105 are laminated in this order on the p-type electrode layer 104.
  • the n-type clad layer 103, the active layer 102, and the p-type clad layer 101 are light emitting layers, and for example, compound semiconductors such as gallium nitride (GaN) and aluminum indium phosphide (AlInP) are used.
  • the n-type electrode layer 105 is a translucent conductive material such as ITO.
  • the n-type electrode layer 105 is the cathode terminal 90p of the inorganic light emitting device 100 and is connected to the cathode electrode 90e.
  • the p-type electrode layer 104 is the anode terminal 50p of the inorganic light emitting element 100, and has a Pt layer and a thick film Au layer formed by plating. The thick film Au layer is connected to the anode electrode 50e.
  • the side surface of the inorganic light emitting element 100 is covered with a flattening film 80.
  • the flattening film 80 is, for example, an SOG (Spin On Glass) film.
  • a recess H11 is provided in the upper portion of the flattening film 80.
  • the upper part of the n-type cladding layer 103 projects from the recess H11.
  • the n-type electrode layer 105 is provided in the recess H11 and is in contact with the n-type cladding layer 103 and the cathode electrode 90e. As a result, a current can flow between the anode electrode 50e and the cathode electrode 90e with the inorganic light emitting element 100 interposed therebetween.
  • FIG. 6 is a cross-sectional view showing a modified example of the inorganic light emitting element.
  • the inorganic light emitting device 100 has a lower part (anode terminal 50p) connected to the anode electrode 50e and an upper part (cathode terminal 90p) connected to the cathode electrode 90e (hereinafter referred to as face-up type). I explained that.
  • the inorganic light emitting device 100 is not limited to the face-up type.
  • the inorganic light emitting device 100A of the modified example may be a face-down type in which the lower portion is connected to both the anode electrode 50e and the cathode electrode 90eA.
  • the substrate 111 is made of sapphire.
  • the n-type cladding layer 113 is composed of n-type GaN.
  • the active layer 114 is composed of InGaN.
  • the p-type cladding layer 115 is made of p-type GaN.
  • the P-type electrode 116 is composed of palladium (Pd) and gold (Au), and has a laminated structure in which Au is laminated on Pd.
  • the n-type electrode 117 is made of indium (In).
  • the p-type cladding layer 115 and the n-type cladding layer 113 are not directly joined, but another layer (active layer 114) is introduced therebetween.
  • another layer active layer 114.
  • carriers such as electrons and holes can be concentrated in the active layer 114, and recombination (light emission) can be efficiently performed.
  • a multi-quantum well structure (MQW structure) in which a well layer composed of several atomic layers and a barrier layer are periodically stacked may be adopted as the active layer 114 for higher efficiency.
  • FIG. 7 is a block diagram showing the configuration of the display device.
  • FIG. 8 is an explanatory diagram for explaining the relationship between subframes and video signals.
  • FIG. 9 is a table showing the relationship between the video signal and the period and current value.
  • the display device 1 includes a control circuit 200, a signal output circuit 15, and a drive circuit 211.
  • the display device 1 of the present embodiment performs multicolor display with the number of gradations of the video signal Sg output from the control circuit 200.
  • the video signal Sg is, for example, an 8-bit signal for each color of red, green, and blue, and displays 256 gradations for each color.
  • the video signal Sg is a signal of 8 bits ⁇ 3, which is a total of 24 bits, and the display device 1 performs display of 16.77 million colors. In the following description, a case where the gradation control is performed by the 8-bit video signal Sg will be described.
  • the upper bit (Sg7-3) of the video signal Sg is a signal for controlling the amplitude of the signal (current value) according to the gradation of the video signal Sg.
  • the amplitude control signal It is represented as Sg7-3.
  • the amplitude control signals Sg7, Sg6, Sg5, Sg4, and Sg3 are 1-bit digital signals, and the amplitude control signal Sg7-3 is a 5-bit signal.
  • the amplitude control signal Sg7-3 is associated with a plurality of second signal values I2-0, I2-1, I2-2, ..., I2-31 having different current values depending on the gradation.
  • the lower bit (Sg2-0) of the video signal Sg is a signal for controlling the period during which the signal is output according to the gradation of the video signal Sg, and will be referred to as the period control signal Sg2-0 in the following description.
  • the period control signals Sg2, Sg1, Sg0 are 1-bit digital signals, and the period control signal Sg2-0 is a 3-bit signal.
  • a common first signal value I1 is associated with each of the period control signals Sg2-0.
  • the horizontal axis represents time t and the vertical axis represents the scanning direction Scan.
  • the gate driver 12 (see FIG. 1) sequentially selects the gate lines GCL according to the scanning direction Scan. Further, the display device 1 displays an image for one frame in the one frame period F.
  • One frame period F includes a plurality of time-divided first subframes SF1, second subframes SF2, and third subframes SF3.
  • the plurality of first subframes SF1, second subframes SF2, and third subframes SF3 have periods of different lengths.
  • the second sub-frame SF2 has a longer period than the first sub-frame SF1.
  • the third subframe SF3 has a longer period than the second subframe SF2. Note that in the following description, the first subframe SF1, the second subframe SF2, and the third subframe SF3 may be simply referred to as the subframe SF unless it is necessary to distinguish between them.
  • the period control signal Sg2 is associated with the third subframe SF3.
  • the second sub-frame SF2 is associated with the period control signal Sg1.
  • the first sub-frame SF1 is associated with the period control signal Sg0.
  • the amplitude control signal Sg7-3 is associated with all subframe periods SF. In other words, in the first sub-frame SF1, gradation control is performed by the period control signal Sg0 and the amplitude control signal Sg7-3.
  • gradation control is performed by the period control signal Sg1 and the amplitude control signal Sg7-3.
  • gradation control is performed by the period control signal Sg2 and the amplitude control signal Sg7-3.
  • the upper bit is the amplitude control signal Sg7-3 and the lower bit is the period control signal Sg2-0, but the invention is not limited to this.
  • the number of bits of the amplitude control signal Sg7-3 and the period control signal Sg2-0 can be changed according to the number of bits of the video signal Sg.
  • the arrangement of the amplitude control signal Sg7-3 and the period control signal Sg2-0 can be changed as appropriate.
  • one frame period F may include two subframes SF, or may include four or more subframes SF.
  • the number of subframes SF may be equal to or larger than the number corresponding to the number of bits of the period control signal Sg2-0.
  • the control circuit 200 is a circuit that controls the operation of the display device 1 according to the present embodiment.
  • the signal output circuit 15 generates the third signal data SIc according to the gradation of the video signal Sg based on the video signal Sg supplied from the control circuit 200.
  • the signal output circuit 15 is a circuit that outputs the third signal data SIc to the drive circuit 211.
  • the drive circuit 211 is, for example, a constant current circuit, and supplies a constant current Idata corresponding to the third signal data SIc to the inorganic light emitting element 100 via the signal line SGL.
  • the control circuit 200 and the signal output circuit 15 may be included in the drive IC 210 (see FIG. 1). Alternatively, at least one of the control circuit 200 and the signal output circuit 15 may be mounted on a wiring board connected to the board 10. Alternatively, at least one of the control circuit 200 and the signal output circuit 15 may be mounted on a control board connected to the board 10 via a wiring board.
  • the control circuit 200 has a video signal output circuit 201 and a clock signal output circuit 202.
  • the signal output circuit 15 includes a first buffer circuit 151, a second buffer circuit 152, a first signal processing circuit 153, a second signal processing circuit 154, an arithmetic circuit 155, a buffer control circuit 158, and a subframe counter 159.
  • the video signal output circuit 201 separates the 8-bit video signal Sg into an amplitude control signal Sg7-3 and a period control signal Sg2-0.
  • the video signal output circuit 201 outputs the period control signal Sg2-0 to the first buffer circuit 151 of the signal output circuit 15, and outputs the amplitude control signal Sg7-3 to the second buffer circuit 152.
  • the clock signal output circuit 202 outputs the clock signal CLK to the buffer control circuit 158 and the subframe counter 159.
  • the buffer control circuit 158 and the sub-frame counter 159 cause the first buffer circuit 151, the second buffer circuit 152, the first signal processing circuit 153, and the second signal processing circuit 154 of the signal output circuit 15 to operate based on the clock signal CLK. Control. Accordingly, the first buffer circuit 151, the second buffer circuit 152, the first signal processing circuit 153, and the second signal processing circuit 154 operate in synchronization with each other or asynchronously.
  • the first buffer circuit 151 is a circuit that holds the period control signal Sg2-0 for one frame period F.
  • the second buffer circuit 152 is a circuit that holds the amplitude control signal Sg7-3 for one frame period F.
  • the sub-frame counter 159 supplies the control signal Sgf related to the sub-frame SF to the first signal processing circuit 153 and the second signal processing circuit 154.
  • the first signal processing circuit 153 extracts the period control signal Sg2-0 associated with each subframe SF from the first buffer circuit 151 based on the control signal Sgf. Then, the first signal processing circuit 153 generates the first signal data SIa based on the control signal Sgf and the period control signal Sg2-0.
  • the period control signal Sg2-0 is associated with the first signal data SIa for each of the plurality of subframes SF.
  • the period control signal Sg2-0 is associated with the first signal value I1 common to the plurality of subframes SF as the first signal data SIa.
  • the second signal processing circuit 154 takes out the amplitude control signal Sg7-3 associated with each subframe SF from the second buffer circuit 152 based on the control signal Sgf. Then, the second signal processing circuit 154 generates the second signal data SIb based on the control signal Sgf and the amplitude control signal Sg7-3.
  • the amplitude control signal Sg7-3 is associated with the second signal data SIb indicating any one of the plurality of second signal values I2 having different signal values.
  • the second signal value I2 having the same signal value in each subframe SF is associated with one amplitude control signal Sg7-3. However, the second signal value I2 may have a different signal value for each subframe SF.
  • the second signal processing circuit 154 may receive the period control signal Sg2-0 from the first signal processing circuit 153 and generate the second signal data SIb according to the pattern of the period control signal Sg2-0.
  • the first signal processing circuit 153 outputs the first signal data SIa to the arithmetic circuit 155.
  • the second signal processing circuit 154 outputs the second signal data SIb to the arithmetic circuit 155.
  • the arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa and the second signal value I2 of the second signal data SIb for each sub-frame SF to generate the third signal data SIc.
  • the arithmetic circuit 155 outputs the third signal data SIc to the drive circuit 211.
  • FIG. 10 is an explanatory diagram showing waveforms of the first signal data for different period control signals.
  • the second signal value I2-0 associated with the amplitude control signal Sg7-3 becomes 0 (signal value I0).
  • the third signal data SIc shown in FIG. 10 is equal to the first signal data SIa output from the first signal processing circuit 153.
  • the amplitude control signal Sg7-3 is 0, the second signal data SIb may not be output, and the arithmetic circuit 155 may output the first signal data SIa as the third signal data SIc.
  • the first signal processing circuit 153 does not output the first signal value I1 as the first signal data SIa, and in all subframes SF.
  • the signal value I0 is output.
  • the period control signal Sg2-0 is (001)
  • the first signal processing circuit 153 outputs the first signal value I1 as the first signal data SIa in the first subframe SF1 associated with the period control signal Sg0.
  • the signal value I0 is output in the second subframe SF2 and the third subframe SF3.
  • the first signal processing circuit 153 outputs the first signal value I1 as the first signal data SIa in the second subframe SF2 associated with the period control signal Sg1.
  • the signal value I0 is output in the first subframe SF1 and the third subframe SF3.
  • the first signal processing circuit 153 outputs the first signal data SIa as The first signal value I1 is output in the subframe SF corresponding to the signal "1" of the period control signal Sg2-0.
  • the first signal processing circuit 153 switches between the subframe SF in which the first signal data SIa is output and the subframe SF in which the first signal data SIa is not output, based on the period control signal Sg2-0.
  • the first signal processing circuit 153 causes the first signal data SIa (third signal data SIc) in which the sub-frame SF in which the first signal value I1 is output differs depending on the 3-bit period control signal Sg2-0. Is output.
  • the number of different first signal data SIa is eight corresponding to the number of bits of the period control signal Sg2-0.
  • the display device 1 is associated with the pixel 49-2 and the video signal SgA (for example, (00000001)) having the tone value GD1 (first tone value) associated with the pixel 49-1.
  • a video signal SgB for example, (00000010)
  • a gradation value GD2 second gradation value
  • one frame period F of the inorganic light emitting element 100 of the pixel 49-1 is input. From the lighting period (first lighting period, eg, first sub-frame SF1) in 1 frame period F of the inorganic light emitting element 100 of the pixel 49-2 (second lighting period, eg, second sub-frame SF2). Driven to be long.
  • the lighting period of the pixel 49-1 and the pixel 49-2 refers to a period during which the drive signal corresponding to the signal value of the first signal value I1 or more is input to the inorganic light emitting element 100.
  • the amplitude control signal Sg7-3 has the same value, and the period control signal Sg2-0 is associated with a different signal.
  • the amplitude control signal Sg7-3 is 0, the brightness (first brightness) of the inorganic light emitting elements 100 of the pixels 49-1 and 49-2 when the drive signal corresponding to the first signal value I1 is input Is lit up with.
  • FIG. 11 is a graph showing the relationship between the second signal data and the subframe for each different amplitude control signal.
  • FIG. 11 shows a case where the period control signal Sg2-0 is 0, that is, the period control signal Sg2-0 of the lower 3 bits is (000) and the first signal value I1 is 0 (signal value I0). Show.
  • the period control signal Sg2-0 is 0, the first signal data SIa may not be output, and the arithmetic circuit 155 may output the second signal data SIb as the third signal data SIc.
  • the second signal processing circuit 154 uses, as the second signal data SIb0-31, second signal values I2-0 (I0), I2-1, I2- that differ for each amplitude control signal Sg7-3. 2, ..., I2-31 are output.
  • the second signal processing circuit 154 outputs 32 different second signal values I2-0, I2-1, I2-2, ..., I2-31 based on the amplitude control signal Sg7-3 of the upper 5 bits.
  • the second signal value I2-0 corresponds to the signal value I0, for example.
  • the second signal processing circuit 154 outputs the same second signal value I2-1 as the second signal data SIb1 from the first sub-frame SF1 to the third sub-frame SF3, for example.
  • the second signal values I2-1, I2-2, ..., I2-31 have the same signal value from the first subframe SF1 to the third subframe SF3, respectively.
  • the difference between the second signal values I2-1, I2-2, ..., I2-3 corresponding to the adjacent amplitude control signals Sg7-3 is defined as a difference ⁇ I2.
  • the difference ⁇ I2 in the first sub-frame SF1, the difference ⁇ I2 in the second sub-frame SF2, and the difference ⁇ I2 in the third sub-frame SF3 are equal.
  • the display device 1 is associated with the pixel 49-4 and the video signal SgC (for example, (00001000)) having the tone value GD3 (third tone value) associated with the pixel 49-3.
  • the video signal SgC for example, (00001000)
  • the tone value GD3 third tone value
  • the display device 1 is associated with the pixel 49-4 and the video signal SgC (for example, (00001000)) having the tone value GD3 (third tone value) associated with the pixel 49-3.
  • a video signal SgD for example, (00010000)
  • a grayscale value GD4 fourth grayscale value
  • one frame period F of the inorganic light emitting element 100 of the pixel 49-3 is input.
  • the luminance of the pixel 49-3 and the pixel 49-4 in the one frame period F indicates the maximum luminance in the one frame period F.
  • FIG. 12 is an explanatory diagram showing the waveform of the third signal data for each different video signal.
  • FIG. 12 shows the third signal data SIc output for each of the different period control signals Sg2-0 when the upper 5 bits of the amplitude control signal Sg7-3 is (00001). That is, the second signal processing circuit 154 outputs the second signal value I2 (I2-1) as the second signal data SIb1 in each subframe SF. According to the amplitude control signal Sg7-3, the arithmetic circuit 155 can output the second signal value I2 and the third signal value I3 having an amplitude different from that of the third signal data SIc shown in FIG.
  • the arithmetic circuit 155 integrates the signal value I0 of the first signal data SIa and the second signal value I2 of the second signal data SIb for each subframe SF. Then, the arithmetic circuit 155 outputs the second signal value I2 as the third signal data SIc over the first subframe SF1 to the third subframe SF3.
  • the second signal value I2 is larger than the first signal value I1.
  • the first signal data SIa has the first signal value I1 in the first subframe SF1 and the signal value I0 in the second subframe SF2 and the third subframe SF3.
  • the arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the first sub-frame SF1 to generate the first signal value I2.
  • 3 signal value I3 is output.
  • the arithmetic circuit 155 integrates the signal value I0 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the second sub-frame SF2 and the third sub-frame SF3 to generate a second The signal value I2 is output.
  • the signal values (third signal value I3, second signal value I2) are constant in each subframe SF.
  • the arithmetic circuit 155 is not limited to the case where the first signal value I1 and the second signal value I2 are added to calculate the third signal value I3. That is, the difference (I3-I2) between the third signal value I3 and the second signal value I2 may be different from the difference (I1-I0) between the first signal value I1 and the signal value I0.
  • the third signal data SIc may be a signal corresponding to the gradation of the video signal Sg, and the arithmetic circuit 155 performs a predetermined arithmetic process based on the first signal value I1 and the second signal value I2 to generate a third signal data.
  • the signal value I3 may be calculated.
  • the first signal data SIa has a first signal value I1 in the second sub-frame SF2 and a signal value I0 in the first sub-frame SF1 and the third sub-frame SF3.
  • the arithmetic circuit 155 integrates the signal value I0 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the first subframe SF1 and the third subframe SF3. Then, the second signal value I2 is output. Further, the arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the second sub-frame SF2 to obtain the third signal value I3. Output.
  • the arithmetic circuit 155 similarly causes the first signal value I1 or the signal value I0 of the first signal data SIa and the second value to be calculated for each subframe SF.
  • the second signal value I2 of the signal data SIb is integrated to generate the third signal data SIc.
  • FIG. 12 shows the third signal data SIc of 5 gradations
  • the arithmetic circuit 155 has a combination of 32 gradations of the amplitude control signal Sg7-3 and 8 gradations of the period control signal Sg2-0.
  • the third signal data SIc corresponding to 256 gradations of the video signal Sg can be output.
  • the arithmetic circuit 155 outputs the third signal data SIc to the drive circuit 211.
  • the drive circuit 211 outputs a constant current Idata according to the third signal data SIc to the signal line SGL.
  • the gradation of the inorganic light emitting device 100 is determined in accordance with the integrated value of the third signal data SIc, that is, the value obtained by multiplying the time of each subframe SF by the signal value of each subframe SF.
  • the inorganic light emitting device 100 outputs the drive signal corresponding to the second signal value I2 or the third signal value I3 in which the first signal value I1 and the second signal value I2 are integrated for each sub-frame SF.
  • Corresponding drive signals are supplied to express the gradation.
  • the display device 1 is associated with the video signal SgA (for example, (00000001)) having the grayscale value GD1 (first grayscale value) associated with the pixel 49-1 and the pixel 49-5.
  • the video signal SgE for example, (00010010)
  • a gradation value GD5 for example, (fifth gradation value) larger than the gradation value GD1
  • one frame period F of the inorganic light emitting element 100 of the pixel 49-1 is input.
  • first luminance for example, the luminance of the inorganic light emitting element 100 turned on by the drive signal corresponding to the first signal value I1
  • second luminance for example, the luminance of the inorganic light emitting element 100 turned on by the drive signal corresponding to the first signal value I1
  • the luminance of the pixel 49-1 and the pixel 49-5 in one frame period F is the maximum luminance in one frame period F.
  • the brightness of the first sub-frame SF1 and the third sub-frame SF3 of the pixel 49-5 is the brightness (third brightness) of the inorganic light emitting element 100 that is turned on by the drive signal corresponding to the second signal value I2-2. Yes, the luminance of the second sub-frame SF2 of the pixel 49-5 is the fifth luminance.
  • the pixel 49-1 and the pixel 49-5 are included in the pixel 49-5 from the lighting period (first lighting period, for example, the first sub-frame SF1) in the one frame period F of the inorganic light emitting element 100 of the pixel 49-1.
  • the inorganic light emitting element 100 is driven so that the lighting period in the one frame period F (fifth lighting period, for example, one frame period F) becomes longer.
  • the pixel 49-1 and the pixel 49-5 have a lighting period in one frame period at the maximum luminance (for example, the fifth luminance) in one frame period F of the inorganic light emitting element 100 of the pixel 49-1 and the pixel 49-5.
  • the maximum luminance lighting period (first maximum luminance lighting period, for example, 0) of the inorganic light emitting element 100 of the pixel 49-1 in one frame period F starts from the maximum luminance lighting period of the pixel 49-5.
  • the maximum luminance lighting period (fifth maximum luminance lighting period, for example, the second sub-frame SF2) in the one frame period F is driven to be long.
  • the gradation value GD5 indicates a gradation value higher than at least one of the gradation value GD2, the gradation value GD3, and the gradation value GD4 described above.
  • FIG. 13 is a graph showing voltage-current characteristics of the inorganic light emitting device.
  • the first signal value I1 is a value near the threshold of the stable operation region P of the inorganic light emitting device 100.
  • the unstable operation region Q of the inorganic light emitting device 100 is a region having a current value smaller than the first signal value I1.
  • the second signal value I2 has a larger current value than the first signal value I1.
  • the third signal value I3 has a larger current value than the second signal value I2.
  • the second signal value I2 and the third signal value I3 are included in the stable operation region P.
  • the display device 1 of the present embodiment performs gradation control based on the period control signal Sg2-0 and the amplitude control signal Sg7-3. That is, the display device 1 controls the period in which the subframe SF in which the first signal value I1 is output and the subframe SF in which the first signal value I1 is not output are controlled, and the amplitude control by a plurality of different second signal values I2.
  • the gradation control is performed by combining and. Therefore, the display device 1 can operate the inorganic light emitting element 100 in the stable operation region P even in a low gradation, and can suppress variations in the brightness of the inorganic light emitting element 100. Further, the display device 1 is capable of fine gradation control.
  • FIG. 14 is a graph showing the relationship between the second signal data for each video signal and the subframe in the display device according to the second embodiment.
  • FIG. 15 is an explanatory diagram showing the waveform of the third signal data of the display device according to the second embodiment.
  • the components described in the above-described embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the second signal processing circuit 154 outputs, as the second signal data SIb0-31, the different second signal value I2 for each subframe SF.
  • the plurality of second signal values I2 associated with the amplitude control signal Sg7-3 include a first partial signal value I2a, a second partial signal value I2b, and a third partial signal value I2c.
  • the first partial signal value I2a, the second partial signal value I2b, and the third partial signal value I2c correspond to the first subframe SF1, the second subframe SF2, and the third subframe SF3, respectively, and have different magnitudes. Is the signal value of.
  • the second signal data SIb is composed of the first partial signal data SIba, the second partial signal data SIbb, and the third partial signal data SIbc.
  • the second signal processing circuit 154 outputs the first partial signal value I2a-1 in the first subframe SF1 and the second partial signal value I2b-1 in the second subframe SF2 as the second signal data SIb1. And outputs the third partial signal value I2c-1 in the third sub-frame SF3.
  • the first partial signal value I2a-1 of the first subframe SF1 is larger than the second partial signal value I2b-1 of the second subframe SF2.
  • the second partial signal value I2b-1 of the second subframe SF2 is larger than the third partial signal value I2c-1 of the third subframe SF3.
  • the second signal processing circuit 154 outputs the first partial signal value I2a-31 in the first subframe SF1 and the second partial signal value I2b-31 in the second subframe SF2 as the second signal data SIb31. Then, the third partial signal value I2c-31 is output in the third sub-frame SF3.
  • the difference between the first partial signal value I2a-31 and the second partial signal value I2b-31 on the high gradation side is the difference between the first partial signal value I2a-1 and the second partial signal value I2b-1 on the low gradation side. Greater than the difference.
  • the first difference ⁇ Ia in the first subframe SF1 is larger than the second difference ⁇ Ib in the second subframe SF2.
  • the second difference ⁇ Ib in the second subframe SF2 is larger than the third difference ⁇ Ic in the third subframe SF3.
  • the second signal data SIb2-0 indicates the signal value I0 (second signal value I2-0) in any of the first subframe SF1, the second subframe SF2, and the third subframe SF3.
  • the display device 1 is associated with the pixel 49-7 and the video signal SgF (for example, (00001000)) having the tone value GD6 (sixth tone value) associated with the pixel 49-6.
  • the video signal SgG for example, (00010000)
  • a grayscale value GD7 for example, (00010000)
  • the first subframe of the inorganic light emitting element 100 of the pixel 49-6 is input, the first subframe of the inorganic light emitting element 100 of the pixel 49-6.
  • the first sub-pixel of the inorganic light-emitting element 100 of the pixel 49-7 is calculated from the luminance in SF1 (the 6-1th luminance, for example, the luminance of the inorganic light-emitting element 100 turned on by the drive signal corresponding to the first partial signal value I2a-1).
  • the luminance in the frame SF1 (the 7-1th luminance, for example, the luminance of the inorganic light emitting element 100 which is turned on by the drive signal corresponding to the first partial signal value I2a-2) is increased.
  • the luminance of the pixel 49-6 in the second sub-frame SF2 is more than that of the pixel 49-6 in the second sub-frame SF2.
  • the luminance of the pixel 49-6 is larger than that of the pixel 49-6 in the third sub-frame SF3 (sixth-3 luminance), and the luminance of the pixel 49-7 in the third sub-frame SF3 (seventh luminance is the seventh luminance) -3 brightness) is increased. Further, at least one of the pixel 49-6 and the pixel 49-7 (for example, the 6-1th luminance and the 6th-2nd luminance) has different luminance between two different sub-frames SF. In addition, the maximum luminance (for example, the 6-1th luminance) of the inorganic light emitting element 100 of the pixel 49-6 in the 1st frame period F of the inorganic light emitting element 100 of the pixel 49-4 (for example, the 6th luminance). 7-1) brightness is large.
  • FIG. 15 shows a comparison between the third signal data SIc of the display device 1 of the first embodiment and the third signal data SIc of the display device 1A of the present embodiment.
  • FIG. 15 shows a case where the video signal Sg is (00001011).
  • the first signal data SIa has a first signal value I1 in the first sub-frame SF1 and the third sub-frame SF3 and a signal value I0 in the second sub-frame SF2 according to the lower-order bit period control signal Sg2-0. Have.
  • the arithmetic circuit 155 calculates the first signal value I1 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the first subframe SF1.
  • the integrated signal is output as the third signal value I3.
  • the arithmetic circuit 155 integrates the signal value I0 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the second subframe SF2, and outputs the second signal value I2.
  • the arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the third sub-frame SF3, and outputs the third signal value I3. .
  • the arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa and the first partial signal value I2a of the second signal data SIb in the first sub-frame SF1. Then, the third signal value I3a is output.
  • the arithmetic circuit 155 integrates the signal value I0 of the first signal data SIa and the second partial signal value I2b of the second signal data SIb in the second subframe SF2, and outputs the second signal value I2.
  • the arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa and the third partial signal value I2c of the second signal data SIb in the third sub-frame SF3, and outputs the third signal value I3b. To do.
  • the third signal value I3a is larger than the third signal value I3.
  • the third signal value I3b is smaller than the third signal value I3.
  • the period of each subframe SF is set to a period t1, a period t2, and a period t3.
  • the period of each subframe SF has a relationship of t1 ⁇ t2 ⁇ t3.
  • the signal value change between the first subframe SF1 and the second subframe SF2 is I3a-I2.
  • the signal value change between the second subframe SF2 and the third subframe SF3 is I3b-I2.
  • the signal value change (I3b-I2) between the second subframe SF2 and the third subframe SF3 is smaller than the signal value change (I3a-I2) between the first subframe SF1 and the second subframe SF2. small.
  • the signal value change between the first subframe SF1 and the second subframe SF2 and the signal value change between the second subframe SF2 and the third subframe SF3 are both Is also I3-I2.
  • the lower the lighting frequency of the inorganic light emitting device 100 the more likely the change in brightness is visually recognized.
  • the luminance variation between the second sub-frame SF2 and the third sub-frame SF3 is more visible than the luminance variation between the first sub-frame SF1 and the second sub-frame SF2.
  • the change in signal value is smaller as the period of the subframe SF is longer.
  • the lower the lighting frequency of the inorganic light emitting device 100 the smaller the change in signal value.
  • the display device 1A even if a current change occurs in the one frame period F, it is difficult for the brightness variation to be visually recognized, and it is possible to suppress deterioration in display quality.
  • the third signal data SIc satisfies the following equations (1), (2), and (3).
  • the display device 1A can reduce the signal value change between the second subframe SF2 and the third subframe SF3 without changing the integrated value of the signal value as a whole.
  • I3 ⁇ t1 + I2 ⁇ t2 + I3 ⁇ t3 I3a ⁇ t1 + I2 ⁇ t2 + I3b ⁇ t3 (1) I3a>I3> I3b (2) I3a-I3> I3-I3b (3)
  • FIG. 15 shows the case where the period control signal Sg2-0 is (101), it can be applied to other period control signals Sg2-0.
  • the period control signal Sg2-0 is (010), (011), (100), (110), a signal change between the second subframe SF2 and the third subframe SF3. Occurs.
  • the second signal processing circuit 154 receives the period control signal Sg2-0 from the first signal processing circuit 153, and when a signal change occurs between the second sub-frame SF2 and the third sub-frame SF3 described above, The second signal data SIb shown in 14 can be applied.
  • the display device 1 is associated with the pixel 49-8 and the video signal SgA (for example, (00000001)) having the tone value GD1 (first tone value) associated with the pixel 49-1.
  • the video signal SgA for example, (00000001)
  • GD1 first tone value
  • the display device 1 is associated with the pixel 49-8 and the video signal SgA (for example, (00000001)) having the tone value GD1 (first tone value) associated with the pixel 49-1.
  • a video signal SgH for example, (00010010)
  • a grayscale value GD8 width grayscale value
  • the brightness in the first sub-frame SF1 of the inorganic light emitting element 100 of the pixel 49-8 from the brightness in SF1 (first brightness, for example, the brightness of the inorganic light emitting element 100 turned on by the drive signal corresponding to the first signal value I1)
  • first brightness for example, the brightness of the inorganic light emitting element 100 turned on by the drive signal corresponding to the first signal value I1
  • the 8th luminance for example, the luminance of the inorganic light emitting element 100 which is turned on by the driving signal corresponding to the first partial signal value I2a-2, is driven to be large.
  • the brightness (first brightness) of the pixel 49-1 in the second sub-frame SF2 is the brightness (first brightness) of the pixel 49-8 in the second sub-frame SF2.
  • the luminance (first luminance) is the luminance of the pixel 49-8 in the third sub-frame SF3 (8th-3rd luminance, for example, the inorganic light emitting element 100 turned on by the drive signal corresponding to the third partial signal value I2c-2). Brightness) is less than. Further, the luminance (first luminance) of the pixel 49-1 in the one frame period F is smaller than the luminance (8th luminance) of the pixel 49-8 in the one frame period F. Note that the luminance of the pixel 49-1 and the pixel 49-8 in one frame period F refers to the maximum luminance in one frame period F.
  • the pixel 49-1 and the pixel 49-8 are included in the pixel 49-8 from the lighting period (first lighting period, for example, the first subframe SF1) in the one frame period F of the inorganic light emitting element 100 of the pixel 49-1.
  • the inorganic light emitting device 100 is driven so that the lighting period in the one frame period F (eighth lighting period, for example, one frame period F) becomes longer.
  • the pixel 49-1 and the pixel 49-8 have a maximum luminance (for example, 8-2 luminance) in one frame period in the one frame period F of the inorganic light emitting element 100 of the pixel 49-1 and the pixel 49-8.
  • the inorganic light emitting element of the pixel 49-8 starts from the maximum brightness lighting period (first maximum brightness lighting period, for example, 0) in the one frame period F of the inorganic light emitting element 100 of the pixel 49-1.
  • the maximum luminance lighting period (eighth maximum luminance lighting period, for example, the second sub-frame SF2) in one frame period F of 100 is driven to be long.
  • the total of the lighting periods at the maximum brightness for each sub-frame SF of the inorganic light emitting element 100 of the pixel 49-1 and the pixel 49-8 is the maximum in one frame period F.
  • the maximum brightness of the first sub-frame SF1 is the 8-1 brightness
  • the maximum brightness of the second sub-frame SF2 is the 8-2 brightness
  • the maximum brightness of the third sub-frame SF3 is the 8th brightness. Since the brightness is three, the inorganic light-emitting element 100 of the pixel 49-8 can be operated from the total maximum brightness lighting period (first total maximum brightness lighting period, for example, 0) of the inorganic light-emitting element 100 of the pixel 49-1 in one frame period F.
  • the driving is performed so that the total maximum brightness lighting period in the one frame period F (eighth total maximum brightness lighting period, for example, one frame period F) is long.
  • the gradation value GD8 indicates a gradation value higher than at least one of the gradation value GD2, the gradation value GD6, and the gradation value GD7 described above.
  • FIG. 16 is a block diagram showing the configuration of the display device according to the third embodiment.
  • FIG. 17 is a table showing the relationship between the correction signal and the period and current value.
  • FIG. 18 is an explanatory diagram showing the waveform of the fourth signal data for each correction signal.
  • FIG. 19 is an explanatory diagram showing the waveform of the third signal data according to the third embodiment.
  • the control circuit 200 has a correction signal output circuit 203.
  • the correction signal output circuit 203 outputs the correction signal Sgc to the first buffer circuit 151.
  • the correction signal Sgc is set for each pixel 49 on the basis of the result of the lighting test, which is performed by performing a lighting test on the plurality of inorganic light emitting elements 100.
  • the correction signal Sgc includes 3-bit correction signals Sgc2, Sgc1, and Sgc0.
  • the correction signal Sgc is associated with the fourth signal value I4.
  • the third sub-frame SF3 is associated with the correction signal Sgc2.
  • the second sub-frame SF2 is associated with the correction signal Sgc1.
  • the first sub-frame SF1 is associated with the correction signal Sgc0.
  • FIG. 18 shows the fourth signal data SId when the correction signal Sgc is (001), (011), (111).
  • the correction signal Sgc is 3-bit data, and like the period control signal Sg2-0, the correction signal output circuit 203 can output the correction signal Sgc of 8 gradations.
  • the plurality of correction signals Sgc shown in FIG. 18 are associated with different pixels 49-1, 49-2, 49-3, respectively.
  • the first signal processing circuit 153 when the correction signal Sgc is (001), the first signal processing circuit 153 outputs the fourth signal value I4 in the first sub-frame SF1 as the fourth signal data SId, and The signal value I0 is output in the frame SF2 and the third sub-frame SF3.
  • the correction signal Sgc (011)
  • the first signal processing circuit 153 outputs the fourth signal value I4 as the fourth signal data SId in the first subframe SF1 and the second subframe SF2, and the third subframe
  • the signal value I0 is output at SF3.
  • the correction signal Sgc (111)
  • the first signal processing circuit 153 outputs the fourth signal value I4 as the fourth signal data SId in the first subframe SF1, the second subframe SF2, and the third subframe SF3. To do.
  • the first signal processing circuit 153 may individually output the first signal data SIa based on the period control signal Sg2-0 and the fourth signal data SId to the arithmetic circuit 155.
  • the first signal processing circuit 153 may perform signal processing to integrate the first signal data SIa and the fourth signal data SId for each subframe SF, and output the integrated data to the arithmetic circuit 155.
  • the upper diagram of FIG. 19 shows the third signal data SIc when the correction signal Sgc is (000), that is, when there is no correction.
  • the lower diagram of FIG. 19 shows the third signal data SIc when the correction signal Sgc is (001), that is, when there is correction.
  • the arithmetic circuit 155 in the first sub-frame SF1, the first signal value I1 of the first signal data SIa and the second signal value SIb of the second signal data SIb.
  • the signal value I2 and the fourth signal value I4 of the fourth signal data SId are integrated to output the fifth signal value I5.
  • the arithmetic circuit 155 combines the signal value I0 of the first signal data SIa, the second signal value I2 of the second signal data SIb, and the signal value I0 of the fourth signal data SId in the second subframe SF2.
  • the second signal value I2 is output.
  • the arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa, the second signal value I2 of the second signal data SIb, and the signal value I0 of the fourth signal data SId in the third sub-frame SF3. Then, the third signal value I3 is output.
  • the fifth signal value I5 of the first subframe SF1 is larger than the third signal value I3 of the first subframe SF1 when the correction signal Sgc is (000). Further, the fourth signal value I4 is smaller than the difference ⁇ I2 (see FIG. 11) of the second signal value I2 associated with the amplitude control signal Sg7-3.
  • the arithmetic circuit 155 outputs the fifth signal data SIe obtained by correcting the third signal data SIc based on the correction signal Sgc to the drive circuit 211.
  • the drive circuit 211 outputs a signal (constant current Idata) corresponding to the fifth signal data SIE for each of the plurality of pixels 49.
  • the inorganic light emitting element 100 outputs the drive signal corresponding to the fifth signal value I5, which is the integration of the third signal value I3 and the fourth signal value I4, for each sub-frame SF based on the correction signal Sgc. Supplied.
  • the inorganic light emitting device 100 can correct the brightness.
  • the arithmetic circuit 155 When the correction signal Sgc is (011) (see FIG. 18), the arithmetic circuit 155 outputs the fifth signal value I5 in the first sub-frame SF1 and the second signal value in the second sub-frame SF2. A signal value obtained by integrating I2 and the fourth signal value I4 is output.
  • the correction signal Sgc is (111) (see FIG. 18)
  • the arithmetic circuit 155 outputs the fifth signal value I5 in the first subframe SF1 and the third subframe SF3, and at the same time outputs the second subframe SF2. Then, a signal value obtained by integrating the second signal value I2 and the fourth signal value I4 is output.
  • the correction signal Sgc may have a signal of 4 bits or more.
  • the first signal processing circuit 153 may output a plurality of different fourth signal values I4 as the fourth signal data SId. In this case, the display device 1B can be finely corrected according to the lighting characteristics of the inorganic light emit
  • FIG. 20 is an explanatory diagram for explaining the relationship between subframes and video signals according to the fourth embodiment.
  • FIG. 21 is a circuit diagram showing a configuration example of the pixel circuit according to the fourth embodiment.
  • FIG. 22 is a circuit diagram showing a modified example of the pixel circuit.
  • each subframe SF of one frame period F includes a light emitting period PBL and a non-light emitting period PBM.
  • gradation control based on the video signal Sg is performed.
  • the gradation control described in the first to third embodiments can also be applied to this embodiment.
  • the duty ratio between the light emitting period PBL and the non-light emitting period PBM can be appropriately changed.
  • the pixel circuit PIC has a driving transistor Tr1, a current switching transistor Tr2, and a switching transistor Tr3 in addition to the current switching transistor Tr2.
  • the gate of the transistor Tr2 is connected to the first gate line GCL1.
  • the transistor Tr3 has a gate connected to the second gate line GCL2, a source connected to the drain of the transistor Tr1, and a drain connected to the anode of the inorganic light emitting device 100.
  • the transistors Tr1, Tr2, Tr3 are turned on.
  • the constant current Idata is supplied to the inorganic light emitting element 100 from the signal line SGL.
  • the transistors Tr2 and Tr3 are turned off.
  • the reference potential VCOM as a reverse bias is supplied from the reference potential line LVCOM to the cathode of the inorganic light emitting element 100.
  • the transistor Tr3 has a source connected to the cathode wiring 60 and a drain connected to the cathode of the inorganic light emitting element 100.
  • the display device 1 sets the potential of the first gate line GCL1 to low (Low) and sets the potential of the second gate line GCL2 to high (High).
  • the transistors Tr1 and Tr2 are turned off and the transistor Tr3 is turned on.
  • the reference potential VCOM as a reverse bias is supplied from the reference potential line LVCOM to the cathode of the inorganic light emitting element 100.

Abstract

This display device comprises an inorganic light emitting element that is provided in each of a plurality of pixels, and a drive circuit that supplies a drive signal to a plurality of inorganic light emitting elements on the basis of a period control signal and an amplitude control signal, wherein: a one-frame period during which an image corresponding to one frame is displayed includes a plurality of time-divided sub-frames; first signal data is associated with the period control signal for every plurality of sub-frames; second signal data indicating any of a plurality of second signal values having different signal values is associated with the amplitude control signal; and the inorganic light emitting element expresses gradation by being supplied with a drive signal corresponding to third signal data obtained by integrating the first signal data and the second signal data in each of the sub-frames.

Description

表示装置Display device
 本発明は、表示装置に関する。 The present invention relates to a display device.
 近年、表示素子として無機発光ダイオード(マイクロLED(micro LED))を用いた無機ELディスプレイが注目されている(例えば、特許文献1参照)。無機ELディスプレイは、異なる色の光を出射する複数の発光素子がアレイ基板上に配列される。無機ELディスプレイは、自発光素子を用いているため光源が不要であり、また、カラーフィルタを介さずに光が出射されるため光の利用効率が高い。また、無機ELディスプレイは、表示素子として有機発光ダイオード(OLED: Organic Light Emitting Diode)を用いた有機ELディスプレイに比べて耐環境性に優れる。 In recent years, an inorganic EL display using an inorganic light emitting diode (micro LED) as a display element has been receiving attention (for example, refer to Patent Document 1). In an inorganic EL display, a plurality of light emitting elements that emit light of different colors are arranged on an array substrate. Since the inorganic EL display uses a self-luminous element, it does not require a light source, and light is emitted without passing through a color filter, so that the light utilization efficiency is high. Further, the inorganic EL display is superior in environment resistance to organic EL displays using organic light emitting diodes (OLED: Organic Light Emitting Diode) as display elements.
特表2017-529557号公報Japanese Patent Publication No. 2017-5295557
 表無機発光ダイオードは、電流駆動により階調制御が行われる。電流値を制御して低階調を表現する場合は、電流値が不安定となるため、画素間で輝度のばらつきが大きくなる可能性がある。一方、一定の電流値で点灯時間を制御して階調を表現する場合、スイッチング素子のオン、オフ動作や、所望の電流値に立ち上がるまでの駆動時間を要するため、細かい階調表現が困難となる可能性がある。 ▽ The front inorganic light emitting diode is gradation controlled by current drive. When the current value is controlled to express a low gradation, the current value becomes unstable, and thus there is a possibility that the variation in luminance between pixels becomes large. On the other hand, when the gradation is expressed by controlling the lighting time with a constant current value, it takes on / off operation of the switching element and driving time until the current value rises to a desired current value. Could be.
 本発明は、良好に階調制御を行うことができる表示装置を提供することを目的とする。 An object of the present invention is to provide a display device capable of excellent gradation control.
 本発明の一態様の表示装置は、複数の画素の各々に設けられる無機発光素子と、期間制御信号と振幅制御信号とに基づいて、複数の前記無機発光素子に駆動信号を供給する駆動回路と、を有し、1フレーム分の画像を表示する1フレーム期間は、時分割された複数のサブフレームを含み、前記期間制御信号には、複数の前記サブフレームごとに第1信号データが対応付けられており、前記振幅制御信号には、異なる信号値を有する複数の第2信号値のいずれかを示す第2信号データが対応付けられており、前記無機発光素子は、前記サブフレームごとに、前記第1信号データと、前記第2信号データとが統合された第3信号データに対応した前記駆動信号が供給されて階調を表現する。 A display device according to one embodiment of the present invention includes an inorganic light emitting element provided in each of a plurality of pixels, and a drive circuit that supplies a drive signal to the plurality of inorganic light emitting elements based on a period control signal and an amplitude control signal. , One frame period for displaying an image for one frame includes a plurality of time-divided subframes, and the period control signal is associated with the first signal data for each of the plurality of subframes. That is, the amplitude control signal is associated with second signal data indicating one of a plurality of second signal values having different signal values, and the inorganic light emitting element, for each subframe, The drive signal corresponding to the third signal data, which is the combination of the first signal data and the second signal data, is supplied to express a gray scale.
図1は、第1実施形態に係る表示装置を示す平面図である。FIG. 1 is a plan view showing a display device according to the first embodiment. 図2は、複数の画素を示す平面図である。FIG. 2 is a plan view showing a plurality of pixels. 図3は、表示装置の画素回路の構成例を示す回路図である。FIG. 3 is a circuit diagram showing a configuration example of a pixel circuit of a display device. 図4は、図4は、図1のIV-IV’断面図である。4 is a sectional view taken along the line IV-IV 'of FIG. 図5は、無機発光素子の構成例を示す断面図である。FIG. 5: is sectional drawing which shows the structural example of an inorganic light emitting element. 図6は、無機発光素子の変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a modified example of the inorganic light emitting element. 図7は、表示装置の構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of the display device. 図8は、サブフレームと映像信号との関係を説明するための説明図である。FIG. 8 is an explanatory diagram for explaining the relationship between subframes and video signals. 図9は、映像信号と、期間及び電流値との関係を示す表である。FIG. 9 is a table showing the relationship between the video signal and the period and current value. 図10は、異なる期間制御信号ごとの第1信号データの波形を示す説明図である。FIG. 10 is an explanatory diagram showing waveforms of the first signal data for different period control signals. 図11は、異なる振幅制御信号ごとの第2信号データとサブフレームとの関係を示すグラフである。FIG. 11 is a graph showing the relationship between the second signal data and the subframe for each different amplitude control signal. 図12は、異なる映像信号ごとの第3信号データの波形を示す説明図である。FIG. 12 is an explanatory diagram showing the waveform of the third signal data for each different video signal. 図13は、無機発光素子の電圧電流特性を示すグラフである。FIG. 13 is a graph showing voltage-current characteristics of the inorganic light emitting device. 図14は、第2実施形態に係る表示装置の、異なる映像信号ごとの第2信号データとサブフレームとの関係を示すグラフである。FIG. 14 is a graph showing the relationship between the second signal data and the subframe for each different video signal in the display device according to the second embodiment. 図15は、第2実施形態に係る表示装置の、第3信号データの波形を示す説明図である。FIG. 15 is an explanatory diagram showing the waveform of the third signal data of the display device according to the second embodiment. 図16は、第3実施形態に係る表示装置の構成を示すブロック図である。FIG. 16 is a block diagram showing the configuration of the display device according to the third embodiment. 図17は、補正信号と、期間及び電流値との関係を示す表である。FIG. 17 is a table showing the relationship between the correction signal and the period and current value. 図18は、補正信号ごとの第4信号データの波形を示す説明図である。FIG. 18 is an explanatory diagram showing the waveform of the fourth signal data for each correction signal. 図19は、第3実施形態に係る第3信号データの波形を示す説明図である。FIG. 19 is an explanatory diagram showing the waveform of the third signal data according to the third embodiment. 図20は、第4実施形態に係るサブフレームと映像信号との関係を説明するための説明図である。FIG. 20 is an explanatory diagram for explaining the relationship between subframes and video signals according to the fourth embodiment. 図21は、第4実施形態に係る画素回路の構成例を示す回路図である。FIG. 21 is a circuit diagram showing a configuration example of the pixel circuit according to the fourth embodiment. 図22は、画素回路の変形例を示す回路図である。FIG. 22 is a circuit diagram showing a modified example of the pixel circuit.
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 A mode (embodiment) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described in the embodiments below. Further, the constituent elements described below include those that can be easily conceived by those skilled in the art and those that are substantially the same. Furthermore, the components described below can be combined as appropriate. It should be noted that the disclosure is merely an example, and a person skilled in the art can easily think of appropriate modifications while keeping the gist of the invention, and are naturally included in the scope of the invention. Further, in order to make the description clearer, the drawings may schematically show the width, thickness, shape, etc. of each part as compared with the actual mode, but this is merely an example, and the interpretation of the present invention will be understood. It is not limited. In the specification and the drawings, the same elements as those described above with reference to the already-existing drawings are designated by the same reference numerals, and detailed description thereof may be appropriately omitted.
(第1実施形態)
 図1は、第1実施形態に係る表示装置の構成例を示す平面図である。図1に示すように、表示装置1は、アレイ基板2と、画素Pixと、ゲートドライバ12と、駆動IC(Integrated Circuit)210と、カソード配線60と、を含む。アレイ基板2は、各画素Pixを駆動するための駆動回路基板であり、バックプレーン又はアクティブマトリクス基板とも呼ばれる。
(First embodiment)
FIG. 1 is a plan view showing a configuration example of the display device according to the first embodiment. As shown in FIG. 1, the display device 1 includes an array substrate 2, a pixel Pix, a gate driver 12, a drive IC (Integrated Circuit) 210, and a cathode wiring 60. The array substrate 2 is a drive circuit substrate for driving each pixel Pix, and is also called a backplane or an active matrix substrate.
 図1に示すように、表示装置1は、表示領域AAと、周辺領域GAとを有する。表示領域AAは、複数の画素Pixが配置される領域であり、画像を表示する領域である。周辺領域GAは、複数の画素Pixと重ならない領域であり、表示領域AAの外側に配置される。 As shown in FIG. 1, the display device 1 has a display area AA and a peripheral area GA. The display area AA is an area in which a plurality of pixels Pix are arranged, and is an area for displaying an image. The peripheral area GA is an area that does not overlap the plurality of pixels Pix, and is arranged outside the display area AA.
 複数の画素Pixは、表示領域AAにおいて、第1方向Dx及び第2方向Dyに配列される。なお、第1方向Dx及び第2方向Dyは、アレイ基板2の基板10の第1面10a(図4参照)に対して平行な方向である。第1方向Dxは、第2方向Dyと直交する。ただし、第1方向Dxは、第2方向Dyと直交しないで交差してもよい。第3方向Dzは、第1方向Dx及び第2方向Dyと直交する方向である。第3方向Dzは、例えば、基板10の法線方向に対応する。以下、平面視とは、第3方向Dzから見た場合の位置関係を示す。 The plurality of pixels Pix are arranged in the first direction Dx and the second direction Dy in the display area AA. The first direction Dx and the second direction Dy are parallel to the first surface 10a (see FIG. 4) of the substrate 10 of the array substrate 2. The first direction Dx is orthogonal to the second direction Dy. However, the first direction Dx may intersect with the second direction Dy instead of being orthogonal to each other. The third direction Dz is a direction orthogonal to the first direction Dx and the second direction Dy. The third direction Dz corresponds to the normal line direction of the substrate 10, for example. Hereinafter, the plan view refers to a positional relationship when viewed from the third direction Dz.
 ゲートドライバ12は、駆動IC210からの各種制御信号に基づいて複数のゲート線GCL(図3参照)を駆動する回路である。ゲートドライバ12は、複数のゲート線GCLを順次又は同時に選択し、選択されたゲート線GCLにゲート駆動信号を供給する。これにより、ゲートドライバ12は、ゲート線GCLに接続された複数の画素Pixを選択する。 The gate driver 12 is a circuit that drives a plurality of gate lines GCL (see FIG. 3) based on various control signals from the drive IC 210. The gate driver 12 sequentially or simultaneously selects a plurality of gate lines GCL and supplies a gate drive signal to the selected gate line GCL. As a result, the gate driver 12 selects the plurality of pixels Pix connected to the gate line GCL.
 駆動IC210は、表示装置1の表示を制御する回路である。駆動IC210は、基板10の周辺領域GAにCOG(Chip On Glass)として実装されてもよい。これに限定されず、駆動IC210は、基板10の周辺領域GAに接続されたフレキシブルプリント基板やリジット基板の上にCOF(Chip On Film)として実装されてもよい。 The drive IC 210 is a circuit that controls the display of the display device 1. The drive IC 210 may be mounted as a COG (Chip On Glass) in the peripheral area GA of the substrate 10. The drive IC 210 is not limited to this, and may be mounted as a COF (Chip On Film) on a flexible printed board or a rigid board connected to the peripheral area GA of the board 10.
 カソード配線60は、基板10の周辺領域GAに設けられる。カソード配線60は、表示領域AAの複数の画素Pix及び周辺領域GAのゲートドライバ12を囲んで設けられる。複数の無機発光素子100(図4参照)のカソード(カソード端子90p(図4参照))は、共通のカソード配線60に接続され、固定電位(例えば、グランド電位)が供給される。より具体的には、無機発光素子100のカソード端子90p(第2端子)は、TFT基板側のカソード電極90e(第2電極)を介して、カソード配線60に接続される。 The cathode wiring 60 is provided in the peripheral area GA of the substrate 10. The cathode wiring 60 is provided so as to surround the plurality of pixels Pix in the display area AA and the gate driver 12 in the peripheral area GA. The cathodes (cathode terminals 90p (see FIG. 4)) of the plurality of inorganic light emitting elements 100 (see FIG. 4) are connected to a common cathode wiring 60 and are supplied with a fixed potential (eg, ground potential). More specifically, the cathode terminal 90p (second terminal) of the inorganic light emitting device 100 is connected to the cathode wiring 60 via the cathode electrode 90e (second electrode) on the TFT substrate side.
 図2は、複数の画素を示す平面図である。図2に示すように、1つの画素Pixは、複数の画素49を含む。例えば、画素Pixは、第1画素49Rと、第2画素49Gと、第3画素49Bとを有する。第1画素49Rは、第1色としての原色の赤色を表示する。第2画素49Gは、第2色としての原色の緑色を表示する。第3画素49Bは、第3色としての原色の青色を表示する。図2に示すように、1つの画素Pixにおいて、第1画素49Rと第3画素49Bは第1方向Dxで並ぶ。また、第2画素49Gと第3画素49Bは第2方向Dyで並ぶ。なお、第1色、第2色、第3色は、それぞれ赤色、緑色、青色に限られず、補色などの任意の色を選択することができる。以下において、第1画素49Rと、第2画素49Gと、第3画素49Bとをそれぞれ区別する必要がない場合、画素49という。なお、1つの画素Pixに含まれる画素49は3つに限らず、4以上の画素49が対応づけられていてもよい。例えば、第4色として白色が対応付けられた第4画素49Wが含まれてもよい。 FIG. 2 is a plan view showing a plurality of pixels. As shown in FIG. 2, one pixel Pix includes a plurality of pixels 49. For example, the pixel Pix has a first pixel 49R, a second pixel 49G, and a third pixel 49B. The first pixel 49R displays the primary color red as the first color. The second pixel 49G displays the primary color green as the second color. The third pixel 49B displays the primary color blue as the third color. As shown in FIG. 2, in one pixel Pix, the first pixel 49R and the third pixel 49B are arranged in the first direction Dx. Further, the second pixel 49G and the third pixel 49B are arranged in the second direction Dy. The first color, the second color, and the third color are not limited to red, green, and blue, respectively, and any color such as a complementary color can be selected. Hereinafter, when it is not necessary to distinguish the first pixel 49R, the second pixel 49G, and the third pixel 49B from each other, it is referred to as a pixel 49. The number of pixels 49 included in one pixel Pix is not limited to three, and four or more pixels 49 may be associated with each other. For example, the fourth pixel 49W associated with white as the fourth color may be included.
 画素49は、それぞれ無機発光素子100を有する。表示装置1は、第1画素49R、第2画素49G及び第3画素49Bにおいて、無機発光素子100ごとに異なる光を出射することで画像を表示する。無機発光素子100は、平面視で、3μm以上、300μm以下程度の大きさを有する無機発光ダイオード(LED:Light Emitting Diode)チップであり、マイクロLED(micro LED)又はミニLED(mini LED)と呼ばれる。各画素にマイクロLED(micro LED)を備える表示装置は、マイクロLED表示装置とも呼ばれる。なお、マイクロLEDのマイクロは、無機発光素子100の大きさを限定するものではない。 Each pixel 49 has an inorganic light emitting element 100. The display device 1 displays an image by emitting different light for each inorganic light emitting element 100 in the first pixel 49R, the second pixel 49G, and the third pixel 49B. The inorganic light emitting element 100 is an inorganic light emitting diode (LED: Light Emitting Diode) chip having a size of 3 μm or more and 300 μm or less in a plan view, and is called a micro LED (micro LED) or a mini LED (mini LED). . A display device having a micro LED in each pixel is also called a micro LED display device. Note that the size of the inorganic light emitting element 100 is not limited by the size of the micro of the micro LED.
 図3は、表示装置の画素回路の構成例を示す回路図である。画素回路PICは、無機発光素子100を駆動する駆動回路である。図3に示すように、画素回路PICは、駆動用のトランジスタTr1と、電流切り替え用のトランジスタTr2と、無機発光素子100と、を有する。トランジスタTr1、Tr2、及び後述のトランジスタTr5(図4参照)は、それぞれ薄膜トランジスタ(Thin Film Transistor:以下、TFT)である。 FIG. 3 is a circuit diagram showing a configuration example of a pixel circuit of a display device. The pixel circuit PIC is a drive circuit that drives the inorganic light emitting element 100. As shown in FIG. 3, the pixel circuit PIC includes a driving transistor Tr1, a current switching transistor Tr2, and an inorganic light emitting element 100. The transistors Tr1 and Tr2, and a transistor Tr5 (see FIG. 4) described later are thin film transistors (Thin Film Transistors: TFTs).
 トランジスタTr1は、ゲートがトランジスタTr2のドレインに接続され、ソースが電源線LVCCに接続され、ドレインが無機発光素子100のアノードに接続されている。トランジスタTr2は、ゲートがゲート線GCLに接続され、ソースが信号線SGLに接続され、ドレインがトランジスタTr1のゲートに接続されている。 The transistor Tr1 has a gate connected to the drain of the transistor Tr2, a source connected to the power supply line LVCC, and a drain connected to the anode of the inorganic light emitting element 100. The transistor Tr2 has a gate connected to the gate line GCL, a source connected to the signal line SGL, and a drain connected to the gate of the transistor Tr1.
 容量CSは、一端がトランジスタTr1のゲートとトランジスタTr2のドレインとに接続され、他端が電源線LVCCに接続されている。容量CSは、トランジスタTr1の寄生容量とリーク電流とによるゲート電圧の変動を抑えるために、画素回路PICに付加されている。無機発光素子100のカソードはカソード配線60に接続され、基準電位VCOMが供給される。基準電位VCOMとして、接地電位が例示される。 The capacitor CS has one end connected to the gate of the transistor Tr1 and the drain of the transistor Tr2, and the other end connected to the power supply line LVCC. The capacitor CS is added to the pixel circuit PIC in order to suppress the fluctuation of the gate voltage due to the parasitic capacitance of the transistor Tr1 and the leak current. The cathode of the inorganic light emitting element 100 is connected to the cathode wiring 60 and is supplied with the reference potential VCOM. A ground potential is exemplified as the reference potential VCOM.
 電源線LVCCは、定電圧源に接続されている。電源線LVCCは、トランジスタTr1のソースと、容量CSの一端とに直流の定電圧VCCを供給する。信号線SGLは、定電流源に接続されている。信号線SGLは、トランジスタTr2のソースに直流の定電流Idataを供給する。ゲート線GCLは、ゲートドライバ12(図1参照)に接続されている。ゲート線GCLはトランジスタTr2のゲートにゲート駆動信号として電圧Vgclを供給する。 The power line LVCC is connected to a constant voltage source. The power supply line LVCC supplies the DC constant voltage VCC to the source of the transistor Tr1 and one end of the capacitor CS. The signal line SGL is connected to a constant current source. The signal line SGL supplies a DC constant current Idata to the source of the transistor Tr2. The gate line GCL is connected to the gate driver 12 (see FIG. 1). The gate line GCL supplies the voltage Vgcl as a gate drive signal to the gate of the transistor Tr2.
 表示装置1がゲート線GCLの電位をハイ(High)にすると、トランジスタTr1、Tr2はオンになる。これにより、信号線SGLから無機発光素子100に定電流Idataが供給される。表示装置1がゲート線GCLの電位をロウ(Low)にすると、トランジスタTr2はオフになり、トランジスタTr1はオンになる。これにより、電源線LVCCから無機発光素子100に定電圧VCCが供給される。また、基準電位線LVCOMから無機発光素子100のカソードに逆バイアスとなる基準電位VCOMが供給される。 When the display device 1 makes the potential of the gate line GCL high, the transistors Tr1 and Tr2 are turned on. As a result, the constant current Idata is supplied to the inorganic light emitting element 100 from the signal line SGL. When the display device 1 sets the potential of the gate line GCL to low (Low), the transistor Tr2 is turned off and the transistor Tr1 is turned on. As a result, the constant voltage VCC is supplied to the inorganic light emitting element 100 from the power supply line LVCC. Further, the reference potential VCOM, which is a reverse bias, is supplied from the reference potential line LVCOM to the cathode of the inorganic light emitting element 100.
 図4は、図1のIV-IV’断面図である。図4に示すように、表示装置1は、基板10と、アンダーコート層20と、複数のトランジスタと、を備える。基板10は、第1面10aと、第1面10aの反対側の第2面10bとを有する。基板10は、例えばガラス基板、石英基板、又は、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、若しくは、ポリエチレンテレフタレート(PET)樹脂製のフレキシブル基板である。 FIG. 4 is a sectional view taken along the line IV-IV ′ of FIG. As shown in FIG. 4, the display device 1 includes a substrate 10, an undercoat layer 20, and a plurality of transistors. The substrate 10 has a first surface 10a and a second surface 10b opposite to the first surface 10a. The substrate 10 is, for example, a glass substrate, a quartz substrate, or a flexible substrate made of acrylic resin, epoxy resin, polyimide resin, or polyethylene terephthalate (PET) resin.
 アンダーコート層20は、基板10の第1面10a上に設けられる。複数のトランジスタは、アンダーコート層20上に設けられる。例えば、基板10の表示領域AAには、複数のトランジスタとして、画素49に含まれるトランジスタTr1、Tr2がそれぞれ設けられている。基板10の周辺領域GAには、複数のトランジスタとして、ゲートドライバ12に含まれるトランジスタTr5が設けられている。 The undercoat layer 20 is provided on the first surface 10 a of the substrate 10. The plurality of transistors are provided on the undercoat layer 20. For example, in the display area AA of the substrate 10, transistors Tr1 and Tr2 included in the pixel 49 are provided as a plurality of transistors, respectively. In the peripheral area GA of the substrate 10, a transistor Tr5 included in the gate driver 12 is provided as a plurality of transistors.
 トランジスタTr1、Tr2、Tr5は、例えば両面ゲート構造のTFTである。トランジスタTr1、Tr2、Tr5は、それぞれ、第1ゲート電極21と、第2ゲート電極31と、半導体層25と、ソース電極41sと、ドレイン電極41dと、を有する。第1ゲート電極21は、アンダーコート層20上に設けられる。絶縁膜24は、アンダーコート層20上に設けられて第1ゲート電極21を覆う。半導体層25は、絶縁膜24上に設けられる。絶縁膜29は、半導体層25上に設けられる。第2ゲート電極31は、絶縁膜29上に設けられる。 The transistors Tr1, Tr2, Tr5 are, for example, double-sided gate structure TFTs. Each of the transistors Tr1, Tr2, Tr5 has a first gate electrode 21, a second gate electrode 31, a semiconductor layer 25, a source electrode 41s, and a drain electrode 41d. The first gate electrode 21 is provided on the undercoat layer 20. The insulating film 24 is provided on the undercoat layer 20 and covers the first gate electrode 21. The semiconductor layer 25 is provided on the insulating film 24. The insulating film 29 is provided on the semiconductor layer 25. The second gate electrode 31 is provided on the insulating film 29.
 絶縁膜24、29は、無機絶縁膜であり、例えば、酸化シリコン(SiO)や窒化シリコン(SiN)などからなる。第3方向Dzにおいて、第1ゲート電極21と第2ゲート電極31は、絶縁膜24、半導体層25及び絶縁膜29を介して、対向している。絶縁膜24、29において、第1ゲート電極21と第2ゲート電極31とに挟まれた部分がゲート絶縁膜として機能する。また、半導体層25において、第1ゲート電極21と第2ゲート電極31とに挟まれた部分がTFTのチャネル27となる。半導体層25において、ソース電極41sと接続する部分がTFTのソースであり、ドレイン電極41dと接続する部分がTFTのドレインである。 The insulating films 24 and 29 are inorganic insulating films, and are made of, for example, silicon oxide (SiO 2 ) or silicon nitride (SiN). In the third direction Dz, the first gate electrode 21 and the second gate electrode 31 face each other with the insulating film 24, the semiconductor layer 25, and the insulating film 29 in between. In the insulating films 24 and 29, the portion sandwiched between the first gate electrode 21 and the second gate electrode 31 functions as a gate insulating film. Further, in the semiconductor layer 25, a portion sandwiched between the first gate electrode 21 and the second gate electrode 31 becomes a channel 27 of the TFT. In the semiconductor layer 25, the portion connected to the source electrode 41s is the source of the TFT, and the portion connected to the drain electrode 41d is the drain of the TFT.
 ゲート線31aは、トランジスタTr1の第2ゲート電極31に接続される。基板10とゲート線31aとの間に絶縁膜29が設けられ、ゲート線31aと基板10との間に容量CSが形成される。 The gate line 31a is connected to the second gate electrode 31 of the transistor Tr1. The insulating film 29 is provided between the substrate 10 and the gate line 31a, and the capacitor CS is formed between the gate line 31a and the substrate 10.
 本実施形態において、トランジスタTr1、Tr2、Tr5は両面ゲート構造に限定されるものではない。トランジスタTr1、Tr2、Tr5は、ゲート電極が第1ゲート電極21のみで構成されるボトムゲート型であってもよい。また、トランジスタTr1、Tr2、Tr5は、ゲート電極が第2ゲート電極31のみで構成されるトップゲート型であってもよい。また、アンダーコート層20は無くても良い。 In the present embodiment, the transistors Tr1, Tr2, Tr5 are not limited to the double-sided gate structure. The transistors Tr1, Tr2, Tr5 may be of a bottom gate type in which the gate electrode is composed of only the first gate electrode 21. Further, the transistors Tr1, Tr2, Tr5 may be of a top gate type in which the gate electrode is composed of only the second gate electrode 31. Further, the undercoat layer 20 may be omitted.
 表示装置1は、基板10の第1面10a上に設けられて複数のトランジスタTr1、Tr2、Tr5を覆う絶縁膜35を有する。ソース電極41sは、絶縁膜35上に設けられ、絶縁膜35に設けられた貫通孔を介して複数のトランジスタTr1、Tr2、Tr5の各ソースに接続される。ドレイン電極41dは、絶縁膜35上に設けられ、絶縁膜35に設けられた貫通孔を介して複数のトランジスタTr1、Tr2、Tr5の各ドレインに接続される。周辺領域GAにおいてカソード配線60は、絶縁膜35上に設けられる。絶縁膜42は、ソース電極41s、ドレイン電極41d及びカソード配線60を覆う。絶縁膜35は無機絶縁膜、絶縁膜42は、有機絶縁膜である。 The display device 1 has an insulating film 35 provided on the first surface 10a of the substrate 10 and covering the plurality of transistors Tr1, Tr2, Tr5. The source electrode 41s is provided on the insulating film 35, and is connected to each source of the plurality of transistors Tr1, Tr2, Tr5 via a through hole provided in the insulating film 35. The drain electrode 41d is provided on the insulating film 35 and is connected to the drains of the plurality of transistors Tr1, Tr2, Tr5 via the through holes provided in the insulating film 35. In the peripheral area GA, the cathode wiring 60 is provided on the insulating film 35. The insulating film 42 covers the source electrode 41s, the drain electrode 41d, and the cathode wiring 60. The insulating film 35 is an inorganic insulating film, and the insulating film 42 is an organic insulating film.
 表示装置1は、ソース接続配線43sと、ドレイン接続配線43dと、絶縁膜45と、アノード電極50e(第1電極)と、絶縁膜70と、平坦化膜80と、カソード電極90eとを有する。ソース接続配線43sは、絶縁膜42上に設けられ、絶縁膜42に設けられた貫通孔を介してソース電極41sに接続される。ドレイン接続配線43dは、絶縁膜42上に設けられ、絶縁膜42に設けられた貫通孔を介してドレイン電極41dに接続される。絶縁膜45は、絶縁膜42上に設けられてソース接続配線43sとドレイン接続配線43dとを覆う。アノード電極50eは、絶縁膜45上に設けられ、絶縁膜45に設けられた貫通孔を介してトランジスタTr1のドレイン接続配線43dに接続される。無機発光素子100はアノード電極50e(第1電極)の上に設けられる、アノード電極50eは無機発光素子100のアノード端子50p(第1端子)と接続されている。 The display device 1 includes a source connection wiring 43s, a drain connection wiring 43d, an insulating film 45, an anode electrode 50e (first electrode), an insulating film 70, a flattening film 80, and a cathode electrode 90e. The source connection wiring 43s is provided on the insulating film 42 and is connected to the source electrode 41s via a through hole provided in the insulating film 42. The drain connection wiring 43d is provided on the insulating film 42 and is connected to the drain electrode 41d through a through hole provided in the insulating film 42. The insulating film 45 is provided on the insulating film 42 and covers the source connection wiring 43s and the drain connection wiring 43d. The anode electrode 50e is provided on the insulating film 45 and is connected to the drain connection wiring 43d of the transistor Tr1 via a through hole provided in the insulating film 45. The inorganic light emitting element 100 is provided on the anode electrode 50e (first electrode), and the anode electrode 50e is connected to the anode terminal 50p (first terminal) of the inorganic light emitting element 100.
 絶縁膜70は、絶縁膜45上に設けられてアノード電極50eの側面を覆う。平坦化膜80は、絶縁膜70上に設けられて無機発光素子100の側面を覆う。カソード電極90eは、平坦化膜80上に設けられる。絶縁膜70は、無機絶縁膜であり、例えば、シリコン窒化膜(SiN)からなる。平坦化膜80は、有機絶縁膜あるいは無機有機ハイブリッド絶縁膜(Si-O主鎖に、たとえば有機基(メチル基あるいはフェニル基)が結合した材料)である。無機発光素子100の上面(カソード端子90p)は、平坦化膜80から露出している。カソード電極90eは、無機発光素子100のカソード端子90pに接続される。 The insulating film 70 is provided on the insulating film 45 and covers the side surface of the anode electrode 50e. The planarization film 80 is provided on the insulating film 70 and covers the side surface of the inorganic light emitting device 100. The cathode electrode 90e is provided on the flattening film 80. The insulating film 70 is an inorganic insulating film and is made of, for example, a silicon nitride film (SiN). The flattening film 80 is an organic insulating film or an inorganic-organic hybrid insulating film (a material in which an organic group (methyl group or phenyl group) is bonded to the Si—O main chain). The upper surface (cathode terminal 90p) of the inorganic light emitting device 100 is exposed from the flattening film 80. The cathode electrode 90e is connected to the cathode terminal 90p of the inorganic light emitting device 100.
 ここで、無機発光素子100の構成について説明する。図5は、無機発光素子の構成例を示す断面図である。図5に示すように、無機発光素子100は、p型クラッド層101と、p型クラッド層101上に設けられた活性層102と、活性層102上に設けられたn型クラッド層103と、p型電極層104と、n型電極層105と、を有する。p型電極層104は、アノード端子50pを含む。p型電極層104は、アノード電極50eとp型クラッド層101との間に位置し、アノード電極50eとp型クラッド層101とに接している。p型電極層104の上に、p型クラッド層101、活性層102、n型クラッド層103、n型電極層105の順に積層される。 Here, the configuration of the inorganic light emitting device 100 will be described. FIG. 5: is sectional drawing which shows the structural example of an inorganic light emitting element. As shown in FIG. 5, the inorganic light emitting device 100 includes a p-type clad layer 101, an active layer 102 provided on the p-type clad layer 101, an n-type clad layer 103 provided on the active layer 102, It has a p-type electrode layer 104 and an n-type electrode layer 105. The p-type electrode layer 104 includes the anode terminal 50p. The p-type electrode layer 104 is located between the anode electrode 50e and the p-type cladding layer 101, and is in contact with the anode electrode 50e and the p-type cladding layer 101. A p-type clad layer 101, an active layer 102, an n-type clad layer 103, and an n-type electrode layer 105 are laminated in this order on the p-type electrode layer 104.
 n型クラッド層103、活性層102及びp型クラッド層101は、発光層であり、例えば、窒化ガリウム(GaN)、アルミニウムインジウムリン(AlInP)等の化合物半導体が用いられる。n型電極層105は、ITO等の透光性の導電性材料である。n型電極層105は、無機発光素子100のカソード端子90pであり、カソード電極90eに接続される。また、p型電極層104は、無機発光素子100のアノード端子50pであり、Pt層と、メッキにより形成された厚膜Au層と、を有する。厚膜Au層は、アノード電極50eと接続される。 The n-type clad layer 103, the active layer 102, and the p-type clad layer 101 are light emitting layers, and for example, compound semiconductors such as gallium nitride (GaN) and aluminum indium phosphide (AlInP) are used. The n-type electrode layer 105 is a translucent conductive material such as ITO. The n-type electrode layer 105 is the cathode terminal 90p of the inorganic light emitting device 100 and is connected to the cathode electrode 90e. The p-type electrode layer 104 is the anode terminal 50p of the inorganic light emitting element 100, and has a Pt layer and a thick film Au layer formed by plating. The thick film Au layer is connected to the anode electrode 50e.
 無機発光素子100の側面は平坦化膜80で覆われている。平坦化膜80は、例えばSOG(Spin On Glass)膜である。平坦化膜80の上側部分に凹部H11が設けられている。凹部H11からn型クラッド層103の上部が突き出ている。n型電極層105は、凹部H11に設けられ、n型クラッド層103とカソード電極90eとに接している。これにより、無機発光素子100を挟んで、アノード電極50eとカソード電極90eとの間で電流が流れることが可能となっている。 The side surface of the inorganic light emitting element 100 is covered with a flattening film 80. The flattening film 80 is, for example, an SOG (Spin On Glass) film. A recess H11 is provided in the upper portion of the flattening film 80. The upper part of the n-type cladding layer 103 projects from the recess H11. The n-type electrode layer 105 is provided in the recess H11 and is in contact with the n-type cladding layer 103 and the cathode electrode 90e. As a result, a current can flow between the anode electrode 50e and the cathode electrode 90e with the inorganic light emitting element 100 interposed therebetween.
 図6は、無機発光素子の変形例を示す断面図である。上述の実施形態では、無機発光素子100は、その下部(アノード端子50p)がアノード電極50eに接続し、その上部(カソード端子90p)がカソード電極90eに接続するタイプ(以下、フェイスアップタイプという)であることを説明した。しかし無機発光素子100は、フェイスアップタイプに限定されない。図6に示すように、変形例の無機発光素子100Aは、その下部がアノード電極50eとカソード電極90eAの両方に接続する、フェイスダウンタイプであってもよい。 FIG. 6 is a cross-sectional view showing a modified example of the inorganic light emitting element. In the above-described embodiment, the inorganic light emitting device 100 has a lower part (anode terminal 50p) connected to the anode electrode 50e and an upper part (cathode terminal 90p) connected to the cathode electrode 90e (hereinafter referred to as face-up type). I explained that. However, the inorganic light emitting device 100 is not limited to the face-up type. As shown in FIG. 6, the inorganic light emitting device 100A of the modified example may be a face-down type in which the lower portion is connected to both the anode electrode 50e and the cathode electrode 90eA.
 基板111は、サファイアで構成されている。n型クラッド層113は、n型のGaNで構成されている。活性層114は、InGaNで構成されている。p型クラッド層115は、p型のGaNで構成されている。P型電極116は、パラジウム(Pd)と金(Au)とで構成されており、Pd上にAuが積層された積層構造を有する。n型電極117は、インジウム(In)で構成されている。 The substrate 111 is made of sapphire. The n-type cladding layer 113 is composed of n-type GaN. The active layer 114 is composed of InGaN. The p-type cladding layer 115 is made of p-type GaN. The P-type electrode 116 is composed of palladium (Pd) and gold (Au), and has a laminated structure in which Au is laminated on Pd. The n-type electrode 117 is made of indium (In).
 無機発光素子100Aでは、p型クラッド層115とn型クラッド層113とが直接接合せずに、間に別の層(活性層114)が導入されている。これにより、電子や正孔といったキャリアを活性層114の中に集中させることができ、効率よく再結合(発光)させることが可能となる。高効率化のために数原子層からなる井戸層と障壁層とを周期的に積層させた多重量子井戸構造(MQW構造)が、活性層114として採用されてもよい。 In the inorganic light emitting device 100A, the p-type cladding layer 115 and the n-type cladding layer 113 are not directly joined, but another layer (active layer 114) is introduced therebetween. As a result, carriers such as electrons and holes can be concentrated in the active layer 114, and recombination (light emission) can be efficiently performed. A multi-quantum well structure (MQW structure) in which a well layer composed of several atomic layers and a barrier layer are periodically stacked may be adopted as the active layer 114 for higher efficiency.
 次に、表示装置1の階調制御について説明する。図7は、表示装置の構成を示すブロック図である。図8は、サブフレームと映像信号との関係を説明するための説明図である。図9は、映像信号と、期間及び電流値との関係を示す表である。 Next, the gradation control of the display device 1 will be described. FIG. 7 is a block diagram showing the configuration of the display device. FIG. 8 is an explanatory diagram for explaining the relationship between subframes and video signals. FIG. 9 is a table showing the relationship between the video signal and the period and current value.
 図7に示すように、表示装置1は、制御回路200と、信号出力回路15と、駆動回路211と、を有する。本実施形態の表示装置1は、制御回路200から出力される映像信号Sgの階調数で多色表示を行う。映像信号Sgは、例えば、赤、緑、青の各色8ビットの信号であり、各色256階調の表示を行う。映像信号Sgは、8ビット×3の合計24ビットの信号であり、表示装置1は、1677万色の表示を行う。以下の説明では、8ビットの映像信号Sgで階調制御を行う場合を説明する。 As shown in FIG. 7, the display device 1 includes a control circuit 200, a signal output circuit 15, and a drive circuit 211. The display device 1 of the present embodiment performs multicolor display with the number of gradations of the video signal Sg output from the control circuit 200. The video signal Sg is, for example, an 8-bit signal for each color of red, green, and blue, and displays 256 gradations for each color. The video signal Sg is a signal of 8 bits × 3, which is a total of 24 bits, and the display device 1 performs display of 16.77 million colors. In the following description, a case where the gradation control is performed by the 8-bit video signal Sg will be described.
 図9に示すように、映像信号Sgの上位ビット(Sg7-3)は、映像信号Sgの階調に応じて信号(電流値)の振幅を制御する信号であり、以下の説明では振幅制御信号Sg7-3と表す。振幅制御信号Sg7、Sg6、Sg5、Sg4、Sg3は、それぞれ1ビットのデジタル信号であり、振幅制御信号Sg7-3は、5ビットの信号である。振幅制御信号Sg7-3は、階調に応じて異なる電流値を有する複数の第2信号値I2-0、I2-1、I2-2、…、I2-31が対応付けられている。 As shown in FIG. 9, the upper bit (Sg7-3) of the video signal Sg is a signal for controlling the amplitude of the signal (current value) according to the gradation of the video signal Sg. In the following description, the amplitude control signal It is represented as Sg7-3. The amplitude control signals Sg7, Sg6, Sg5, Sg4, and Sg3 are 1-bit digital signals, and the amplitude control signal Sg7-3 is a 5-bit signal. The amplitude control signal Sg7-3 is associated with a plurality of second signal values I2-0, I2-1, I2-2, ..., I2-31 having different current values depending on the gradation.
 映像信号Sgの下位ビット(Sg2-0)は、映像信号Sgの階調に応じて信号を出力する期間を制御する信号であり、以下の説明では期間制御信号Sg2-0と表す。期間制御信号Sg2、Sg1、Sg0は、それぞれ1ビットのデジタル信号であり、期間制御信号Sg2-0は、3ビットの信号である。期間制御信号Sg2-0は、いずれも共通の第1信号値I1が対応付けられている。 The lower bit (Sg2-0) of the video signal Sg is a signal for controlling the period during which the signal is output according to the gradation of the video signal Sg, and will be referred to as the period control signal Sg2-0 in the following description. The period control signals Sg2, Sg1, Sg0 are 1-bit digital signals, and the period control signal Sg2-0 is a 3-bit signal. A common first signal value I1 is associated with each of the period control signals Sg2-0.
 図8は、横軸が時間tであり、縦軸が走査方向Scanである。ゲートドライバ12(図1参照)は、走査方向Scanにしたがって、順次ゲート線GCLを選択する。また、表示装置1は、1フレーム期間Fで、1フレーム分の画像表示を行う。1フレーム期間Fは、時分割された複数の第1サブフレームSF1、第2サブフレームSF2及び第3サブフレームSF3を含む。複数の第1サブフレームSF1、第2サブフレームSF2及び第3サブフレームSF3は、互いに異なる長さの期間を有する。第2サブフレームSF2は、第1サブフレームSF1よりも長い期間を有する。第3サブフレームSF3は、第2サブフレームSF2よりも長い期間を有する。なお、以下の説明では、第1サブフレームSF1、第2サブフレームSF2及び第3サブフレームSF3を区別して説明する必要がない場合には、単にサブフレームSFと表す場合がある。 In FIG. 8, the horizontal axis represents time t and the vertical axis represents the scanning direction Scan. The gate driver 12 (see FIG. 1) sequentially selects the gate lines GCL according to the scanning direction Scan. Further, the display device 1 displays an image for one frame in the one frame period F. One frame period F includes a plurality of time-divided first subframes SF1, second subframes SF2, and third subframes SF3. The plurality of first subframes SF1, second subframes SF2, and third subframes SF3 have periods of different lengths. The second sub-frame SF2 has a longer period than the first sub-frame SF1. The third subframe SF3 has a longer period than the second subframe SF2. Note that in the following description, the first subframe SF1, the second subframe SF2, and the third subframe SF3 may be simply referred to as the subframe SF unless it is necessary to distinguish between them.
 図8及び図9に示すように、期間制御信号Sg2には、第3サブフレームSF3が対応付けられる。期間制御信号Sg1には、第2サブフレームSF2が対応付けられる。期間制御信号Sg0には、第1サブフレームSF1が対応付けられる。振幅制御信号Sg7-3は、全てのサブフレーム期間SFに対応付けられる。言い換えると、第1サブフレームSF1では、期間制御信号Sg0及び振幅制御信号Sg7-3により階調制御がなされる。第2サブフレームSF2では、期間制御信号Sg1及び振幅制御信号Sg7-3により階調制御がなされる。第3サブフレームSF3では、期間制御信号Sg2及び振幅制御信号Sg7-3により階調制御がなされる。 As shown in FIGS. 8 and 9, the period control signal Sg2 is associated with the third subframe SF3. The second sub-frame SF2 is associated with the period control signal Sg1. The first sub-frame SF1 is associated with the period control signal Sg0. The amplitude control signal Sg7-3 is associated with all subframe periods SF. In other words, in the first sub-frame SF1, gradation control is performed by the period control signal Sg0 and the amplitude control signal Sg7-3. In the second sub-frame SF2, gradation control is performed by the period control signal Sg1 and the amplitude control signal Sg7-3. In the third sub-frame SF3, gradation control is performed by the period control signal Sg2 and the amplitude control signal Sg7-3.
 なお、映像信号Sgの8ビットの信号のうち、上位ビットを振幅制御信号Sg7-3とし、下位ビットを期間制御信号Sg2-0としたが、これに限定されない。振幅制御信号Sg7-3及び期間制御信号Sg2-0のビット数は、映像信号Sgのビット数に応じて変更できる。振幅制御信号Sg7-3及び期間制御信号Sg2-0の配置も適宜変更できる。また、1フレーム期間Fに2つのサブフレームSFが含まれていてもよく、4つ以上のサブフレームSFが含まれていてもよい。サブフレームSFは、期間制御信号Sg2-0のビット数に対応する数以上であればよい。 In the 8-bit signal of the video signal Sg, the upper bit is the amplitude control signal Sg7-3 and the lower bit is the period control signal Sg2-0, but the invention is not limited to this. The number of bits of the amplitude control signal Sg7-3 and the period control signal Sg2-0 can be changed according to the number of bits of the video signal Sg. The arrangement of the amplitude control signal Sg7-3 and the period control signal Sg2-0 can be changed as appropriate. Further, one frame period F may include two subframes SF, or may include four or more subframes SF. The number of subframes SF may be equal to or larger than the number corresponding to the number of bits of the period control signal Sg2-0.
 図7に示すように、制御回路200は、本実施形態に係る表示装置1の動作を制御する回路である。信号出力回路15は、制御回路200から供給された映像信号Sgに基づいて、映像信号Sgの階調に応じた第3信号データSIcを生成する。信号出力回路15は、第3信号データSIcを駆動回路211に出力する回路である。駆動回路211は、例えば定電流回路であり、第3信号データSIcに応じた定電流Idataを、信号線SGLを介して無機発光素子100に供給する。 As shown in FIG. 7, the control circuit 200 is a circuit that controls the operation of the display device 1 according to the present embodiment. The signal output circuit 15 generates the third signal data SIc according to the gradation of the video signal Sg based on the video signal Sg supplied from the control circuit 200. The signal output circuit 15 is a circuit that outputs the third signal data SIc to the drive circuit 211. The drive circuit 211 is, for example, a constant current circuit, and supplies a constant current Idata corresponding to the third signal data SIc to the inorganic light emitting element 100 via the signal line SGL.
 制御回路200及び信号出力回路15は、駆動IC210(図1参照)に含まれていてもよい。又は、制御回路200及び信号出力回路15の少なくとも一方は、基板10に接続された配線基板に実装されていてもよい。又は、制御回路200及び信号出力回路15の少なくとも一方は、基板10に配線基板を介して接続された制御基板に実装されていてもよい。 The control circuit 200 and the signal output circuit 15 may be included in the drive IC 210 (see FIG. 1). Alternatively, at least one of the control circuit 200 and the signal output circuit 15 may be mounted on a wiring board connected to the board 10. Alternatively, at least one of the control circuit 200 and the signal output circuit 15 may be mounted on a control board connected to the board 10 via a wiring board.
 制御回路200は、映像信号出力回路201と、クロック信号出力回路202とを有する。また、信号出力回路15は、第1バッファ回路151、第2バッファ回路152、第1信号処理回路153、第2信号処理回路154、演算回路155、バッファ制御回路158及びサブフレームカウンタ159を有する。 The control circuit 200 has a video signal output circuit 201 and a clock signal output circuit 202. In addition, the signal output circuit 15 includes a first buffer circuit 151, a second buffer circuit 152, a first signal processing circuit 153, a second signal processing circuit 154, an arithmetic circuit 155, a buffer control circuit 158, and a subframe counter 159.
 映像信号出力回路201は、8ビットの映像信号Sgを、振幅制御信号Sg7-3と、期間制御信号Sg2-0とに分離する。映像信号出力回路201は、期間制御信号Sg2-0を信号出力回路15の第1バッファ回路151に出力し、振幅制御信号Sg7-3を第2バッファ回路152に出力する。 The video signal output circuit 201 separates the 8-bit video signal Sg into an amplitude control signal Sg7-3 and a period control signal Sg2-0. The video signal output circuit 201 outputs the period control signal Sg2-0 to the first buffer circuit 151 of the signal output circuit 15, and outputs the amplitude control signal Sg7-3 to the second buffer circuit 152.
 クロック信号出力回路202は、クロック信号CLKをバッファ制御回路158及びサブフレームカウンタ159に出力する。バッファ制御回路158及びサブフレームカウンタ159は、クロック信号CLKに基づいて、信号出力回路15の第1バッファ回路151、第2バッファ回路152、第1信号処理回路153及び第2信号処理回路154を、制御する。これにより、第1バッファ回路151、第2バッファ回路152、第1信号処理回路153及び第2信号処理回路154は、互いに同期して、又は非同期で動作する。 The clock signal output circuit 202 outputs the clock signal CLK to the buffer control circuit 158 and the subframe counter 159. The buffer control circuit 158 and the sub-frame counter 159 cause the first buffer circuit 151, the second buffer circuit 152, the first signal processing circuit 153, and the second signal processing circuit 154 of the signal output circuit 15 to operate based on the clock signal CLK. Control. Accordingly, the first buffer circuit 151, the second buffer circuit 152, the first signal processing circuit 153, and the second signal processing circuit 154 operate in synchronization with each other or asynchronously.
 第1バッファ回路151は、1フレーム期間F分の期間制御信号Sg2-0を保持する回路である。第2バッファ回路152は、1フレーム期間F分の振幅制御信号Sg7-3を保持する回路である。 The first buffer circuit 151 is a circuit that holds the period control signal Sg2-0 for one frame period F. The second buffer circuit 152 is a circuit that holds the amplitude control signal Sg7-3 for one frame period F.
 サブフレームカウンタ159は、サブフレームSFに関する制御信号Sgfを、第1信号処理回路153及び第2信号処理回路154に供給する。第1信号処理回路153は、制御信号Sgfに基づいて、各サブフレームSFに対応付けられた期間制御信号Sg2-0を第1バッファ回路151から取り出す。そして、第1信号処理回路153は、制御信号Sgfと期間制御信号Sg2-0とに基づいて、第1信号データSIaを生成する。期間制御信号Sg2-0には、複数のサブフレームSFごとに第1信号データSIaが対応付けられる。期間制御信号Sg2-0は、複数のサブフレームSFで共通の第1信号値I1が第1信号データSIaとして対応付けられている。 The sub-frame counter 159 supplies the control signal Sgf related to the sub-frame SF to the first signal processing circuit 153 and the second signal processing circuit 154. The first signal processing circuit 153 extracts the period control signal Sg2-0 associated with each subframe SF from the first buffer circuit 151 based on the control signal Sgf. Then, the first signal processing circuit 153 generates the first signal data SIa based on the control signal Sgf and the period control signal Sg2-0. The period control signal Sg2-0 is associated with the first signal data SIa for each of the plurality of subframes SF. The period control signal Sg2-0 is associated with the first signal value I1 common to the plurality of subframes SF as the first signal data SIa.
 第2信号処理回路154は、制御信号Sgfに基づいて、各サブフレームSFに対応付けられた振幅制御信号Sg7-3を第2バッファ回路152から取り出す。そして、第2信号処理回路154は、制御信号Sgfと振幅制御信号Sg7-3とに基づいて、第2信号データSIbを生成する。振幅制御信号Sg7-3には、異なる信号値を有する複数の第2信号値I2のいずれかを示す第2信号データSIbが対応付けられている。本実施形態では、1つの振幅制御信号Sg7-3に対応して、各サブフレームSFで同じ信号値を有する第2信号値I2が対応付けられる。ただし、第2信号値I2は、サブフレームSFごとに異なる信号値を有してもよい。また、第2信号処理回路154は、第1信号処理回路153から期間制御信号Sg2-0を受け取って、期間制御信号Sg2-0のパターンに応じて第2信号データSIbを生成してもよい。 The second signal processing circuit 154 takes out the amplitude control signal Sg7-3 associated with each subframe SF from the second buffer circuit 152 based on the control signal Sgf. Then, the second signal processing circuit 154 generates the second signal data SIb based on the control signal Sgf and the amplitude control signal Sg7-3. The amplitude control signal Sg7-3 is associated with the second signal data SIb indicating any one of the plurality of second signal values I2 having different signal values. In the present embodiment, the second signal value I2 having the same signal value in each subframe SF is associated with one amplitude control signal Sg7-3. However, the second signal value I2 may have a different signal value for each subframe SF. Further, the second signal processing circuit 154 may receive the period control signal Sg2-0 from the first signal processing circuit 153 and generate the second signal data SIb according to the pattern of the period control signal Sg2-0.
 第1信号処理回路153は、第1信号データSIaを演算回路155に出力する。第2信号処理回路154は、第2信号データSIbを演算回路155に出力する。演算回路155は、サブフレームSFごとに、第1信号データSIaの第1信号値I1と、第2信号データSIbの第2信号値I2とを統合して、第3信号データSIcを生成する。演算回路155は、第3信号データSIcを駆動回路211に出力する。 The first signal processing circuit 153 outputs the first signal data SIa to the arithmetic circuit 155. The second signal processing circuit 154 outputs the second signal data SIb to the arithmetic circuit 155. The arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa and the second signal value I2 of the second signal data SIb for each sub-frame SF to generate the third signal data SIc. The arithmetic circuit 155 outputs the third signal data SIc to the drive circuit 211.
 次に、第1信号処理回路153、第2信号処理回路154及び演算回路155の動作例について説明する。図10は、異なる期間制御信号ごとの第1信号データの波形を示す説明図である。図10は、振幅制御信号Sg7-3が0の場合、つまり、上位5ビットの振幅制御信号Sg7-3が、(Sg7、Sg6、Sg5、Sg4、Sg3)=(00000)である場合を示す。この場合、振幅制御信号Sg7-3に対応付けられた第2信号値I2-0は、0(信号値I0)となる。図10に示す第3信号データSIcは、第1信号処理回路153から出力される第1信号データSIaと等しい。なお、振幅制御信号Sg7-3が0の場合、第2信号データSIbが出力されず、演算回路155は、第1信号データSIaを第3信号データSIcとして出力されてもよい。 Next, an operation example of the first signal processing circuit 153, the second signal processing circuit 154, and the arithmetic circuit 155 will be described. FIG. 10 is an explanatory diagram showing waveforms of the first signal data for different period control signals. FIG. 10 shows the case where the amplitude control signal Sg7-3 is 0, that is, the amplitude control signal Sg7-3 of the upper 5 bits is (Sg7, Sg6, Sg5, Sg4, Sg3) = (00000). In this case, the second signal value I2-0 associated with the amplitude control signal Sg7-3 becomes 0 (signal value I0). The third signal data SIc shown in FIG. 10 is equal to the first signal data SIa output from the first signal processing circuit 153. When the amplitude control signal Sg7-3 is 0, the second signal data SIb may not be output, and the arithmetic circuit 155 may output the first signal data SIa as the third signal data SIc.
 図10は、3ビットの期間制御信号Sg2-0がそれぞれ、(Sg2、Sg1、Sg0)=(000)、(001)、(010)、(011)、(100)、(101)、(110)、(111)の場合の第3信号データSIc(第1信号データSIa)を示す。 In FIG. 10, the 3-bit period control signals Sg2-0 are (Sg2, Sg1, Sg0) = (000), (001), (010), (011), (100), (101), (110). ) And (111), the third signal data SIc (first signal data SIa) is shown.
 図10に示すように期間制御信号Sg2-0が(000)の場合、第1信号処理回路153は、第1信号データSIaとして、第1信号値I1を出力せず、全てのサブフレームSFで信号値I0を出力する。期間制御信号Sg2-0が(001)の場合、第1信号処理回路153は、第1信号データSIaとして、期間制御信号Sg0に対応付けられた第1サブフレームSF1で第1信号値I1を出力し、第2サブフレームSF2及び第3サブフレームSF3で信号値I0を出力する。期間制御信号Sg2-0が(010)の場合、第1信号処理回路153は、第1信号データSIaとして、期間制御信号Sg1に対応付けられた第2サブフレームSF2で第1信号値I1を出力し、第1サブフレームSF1及び第3サブフレームSF3で信号値I0を出力する。 As shown in FIG. 10, when the period control signal Sg2-0 is (000), the first signal processing circuit 153 does not output the first signal value I1 as the first signal data SIa, and in all subframes SF. The signal value I0 is output. When the period control signal Sg2-0 is (001), the first signal processing circuit 153 outputs the first signal value I1 as the first signal data SIa in the first subframe SF1 associated with the period control signal Sg0. Then, the signal value I0 is output in the second subframe SF2 and the third subframe SF3. When the period control signal Sg2-0 is (010), the first signal processing circuit 153 outputs the first signal value I1 as the first signal data SIa in the second subframe SF2 associated with the period control signal Sg1. Then, the signal value I0 is output in the first subframe SF1 and the third subframe SF3.
 以下、同様に、期間制御信号Sg2-0が(011)、(100)、(101)、(110)、(111)のそれぞれにおいて、第1信号処理回路153は、第1信号データSIaとして、期間制御信号Sg2-0の信号「1」に対応するサブフレームSFで第1信号値I1を出力する。言い換えると、第1信号処理回路153は、期間制御信号Sg2-0に基づいて、第1信号データSIaが出力されるサブフレームSFと、第1信号データSIaが出力されないサブフレームSFとを切り替える。これにより、第1信号処理回路153は、3ビットの期間制御信号Sg2-0に応じて、第1信号値I1が出力されるサブフレームSFが異なる第1信号データSIa(第3信号データSIc)を出力する。異なる第1信号データSIaの数は、期間制御信号Sg2-0のビット数に対応した8個となる。 Hereinafter, similarly, in each of the period control signals Sg2-0 (011), (100), (101), (110), (111), the first signal processing circuit 153 outputs the first signal data SIa as The first signal value I1 is output in the subframe SF corresponding to the signal "1" of the period control signal Sg2-0. In other words, the first signal processing circuit 153 switches between the subframe SF in which the first signal data SIa is output and the subframe SF in which the first signal data SIa is not output, based on the period control signal Sg2-0. As a result, the first signal processing circuit 153 causes the first signal data SIa (third signal data SIc) in which the sub-frame SF in which the first signal value I1 is output differs depending on the 3-bit period control signal Sg2-0. Is output. The number of different first signal data SIa is eight corresponding to the number of bits of the period control signal Sg2-0.
 言い換えると、表示装置1は、画素49-1に対応づけられた階調値GD1(第1階調値)を有する映像信号SgA(例えば、(00000001))と、画素49-2に対応づけられた階調値GD1より大きい階調値GD2(第2階調値)を有する映像信号SgB(例えば、(00000010))が入力された場合、画素49-1の無機発光素子100の1フレーム期間Fにおける点灯期間(第1点灯期間、例えば、第1サブフレームSF1)より画素49-2の無機発光素子100の1フレーム期間Fにおける点灯期間(第2点灯期間、例えば、第2サブフレームSF2)が長くなるように駆動される。なお、画素49-1及び画素49-2の点灯期間とは、第1信号値I1以上の信号値に対応する駆動信号が無機発光素子100に入力されている期間を示す。また、映像信号SgA及び映像信号SgBは、例えば、振幅制御信号Sg7-3は同一の値をとり、期間制御信号Sg2-0が異なる信号が対応づけられる。振幅制御信号Sg7-3が0の場合は、画素49-1及び画素49-2の無機発光素子100は、第1信号値I1に対応する駆動信号が入力された場合の輝度(第1輝度)で点灯される。 In other words, the display device 1 is associated with the pixel 49-2 and the video signal SgA (for example, (00000001)) having the tone value GD1 (first tone value) associated with the pixel 49-1. When a video signal SgB (for example, (00000010)) having a gradation value GD2 (second gradation value) larger than the gradation value GD1 is input, one frame period F of the inorganic light emitting element 100 of the pixel 49-1 is input. From the lighting period (first lighting period, eg, first sub-frame SF1) in 1 frame period F of the inorganic light emitting element 100 of the pixel 49-2 (second lighting period, eg, second sub-frame SF2). Driven to be long. The lighting period of the pixel 49-1 and the pixel 49-2 refers to a period during which the drive signal corresponding to the signal value of the first signal value I1 or more is input to the inorganic light emitting element 100. Further, for the video signal SgA and the video signal SgB, for example, the amplitude control signal Sg7-3 has the same value, and the period control signal Sg2-0 is associated with a different signal. When the amplitude control signal Sg7-3 is 0, the brightness (first brightness) of the inorganic light emitting elements 100 of the pixels 49-1 and 49-2 when the drive signal corresponding to the first signal value I1 is input Is lit up with.
 図11は、異なる振幅制御信号ごとの第2信号データとサブフレームとの関係を示すグラフである。図11は、期間制御信号Sg2-0が0の場合、つまり、下位3ビットの期間制御信号Sg2-0が(000)であり、第1信号値I1が0(信号値I0)となる場合を示す。なお、期間制御信号Sg2-0が0の場合、第1信号データSIaが出力されず、演算回路155は、第2信号データSIbを第3信号データSIcとして出力してもよい。 FIG. 11 is a graph showing the relationship between the second signal data and the subframe for each different amplitude control signal. FIG. 11 shows a case where the period control signal Sg2-0 is 0, that is, the period control signal Sg2-0 of the lower 3 bits is (000) and the first signal value I1 is 0 (signal value I0). Show. When the period control signal Sg2-0 is 0, the first signal data SIa may not be output, and the arithmetic circuit 155 may output the second signal data SIb as the third signal data SIc.
 図11に示すように、第2信号処理回路154は、第2信号データSIb0-31として、振幅制御信号Sg7-3ごとに異なる第2信号値I2-0(I0)、I2-1、I2-2、…、I2-31を出力する。第2信号処理回路154は、上位5ビットの振幅制御信号Sg7-3に基づいて、32個の異なる第2信号値I2-0、I2-1、I2-2、…、I2-31を出力する。例えば、第2信号処理回路154は、映像信号Sg=(00001000)に対応して、第2信号値I2-1(I2)を有する第2信号データSIb1を出力する。第2信号処理回路154は、最も高階調の映像信号Sg=(11111000)に対応して、第2信号値I2-31を有する第2信号データSIb31を出力する。なお、第2信号処理回路154は、映像信号Sg=(00000000)に対応して、第2信号値I2-0(I0)を有する第2信号データSIb0を出力する。なお、第2信号値I2-0は、例えば、信号値I0に対応する。 As shown in FIG. 11, the second signal processing circuit 154 uses, as the second signal data SIb0-31, second signal values I2-0 (I0), I2-1, I2- that differ for each amplitude control signal Sg7-3. 2, ..., I2-31 are output. The second signal processing circuit 154 outputs 32 different second signal values I2-0, I2-1, I2-2, ..., I2-31 based on the amplitude control signal Sg7-3 of the upper 5 bits. . For example, the second signal processing circuit 154 outputs the second signal data SIb1 having the second signal value I2-1 (I2) corresponding to the video signal Sg = (00001000). The second signal processing circuit 154 outputs the second signal data SIb31 having the second signal value I2-31 corresponding to the highest gradation video signal Sg = (11111000). The second signal processing circuit 154 outputs the second signal data SIb0 having the second signal value I2-0 (I0) corresponding to the video signal Sg = (00000000). The second signal value I2-0 corresponds to the signal value I0, for example.
 第2信号処理回路154は、例えば、第2信号データSIb1として、第1サブフレームSF1から第3サブフレームSF3に亘って、同じ第2信号値I2-1を出力する。言い換えると、第2信号値I2-1、I2-2、…、I2-31は、それぞれ、第1サブフレームSF1から第3サブフレームSF3に亘って同じ信号値を有する。また、隣接する振幅制御信号Sg7-3に対応する各第2信号値I2-1、I2-2、…、I2-3の差分を差分ΔI2とする。第1サブフレームSF1での差分ΔI2と、第2サブフレームSF2での差分ΔI2と、第3サブフレームSF3での差分ΔI2とは、等しい。 The second signal processing circuit 154 outputs the same second signal value I2-1 as the second signal data SIb1 from the first sub-frame SF1 to the third sub-frame SF3, for example. In other words, the second signal values I2-1, I2-2, ..., I2-31 have the same signal value from the first subframe SF1 to the third subframe SF3, respectively. Further, the difference between the second signal values I2-1, I2-2, ..., I2-3 corresponding to the adjacent amplitude control signals Sg7-3 is defined as a difference ΔI2. The difference ΔI2 in the first sub-frame SF1, the difference ΔI2 in the second sub-frame SF2, and the difference ΔI2 in the third sub-frame SF3 are equal.
 言い換えると、表示装置1は、画素49-3に対応づけられた階調値GD3(第3階調値)を有する映像信号SgC(例えば、(00001000))と、画素49-4に対応づけられた階調値GD3より大きい階調値GD4(第4階調値)を有する映像信号SgD(例えば、(00010000))が入力された場合、画素49-3の無機発光素子100の1フレーム期間Fにおける輝度(第3輝度、例えば、第2信号値I2-1に対応する駆動信号で点灯された無機発光素子100の輝度)より画素49-4の無機発光素子100の1フレーム期間Fにおける輝度(第4輝度、例えば、第2信号値I2-2に対応する駆動信号で点灯された無機発光素子100の輝度)が大きくなるように駆動される。また、映像信号SgC及び映像信号SgDは、例えば、期間制御信号Sg2-0は同一の値をとり、振幅制御信号Sg7-3が異なる信号が対応づけられる。また、画素49-3及び画素49-4の1フレーム期間Fにおける輝度とは、1フレーム期間Fにおける最大輝度を示す。 In other words, the display device 1 is associated with the pixel 49-4 and the video signal SgC (for example, (00001000)) having the tone value GD3 (third tone value) associated with the pixel 49-3. When a video signal SgD (for example, (00010000)) having a grayscale value GD4 (fourth grayscale value) larger than the grayscale value GD3 is input, one frame period F of the inorganic light emitting element 100 of the pixel 49-3 is input. From the luminance (third luminance, for example, the luminance of the inorganic light emitting element 100 turned on by the drive signal corresponding to the second signal value I2-1) in the one-frame period F of the inorganic light emitting element 100 of the pixel 49-4 ( The fourth luminance, for example, the luminance of the inorganic light emitting element 100 that is turned on by the driving signal corresponding to the second signal value I2-2) is driven to be large. Further, for the video signal SgC and the video signal SgD, for example, the period control signal Sg2-0 has the same value and the amplitude control signal Sg7-3 is associated with a different signal. The luminance of the pixel 49-3 and the pixel 49-4 in the one frame period F indicates the maximum luminance in the one frame period F.
 図12は、異なる映像信号ごとの第3信号データの波形を示す説明図である。図12は、上位5ビットの振幅制御信号Sg7-3が(00001)の場合に、異なる期間制御信号Sg2-0ごとに出力される第3信号データSIcを示す。つまり、第2信号処理回路154は、各サブフレームSFにおいて、第2信号データSIb1として第2信号値I2(I2-1)を出力する。振幅制御信号Sg7-3に応じて、演算回路155は、図12に示す第3信号データSIcとは異なる振幅の第2信号値I2及び第3信号値I3を出力することができる。 FIG. 12 is an explanatory diagram showing the waveform of the third signal data for each different video signal. FIG. 12 shows the third signal data SIc output for each of the different period control signals Sg2-0 when the upper 5 bits of the amplitude control signal Sg7-3 is (00001). That is, the second signal processing circuit 154 outputs the second signal value I2 (I2-1) as the second signal data SIb1 in each subframe SF. According to the amplitude control signal Sg7-3, the arithmetic circuit 155 can output the second signal value I2 and the third signal value I3 having an amplitude different from that of the third signal data SIc shown in FIG.
 映像信号Sgが(00001000)の場合、第1信号データSIaは各サブフレームSFで信号値I0を有する(図10参照)。このため、図12に示すように、演算回路155は、サブフレームSFごとに、第1信号データSIaの信号値I0と、第2信号データSIbの第2信号値I2とを統合する。そして、演算回路155は、第3信号データSIcとして、第1サブフレームSF1から第3サブフレームSF3に亘って第2信号値I2を出力する。なお、第2信号値I2は、第1信号値I1より大きい値を示す。 When the video signal Sg is (00001000), the first signal data SIa has a signal value I0 in each subframe SF (see FIG. 10). Therefore, as shown in FIG. 12, the arithmetic circuit 155 integrates the signal value I0 of the first signal data SIa and the second signal value I2 of the second signal data SIb for each subframe SF. Then, the arithmetic circuit 155 outputs the second signal value I2 as the third signal data SIc over the first subframe SF1 to the third subframe SF3. The second signal value I2 is larger than the first signal value I1.
 映像信号Sgが(00001001)の場合、第1信号データSIaは第1サブフレームSF1で第1信号値I1を有し、第2サブフレームSF2及び第3サブフレームSF3で信号値I0を有する。図12に示すように、演算回路155は、第1サブフレームSF1で、第1信号データSIaの第1信号値I1と、第2信号データSIbの第2信号値I2とを統合して、第3信号値I3を出力する。ここで、第3信号値I3は、第1信号値I1と第2信号値I2とを加算した信号値(I3=I1+I2)である。また、演算回路155は、第2サブフレームSF2及び第3サブフレームSF3で、第1信号データSIaの信号値I0と、第2信号データSIbの第2信号値I2とを統合して、第2信号値I2を出力する。なお、各サブフレームSFで、信号値(第3信号値I3、第2信号値I2)は一定である。 When the video signal Sg is (000010101), the first signal data SIa has the first signal value I1 in the first subframe SF1 and the signal value I0 in the second subframe SF2 and the third subframe SF3. As shown in FIG. 12, the arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the first sub-frame SF1 to generate the first signal value I2. 3 signal value I3 is output. Here, the third signal value I3 is a signal value (I3 = I1 + I2) obtained by adding the first signal value I1 and the second signal value I2. Further, the arithmetic circuit 155 integrates the signal value I0 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the second sub-frame SF2 and the third sub-frame SF3 to generate a second The signal value I2 is output. The signal values (third signal value I3, second signal value I2) are constant in each subframe SF.
 ただし、演算回路155は、第1信号値I1と第2信号値I2とを加算して第3信号値I3を算出する場合に限定されない。つまり、第3信号値I3と第2信号値I2との差(I3-I2)は、第1信号値I1と信号値I0の差(I1-I0)と異なっていてもよい。第3信号データSIcは映像信号Sgの階調に応じた信号であればよく、演算回路155は、第1信号値I1と第2信号値I2とに基づいて所定の演算処理を行って第3信号値I3を算出してもよい。 However, the arithmetic circuit 155 is not limited to the case where the first signal value I1 and the second signal value I2 are added to calculate the third signal value I3. That is, the difference (I3-I2) between the third signal value I3 and the second signal value I2 may be different from the difference (I1-I0) between the first signal value I1 and the signal value I0. The third signal data SIc may be a signal corresponding to the gradation of the video signal Sg, and the arithmetic circuit 155 performs a predetermined arithmetic process based on the first signal value I1 and the second signal value I2 to generate a third signal data. The signal value I3 may be calculated.
 映像信号SgがSg=(00001010)の場合、第1信号データSIaは第2サブフレームSF2で第1信号値I1を有し、第1サブフレームSF1及び第3サブフレームSF3で信号値I0を有する。図12に示すように、演算回路155は、第1サブフレームSF1及び第3サブフレームSF3で、第1信号データSIaの信号値I0と、第2信号データSIbの第2信号値I2とを統合して、第2信号値I2を出力する。また、演算回路155は、第2サブフレームSF2で、第1信号データSIaの第1信号値I1と、第2信号データSIbの第2信号値I2とを統合して、第3信号値I3を出力する。 When the video signal Sg is Sg = (00001010), the first signal data SIa has a first signal value I1 in the second sub-frame SF2 and a signal value I0 in the first sub-frame SF1 and the third sub-frame SF3. . As illustrated in FIG. 12, the arithmetic circuit 155 integrates the signal value I0 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the first subframe SF1 and the third subframe SF3. Then, the second signal value I2 is output. Further, the arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the second sub-frame SF2 to obtain the third signal value I3. Output.
 映像信号SgがSg=(00001011)、(00001100)の場合も、同様に、演算回路155は、サブフレームSFごとに、第1信号データSIaの第1信号値I1又は信号値I0と、第2信号データSIbの第2信号値I2とを統合して、第3信号データSIcを生成する。なお、図12では5階調の第3信号データSIcを示しているが、振幅制御信号Sg7-3の32階調と、期間制御信号Sg2-0の8階調の組み合わせで、演算回路155は、映像信号Sgの256階調に対応する第3信号データSIcを出力できる。 Similarly, when the video signal Sg is Sg = (00001011) or (00001100), the arithmetic circuit 155 similarly causes the first signal value I1 or the signal value I0 of the first signal data SIa and the second value to be calculated for each subframe SF. The second signal value I2 of the signal data SIb is integrated to generate the third signal data SIc. Although FIG. 12 shows the third signal data SIc of 5 gradations, the arithmetic circuit 155 has a combination of 32 gradations of the amplitude control signal Sg7-3 and 8 gradations of the period control signal Sg2-0. , The third signal data SIc corresponding to 256 gradations of the video signal Sg can be output.
 演算回路155は、第3信号データSIcを駆動回路211に出力する。駆動回路211は、第3信号データSIcに応じた定電流Idataを信号線SGLに出力する。無機発光素子100の階調は、第3信号データSIcの積分値、すなわち、各サブフレームSFの時間と、各サブフレームSFの信号値とを乗じた値に対応して決められる。これにより、無機発光素子100は、サブフレームSFごとに、第2信号値I2に対応した駆動信号、又は第1信号値I1と、第2信号値I2とが統合された第3信号値I3に対応した駆動信号が供給されて階調を表現する。 The arithmetic circuit 155 outputs the third signal data SIc to the drive circuit 211. The drive circuit 211 outputs a constant current Idata according to the third signal data SIc to the signal line SGL. The gradation of the inorganic light emitting device 100 is determined in accordance with the integrated value of the third signal data SIc, that is, the value obtained by multiplying the time of each subframe SF by the signal value of each subframe SF. As a result, the inorganic light emitting device 100 outputs the drive signal corresponding to the second signal value I2 or the third signal value I3 in which the first signal value I1 and the second signal value I2 are integrated for each sub-frame SF. Corresponding drive signals are supplied to express the gradation.
 言い換えると、表示装置1は、画素49-1に対応づけられた階調値GD1(第1階調値)を有する映像信号SgA(例えば、(00000001))と、画素49-5に対応づけられた階調値GD1より大きい階調値GD5(第5階調値)を有する映像信号SgE(例えば、(00010010))が入力された場合、画素49-1の無機発光素子100の1フレーム期間Fにおける輝度(第1輝度、例えば、第1信号値I1に対応する駆動信号で点灯された無機発光素子100の輝度)より画素49-5の無機発光素子100の1フレーム期間Fにおける輝度(第5輝度、例えば、第2信号値I2-2+第1信号値I1に対応する駆動信号で点灯された無機発光素子100の輝度)が大きくなるように駆動される。なお、画素49-1及び画素49-5の1フレーム期間Fにおける輝度とは、1フレーム期間Fにおける最大輝度を示す。なお、画素49-5の第1サブフレームSF1及び第3サブフレームSF3の輝度は、第2信号値I2-2に対応する駆動信号で点灯された無機発光素子100の輝度(第3輝度)であり、画素49-5の第2サブフレームSF2の輝度は、第5輝度である。 In other words, the display device 1 is associated with the video signal SgA (for example, (00000001)) having the grayscale value GD1 (first grayscale value) associated with the pixel 49-1 and the pixel 49-5. When a video signal SgE (for example, (00010010)) having a gradation value GD5 (fifth gradation value) larger than the gradation value GD1 is input, one frame period F of the inorganic light emitting element 100 of the pixel 49-1 is input. From the luminance (first luminance, for example, the luminance of the inorganic light emitting element 100 turned on by the drive signal corresponding to the first signal value I1) in the one frame period F of the inorganic light emitting element 100 of the pixel 49-5 (fifth luminance The brightness is increased, for example, the brightness of the inorganic light emitting element 100 that is turned on by the drive signal corresponding to the second signal value I2-2 + the first signal value I1. Note that the luminance of the pixel 49-1 and the pixel 49-5 in one frame period F is the maximum luminance in one frame period F. The brightness of the first sub-frame SF1 and the third sub-frame SF3 of the pixel 49-5 is the brightness (third brightness) of the inorganic light emitting element 100 that is turned on by the drive signal corresponding to the second signal value I2-2. Yes, the luminance of the second sub-frame SF2 of the pixel 49-5 is the fifth luminance.
 また、画素49-1および画素49-5は、画素49-1の無機発光素子100の1フレーム期間Fにおける点灯期間(第1点灯期間、例えば、第1サブフレームSF1)より画素49-5の無機発光素子100の1フレーム期間Fにおける点灯期間(第5点灯期間、例えば、1フレーム期間F)が長くなるように駆動される。また、画素49-1及び画素49-5は、画素49-1及び画素49-5の無機発光素子100の1フレーム期間Fにおける最大輝度(例えば、第5輝度)での1フレーム期間における点灯期間を最大輝度点灯期間とすると、画素49-1の無機発光素子100の1フレーム期間Fにおける最大輝度点灯期間(第1最大輝度点灯期間、例えば、0)より画素49-5の無機発光素子100の1フレーム期間Fにおける最大輝度点灯期間(第5最大輝度点灯期間、例えば、第2サブフレームSF2)が長くなるように駆動される。 In addition, the pixel 49-1 and the pixel 49-5 are included in the pixel 49-5 from the lighting period (first lighting period, for example, the first sub-frame SF1) in the one frame period F of the inorganic light emitting element 100 of the pixel 49-1. The inorganic light emitting element 100 is driven so that the lighting period in the one frame period F (fifth lighting period, for example, one frame period F) becomes longer. In addition, the pixel 49-1 and the pixel 49-5 have a lighting period in one frame period at the maximum luminance (for example, the fifth luminance) in one frame period F of the inorganic light emitting element 100 of the pixel 49-1 and the pixel 49-5. Is the maximum luminance lighting period, the maximum luminance lighting period (first maximum luminance lighting period, for example, 0) of the inorganic light emitting element 100 of the pixel 49-1 in one frame period F starts from the maximum luminance lighting period of the pixel 49-5. The maximum luminance lighting period (fifth maximum luminance lighting period, for example, the second sub-frame SF2) in the one frame period F is driven to be long.
 また、画素49-1の1フレーム期間Fにおける点灯量(第1点灯量=第1輝度×第1点灯期間)は、画素49-5の1フレーム期間Fにおける点灯量(第5点灯量=第3輝度×(第1サブフレームSF1+第3サブフレームSF3)+第5輝度×(第2サブフレームSF2))より小さい。なお、階調値GD5は、前述の階調値GD2、階調値GD3、及び階調値GD4の少なくともいずれかより高い階調値を示す。 The lighting amount of the pixel 49-1 in the one frame period F (first lighting amount = first luminance × first lighting period) is the lighting amount of the pixel 49-5 in the one frame period F (fifth lighting amount = third lighting amount). It is smaller than 3 luminance × (first sub-frame SF1 + third sub-frame SF3) + fifth luminance × (second sub-frame SF2). The gradation value GD5 indicates a gradation value higher than at least one of the gradation value GD2, the gradation value GD3, and the gradation value GD4 described above.
 図13は、無機発光素子の電圧電流特性を示すグラフである。図13に示すように、第1信号値I1は、無機発光素子100の安定動作領域Pの閾値近傍の値である。無機発光素子100の不安定動作領域Qは、第1信号値I1よりも小さい電流値の領域である。第2信号値I2は、第1信号値I1よりも大きい電流値を有する。第3信号値I3は、第2信号値I2よりも大きい電流値を有する。第2信号値I2及び第3信号値I3は、安定動作領域Pに含まれる。 FIG. 13 is a graph showing voltage-current characteristics of the inorganic light emitting device. As shown in FIG. 13, the first signal value I1 is a value near the threshold of the stable operation region P of the inorganic light emitting device 100. The unstable operation region Q of the inorganic light emitting device 100 is a region having a current value smaller than the first signal value I1. The second signal value I2 has a larger current value than the first signal value I1. The third signal value I3 has a larger current value than the second signal value I2. The second signal value I2 and the third signal value I3 are included in the stable operation region P.
 本実施形態の表示装置1は、期間制御信号Sg2-0と、振幅制御信号Sg7-3とに基づいて階調制御がなされる。すなわち、表示装置1は、第1信号値I1が出力されるサブフレームSFと、第1信号値I1が出力されないサブフレームSFとを切り替える期間制御と、異なる複数の第2信号値I2による振幅制御とを組み合わせて、階調制御が行われる。このため、表示装置1は、低階調においても無機発光素子100を安定動作領域Pで動作させることができ、無機発光素子100の輝度のばらつきを抑制できる。また、表示装置1は、細かい階調制御が可能である。 The display device 1 of the present embodiment performs gradation control based on the period control signal Sg2-0 and the amplitude control signal Sg7-3. That is, the display device 1 controls the period in which the subframe SF in which the first signal value I1 is output and the subframe SF in which the first signal value I1 is not output are controlled, and the amplitude control by a plurality of different second signal values I2. The gradation control is performed by combining and. Therefore, the display device 1 can operate the inorganic light emitting element 100 in the stable operation region P even in a low gradation, and can suppress variations in the brightness of the inorganic light emitting element 100. Further, the display device 1 is capable of fine gradation control.
(第2実施形態)
 図14は、第2実施形態に係る表示装置の、映像信号ごとの第2信号データとサブフレームとの関係を示すグラフである。図15は、第2実施形態に係る表示装置の、第3信号データの波形を示す説明図である。なお、以下の説明において、上述した実施形態で説明した構成要素については、同じ符号を付して、説明を省略する。
(Second embodiment)
FIG. 14 is a graph showing the relationship between the second signal data for each video signal and the subframe in the display device according to the second embodiment. FIG. 15 is an explanatory diagram showing the waveform of the third signal data of the display device according to the second embodiment. In addition, in the following description, the components described in the above-described embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
 図14に示すように、第2信号処理回路154は、第2信号データSIb0-31として、それぞれサブフレームSFごとに異なる第2信号値I2を出力する。振幅制御信号Sg7-3に対応付けられた複数の第2信号値I2は、第1部分信号値I2a、第2部分信号値I2b、第3部分信号値I2cを含む。第1部分信号値I2a、第2部分信号値I2b及び第3部分信号値I2cは、それぞれ第1サブフレームSF1、第2サブフレームSF2及び第3サブフレームSF3に対応しており、それぞれ異なる大きさの信号値である。言い換えると、第2信号データSIbは、第1部分信号データSIba、第2部分信号データSIbb、及び、第3部分信号データSIbcからなる。 As shown in FIG. 14, the second signal processing circuit 154 outputs, as the second signal data SIb0-31, the different second signal value I2 for each subframe SF. The plurality of second signal values I2 associated with the amplitude control signal Sg7-3 include a first partial signal value I2a, a second partial signal value I2b, and a third partial signal value I2c. The first partial signal value I2a, the second partial signal value I2b, and the third partial signal value I2c correspond to the first subframe SF1, the second subframe SF2, and the third subframe SF3, respectively, and have different magnitudes. Is the signal value of. In other words, the second signal data SIb is composed of the first partial signal data SIba, the second partial signal data SIbb, and the third partial signal data SIbc.
 例えば、第2信号処理回路154は、第2信号データSIb1として、第1サブフレームSF1で第1部分信号値I2a-1を出力し、第2サブフレームSF2で第2部分信号値I2b-1を出力し、第3サブフレームSF3で第3部分信号値I2c-1を出力する。第1サブフレームSF1の第1部分信号値I2a-1は、第2サブフレームSF2の第2部分信号値I2b-1よりも大きい。第2サブフレームSF2の第2部分信号値I2b-1は、第3サブフレームSF3の第3部分信号値I2c-1よりも大きい。 For example, the second signal processing circuit 154 outputs the first partial signal value I2a-1 in the first subframe SF1 and the second partial signal value I2b-1 in the second subframe SF2 as the second signal data SIb1. And outputs the third partial signal value I2c-1 in the third sub-frame SF3. The first partial signal value I2a-1 of the first subframe SF1 is larger than the second partial signal value I2b-1 of the second subframe SF2. The second partial signal value I2b-1 of the second subframe SF2 is larger than the third partial signal value I2c-1 of the third subframe SF3.
 また、第2信号処理回路154は、第2信号データSIb31として、第1サブフレームSF1で第1部分信号値I2a-31を出力し、第2サブフレームSF2で第2部分信号値I2b-31を出力し、第3サブフレームSF3で第3部分信号値I2c-31を出力する。高階調側の第1部分信号値I2a-31と第2部分信号値I2b-31との差は、低階調側の第1部分信号値I2a-1と第2部分信号値I2b-1との差よりも大きい。 Also, the second signal processing circuit 154 outputs the first partial signal value I2a-31 in the first subframe SF1 and the second partial signal value I2b-31 in the second subframe SF2 as the second signal data SIb31. Then, the third partial signal value I2c-31 is output in the third sub-frame SF3. The difference between the first partial signal value I2a-31 and the second partial signal value I2b-31 on the high gradation side is the difference between the first partial signal value I2a-1 and the second partial signal value I2b-1 on the low gradation side. Greater than the difference.
 第1サブフレームSF1における第1差分ΔIaは、第2サブフレームSF2における第2差分ΔIbよりも大きい。第2サブフレームSF2における第2差分ΔIbは、第3サブフレームSF3における第3差分ΔIcよりも大きい。サブフレームSFの期間が短いほど第1差分ΔIaが大きく、サブフレームSFの期間が長いほど第3差分ΔIcが小さい。なお、第2信号データSIb2-0は、第1サブフレームSF1、第2サブフレームSF2、及び、第3サブフレームSF3のいずれにおいても、信号値I0(第2信号値I2-0)を示す。 The first difference ΔIa in the first subframe SF1 is larger than the second difference ΔIb in the second subframe SF2. The second difference ΔIb in the second subframe SF2 is larger than the third difference ΔIc in the third subframe SF3. The shorter the sub-frame SF period, the larger the first difference ΔIa, and the longer the sub-frame SF period, the smaller the third difference ΔIc. The second signal data SIb2-0 indicates the signal value I0 (second signal value I2-0) in any of the first subframe SF1, the second subframe SF2, and the third subframe SF3.
 言い換えると、表示装置1は、画素49-6に対応づけられた階調値GD6(第6階調値)を有する映像信号SgF(例えば、(00001000))と、画素49-7に対応づけられた階調値GD6より大きい階調値GD7(第7階調値)を有する映像信号SgG(例えば、(00010000))が入力された場合、画素49-6の無機発光素子100の第1サブフレームSF1における輝度(第6-1輝度、例えば、第1部分信号値I2a-1に対応する駆動信号で点灯された無機発光素子100の輝度)より画素49-7の無機発光素子100の第1サブフレームSF1における輝度(第7-1輝度、例えば、第1部分信号値I2a-2に対応する駆動信号で点灯された無機発光素子100の輝度)が大きくなるように駆動される。また、第2サブフレームSF2及び第3サブフレームSF3についても同様に、画素49-6の第2サブフレームSF2における輝度(第6-2輝度)より画素49-7の第2サブフレームSF2における輝度(第7-2輝度)が大きくなるように駆動され、画素49-6の第3サブフレームSF3における輝度(第6-3輝度)より画素49-7の第3サブフレームSF3における輝度(第7-3輝度)が大きくなるように駆動される。また、画素49-6および画素49-7の少なくともいずれか(例えば、第6-1輝度と第6-2輝度)は、2つの異なるサブフレームSF間で輝度が異なる。また、画素49-6の無機発光素子100の1フレーム期間Fにおける最大輝度(例えば、第6-1輝度)より画素49-4の無機発光素子100の1フレーム期間Fにおける最大輝度(例えば、第7-1輝度)が大きい。 In other words, the display device 1 is associated with the pixel 49-7 and the video signal SgF (for example, (00001000)) having the tone value GD6 (sixth tone value) associated with the pixel 49-6. When a video signal SgG (for example, (00010000)) having a grayscale value GD7 (seventh grayscale value) larger than the grayscale value GD6 is input, the first subframe of the inorganic light emitting element 100 of the pixel 49-6. The first sub-pixel of the inorganic light-emitting element 100 of the pixel 49-7 is calculated from the luminance in SF1 (the 6-1th luminance, for example, the luminance of the inorganic light-emitting element 100 turned on by the drive signal corresponding to the first partial signal value I2a-1). It is driven so that the luminance in the frame SF1 (the 7-1th luminance, for example, the luminance of the inorganic light emitting element 100 which is turned on by the drive signal corresponding to the first partial signal value I2a-2) is increased.Similarly, for the second sub-frame SF2 and the third sub-frame SF3, the luminance of the pixel 49-6 in the second sub-frame SF2 is more than that of the pixel 49-6 in the second sub-frame SF2. The luminance of the pixel 49-6 is larger than that of the pixel 49-6 in the third sub-frame SF3 (sixth-3 luminance), and the luminance of the pixel 49-7 in the third sub-frame SF3 (seventh luminance is the seventh luminance) -3 brightness) is increased. Further, at least one of the pixel 49-6 and the pixel 49-7 (for example, the 6-1th luminance and the 6th-2nd luminance) has different luminance between two different sub-frames SF. In addition, the maximum luminance (for example, the 6-1th luminance) of the inorganic light emitting element 100 of the pixel 49-6 in the 1st frame period F of the inorganic light emitting element 100 of the pixel 49-4 (for example, the 6th luminance). 7-1) brightness is large.
 図15は、第1実施形態の表示装置1の第3信号データSIcと、本実施形態の表示装置1Aの第3信号データSIcとを比較して示す。図15は、映像信号Sgが(00001101)の場合を示す。第1信号データSIaは、下位ビットの期間制御信号Sg2-0に応じて、第1サブフレームSF1及び第3サブフレームSF3で第1信号値I1を有し、第2サブフレームSF2で信号値I0を有する。 FIG. 15 shows a comparison between the third signal data SIc of the display device 1 of the first embodiment and the third signal data SIc of the display device 1A of the present embodiment. FIG. 15 shows a case where the video signal Sg is (00001011). The first signal data SIa has a first signal value I1 in the first sub-frame SF1 and the third sub-frame SF3 and a signal value I0 in the second sub-frame SF2 according to the lower-order bit period control signal Sg2-0. Have.
 図15に示すように、表示装置1において、演算回路155は、第1サブフレームSF1で、第1信号データSIaの第1信号値I1と、第2信号データSIbの第2信号値I2とを統合して、第3信号値I3を出力する。演算回路155は、第2サブフレームSF2で、第1信号データSIaの信号値I0と、第2信号データSIbの第2信号値I2とを統合して、第2信号値I2を出力する。演算回路155は、第3サブフレームSF3で、第1信号データSIaの第1信号値I1と、第2信号データSIbの第2信号値I2とを統合して、第3信号値I3を出力する。 As shown in FIG. 15, in the display device 1, the arithmetic circuit 155 calculates the first signal value I1 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the first subframe SF1. The integrated signal is output as the third signal value I3. The arithmetic circuit 155 integrates the signal value I0 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the second subframe SF2, and outputs the second signal value I2. The arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa and the second signal value I2 of the second signal data SIb in the third sub-frame SF3, and outputs the third signal value I3. .
 本実施形態の表示装置1Aにおいて、演算回路155は、第1サブフレームSF1で、第1信号データSIaの第1信号値I1と、第2信号データSIbの第1部分信号値I2aとを統合して、第3信号値I3aを出力する。演算回路155は、第2サブフレームSF2で、第1信号データSIaの信号値I0と、第2信号データSIbの第2部分信号値I2bとを統合して、第2信号値I2を出力する。演算回路155は、第3サブフレームSF3で、第1信号データSIaの第1信号値I1と、第2信号データSIbの第3部分信号値I2cとを統合して、第3信号値I3bを出力する。第3信号値I3aは、第3信号値I3よりも大きい。第3信号値I3bは、第3信号値I3よりも小さい。 In the display device 1A of the present embodiment, the arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa and the first partial signal value I2a of the second signal data SIb in the first sub-frame SF1. Then, the third signal value I3a is output. The arithmetic circuit 155 integrates the signal value I0 of the first signal data SIa and the second partial signal value I2b of the second signal data SIb in the second subframe SF2, and outputs the second signal value I2. The arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa and the third partial signal value I2c of the second signal data SIb in the third sub-frame SF3, and outputs the third signal value I3b. To do. The third signal value I3a is larger than the third signal value I3. The third signal value I3b is smaller than the third signal value I3.
 図15に示すように、各サブフレームSFの期間をそれぞれ、期間t1、期間t2、期間t3とする。各サブフレームSFの期間は、t1<t2<t3の関係となる。表示装置1Aにおいて、第1サブフレームSF1と第2サブフレームSF2との間の信号値変化は、I3a-I2である。第2サブフレームSF2と第3サブフレームSF3との間の信号値変化は、I3b-I2である。第2サブフレームSF2と第3サブフレームSF3との間の信号値変化(I3b-I2)は、第1サブフレームSF1と第2サブフレームSF2との間の信号値変化(I3a-I2)よりも小さい。 As shown in FIG. 15, the period of each subframe SF is set to a period t1, a period t2, and a period t3. The period of each subframe SF has a relationship of t1 <t2 <t3. In the display device 1A, the signal value change between the first subframe SF1 and the second subframe SF2 is I3a-I2. The signal value change between the second subframe SF2 and the third subframe SF3 is I3b-I2. The signal value change (I3b-I2) between the second subframe SF2 and the third subframe SF3 is smaller than the signal value change (I3a-I2) between the first subframe SF1 and the second subframe SF2. small.
 図15上図の表示装置1では、第1サブフレームSF1と第2サブフレームSF2との間の信号値変化及び第2サブフレームSF2と第3サブフレームSF3との間の信号値変化は、いずれもI3―I2である。この場合、無機発光素子100の点灯周波数がより低いほど、輝度変動が視認される可能性がある。例えば、第2サブフレームSF2と第3サブフレームSF3との間の輝度変動は、第1サブフレームSF1と第2サブフレームSF2との間の輝度変動よりも視認されやすい。表示装置1Aは、サブフレームSFの期間が長いほど信号値変化が小さい。言い換えると、無機発光素子100の点灯周波数がより低いほど信号値変化が小さい。これにより、表示装置1Aは、1フレーム期間Fにおいて電流変化が生じた場合であっても、輝度変動が視認されにくくなり、表示品質の低下を抑制できる。 In the display device 1 in the upper diagram of FIG. 15, the signal value change between the first subframe SF1 and the second subframe SF2 and the signal value change between the second subframe SF2 and the third subframe SF3 are both Is also I3-I2. In this case, the lower the lighting frequency of the inorganic light emitting device 100, the more likely the change in brightness is visually recognized. For example, the luminance variation between the second sub-frame SF2 and the third sub-frame SF3 is more visible than the luminance variation between the first sub-frame SF1 and the second sub-frame SF2. In the display device 1A, the change in signal value is smaller as the period of the subframe SF is longer. In other words, the lower the lighting frequency of the inorganic light emitting device 100, the smaller the change in signal value. As a result, in the display device 1A, even if a current change occurs in the one frame period F, it is difficult for the brightness variation to be visually recognized, and it is possible to suppress deterioration in display quality.
 図15上図の表示装置1と、下図の表示装置1Aとで、第3信号データSIcは、下記の式(1)、(2)、(3)を満たす。これにより、表示装置1Aは、全体として信号値の積分値を変化させずに、第2サブフレームSF2と第3サブフレームSF3との間の信号値変化を小さくすることができる。 In the display device 1 in the upper diagram of FIG. 15 and the display device 1A in the lower diagram, the third signal data SIc satisfies the following equations (1), (2), and (3). As a result, the display device 1A can reduce the signal value change between the second subframe SF2 and the third subframe SF3 without changing the integrated value of the signal value as a whole.
 I3×t1+I2×t2+I3×t3=I3a×t1+I2×t2+I3b×t3 …(1)
 I3a>I3>I3b …(2)
 I3a-I3>I3-I3b …(3)
I3 × t1 + I2 × t2 + I3 × t3 = I3a × t1 + I2 × t2 + I3b × t3 (1)
I3a>I3> I3b (2)
I3a-I3> I3-I3b (3)
 なお、図15では、期間制御信号Sg2-0が(101)の場合を示したが、他の期間制御信号Sg2-0であっても適用できる。図10に示すように、期間制御信号Sg2-0が(010)、(011)、(100)、(110)の場合に、第2サブフレームSF2と第3サブフレームSF3との間で信号変化が生じる。第2信号処理回路154は、第1信号処理回路153から期間制御信号Sg2-0を受け取って、上記の第2サブフレームSF2と第3サブフレームSF3との間で信号変化が生じる場合に、図14に示す第2信号データSIbを適用することができる。 Although FIG. 15 shows the case where the period control signal Sg2-0 is (101), it can be applied to other period control signals Sg2-0. As shown in FIG. 10, when the period control signal Sg2-0 is (010), (011), (100), (110), a signal change between the second subframe SF2 and the third subframe SF3. Occurs. The second signal processing circuit 154 receives the period control signal Sg2-0 from the first signal processing circuit 153, and when a signal change occurs between the second sub-frame SF2 and the third sub-frame SF3 described above, The second signal data SIb shown in 14 can be applied.
 言い換えると、表示装置1は、画素49-1に対応づけられた階調値GD1(第1階調値)を有する映像信号SgA(例えば、(00000001))と、画素49-8に対応づけられた階調値GD1より大きい階調値GD8(第8階調値)を有する映像信号SgH(例えば、(00010010))が入力された場合、画素49-1の無機発光素子100の第1サブフレームSF1における輝度(第1輝度、例えば、第1信号値I1に対応する駆動信号で点灯された無機発光素子100の輝度)より画素49-8の無機発光素子100の第1サブフレームSF1における輝度(第8-1輝度、例えば、第1部分信号値I2a-2に対応する駆動信号で点灯された無機発光素子100の輝度)が大きくなるように駆動される。また、第2サブフレームSF2及び第3サブフレームSF3も同様に、画素49-1の第2サブフレームSF2における輝度(第1輝度)は、画素49-8の第2サブフレームSF2における輝度(第8-2輝度、例えば、第2部分信号値I2b-2+第1信号値I1に対応する駆動信号で点灯された無機発光素子100の輝度)より小さく、画素49-1の第3サブフレームSF3における輝度(第1輝度)は、画素49-8の第3サブフレームSF3における輝度(第8-3輝度、例えば、第3部分信号値I2c-2に対応する駆動信号で点灯された無機発光素子100の輝度)より小さい。また、画素49-1の1フレーム期間Fにおける輝度(第1輝度)は、画素49-8の1フレーム期間Fにおける輝度(第8-2輝度)より小さい。なお、画素49-1及び画素49-8の1フレーム期間Fにおける輝度とは、1フレーム期間Fにおける最大輝度を示す。 In other words, the display device 1 is associated with the pixel 49-8 and the video signal SgA (for example, (00000001)) having the tone value GD1 (first tone value) associated with the pixel 49-1. When a video signal SgH (for example, (00010010)) having a grayscale value GD8 (eighth grayscale value) larger than the grayscale value GD1 is input, the first subframe of the inorganic light emitting element 100 of the pixel 49-1. The brightness in the first sub-frame SF1 of the inorganic light emitting element 100 of the pixel 49-8 from the brightness in SF1 (first brightness, for example, the brightness of the inorganic light emitting element 100 turned on by the drive signal corresponding to the first signal value I1) ( The 8th luminance, for example, the luminance of the inorganic light emitting element 100 which is turned on by the driving signal corresponding to the first partial signal value I2a-2, is driven to be large. Similarly, in the second sub-frame SF2 and the third sub-frame SF3, the brightness (first brightness) of the pixel 49-1 in the second sub-frame SF2 is the brightness (first brightness) of the pixel 49-8 in the second sub-frame SF2. 8-2 luminance, for example, the luminance of the inorganic light emitting element 100 which is turned on by the drive signal corresponding to the second partial signal value I2b-2 + the first signal value I1), and in the third sub-frame SF3 of the pixel 49-1. The luminance (first luminance) is the luminance of the pixel 49-8 in the third sub-frame SF3 (8th-3rd luminance, for example, the inorganic light emitting element 100 turned on by the drive signal corresponding to the third partial signal value I2c-2). Brightness) is less than. Further, the luminance (first luminance) of the pixel 49-1 in the one frame period F is smaller than the luminance (8th luminance) of the pixel 49-8 in the one frame period F. Note that the luminance of the pixel 49-1 and the pixel 49-8 in one frame period F refers to the maximum luminance in one frame period F.
 また、画素49-1および画素49-8は、画素49-1の無機発光素子100の1フレーム期間Fにおける点灯期間(第1点灯期間、例えば、第1サブフレームSF1)より画素49-8の無機発光素子100の1フレーム期間Fにおける点灯期間(第8点灯期間、例えば、1フレーム期間F)が長くなるように駆動される。また、画素49-1及び画素49-8は、画素49-1及び画素49-8の無機発光素子100の1フレーム期間Fにおける最大輝度(例えば、第8-2輝度)での1フレーム期間における点灯期間を最大輝度点灯期間とすると、画素49-1の無機発光素子100の1フレーム期間Fにおける最大輝度点灯期間(第1最大輝度点灯期間、例えば、0)より画素49-8の無機発光素子100の1フレーム期間Fにおける最大輝度点灯期間(第8最大輝度点灯期間、例えば、第2サブフレームSF2)が長くなるように駆動される。さらに、画素49-1及び画素49-8は、画素49-1及び画素49-8の無機発光素子100の各サブフレームSF毎の最大輝度での点灯期間の合計を1フレーム期間Fにおける合計最大輝度点灯期間とすると、第1サブフレームSF1の最大輝度は第8-1輝度となり、第2サブフレームSF2の最大輝度は第8-2輝度となり、第3サブフレームSF3の最大輝度は第8-3輝度であるため、画素49-1の無機発光素子100の1フレーム期間Fにおける合計最大輝度点灯期間(第1合計最大輝度点灯期間、例えば、0)より画素49-8の無機発光素子100の1フレーム期間Fにおける合計最大輝度点灯期間(第8合計最大輝度点灯期間、例えば、1フレーム期間F)が長くなるように駆動される。 In addition, the pixel 49-1 and the pixel 49-8 are included in the pixel 49-8 from the lighting period (first lighting period, for example, the first subframe SF1) in the one frame period F of the inorganic light emitting element 100 of the pixel 49-1. The inorganic light emitting device 100 is driven so that the lighting period in the one frame period F (eighth lighting period, for example, one frame period F) becomes longer. In addition, the pixel 49-1 and the pixel 49-8 have a maximum luminance (for example, 8-2 luminance) in one frame period in the one frame period F of the inorganic light emitting element 100 of the pixel 49-1 and the pixel 49-8. When the lighting period is the maximum brightness lighting period, the inorganic light emitting element of the pixel 49-8 starts from the maximum brightness lighting period (first maximum brightness lighting period, for example, 0) in the one frame period F of the inorganic light emitting element 100 of the pixel 49-1. The maximum luminance lighting period (eighth maximum luminance lighting period, for example, the second sub-frame SF2) in one frame period F of 100 is driven to be long. Further, in the pixel 49-1 and the pixel 49-8, the total of the lighting periods at the maximum brightness for each sub-frame SF of the inorganic light emitting element 100 of the pixel 49-1 and the pixel 49-8 is the maximum in one frame period F. In the brightness lighting period, the maximum brightness of the first sub-frame SF1 is the 8-1 brightness, the maximum brightness of the second sub-frame SF2 is the 8-2 brightness, and the maximum brightness of the third sub-frame SF3 is the 8th brightness. Since the brightness is three, the inorganic light-emitting element 100 of the pixel 49-8 can be operated from the total maximum brightness lighting period (first total maximum brightness lighting period, for example, 0) of the inorganic light-emitting element 100 of the pixel 49-1 in one frame period F. The driving is performed so that the total maximum brightness lighting period in the one frame period F (eighth total maximum brightness lighting period, for example, one frame period F) is long.
 また、画素49-1の1フレーム期間Fにおける点灯量(第1点灯量=第1輝度×第1点灯期間)は、画素49-8の1フレーム期間Fにおける点灯量(第8点灯量=第8-1輝度×第1サブフレームSF1+第8-2輝度×第2サブフレームSF2+第8-3輝度×第3サブフレームSF3)より小さい。なお、階調値GD8は、前述の階調値GD2、階調値GD6、及び階調値GD7の少なくともいずれかより高い階調値を示す。 The lighting amount of the pixel 49-1 in the one frame period F (first lighting amount = first luminance × first lighting period) is the lighting amount of the pixel 49-8 in the one frame period F (eighth lighting amount = third lighting amount). 8-1 luminance × first sub-frame SF1 + 8th-2 luminance × second sub-frame SF2 + 8th-3 luminance × third sub-frame SF3). The gradation value GD8 indicates a gradation value higher than at least one of the gradation value GD2, the gradation value GD6, and the gradation value GD7 described above.
(第3実施形態)
 図16は、第3実施形態に係る表示装置の構成を示すブロック図である。図17は、補正信号と、期間及び電流値との関係を示す表である。図18は、補正信号ごとの第4信号データの波形を示す説明図である。図19は、第3実施形態に係る第3信号データの波形を示す説明図である。
(Third Embodiment)
FIG. 16 is a block diagram showing the configuration of the display device according to the third embodiment. FIG. 17 is a table showing the relationship between the correction signal and the period and current value. FIG. 18 is an explanatory diagram showing the waveform of the fourth signal data for each correction signal. FIG. 19 is an explanatory diagram showing the waveform of the third signal data according to the third embodiment.
 図16に示すように、本実施形態の表示装置1Bにおいて、制御回路200は、補正信号出力回路203を有する。補正信号出力回路203は、補正信号Sgcを第1バッファ回路151に出力する。補正信号Sgcは、複数の無機発光素子100の点灯検査を行い、この点灯検査の結果に基づいて画素49ごとに設定される。 As shown in FIG. 16, in the display device 1B of this embodiment, the control circuit 200 has a correction signal output circuit 203. The correction signal output circuit 203 outputs the correction signal Sgc to the first buffer circuit 151. The correction signal Sgc is set for each pixel 49 on the basis of the result of the lighting test, which is performed by performing a lighting test on the plurality of inorganic light emitting elements 100.
 図17に示すように、補正信号Sgcは、3ビットの補正信号Sgc2、Sgc1、Sgc0を含む。補正信号Sgcは、いずれも第4信号値I4が対応付けられている。補正信号Sgc2には、第3サブフレームSF3が対応付けられる。補正信号Sgc1には、第2サブフレームSF2が対応付けられる。補正信号Sgc0には、第1サブフレームSF1が対応付けられる。 As shown in FIG. 17, the correction signal Sgc includes 3-bit correction signals Sgc2, Sgc1, and Sgc0. The correction signal Sgc is associated with the fourth signal value I4. The third sub-frame SF3 is associated with the correction signal Sgc2. The second sub-frame SF2 is associated with the correction signal Sgc1. The first sub-frame SF1 is associated with the correction signal Sgc0.
 図18は、補正信号Sgcが(001)、(011)、(111)の場合の第4信号データSIdを示す。ただし、補正信号Sgcは3ビットのデータであり、期間制御信号Sg2-0と同様に、補正信号出力回路203は8階調の補正信号Sgcを出力することができる。図18に示す複数の補正信号Sgcは、異なる画素49-1、49-2、49-3にそれぞれ対応付けられる。 FIG. 18 shows the fourth signal data SId when the correction signal Sgc is (001), (011), (111). However, the correction signal Sgc is 3-bit data, and like the period control signal Sg2-0, the correction signal output circuit 203 can output the correction signal Sgc of 8 gradations. The plurality of correction signals Sgc shown in FIG. 18 are associated with different pixels 49-1, 49-2, 49-3, respectively.
 図18に示すように、補正信号Sgcが(001)の場合、第1信号処理回路153は、第4信号データSIdとして、第1サブフレームSF1で第4信号値I4を出力し、第2サブフレームSF2及び第3サブフレームSF3で信号値I0を出力する。補正信号Sgcが(011)の場合、第1信号処理回路153は、第4信号データSIdとして、第1サブフレームSF1及び第2サブフレームSF2で第4信号値I4を出力し、第3サブフレームSF3で信号値I0を出力する。補正信号Sgc=(111)の場合、第1信号処理回路153は、第4信号データSIdとして、第1サブフレームSF1、第2サブフレームSF2及び第3サブフレームSF3で第4信号値I4を出力する。 As shown in FIG. 18, when the correction signal Sgc is (001), the first signal processing circuit 153 outputs the fourth signal value I4 in the first sub-frame SF1 as the fourth signal data SId, and The signal value I0 is output in the frame SF2 and the third sub-frame SF3. When the correction signal Sgc is (011), the first signal processing circuit 153 outputs the fourth signal value I4 as the fourth signal data SId in the first subframe SF1 and the second subframe SF2, and the third subframe The signal value I0 is output at SF3. When the correction signal Sgc = (111), the first signal processing circuit 153 outputs the fourth signal value I4 as the fourth signal data SId in the first subframe SF1, the second subframe SF2, and the third subframe SF3. To do.
 第1信号処理回路153は、期間制御信号Sg2-0に基づく第1信号データSIaと、第4信号データSIdとを個別に演算回路155に出力してもよい。第1信号処理回路153は、第1信号データSIaと、第4信号データSIdとをサブフレームSFごとに統合する信号処理を行い、統合されたデータを演算回路155に出力してもよい。 The first signal processing circuit 153 may individually output the first signal data SIa based on the period control signal Sg2-0 and the fourth signal data SId to the arithmetic circuit 155. The first signal processing circuit 153 may perform signal processing to integrate the first signal data SIa and the fourth signal data SId for each subframe SF, and output the integrated data to the arithmetic circuit 155.
 図19上図は、補正信号Sgcが(000)、つまり、補正なしの場合の第3信号データSIcを示す。図19下図は、補正信号Sgcが(001)、つまり、補正ありの場合の第3信号データSIcを示す。 The upper diagram of FIG. 19 shows the third signal data SIc when the correction signal Sgc is (000), that is, when there is no correction. The lower diagram of FIG. 19 shows the third signal data SIc when the correction signal Sgc is (001), that is, when there is correction.
 図19下図に示すように、本実施形態の表示装置1Bにおいて、演算回路155は、第1サブフレームSF1で、第1信号データSIaの第1信号値I1と、第2信号データSIbの第2信号値I2と、第4信号データSIdの第4信号値I4とを統合して、第5信号値I5を出力する。演算回路155は、第2サブフレームSF2で、第1信号データSIaの信号値I0と、第2信号データSIbの第2信号値I2と、第4信号データSIdの信号値I0とを統合して、第2信号値I2を出力する。演算回路155は、第3サブフレームSF3で、第1信号データSIaの第1信号値I1と、第2信号データSIbの第2信号値I2と、第4信号データSIdの信号値I0とを統合して、第3信号値I3を出力する。 As shown in the lower diagram of FIG. 19, in the display device 1B of the present embodiment, the arithmetic circuit 155, in the first sub-frame SF1, the first signal value I1 of the first signal data SIa and the second signal value SIb of the second signal data SIb. The signal value I2 and the fourth signal value I4 of the fourth signal data SId are integrated to output the fifth signal value I5. The arithmetic circuit 155 combines the signal value I0 of the first signal data SIa, the second signal value I2 of the second signal data SIb, and the signal value I0 of the fourth signal data SId in the second subframe SF2. , The second signal value I2 is output. The arithmetic circuit 155 integrates the first signal value I1 of the first signal data SIa, the second signal value I2 of the second signal data SIb, and the signal value I0 of the fourth signal data SId in the third sub-frame SF3. Then, the third signal value I3 is output.
 第1サブフレームSF1の第5信号値I5は、補正信号Sgcが(000)の場合における、第1サブフレームSF1の第3信号値I3よりも大きい。また、第4信号値I4は、振幅制御信号Sg7-3に対応付けられた第2信号値I2の差分ΔI2(図11参照)よりも小さい。 The fifth signal value I5 of the first subframe SF1 is larger than the third signal value I3 of the first subframe SF1 when the correction signal Sgc is (000). Further, the fourth signal value I4 is smaller than the difference ΔI2 (see FIG. 11) of the second signal value I2 associated with the amplitude control signal Sg7-3.
 演算回路155は、第3信号データSIcを補正信号Sgcに基づいて補正した第5信号データSIeを駆動回路211に出力する。これにより、駆動回路211は、第5信号データSIeに対応した信号(定電流Idata)を、複数の画素49ごとに出力する。これにより、無機発光素子100は、補正信号Sgcに基づいて、サブフレームSFごとに、第3信号値I3と、第4信号値I4とが統合された第5信号値I5に対応した駆動信号が供給される。これにより、無機発光素子100は、輝度の補正が可能である。 The arithmetic circuit 155 outputs the fifth signal data SIe obtained by correcting the third signal data SIc based on the correction signal Sgc to the drive circuit 211. As a result, the drive circuit 211 outputs a signal (constant current Idata) corresponding to the fifth signal data SIE for each of the plurality of pixels 49. As a result, the inorganic light emitting element 100 outputs the drive signal corresponding to the fifth signal value I5, which is the integration of the third signal value I3 and the fourth signal value I4, for each sub-frame SF based on the correction signal Sgc. Supplied. As a result, the inorganic light emitting device 100 can correct the brightness.
 なお、補正信号Sgcが(011)の場合(図18参照)、演算回路155は、第1サブフレームSF1で、第5信号値I5を出力するとともに、第2サブフレームSF2で、第2信号値I2と、第4信号値I4とが統合された信号値を出力する。また、補正信号Sgcが(111)の場合(図18参照)、演算回路155は、第1サブフレームSF1及び第3サブフレームSF3で、第5信号値I5を出力するとともに、第2サブフレームSF2で、第2信号値I2と、第4信号値I4とが統合された信号値を出力する。なお、補正信号Sgcは、4ビット以上の信号を有していてもよい。また、第1信号処理回路153は、第4信号データSIdとして、複数の異なる第4信号値I4を出力してもよい。この場合、表示装置1Bは、無機発光素子100の点灯特性に応じて細かく補正することができる。 When the correction signal Sgc is (011) (see FIG. 18), the arithmetic circuit 155 outputs the fifth signal value I5 in the first sub-frame SF1 and the second signal value in the second sub-frame SF2. A signal value obtained by integrating I2 and the fourth signal value I4 is output. When the correction signal Sgc is (111) (see FIG. 18), the arithmetic circuit 155 outputs the fifth signal value I5 in the first subframe SF1 and the third subframe SF3, and at the same time outputs the second subframe SF2. Then, a signal value obtained by integrating the second signal value I2 and the fourth signal value I4 is output. The correction signal Sgc may have a signal of 4 bits or more. Further, the first signal processing circuit 153 may output a plurality of different fourth signal values I4 as the fourth signal data SId. In this case, the display device 1B can be finely corrected according to the lighting characteristics of the inorganic light emitting element 100.
(第4実施形態)
 図20は、第4実施形態に係るサブフレームと映像信号との関係を説明するための説明図である。図21は、第4実施形態に係る画素回路の構成例を示す回路図である。図22は、画素回路の変形例を示す回路図である。
(Fourth Embodiment)
FIG. 20 is an explanatory diagram for explaining the relationship between subframes and video signals according to the fourth embodiment. FIG. 21 is a circuit diagram showing a configuration example of the pixel circuit according to the fourth embodiment. FIG. 22 is a circuit diagram showing a modified example of the pixel circuit.
 図20に示すように、本実施形態において、1フレーム期間Fの各サブフレームSFは、発光期間PBLと非発光期間PBMとを含む。各サブフレームSFの発光期間PBLにおいて、映像信号Sgに基づいた階調制御がなされる。本実施形態においても、第1実施形態から第3実施形態で説明した階調制御が適用できる。また、発光期間PBLと非発光期間PBMとのデューティ比は、適宜変更することができる。 As shown in FIG. 20, in the present embodiment, each subframe SF of one frame period F includes a light emitting period PBL and a non-light emitting period PBM. In the light emission period PBL of each subframe SF, gradation control based on the video signal Sg is performed. The gradation control described in the first to third embodiments can also be applied to this embodiment. Further, the duty ratio between the light emitting period PBL and the non-light emitting period PBM can be appropriately changed.
 図21に示すように、画素回路PICは、駆動用のトランジスタTr1と、電流切り替え用のトランジスタTr2と、に加えてスイッチング用のトランジスタTr3を有する。トランジスタTr2は、ゲートが第1ゲート線GCL1に接続される。トランジスタTr3は、ゲートが第2ゲート線GCL2に接続され、ソースがトランジスタTr1のドレインに接続され、ドレインが無機発光素子100のアノードに接続される。 As shown in FIG. 21, the pixel circuit PIC has a driving transistor Tr1, a current switching transistor Tr2, and a switching transistor Tr3 in addition to the current switching transistor Tr2. The gate of the transistor Tr2 is connected to the first gate line GCL1. The transistor Tr3 has a gate connected to the second gate line GCL2, a source connected to the drain of the transistor Tr1, and a drain connected to the anode of the inorganic light emitting device 100.
 発光期間PBLにおいて、表示装置1が第1ゲート線GCL1及び第2ゲート線GCL2の電位をハイ(High)にすると、トランジスタTr1、Tr2、Tr3はオンになる。これにより、信号線SGLから無機発光素子100に定電流Idataが供給される。非発光期間PBMにおいて、表示装置1が第1ゲート線GCL1及び第2ゲート線GCL2の電位をロウ(Low)にすると、トランジスタTr2、Tr3はオフになる。これにより、基準電位線LVCOMから無機発光素子100のカソードに逆バイアスとなる基準電位VCOMが供給される。 During the light emission period PBL, when the display device 1 sets the potentials of the first gate line GCL1 and the second gate line GCL2 to high, the transistors Tr1, Tr2, Tr3 are turned on. As a result, the constant current Idata is supplied to the inorganic light emitting element 100 from the signal line SGL. In the non-light emission period PBM, when the display device 1 sets the potentials of the first gate line GCL1 and the second gate line GCL2 to low (Low), the transistors Tr2 and Tr3 are turned off. As a result, the reference potential VCOM as a reverse bias is supplied from the reference potential line LVCOM to the cathode of the inorganic light emitting element 100.
 図22に示すように、変形例の画素回路PICにおいて、トランジスタTr3は、ソースがカソード配線60に接続され、ドレインが無機発光素子100のカソードに接続される。非発光期間PBMにおいて、表示装置1は、第1ゲート線GCL1の電位をロウ(Low)にし、第2ゲート線GCL2の電位をハイ(High)する。これにより、トランジスタTr1、Tr2はオフになり、トランジスタTr3はオンになる。これにより、基準電位線LVCOMから無機発光素子100のカソードに逆バイアスとなる基準電位VCOMが供給される。 As shown in FIG. 22, in the pixel circuit PIC of the modified example, the transistor Tr3 has a source connected to the cathode wiring 60 and a drain connected to the cathode of the inorganic light emitting element 100. In the non-light emitting period PBM, the display device 1 sets the potential of the first gate line GCL1 to low (Low) and sets the potential of the second gate line GCL2 to high (High). As a result, the transistors Tr1 and Tr2 are turned off and the transistor Tr3 is turned on. As a result, the reference potential VCOM as a reverse bias is supplied from the reference potential line LVCOM to the cathode of the inorganic light emitting element 100.
 以上、本発明の好適な実施の形態を説明したが、本発明はこのような実施の形態に限定されるものではない。実施の形態で開示された内容はあくまで一例にすぎず、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。本発明の趣旨を逸脱しない範囲で行われた適宜の変更についても、当然に本発明の技術的範囲に属する。上述した各実施形態及び各変形例の要旨を逸脱しない範囲で、構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to such embodiments. The contents disclosed in the embodiments are merely examples, and various modifications can be made without departing from the spirit of the present invention. Appropriate changes made without departing from the spirit of the present invention naturally belong to the technical scope of the present invention. At least one of various omissions, replacements, and changes of the constituent elements can be performed without departing from the gist of the above-described embodiments and modified examples.
 1 表示装置
 2 アレイ基板
 10 基板
 12 ゲートドライバ
 15 信号出力回路
 49 画素
 50e アノード電極
 60 カソード配線
 90e、90eA カソード電極
 100、100A 無機発光素子
 151 第1バッファ回路
 152 第2バッファ回路
 153 第1信号処理回路
 154 第2信号処理回路
 155 演算回路
 158 バッファ制御回路
 159 サブフレームカウンタ
 210 駆動IC
 AA 表示領域
 GA 周辺領域
 LVCC 電源線
 LVCOM 基準電位線
 Tr1、Tr2、Tr3、Tr5 トランジスタ
 Sg 映像信号
 Sg2-0、Sg2、Sg1、Sg0 期間制御信号
 Sg7-3、Sg7、Sg6、Sg5、Sg4、Sg3 振幅制御信号
 Sgc 補正信号
 SIa 第1信号データ
 SIb 第2信号データ
 SIc 第3信号データ
 SId 第4信号データ
 SF1 第1サブフレーム
 SF2 第2サブフレーム
 SF3 第3サブフレーム
 I1 第1信号値
 I2 第2信号値
 I3 第3信号値
 I4 第4信号値
1 Display Device 2 Array Substrate 10 Substrate 12 Gate Driver 15 Signal Output Circuit 49 Pixel 50e Anode Electrode 60 Cathode Wiring 90e, 90eA Cathode Electrode 100, 100A Inorganic Light Emitting Element 151 First Buffer Circuit 152 Second Buffer Circuit 153 First Signal Processing Circuit 154 Second signal processing circuit 155 Operation circuit 158 Buffer control circuit 159 Subframe counter 210 Drive IC
AA Display area GA Peripheral area LVCC Power supply line LVCOM Reference potential line Tr1, Tr2, Tr3, Tr5 Transistor Sg Video signal Sg2-0, Sg2, Sg1, Sg0 Period control signal Sg7-3, Sg7, Sg6, Sg5, Sg4, Sg3 Amplitude Control signal Sgc Correction signal SIa First signal data SIb Second signal data SIc Third signal data SId Fourth signal data SF1 First subframe SF2 Second subframe SF3 Third subframe I1 First signal value I2 Second signal value I3 third signal value I4 fourth signal value

Claims (11)

  1.  複数の画素の各々に設けられる無機発光素子と、
     期間制御信号と振幅制御信号とに基づいて、複数の前記無機発光素子に駆動信号を供給する駆動回路と、を有し、
     1フレーム分の画像を表示する1フレーム期間は、時分割された複数のサブフレームを含み、
     前記期間制御信号には、複数の前記サブフレームごとに第1信号データが対応付けられており、
     前記振幅制御信号には、異なる信号値を有する複数の第2信号値のいずれかを示す第2信号データが対応付けられており、
     前記無機発光素子は、前記サブフレームごとに、前記第1信号データと、前記第2信号データとが統合された第3信号データに対応した前記駆動信号が供給されて階調を表現する
     表示装置。
    An inorganic light emitting element provided in each of the plurality of pixels,
    A drive circuit that supplies a drive signal to the plurality of the inorganic light emitting elements based on a period control signal and an amplitude control signal,
    One frame period for displaying an image for one frame includes a plurality of time-divided subframes,
    The period control signal is associated with first signal data for each of the plurality of subframes,
    The amplitude control signal is associated with second signal data indicating any one of a plurality of second signal values having different signal values,
    The inorganic light emitting device expresses gradation by being supplied with the drive signal corresponding to the third signal data in which the first signal data and the second signal data are integrated for each subframe. .
  2.  複数の前記サブフレームは、互いに異なる長さの期間を有し、
     前記期間制御信号に基づいて、前記第1信号データが出力される前記サブフレームと、前記第1信号データが出力されない前記サブフレームと、が切り替えられる
     請求項1に記載の表示装置。
    The plurality of subframes have periods of different lengths,
    The display device according to claim 1, wherein the subframe in which the first signal data is output and the subframe in which the first signal data is not output are switched based on the period control signal.
  3.  前記期間制御信号は、複数の前記サブフレームで共通の第1信号値が前記第1信号データとして対応付けられる
     請求項1又は請求項2に記載の表示装置。
    The display device according to claim 1, wherein the period control signal is associated with a first signal value common to a plurality of the subframes as the first signal data.
  4.  複数の前記サブフレームは、前記期間制御信号のビット数に対応する数以上である
     請求項1から請求項3のいずれか1項に記載の表示装置。
    The display device according to any one of claims 1 to 3, wherein a plurality of the sub-frames are equal to or more than the number of bits of the period control signal.
  5.  前記振幅制御信号に対応付けられた複数の前記第2信号データは、複数の前記サブフレームに亘って同じ大きさの信号値を有する、
     請求項1から請求項4のいずれか1項に記載の表示装置。
    The plurality of second signal data associated with the amplitude control signal have signal values of the same magnitude over the plurality of subframes,
    The display device according to any one of claims 1 to 4.
  6.  前記振幅制御信号に対応付けられた複数の前記第2信号データは、複数の前記サブフレームごとに異なる大きさの信号値を有する
     請求項1から請求項4のいずれか1項に記載の表示装置。
    The display device according to claim 1, wherein the plurality of second signal data associated with the amplitude control signal have signal values of different magnitudes for each of the plurality of subframes. .
  7.  前記1フレーム期間は、第1サブフレームと、前記第1サブフレームよりも長い期間を有する第2サブフレームとを含み、
     前記第2信号データは、前記第1サブフレームで、複数の第1部分信号値のいずれかが対応付けられ、前記第2サブフレームで、複数の第2部分信号値のいずれかが対応付けられており、
     複数の前記第1部分信号値の差分である第1差分は、複数の前記第2部分信号値の差分である第2差分よりも大きい
     請求項6に記載の表示装置。
    The one frame period includes a first subframe and a second subframe having a longer period than the first subframe,
    The second signal data is associated with any of the plurality of first partial signal values in the first subframe, and is associated with any of the plurality of second partial signal values in the second subframe. And
    The display device according to claim 6, wherein a first difference that is a difference between the plurality of first partial signal values is larger than a second difference that is a difference between the plurality of second partial signal values.
  8.  前記1フレーム期間は、前記第2サブフレームよりも長い期間を有する第3サブフレームを含み、
     複数の前記第2信号データは、前記第3サブフレームで、複数の第3部分信号値のいずれかが対応付けられており、
     前記第2差分は、複数の前記第3部分信号値の差分である第3差分よりも大きい
     請求項7に記載の表示装置。
    The one frame period includes a third subframe having a longer period than the second subframe,
    The plurality of second signal data are associated with any of the plurality of third partial signal values in the third subframe,
    The display device according to claim 7, wherein the second difference is larger than a third difference which is a difference between the plurality of third partial signal values.
  9.  前記無機発光素子は、複数の前記画素ごとに対応付けられた補正信号に基づいて、前記第3信号データと、前記補正信号に対応付けられた第4信号データとが統合された第5信号データに対応した前記駆動信号が供給される
     請求項1から請求項8のいずれか1項に記載の表示装置。
    The said inorganic light emitting element is the 5th signal data which integrated the said 3rd signal data and the 4th signal data matched with the said correction signal based on the correction signal matched with every said some pixel. The display device according to claim 1, wherein the drive signal corresponding to is supplied.
  10.  複数の前記サブフレームは、発光期間と、非発光期間とを含む
     請求項1から請求項9のいずれか1項に記載の表示装置。
    The display device according to claim 1, wherein the plurality of sub-frames include a light emitting period and a non-light emitting period.
  11.  前記期間制御信号に基づいて、前記サブフレームごとに対応付けられた前記第1信号データを出力する第1信号処理回路と、
     前記振幅制御信号に基づいて、前記第2信号値が対応付けられた前記第2信号データを出力する第2信号処理回路と、
     前記サブフレームごとに、前記第1信号データと前記第2信号データを統合する演算回路と、を有する
     請求項1から請求項10のいずれか1項に記載の表示装置。
    A first signal processing circuit that outputs the first signal data associated with each subframe based on the period control signal;
    A second signal processing circuit that outputs the second signal data associated with the second signal value based on the amplitude control signal;
    The display device according to claim 1, further comprising: an arithmetic circuit that integrates the first signal data and the second signal data for each subframe.
PCT/JP2019/031530 2018-10-16 2019-08-08 Display device WO2020079932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-195379 2018-10-16
JP2018195379A JP2020064159A (en) 2018-10-16 2018-10-16 Display device

Publications (1)

Publication Number Publication Date
WO2020079932A1 true WO2020079932A1 (en) 2020-04-23

Family

ID=70283951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031530 WO2020079932A1 (en) 2018-10-16 2019-08-08 Display device

Country Status (2)

Country Link
JP (1) JP2020064159A (en)
WO (1) WO2020079932A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022098627A (en) 2020-12-22 2022-07-04 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
JP2022099497A (en) 2020-12-23 2022-07-05 セイコーエプソン株式会社 Electro-optical device and electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138659A (en) * 1995-08-21 1997-05-27 Motorola Inc Active drive-type led matrix
JP2001027891A (en) * 1999-05-07 2001-01-30 Semiconductor Energy Lab Co Ltd Display device
JP2004233522A (en) * 2003-01-29 2004-08-19 Seiko Epson Corp Driving method for electrooptical device, electrooptical device, and electronic equipment
JP2018519539A (en) * 2015-06-05 2018-07-19 アップル インコーポレイテッド Light emission control device and method for display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138659A (en) * 1995-08-21 1997-05-27 Motorola Inc Active drive-type led matrix
JP2001027891A (en) * 1999-05-07 2001-01-30 Semiconductor Energy Lab Co Ltd Display device
JP2004233522A (en) * 2003-01-29 2004-08-19 Seiko Epson Corp Driving method for electrooptical device, electrooptical device, and electronic equipment
JP2018519539A (en) * 2015-06-05 2018-07-19 アップル インコーポレイテッド Light emission control device and method for display panel

Also Published As

Publication number Publication date
JP2020064159A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
TWI539423B (en) Display device, driving method of display device, and electronic appliance
KR101476961B1 (en) Display apparatus and display-apparatus driving method
KR102137079B1 (en) Organic light emitting display device
KR102575551B1 (en) Display device
US11869413B2 (en) Pixel circuit, array substrate comprising the same and display panel
US10546530B2 (en) Pixel driving circuit and display device thereof
US11328659B2 (en) Display device
CN111554240B (en) Display device driving method and display device
JP2018151506A (en) Pixel circuit, electro-optical device, and electronic apparatus
WO2020079932A1 (en) Display device
US10210806B2 (en) Data drive circuit of amoled display device
JP2004102294A (en) Driving circuit for display apparatus and driving method therefor
US11967282B2 (en) Display panel and display device
JP2006301450A (en) Light emission device and display device
US11551610B2 (en) Display and driving method
WO2024093278A1 (en) Display drive circuit and display device
KR20160078618A (en) Organic light emitting display device
CN110400538B (en) Electronic device
KR102478679B1 (en) Electroluminescent Display Device
JP7463467B2 (en) ELECTROLUMINESCENT DISPLAY DEVICE INCLUDING A PIXEL DRIVE CIRCUIT
JP2019056911A (en) Display device and electronic apparatus
CN114333688B (en) Electroluminescent display panel with pixel driving circuit
US10867553B2 (en) Electronic device capable of reducing color shift or increasing luminous efficacy
KR102567327B1 (en) Electroluminescent Display Device
KR20230111651A (en) Display device and method of driving display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874222

Country of ref document: EP

Kind code of ref document: A1