WO2020079819A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2020079819A1
WO2020079819A1 PCT/JP2018/038899 JP2018038899W WO2020079819A1 WO 2020079819 A1 WO2020079819 A1 WO 2020079819A1 JP 2018038899 W JP2018038899 W JP 2018038899W WO 2020079819 A1 WO2020079819 A1 WO 2020079819A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
secondary battery
positive electrode
lithium secondary
electrode layer
Prior art date
Application number
PCT/JP2018/038899
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 飯田
英二 中島
雄樹 藤田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2018/038899 priority Critical patent/WO2020079819A1/en
Publication of WO2020079819A1 publication Critical patent/WO2020079819A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery.
  • An example of a smart card with a built-in primary battery is a credit card with a one-time password display function.
  • An example of a smart card with a built-in secondary battery is a card with a fingerprint authentication / wireless communication function, which includes a wireless communication IC, a fingerprint analysis ASIC, and a fingerprint sensor.
  • a smart card battery is generally required to have characteristics such as a thickness of less than 0.45 mm, a high capacity and a low resistance, bending resistance, and resistance to a process temperature.
  • LiFSI lithium bis (fluorosulfonyl) imide
  • LiFSI lithium difluoro (oxalato) borate
  • Non-Patent Document 2 LiDFOB was used as a salt-type additive to enhance the interfacial stability of a high-voltage Li-rich cathode and a graphite anode, and the LiDFOB additive effectively reduces the cycle performance of the electrode. It is disclosed that it was suppressed to.
  • Non-Patent Document 3 describes LiDFOB with respect to capacity and impedance characteristics of a cell having a Li 1.2 Ni 0.15 Mn 0.55 Co 0.1 O 2 -based positive electrode, a graphite-based negative electrode, and a LiPF 6 -based electrolyte. The effect of electrolyte additives has been evaluated using a combination of electrochemical cycling and surface analysis techniques. It is also described in this document that LiDFOB acts as a bifunctional additive and reacts at both electrodes to reduce both cell capacitance loss and impedance.
  • Patent No. 5587052 International Publication No. 2017/146088
  • the present inventors have recently proposed a lithium secondary battery including a positive electrode layer containing a lithium composite oxide, a negative electrode layer containing carbon, a separator, and a current collector made of aluminum in a lithium bis (fluoro) compound in an organic solvent. It was found that the reaction resistance of the battery is significantly reduced by adopting the electrolytic solution containing sulfonyl) imide (LiFSI) and lithium difluoro (oxalato) borate (LiDFOB).
  • LiFSI sulfonyl) imide
  • LiDFOB lithium difluoro (oxalato) borate
  • an object of the present invention is to provide a lithium secondary battery whose reaction resistance is significantly reduced.
  • a positive electrode layer containing a lithium composite oxide A positive electrode current collector having conductivity, A negative electrode layer containing carbon, A negative electrode current collector having conductivity, A separator interposed between the positive electrode layer and the negative electrode layer,
  • An electrolytic solution containing lithium bis (fluorosulfonyl) imide (LiFSI) and lithium difluoro (oxalato) borate (LiDFOB) in an organic solvent, Equipped with A lithium secondary battery is provided in which at least one of the positive electrode current collector and the negative electrode current collector contains aluminum.
  • FIG. 2B is a diagram illustrating a second half of the example of the manufacturing process of the lithium secondary battery and showing a process following the process shown in FIG.
  • a photograph of the film-clad battery is included at the right end of FIG. 2B.
  • 3 is an SEM image showing an example of a cross section perpendicular to the plate surface of the oriented positive electrode plate.
  • 4 is an EBSD image in a cross section of the oriented positive electrode plate shown in FIG. 3.
  • 5 is a histogram showing an area-based distribution of orientation angles of primary particles in the EBSD image of FIG. 4.
  • Example 5 is a graph showing the resistance at 10 Hz measured by an AC impedance method at a battery voltage of 3.8 V for the lithium secondary batteries manufactured in Example 1 and Comparative Examples 1 and 2.
  • 3 is a Cole-Cole plot measured by an AC impedance method at a battery voltage of 3.8 V for the lithium secondary batteries manufactured in Example 1 and Comparative Examples 1 and 2.
  • the lithium secondary battery 10 shown in FIG. 1 includes a positive electrode current collector 14, a positive electrode layer 16, a separator 18, a negative electrode layer 20, a negative electrode current collector 22, and an electrolytic solution 24.
  • the positive electrode layer 16 contains a lithium composite oxide.
  • the negative electrode layer 20 contains carbon.
  • the separator 18 is interposed between the positive electrode layer 16 and the negative electrode layer 20.
  • the electrolytic solution 24 contains lithium bis (fluorosulfonyl) imide (LiFSI) and lithium difluoro (oxalato) borate (LiDFOB) in an organic solvent.
  • the positive electrode current collector 14 and the negative electrode current collector 22 each have conductivity, and at least one of the positive electrode current collector 14 and the negative electrode current collector 22 contains aluminum.
  • the reaction resistance of the battery is significantly reduced.
  • LiFSI which has higher ionic conductivity and thermal decomposition temperature than LiPF 6 , to improve cycle life and high temperature storage characteristics.
  • LiPF 6 lithium secondary battery including an aluminum current collector
  • the aluminum of the current collector is corroded, and as a result, the reaction resistance of the battery increases due to the corrosion of aluminum.
  • the above problem can be solved by adopting an electrolytic solution containing LiFSI and LiDFOB in an organic solvent.
  • the electrolytic solution 24 contains LiFSI and LiDFOB in the organic solvent.
  • LiFSI is lithium bis (fluorosulfonyl) imide and is represented by Li [N (SO 2 F) 2 ].
  • LiDFOB (sometimes referred to as LiODFB) is lithium difluoro (oxalato) borate and is represented by LiF 2 BC 2 O 4 .
  • a preferred organic solvent is a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC), a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC), or a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC).
  • a mixed solvent is included, and a particularly preferable organic solvent includes a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC).
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the proportion of LiFSI in the total number of moles of LiFSI and LiDFOB in the electrolytic solution is preferably 20% or more, more preferably 50% or more, and the upper limit is 70%. In other words, the ratio of the molar concentrations of LiFSI and LiDFOB in the electrolytic solution is preferably 7: 3 to 2: 8.
  • the electrolytic solution 24 preferably further contains vinylene carbonate (VC) and / or fluoroethylene carbonate (FEC) and / or vinyl ethylene carbonate (VEC) as an additive. Both VC and FEC have excellent heat resistance. Therefore, by including such an additive in the electrolytic solution 24, an SEI film having excellent heat resistance can be formed on the surface of the negative electrode layer 20.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • VEC vinyl ethylene carbonate
  • the lithium secondary battery 10 preferably has low internal resistance (particularly reaction resistance).
  • the reaction resistance referred to here is the diameter of the arc component in the real axis direction in the Cole-Cole plot obtained from the AC impedance test, and this value matches the resistance value at approximately 10 Hz.
  • the lithium secondary battery 10 has a resistance at 10 Hz measured by an AC impedance method of 9.5 ⁇ ⁇ cm 2 or less, more preferably 9.0 ⁇ ⁇ cm 2 or less, and further preferably 8. It is 1 ⁇ ⁇ cm 2 or less.
  • the lower limit of resistance at 10 Hz is not particularly limited, but is typically 2.0 ⁇ ⁇ cm 2 or more.
  • the positive electrode layer 16 is preferably a lithium composite oxide sintered body plate.
  • the fact that the positive electrode layer 16 is a sintered body plate means that the positive electrode layer 16 does not contain a binder or a conductive additive. This is because even if the green sheet contains the binder, the binder disappears or burns out during firing. Further, since the positive electrode layer 16 does not contain a binder, there is an advantage that deterioration of the positive electrode due to the electrolytic solution 24 can be avoided.
  • the lithium composite oxide forming the sintered plate is particularly preferably lithium cobalt oxide (typically LiCoO 2 (hereinafter sometimes abbreviated as LCO)).
  • LCO lithium cobalt oxide
  • Various lithium complex oxide sintered body plates or LCO sintered body plates are known, and are disclosed, for example, in Patent Document 1 (Japanese Patent No. 5587052) and Patent Document 2 (International Publication No. 2017/146088). Things can be used.
  • the positive electrode layer 16, that is, the lithium composite oxide sintered body plate includes a plurality of primary particles composed of a lithium composite oxide, and the plurality of primary particles are on the plate surface of the positive electrode plate.
  • the oriented positive electrode plate is oriented at an average orientation angle of more than 0 ° and 30 ° or less.
  • 3 shows an example of a cross-sectional SEM image perpendicular to the plate surface of the oriented positive electrode plate 16
  • FIG. 4 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the plate surface of the oriented positive electrode plate 16. Indicates. Further, FIG.
  • EBSD electron backscatter diffraction
  • FIG. 5 shows a histogram showing the distribution of the orientation angle of the primary particles 11 in the EBSD image of FIG. 4 on an area basis.
  • the orientation angle of each primary particle 11 is shown by the shade of color, and the darker the color, the smaller the orientation angle.
  • the orientation angle is an inclination angle formed by the (003) plane of each primary particle 11 with respect to the plate surface direction. It should be noted that, in FIGS. 3 and 4, the black-displayed portions inside the oriented positive electrode plate 16 are pores.
  • the oriented positive electrode plate 16 is an oriented sintered body composed of a plurality of primary particles 11 bonded to each other.
  • Each of the primary particles 11 is mainly in the form of a plate, but may be in the form of a rectangular parallelepiped, a cube or a sphere.
  • the cross-sectional shape of each primary particle 11 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complicated shape other than these.
  • Each primary particle 11 is composed of a lithium composite oxide.
  • the lithium composite oxide means Li x MO 2 (0.05 ⁇ x ⁇ 1.10, M is at least one kind of transition metal, and M is typically one or more kinds of Co, Ni and Mn. Is included).
  • the lithium composite oxide has a layered rock salt structure.
  • the layered rock salt structure is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately stacked with an oxygen layer in between, that is, a transition metal ion layer and a lithium single layer are alternately provided via oxide ions.
  • lithium composite oxide refers to a laminated crystal structure (typically an ⁇ -NaFeO 2 type structure, that is, a structure in which a transition metal and lithium are regularly arranged in the [111] axis direction of a cubic rock salt type structure).
  • the lithium composite oxide include Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NiMnO 2 (lithium nickel manganate).
  • Li x NiCoO 2 nickel / lithium cobalt oxide
  • Li x CoNiMnO 2 cobalt / nickel / lithium manganate
  • Li x CoMnO 2 lithium / cobalt manganate
  • the lithium composite oxide includes Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba. , Bi, and W may be contained in one or more kinds of elements.
  • the average value of the orientation angle of each primary particle 11, that is, the average orientation angle is more than 0 ° and 30 ° or less.
  • the average orientation angle of the primary particles 11 is obtained by the following method. First, in an EBSD image obtained by observing a rectangular region of 95 ⁇ m ⁇ 125 ⁇ m at a magnification of 1000 as shown in FIG. 4, three horizontal lines that divide the oriented positive electrode plate 16 into four equal parts in the thickness direction and the oriented positive electrode plate 16 are formed. And draw three vertical lines that divide it in the board direction. Next, the average orientation angle of the primary particles 11 is obtained by arithmetically averaging the orientation angles of all the primary particles 11 intersecting at least one of the three horizontal lines and the three vertical lines. The average orientation angle of the primary particles 11 is preferably 30 ° or less, and more preferably 25 ° or less from the viewpoint of further improving the rate characteristics. From the viewpoint of further improving the rate characteristics, the average orientation angle of the primary particles 11 is preferably 2 ° or more, more preferably 5 ° or more.
  • the orientation angle of each primary particle 11 may be widely distributed from 0 ° to 90 °, but most of them are distributed in the region of more than 0 ° and 30 ° or less. Is preferred. That is, when the cross section of the oriented sintered body that constitutes the oriented positive electrode plate 16 is analyzed by EBSD, the orientation angle of the primary particles 11 included in the analyzed cross section with respect to the plate surface of the oriented positive electrode plate 16 is 0 °.
  • the total area of the primary particles 11 (hereinafter, referred to as low-angle primary particles) that is less than 30 ° is less than 30 °, and the total area of the primary particles 11 (specifically, the 30 primary particles 11 used to calculate the average orientation angle)
  • the total area is preferably 70% or more, more preferably 80% or more.
  • the total area of the low-angle primary particles having an orientation angle of 20 ° or less is more preferably 50% or more with respect to the total area of the 30 primary particles 11 used to calculate the average orientation angle.
  • the total area of the low-angle primary particles having an orientation angle of 10 ° or less is more preferably 15% or more with respect to the total area of the 30 primary particles 11 used for calculating the average orientation angle. .
  • each primary particle 11 is mainly plate-shaped, as shown in FIGS. 3 and 4, the cross section of each primary particle 11 extends in a predetermined direction, and typically has a substantially rectangular shape. That is, when the cross section of the oriented sintered body is analyzed by EBSD, the total area of the primary particles 11 having an aspect ratio of 4 or more among the primary particles 11 included in the analyzed cross section is the primary area included in the cross section.
  • the total area of the particles 11 (specifically, 30 primary particles 11 used for calculating the average orientation angle) is preferably 70% or more, more preferably 80% or more. Specifically, in the EBSD image as shown in FIG. 4, this can further improve the mutual adhesiveness between the primary particles 11 and, as a result, further improve the rate characteristics.
  • the aspect ratio of the primary particles 11 is a value obtained by dividing the maximum Feret diameter of the primary particles 11 by the minimum Feret diameter.
  • the maximum Feret diameter is the maximum distance between the straight lines when the primary particles 11 are sandwiched by two parallel straight lines on the EBSD image when the cross-section is observed.
  • the minimum Feret diameter is the minimum distance between the straight lines when the primary particles 11 are sandwiched by two parallel straight lines on the EBSD image.
  • the average particle diameter of the plurality of primary particles constituting the oriented sintered body is 5 ⁇ m or more.
  • the average particle size of the 30 primary particles 11 used to calculate the average orientation angle is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and further preferably 12 ⁇ m or more.
  • the average particle size of the primary particles 11 is a value obtained by arithmetically averaging the equivalent circle diameters of the primary particles 11.
  • the equivalent circle diameter is the diameter of a circle having the same area as each primary particle 11 on the EBSD image.
  • the porosity of the lithium composite oxide sintered body plate is preferably 3 to 40%, more preferably 5 to 38%, further preferably 10 to 36%, and particularly preferably 20 to 35%.
  • the stress relief effect by the pores and the increase in capacity can be expected, and the mutual adhesion between the primary particles 11 can be further improved, so that the rate characteristics can be further improved.
  • the porosity of the sintered body is calculated by polishing the cross section of the positive electrode plate by CP (Cross Section Polisher) polishing and then observing with a SEM at 1000 magnifications, and binarizing the obtained SEM image.
  • the average equivalent circle diameter of each pore formed inside the oriented sintered body is not particularly limited, but is preferably 8 ⁇ m or less.
  • the average equivalent circle diameter of pores is a value obtained by arithmetically averaging the equivalent circle diameters of 10 pores on the EBSD image.
  • the equivalent circle diameter is the diameter of a circle having the same area as each pore on the EBSD image.
  • the pores formed inside the oriented sintered body may be open pores connected to the outside of the positive electrode layer 16, but preferably do not penetrate the positive electrode layer 16. Each pore may be a closed pore.
  • the average pore diameter of the lithium composite oxide sintered body plate is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less, and further preferably 10 ⁇ m or less. It is possible to suppress the occurrence of stress concentration locally in the large pores, and to easily release the stress uniformly in the sintered body.
  • the lower limit of the average pore diameter is not particularly limited, but the average pore diameter is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, from the viewpoint of the stress releasing effect of the pores.
  • the thickness of the positive electrode layer 16 is 70 to 120 ⁇ m, preferably 80 to 100 ⁇ m, more preferably 80 to 95 ⁇ m, and particularly preferably 85 to 95 ⁇ m. Within such a range, the active material capacity per unit area is increased to improve the energy density of the lithium secondary battery 10, and the deterioration of battery characteristics (especially increase in resistance value) due to repeated charging / discharging. Can be suppressed.
  • the negative electrode layer 20 contains carbon as a negative electrode active material.
  • Examples of carbon include graphite, hard carbon, soft carbon, pyrolytic carbon, coke, resin fired bodies, mesophase spherules, mesophase pitch, and the like, and preferably graphite.
  • the graphite may be either natural graphite or artificial graphite. Moreover, you may mix and use several types among these carbons.
  • the negative electrode layer 20 preferably further contains a binder.
  • binder examples include styrene-butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE) and the like, and preferably styrene-butadiene rubber (SBR) or polyvinylidene fluoride (PVDF).
  • SBR styrene-butadiene rubber
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the thickness of the negative electrode layer 20 is 90 to 200 ⁇ m, preferably 95 to 160 ⁇ m, and more preferably 100 to 150 ⁇ m. Within such a range, the active material capacity per unit area can be increased and the energy density of the lithium secondary battery 10 can be improved.
  • the density of the negative electrode layer 20 is preferably 1.15 to 1.70 g / cm 3 , more preferably 1.20 to 1.48 g / cm 3 , and even more preferably 1.25 to 1.45 g / cm 3 . It is 3 . Within such a range, the active material capacity per unit area can be increased and the energy density of the lithium secondary battery 10 can be improved.
  • the separator 18 is preferably a polyolefin, polyimide, or cellulose separator.
  • polyolefins include polypropylene (PP), polyethylene (PE), and combinations thereof. From the viewpoint of being inexpensive, a polyolefin or cellulose separator is preferable. Further, the surface of the separator 18 may be covered with ceramics such as alumina (Al 2 O 3 ), magnesia (MgO), silica (SiO 2 ).
  • the lithium secondary battery 10 further includes a pair of exterior films 26, the outer peripheral edges of the exterior films 26 are sealed to each other to form an internal space, and the battery element 12 and the electrolytic solution 24 are housed in the internal space.
  • the battery element 12 and the electrolytic solution 24, which are the contents of the lithium secondary battery 10 are packaged and sealed with a pair of exterior films 26, and as a result, the lithium secondary battery
  • the battery 10 is in the form of a so-called film-clad battery.
  • the battery element 12 is defined as including the positive electrode layer 16, the separator 18, and the negative electrode layer 20, and typically further includes the positive electrode current collector 14 and the negative electrode current collector 22.
  • the positive electrode current collector 14 and the negative electrode current collector 22 are not particularly limited as long as they have conductivity, but are preferably metal foils such as copper foil and aluminum foil. At least one of the positive electrode current collector 14 and the negative electrode current collector 22 contains aluminum, and is typically an aluminum foil. Particularly preferably, the positive electrode current collector 14 is an aluminum foil and the negative electrode current collector 22 is a copper foil.
  • the positive electrode current collector is preferably interposed between the positive electrode layer 16 and the exterior film 26, and the negative electrode current collector is preferably interposed between the negative electrode layer 20 and the exterior film 26. Further, the positive electrode current collector is preferably provided with a positive electrode terminal extending from the positive electrode current collector, and the negative electrode current collector is provided with a negative electrode terminal extending from the negative electrode current collector. preferable.
  • the outer edge of the lithium secondary battery 10 is preferably sealed by heat-sealing the exterior films 26.
  • the sealing by heat fusion is preferably performed using a heat bar (also referred to as a heating bar) which is generally used for heat sealing.
  • a heat bar also referred to as a heating bar
  • it is a quadrilateral shape of the lithium secondary battery 10, and it is preferable that the outer peripheral edges of the pair of exterior films 26 are sealed over all four outer peripheries.
  • the thickness of the exterior film 26 is preferably 50 to 80 ⁇ m per sheet, more preferably 55 to 70 ⁇ m, and further preferably 55 to 65 ⁇ m.
  • the preferable exterior film 26 is a laminate film containing a resin film and a metal foil, and more preferably an aluminum laminate film containing a resin film and an aluminum foil.
  • the laminate film is preferably provided with resin films on both sides of a metal foil such as an aluminum foil.
  • the resin film on one side of the metal foil (hereinafter referred to as the surface protective film) is composed of a material having excellent reinforcing properties such as nylon, polyamide, polyethylene terephthalate, polyimide, polytetrafluoroethylene, polychlorotrifluoroethylene. It is preferable that the resin film on the other side of the metal foil is made of a heat seal material such as polypropylene.
  • the negative electrode layer 20 has a size larger than the size of the positive electrode layer 16
  • the separator 18 has a size larger than the sizes of the positive electrode layer 16 and the negative electrode layer 20.
  • the outer peripheral portion of the separator 18 is in close contact with at least the outer peripheral edge of the exterior film 26 on the positive electrode layer 16 side or the peripheral region in the vicinity thereof to separate the compartment containing the positive electrode layer 16 from the compartment containing the negative electrode layer 20.
  • the outer peripheral portion of the separator 18 may be in close contact with the outer peripheral edge of the exterior film 26 on the negative electrode layer 20 side or the peripheral area in the vicinity thereof.
  • the lithium secondary battery 10 is preferably a thin secondary battery that can be embedded in a card, and more preferably a thin secondary battery that is embedded in a resin base material to form a card. That is, according to another preferred embodiment of the present invention, there is provided a battery-embedded card including a resin base material and a lithium secondary battery embedded in the resin base material.
  • a card with a built-in battery typically includes a pair of resin films and a lithium secondary battery sandwiched between the pair of resin films, and the resin films are attached to each other with an adhesive or heated. It is preferable that the resin films are heat-sealed together by a press.
  • the lithium secondary battery 10 is a small and thin lithium secondary battery with high energy density.
  • the energy density of the lithium secondary battery 10 is 200 to 300 mWh / cm 3 , preferably 210 to 300 mWh / cm 3 , more preferably 225 to 295 mWh / cm 3 , and further preferably 240 to 280 mWh / cm 3 . It is cm 3 .
  • the thickness of the lithium secondary battery 10 is 350 to 500 ⁇ m, preferably 380 to 450 ⁇ m, and more preferably 400 to 430 ⁇ m.
  • the lithium secondary battery 10 has a rectangular flat plate shape with each side having a length of 20 to 55 mm. If the thickness and size are within such a range, the lithium secondary battery 10 can be incorporated in a thin device such as a smart card. It will be extremely advantageous.
  • the lithium composite oxide sintered body plate of the present invention may be produced by any method, but preferably, (a) production of a lithium composite oxide-containing green sheet, (b) optional production. Excess lithium source-containing green sheet is produced, and (c) the green sheet is laminated and fired.
  • a raw material powder composed of a lithium composite oxide is prepared.
  • This powder preferably contains synthesized plate-like particles (for example, LiCoO 2 plate-like particles) having a composition of LiMO 2 (M is as described above).
  • the volume-based D50 particle size of the raw material powder is preferably 0.3 to 30 ⁇ m.
  • the method for producing LiCoO 2 plate-like particles can be performed as follows. First, the Co 3 O 4 raw material powder and the Li 2 CO 3 raw material powder are mixed and fired (500 to 900 ° C., 1 to 20 hours) to synthesize the LiCoO 2 powder.
  • the obtained LiCoO 2 powder is pulverized with a pot mill to a volume-based D50 particle size of 0.2 ⁇ m to 10 ⁇ m, whereby plate-shaped LiCoO 2 particles capable of conducting lithium ions in parallel with the plate surface are obtained.
  • Such LiCoO 2 particles are formed into a plate shape such as a method in which a green sheet using a LiCoO 2 powder slurry is grown and then crushed, a flux method, hydrothermal synthesis, single crystal growth using a melt, a sol-gel method, or the like. It can also be obtained by a method of synthesizing a crystal.
  • the obtained LiCoO 2 particles are in a state of being easily cleaved along the cleavage plane. Be to cleave by crushing the LiCoO 2 particles, it can be produced LiCoO 2 plate-like particles.
  • the above plate-like particles may be used alone as a raw material powder, or a mixed powder of the above plate-like powder and another raw material powder (for example, Co 3 O 4 particles) may be used as a raw material powder.
  • the plate-like powder functions as template particles for imparting orientation
  • the other raw material powder functions as matrix particles that can grow along the template particles.
  • the raw material powder is a powder in which template particles and matrix particles are mixed at 100: 0 to 3:97.
  • the volume-based D50 particle diameter of the Co 3 O 4 raw material powder is not particularly limited and may be, for example, 0.1 to 1.0 ⁇ m, but LiCoO 2 template particles It is preferable that the particle size is smaller than the volume-based D50 particle size.
  • the matrix particles can also be obtained by heat treating a Co (OH) 2 raw material at 500 ° C. to 800 ° C. for 1 to 10 hours.
  • Co (OH) 2 particles may be used as the matrix particles, or LiCoO 2 particles may be used.
  • the raw material powder is composed of 100% LiCoO 2 template particles or when LiCoO 2 particles are used as matrix particles, a large-sized (eg 90 mm ⁇ 90 mm square) and flat LiCoO 2 sintered body plate is obtained by firing. You can The mechanism is not clear, but since LiCoO 2 is not synthesized in the firing process, it is expected that a volume change during firing or local unevenness is unlikely to occur.
  • Raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • a lithium compound other than LiMO 2 for example, lithium carbonate
  • the slurry is preferably degassed by stirring under reduced pressure, and the viscosity is preferably adjusted to 4000 to 10000 cP.
  • the obtained slurry is shaped into a sheet to obtain a lithium composite oxide-containing green sheet.
  • the green sheet thus obtained is an independent sheet-shaped molded body.
  • An independent sheet refers to a sheet that can be handled as a single unit independently of other supports (including a thin piece having an aspect ratio of 5 or more). That is, the independent sheet does not include a sheet fixed to another support (substrate or the like) and integrated with the support (which cannot be separated or becomes difficult to separate).
  • Sheet molding is preferably performed using a molding method capable of applying a shearing force to the plate-like particles (eg template particles) in the raw material powder. By doing so, the average inclination angle of the primary particles can be set to more than 0 ° and 30 ° or less with respect to the plate surface.
  • the doctor blade method is suitable as a molding method capable of applying a shearing force to the plate-like particles.
  • the thickness of the lithium composite oxide-containing green sheet may be appropriately set so as to be the desired thickness described above after firing.
  • an excess lithium source-containing green sheet is prepared separately from the lithium composite oxide-containing green sheet.
  • This excess lithium source is preferably a lithium compound other than LiMO 2 such that components other than Li disappear by firing. Lithium carbonate is mentioned as a preferable example of such a lithium compound (excess lithium source).
  • the excess lithium source is preferably in powder form, and the volume-based D50 particle size of the excess lithium source powder is preferably 0.1 to 20 ⁇ m, more preferably 0.3 to 10 ⁇ m.
  • the lithium source powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • the obtained slurry is shaped into a sheet to obtain an excess lithium source-containing green sheet.
  • the green sheet thus obtained is also an independent sheet-shaped molded body.
  • the sheet can be formed by various known methods, but the doctor blade method is preferable.
  • the thickness of the excess lithium source-containing green sheet is preferably such that the molar ratio (Li / Co ratio) of the Li content in the excess lithium source-containing green sheet to the Co content in the lithium composite oxide-containing green sheet is 0.1 or more. It is preferable to set the thickness so that it can be 0.1 to 1.1.
  • (C) Lamination and Firing of Green Sheets A lithium composite oxide-containing green sheet (for example, LiCoO 2 green sheet) and, if desired, an excess lithium source-containing green sheet (for example, Li 2 CO 3 green sheet) are sequentially placed on the lower setter. Then, place the upper setter on it.
  • the upper and lower setters are made of ceramics, preferably zirconia or magnesia. If the setter is made of magnesia, the pores tend to be small.
  • the upper setter may have a porous structure, a honeycomb structure, or a dense structure. If the upper setter is dense, the pores in the sintered plate tend to be small and the number of pores tends to increase.
  • the excess lithium source-containing green sheet preferably has a molar ratio (Li / Co ratio) of the Li content in the excess lithium source-containing green sheet to the Co content in the lithium composite oxide-containing green sheet is preferably 0. It is preferable to cut into a size of 1 or more, more preferably 0.1 to 1.1 before use.
  • the green sheet When a lithium composite oxide-containing green sheet (eg, LiCoO 2 green sheet) is placed on the lower setter, the green sheet may be degreased if desired, and then calcined at 600 to 850 ° C. for 1 to 10 hours. .
  • the excess lithium source-containing green sheet for example, Li 2 CO 3 green sheet
  • the upper setter may be sequentially placed on the obtained calcined plate.
  • the green sheet and / or the calcined plate is sandwiched between setters, and after degreasing as desired, heat treatment (calcination) is performed at a calcining temperature in a medium temperature range (for example, 700 to 1000 ° C.) to obtain a lithium composite oxide.
  • a calcining temperature in a medium temperature range (for example, 700 to 1000 ° C.) to obtain a lithium composite oxide.
  • a sintered body plate is obtained.
  • This firing step may be performed twice or once. When firing is performed twice, it is preferable that the first firing temperature be lower than the second firing temperature.
  • the sintered plate thus obtained is also in the form of an independent sheet.
  • Example 1 (1) Preparation of Positive Electrode Plate (1a) Preparation of LiCoO 2 Green Sheet First, Co 3 O 4 powder (manufactured by Shodo Chemical Co., Ltd.) weighed so that the Li / Co molar ratio was 1.01. Li 2 CO 3 powder (manufactured by Honjo Chemical Co., Ltd.) was mixed, held at 780 ° C. for 5 hours, and the obtained powder was crushed and crushed in a pot mill so that the volume-based D50 was 0.4 ⁇ m. A powder consisting of the obtained LiCoO 2 plate-like particles was obtained.
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • plastic 4 parts by weight of an agent DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurogan
  • a LiCoO 2 slurry was prepared by stirring the resulting mixture under reduced pressure for defoaming and adjusting the viscosity to 4000 cP. The viscosity was measured by Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form a LiCoO 2 green sheet. The thickness of the LiCoO 2 green sheet after drying was 98 ⁇ m.
  • Lithium Secondary Battery 10 in the form of a film-clad battery as schematically shown in FIG. 1 was prepared by the procedure as shown in FIGS. 2A and 2B. Specifically, it is as follows.
  • Two aluminum laminate films Showa Denko Packaging, thickness 61 ⁇ m, three-layer structure of polypropylene film / aluminum foil / nylon film) were prepared as the exterior film 26. Further, as the positive electrode current collector 14, one aluminum foil (thickness 9 ⁇ m) was prepared. Acetylene black was mixed with a solution in which polyamideimide (PAI) was dissolved in N-methylpyrrolidone to prepare a slurry, and 2 ⁇ L of this slurry was dropped on an aluminum foil, and then the positive electrode layer 16 was placed and dried. Thereafter, as shown in FIG. 2A, a composite of the positive electrode current collector 14 and the plurality of chip-shaped positive electrode plates 16 was laminated on one outer film 26 to obtain a positive electrode assembly 17.
  • PAI polyamideimide
  • the positive electrode current collector 14 was fixed to the exterior film 26 with an adhesive.
  • a positive electrode terminal 15 is fixed to the positive electrode current collector 14 by welding so as to extend from the positive electrode current collector 14.
  • the negative electrode layer 20 carbon layer having a thickness of 130 ⁇ m
  • the negative electrode current collector 22 copper foil having a thickness of 10 ⁇ m
  • the negative electrode current collector 22 was fixed to the exterior film 26 with an adhesive.
  • a negative electrode terminal 23 is fixed to the negative electrode current collector 22 by welding so as to extend from the negative electrode current collector 22.
  • the carbon layer as the negative electrode layer 20 was a coating film containing a mixture of graphite as an active material and polyvinylidene fluoride (PVDF) as a binder.
  • PVDF polyvinylidene fluoride
  • a porous polyolefin membrane (Celguard # 2500) was prepared as the separator 18.
  • the positive electrode assembly 17, the separator 18, and the negative electrode assembly 19 are sequentially laminated so that the positive electrode layer 16 and the negative electrode layer 20 face the separator 18, and both surfaces are covered with the exterior film 26.
  • a laminated body 28 was obtained in which the outer peripheral portion of the exterior film 26 protruded from the outer edge of the battery element 12.
  • the thickness of the battery element 12 (the positive electrode current collector 14, the positive electrode layer 16, the separator 18, the negative electrode layer 20, and the negative electrode current collector 22) thus constructed in the laminated body 28 is 0.33 mm, and the shape and size thereof. was a square of 2.3 cm ⁇ 3.2 cm.
  • the three sides A of the obtained laminated body 28 were sealed. This sealing is performed by heating and pressing the outer peripheral portion of the laminated body 28 at 200 ° C. and 1.5 MPa for 10 seconds by using a padding jig whose sealing width is adjusted to 2 mm, and the outer peripheral film 26 ( The aluminum laminated films) were heat-sealed together. After sealing the three sides A, the laminated body 28 was put into the vacuum dryer 34 to remove water and dry the adhesive.
  • a gap is formed between the pair of exterior films 26 on the remaining unsealed one side B of the laminated body 28 whose outer edges 3 sides A are sealed.
  • the injection device 36 was inserted into the gap to inject the electrolytic solution 24, and the side B was temporarily sealed using a simple sealer under a reduced pressure atmosphere with an absolute pressure of 5 kPa.
  • the electrolytic solution a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7, and LiFSI and LiDFOB at concentrations of 0.7 mol / L and 0.3 mol / L, respectively.
  • the solution was dissolved so that vinylene carbonate (VC) was further dissolved to have a concentration of 2% by weight.
  • VC vinylene carbonate
  • the laminated body in which the side B was temporarily sealed was subjected to initial charging and aged for 7 days.
  • the outer peripheral portion of the remaining one side B was cut off to perform degassing.
  • the side B ′ generated by the excision of the temporary sealing was sealed under a reduced pressure atmosphere with an absolute pressure of 5 kPa.
  • This sealing was also performed by heating and pressing the outer peripheral portion of the laminate 28 at 200 ° C. and 1.5 MPa for 10 seconds to heat-bond the exterior films 26 (aluminum laminate films) to each other at the outer peripheral portion.
  • the side B' is sealed with a pair of exterior films 26 to obtain a lithium secondary battery 10 in the form of a film exterior battery.
  • the lithium secondary battery 10 was taken out from the glove box 38, and an unnecessary portion on the outer periphery of the exterior film 26 was cut off to adjust the shape of the lithium secondary battery 10.
  • the lithium secondary battery 10 in which the four outer edges of the battery element 12 were sealed with the pair of exterior films 26 and the electrolytic solution 24 was injected was obtained.
  • the obtained lithium secondary battery 10 was a rectangle having a size of 38 mm ⁇ 27 mm, a thickness of 0.45 mm or less, and a capacity of 30 mAh.
  • ⁇ Average orientation angle of primary particles> A LiCoO 2 sintered body plate was polished with a cross section polisher (CP) (IB-15000CP, manufactured by JEOL Ltd.), and the cross section of the obtained positive electrode plate (cross section perpendicular to the plate surface of the positive electrode plate) was viewed at 1000 times. (125 ⁇ m ⁇ 125 ⁇ m), EBSD measurement was performed to obtain an EBSD image. The EBSD measurement was performed using a Schottky field emission scanning electron microscope (JSM-7800F, manufactured by JEOL Ltd.).
  • JSM-7800F Schottky field emission scanning electron microscope
  • the angle formed by the (003) plane of the primary particles and the plate surface of the positive electrode plate was determined as the tilt angle, and The average value of the angles was taken as the average orientation angle of the primary particles. As a result, the average orientation angle was 16 °.
  • ⁇ Plate thickness> The LiCoO 2 sintered body plate was polished by a cross section polisher (CP) (manufactured by JEOL Ltd., IB-15000CP), and the cross section of the obtained positive electrode plate was observed by SEM (JEOL, JSM6390LA) to measure the thickness of the positive electrode plate. was measured.
  • the thickness of the dried LiCoO 2 green sheet described above in regard to step (1a) is also measured in the same manner as above. As a result, the thickness of the positive electrode plate was 90 ⁇ m.
  • ⁇ Porosity> A LiCoO 2 sintered body plate was polished by a cross section polisher (CP) (IB-15000CP, manufactured by JEOL Ltd.), and the cross section of the obtained positive electrode plate was observed by SEM with a field of view (125 ⁇ m ⁇ 125 ⁇ m) of 1000 times. Manufactured by JSM6390LA). The obtained SEM image was subjected to image analysis, the area of all pores was divided by the area of the positive electrode, and the obtained value was multiplied by 100 to calculate the porosity (%). As a result, the porosity was 30%.
  • ⁇ 10Hz resistance> Cole obtained by measuring the internal resistance of the lithium secondary battery 10 manufactured in (2) above using a VMP-300 manufactured by Bio-Logic at a battery voltage of 3.8 V by an AC impedance method. The resistance value ( ⁇ ⁇ cm 2 ) at 10 Hz was read from the ⁇ Cole plot. This measurement was performed with an amplitude of 2 mV and a measurement frequency range of 250 kHz to 200 mHz. The results were as shown in FIGS. 6 and 7 and Table 1.
  • Comparative Example 1 As an electrolytic solution, LiPF 6 was dissolved in a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7 so as to have a concentration of 1.0 mol / L, and vinylene carbonate was further added. A lithium secondary battery was prepared and evaluated in the same manner as in Example 1 except that the one obtained by dissolving (VC) in a concentration of 2% by weight was used. The results were as shown in FIGS. 3 and 4 and Table 1.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • Comparative example 2 As an electrolytic solution, a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7 was used, and LiPF 6 and LiFSI were respectively added at concentrations of 0.8 mol / L and 0.2 mol / L.
  • a lithium secondary battery was prepared and evaluated in the same manner as in Example 1 except that a solution obtained by dissolving vinylene carbonate (VC) at a concentration of 2% by weight was used. It was The results were as shown in FIGS. 3 and 4 and Table 1.

Abstract

Provided is a lithium secondary battery in which reaction resistance is significantly reduced. This lithium secondary battery comprises: a positive electrode layer that includes a lithium composite oxide; an electroconductive positive electrode current collector; a negative electrode layer that includes carbon; an electroconductive negative electrode current collector; a separator that is interposed between the positive electrode layer and the negative electrode layer; and an electrolytic solution that includes lithium bis(fluorosulfonyl)imide (LiFSI) and lithiumdifluoro(oxalate)borate (LiDFOB) in an organic solvent. At least one of the positive electrode current collector and the negative electrode current collector includes aluminum.

Description

リチウム二次電池Lithium secondary battery
 本発明は、リチウム二次電池に関するものである。 The present invention relates to a lithium secondary battery.
 近年、電池内蔵スマートカードが実用化されつつある。一次電池を内蔵したスマートカードの例としては、ワンタイムパスワード表示機能付きクレジットカードが挙げられる。二次電池を内蔵したスマートカードの例としては、無線通信IC、指紋解析用ASIC及び指紋センサを備えた、指紋認証・無線通信機能付きカードが挙げられる。スマートカード用電池には、厚さが0.45mm未満であること、高容量かつ低抵抗であること、耐曲げ性を有すること、プロセス温度に耐えうることといった特性が一般的に求められる。 In recent years, smart cards with built-in batteries are being put to practical use. An example of a smart card with a built-in primary battery is a credit card with a one-time password display function. An example of a smart card with a built-in secondary battery is a card with a fingerprint authentication / wireless communication function, which includes a wireless communication IC, a fingerprint analysis ASIC, and a fingerprint sensor. A smart card battery is generally required to have characteristics such as a thickness of less than 0.45 mm, a high capacity and a low resistance, bending resistance, and resistance to a process temperature.
 ところで、リチウム電池用の電解質として、リチウムビス(フルオロスルホニル)イミド(LiFSI)が知られている。LiFSIは、一般的に使用される電解質であるLiPFよりもイオン伝導度が高く且つ熱分解温度が高いため、LiPFと併用することでサイクル寿命や高温保存特性を向上することができる。 Meanwhile, lithium bis (fluorosulfonyl) imide (LiFSI) is known as an electrolyte for lithium batteries. LiFSI has a higher ionic conductivity and a higher thermal decomposition temperature than LiPF 6 which is a commonly used electrolyte. Therefore, when used in combination with LiPF 6 , cycle life and high temperature storage characteristics can be improved.
 LiFSIをリチウムジフルオロ(オキサラト)ボレート(LiDFOB)と併用することが提案されている。例えば、非特許文献1には、LiPFベースの電解質を用いたLiCoO系電池と比較して、LiFSI0.7-LiDFOB0.3ベースの電解質を用いたLiCoO系電池のサイクル安定性及びレート性能が優れていることが開示されているが、この文献に示される評価はLiCoO正極を含む半電池に関してなされたものである。 It has been proposed to use LiFSI in combination with lithium difluoro (oxalato) borate (LiDFOB). For example, in Non-Patent Document 1, as compared with a LiCoO 2 -based battery using a LiPF 6 -based electrolyte, cycle stability of a LiCoO 2 -based battery using a LiFSI 0.7 -LiDFOB 0.3 -based electrolyte and Although disclosed as having excellent rate performance, the ratings presented in this document were made with respect to half-cells containing LiCoO 2 cathodes.
 LiDFOBに関して幾つかの報告がなされている。例えば、非特許文献2には、高電圧Liリッチカソード及びグラファイトアノードの界面安定性を高めるためにLiDFOBを塩型添加剤として用いたこと、そしてLiDFOB添加剤が電極のサイクル性能の低下を効果的に抑制したことが開示されている。非特許文献3には、Li1.2Ni0.15Mn0.55Co0.1ベースの正極、グラファイトベースの負極、及びLiPFベースの電解質を有するセルの容量及びインピーダンス特性に対するLiDFOB電解質添加剤の効果が、電気化学サイクル及び表面分析技術の組合せを用いて評価されている。また、この文献には、LiDFOBは二機能性添加剤として働き、両電極で反応することによりセル容量損失及びインピーダンスの両方を低減することも記載されている。 Several reports have been made on LiDFOB. For example, in Non-Patent Document 2, LiDFOB was used as a salt-type additive to enhance the interfacial stability of a high-voltage Li-rich cathode and a graphite anode, and the LiDFOB additive effectively reduces the cycle performance of the electrode. It is disclosed that it was suppressed to. Non-Patent Document 3 describes LiDFOB with respect to capacity and impedance characteristics of a cell having a Li 1.2 Ni 0.15 Mn 0.55 Co 0.1 O 2 -based positive electrode, a graphite-based negative electrode, and a LiPF 6 -based electrolyte. The effect of electrolyte additives has been evaluated using a combination of electrochemical cycling and surface analysis techniques. It is also described in this document that LiDFOB acts as a bifunctional additive and reacts at both electrodes to reduce both cell capacitance loss and impedance.
特許第5587052号公報Patent No. 5587052 国際公開第2017/146088号International Publication No. 2017/146088
 電池内蔵スマートカード用途向けのリチウム二次電池においては、パルス放電における電圧低下の抑制が求められており、バルク抵抗や反応抵抗の更なる低減が望まれる。そこで、反応抵抗の低減をもたらす電解液を用いることが望まれる。そこで、上述したように、LiPFよりもイオン伝導度及び熱分解温度が高いLiFSIを用いてサイクル寿命及び高温保存特性を向上することが考えられる。しかしながら、LiFSIを単体の電解質としてアルミニウム集電体を含むリチウム二次電池に用いた場合、集電体のアルミニウムを腐食させてしまい、その結果、アルミニウムの腐食に起因する電池の反応抵抗の増加を招くとの問題がある。 In a lithium secondary battery for use in a smart card with a built-in battery, suppression of voltage drop due to pulse discharge is required, and further reduction of bulk resistance and reaction resistance is desired. Therefore, it is desired to use an electrolytic solution that reduces the reaction resistance. Therefore, as described above, it is possible to improve the cycle life and the high temperature storage characteristics by using LiFSI having higher ionic conductivity and thermal decomposition temperature than LiPF 6 . However, when LiFSI is used as a single electrolyte in a lithium secondary battery including an aluminum current collector, the aluminum of the current collector is corroded, and as a result, the reaction resistance of the battery increases due to the corrosion of aluminum. There is a problem with inviting.
 本発明者らは、今般、リチウム複合酸化物を含む正極層、カーボンを含む負極層、セパレータ、及びアルミニウム製の集電体を含むリチウム二次電池の構成において、有機溶媒中にリチウムビス(フルオロスルホニル)イミド(LiFSI)及びリチウムジフルオロ(オキサラト)ボレート(LiDFOB)を含む電解液を採用することで、電池の反応抵抗が有意に低減されるとの知見を得た。 The present inventors have recently proposed a lithium secondary battery including a positive electrode layer containing a lithium composite oxide, a negative electrode layer containing carbon, a separator, and a current collector made of aluminum in a lithium bis (fluoro) compound in an organic solvent. It was found that the reaction resistance of the battery is significantly reduced by adopting the electrolytic solution containing sulfonyl) imide (LiFSI) and lithium difluoro (oxalato) borate (LiDFOB).
 したがって、本発明の目的は、反応抵抗が有意に低減されたリチウム二次電池を提供することにある。 Therefore, an object of the present invention is to provide a lithium secondary battery whose reaction resistance is significantly reduced.
 本発明の一態様によれば、リチウム複合酸化物を含む正極層と、
 導電性を有する正極集電体と、
 カーボンを含む負極層と、
 導電性を有する負極集電体と、
 前記正極層と前記負極層との間に介在されるセパレータと、
 有機溶媒中にリチウムビス(フルオロスルホニル)イミド(LiFSI)及びリチウムジフルオロ(オキサラト)ボレート(LiDFOB)を含む電解液と、
を備え、
 前記正極集電体及び前記負極集電体の少なくともいずれか一方が、アルミニウムを含む、リチウム二次電池が提供される。
According to one embodiment of the present invention, a positive electrode layer containing a lithium composite oxide,
A positive electrode current collector having conductivity,
A negative electrode layer containing carbon,
A negative electrode current collector having conductivity,
A separator interposed between the positive electrode layer and the negative electrode layer,
An electrolytic solution containing lithium bis (fluorosulfonyl) imide (LiFSI) and lithium difluoro (oxalato) borate (LiDFOB) in an organic solvent,
Equipped with
A lithium secondary battery is provided in which at least one of the positive electrode current collector and the negative electrode current collector contains aluminum.
本発明のリチウム二次電池の一例の模式断面図である。It is a schematic cross section of an example of the lithium secondary battery of the present invention. リチウム二次電池の製造工程の一例の前半を示す図である。It is a figure which shows the first half of an example of the manufacturing process of a lithium secondary battery. リチウム二次電池の製造工程の一例の後半であって、図2Aに示される工程に続く工程を示す図である。図2Bの右端にはフィルム外装電池の写真が含まれる。FIG. 2B is a diagram illustrating a second half of the example of the manufacturing process of the lithium secondary battery and showing a process following the process shown in FIG. A photograph of the film-clad battery is included at the right end of FIG. 2B. 配向正極板の板面に垂直な断面の一例を示すSEM像である。3 is an SEM image showing an example of a cross section perpendicular to the plate surface of the oriented positive electrode plate. 図3に示される配向正極板の断面におけるEBSD像である。4 is an EBSD image in a cross section of the oriented positive electrode plate shown in FIG. 3. 図4のEBSD像における一次粒子の配向角度の分布を面積基準で示すヒストグラムである。5 is a histogram showing an area-based distribution of orientation angles of primary particles in the EBSD image of FIG. 4. 実施例1並びに比較例1及び2で作製したリチウム二次電池に対して、電池電圧3.8Vにおいて交流インピーダンス法により測定された10Hzでの抵抗を示すグラフである。5 is a graph showing the resistance at 10 Hz measured by an AC impedance method at a battery voltage of 3.8 V for the lithium secondary batteries manufactured in Example 1 and Comparative Examples 1 and 2. 実施例1並びに比較例1及び2で作製したリチウム二次電池に対して、電池電圧3.8Vにおいて交流インピーダンス法により測定されたCole-Coleプロットである。3 is a Cole-Cole plot measured by an AC impedance method at a battery voltage of 3.8 V for the lithium secondary batteries manufactured in Example 1 and Comparative Examples 1 and 2.
 リチウム二次電池
 図1に示されるリチウム二次電池10は、正極集電体14、正極層16と、セパレータ18と、負極層20と、負極集電体22、電解液24とを備える。正極層16はリチウム複合酸化物を含む。負極層20はカーボンを含む。セパレータ18は正極層16と負極層20との間に介在される。電解液24は、有機溶媒中にリチウムビス(フルオロスルホニル)イミド(LiFSI)及びリチウムジフルオロ(オキサラト)ボレート(LiDFOB)を含む。正極集電体14及び負極集電体22はそれぞれ導電性を有し、正極集電体14及び負極集電体22の少なくともいずれか一方はアルミニウムを含む。このように、リチウム複合酸化物を含む正極層16、カーボンを含む負極層20、セパレータ18、及びアルミニウム製の集電体を含むリチウム二次電池の構成において、有機溶媒中にLiFSI及びLiDFOBを含む電解液を採用することで、電池の反応抵抗が有意に低減される。
Lithium Secondary Battery The lithium secondary battery 10 shown in FIG. 1 includes a positive electrode current collector 14, a positive electrode layer 16, a separator 18, a negative electrode layer 20, a negative electrode current collector 22, and an electrolytic solution 24. The positive electrode layer 16 contains a lithium composite oxide. The negative electrode layer 20 contains carbon. The separator 18 is interposed between the positive electrode layer 16 and the negative electrode layer 20. The electrolytic solution 24 contains lithium bis (fluorosulfonyl) imide (LiFSI) and lithium difluoro (oxalato) borate (LiDFOB) in an organic solvent. The positive electrode current collector 14 and the negative electrode current collector 22 each have conductivity, and at least one of the positive electrode current collector 14 and the negative electrode current collector 22 contains aluminum. As described above, in the configuration of the lithium secondary battery including the positive electrode layer 16 including the lithium composite oxide, the negative electrode layer 20 including carbon, the separator 18, and the current collector made of aluminum, LiFSI and LiDFOB are included in the organic solvent. By adopting the electrolytic solution, the reaction resistance of the battery is significantly reduced.
 上述したように、LiPFよりもイオン伝導度及び熱分解温度が高いLiFSIを用いてサイクル寿命及び高温保存特性を向上することが考えられる。しかしながら、LiFSIを単体の電解質としてアルミニウム集電体を含むリチウム二次電池に用いた場合、集電体のアルミニウムを腐食させてしまい、その結果、アルミニウムの腐食に起因する電池の反応抵抗の増加を招くとの問題がある。この点、本発明においては有機溶媒中にLiFSI及びLiDFOBを含む電解液を採用することで上記問題を解決することができる。 As described above, it is conceivable to use LiFSI, which has higher ionic conductivity and thermal decomposition temperature than LiPF 6 , to improve cycle life and high temperature storage characteristics. However, when LiFSI is used as a single electrolyte in a lithium secondary battery including an aluminum current collector, the aluminum of the current collector is corroded, and as a result, the reaction resistance of the battery increases due to the corrosion of aluminum. There is a problem with inviting. In this respect, in the present invention, the above problem can be solved by adopting an electrolytic solution containing LiFSI and LiDFOB in an organic solvent.
 したがって、電解液24は、有機溶媒中にLiFSI及びLiDFOBを含む。LiFSIは、リチウムビス(フルオロスルホニル)イミドであり、Li[N(SOF)]で表される。LiDFOB(LiODFBと称されることもある)は、リチウムジフルオロ(オキサラト)ボレートであり、LiFBCで表される。好ましい有機溶媒は、エチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)の混合溶媒、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)の混合溶媒、又はエチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒を含み、特に好ましい有機溶媒は、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒を含む。電解液におけるLiFSI及びLiDFOBの全モル数に占めるLiFSIの割合は20%以上が好ましく、より好ましくは50%以上であり、その上限は70%である。言い換えると、電解液におけるLiFSIとLiDFOBのモル濃度の比は7:3~2:8が好ましい。 Therefore, the electrolytic solution 24 contains LiFSI and LiDFOB in the organic solvent. LiFSI is lithium bis (fluorosulfonyl) imide and is represented by Li [N (SO 2 F) 2 ]. LiDFOB (sometimes referred to as LiODFB) is lithium difluoro (oxalato) borate and is represented by LiF 2 BC 2 O 4 . A preferred organic solvent is a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC), a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC), or a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). A mixed solvent is included, and a particularly preferable organic solvent includes a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). The proportion of LiFSI in the total number of moles of LiFSI and LiDFOB in the electrolytic solution is preferably 20% or more, more preferably 50% or more, and the upper limit is 70%. In other words, the ratio of the molar concentrations of LiFSI and LiDFOB in the electrolytic solution is preferably 7: 3 to 2: 8.
 電解液24は添加剤としてビニレンカーボネート(VC)及び/又はフルオロエチレンカーボネート(FEC)及び/又はビニルエチレンカーボネート(VEC)をさらに含むのが好ましい。VC及びFECはいずれも耐熱性に優れる。したがって、かかる添加剤を電解液24が含むことで、耐熱性に優れたSEI膜を負極層20表面に形成させることができる。 The electrolytic solution 24 preferably further contains vinylene carbonate (VC) and / or fluoroethylene carbonate (FEC) and / or vinyl ethylene carbonate (VEC) as an additive. Both VC and FEC have excellent heat resistance. Therefore, by including such an additive in the electrolytic solution 24, an SEI film having excellent heat resistance can be formed on the surface of the negative electrode layer 20.
 リチウム二次電池10は内部抵抗(特に反応抵抗)が低いのが好ましい。特に、本発明のリチウム二次電池10においては、上述した電解液24を用いることでアルミニウム集電体を含むにもかかわらず所望の低い内部抵抗(特に反応抵抗)を実現することができる。ここでいう反応抵抗とは、交流インピーダンス試験から得られるCole-Coleプロットにおける円弧成分の実軸方向の直径を示し、この値はおおよそ10Hzにおける抵抗値と一致する。例えば、リチウム二次電池10は、交流インピーダンス法により測定される10Hzでの抵抗が、9.5Ω・cm以下であり、より好ましくは9.0Ω・cm以下であり、さらに好ましくは8.1Ω・cm以下である。10Hzでの抵抗の下限値は特に限定されないが、典型的には2.0Ω・cm以上である。 The lithium secondary battery 10 preferably has low internal resistance (particularly reaction resistance). In particular, in the lithium secondary battery 10 of the present invention, by using the above-described electrolytic solution 24, it is possible to realize a desired low internal resistance (in particular, reaction resistance) despite including the aluminum current collector. The reaction resistance referred to here is the diameter of the arc component in the real axis direction in the Cole-Cole plot obtained from the AC impedance test, and this value matches the resistance value at approximately 10 Hz. For example, the lithium secondary battery 10 has a resistance at 10 Hz measured by an AC impedance method of 9.5 Ω · cm 2 or less, more preferably 9.0 Ω · cm 2 or less, and further preferably 8. It is 1 Ω · cm 2 or less. The lower limit of resistance at 10 Hz is not particularly limited, but is typically 2.0 Ω · cm 2 or more.
 正極層16は、リチウム複合酸化物焼結体板であるのが好ましい。正極層16が焼結体板であるといことは、正極層16がバインダーや導電助剤を含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。そして、正極層16がバインダーを含まないことで、電解液24による正極の劣化を回避できるとの利点がある。なお、焼結体板を構成するリチウム複合酸化物は、コバルト酸リチウム(典型的にはLiCoO(以下、LCOと略称することがある))であるのが特に好ましい。様々なリチウム複合酸化物焼結体板ないしLCO焼結体板が知られており、例えば特許文献1(特許第5587052号公報)や特許文献2(国際公開第2017/146088号)に開示されるものを使用することができる。 The positive electrode layer 16 is preferably a lithium composite oxide sintered body plate. The fact that the positive electrode layer 16 is a sintered body plate means that the positive electrode layer 16 does not contain a binder or a conductive additive. This is because even if the green sheet contains the binder, the binder disappears or burns out during firing. Further, since the positive electrode layer 16 does not contain a binder, there is an advantage that deterioration of the positive electrode due to the electrolytic solution 24 can be avoided. The lithium composite oxide forming the sintered plate is particularly preferably lithium cobalt oxide (typically LiCoO 2 (hereinafter sometimes abbreviated as LCO)). Various lithium complex oxide sintered body plates or LCO sintered body plates are known, and are disclosed, for example, in Patent Document 1 (Japanese Patent No. 5587052) and Patent Document 2 (International Publication No. 2017/146088). Things can be used.
 本発明の好ましい態様によれば、正極層16、すなわちリチウム複合酸化物焼結体板は、リチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板である。図3に配向正極板16の板面に垂直な断面SEM像の一例を示す一方、図4に配向正極板16の板面に垂直な断面における電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)像を示す。また、図5に、図4のEBSD像における一次粒子11の配向角度の分布を面積基準で示すヒストグラムを示す。図4に示されるEBSD像では、結晶方位の不連続性を観測することができる。図4では、各一次粒子11の配向角度が色の濃淡で示されており、色が濃いほど配向角度が小さいことを示している。配向角度とは、各一次粒子11の(003)面が板面方向に対して成す傾斜角度である。なお、図3及び4において、配向正極板16の内部で黒表示されている箇所は気孔である。 According to a preferred embodiment of the present invention, the positive electrode layer 16, that is, the lithium composite oxide sintered body plate includes a plurality of primary particles composed of a lithium composite oxide, and the plurality of primary particles are on the plate surface of the positive electrode plate. In contrast, the oriented positive electrode plate is oriented at an average orientation angle of more than 0 ° and 30 ° or less. 3 shows an example of a cross-sectional SEM image perpendicular to the plate surface of the oriented positive electrode plate 16, while FIG. 4 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the plate surface of the oriented positive electrode plate 16. Indicates. Further, FIG. 5 shows a histogram showing the distribution of the orientation angle of the primary particles 11 in the EBSD image of FIG. 4 on an area basis. In the EBSD image shown in FIG. 4, discontinuity of crystal orientation can be observed. In FIG. 4, the orientation angle of each primary particle 11 is shown by the shade of color, and the darker the color, the smaller the orientation angle. The orientation angle is an inclination angle formed by the (003) plane of each primary particle 11 with respect to the plate surface direction. It should be noted that, in FIGS. 3 and 4, the black-displayed portions inside the oriented positive electrode plate 16 are pores.
 配向正極板16は、互いに結合された複数の一次粒子11で構成された配向焼結体である。各一次粒子11は、主に板状であるが、直方体状、立方体状及び球状などに形成されたものが含まれていてもよい。各一次粒子11の断面形状は特に制限されるものではなく、矩形、矩形以外の多角形、円形、楕円形、或いはこれら以外の複雑形状であってもよい。 The oriented positive electrode plate 16 is an oriented sintered body composed of a plurality of primary particles 11 bonded to each other. Each of the primary particles 11 is mainly in the form of a plate, but may be in the form of a rectangular parallelepiped, a cube or a sphere. The cross-sectional shape of each primary particle 11 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complicated shape other than these.
 各一次粒子11はリチウム複合酸化物で構成される。リチウム複合酸化物とは、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、Ni及びMnの1種以上を含む)で表される酸化物である。リチウム複合酸化物は層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα-NaFeO型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。リチウム複合酸化物の例としては、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、LiMnO(マンガン酸リチウム)、LiNiMnO(ニッケル・マンガン酸リチウム)、LiNiCoO(ニッケル・コバルト酸リチウム)、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、LiCoMnO(コバルト・マンガン酸リチウム)等が挙げられ、特に好ましくはLiCoO(コバルト酸リチウム、典型的にはLiCoO)である。リチウム複合酸化物には、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y,Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi、及びWから選択される1種以上の元素が含まれていてもよい。 Each primary particle 11 is composed of a lithium composite oxide. The lithium composite oxide means Li x MO 2 (0.05 <x <1.10, M is at least one kind of transition metal, and M is typically one or more kinds of Co, Ni and Mn. Is included). The lithium composite oxide has a layered rock salt structure. The layered rock salt structure is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately stacked with an oxygen layer in between, that is, a transition metal ion layer and a lithium single layer are alternately provided via oxide ions. It refers to a laminated crystal structure (typically an α-NaFeO 2 type structure, that is, a structure in which a transition metal and lithium are regularly arranged in the [111] axis direction of a cubic rock salt type structure). Examples of the lithium composite oxide include Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NiMnO 2 (lithium nickel manganate). , Li x NiCoO 2 (nickel / lithium cobalt oxide), Li x CoNiMnO 2 (cobalt / nickel / lithium manganate), Li x CoMnO 2 (lithium / cobalt manganate), and the like, particularly preferably Li x CoO 2 (Lithium cobaltate, typically LiCoO 2 ). The lithium composite oxide includes Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba. , Bi, and W may be contained in one or more kinds of elements.
 図4及び5に示されるように、各一次粒子11の配向角度の平均値、すなわち平均配向角度は0°超30°以下である。これにより、以下の様々な利点がもたらされる。第一に、各一次粒子11が厚み方向に対して傾斜した向きに寝た状態になるため、各一次粒子同士の密着性を向上させることができる。その結果、ある一次粒子11と当該一次粒子11の長手方向両側に隣接する他の一次粒子11との間におけるリチウムイオン伝導性を向上させることができるため、レート特性を向上させることができる。第二に、レート特性をより向上させることができる。これは、上述のとおり、リチウムイオンの出入りに際して、配向正極板16では、板面方向よりも厚み方向における膨張収縮が優勢となるため、配向正極板16の膨張収縮がスムーズになるところ、それに伴ってリチウムイオンの出入りもスムーズになるからである。 As shown in FIGS. 4 and 5, the average value of the orientation angle of each primary particle 11, that is, the average orientation angle is more than 0 ° and 30 ° or less. This brings various advantages as follows. Firstly, since the respective primary particles 11 lie in a direction inclined with respect to the thickness direction, it is possible to improve the adhesion between the respective primary particles. As a result, lithium ion conductivity between a certain primary particle 11 and another primary particle 11 adjacent to both sides in the longitudinal direction of the primary particle 11 can be improved, and thus rate characteristics can be improved. Secondly, the rate characteristic can be further improved. This is because, as described above, when lithium ions move in and out, the oriented positive electrode plate 16 is more liable to expand and contract in the thickness direction than in the plate surface direction, so that the oriented positive electrode plate 16 expands and contracts smoothly. This is because the lithium ions can move in and out smoothly.
 一次粒子11の平均配向角度は、以下の手法によって得られる。まず、図4に示されるような、95μm×125μmの矩形領域を1000倍の倍率で観察したEBSD像において、配向正極板16を厚み方向に四等分する3本の横線と、配向正極板16を板面方向に四等分する3本の縦線とを引く。次に、3本の横線と3本の縦線のうち少なくとも1本の線と交差する一次粒子11すべての配向角度を算術平均することによって、一次粒子11の平均配向角度を得る。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、30°以下が好ましく、より好ましくは25°以下である。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、2°以上が好ましく、より好ましくは5°以上である。 The average orientation angle of the primary particles 11 is obtained by the following method. First, in an EBSD image obtained by observing a rectangular region of 95 μm × 125 μm at a magnification of 1000 as shown in FIG. 4, three horizontal lines that divide the oriented positive electrode plate 16 into four equal parts in the thickness direction and the oriented positive electrode plate 16 are formed. And draw three vertical lines that divide it in the board direction. Next, the average orientation angle of the primary particles 11 is obtained by arithmetically averaging the orientation angles of all the primary particles 11 intersecting at least one of the three horizontal lines and the three vertical lines. The average orientation angle of the primary particles 11 is preferably 30 ° or less, and more preferably 25 ° or less from the viewpoint of further improving the rate characteristics. From the viewpoint of further improving the rate characteristics, the average orientation angle of the primary particles 11 is preferably 2 ° or more, more preferably 5 ° or more.
 図5に示されるように、各一次粒子11の配向角度は、0°から90°まで広く分布していてもよいが、その大部分は0°超30°以下の領域に分布していることが好ましい。すなわち、配向正極板16を構成する配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうち配向正極板16の板面に対する配向角度が0°超30°以下である一次粒子11(以下、低角一次粒子という)の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。これにより、相互密着性の高い一次粒子11の割合を増加させることができるため、レート特性をより向上させることができる。また、低角一次粒子のうち配向角度が20°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して50%以上であることがより好ましい。さらに、低角一次粒子のうち配向角度が10°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して15%以上であることがより好ましい。 As shown in FIG. 5, the orientation angle of each primary particle 11 may be widely distributed from 0 ° to 90 °, but most of them are distributed in the region of more than 0 ° and 30 ° or less. Is preferred. That is, when the cross section of the oriented sintered body that constitutes the oriented positive electrode plate 16 is analyzed by EBSD, the orientation angle of the primary particles 11 included in the analyzed cross section with respect to the plate surface of the oriented positive electrode plate 16 is 0 °. The total area of the primary particles 11 (hereinafter, referred to as low-angle primary particles) that is less than 30 ° is less than 30 °, and the total area of the primary particles 11 (specifically, the 30 primary particles 11 used to calculate the average orientation angle) The total area is preferably 70% or more, more preferably 80% or more. As a result, the proportion of the primary particles 11 having high mutual adhesion can be increased, so that the rate characteristics can be further improved. The total area of the low-angle primary particles having an orientation angle of 20 ° or less is more preferably 50% or more with respect to the total area of the 30 primary particles 11 used to calculate the average orientation angle. . Furthermore, the total area of the low-angle primary particles having an orientation angle of 10 ° or less is more preferably 15% or more with respect to the total area of the 30 primary particles 11 used for calculating the average orientation angle. .
 各一次粒子11は、主に板状であるため、図3及び4に示されるように、各一次粒子11の断面はそれぞれ所定方向に延びており、典型的には略矩形状となる。すなわち、配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうちアスペクト比が4以上である一次粒子11の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。具体的には、図4に示されるようなEBSD像において、これにより、一次粒子11同士の相互密着性をより向上することができ、その結果、レート特性をより向上させることができる。一次粒子11のアスペクト比は、一次粒子11の最大フェレー径を最小フェレー径で除した値である。最大フェレー径は、断面観察した際のEBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最大距離である。最小フェレー径は、EBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最小距離である。 Since each primary particle 11 is mainly plate-shaped, as shown in FIGS. 3 and 4, the cross section of each primary particle 11 extends in a predetermined direction, and typically has a substantially rectangular shape. That is, when the cross section of the oriented sintered body is analyzed by EBSD, the total area of the primary particles 11 having an aspect ratio of 4 or more among the primary particles 11 included in the analyzed cross section is the primary area included in the cross section. The total area of the particles 11 (specifically, 30 primary particles 11 used for calculating the average orientation angle) is preferably 70% or more, more preferably 80% or more. Specifically, in the EBSD image as shown in FIG. 4, this can further improve the mutual adhesiveness between the primary particles 11 and, as a result, further improve the rate characteristics. The aspect ratio of the primary particles 11 is a value obtained by dividing the maximum Feret diameter of the primary particles 11 by the minimum Feret diameter. The maximum Feret diameter is the maximum distance between the straight lines when the primary particles 11 are sandwiched by two parallel straight lines on the EBSD image when the cross-section is observed. The minimum Feret diameter is the minimum distance between the straight lines when the primary particles 11 are sandwiched by two parallel straight lines on the EBSD image.
 配向焼結体を構成する複数の一次粒子の平均粒径が5μm以上であるのが好ましい。具体的には、平均配向角度の算出に用いた30個の一次粒子11の平均粒径が、5μm以上であることが好ましく、より好ましくは7μm以上、さらに好ましくは12μm以上である。これにより、リチウムイオンが伝導する方向における一次粒子11同士の粒界数が少なくなって全体としてのリチウムイオン伝導性が向上するため、レート特性をより向上させることができる。一次粒子11の平均粒径は、各一次粒子11の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各一次粒子11と同じ面積を有する円の直径のことである。 It is preferable that the average particle diameter of the plurality of primary particles constituting the oriented sintered body is 5 μm or more. Specifically, the average particle size of the 30 primary particles 11 used to calculate the average orientation angle is preferably 5 μm or more, more preferably 7 μm or more, and further preferably 12 μm or more. As a result, the number of grain boundaries between the primary particles 11 in the direction in which lithium ions are conducted is reduced and the lithium ion conductivity as a whole is improved, so that the rate characteristics can be further improved. The average particle size of the primary particles 11 is a value obtained by arithmetically averaging the equivalent circle diameters of the primary particles 11. The equivalent circle diameter is the diameter of a circle having the same area as each primary particle 11 on the EBSD image.
 リチウム複合酸化物焼結体板は気孔率が3~40%であるのが好ましく、より好ましくは5~38%、さらに好ましくは10~36%、特に好ましくは20~35%である。気孔による応力開放効果、及び高容量化が期待できるとともに、一次粒子11同士の相互密着性をより向上できるため、レート特性をより向上させることができる。焼結体の気孔率は、正極板の断面をCP(クロスセクションポリッシャ)研磨にて研磨した後に1000倍率でSEM観察して、得られたSEM画像を2値化することで算出される。配向焼結体の内部に形成される各気孔の平均円相当径は特に制限されないが、好ましくは8μm以下である。各気孔の平均円相当径が小さいほど、一次粒子11同士の相互密着性をさらに向上することができ、その結果、レート特性をさらに向上させることができる。気孔の平均円相当径は、EBSD像上の10個の気孔の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各気孔と同じ面積を有する円の直径のことである。配向焼結体の内部に形成される各気孔は、正極層16の外部につながる開気孔であってもよいが、正極層16を貫通していないことが好ましい。なお、各気孔は閉気孔であってもよい。 The porosity of the lithium composite oxide sintered body plate is preferably 3 to 40%, more preferably 5 to 38%, further preferably 10 to 36%, and particularly preferably 20 to 35%. The stress relief effect by the pores and the increase in capacity can be expected, and the mutual adhesion between the primary particles 11 can be further improved, so that the rate characteristics can be further improved. The porosity of the sintered body is calculated by polishing the cross section of the positive electrode plate by CP (Cross Section Polisher) polishing and then observing with a SEM at 1000 magnifications, and binarizing the obtained SEM image. The average equivalent circle diameter of each pore formed inside the oriented sintered body is not particularly limited, but is preferably 8 μm or less. The smaller the average equivalent circle diameter of each pore, the more the mutual adhesion between the primary particles 11 can be further improved, and as a result, the rate characteristics can be further improved. The average equivalent circle diameter of pores is a value obtained by arithmetically averaging the equivalent circle diameters of 10 pores on the EBSD image. The equivalent circle diameter is the diameter of a circle having the same area as each pore on the EBSD image. The pores formed inside the oriented sintered body may be open pores connected to the outside of the positive electrode layer 16, but preferably do not penetrate the positive electrode layer 16. Each pore may be a closed pore.
 リチウム複合酸化物焼結体板の平均気孔径は15μm以下であるのが好ましく、より好ましくは12μm以下、さらに好ましくは10μm以下である。大きな気孔の局所における応力集中の発生を抑制して、焼結体内における応力が均一に開放されやすくなる。平均気孔径の下限値は特に限定されないが、気孔による応力開放効果の観点から、平均気孔径は0.1μm以上が好ましく、より好ましくは0.3μm以上である。 The average pore diameter of the lithium composite oxide sintered body plate is preferably 15 μm or less, more preferably 12 μm or less, and further preferably 10 μm or less. It is possible to suppress the occurrence of stress concentration locally in the large pores, and to easily release the stress uniformly in the sintered body. The lower limit of the average pore diameter is not particularly limited, but the average pore diameter is preferably 0.1 μm or more, more preferably 0.3 μm or more, from the viewpoint of the stress releasing effect of the pores.
 正極層16の厚さは70~120μmであり、好ましくは80~100μm、さらに好ましくは80~95μm、特に好ましくは85~95μmである。このような範囲内であると、単位面積当りの活物質容量を高めてリチウム二次電池10のエネルギー密度を向上するとともに、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制できる。 The thickness of the positive electrode layer 16 is 70 to 120 μm, preferably 80 to 100 μm, more preferably 80 to 95 μm, and particularly preferably 85 to 95 μm. Within such a range, the active material capacity per unit area is increased to improve the energy density of the lithium secondary battery 10, and the deterioration of battery characteristics (especially increase in resistance value) due to repeated charging / discharging. Can be suppressed.
 負極層20は、負極活物質としてカーボンを含む。カーボンの例としては、黒鉛(グラファイト)、ハードカーボン、ソフトカーボン、熱分解炭素、コークス、樹脂焼成体、メソフェーズ小球体、メソフェーズ系ピッチ等が挙げられ、好ましくは黒鉛である。黒鉛は、天然黒鉛及び人造黒鉛のいずれであってもよい。また、これらカーボンのうち、数種類を混合して使用してもよい。負極層20は、バインダーをさらに含むのが好ましい。バインダーの例としては、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等が挙げられ、好ましくはスチレンブタジエンゴム(SBR)又はポリフッ化ビニリデン(PVDF)である。 The negative electrode layer 20 contains carbon as a negative electrode active material. Examples of carbon include graphite, hard carbon, soft carbon, pyrolytic carbon, coke, resin fired bodies, mesophase spherules, mesophase pitch, and the like, and preferably graphite. The graphite may be either natural graphite or artificial graphite. Moreover, you may mix and use several types among these carbons. The negative electrode layer 20 preferably further contains a binder. Examples of the binder include styrene-butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE) and the like, and preferably styrene-butadiene rubber (SBR) or polyvinylidene fluoride (PVDF).
 負極層20の厚さは90~200μmであり、好ましくは95~160μmであり、より好ましくは100~150μmである。このような範囲内であると、単位面積当りの活物質容量を高めてリチウム二次電池10のエネルギー密度を向上することができる。また、負極層20の密度は1.15~1.70g/cmであるのが好ましく、より好ましくは1.20~1.48g/cm、さらに好ましくは1.25~1.45g/cmである。このような範囲内であると、単位面積当りの活物質容量を高めてリチウム二次電池10のエネルギー密度を向上することができる。 The thickness of the negative electrode layer 20 is 90 to 200 μm, preferably 95 to 160 μm, and more preferably 100 to 150 μm. Within such a range, the active material capacity per unit area can be increased and the energy density of the lithium secondary battery 10 can be improved. The density of the negative electrode layer 20 is preferably 1.15 to 1.70 g / cm 3 , more preferably 1.20 to 1.48 g / cm 3 , and even more preferably 1.25 to 1.45 g / cm 3 . It is 3 . Within such a range, the active material capacity per unit area can be increased and the energy density of the lithium secondary battery 10 can be improved.
 セパレータ18はポリオレフィン、ポリイミド、又はセルロース製のセパレータが好ましい。ポリオレフィンの例としては、ポリプロピレン(PP)、ポリエチレン(PE)、及びこれらの組合せ等が挙げられる。安価であるという観点では、ポリオレフィン又はセルロース製のセパレータが好ましい。また、セパレータ18の表面がアルミナ(Al)、マグネシア(MgO)、シリカ(SiO)等のセラミックスで被覆されていてもよい。 The separator 18 is preferably a polyolefin, polyimide, or cellulose separator. Examples of polyolefins include polypropylene (PP), polyethylene (PE), and combinations thereof. From the viewpoint of being inexpensive, a polyolefin or cellulose separator is preferable. Further, the surface of the separator 18 may be covered with ceramics such as alumina (Al 2 O 3 ), magnesia (MgO), silica (SiO 2 ).
 好ましくは、リチウム二次電池10は1対の外装フィルム26をさらに備え、外装フィルム26の外周縁が互いに封止されて内部空間を成し、この内部空間に電池要素12及び電解液24を収容する。すなわち、図1に示されるように、リチウム二次電池10の中身である電池要素12及び電解液24は、1対の外装フィルム26で包装され且つ封止されており、その結果、リチウム二次電池10はいわゆるフィルム外装電池の形態とされる。ここで、電池要素12とは、正極層16、セパレータ18及び負極層20を含むものとして定義され、典型的には正極集電体14及び負極集電体22をさらに含む。正極集電体14及び負極集電体22は導電性を有するものであるかぎり特に限定されないが、好ましくは銅箔やアルミニウム箔等の金属箔である。正極集電体14及び負極集電体22の少なくともいずれか一方はアルミニウムを含み、典型的にはアルミニウム箔である。特に好ましくは、正極集電体14がアルミニウム箔であり、かつ、負極集電体22が銅箔である。正極集電体は正極層16と外装フィルム26との間に介在するのが好ましく、負極集電体は負極層20と外装フィルム26との間に介在するのが好ましい。また、正極集電体には正極端子が正極集電体から延出する形で設けられるのが好ましく、負極集電体には負極端子が負極集電体から延出する形で設けられるのが好ましい。リチウム二次電池10の外縁は外装フィルム26同士が熱融着されることで封止されるのが好ましい。熱融着による封止はヒートシール用途で一般的に使用される、ヒートバー(加熱バーとも称される)を用いて行うのが好ましい。典型的には、リチウム二次電池10の四辺形の形状であり、1対の外装フィルム26の外周縁が外周4辺の全てにわたって封止されるのが好ましい。 Preferably, the lithium secondary battery 10 further includes a pair of exterior films 26, the outer peripheral edges of the exterior films 26 are sealed to each other to form an internal space, and the battery element 12 and the electrolytic solution 24 are housed in the internal space. To do. That is, as shown in FIG. 1, the battery element 12 and the electrolytic solution 24, which are the contents of the lithium secondary battery 10, are packaged and sealed with a pair of exterior films 26, and as a result, the lithium secondary battery The battery 10 is in the form of a so-called film-clad battery. Here, the battery element 12 is defined as including the positive electrode layer 16, the separator 18, and the negative electrode layer 20, and typically further includes the positive electrode current collector 14 and the negative electrode current collector 22. The positive electrode current collector 14 and the negative electrode current collector 22 are not particularly limited as long as they have conductivity, but are preferably metal foils such as copper foil and aluminum foil. At least one of the positive electrode current collector 14 and the negative electrode current collector 22 contains aluminum, and is typically an aluminum foil. Particularly preferably, the positive electrode current collector 14 is an aluminum foil and the negative electrode current collector 22 is a copper foil. The positive electrode current collector is preferably interposed between the positive electrode layer 16 and the exterior film 26, and the negative electrode current collector is preferably interposed between the negative electrode layer 20 and the exterior film 26. Further, the positive electrode current collector is preferably provided with a positive electrode terminal extending from the positive electrode current collector, and the negative electrode current collector is provided with a negative electrode terminal extending from the negative electrode current collector. preferable. The outer edge of the lithium secondary battery 10 is preferably sealed by heat-sealing the exterior films 26. The sealing by heat fusion is preferably performed using a heat bar (also referred to as a heating bar) which is generally used for heat sealing. Typically, it is a quadrilateral shape of the lithium secondary battery 10, and it is preferable that the outer peripheral edges of the pair of exterior films 26 are sealed over all four outer peripheries.
 外装フィルム26は、市販の外装フィルムを使用すればよい。外装フィルム26の厚さは1枚当たり50~80μmが好ましく、より好ましくは55~70μm、さらに好ましくは55~65μmである。好ましい外装フィルム26は、樹脂フィルムと金属箔とを含むラミネートフィルムであり、より好ましくは樹脂フィルムとアルミニウム箔とを含むアルミラミネートフィルムである。ラミネートフィルムはアルミニウム箔等の金属箔の両面に樹脂フィルムが設けられているのが好ましい。この場合、金属箔の一方の側の樹脂フィルム(以下、表面保護膜という)がナイロン、ポリアミド、ポリエチレンテレフタレート、ポリイミド、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン等の補強性に優れた材料で構成され、金属箔の他方の側の樹脂フィルムがポリプロピレン等のヒートシール材料で構成されるのが好ましい。 As the exterior film 26, a commercially available exterior film may be used. The thickness of the exterior film 26 is preferably 50 to 80 μm per sheet, more preferably 55 to 70 μm, and further preferably 55 to 65 μm. The preferable exterior film 26 is a laminate film containing a resin film and a metal foil, and more preferably an aluminum laminate film containing a resin film and an aluminum foil. The laminate film is preferably provided with resin films on both sides of a metal foil such as an aluminum foil. In this case, the resin film on one side of the metal foil (hereinafter referred to as the surface protective film) is composed of a material having excellent reinforcing properties such as nylon, polyamide, polyethylene terephthalate, polyimide, polytetrafluoroethylene, polychlorotrifluoroethylene. It is preferable that the resin film on the other side of the metal foil is made of a heat seal material such as polypropylene.
 典型的には、負極層20が正極層16のサイズよりも大きいサイズを有する一方、セパレータ18は正極層16及び負極層20のサイズよりも大きいサイズを有する。そして、セパレータ18の外周部分が少なくとも正極層16側の外装フィルム26の外周縁又はその近傍の周囲領域と密着して、正極層16を収容する区画と負極層20を収容する区画とを隔離している。また、セパレータ18の外周部分は負極層20側の外装フィルム26の外周縁又はその近傍の周囲領域とも密着していてよい。 Typically, the negative electrode layer 20 has a size larger than the size of the positive electrode layer 16, while the separator 18 has a size larger than the sizes of the positive electrode layer 16 and the negative electrode layer 20. Then, the outer peripheral portion of the separator 18 is in close contact with at least the outer peripheral edge of the exterior film 26 on the positive electrode layer 16 side or the peripheral region in the vicinity thereof to separate the compartment containing the positive electrode layer 16 from the compartment containing the negative electrode layer 20. ing. Further, the outer peripheral portion of the separator 18 may be in close contact with the outer peripheral edge of the exterior film 26 on the negative electrode layer 20 side or the peripheral area in the vicinity thereof.
 リチウム二次電池10は、カードに内蔵可能な薄型二次電池であるのが好ましく、より好ましくは樹脂基材に埋設されてカード化されるための薄型二次電池である。すなわち、本発明の別の好ましい態様によれば、樹脂基材と、該樹脂基材に埋設されたリチウム二次電池とを備えた、電池内蔵カードが提供される。かかる電池内蔵カードは、1対の樹脂フィルムと、該1対の樹脂フィルムに挟み込まれたリチウム二次電池とを備えるのが典型的であり、樹脂フィルム同士が接着剤で貼り合わされていたり、加熱プレスで樹脂フィルム同士が熱融着されているのが好ましい。 The lithium secondary battery 10 is preferably a thin secondary battery that can be embedded in a card, and more preferably a thin secondary battery that is embedded in a resin base material to form a card. That is, according to another preferred embodiment of the present invention, there is provided a battery-embedded card including a resin base material and a lithium secondary battery embedded in the resin base material. Such a card with a built-in battery typically includes a pair of resin films and a lithium secondary battery sandwiched between the pair of resin films, and the resin films are attached to each other with an adhesive or heated. It is preferable that the resin films are heat-sealed together by a press.
 好ましくは、リチウム二次電池10は高エネルギー密度の小型かつ薄型リチウム二次電池である。具体的には、リチウム二次電池10のエネルギー密度は、200~300mWh/cmであり、好ましくは210~300mWh/cm、より好ましくは225~295mWh/cm、さらに好ましくは240~280mWh/cmである。また、リチウム二次電池10の厚さは350~500μmであり、好ましくは380~450μm、さらに好ましくは400~430μmである。さらに、リチウム二次電池10は、各辺の長さが20~55mmの矩形平板状であり、このような範囲内の厚さ及びサイズであると、スマートカード等の薄型デバイスに内蔵させるのに極めて有利となる。 Preferably, the lithium secondary battery 10 is a small and thin lithium secondary battery with high energy density. Specifically, the energy density of the lithium secondary battery 10 is 200 to 300 mWh / cm 3 , preferably 210 to 300 mWh / cm 3 , more preferably 225 to 295 mWh / cm 3 , and further preferably 240 to 280 mWh / cm 3 . It is cm 3 . The thickness of the lithium secondary battery 10 is 350 to 500 μm, preferably 380 to 450 μm, and more preferably 400 to 430 μm. Further, the lithium secondary battery 10 has a rectangular flat plate shape with each side having a length of 20 to 55 mm. If the thickness and size are within such a range, the lithium secondary battery 10 can be incorporated in a thin device such as a smart card. It will be extremely advantageous.
 製造方法
 本発明のリチウム複合酸化物焼結体板はいかなる方法で製造されたものであってもよいが、好ましくは、(a)リチウム複合酸化物含有グリーンシートの作製、(b)所望により行われる過剰リチウム源含有グリーンシートの作製、並びに(c)グリーンシートの積層及び焼成を経て製造される。
Production Method The lithium composite oxide sintered body plate of the present invention may be produced by any method, but preferably, (a) production of a lithium composite oxide-containing green sheet, (b) optional production. Excess lithium source-containing green sheet is produced, and (c) the green sheet is laminated and fired.
(a)リチウム複合酸化物含有グリーンシートの作製
 まず、リチウム複合酸化物で構成される原料粉末を用意する。この粉末は、LiMOなる組成(Mは前述したとおりである)の合成済みの板状粒子(例えばLiCoO板状粒子)を含むのが好ましい。原料粉末の体積基準D50粒径は0.3~30μmが好ましい。例えば、LiCoO板状粒子の作製方法は次のようにして行うことができる。まず、Co原料粉末とLiCO原料粉末とを混合して焼成(500~900℃、1~20時間)することによって、LiCoO粉末を合成する。得られたLiCoO粉末をポットミルにて体積基準D50粒径0.2μm~10μmに粉砕することによって、板面と平行にリチウムイオンを伝導可能な板状のLiCoO粒子が得られる。このようなLiCoO粒子は、LiCoO粉末スラリーを用いたグリーンシートを粒成長させた後に解砕する手法や、フラックス法や水熱合成、融液を用いた単結晶育成、ゾルゲル法など板状結晶を合成する手法によっても得ることができる。得られたLiCoO粒子は、劈開面に沿って劈開しやすい状態となっている。LiCoO粒子を解砕によって劈開させることで、LiCoO板状粒子を作製することができる。
(A) Preparation of Green Sheet Containing Lithium Composite Oxide First, a raw material powder composed of a lithium composite oxide is prepared. This powder preferably contains synthesized plate-like particles (for example, LiCoO 2 plate-like particles) having a composition of LiMO 2 (M is as described above). The volume-based D50 particle size of the raw material powder is preferably 0.3 to 30 μm. For example, the method for producing LiCoO 2 plate-like particles can be performed as follows. First, the Co 3 O 4 raw material powder and the Li 2 CO 3 raw material powder are mixed and fired (500 to 900 ° C., 1 to 20 hours) to synthesize the LiCoO 2 powder. The obtained LiCoO 2 powder is pulverized with a pot mill to a volume-based D50 particle size of 0.2 μm to 10 μm, whereby plate-shaped LiCoO 2 particles capable of conducting lithium ions in parallel with the plate surface are obtained. Such LiCoO 2 particles are formed into a plate shape such as a method in which a green sheet using a LiCoO 2 powder slurry is grown and then crushed, a flux method, hydrothermal synthesis, single crystal growth using a melt, a sol-gel method, or the like. It can also be obtained by a method of synthesizing a crystal. The obtained LiCoO 2 particles are in a state of being easily cleaved along the cleavage plane. Be to cleave by crushing the LiCoO 2 particles, it can be produced LiCoO 2 plate-like particles.
 上記板状粒子を単独で原料粉末として用いてもよいし、上記板状粉末と他の原料粉末(例えばCo粒子)との混合粉末を原料粉末として用いてもよい。後者の場合、板状粉末を配向性を与えるためのテンプレート粒子として機能させ、他の原料粉末(例えばCo粒子)をテンプレート粒子に沿って成長可能なマトリックス粒子として機能させるのが好ましい。この場合、テンプレート粒子とマトリックス粒子を100:0~3:97に混合した粉末を原料粉末とするのが好ましい。Co原料粉末をマトリックス粒子として用いる場合、Co原料粉末の体積基準D50粒径は特に制限されず、例えば0.1~1.0μmとすることができるが、LiCoOテンプレート粒子の体積基準D50粒径より小さいことが好ましい。このマトリックス粒子は、Co(OH)原料を500℃~800℃で1~10時間熱処理を行なうことによっても得ることができる。また、マトリックス粒子には、Coのほか、Co(OH)粒子を用いてもよいし、LiCoO粒子を用いてもよい。 The above plate-like particles may be used alone as a raw material powder, or a mixed powder of the above plate-like powder and another raw material powder (for example, Co 3 O 4 particles) may be used as a raw material powder. In the latter case, it is preferable that the plate-like powder functions as template particles for imparting orientation, and the other raw material powder (for example, Co 3 O 4 particles) functions as matrix particles that can grow along the template particles. In this case, it is preferable that the raw material powder is a powder in which template particles and matrix particles are mixed at 100: 0 to 3:97. When the Co 3 O 4 raw material powder is used as matrix particles, the volume-based D50 particle diameter of the Co 3 O 4 raw material powder is not particularly limited and may be, for example, 0.1 to 1.0 μm, but LiCoO 2 template particles It is preferable that the particle size is smaller than the volume-based D50 particle size. The matrix particles can also be obtained by heat treating a Co (OH) 2 raw material at 500 ° C. to 800 ° C. for 1 to 10 hours. In addition to Co 3 O 4 , Co (OH) 2 particles may be used as the matrix particles, or LiCoO 2 particles may be used.
 原料粉末がLiCoOテンプレート粒子100%で構成される場合、又はマトリックス粒子としてLiCoO粒子を用いる場合、焼成により、大判(例えば90mm×90mm平方)でかつ平坦なLiCoO焼結体板を得ることができる。そのメカニズムは定かではないが、焼成過程でLiCoOへの合成が行われないため、焼成時の体積変化が生じにくい若しくは局所的なムラが生じにくいことが予想される。 When the raw material powder is composed of 100% LiCoO 2 template particles or when LiCoO 2 particles are used as matrix particles, a large-sized (eg 90 mm × 90 mm square) and flat LiCoO 2 sintered body plate is obtained by firing. You can The mechanism is not clear, but since LiCoO 2 is not synthesized in the firing process, it is expected that a volume change during firing or local unevenness is unlikely to occur.
 原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LiMO以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してリチウム複合酸化物含有グリーンシートを得る。こうして得られるグリーンシートは独立したシート状の成形体である。独立したシート(「自立膜」と称されることもある)とは、他の支持体から独立して単体で取り扱い可能なシートのことをいう(アスペクト比が5以上の薄片も含む)。すなわち、独立したシートには、他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能ないし分離困難となった)ものは含まれない。シート成形は、原料粉末中の板状粒子(例えばテンプレート粒子)にせん断力を印加可能な成形手法を用いて行われるのが好ましい。こうすることで、一次粒子の平均傾斜角を板面に対して0°超30°以下にすることができる。板状粒子にせん断力を印加可能な成形手法としては、ドクターブレード法が好適である。リチウム複合酸化物含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。 Raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry. A lithium compound other than LiMO 2 (for example, lithium carbonate) may be added to the slurry in an excess of about 0.5 to 30 mol% for the purpose of promoting grain growth during the firing step described later or compensating for volatile components. It is desirable not to add a pore former to the slurry. The slurry is preferably degassed by stirring under reduced pressure, and the viscosity is preferably adjusted to 4000 to 10000 cP. The obtained slurry is shaped into a sheet to obtain a lithium composite oxide-containing green sheet. The green sheet thus obtained is an independent sheet-shaped molded body. An independent sheet (sometimes referred to as a "free-standing film") refers to a sheet that can be handled as a single unit independently of other supports (including a thin piece having an aspect ratio of 5 or more). That is, the independent sheet does not include a sheet fixed to another support (substrate or the like) and integrated with the support (which cannot be separated or becomes difficult to separate). Sheet molding is preferably performed using a molding method capable of applying a shearing force to the plate-like particles (eg template particles) in the raw material powder. By doing so, the average inclination angle of the primary particles can be set to more than 0 ° and 30 ° or less with respect to the plate surface. The doctor blade method is suitable as a molding method capable of applying a shearing force to the plate-like particles. The thickness of the lithium composite oxide-containing green sheet may be appropriately set so as to be the desired thickness described above after firing.
(b)過剰リチウム源含有グリーンシートの作製(任意工程)
 所望により、上記リチウム複合酸化物含有グリーンシートとは別に、過剰リチウム源含有グリーンシートを作製する。この過剰リチウム源は、Li以外の成分が焼成により消失するようなLiMO以外のリチウム化合物であるのが好ましい。そのようなリチウム化合物(過剰リチウム源)の好ましい例としては炭酸リチウムが挙げられる。過剰リチウム源は粉末状であるのが好ましく、過剰リチウム源粉末の体積基準D50粒径は0.1~20μmが好ましく、より好ましくは0.3~10μmである。そして、リチウム源粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。得られたスラリーを減圧下で撹拌して脱泡するとともに、粘度を1000~20000cPに調整するのが好ましい。得られたスラリーをシート状に成形して過剰リチウム源含有グリーンシートを得る。こうして得られるグリーンシートもまた独立したシート状の成形体である。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。過剰リチウム源含有グリーンシートの厚さは、リチウム複合酸化物含有グリーンシートにおけるCo含有量に対する、過剰リチウム源含有グリーンシートにおけるLi含有量のモル比(Li/Co比)が好ましくは0.1以上、より好ましくは0.1~1.1とすることができるような厚さに設定するのが好ましい。
(B) Preparation of green sheet containing excess lithium source (optional step)
If desired, an excess lithium source-containing green sheet is prepared separately from the lithium composite oxide-containing green sheet. This excess lithium source is preferably a lithium compound other than LiMO 2 such that components other than Li disappear by firing. Lithium carbonate is mentioned as a preferable example of such a lithium compound (excess lithium source). The excess lithium source is preferably in powder form, and the volume-based D50 particle size of the excess lithium source powder is preferably 0.1 to 20 μm, more preferably 0.3 to 10 μm. Then, the lithium source powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry. It is preferable to stir the obtained slurry under reduced pressure to defoam and adjust the viscosity to 1000 to 20000 cP. The obtained slurry is shaped into a sheet to obtain an excess lithium source-containing green sheet. The green sheet thus obtained is also an independent sheet-shaped molded body. The sheet can be formed by various known methods, but the doctor blade method is preferable. The thickness of the excess lithium source-containing green sheet is preferably such that the molar ratio (Li / Co ratio) of the Li content in the excess lithium source-containing green sheet to the Co content in the lithium composite oxide-containing green sheet is 0.1 or more. It is preferable to set the thickness so that it can be 0.1 to 1.1.
(c)グリーンシートの積層及び焼成
 下部セッターに、リチウム複合酸化物含有グリーンシート(例えばLiCoOグリーンシート)、及び所望により過剰リチウム源含有グリーンシート(例えばLiCOグリーンシート)を順に載置し、その上に上部セッターを載置する。上部セッター及び下部セッターはセラミックス製であり、好ましくはジルコニア又はマグネシア製である。セッターがマグネシア製であると気孔が小さくなる傾向がある。上部セッターは多孔質構造やハニカム構造のものであってもよいし、緻密質構造であってもよい。上部セッターが緻密質であると焼結体板において気孔が小さくなり、気孔の数が多くなる傾向がある。必要に応じて、過剰リチウム源含有グリーンシートは、リチウム複合酸化物含有グリーンシートにおけるCo含有量に対する、過剰リチウム源含有グリーンシートにおけるLi含有量のモル比(Li/Co比)が好ましくは0.1以上、より好ましくは0.1~1.1となるようなサイズに切り出して用いられるのが好ましい。
(C) Lamination and Firing of Green Sheets A lithium composite oxide-containing green sheet (for example, LiCoO 2 green sheet) and, if desired, an excess lithium source-containing green sheet (for example, Li 2 CO 3 green sheet) are sequentially placed on the lower setter. Then, place the upper setter on it. The upper and lower setters are made of ceramics, preferably zirconia or magnesia. If the setter is made of magnesia, the pores tend to be small. The upper setter may have a porous structure, a honeycomb structure, or a dense structure. If the upper setter is dense, the pores in the sintered plate tend to be small and the number of pores tends to increase. If necessary, the excess lithium source-containing green sheet preferably has a molar ratio (Li / Co ratio) of the Li content in the excess lithium source-containing green sheet to the Co content in the lithium composite oxide-containing green sheet is preferably 0. It is preferable to cut into a size of 1 or more, more preferably 0.1 to 1.1 before use.
 下部セッターにリチウム複合酸化物含有グリーンシート(例えばLiCoOグリーンシート)を載置した段階で、このグリーンシートを、所望により脱脂した後、600~850℃で1~10時間仮焼してもよい。この場合、得られた仮焼板の上に過剰リチウム源含有グリーンシート(例えばLiCOグリーンシート)及び上部セッターを順に載置すればよい。 When a lithium composite oxide-containing green sheet (eg, LiCoO 2 green sheet) is placed on the lower setter, the green sheet may be degreased if desired, and then calcined at 600 to 850 ° C. for 1 to 10 hours. . In this case, the excess lithium source-containing green sheet (for example, Li 2 CO 3 green sheet) and the upper setter may be sequentially placed on the obtained calcined plate.
 そして、上記グリーンシート及び/又は仮焼板をセッターで挟んだ状態で、所望により脱脂した後、中温域の焼成温度(例えば700~1000℃)で熱処理(焼成)することで、リチウム複合酸化物焼結体板が得られる。この焼成工程は、2度に分けて行ってもよいし、1度に行なってもよい。2度に分けて焼成する場合には、1度目の焼成温度が2度目の焼成温度より低いことが好ましい。こうして得られる焼結体板もまた独立したシート状である。 Then, the green sheet and / or the calcined plate is sandwiched between setters, and after degreasing as desired, heat treatment (calcination) is performed at a calcining temperature in a medium temperature range (for example, 700 to 1000 ° C.) to obtain a lithium composite oxide. A sintered body plate is obtained. This firing step may be performed twice or once. When firing is performed twice, it is preferable that the first firing temperature be lower than the second firing temperature. The sintered plate thus obtained is also in the form of an independent sheet.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described more specifically by the following examples.
 実施例1
(1)正極板の作製
(1a)LiCoOグリーンシートの作製
 まず、Li/Coのモル比が1.01となるように秤量されたCo粉末(正同化学工業株式会社製)とLiCO粉末(本荘ケミカル株式会社製)を混合後、780℃で5時間保持し、得られた粉末をポットミルにて体積基準D50が0.4μmとなるように粉砕及び解砕して得られたLiCoO板状粒子からなる粉末を得た。得られたLiCoO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LiCoOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LiCoOグリーンシートを形成した。乾燥後のLiCoOグリーンシートの厚さは98μmであった。
Example 1
(1) Preparation of Positive Electrode Plate (1a) Preparation of LiCoO 2 Green Sheet First, Co 3 O 4 powder (manufactured by Shodo Chemical Co., Ltd.) weighed so that the Li / Co molar ratio was 1.01. Li 2 CO 3 powder (manufactured by Honjo Chemical Co., Ltd.) was mixed, held at 780 ° C. for 5 hours, and the obtained powder was crushed and crushed in a pot mill so that the volume-based D50 was 0.4 μm. A powder consisting of the obtained LiCoO 2 plate-like particles was obtained. 100 parts by weight of the obtained LiCoO 2 powder, 100 parts by weight of a dispersion medium (toluene: isopropanol = 1: 1), 10 parts by weight of a binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), plastic 4 parts by weight of an agent (DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurogane Kasei Co., Ltd.) and 2 parts by weight of a dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation) were mixed. A LiCoO 2 slurry was prepared by stirring the resulting mixture under reduced pressure for defoaming and adjusting the viscosity to 4000 cP. The viscosity was measured by Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form a LiCoO 2 green sheet. The thickness of the LiCoO 2 green sheet after drying was 98 μm.
(1b)LiCoO焼結体板の作製
 PETフィルムから剥がしたLiCoOグリーンシートをカッターで50mm角に切り出し、下部セッターとしてのマグネシア製セッター(寸法90mm角、高さ1mm)の中央に載置した。LiCoOシートの上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記LiCoOシートをセッターで挟んだ状態で、120mm角のアルミナ鞘(株式会社ニッカトー製)内に載置した。このとき、アルミナ鞘を密閉せず、0.5mmの隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、870℃まで200℃/hで昇温して20時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうして厚さ90μmのLiCoO焼結体板を正極板として得た。得られた正極板を、レーザー加工機で10.5mm×9.5mm角の矩形状に切断して、複数のチップ状の正極層16を得た。
(1b) Preparation of LiCoO 2 Sintered Body Plate The LiCoO 2 green sheet peeled from the PET film was cut into 50 mm square with a cutter and placed in the center of a magnesia setter (dimension 90 mm square, height 1 mm) as a lower setter. . A porous magnesia setter as an upper setter was placed on the LiCoO 2 sheet. The LiCoO 2 sheet was sandwiched between setters and placed in a 120 mm square alumina sheath (manufactured by Nikkato Co., Ltd.). At this time, the alumina sheath was not sealed, and the lid was opened with a gap of 0.5 mm. The obtained laminate was heated to 600 ° C. at a heating rate of 200 ° C./h and degreased for 3 hours, then heated to 870 ° C. at 200 ° C./h and held for 20 hours for firing. After firing, the temperature was lowered to room temperature, and then the fired body was taken out from the alumina sheath. In this way, a 90 μm thick LiCoO 2 sintered body plate was obtained as a positive electrode plate. The obtained positive electrode plate was cut into a rectangular shape of 10.5 mm × 9.5 mm square by a laser processing machine to obtain a plurality of chip-shaped positive electrode layers 16.
(2)リチウム二次電池の作製
 図1に模式的に示されるようなフィルム外装電池の形態のリチウム二次電池10を図2A及び2Bに示されるような手順で作製した。具体的には以下のとおりである。
(2) Preparation of Lithium Secondary Battery A lithium secondary battery 10 in the form of a film-clad battery as schematically shown in FIG. 1 was prepared by the procedure as shown in FIGS. 2A and 2B. Specifically, it is as follows.
 外装フィルム26として、アルミラミネートフィルム(昭和電工パッケージング製、厚さ61μm、ポリプロピレンフィルム/アルミニウム箔/ナイロンフィルムの3層構造)を2枚用意した。また、正極集電体14としてアルミニウム箔(厚さ9μm)を1枚用意した。ポリアミドイミド(PAI)をN-メチルピロリドンに溶解させた溶液にアセチレンブラックを混合させてスラリーを調製し、このスラリー2μLをアルミニウム箔上に滴下後、正極層16を載せて乾燥させた。その後、図2Aに示されるように、1枚の外装フィルム26に、正極集電体14と複数個のチップ状正極板16との複合体を積層して、正極組立品17とした。このとき、正極集電体14が外装フィルム26に接着剤で固定された。なお、正極集電体14には、正極端子15が溶接により正極集電体14から延出する形で固定されている。一方、もう1枚の外装フィルム26に、負極集電体22(厚さ10μmの銅箔)を介して、負極層20(厚さ130μmのカーボン層)を積層して、負極組立品19とした。このとき、負極集電体22が外装フィルム26に接着剤で固定された。なお、負極集電体22には、負極端子23が溶接により負極集電体22から延出する形で固定されている。また、負極層20としてのカーボン層は、活物質としてのグラファイトと、バインダーとしてのポリフッ化ビニリデン(PVDF)との混合物を含む塗工膜とした。 Two aluminum laminate films (Showa Denko Packaging, thickness 61 μm, three-layer structure of polypropylene film / aluminum foil / nylon film) were prepared as the exterior film 26. Further, as the positive electrode current collector 14, one aluminum foil (thickness 9 μm) was prepared. Acetylene black was mixed with a solution in which polyamideimide (PAI) was dissolved in N-methylpyrrolidone to prepare a slurry, and 2 μL of this slurry was dropped on an aluminum foil, and then the positive electrode layer 16 was placed and dried. Thereafter, as shown in FIG. 2A, a composite of the positive electrode current collector 14 and the plurality of chip-shaped positive electrode plates 16 was laminated on one outer film 26 to obtain a positive electrode assembly 17. At this time, the positive electrode current collector 14 was fixed to the exterior film 26 with an adhesive. A positive electrode terminal 15 is fixed to the positive electrode current collector 14 by welding so as to extend from the positive electrode current collector 14. On the other hand, the negative electrode layer 20 (carbon layer having a thickness of 130 μm) was laminated on the other exterior film 26 via the negative electrode current collector 22 (copper foil having a thickness of 10 μm) to obtain a negative electrode assembly 19. . At this time, the negative electrode current collector 22 was fixed to the exterior film 26 with an adhesive. A negative electrode terminal 23 is fixed to the negative electrode current collector 22 by welding so as to extend from the negative electrode current collector 22. The carbon layer as the negative electrode layer 20 was a coating film containing a mixture of graphite as an active material and polyvinylidene fluoride (PVDF) as a binder.
 セパレータ18として、多孔質ポリオレフィン膜(セルガード#2500)を用意した。図2Aに示されるように、正極組立品17、セパレータ18及び負極組立品19を、正極層16及び負極層20がセパレータ18と向かい合うように順に積層して、両面が外装フィルム26で覆われ且つ外装フィルム26の外周部分が電池要素12の外縁からはみ出した積層体28を得た。こうして積層体28内に構築された電池要素12(正極集電体14、正極層16、セパレータ18、負極層20及び負極集電体22)の厚さは0.33mmであり、その形状及びサイズは2.3cm×3.2cmの四角形であった。 A porous polyolefin membrane (Celguard # 2500) was prepared as the separator 18. As shown in FIG. 2A, the positive electrode assembly 17, the separator 18, and the negative electrode assembly 19 are sequentially laminated so that the positive electrode layer 16 and the negative electrode layer 20 face the separator 18, and both surfaces are covered with the exterior film 26. A laminated body 28 was obtained in which the outer peripheral portion of the exterior film 26 protruded from the outer edge of the battery element 12. The thickness of the battery element 12 (the positive electrode current collector 14, the positive electrode layer 16, the separator 18, the negative electrode layer 20, and the negative electrode current collector 22) thus constructed in the laminated body 28 is 0.33 mm, and the shape and size thereof. Was a square of 2.3 cm × 3.2 cm.
 図2Aに示されるように、得られた積層体28の3辺Aの封止を行った。この封止は封止幅が2mmになるように調整された当て冶具を用いて、積層体28の外周部分を200℃、1.5MPaで10秒間加熱プレスして、外周部分で外装フィルム26(アルミラミネートフィルム)同士を熱融着させることにより行った。3辺Aの封止後、積層体28を真空乾燥器34に入れ、水分を除去するとともに接着剤を乾燥させた。 As shown in FIG. 2A, the three sides A of the obtained laminated body 28 were sealed. This sealing is performed by heating and pressing the outer peripheral portion of the laminated body 28 at 200 ° C. and 1.5 MPa for 10 seconds by using a padding jig whose sealing width is adjusted to 2 mm, and the outer peripheral film 26 ( The aluminum laminated films) were heat-sealed together. After sealing the three sides A, the laminated body 28 was put into the vacuum dryer 34 to remove water and dry the adhesive.
 図2Bに示されるように、グローブボックス38内において、外縁3辺Aが封止された積層体28の未封止の残り1辺Bにおいて1対の外装フィルム26間の隙間を形成し、その隙間に注入器具36を挿入して電解液24を注入し、絶対圧5kPaの減圧雰囲気下にて簡易シーラーを用いて辺Bを仮封止した。電解液としては、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)を3:7(体積比)で含む混合溶媒に、LiFSI及びLiDFOBをそれぞれ0.7mol/L及び0.3mol/Lの濃度となるように溶解させ、さらにビニレンカーボネート(VC)を2重量%の濃度となるように溶解させたものを用いた。こうして辺Bが仮封止された積層体に初期充電を施し、7日間のエージングを行った。最後に封止した残り1辺Bの外周部分(電池要素を含まない末端部分)を切除して、ガス抜きを行った。 As shown in FIG. 2B, in the glove box 38, a gap is formed between the pair of exterior films 26 on the remaining unsealed one side B of the laminated body 28 whose outer edges 3 sides A are sealed. The injection device 36 was inserted into the gap to inject the electrolytic solution 24, and the side B was temporarily sealed using a simple sealer under a reduced pressure atmosphere with an absolute pressure of 5 kPa. As the electrolytic solution, a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7, and LiFSI and LiDFOB at concentrations of 0.7 mol / L and 0.3 mol / L, respectively. The solution was dissolved so that vinylene carbonate (VC) was further dissolved to have a concentration of 2% by weight. In this way, the laminated body in which the side B was temporarily sealed was subjected to initial charging and aged for 7 days. Lastly, the outer peripheral portion of the remaining one side B (the end portion not including the battery element) was cut off to perform degassing.
 図2Bに示されるように、グローブボックス38内において、絶対圧5kPaの減圧雰囲気下、仮封止の切除により生じた辺B’の封止を行った。この封止もまた積層体28の外周部分を200℃、1.5MPaで10秒間加熱プレスして、外周部分で外装フィルム26(アルミラミネートフィルム)同士を熱融着させることにより行った。こうして辺B’を1対の外装フィルム26で封止して、フィルム外装電池の形態のリチウム二次電池10とした。リチウム二次電池10をグローブボックス38から取り出し、外装フィルム26の外周の余分な箇所を切除して、リチウム二次電池10の形状を整えた。こうして、電池要素12の外縁4辺が1対の外装フィルム26で封止され、かつ、電解液24が注入された、リチウム二次電池10を得た。得られたリチウム二次電池10はサイズ38mm×27mmの長方形であり、厚さ0.45mm以下、容量30mAhであった。 As shown in FIG. 2B, in the glove box 38, the side B ′ generated by the excision of the temporary sealing was sealed under a reduced pressure atmosphere with an absolute pressure of 5 kPa. This sealing was also performed by heating and pressing the outer peripheral portion of the laminate 28 at 200 ° C. and 1.5 MPa for 10 seconds to heat-bond the exterior films 26 (aluminum laminate films) to each other at the outer peripheral portion. In this way, the side B'is sealed with a pair of exterior films 26 to obtain a lithium secondary battery 10 in the form of a film exterior battery. The lithium secondary battery 10 was taken out from the glove box 38, and an unnecessary portion on the outer periphery of the exterior film 26 was cut off to adjust the shape of the lithium secondary battery 10. Thus, the lithium secondary battery 10 in which the four outer edges of the battery element 12 were sealed with the pair of exterior films 26 and the electrolytic solution 24 was injected was obtained. The obtained lithium secondary battery 10 was a rectangle having a size of 38 mm × 27 mm, a thickness of 0.45 mm or less, and a capacity of 30 mAh.
(3)評価
 上記(1b)で合成されたLiCoO焼結体板(正極板)及び上記(2)で作製された電池について、以下に示されるとおり各種の評価を行った。
(3) Evaluation The LiCoO 2 sintered body plate (positive electrode plate) synthesized in (1b) above and the battery produced in (2) above were evaluated in various ways as shown below.
<一次粒子の平均配向角度>
 LiCoO焼結体板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極板断面(正極板の板面に垂直な断面)を1000倍の視野(125μm×125μm)でEBSD測定して、EBSD像を得た。このEBSD測定は、ショットキー電界放出形走査電子顕微鏡(日本電子株式会社製、型式JSM-7800F)を用いて行った。得られたEBSD像において特定される全ての粒子について、一次粒子の(003)面と正極板の板面とがなす角度(すなわち(003)からの結晶方位の傾き)を傾斜角として求め、それらの角度の平均値を一次粒子の平均配向角度とした。その結果、平均配向角度は16°であった。
<Average orientation angle of primary particles>
A LiCoO 2 sintered body plate was polished with a cross section polisher (CP) (IB-15000CP, manufactured by JEOL Ltd.), and the cross section of the obtained positive electrode plate (cross section perpendicular to the plate surface of the positive electrode plate) was viewed at 1000 times. (125 μm × 125 μm), EBSD measurement was performed to obtain an EBSD image. The EBSD measurement was performed using a Schottky field emission scanning electron microscope (JSM-7800F, manufactured by JEOL Ltd.). For all the particles specified in the obtained EBSD image, the angle formed by the (003) plane of the primary particles and the plate surface of the positive electrode plate (that is, the inclination of the crystal orientation from (003)) was determined as the tilt angle, and The average value of the angles was taken as the average orientation angle of the primary particles. As a result, the average orientation angle was 16 °.
<板厚>
 LiCoO焼結体板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極板断面をSEM観察(日本電子製、JSM6390LA)して正極板の厚さを測定した。なお、工程(1a)に関して前述した乾燥後のLiCoOグリーンシートの厚さも、上記同様にして測定されたものである。その結果、正極板の厚さは90μmであった。
<Plate thickness>
The LiCoO 2 sintered body plate was polished by a cross section polisher (CP) (manufactured by JEOL Ltd., IB-15000CP), and the cross section of the obtained positive electrode plate was observed by SEM (JEOL, JSM6390LA) to measure the thickness of the positive electrode plate. Was measured. The thickness of the dried LiCoO 2 green sheet described above in regard to step (1a) is also measured in the same manner as above. As a result, the thickness of the positive electrode plate was 90 μm.
<気孔率>
 LiCoO焼結体板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極板断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子製、JSM6390LA)した。得られたSEM像を画像解析し、全ての気孔の面積を正極の面積で除し、得られた値に100を乗じることにより気孔率(%)を算出した。その結果、気孔率は30%であった。
<Porosity>
A LiCoO 2 sintered body plate was polished by a cross section polisher (CP) (IB-15000CP, manufactured by JEOL Ltd.), and the cross section of the obtained positive electrode plate was observed by SEM with a field of view (125 μm × 125 μm) of 1000 times. Manufactured by JSM6390LA). The obtained SEM image was subjected to image analysis, the area of all pores was divided by the area of the positive electrode, and the obtained value was multiplied by 100 to calculate the porosity (%). As a result, the porosity was 30%.
<平均気孔径>
 水銀ポロシメーター(島津製作所製、オートポアIV9510)を用いて水銀圧入法によりLiCoO焼結体板の平均気孔径を測定した。その結果、平均気孔径は0.8μmであった。
<Average pore size>
Using a mercury porosimeter (manufactured by Shimadzu Corp., Autopore IV9510), the average pore diameter of the LiCoO 2 sintered body plate was measured by the mercury injection method. As a result, the average pore diameter was 0.8 μm.
<10Hz抵抗>
 上記(2)で作製されたリチウム二次電池10に対して、Bio-Logic社製のVMP-300を用いて、電池電圧3.8Vにおいて交流インピーダンス法により内部抵抗を測定し、得られたCole-Coleプロットから10Hzでの抵抗値(Ω・cm)を読み取った。この測定は、振幅2mV、測定周波数範囲250kHz~200mHzで行った。結果は、図6及び7並びに表1に示されるとおりであった。
<10Hz resistance>
Cole obtained by measuring the internal resistance of the lithium secondary battery 10 manufactured in (2) above using a VMP-300 manufactured by Bio-Logic at a battery voltage of 3.8 V by an AC impedance method. The resistance value (Ω · cm 2 ) at 10 Hz was read from the −Cole plot. This measurement was performed with an amplitude of 2 mV and a measurement frequency range of 250 kHz to 200 mHz. The results were as shown in FIGS. 6 and 7 and Table 1.
 比較例1
 電解液として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)を3:7(体積比)で含む混合溶媒に、LiPFを1.0mol/Lの濃度となるように溶解させ、さらにビニレンカーボネート(VC)を2重量%の濃度となるように溶解させたものを用いたこと以外は、実施例1と同様にしてリチウム二次電池の作製及び評価を行った。結果は、図3及び4並びに表1に示されるとおりであった。
Comparative Example 1
As an electrolytic solution, LiPF 6 was dissolved in a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7 so as to have a concentration of 1.0 mol / L, and vinylene carbonate was further added. A lithium secondary battery was prepared and evaluated in the same manner as in Example 1 except that the one obtained by dissolving (VC) in a concentration of 2% by weight was used. The results were as shown in FIGS. 3 and 4 and Table 1.
 比較例2
 電解液として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)を3:7(体積比)で含む混合溶媒に、LiPF及びLiFSIをそれぞれ0.8mol/L及び0.2mol/Lの濃度となるように溶解させ、さらにビニレンカーボネート(VC)を2重量%の濃度となるように溶解させたものを用いたこと以外は、実施例1と同様にしてリチウム二次電池の作製及び評価を行った。結果は、図3及び4並びに表1に示されるとおりであった。
Comparative example 2
As an electrolytic solution, a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7 was used, and LiPF 6 and LiFSI were respectively added at concentrations of 0.8 mol / L and 0.2 mol / L. A lithium secondary battery was prepared and evaluated in the same manner as in Example 1 except that a solution obtained by dissolving vinylene carbonate (VC) at a concentration of 2% by weight was used. It was The results were as shown in FIGS. 3 and 4 and Table 1.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 

Claims (11)

  1.  リチウム複合酸化物を含む正極層と、
     導電性を有する正極集電体と、
     カーボンを含む負極層と、
     導電性を有する負極集電体と、
     前記正極層と前記負極層との間に介在されるセパレータと、
     有機溶媒中にリチウムビス(フルオロスルホニル)イミド(LiFSI)及びリチウムジフルオロ(オキサラト)ボレート(LiDFOB)を含む電解液と、
    を備え、
     前記正極集電体及び前記負極集電体の少なくともいずれか一方が、アルミニウムを含む、リチウム二次電池。
    A positive electrode layer containing a lithium composite oxide,
    A positive electrode current collector having conductivity,
    A negative electrode layer containing carbon,
    A negative electrode current collector having conductivity,
    A separator interposed between the positive electrode layer and the negative electrode layer,
    An electrolytic solution containing lithium bis (fluorosulfonyl) imide (LiFSI) and lithium difluoro (oxalato) borate (LiDFOB) in an organic solvent,
    Equipped with
    A lithium secondary battery in which at least one of the positive electrode current collector and the negative electrode current collector contains aluminum.
  2.  前記有機溶媒が、エチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)の混合溶媒、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)の混合溶媒、又はエチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒を含む、請求項1に記載のリチウム二次電池。 The organic solvent is a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC), a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC), or ethylene carbonate (EC) and ethyl methyl carbonate (EMC). The lithium secondary battery according to claim 1, comprising a mixed solvent.
  3.  前記有機溶媒が、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒を含む、請求項1に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the organic solvent contains a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC).
  4.  前記電解液が、添加剤として、ビニレンカーボネート(VC)及び/又はフルオロエチレンカーボネート(FEC)及び/又はビニルエチレンカーボネート(VEC)をさらに含む、請求項1~3のいずれか一項に記載のリチウム二次電池。 The lithium according to any one of claims 1 to 3, wherein the electrolytic solution further contains vinylene carbonate (VC) and / or fluoroethylene carbonate (FEC) and / or vinyl ethylene carbonate (VEC) as an additive. Secondary battery.
  5.  前記電解液におけるLiFSIとLiDFOBのモル濃度の比が7:3~2:8である、請求項1~4のいずれか一項に記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 4, wherein a ratio of molar concentrations of LiFSI and LiDFOB in the electrolytic solution is 7: 3 to 2: 8.
  6.  前記リチウム複合酸化物がコバルト酸リチウムである、請求項1~5のいずれか一項に記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 5, wherein the lithium composite oxide is lithium cobalt oxide.
  7.  前記正極層がリチウム複合酸化物焼結体板である、請求項1~6のいずれか一項に記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 6, wherein the positive electrode layer is a lithium composite oxide sintered body plate.
  8.  前記リチウム複合酸化物焼結体板の気孔率が3~40%である、請求項6又は7に記載のリチウム二次電池。 The lithium secondary battery according to claim 6 or 7, wherein the lithium composite oxide sintered body plate has a porosity of 3 to 40%.
  9.  前記リチウム複合酸化物焼結体板の平均気孔径が15μm以下である、請求項6~8のいずれか一項に記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 6 to 8, wherein the average pore diameter of the lithium composite oxide sintered body plate is 15 µm or less.
  10.  前記リチウム複合酸化物焼結体板が、リチウム複合酸化物で構成される複数の一次粒子を含み、前記複数の一次粒子が前記正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板である、請求項6~9のいずれか一項に記載のリチウム二次電池。 The lithium composite oxide sintered body plate includes a plurality of primary particles composed of a lithium composite oxide, and the plurality of primary particles have an average orientation of more than 0 ° and 30 ° or less with respect to the plate surface of the positive electrode plate. The lithium secondary battery according to any one of claims 6 to 9, which is an oriented positive electrode plate that is oriented at an angle.
  11.  交流インピーダンス法により測定される10Hzでの抵抗が、9.5Ω・cm以下である、請求項1~10のいずれか一項に記載のリチウム二次電池。

     
    The lithium secondary battery according to any one of claims 1 to 10, which has a resistance at 10 Hz measured by an AC impedance method of 9.5 Ω · cm 2 or less.

PCT/JP2018/038899 2018-10-18 2018-10-18 Lithium secondary battery WO2020079819A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/038899 WO2020079819A1 (en) 2018-10-18 2018-10-18 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/038899 WO2020079819A1 (en) 2018-10-18 2018-10-18 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2020079819A1 true WO2020079819A1 (en) 2020-04-23

Family

ID=70284654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038899 WO2020079819A1 (en) 2018-10-18 2018-10-18 Lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2020079819A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209067A1 (en) * 2021-03-29 2022-10-06 日本碍子株式会社 Circuit board assembly
WO2023045487A1 (en) * 2021-09-22 2023-03-30 宁德新能源科技有限公司 Electrochemical device and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682443A (en) * 2013-12-31 2014-03-26 东莞市杉杉电池材料有限公司 Lithium ion battery electrolyte containing LiFSI
JP2017504145A (en) * 2013-11-18 2017-02-02 ビーエーエスエフ コーポレーション Use of lithium bis (fluorosulfonyl) imide (LIFSI) in a non-aqueous electrolyte solution for use with a positive electrode material of 4.2V or higher for a lithium ion battery
WO2018088522A1 (en) * 2016-11-11 2018-05-17 日本碍子株式会社 Secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504145A (en) * 2013-11-18 2017-02-02 ビーエーエスエフ コーポレーション Use of lithium bis (fluorosulfonyl) imide (LIFSI) in a non-aqueous electrolyte solution for use with a positive electrode material of 4.2V or higher for a lithium ion battery
CN103682443A (en) * 2013-12-31 2014-03-26 东莞市杉杉电池材料有限公司 Lithium ion battery electrolyte containing LiFSI
WO2018088522A1 (en) * 2016-11-11 2018-05-17 日本碍子株式会社 Secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUEHUI SHANGGUAN ET AL.: "Mixed Salts of LiFSI and Li0DFB for Stable LiCo02-Based Batteries", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 163, no. 13, 14 October 2016 (2016-10-14), pages A2797 - A2802 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209067A1 (en) * 2021-03-29 2022-10-06 日本碍子株式会社 Circuit board assembly
WO2023045487A1 (en) * 2021-09-22 2023-03-30 宁德新能源科技有限公司 Electrochemical device and electronic device

Similar Documents

Publication Publication Date Title
US11658280B2 (en) Lithium secondary battery and card with built-in battery
US20210043919A1 (en) COIN-SHAPED LITHIUM SECONDARY BATTERY AND IoT DEVICE
KR102368342B1 (en) Manufacturing method of lithium secondary battery and battery-embedded device
WO2020079819A1 (en) Lithium secondary battery
JP7258045B2 (en) lithium secondary battery
JP7174068B2 (en) lithium secondary battery
JP2021086790A (en) Lithium secondary battery
TWI811311B (en) Lithium secondary batteries and cards with built-in batteries
JP6959281B2 (en) Lithium secondary battery and built-in battery card
TWI755585B (en) Lithium secondary batteries and cards with built-in batteries
TWI772625B (en) Lithium secondary batteries and cards with built-in batteries
JP7253076B2 (en) lithium secondary battery
JP7411394B2 (en) lithium secondary battery
CN111868992B (en) Lithium secondary battery and card with built-in battery
CN111902991B (en) Lithium secondary battery and card with built-in battery
WO2019187916A1 (en) Lithium rechargeable battery and card with built-in battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP