WO2020079770A1 - Alignment device, inspection device, and alignment method - Google Patents

Alignment device, inspection device, and alignment method Download PDF

Info

Publication number
WO2020079770A1
WO2020079770A1 PCT/JP2018/038634 JP2018038634W WO2020079770A1 WO 2020079770 A1 WO2020079770 A1 WO 2020079770A1 JP 2018038634 W JP2018038634 W JP 2018038634W WO 2020079770 A1 WO2020079770 A1 WO 2020079770A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment
reflected light
filter
image
light
Prior art date
Application number
PCT/JP2018/038634
Other languages
French (fr)
Japanese (ja)
Inventor
幸一 名古屋
波多野 央
展明 広瀬
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2018/038634 priority Critical patent/WO2020079770A1/en
Publication of WO2020079770A1 publication Critical patent/WO2020079770A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • the present invention relates to an alignment apparatus that measures and adjusts the positional relationship of a sample (for example, a patterned wafer with a film) with respect to a stage, an inspection apparatus including the alignment apparatus, and an alignment method.
  • the pattern formed on the wafer (sample) and the defects (scratches, foreign substances, etc.) on the surface of the wafer greatly affect the yield.
  • the defect inspection is performed by the inspection apparatus, the positional relationship between the stage and the wafer loaded on the stage varies from a microscopic point of view. If the positional relationship between the stage and the wafer is not specified in advance, it is high. Cannot perform accurate defect inspection. Therefore, in some cases, the inspection apparatus is equipped with an alignment device that measures the positional relationship between the stage and the wafer loaded on the stage prior to the defect inspection, and aligns them with high accuracy (see Patent Document 1, etc.).
  • the demand for stacked-layer semiconductor devices such as 3D-NAND has increased, and the number of deposition processes (film formation processes) for forming a thin film on the surface of a sample has also increased in the semiconductor manufacturing process.
  • the stage of the inspection device and the wafer to be inspected are aligned with each other, and then the inspection for defects and the like is performed.
  • alignment is performed based on the images of the reference patterns of the plurality of chips covered with the thin film.
  • An object of the present invention is to obtain a precise alignment image of a pattern and perform accurate alignment even on a wafer that could not be aligned by an alignment device for in-line inspection due to the material or thickness of a thin film formed on the surface.
  • An object of the present invention is to provide an alignment apparatus capable of performing the inspection, an inspection apparatus equipped with the alignment apparatus, and an alignment method.
  • the present invention provides an illumination optical system that illuminates a sample held on a stage with illumination light, an imaging unit that receives and images reflected light from the sample due to the illumination light, and An illumination optical system and a processing unit that controls the image capturing unit are provided.
  • the illumination optical system is capable of switching the wavelength of the illumination light, and the image capturing unit selects color reflection light according to the wavelength.
  • At least one of the element or the filter device and a plurality of sensors of which at least one is selected corresponding to the wavelength of the selected reflected light are provided, and the processing unit is based on the image captured by the selected sensor.
  • An alignment circuit for adjusting the positions of the sample and the stage is provided.
  • the present invention it is possible to obtain an alignment image with a clear pattern and perform accurate alignment even when it is covered with a thin film having a material or a thickness that is difficult to transmit light with illumination light having a uniform wavelength.
  • an alignment process is performed to align the coordinates (position) of the stage of the inspection device and the wafer. For example, a sample on a stage (described later) of the inspection device is irradiated with illumination light, and the reflected light is imaged by a sensor to acquire an alignment image. Based on the acquired alignment image, the coordinates of the wafer and the stage and their positional relationship are calculated in advance.
  • a broadband light source with a wide wavelength band is used as the light source of the alignment illumination optical system.
  • the wavelength of light emitted from this light source is selected according to the step of inspecting.
  • a filter device is used to select the wavelength.
  • a filter device is installed in the emission light path of the illumination light from the light source (optical axis of the light source), and by switching the filter, only the illumination light in the desired wavelength band is transmitted.
  • switching the wavelength band of the illumination light it is also possible to switch the wavelength band of the illumination light by configuring the illumination light source with a plurality of light sources having different wavelength bands of the illumination light instead of the broadband light source and changing the light source to be used. .
  • a color separation optical element for splitting the reflected light into a plurality according to the wavelength band is installed together with the sensor in the image pickup unit that receives and captures the reflected light from the sample due to the illumination light.
  • the effective reflected light used for alignment is selectively picked up by a sensor.
  • a filter device similar to that used for the illumination optical system in the image pickup section can be used. Effective reflected light is selectively imaged using at least one sensor having a different sensitivity depending on the wavelength band (sensitivity is adjusted so as to be suitably exposed in the wavelength band to be detected).
  • the optimal wavelength is selected in the illumination optical system according to the material and film thickness of the thin film, and the effective reflected light of the reflected light from the wafer is selectively picked up by the image pickup unit, which enables clear alignment. It is possible to obtain an image for use.
  • a pattern or the like which is not reflected in an image because it is difficult for the illumination light having a uniform wavelength (light whose wavelength band is not selected) to pass through normally has a specific wavelength which is easily transmitted through the thin film.
  • the selective use of the illumination light in the band may allow clear recognition on the image.
  • an image obtained from only the effective reflected light is used as an alignment image, and the positional relationship between the sample and the stage is calculated based on this alignment image, whereby the alignment that could not be performed inline can be performed. Therefore, it contributes to the improvement of the inspection efficiency of the defect inspection and the improvement of the yield of the semiconductor manufacturing process.
  • a configuration example of an apparatus for performing such an alignment method will be described below.
  • FIG. 1 is a schematic diagram of an inspection apparatus according to an embodiment of the present invention.
  • the inspection apparatus 100 shown in the figure includes a stage 101, a wafer transfer apparatus 102, a defect inspection unit 200, an overall control apparatus 300, an input apparatus 401, an output apparatus 402, and an alignment apparatus 1.
  • the stage 101 is for holding a wafer W (for example, a patterned wafer with a film) to be a sample, and includes a chuck 101a, a Y stage 101y, an X stage 101x, a Z stage 101z, and a ⁇ stage 101t. There is.
  • the chuck 101a attracts and holds the wafer W.
  • the wafer W is placed (loaded) on the chuck 101 a of the stage 101 by the robot arm of the wafer transfer device 102.
  • the wafer transfer device 102 includes a robot arm, a wafer pod, a pre-aligner, and the like.
  • the Y stage 101y is a drive unit for moving the chuck 101a in the Y axis direction.
  • the X stage 101x is a drive unit that moves the chuck 101a in the X axis direction and the Z stage 101z is a Z axis direction.
  • the ⁇ stage 101t is a drive unit that rotates the chuck 101a around the Z axis. Thereby, the wafer W mounted on the chuck 101a can be translated in the XYZ directions and rotated in the XY plane.
  • the X axis and the Y axis are, for example, coordinate axes orthogonal to each other in a horizontal plane, and the Z axis is an axis orthogonal to the XY plane.
  • the defect inspection unit 200 is a unit for inspecting a defect of the wafer W held on the stage 101, and includes an inspection light source 201, an objective lens 202, a spatial filter 203, an imaging lens 204, and a sensor 205.
  • the defect inspection unit 200 is arranged side by side with the alignment apparatus 1 in the X-axis direction, and by moving the chuck 101a of the stage 101 in the X-axis direction, the defect inspection unit 200 and the alignment apparatus 1 can be illuminated with each other.
  • the wafer W can be moved between them.
  • the inspection light source 201 is a device for emitting inspection light to the wafer W held on the stage 101 to form an illumination area on the wafer W, and is configured to include, for example, a mirror and a lens.
  • the shape of the illumination area can be changed by driving a mirror or a lens, and can be, for example, dot-shaped or linear.
  • the scattered light from the illumination area is condensed by the objective lens 202. Unwanted light of the scattered light collected by the objective lens 202 is blocked by the spatial filter 203, and the light passing through the spatial filter 203 is imaged on the light receiving surface of the sensor 205 by the imaging lens 204. In this way, the sensor 205 receives scattered light from the wafer W due to the inspection light.
  • the signal output from the sensor 205 upon reception of light is transmitted to the overall control device 300, and the signal from the sensor 205 is compared with a threshold value (set value) to perform inspection (defect detection).
  • the inspection result (presence / absence of a defect) is synchronized with the movement signal of the stage 101 in the overall control device 300, is associated with the coordinates on the wafer W, and is output from the output device 402 in response to an operation from the input device 401.
  • the overall control device 300 is, for example, a computer, and the input device 401 is a keyboard, a mouse or other operation device.
  • the output device 402 is, for example, a monitor, and a printer or a recording device for a recording medium can also be used. When a touch panel is used as the output device 402, it can also serve as the input device 401.
  • the alignment apparatus 1 is a unit for measuring (aligning) the positional relationship of the wafer W with respect to the stage 101 (chuck 101a), and is, for example, a so-called bright field type that detects specularly reflected light.
  • the alignment device 1 includes an illumination optical system 1A, an image pickup section 1B, and a processing device 10.
  • the illumination optical system 1A includes an illumination light source 2, an aperture stop 8, a filter device 9, a half mirror 3 and an objective lens 4.
  • the image pickup unit 1B includes an imaging lens 5, a color separation optical element 6, and a plurality of sensors 7, 7C, 7I.
  • the processing device 10 is illustrated separately from the overall control device 300 in FIG. 1, the processing device 10 is, for example, a computer, and the overall control device 300 may also serve as the processing device 10.
  • the illumination optical system 1A of the alignment apparatus 1 is a device for emitting the illumination light from the illumination light source 2 to the wafer W held on the stage 101 to form an illumination area on the wafer W, and can switch the wavelength band of the illumination light. .
  • the illumination optical system 1A includes a mirror and a lens, for example, to form a Keilor illumination.
  • the illumination light source 2 is preferably a broadband light source, but may include a plurality of light sources having different wavelength bands of illumination light as shown in FIGS. 2B and 2C. Further, the illumination light source 2 may have a light amount adjustable or a fixed light amount.
  • a filter device 9 provided in the illumination optical system 1A is a device that selectively transmits illumination light having a different wavelength band for each switching position, and an emission light path of the illumination light from the illumination light source 2 (optical axis of the illumination light source 2). ) Has been installed.
  • the filter device 9 can be exemplified by a roulette device having at least one color filter, and the wavelength band of the illumination light with which the wafer W is irradiated is switched by switching the switching position.
  • the filter device 9 of this embodiment is provided with, for example, five switching positions. Filters for selectively passing mainly blue light rays, blue-green light rays, green light rays, red light rays, and near infrared rays are installed at the five positions, respectively.
  • To selectively pass light means to shield light other than the target wavelength band.
  • a switching position that does not limit the wavelength band may be added.
  • the illumination light source 2 is composed of a plurality of light sources having different wavelength bands of illumination light
  • the illumination light source 2 is composed of a plurality of light sources emitting blue light rays, blue to green light rays, green light rays, red light rays, and near infrared rays.
  • the filter device 9 is omitted, and the light source that emits the illumination light is selected by the control circuit 13 of the processing device 10 described later according to the selection sensor, and the illumination light is emitted from only one light source of the plurality of light sources. It may be configured to irradiate.
  • the filter device 9 can also be used when the illumination light source 2 is composed of a plurality of light sources.
  • the illumination optical system 1A is configured so that not only the wavelength band but also the amount of illumination light can be adjusted using the aperture stop 8.
  • the aperture stop 8 is a variable stop that adjusts the amount of illumination light, and is installed in the emission light path of the illumination light (optical axis of the illumination light source 2).
  • the reference opening of the aperture stop 8 is set to an intermediate opening between the maximum opening and the minimum opening.
  • the aperture stop 8 and the filter device 9 are arranged along the optical axis of the illumination light source 2 between the illumination light source 2 and the half mirror 3, and in the present embodiment, the aperture stop 8 and the illumination device 2 are arranged in the illumination light source 2 rather than the filter device 9. Although they are placed near each other, this context can be reversed.
  • the illumination light emitted from the illumination light source 2 passes through the aperture stop 8 and the filter device 9, is reflected by the half mirror 3, and is applied to the wafer W.
  • the image pickup unit 1B collects the reflected light from the illumination area of the wafer W by the objective lens 4 and receives the light on any one of the light receiving surfaces of the plurality of sensors 7, 7C, 7I via the half mirror 3 and the imaging lens 5. Take an image.
  • the sensor 7 is, for example, an RGB 3CCD camera (FIG. 2A), the sensor 7C is a sensor highly sensitive to blue to green light rays, and the sensor 7I is a sensor highly sensitive to near infrared rays.
  • the optical path to the sensors 7, 7C, 7I is switched by a movable mirror.
  • the sensors 7, 7C, 7I transmit signals generated by photoelectrically converting the reflected light to the processing device 10.
  • an image of the wafer W is generated based on the signals of the sensors 7, 7C and 7I.
  • the image generated by the processing device 10 and the measurement result can be output to the output device 402 by an operation from the input device 401.
  • FIG. 2A is a diagram in which the color separation optical element 6, the sensor 7, and the processing device 10 of the alignment device are extracted and shown.
  • the color separation optical element 6 splits the reflected light from the wafer W due to the illumination light into a plurality of rays according to the wavelength band.
  • the color separation optical element 6 is configured by combining a plurality of (three in this embodiment) prisms 6R, 6G, 6B, and makes incident light RGB (red, green, blue) having different wavelength bands. Disassemble into each color. Light in the red wavelength band is emitted from the prism 6R, light in the green wavelength band is emitted from the prism 6G, and light in the blue wavelength band is emitted from the prism 6B.
  • the sensor 7 includes a plurality of sensors (imaging elements) 7R, 7G, 7B.
  • the sensors 7R, 7G, and 7B are provided in the light emitting portions of the prisms 6R, 6G, and 6B, respectively, and receive the corresponding reflected light among the plurality of reflected lights separated by the color separation optical element 6. That is, for example, the sensor 7R is configured to receive only the red light emitted from the prism 6R, and is adjusted so that the sensitivity and the dynamic range for the wavelength band of the red light are good.
  • the sensors 7G and 7B are configured to receive only the green light and the blue light emitted from the prisms 6G and 6B, respectively, so that the sensitivity and the dynamic range for the wavelength bands of the green light and the blue light respectively become good. It has been adjusted to.
  • at least one of the sensors 7R, 7G, 7B, 7C, 7I is selected as a selection sensor according to the characteristics of the observation target of the alignment apparatus 1 and is used to capture an alignment image of the wafer W (described later). ).
  • a filter device 9 similar to that provided in the illumination optical system 1A may be installed in place of the color separation optical element 6 on the reflection optical path before entering the sensor 7. Yes ( Figure 2C).
  • the color separation optical element 6 does not separate the other wavelength bands to extract the effective reflected light, but the filter device cuts the other wavelength bands to extract the effective reflected light.
  • the movable mirror can guide the reflected light to the corresponding sensor as shown in FIG. 2C. Even with such a configuration, a clear alignment image can be obtained by selecting at least one of the sensors 7R, 7G, 7B, 7C, and 7I as a selection sensor and using it for capturing the alignment image of the wafer W.
  • the color separation optical element 6 and the filter device 9 may be used in combination in the image pickup section 1B (FIG. 2B).
  • the filter device 9 can be omitted as shown in FIGS. 2B and 2C, but the illumination optical system 1A has a filter device in FIGS. 2B and 2C. It is also possible to use 9.
  • the illumination light source 2 including a plurality of light sources as shown in FIGS. 2B and 2C can also be used.
  • the illumination light source 2 including the broadband light source as shown in FIG. 2A can also be used.
  • the processing device 10 is a computer that controls the illumination optical system 1A and the imaging unit 1B, and includes an alignment circuit 11, a memory 12, and a control circuit 13.
  • the alignment circuit 11 is a circuit that adjusts the positions of the wafer W and the stage 101 (chuck 101a) based on the alignment image captured by the selection sensor, and is, for example, a CPU.
  • the selected sensor is at least one sensor selected from the sensors 7R, 7G, 7B, 7C, and 7I as a sensor that outputs a signal that is a basis of the alignment image.
  • the memory 12 is a storage device for storing programs and constants necessary for alignment operation, numerical values in the process of calculation, etc. In particular, in the present embodiment, a lookup table (FIG.
  • a storage device provided in a computer such as a RAM (random access memory), a ROM (read-on memory), and an HDD (hard disk drive) can be used.
  • various recording media that can be connected to a computer, such as a CD, a DVD, a disc such as a Blu-ray disc, and a USB memory, can be used as the memory 12.
  • the control circuit 13 is a circuit that drives the filter device 9 according to the selected sensor and limits the wavelength band of the illumination light with which the wafer W is irradiated, and is, for example, a CPU.
  • the control circuit 13 controls the illumination light source 2 instead of the filter device 9 (for example, a light source to be used from a plurality of light sources is selected according to a sensor). Select and illuminate with illumination light).
  • the filter device 9 will be read as the illumination light source 2 and replaced.
  • the control circuit 13 performs the operation of selecting the wavelength band of the illumination light in the illumination optical system 1A and the operation of selecting the sensor according to the wavelength band in the imaging unit 1B in an interlocking manner.
  • the control circuit 13 also has a function of driving the aperture stop 8 according to the switching position of the filter device 9 to control the amount of illumination light with which the wafer W is irradiated.
  • the control circuit 13 further includes an automatic image pickup circuit 14 and a simulation circuit 15, in addition to a circuit that controls a basic function of driving the filter device 9 based on a look-up table according to input information from an operator.
  • the automatic image pickup circuit 14 is a circuit for automatically acquiring a good alignment image from the viewpoint of executing alignment. As will be specifically described later, the automatic image pickup circuit 14 sequentially changes the combination of the selection sensor and the switching position of the filter device 9 until the alignment image having the contrast equal to or higher than the set value is obtained, and repeatedly acquires the image. It has functions.
  • the automatic image pickup circuit 14 in the present embodiment also has a function of driving the stage 101 to change the focus position when the contrast of the image is less than the set value.
  • the automatic image pickup circuit 14 further has a function of correcting the gain of the signal of the selection sensor when the contrast of the image is less than the set value.
  • the focus position changing function and the gain correcting function may be executed in place of the switching position of the filter device 9, or may be executed together with the switching position of the filter device 9. Both functions of changing the focus position and correcting the gain can be executed at the same time.
  • the execution procedure of the automatic image pickup of the alignment image by the automatic image pickup circuit 14 will be described later.
  • the simulation circuit 15 is a circuit for identifying a good alignment condition based on known information that can be known at present. Specifically, the simulation circuit 15 executes a simulation based on the input information (refractive index, film thickness, etc.) regarding the thin film formed on the surface of the wafer W, and determines the wavelength band in which the alignment image is optimized. It has a function to specify. As an example of a configuration for executing this function, in the present embodiment, the simulation circuit 15 is configured to include a reflected light amount calculation circuit 16, a filtered reflected light amount calculation circuit 17, and a filter selection circuit 18. The simulation function of the simulation circuit 15 will be described later.
  • the reflected light amount calculation circuit 16 calculates the reflected light amount based on the thickness (known) and the refractive index (known) of the thin film formed on the surface of the wafer W.
  • the reflected light amount calculated here is the reflected light amount in the pattern covered with the thin film (first reflected light amount) and the reflected light amount in the wafer substrate outside the pattern (second reflected light amount). The amount of reflected light and its calculation principle will be described later.
  • the post-filter reflected light amount calculation circuit 17 determines the first filter for each switching position based on the first reflected light amount and the second reflected light amount calculated by the reflected light amount calculation circuit 16 and the filter characteristic of each switching position of the filter device 9. The back-reflected light amount and the second-filter back-reflected light amount are calculated.
  • the post-filter reflection light amount is the reflection light amount of the wafer W with respect to the illumination light that has passed through the filter.
  • the post-filter reflected light amount calculation circuit 17 calculates the first post-filter reflected light amount and the second post-filter reflected light amount on the assumption that the switching position of the filter device 9 is switched.
  • the filter selection circuit 18 specifies the position where the alignment image is optimized based on the calculation result of the filtered reflected light amount calculation circuit 17.
  • a switching position is extracted in which either the amount of reflected light after the first filter or the amount of reflected light after the second filter is equal to or greater than the set amount of light. Then, of the extracted switching positions, the one that maximizes the ratio of the amount of reflected light after the first filter and the amount of reflected light after the second filter is specified as the position where the alignment image is optimized.
  • FIG. 3 is a schematic diagram of a look-up table stored in the memory 12.
  • the switching position (“filter No.”) and the sensor (“Camera No.”) of the filter device 9 are set for each wavelength band (“selected wavelength”) of the illumination light with which the wafer W is irradiated through the selected filter. )) Combinations are specified.
  • the switching position of the filter device 9 in which the No. 1 filter (center wavelength L12) is installed and the No. 1-B camera (for example, the sensor 7B) are selected.
  • the amount of illumination light that passes through the filter device 9 used differs depending on the switching position. Therefore, the opening degree (not shown) of the aperture diaphragm 8 is also defined in the look-up table, and the aperture is changed according to the switching position. The opening of the diaphragm 8 is selected.
  • FIG. 4 is a diagram showing an example of an operation screen of the alignment apparatus according to the present embodiment.
  • the operation screen 40 is displayed on the output device 402 as a monitor according to the operation of the input device 401, for example.
  • the alignment apparatus according to the present embodiment has three modes including a manual mode, a simulation mode, and an automatic mode, and check boxes 41-43 for selecting each mode are displayed on the operation screen.
  • the manual mode is a mode in which the operator arbitrarily sets the switching position of the filter device 9 based on his own judgment.
  • the control circuit 13 by inputting and designating the wavelength of the illumination light in the wavelength input field 44, the control circuit 13 causes the switching position of the filter device 9 and the opening of the aperture stop 8 according to the lookup table shown in FIG. , The corresponding sensor is set. Then, by operating the execute button 45, the illumination light source 2, the filter device 9, and the aperture stop 8 are driven by the control circuit 13, and the alignment process is executed based on the signal of the selected sensor.
  • the simulation mode is a mode in which a condition (here, the wavelength of illumination light) suitable for alignment is specified by a simulation based on known information about the thin film.
  • a condition here, the wavelength of illumination light
  • the refractive index n1 of the thin film, the extinction coefficient k1, the thickness t1, the refractive index n2 of the pattern, and the extinction coefficient are displayed in the condition input field 47 (details are shown in FIG. 5). Input k2 and thickness t2.
  • the simulation circuit 15 specifies the conditions suitable for the alignment according to the program stored in the memory 12. The principle of this simulation will be described later.
  • the model of the amount of reflected light after the first filter and the amount of reflected light after the second filter are displayed in the window 49, and the specified wavelength is displayed in the window 50.
  • a bar 51 is displayed in the window 49 together with a model of the amount of reflected light after filtering, and the wavelength displayed in the window 50 is linked to the wavelength indicated by the bar 51.
  • the wavelength specified by the simulation circuit 15 is displayed, but by looking at the model in the window 49 and moving the bar 51 left and right, the wavelength value displayed in the window 50 is displayed. Can be adjusted.
  • the wavelength displayed in the window 50 becomes the designated wavelength.
  • the execute button 52 When the execute button 52 is operated while the wavelength is displayed in the window 50, the illumination light source 2, the filter device 9, and the aperture stop 8 are driven by the control circuit 13 as in the case of the manual mode, and the signal of the selected sensor is displayed. Alignment processing is executed based on this.
  • the difference between the manual mode and the simulation mode in that the selection of the wavelength is based on the operator's input or the simulation is performed, but the subsequent alignment process itself is the same in both modes.
  • the automatic mode is a mode in which a good alignment image can be obtained only by operating the execute button 53 in a state where the wafer W is set in the alignment apparatus without any data input work.
  • the conditions most suitable for alignment are specified by the automatic imaging circuit 14 according to the program stored in the memory 12, and the alignment image is acquired under the conditions.
  • the alignment processing can be automatically executed by the alignment image acquired in the automatic mode.
  • the alignment process itself is similar to other modes. The processing of the automatic image pickup circuit 14 in the automatic mode will be described later.
  • a setting registration field 54 is also prepared on the operation screen, and a combination of the switching position of the filter device 9 and the sensor to be added to the lookup table can be arbitrarily registered.
  • the end button 55 is operated, the operation screen of FIG. 4 is closed.
  • FIG. 6 is a sectional view of a model of the wafer W.
  • the first reflected light amount refers to the intensity of the first reflected light shown in the figure
  • the second reflected light amount refers to the intensity of the second reflected light.
  • the first reflected light is the reflected light of the illumination light applied to the portion of the wafer W on which the pattern is formed
  • the second reflected light is the reflected light of the illumination light applied to the portion of the wafer W on which the pattern is not formed. Light.
  • the first reflected light in the model shown in the figure is strictly the interference light of each reflected light from the substrate surface of the wafer W and the pattern surface and the thin film. It becomes interference light with the reflected light from the surface. Therefore, the first reflected light amount changes depending on the material of the thin film and the thickness t1, the material of the pattern and the thickness t2, and the wavelength of the illumination light. Since the second reflected light is an interference light between the reflected light from the substrate surface of the wafer W and the reflected light from the thin film surface, the amount of light changes depending on the material of the thin film (the same), the thickness t1, and the wavelength of the illumination light. To do.
  • n1, n2, k1, and k2 are values that depend on the material, they may be input by selecting the material.
  • the relationship between the amount of reflected light and the wavelength of the illumination light applied to the thin film portion is as shown in Fig. 7. That is, the number of peaks and troughs of the reflected light amount in the same wavelength band generally increases as the thin film becomes thicker and decreases as it becomes thinner. Since the extinction coefficient of the material of the pattern is usually larger than that of the material of the thin film, the amount of light transmitted through the pattern is small, and when the illumination light of the same wavelength is used, the difference between the first reflected light amount and the second reflected light amount. Occurs mainly depending on the thickness of the thin film. Therefore, in the model of FIG. 6, the number of peaks and troughs of the reflected light amount in the same wavelength band is smaller in the first reflected light of the thin film portion than in the second reflected light of the thick film portion.
  • the post-filter reflected light amount calculation circuit 17 determines, based on the characteristics of the first reflected light amount and the second reflected light amount and the filter characteristics of each switching position of the filter device 9, the first post-filtered reflected light amount and the second post-filtered light amount for each switching position. The amount of reflected light is obtained.
  • the filter selection circuit 18 When forming an alignment image from the amount of reflected light after the first filter and the amount of reflected light after the second filter, it is desirable that at least one of the amounts of light has a certain value or more. Even if the amount of light is sufficient, if the difference between the amount of reflected light after the first filter and the amount of reflected light after the second filter is small, the contrast of the image becomes low, and the pattern under the thin film is not clear on the image. From this point of view, it is possible to improve the filter selection circuit 18 by specifying the switching position with the maximum ratio of the two light amounts from the switching positions in which at least one of the first filter reflected light amount and the second filter reflected light amount is equal to or greater than the set light amount. Conditions for obtaining a proper alignment image can be obtained. For example, in FIG. 10, when the set light amount is S, the switching position of the filter No. 1-G can be selected. When the filter No. is determined, the sensor used and the aperture opening are also determined according to the look-up table (FIG. 3
  • FIG. 11 is a flowchart showing the procedure of defect inspection including the procedure of automatically capturing the alignment image by the automatic image capturing circuit.
  • steps S12 to S18 are procedures relating to automatic image capturing for alignment
  • steps S21 to S23 are procedures relating to alignment
  • step S31 is procedures relating to defect inspection.
  • the overall control device 300 first drives the wafer transfer device 102 to load the wafer W at a predetermined position on the chuck 101a of the stage 101 (step S11). The overall control device 300 then drives the stage 101 to move the wafer W into the field of view of the alignment device 1, and instructs the processing device 10 of the alignment device 1 to perform alignment processing (steps S12-S18, S21-S23). Run.
  • the processing apparatus 10 drives the automatic image pickup circuit 14, picks up an image of the entire wafer W by using the illumination light source 2, the sensor 7, and the like to acquire an image, and recognizes the wafer matrix formed on the wafer W (step S12).
  • the image is acquired by scanning the wafer W concentrically or spirally in the R ⁇ coordinate system of the stage 101 (by driving the ⁇ stage 101t and the X stage 101x). It is also possible to obtain an image by scanning the wafer W with the XY coordinate system (driving the X stage 101x and the Y stage 101y). For example, the pattern repeating distance (pitch) in the Xw-axis direction and the Yw-axis direction is calculated from the acquired image by image processing.
  • a wafer matrix is a matrix in which a large number of chips of the same type (semiconductor devices also called dies) are arranged in a plurality of rows in two directions (Xw axis direction and Yw axis direction) of the orthogonal coordinate system on the wafer as shown in FIG. It is in the form of a shape.
  • the automatic imaging circuit 14 determines the first chip T1 and the second chip T2 in the wafer matrix as shown in FIG. 12 (step S13). After determining the chips T1 and T2, the automatic imaging circuit 14 registers the coordinates of the chip origin O of the chip T1 (for example, the starting point for repeating the above pattern) in the memory 12 (step S14).
  • the reference pattern P (FIG. 12) is a pattern located at a fixed distance of the X coordinate ⁇ X1 and the Y coordinate ⁇ Y2 from the chip origin O, and ⁇ X1 and ⁇ Y2 are stored in advance in the memory 12 as information at the time of alignment.
  • the chips T1 and T2 are reference chips for measuring the rotation deviation of the wafer W, and have the same Yw coordinate on the wafer matrix (they are arranged on the same axis parallel to the Xw axis on the wafer W). Exist).
  • the chips T1 and T2 are preferably separated from each other in terms of correction accuracy of the rotation deviation of the wafer W.
  • the chip T2 is out of the field of view when the observation position moves from the chip T1 to the chip T2, and an operation of searching for an alignment pattern image is required, which is necessary for image recognition. There are cases where it takes time.
  • FIG. 12 shows an example in which four chips (first to fourth chips T1 to T4) having the same Yw coordinate are selected.
  • it is possible to extend the inter-chip distance by, for example, first performing the alignment with the chips T3 and T4 having a short inter-chip distance, and then performing the alignment with the chips T3 and T2, and then the chips T2 and T1. .
  • the automatic image pickup circuit 14 searches for the reference pattern P in each selected chip (step S15), and determines whether each reference pattern P is recognizable (contrast is a set value or more) (step S16). If there is a reference pattern P that cannot be recognized due to the low contrast of the image, the automatic image pickup circuit 14 changes the switching position of the filter device 9 and the selection sensor according to the setting order, and then acquires a new image of the wafer W (step S17). . At this time, the stage 101 is driven to move the focus position of the illumination light to the inside of the thin film, or the gain of the sensor signal used to generate the image is corrected to adjust the brightness and contrast of the image. Good.
  • a combination of the focus position and the gain is prepared in advance, and the combination of the switch position of the lookup table, the sensor, and the aperture opening of the lookup table of FIG. 3 is sequentially changed for each combination of the focus position and the gain.
  • an image can be taken by sequentially changing the imaging conditions such as the wavelength of the illumination light and the focus position each time the procedure moves to step S17.
  • the automatic imaging circuit 14 uses the image as an alignment image (effective image), for example. It is registered in the memory 12 (step S18).
  • the automatic image pickup circuit 14 drives the stage 101 to move the wafer W, and thus picks up a clear alignment image of the reference pattern P on the chips T1 to T4 (at least the chips T1 and T2) by the image pickup unit 1B. Then, it is registered in the memory 12.
  • the processing device 10 causes the alignment circuit 11 to execute the alignment process (step S21).
  • the alignment processing the positional deviation of the center of the wafer W from the rotational center of the stage 101 and the rotational deviation of the wafer W are first calculated in the coordinate system of the stage 101. Details of this alignment processing are described in JP-A-2005-40698, and similar processing can be adopted in this embodiment. However, in the present embodiment, since the plurality of reference patterns P can be satisfactorily recognized through the procedure of step S16, the rotation of the wafer W using the reference pattern P instead of the method disclosed in the same document. The deviation (deviation in the ⁇ direction) can be calculated. The method will be described.
  • the reference patterns P of the chips T1 to T4 are lined up along the Xw axis, and the Yw coordinates are the same for both. Therefore, the straight line passing through the four reference patterns P is parallel to the Xw axis of the wafer coordinate system. Therefore, the rotation deviation (tilt) of the wafer W can be calculated by calculating the tilt of the straight line passing through the four reference patterns P in the stage coordinate system (R ⁇ coordinate system or XY coordinate system). In order to obtain a straight line parallel to the Xw axis, it is sufficient to select two reference patterns P along the Xw axis, but four are selected in this embodiment.
  • FIG. 12 illustrates the case where four reference patterns P are selected in consideration of both the accuracy and the calculation load.
  • FIG. 12 illustrates an example of selecting the reference pattern P for obtaining a straight line parallel to the Xw axis
  • a plurality of reference patterns P may be selected along the Yw axis.
  • the rotation deviation of the wafer W can also be calculated by the inclination of the Yw axis in the stage coordinate system (R ⁇ coordinate system or XY coordinate system).
  • the alignment circuit 11 determines whether the deviations are within a preset allowable value (step S22). If both the rotational deviation and the center position deviation exceed the allowable value, it is judged as exceeding the allowable range, or if either one of them exceeds the allowable value, it is judged as exceeding the allowable range. Can be changed, but the latter is adopted here. If either the rotational deviation or the central positional deviation exceeds the allowable value, the alignment circuit 11 corrects at least one of the position and the angle of the alignment image and executes image processing to bring the wafer coordinate system closer to the stage coordinate system (step S23), and returns the procedure to step S21.
  • the alignment circuit 11 outputs a signal to that effect, and It is transmitted from the device 10 to the overall control device 300.
  • the overall control apparatus 300 drives the stage 101 and executes the defect inspection of the wafer W using the inspection light source 201 and the sensor 205 (step S31).
  • FIG. 11 has been described as the procedure of the automatic mode, but the only difference is that the imaging conditions are arbitrarily input or set with reference to the simulation result.
  • the procedure from step S18 is the same in the simulation mode and the manual mode. is there.
  • the reflected light from the wafer W due to the illumination light is split by the color separation optical element 6, and each split reflected light is received by the corresponding sensor. Then, at least one (for example, a long-wavelength red ray) is selected from the plurality of dispersed reflected lights, and an alignment image is generated based on only the selected reflected lights. For example, in a wafer on which a thin film of a specific material that reflects most of the blue light on the surface is formed, if the reflected light of the blue light is reflected in the image generation signal when the wavelength band is not limited, the thin film of the alignment image The lower structure becomes invisible.
  • the reflected light that has passed through the thin film and reflected by the structure under the thin film is extracted and used as the basis of the alignment image, so it is difficult to see normally.
  • An alignment image is obtained in which the structure under the thin film is clearly shown.
  • the wavelength band of the reflected light to be the basis of the alignment image is selected, the light in the wavelength band outside the selected wavelength band is cut from the illumination light by the filter device 9 in advance, so that the alignment image is obtained.
  • the filter the wavelength band can be more accurately limited than the color separation optical element 6, and the wavelength distribution of the reflected light incident on the selected sensor can be controlled with higher precision according to the sensor sensitivity.
  • the same effect can be obtained when the image pickup unit 1B is configured to extract the reflected light in the specific wavelength band by the filter device and receive the reflected light by the corresponding sensor. be able to. Similar effects can be obtained when the illumination optical system 1A uses the illumination light source 2 configured by a plurality of light sources having different wavelength bands instead of the broadband light source. When the illumination light source 2 is composed of a plurality of light sources, the filter device 9 can be omitted. Further, in these cases, the following effects (2) to (7) can be similarly obtained.
  • the aperture of the aperture diaphragm 8 is changed according to the switching position of the filter device 9. As a result, it is possible to suppress variation in the brightness of the alignment image due to the filter used.
  • the interlocking function of the filter device 9 and the aperture stop 8 is not always necessary. Further, in changing the amount of illumination light, it may be possible to adjust the amount of light emitted from the illumination light source 2 instead of adjusting the opening of the aperture stop 8.
  • a lookup table (FIG. 3) in which a combination of a sensor and a filter is associated with a selected wavelength is stored in the memory 12 in advance, so that the wavelength used for creating the alignment image is designated, and thus the sensor and the filter can be selected.
  • the combination can be determined automatically. Therefore, when the spectral data or the like of the thin film is obtained in advance, the imaging condition can be set only by designating the wavelength without manually selecting the sensor and the filter.
  • the sensor selection and the filter selection may be performed only by manual operation, and in this case, the lookup table is not always necessary.
  • the simulation circuit 15 By implementing the simulation circuit 15, it is possible to specify appropriate imaging conditions for the alignment image by inputting known information (refractive index, film thickness, etc.) about the thin film. Even if the information of the thin film is known, it is useful when it is not possible to determine what imaging condition should be set based on the information. However, the simulation function is not always necessary to obtain the effect (1). Further, the case where the simulation circuit 15 is configured to include the reflected light amount calculation circuit 16, the filtered reflected light amount calculation circuit 17, and the filter selection circuit 18 is illustrated. However, it is needless to say that when the simulation is executed by a different method, the function of the simulation circuit 15 can be changed accordingly.
  • the alignment apparatus 1 By mounting the automatic image pickup circuit 14, even if the information about the thin film is ambiguous, the alignment apparatus 1 sequentially changes the conditions and repeatedly picks up the image of the wafer W, and automatically obtains a good alignment image. You can get it. In the case of such an auto sequence, it is possible to save the operator the trouble of changing the imaging conditions and manually operating one by one. It is efficient because the operator can perform other tasks while executing the process of automatic imaging. However, the automatic image capturing function is not always necessary to obtain the effect (1).
  • the automatic image pickup circuit 14 drives the stage 101 in the Z direction in place of the switching position of the filter device 9 or together with the switching position of the filter device 9 to change the focus position. I implemented the function to do. By moving the focus position inside the thin film, the appearance of the wafer W in the image may be changed, and the structure of the lower portion of the thin film may become clear.
  • the automatic image pickup circuit 14 it is not always necessary for the automatic image pickup circuit 14 to have the function of adjusting the focus position. It should be noted that changing the focus position instead of the switching position of the filter device 9 means changing the focus position without changing the filter when a good alignment image cannot be obtained by repeatedly picking up the image by changing the filter. Refers to trying to improve image quality.
  • the automatic image pickup circuit 14 has a function of correcting the gain of the signal of the selection sensor instead of the switching position of the filter device 9 or together with the switching position of the filter device 9. .
  • the structure of the lower part of the thin film may become clear by correcting the gain of the image signal and adjusting the appearance of the image afterwards.
  • correcting the gain of the signal instead of the switching position of the filter device 9 means correcting the gain without changing the filter when a good alignment image cannot be obtained even if the image is repeatedly captured by changing the filter. Refers to trying to adjust the image.
  • the patterned wafer with a film is described as an example of the positioning target of the alignment apparatus 1.
  • the alignment is performed with a bare wafer, a patterned wafer without a film, and other samples. be able to.
  • the inspection apparatus 100 equipped with the optical defect inspection unit 200 has been described as an example, the alignment apparatus 1 is also applicable to an inspection apparatus equipped with the SEM, TEM, STEM or the like as the defect inspection unit 200. .
  • the switching positions of the filter device 9 need only be plural, and need not be five.
  • the number of switching positions of the filter device 9 can be changed as needed.
  • the number of switching positions of the filter device 9 does not necessarily correspond to the number of sensors. For example, even when a plurality of filters are associated with a single sensor and the same sensor is used, it is conceivable to change the imaging condition by changing the filter. In this case, the number of switching positions of the filter device 9 tends to increase with respect to the number of sensors. The same applies to the number of light sources when the illumination light source 2 is composed of a plurality of light sources having different wavelength bands.
  • any one of the sensors 7R, 7G, 7B, 7C, and 7I is selectively used has been described, but a plurality of selection sensors may be used to create one alignment image.
  • a sample for which it is not necessary to limit the wavelength by adding a switching position that does not limit the wavelength to the filter device 9 and obtains an alignment image by using the signals of all the sensors 7R, 7G, 7B of all the RGB of the sensor 7 as usual.
  • SYMBOLS 1 Alignment device, 1A ... Illumination optical system, 1B ... Imaging part, 2 ... Illumination light source, 6 ... Color separation optical element, 7, 7B, 7C, 7G, 7I, 7R ... Sensor, 8 ... Aperture stop, 9 ... Filter Device, 10 ... Processing device (processing unit), 11 ... Alignment circuit, 12 ... Memory, 13 ... Control circuit, 14 ... Automatic imaging circuit, 15 ... Simulation circuit, 16 ... Reflected light amount calculation circuit, 17 ... Filtered reflected light amount calculation Circuit, 18 ... Filter selection circuit, 100 ... Inspection device, 101 ... Stage, 200 ... Defect inspection unit, n1, n2 ... Refractive index of thin film, O ... Chip origin, P ... Reference pattern, t1, t2 ... Thin film thickness , W ... Wafer (sample)

Abstract

When adjusting the positions of a stage and a sample on the stage on the basis of an image for alignment acquired by emitting illumination light onto the sample, this invention: disperses illumination light that has been reflected by the sample into a plurality of wavelength bands; selects, from among the dispersed reflected light, effective reflected light to be used for alignment; restricts the wavelength band of the illumination light irradiated onto the sample according to the selected effective reflected light; and adjusts the positions of the sample and the stage on the basis of an image for alignment obtained from the effective reflected light.

Description

アライメント装置、検査装置及びアライメント方法Alignment device, inspection device and alignment method
 本発明は、ステージに対する試料(例えば膜付きのパターン付きウェハ)の位置関係を計測し調整するアライメント装置、これを備えた検査装置及びアライメント方法に関する。 The present invention relates to an alignment apparatus that measures and adjusts the positional relationship of a sample (for example, a patterned wafer with a film) with respect to a stage, an inspection apparatus including the alignment apparatus, and an alignment method.
 半導体製造工程では、ウェハ(試料)上に形成されたパターンやウェハの表面の欠陥(傷や異物等)が歩留りに与える影響が大きい。歩留り管理には、こうしたウェハ上の欠陥をインライン検査で検出し管理して半導体製造工程及び製造装置にフィードバックすることが重要である。しかし、検査装置で欠陥検査を実行するに当たってステージとこれにロードされたウェハとの位置関係には微視的に見るとバラつきがあり、ステージとウェハの位置関係を予め特定しておかなければ高精度な欠陥検査が行えない。そこで、欠陥検査に先行してステージとこれにロードされたウェハの位置関係を計測し、高精度に位置合わせをするアライメント装置が検査装置に備わっている場合がある(特許文献1等参照)。 In the semiconductor manufacturing process, the pattern formed on the wafer (sample) and the defects (scratches, foreign substances, etc.) on the surface of the wafer greatly affect the yield. For yield management, it is important to detect and manage such defects on the wafer by in-line inspection and feed them back to the semiconductor manufacturing process and manufacturing apparatus. However, when the defect inspection is performed by the inspection apparatus, the positional relationship between the stage and the wafer loaded on the stage varies from a microscopic point of view. If the positional relationship between the stage and the wafer is not specified in advance, it is high. Cannot perform accurate defect inspection. Therefore, in some cases, the inspection apparatus is equipped with an alignment device that measures the positional relationship between the stage and the wafer loaded on the stage prior to the defect inspection, and aligns them with high accuracy (see Patent Document 1, etc.).
特開2015-40698号公報JP, 2005-40698, A
 近年、3D-NANDを始めとする積層構造の半導体デバイスの需要が増しており、半導体製造プロセスでは試料表面に薄膜を形成するデポジション工程(膜付工程)の数も増加している。インライン検査では、検査装置のステージと検査対象ウェハとの位置を合わせた上で欠陥等の検査が行われる。デポジション工程を経たウェハのインライン検査においても、薄膜で覆われた複数のチップの基準パターンの画像を基にアライメントが行われる。 In recent years, the demand for stacked-layer semiconductor devices such as 3D-NAND has increased, and the number of deposition processes (film formation processes) for forming a thin film on the surface of a sample has also increased in the semiconductor manufacturing process. In the in-line inspection, the stage of the inspection device and the wafer to be inspected are aligned with each other, and then the inspection for defects and the like is performed. Even in the in-line inspection of the wafer that has undergone the deposition process, alignment is performed based on the images of the reference patterns of the plurality of chips covered with the thin film.
 しかし、デポジション工程で形成される薄膜には、材質や厚みによってアライメント装置の照明光を通し難いものがあり、このような薄膜でパターンは必ずしも明瞭に観察することができない。膜下が明瞭に観察できない状態ではアライメントを完遂することができず、そのデポジション工程後のウェハの検査をインラインで実行することができない場合がある。この場合、その工程は検査工程から外される場合もあり、半導体製造プロセスへのフィードバック効率が低下し、結果として歩留り低下の原因となる可能性がある。 However, some thin films formed in the deposition process are difficult to pass the illumination light of the alignment device depending on the material and thickness, and the pattern cannot always be clearly observed with such thin films. In a state where the under-film cannot be clearly observed, the alignment cannot be completed, and in some cases, the inspection of the wafer after the deposition step cannot be performed inline. In this case, the process may be removed from the inspection process, and the feedback efficiency to the semiconductor manufacturing process may decrease, resulting in a decrease in yield.
 本発明の目的は、表面に形成された薄膜の材質又は厚みによって従来はインライン検査のアライメント装置で位置合わせできなかったウェハでも、パターンの明瞭なアライメント用画像を得て精度良くアライメントをすることができるアライメント装置、このアライメント装置を搭載した検査装置及びアライメント方法を提供することにある。 It is an object of the present invention to obtain a precise alignment image of a pattern and perform accurate alignment even on a wafer that could not be aligned by an alignment device for in-line inspection due to the material or thickness of a thin film formed on the surface. An object of the present invention is to provide an alignment apparatus capable of performing the inspection, an inspection apparatus equipped with the alignment apparatus, and an alignment method.
 上記目的を達成するために、本発明は、ステージに保持された試料に対し照明光を照射する照明光学系と、前記照明光による前記試料からの反射光を受光し撮像する撮像部と、前記照明光学系及び前記撮像部を制御する処理部とを備え、前記照明光学系は、前記照明光の波長が切り換え可能であり、前記撮像部は、波長に応じて反射光を選択する色分解光学素子又はフィルタ装置の少なくとも一方と、選択された反射光の波長に対応して少なくとも1つが選択される複数のセンサとを備え、前記処理部は、選択されたセンサで撮像された画像を基に前記試料と前記ステージとの位置を調整するアライメント回路を備える。 In order to achieve the above object, the present invention provides an illumination optical system that illuminates a sample held on a stage with illumination light, an imaging unit that receives and images reflected light from the sample due to the illumination light, and An illumination optical system and a processing unit that controls the image capturing unit are provided. The illumination optical system is capable of switching the wavelength of the illumination light, and the image capturing unit selects color reflection light according to the wavelength. At least one of the element or the filter device and a plurality of sensors of which at least one is selected corresponding to the wavelength of the selected reflected light are provided, and the processing unit is based on the image captured by the selected sensor. An alignment circuit for adjusting the positions of the sample and the stage is provided.
 本発明によれば、一様の波長の照明光では光を透し難い材質又は厚みの薄膜で覆われた状態でもパターンの明瞭なアライメント用画像を得て精度良くアライメントをすることができる。 According to the present invention, it is possible to obtain an alignment image with a clear pattern and perform accurate alignment even when it is covered with a thin film having a material or a thickness that is difficult to transmit light with illumination light having a uniform wavelength.
本発明の一実施形態に係る検査装置の概略図Schematic of the inspection device which concerns on one Embodiment of this invention アライメント装置の色分解光学素子、センサ及び処理装置を抜き出して表した図Figure showing the color separation optical element of the alignment device, sensor, and processing device extracted アライメント装置の他の例を表した図Figure showing another example of alignment device アライメント装置の更に他の例を表した図Diagram showing still another example of the alignment device ルックアップテーブルの模式図Lookup table schematic アライメント装置の操作画面の一例を示す図Figure showing an example of the operation screen of the alignment device 図4の操作画面の条件入力欄の拡大図Enlarged view of the condition input field on the operation screen in Figure 4. ウェハのモデルの断面図Cross section of wafer model 反射光の光量と波長の関係についての説明図Explanatory diagram of the relationship between the amount of reflected light and the wavelength 光量と波長との特性とフィルタ特性とからフィルタ後光量を求める方法を表した模式図Schematic diagram showing a method for obtaining the filtered light quantity from the characteristics of the light quantity and wavelength and the filter characteristics 図8の模式図で得られたフィルタ後光量の特性図Characteristic diagram of post-filter light amount obtained in the schematic diagram of FIG. フィルタ装置の切り換えポジションの選択方法の説明図Explanatory drawing of selection method of switching position of filter device 自動撮像回路によるアライメント用画像の自動撮像の手順を含む欠陥検査の手順を表すフローチャートA flowchart showing a procedure of defect inspection including a procedure of automatically capturing an image for alignment by an automatic image capturing circuit. ウェハ上の基準パターンの説明図Explanatory drawing of reference pattern on wafer
 以下に図面を用いて本発明の実施形態を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 -アライメント方法-
 インライン検査においてウェハの欠陥検査をする前に、検査装置のステージとウェハの座標(位置)を合わせるアライメント処理を行う。例えば検査装置のステージ(後述)上の試料に照明光を照射し、その反射光をセンサで撮像してアライメント用画像を取得する。取得したアライメント用画像を基に、予めウェハとステージとの座標とその位置関係を計算する。
-Alignment method-
Before inspecting the wafer for defects in the in-line inspection, an alignment process is performed to align the coordinates (position) of the stage of the inspection device and the wafer. For example, a sample on a stage (described later) of the inspection device is irradiated with illumination light, and the reflected light is imaged by a sensor to acquire an alignment image. Based on the acquired alignment image, the coordinates of the wafer and the stage and their positional relationship are calculated in advance.
 本実施形態においては、アライメント用照明光学系の光源として波長帯域の広いブロードバンド光源を用いる。この光源から照射する波長を検査する工程に応じて選択する。波長を選択するためにフィルタ装置を用いる。フィルタ装置を光源からの照明光の出射光路(光源の光軸)に設置し、フィルタを切り換えることで所望の波長帯域の照明光のみを透過させる。照明光の波長帯域を切り換える上では、ブロードバンド光源に代えて照明光の波長帯域の異なる複数の光源で照明光源を構成し、使用する光源を変更することで照明光の波長帯域を切り換えることもできる。 In the present embodiment, a broadband light source with a wide wavelength band is used as the light source of the alignment illumination optical system. The wavelength of light emitted from this light source is selected according to the step of inspecting. A filter device is used to select the wavelength. A filter device is installed in the emission light path of the illumination light from the light source (optical axis of the light source), and by switching the filter, only the illumination light in the desired wavelength band is transmitted. When switching the wavelength band of the illumination light, it is also possible to switch the wavelength band of the illumination light by configuring the illumination light source with a plurality of light sources having different wavelength bands of the illumination light instead of the broadband light source and changing the light source to be used. .
 また、照明光による試料からの反射光を受光し撮像する撮像部にも、波長帯域に応じて反射光を複数に分光する色分解光学素子をセンサと共に設置し、分光された複数の反射光のうちアライメントに用いる有効反射光をセンサで選択的に撮像する。アライメントに有効な波長帯域の反射光を、対応するセンサに選択的に導く上では、撮像部において照明光学系に用いたものと同様のフィルタ装置を用いることもできる。波長帯域に応じて感度が異なる(検出対象とする波長帯域で好適に感光するように感度が調整された)少なくとも1つのセンサを用いて、有効反射光を選択的に撮像する。 Further, a color separation optical element for splitting the reflected light into a plurality according to the wavelength band is installed together with the sensor in the image pickup unit that receives and captures the reflected light from the sample due to the illumination light. The effective reflected light used for alignment is selectively picked up by a sensor. In order to selectively guide the reflected light in the wavelength band effective for alignment to the corresponding sensor, a filter device similar to that used for the illumination optical system in the image pickup section can be used. Effective reflected light is selectively imaged using at least one sensor having a different sensitivity depending on the wavelength band (sensitivity is adjusted so as to be suitably exposed in the wavelength band to be detected).
 このように薄膜の材質や膜厚に応じて照明光学系で最適な波長を選択すると共に、ウェハからの反射光のうちの有効反射光を撮像部で選択的に撮像することで、明瞭なアライメント用画像を得ることができる。本実施形態によれば、通常は一様の波長の照明光(波長帯域を選択していない光)では薄膜を透過し難いために画像に映らないパターン等も、薄膜を透過し易い特定の波長帯域の照明光を選択的に用いると画像上で明瞭に認識できるようになり得る。こうして有効反射光のみから得た画像をアライメント用画像とし、このアライメント用画像を基に試料とステージとの位置関係を計算することで、インラインで実行できずにいたアライメントが可能となる。よって、欠陥検査の検査効率向上ひいては半導体製造プロセスの歩留り向上に寄与する。このようなアライメント方法を実行するための装置の構成例を以下に説明する。 In this way, the optimal wavelength is selected in the illumination optical system according to the material and film thickness of the thin film, and the effective reflected light of the reflected light from the wafer is selectively picked up by the image pickup unit, which enables clear alignment. It is possible to obtain an image for use. According to this embodiment, a pattern or the like which is not reflected in an image because it is difficult for the illumination light having a uniform wavelength (light whose wavelength band is not selected) to pass through normally has a specific wavelength which is easily transmitted through the thin film. The selective use of the illumination light in the band may allow clear recognition on the image. In this way, an image obtained from only the effective reflected light is used as an alignment image, and the positional relationship between the sample and the stage is calculated based on this alignment image, whereby the alignment that could not be performed inline can be performed. Therefore, it contributes to the improvement of the inspection efficiency of the defect inspection and the improvement of the yield of the semiconductor manufacturing process. A configuration example of an apparatus for performing such an alignment method will be described below.
 -検査装置-
 図1は本発明の一実施形態に係る検査装置の概略図である。同図に示した検査装置100は、ステージ101、ウェハ搬送装置102、欠陥検査ユニット200、全体制御装置300、入力装置401、出力装置402及びアライメント装置1を備えている。
-Inspection device-
FIG. 1 is a schematic diagram of an inspection apparatus according to an embodiment of the present invention. The inspection apparatus 100 shown in the figure includes a stage 101, a wafer transfer apparatus 102, a defect inspection unit 200, an overall control apparatus 300, an input apparatus 401, an output apparatus 402, and an alignment apparatus 1.
 ステージ101は試料となるウェハW(例えば膜付きのパターン付きウェハ)を保持するためのものであり、チャック101a、Yステージ101y、Xステージ101x、Zステージ101z及びθステージ101tを含んで構成されている。チャック101aはウェハWを吸着し保持するものである。ウェハWはウェハ搬送装置102のロボットアームによってステージ101のチャック101aの上に載置される(ロードされる)。ウェハ搬送装置102はロボットアームの他、ウェハポッドやプリアライナ等を含んで構成されている。Yステージ101yはチャック101aをY軸方向に移動させるための駆動部である。Xステージ101xはX軸方向に、Zステージ101zはZ軸方向にそれぞれチャック101aを移動させる駆動部であり、θステージ101tはチャック101aをZ軸周りに回転させる駆動部である。これによりチャック101aに搭載されたウェハWをXYZ方向に平行移動させ、またXY平面内で回転させることができる。X軸及びY軸は例えば水平面内で互いに直交する座標軸であり、Z軸はXY平面に直交する軸である。 The stage 101 is for holding a wafer W (for example, a patterned wafer with a film) to be a sample, and includes a chuck 101a, a Y stage 101y, an X stage 101x, a Z stage 101z, and a θ stage 101t. There is. The chuck 101a attracts and holds the wafer W. The wafer W is placed (loaded) on the chuck 101 a of the stage 101 by the robot arm of the wafer transfer device 102. The wafer transfer device 102 includes a robot arm, a wafer pod, a pre-aligner, and the like. The Y stage 101y is a drive unit for moving the chuck 101a in the Y axis direction. The X stage 101x is a drive unit that moves the chuck 101a in the X axis direction and the Z stage 101z is a Z axis direction. The θ stage 101t is a drive unit that rotates the chuck 101a around the Z axis. Thereby, the wafer W mounted on the chuck 101a can be translated in the XYZ directions and rotated in the XY plane. The X axis and the Y axis are, for example, coordinate axes orthogonal to each other in a horizontal plane, and the Z axis is an axis orthogonal to the XY plane.
 欠陥検査ユニット200はステージ101に保持されたウェハWの欠陥を検査するためのユニットであり、検査光源201、対物レンズ202、空間フィルタ203、結像レンズ204及びセンサ205を備えている。この欠陥検査ユニット200はX軸方向にアライメント装置1と並んで配置されており、ステージ101のチャック101aをX軸方向に移動させることで、欠陥検査ユニット200とアライメント装置1の互いの照明領域の間でウェハWを移動させることができる。 The defect inspection unit 200 is a unit for inspecting a defect of the wafer W held on the stage 101, and includes an inspection light source 201, an objective lens 202, a spatial filter 203, an imaging lens 204, and a sensor 205. The defect inspection unit 200 is arranged side by side with the alignment apparatus 1 in the X-axis direction, and by moving the chuck 101a of the stage 101 in the X-axis direction, the defect inspection unit 200 and the alignment apparatus 1 can be illuminated with each other. The wafer W can be moved between them.
 検査光源201はステージ101に保持されたウェハWに検査光を出射してウェハWに照明領域を形成するための装置であり、例えばミラーやレンズを含んで構成されている。照明領域の形状はミラーやレンズを駆動して変更することができ、例えば点状にしたり線状にしたりすることができる。照明領域からの散乱光は対物レンズ202によって集光される。対物レンズ202により集められた散乱光のうち不要な光は空間フィルタ203で遮られ、空間フィルタ203を通過した光が結像レンズ204によってセンサ205の受光面に結像される。このようにしてセンサ205は検査光によるウェハWからの散乱光を受光する。受光に伴ってセンサ205から出力される信号は全体制御装置300に送信され、センサ205からの信号が閾値(設定値)と比較されて検査(欠陥の検出)が実行される。検査結果(欠陥の有無)は全体制御装置300でステージ101の移動信号と同期されてウェハW上の座標と対応付けられ、入力装置401からの操作に応じて出力装置402出力される。全体制御装置300は例えばコンピュータであり、入力装置401はキーボード、マウスその他の操作装置である。出力装置402は例えばモニタであり、プリンタや記録媒体への記録装置等を用いることもできる。出力装置402にタッチパネルを用いる場合、入力装置401を兼ねることもできる。 The inspection light source 201 is a device for emitting inspection light to the wafer W held on the stage 101 to form an illumination area on the wafer W, and is configured to include, for example, a mirror and a lens. The shape of the illumination area can be changed by driving a mirror or a lens, and can be, for example, dot-shaped or linear. The scattered light from the illumination area is condensed by the objective lens 202. Unwanted light of the scattered light collected by the objective lens 202 is blocked by the spatial filter 203, and the light passing through the spatial filter 203 is imaged on the light receiving surface of the sensor 205 by the imaging lens 204. In this way, the sensor 205 receives scattered light from the wafer W due to the inspection light. The signal output from the sensor 205 upon reception of light is transmitted to the overall control device 300, and the signal from the sensor 205 is compared with a threshold value (set value) to perform inspection (defect detection). The inspection result (presence / absence of a defect) is synchronized with the movement signal of the stage 101 in the overall control device 300, is associated with the coordinates on the wafer W, and is output from the output device 402 in response to an operation from the input device 401. The overall control device 300 is, for example, a computer, and the input device 401 is a keyboard, a mouse or other operation device. The output device 402 is, for example, a monitor, and a printer or a recording device for a recording medium can also be used. When a touch panel is used as the output device 402, it can also serve as the input device 401.
 -アライメント装置-
 アライメント装置1はステージ101(チャック101a)に対するウェハWの位置関係を計測(アライメント)するためのユニットであり、例えば正反射光を検出するいわゆる明視野型である。このアライメント装置1は、照明光学系1A、撮像部1B、処理装置10からなる。照明光学系1Aは、照明光源2、開口絞り8、フィルタ装置9、ハーフミラー3及び対物レンズ4を備えている。撮像部1Bは、結像レンズ5、色分解光学素子6及び複数のセンサ7,7C,7Iを備えている。図1では全体制御装置300とは別に処理装置10を図示しているが、処理装置10は例えばコンピュータであり、全体制御装置300で兼ねても良い。
-Alignment device-
The alignment apparatus 1 is a unit for measuring (aligning) the positional relationship of the wafer W with respect to the stage 101 (chuck 101a), and is, for example, a so-called bright field type that detects specularly reflected light. The alignment device 1 includes an illumination optical system 1A, an image pickup section 1B, and a processing device 10. The illumination optical system 1A includes an illumination light source 2, an aperture stop 8, a filter device 9, a half mirror 3 and an objective lens 4. The image pickup unit 1B includes an imaging lens 5, a color separation optical element 6, and a plurality of sensors 7, 7C, 7I. Although the processing device 10 is illustrated separately from the overall control device 300 in FIG. 1, the processing device 10 is, for example, a computer, and the overall control device 300 may also serve as the processing device 10.
 -照明光学系-
 アライメント装置1の照明光学系1Aについて説明する。照明光学系1Aは、照明光源2からの照明光をステージ101に保持されたウェハWに出射してウェハWに照明領域を形成するための装置であり、照明光の波長帯域を切り換え可能である。この照明光学系1Aは、例えばミラーやレンズを含んでケイラー照明を形成している。照明光源2はブロードバンド光源が望ましいが、図2Bや図2Cに示したように照明光の波長帯域が異なる複数の光源を含んで構成しても良い。また、照明光源2は光量調節可能なものでも良いし固定光量のものでも良い。
-Illumination optical system-
The illumination optical system 1A of the alignment apparatus 1 will be described. The illumination optical system 1A is a device for emitting the illumination light from the illumination light source 2 to the wafer W held on the stage 101 to form an illumination area on the wafer W, and can switch the wavelength band of the illumination light. . The illumination optical system 1A includes a mirror and a lens, for example, to form a Keilor illumination. The illumination light source 2 is preferably a broadband light source, but may include a plurality of light sources having different wavelength bands of illumination light as shown in FIGS. 2B and 2C. Further, the illumination light source 2 may have a light amount adjustable or a fixed light amount.
 照明光学系1Aに備えられたフィルタ装置9は切り換えポジション毎に異なる波長帯域の照明光を選択的に透過させる装置であり、照明光源2からの照明光の出射光路(照明光源2の光軸)に設置されている。フィルタ装置9は少なくとも一枚のカラーフィルタを持ったルーレット状の装置を例示することができ、切り換えポジションを切り換えることでウェハWに照射される照明光の波長帯域を切り換える。本実施形態のフィルタ装置9には例えば5つの切り換えポジションが備わっている。5つのポジションにはそれぞれ、例えば主に青色光線、青色~緑色の光線、緑色光線、赤色光線、近赤外線を選択的に通すフィルタが設置されている。選択的に通すということは、対象となる波長帯域以外を遮光することである。波長帯域を制限しない切り換えポジションを加えてもよい。 A filter device 9 provided in the illumination optical system 1A is a device that selectively transmits illumination light having a different wavelength band for each switching position, and an emission light path of the illumination light from the illumination light source 2 (optical axis of the illumination light source 2). ) Has been installed. The filter device 9 can be exemplified by a roulette device having at least one color filter, and the wavelength band of the illumination light with which the wafer W is irradiated is switched by switching the switching position. The filter device 9 of this embodiment is provided with, for example, five switching positions. Filters for selectively passing mainly blue light rays, blue-green light rays, green light rays, red light rays, and near infrared rays are installed at the five positions, respectively. To selectively pass light means to shield light other than the target wavelength band. A switching position that does not limit the wavelength band may be added.
 照明光の波長帯域が異なる複数の光源で照明光源2を構成する場合には、例えば青色光線、青色~緑色の光線、緑色光線、赤色光線、近赤外線を出射する複数の光源で照明光源2を構成する。この場合にはフィルタ装置9を省略し、照明光を出射する光源を後述する処理装置10の制御回路13で選択センサに応じて選択し、複数の光源のうちの1つの光源からのみ照明光を照射する構成としても良い。なお、照明光源2を複数の光源で構成した場合にもフィルタ装置9は併用できる。 When the illumination light source 2 is composed of a plurality of light sources having different wavelength bands of illumination light, for example, the illumination light source 2 is composed of a plurality of light sources emitting blue light rays, blue to green light rays, green light rays, red light rays, and near infrared rays. Constitute. In this case, the filter device 9 is omitted, and the light source that emits the illumination light is selected by the control circuit 13 of the processing device 10 described later according to the selection sensor, and the illumination light is emitted from only one light source of the plurality of light sources. It may be configured to irradiate. The filter device 9 can also be used when the illumination light source 2 is composed of a plurality of light sources.
 照明光学系1Aでは、波長帯域だけでなく、開口絞り8を用いて照明光量も調整できるように構成されている。開口絞り8は照明光量を調整する可変絞りであり、照明光の出射光路(照明光源2の光軸)に設置されている。開口絞り8の基準開度は最大開度と最小開度の中間の開度に設定されている。この開口絞り8とフィルタ装置9は照明光源2とハーフミラー3の間において照明光源2の光軸に沿って配置されており、本実施形態ではフィルタ装置9よりも開口絞り8を照明光源2の近くに配置しているが、この前後関係は逆でも良い。照明光源2から出射された照明光は開口絞り8及びフィルタ装置9を通過し、ハーフミラー3で反射されてウェハWに照射される。 The illumination optical system 1A is configured so that not only the wavelength band but also the amount of illumination light can be adjusted using the aperture stop 8. The aperture stop 8 is a variable stop that adjusts the amount of illumination light, and is installed in the emission light path of the illumination light (optical axis of the illumination light source 2). The reference opening of the aperture stop 8 is set to an intermediate opening between the maximum opening and the minimum opening. The aperture stop 8 and the filter device 9 are arranged along the optical axis of the illumination light source 2 between the illumination light source 2 and the half mirror 3, and in the present embodiment, the aperture stop 8 and the illumination device 2 are arranged in the illumination light source 2 rather than the filter device 9. Although they are placed near each other, this context can be reversed. The illumination light emitted from the illumination light source 2 passes through the aperture stop 8 and the filter device 9, is reflected by the half mirror 3, and is applied to the wafer W.
 -撮像部-
 撮像部1Bについて説明する。撮像部1Bは、ウェハWの照明領域からの反射光を対物レンズ4で集光し、ハーフミラー3及び結像レンズ5を経て複数のセンサ7,7C,7Iのいずれかの受光面で受光し撮像する。センサ7は例えばRGBの3CCDカメラ(図2A)であり、センサ7Cは青色~緑色の光線に感度が高いセンサ、センサ7Iは近赤外線に感度が高いセンサである。センサ7,7C,7Iへの光路は可動ミラーにより切り換えられる。センサ7,7C,7Iは反射光を光電変換して生成した信号を処理装置10に送信する。その後、処理装置10においてセンサ7,7C,7Iの信号を基にウェハWの画像が生成される。処理装置10で生成された画像や計測結果については入力装置401からの操作により出力装置402に出力できる。
-Imaging unit-
The image pickup unit 1B will be described. The imaging unit 1B collects the reflected light from the illumination area of the wafer W by the objective lens 4 and receives the light on any one of the light receiving surfaces of the plurality of sensors 7, 7C, 7I via the half mirror 3 and the imaging lens 5. Take an image. The sensor 7 is, for example, an RGB 3CCD camera (FIG. 2A), the sensor 7C is a sensor highly sensitive to blue to green light rays, and the sensor 7I is a sensor highly sensitive to near infrared rays. The optical path to the sensors 7, 7C, 7I is switched by a movable mirror. The sensors 7, 7C, 7I transmit signals generated by photoelectrically converting the reflected light to the processing device 10. Then, in the processing apparatus 10, an image of the wafer W is generated based on the signals of the sensors 7, 7C and 7I. The image generated by the processing device 10 and the measurement result can be output to the output device 402 by an operation from the input device 401.
 図2Aはアライメント装置の色分解光学素子6、センサ7及び処理装置10を抜き出して表した図である。この図に示すように、色分解光学素子6は、照明光によるウェハWからの反射光を波長帯域に応じて複数に分光する。具体的には、色分解光学素子6は複数(本実施形態では3つ)のプリズム6R,6G,6Bを組み合わせて構成されており、入射光を波長帯域の異なるRGB(赤、緑、青)の各色に分解する。プリズム6Rからは赤色の波長帯域の光が出射し、プリズム6Gからは緑色の波長帯域の光が出射し、プリズム6Bからは青色の波長帯域の光が出射する。センサ7は複数のセンサ(撮像素子)7R,7G,7Bを備えている。センサ7R,7G,7Bはそれぞれプリズム6R,6G,6Bの光の出射部に設けられていて、色分解光学素子6で分光された複数の反射光のうち対応する反射光を受光する。つまり例えばセンサ7Rはプリズム6Rから出射する赤色光のみを受光するように構成されており、赤色光の波長帯域に対する感度やダイナミックレンジが良好となるように調整してある。同様にセンサ7G,7Bはプリズム6G,6Bから出射する緑色光、青色光のみをそれぞれ受光するように構成されており、それぞれ緑色光、青色光の波長帯域に対する感度やダイナミックレンジが良好となるように調整してある。本実施形態では、アライメント装置1の観察対象の特性に応じて、センサ7R,7G,7B,7C,7Iの少なくとも1つが選択センサとして選択されてウェハWのアライメント用画像の撮像に用いられる(後述)。 FIG. 2A is a diagram in which the color separation optical element 6, the sensor 7, and the processing device 10 of the alignment device are extracted and shown. As shown in this figure, the color separation optical element 6 splits the reflected light from the wafer W due to the illumination light into a plurality of rays according to the wavelength band. Specifically, the color separation optical element 6 is configured by combining a plurality of (three in this embodiment) prisms 6R, 6G, 6B, and makes incident light RGB (red, green, blue) having different wavelength bands. Disassemble into each color. Light in the red wavelength band is emitted from the prism 6R, light in the green wavelength band is emitted from the prism 6G, and light in the blue wavelength band is emitted from the prism 6B. The sensor 7 includes a plurality of sensors (imaging elements) 7R, 7G, 7B. The sensors 7R, 7G, and 7B are provided in the light emitting portions of the prisms 6R, 6G, and 6B, respectively, and receive the corresponding reflected light among the plurality of reflected lights separated by the color separation optical element 6. That is, for example, the sensor 7R is configured to receive only the red light emitted from the prism 6R, and is adjusted so that the sensitivity and the dynamic range for the wavelength band of the red light are good. Similarly, the sensors 7G and 7B are configured to receive only the green light and the blue light emitted from the prisms 6G and 6B, respectively, so that the sensitivity and the dynamic range for the wavelength bands of the green light and the blue light respectively become good. It has been adjusted to. In the present embodiment, at least one of the sensors 7R, 7G, 7B, 7C, 7I is selected as a selection sensor according to the characteristics of the observation target of the alignment apparatus 1 and is used to capture an alignment image of the wafer W (described later). ).
 なお、撮像部1Bにおいては、照明光学系1Aに設けたものと同様のフィルタ装置9を、センサ7に入射する前の反射光路上に色分解光学素子6に代えて設置する構成とすることもできる(図2C)。つまり色分解光学素子6で他の波長帯域と分光して有効反射光を抽出するのではなく、フィルタ装置で他の波長帯域をカットして有効反射光を抽出する構成である。色分解光学素子6を省略した場合、図2Cのように可動ミラーで反射光を対応するセンサに導く構成とすることができる。このような構成でも、センサ7R,7G,7B,7C,7Iの少なくとも1つを選択センサとして選択してウェハWのアライメント用画像の撮像に用いることで明瞭なアライメント用画像が得られる。また、撮像部1Bにおいて色分解光学素子6とフィルタ装置9を組み合わせて用いることもできる(図2B)。照明光学系1Aに複数の光源からなる照明光源2を用いる場合、図2B及び図2Cに示したようにフィルタ装置9は省略可能であるが、図2B及び図2Cにおいて照明光学系1Aにフィルタ装置9を用いることもできる。図2Aの照明光学系1Aにおいて図2Bや図2Cに示したような複数の光源からなる照明光源2を用いることもできる。図2Bや図2Cの照明光学系1Aにおいて図2Aに示したようなブロードバンド光源からなる照明光源2を用いることもできる。 In the image pickup unit 1B, a filter device 9 similar to that provided in the illumination optical system 1A may be installed in place of the color separation optical element 6 on the reflection optical path before entering the sensor 7. Yes (Figure 2C). In other words, the color separation optical element 6 does not separate the other wavelength bands to extract the effective reflected light, but the filter device cuts the other wavelength bands to extract the effective reflected light. When the color separation optical element 6 is omitted, the movable mirror can guide the reflected light to the corresponding sensor as shown in FIG. 2C. Even with such a configuration, a clear alignment image can be obtained by selecting at least one of the sensors 7R, 7G, 7B, 7C, and 7I as a selection sensor and using it for capturing the alignment image of the wafer W. Further, the color separation optical element 6 and the filter device 9 may be used in combination in the image pickup section 1B (FIG. 2B). When the illumination light source 2 including a plurality of light sources is used for the illumination optical system 1A, the filter device 9 can be omitted as shown in FIGS. 2B and 2C, but the illumination optical system 1A has a filter device in FIGS. 2B and 2C. It is also possible to use 9. In the illumination optical system 1A of FIG. 2A, the illumination light source 2 including a plurality of light sources as shown in FIGS. 2B and 2C can also be used. In the illumination optical system 1A of FIGS. 2B and 2C, the illumination light source 2 including the broadband light source as shown in FIG. 2A can also be used.
 -処理装置-
 処理装置10は照明光学系1A及び撮像部1Bを制御するコンピュータであり、アライメント回路11、メモリ12及び制御回路13を備えている。アライメント回路11は、選択センサで撮像されたアライメント用画像を基にウェハWとステージ101(チャック101a)との位置を調整する回路であり、例えばCPUである。選択センサとは、センサ7R,7G,7B,7C,7Iからアライメント用画像の基礎となる信号を出力するセンサとして選択された少なくとも1つのセンサである。メモリ12はアライメント動作に必要なプログラムや定数、演算途中の数値等を記憶する記憶装置であり、特に本実施形態では選択センサとフィルタ装置9の切り換えポジションとを対応付けたルックアップテーブル(図3)を記憶している。このメモリ12には、RAM(ランダムアクセスメモリ)、ROM(リードオンメモリ)、HDD(ハードディスクドライブ)等のコンピュータに備わった記憶装置を用いることができる。その他、CDやDVD、ブルーレイ等のディスク、USBメモリ等といったコンピュータに接続可能な各種の記録媒体もメモリ12として用いることができる。
-Processing device-
The processing device 10 is a computer that controls the illumination optical system 1A and the imaging unit 1B, and includes an alignment circuit 11, a memory 12, and a control circuit 13. The alignment circuit 11 is a circuit that adjusts the positions of the wafer W and the stage 101 (chuck 101a) based on the alignment image captured by the selection sensor, and is, for example, a CPU. The selected sensor is at least one sensor selected from the sensors 7R, 7G, 7B, 7C, and 7I as a sensor that outputs a signal that is a basis of the alignment image. The memory 12 is a storage device for storing programs and constants necessary for alignment operation, numerical values in the process of calculation, etc. In particular, in the present embodiment, a lookup table (FIG. 3) in which the selection sensor and the switching position of the filter device 9 are associated with each other. ) Is remembered. As the memory 12, a storage device provided in a computer such as a RAM (random access memory), a ROM (read-on memory), and an HDD (hard disk drive) can be used. In addition, various recording media that can be connected to a computer, such as a CD, a DVD, a disc such as a Blu-ray disc, and a USB memory, can be used as the memory 12.
 制御回路13は、選択センサに応じてフィルタ装置9を駆動し、ウェハWに照射する照明光の波長帯域を制限する回路であり、例えばCPUである。なお、ブロードバンド光源ではなく波長の異なる複数の光源を照明光源2に用いる場合、制御回路13はフィルタ装置9の代わりに照明光源2を制御する(例えば複数の光源から使用する光源を選択センサに応じて選択して照明光を照射する)。この場合、制御回路13による照明光学系1Aの制御に関する以下の説明において、フィルタ装置9を照明光源2と読み替えて説明に代えることとする。 The control circuit 13 is a circuit that drives the filter device 9 according to the selected sensor and limits the wavelength band of the illumination light with which the wafer W is irradiated, and is, for example, a CPU. When a plurality of light sources having different wavelengths are used for the illumination light source 2 instead of the broadband light source, the control circuit 13 controls the illumination light source 2 instead of the filter device 9 (for example, a light source to be used from a plurality of light sources is selected according to a sensor). Select and illuminate with illumination light). In this case, in the following description regarding the control of the illumination optical system 1A by the control circuit 13, the filter device 9 will be read as the illumination light source 2 and replaced.
 制御回路13により照明光学系1Aにおける照明光の波長帯域の選択動作と、撮像部1Bにおける波長帯域に応じたセンサの選択動作が連動して実行される。本実施形態においては、フィルタ装置9の切り換えポジションに応じて開口絞り8を駆動してウェハWに照射される照明光量を制御する機能も制御回路13に付加されている。この制御回路13は、オペレータによる入力情報に応じてルックアップテーブルに基づいてフィルタ装置9を駆動する基本的機能を司る回路の他、自動撮像回路14及びシミュレーション回路15を更に含んでいる。 The control circuit 13 performs the operation of selecting the wavelength band of the illumination light in the illumination optical system 1A and the operation of selecting the sensor according to the wavelength band in the imaging unit 1B in an interlocking manner. In the present embodiment, the control circuit 13 also has a function of driving the aperture stop 8 according to the switching position of the filter device 9 to control the amount of illumination light with which the wafer W is irradiated. The control circuit 13 further includes an automatic image pickup circuit 14 and a simulation circuit 15, in addition to a circuit that controls a basic function of driving the filter device 9 based on a look-up table according to input information from an operator.
 自動撮像回路14はアライメントを実行する観点で良好なアライメント用画像を自動的に取得するための回路である。具体的には後述するが、自動撮像回路14には、コントラストが設定値以上のアライメント用画像が得られるまで選択センサとフィルタ装置9の切り換えポジションとの組み合わせを順次変更して画像を繰り返し取得する機能が備わっている。また、本実施形態における自動撮像回路14には、画像のコントラストが設定値未満の場合、ステージ101を駆動してフォーカス位置を変更する機能も備わっている。自動撮像回路14には更に、画像のコントラストが設定値未満の場合、選択センサの信号のゲインを補正する機能も備わっている。これらフォーカス位置の変更機能やゲインの補正機能は、フィルタ装置9の切り換えポジションに代えて実行されるようにすることもできるし、フィルタ装置9の切り換えポジションと共に実行されるようにすることもできる。フォーカス位置の変更及びゲインの補正の両機能が同時に実行されるようにすることもできる。自動撮像回路14によるアライメント用画像の自動撮像の実行手順については後述する。 The automatic image pickup circuit 14 is a circuit for automatically acquiring a good alignment image from the viewpoint of executing alignment. As will be specifically described later, the automatic image pickup circuit 14 sequentially changes the combination of the selection sensor and the switching position of the filter device 9 until the alignment image having the contrast equal to or higher than the set value is obtained, and repeatedly acquires the image. It has functions. The automatic image pickup circuit 14 in the present embodiment also has a function of driving the stage 101 to change the focus position when the contrast of the image is less than the set value. The automatic image pickup circuit 14 further has a function of correcting the gain of the signal of the selection sensor when the contrast of the image is less than the set value. The focus position changing function and the gain correcting function may be executed in place of the switching position of the filter device 9, or may be executed together with the switching position of the filter device 9. Both functions of changing the focus position and correcting the gain can be executed at the same time. The execution procedure of the automatic image pickup of the alignment image by the automatic image pickup circuit 14 will be described later.
 シミュレーション回路15は現状で知り得る既知の情報を基に良好なアライメント条件を特定するための回路である。具体的には、シミュレーション回路15には、ウェハWの表面に形成された薄膜に関する入力情報(屈折率、膜厚等)を基にシミュレーションを実行し、アライメント用画像が最適化される波長帯域を特定する機能が備わっている。この機能を実行する構成の一例として、本実施形態では、シミュレーション回路15を、反射光量演算回路16、フィルタ後反射光量演算回路17及びフィルタ選択回路18を含んで構成してある。シミュレーション回路15によるシミュレーション機能については後述する。 The simulation circuit 15 is a circuit for identifying a good alignment condition based on known information that can be known at present. Specifically, the simulation circuit 15 executes a simulation based on the input information (refractive index, film thickness, etc.) regarding the thin film formed on the surface of the wafer W, and determines the wavelength band in which the alignment image is optimized. It has a function to specify. As an example of a configuration for executing this function, in the present embodiment, the simulation circuit 15 is configured to include a reflected light amount calculation circuit 16, a filtered reflected light amount calculation circuit 17, and a filter selection circuit 18. The simulation function of the simulation circuit 15 will be described later.
 反射光量演算回路16は、ウェハWの表面に形成された薄膜の厚さ(既知)と屈折率(既知)等を基に反射光量を演算する。ここで演算する反射光量は、薄膜に覆われたパターンにおける反射光量(第1反射光量)、及びパターンの外側のウェハ基板における反射光量(第2反射光量)である。反射光量やその計算原理については後で説明する。 The reflected light amount calculation circuit 16 calculates the reflected light amount based on the thickness (known) and the refractive index (known) of the thin film formed on the surface of the wafer W. The reflected light amount calculated here is the reflected light amount in the pattern covered with the thin film (first reflected light amount) and the reflected light amount in the wafer substrate outside the pattern (second reflected light amount). The amount of reflected light and its calculation principle will be described later.
 フィルタ後反射光量演算回路17は、反射光量演算回路16で演算された第1反射光量及び第2反射光量とフィルタ装置9の各切り換えポジションのフィルタ特性とを基に、切り換えポジション毎に第1フィルタ後反射光量及び第2フィルタ後反射光量を演算する。フィルタ後反射光量とは、フィルタを通した照明光についてのウェハWによる反射光量である。フィルタ装置9の切換ポジションを変更するとウェハWに照射される照明光の波長帯域が変わり、後述するようにフィルタ後反射光量が変化する。フィルタ後反射光量演算回路17は、フィルタ装置9の切換ポジションを切り換えた場合を想定し、第1フィルタ後反射光量と第2フィルタ後反射光量を切り換えポジション毎に演算する。 The post-filter reflected light amount calculation circuit 17 determines the first filter for each switching position based on the first reflected light amount and the second reflected light amount calculated by the reflected light amount calculation circuit 16 and the filter characteristic of each switching position of the filter device 9. The back-reflected light amount and the second-filter back-reflected light amount are calculated. The post-filter reflection light amount is the reflection light amount of the wafer W with respect to the illumination light that has passed through the filter. When the switching position of the filter device 9 is changed, the wavelength band of the illumination light with which the wafer W is irradiated changes, and the amount of reflected light after filtering changes as described later. The post-filter reflected light amount calculation circuit 17 calculates the first post-filter reflected light amount and the second post-filter reflected light amount on the assumption that the switching position of the filter device 9 is switched.
 フィルタ選択回路18は、フィルタ後反射光量演算回路17の演算結果を基にアライメント用画像が最適化されるポジションを特定する。本実施形態では、第1フィルタ後反射光量及び第2フィルタ後反射光量のいずれかが設定光量以上となる切り換えポジションを抽出する。そして、抽出された切換ポジションのうち第1フィルタ後反射光量及び第2フィルタ後反射光量の比が最大となるものをアライメント用画像が最適化されるポジションとして特定する。 The filter selection circuit 18 specifies the position where the alignment image is optimized based on the calculation result of the filtered reflected light amount calculation circuit 17. In the present embodiment, a switching position is extracted in which either the amount of reflected light after the first filter or the amount of reflected light after the second filter is equal to or greater than the set amount of light. Then, of the extracted switching positions, the one that maximizes the ratio of the amount of reflected light after the first filter and the amount of reflected light after the second filter is specified as the position where the alignment image is optimized.
 -ルックアップテーブル-
 図3はメモリ12に記憶されたルックアップテーブルの模式図である。同図に例示したルックアップテーブルでは、選択したフィルタを通してウェハWに照射する照明光の波長帯域(「選択波長」)毎にフィルタ装置9の切り換えポジション(「フィルタNo」)とセンサ(「Camera No」)の組み合わせが規定されている。この例では、波長L1-L2の間で波長を選択した場合、No.1のフィルタ(中心波長L12)を設置したフィルタ装置9の切り換えポジションとNo.1-Bのカメラ(例えばセンサ7B)が選択される。波長L2-L3の間で波長を選択した場合、No.2のフィルタ(中心波長L23)を設置した切り換えポジションとNo.2のカメラ(例えばセンサ7C)が選択される。波長L3-L4の間で波長を選択した場合、No.3のフィルタ(中心波長L34)を設置した切り換えポジションとNo.1-Gのカメラ(例えばセンサ7G)が選択される。波長L4-L5の間で波長を選択した場合、No.4のフィルタ(中心波長L45)を設置した切り換えポジションとNo.1-Rのカメラ(例えばセンサ7R)が選択される。波長L5-L6の間で波長を選択した場合、No.5のフィルタ(中心波長L56)を設置した切り換えポジションとNo.3のカメラ(例えばセンサ7I)が選択される。なお、本実施形態では使用するフィルタ装置9を透過する照明光量は切り換えポジションにより異なるため、ルックアップテーブルには開口絞り8の開度(不図示)も規定されており、切り換えポジションに応じて開口絞り8の開度が選択されるようになっている。
-Lookup table-
FIG. 3 is a schematic diagram of a look-up table stored in the memory 12. In the lookup table illustrated in the same drawing, the switching position (“filter No.”) and the sensor (“Camera No.”) of the filter device 9 are set for each wavelength band (“selected wavelength”) of the illumination light with which the wafer W is irradiated through the selected filter. )) Combinations are specified. In this example, when a wavelength is selected between the wavelengths L1 and L2, the switching position of the filter device 9 in which the No. 1 filter (center wavelength L12) is installed and the No. 1-B camera (for example, the sensor 7B) are selected. To be selected. When the wavelength is selected between the wavelengths L2 and L3, the switching position in which the No. 2 filter (center wavelength L23) is installed and the No. 2 camera (for example, the sensor 7C) are selected. When the wavelength is selected from the wavelengths L3 to L4, the switching position in which the No. 3 filter (center wavelength L34) is installed and the No. 1-G camera (for example, the sensor 7G) are selected. When a wavelength is selected between the wavelengths L4 and L5, the switching position in which the No. 4 filter (center wavelength L45) is installed and the No. 1-R camera (for example, the sensor 7R) are selected. When a wavelength is selected between the wavelengths L5 and L6, the switching position in which the No. 5 filter (center wavelength L56) is installed and the No. 3 camera (for example, the sensor 7I) are selected. In the present embodiment, the amount of illumination light that passes through the filter device 9 used differs depending on the switching position. Therefore, the opening degree (not shown) of the aperture diaphragm 8 is also defined in the look-up table, and the aperture is changed according to the switching position. The opening of the diaphragm 8 is selected.
 -操作画面-
 図4は本実施形態に係るアライメント装置の操作画面の一例を示す図である。この操作画面40は、例えば入力装置401の操作に応じてモニタとしての出力装置402に表示される。本実施形態に係るアライメント装置には、手動モード、シミュレーションモード、自動モードの3つのモードが備わっており、操作画面には各モードを選択するチェックボックス41-43が表示されている。
-Operation screen-
FIG. 4 is a diagram showing an example of an operation screen of the alignment apparatus according to the present embodiment. The operation screen 40 is displayed on the output device 402 as a monitor according to the operation of the input device 401, for example. The alignment apparatus according to the present embodiment has three modes including a manual mode, a simulation mode, and an automatic mode, and check boxes 41-43 for selecting each mode are displayed on the operation screen.
 チェックボックス41をチェックすると手動モードが選択される。手動モードは、オペレータが自己の判断に基づいて任意にフィルタ装置9の切換ポジションを設定するモードである。本実施形態では照明光の波長を波長入力欄44に入力して指定することで、図3に示したルックアップテーブルに従って、制御回路13により、フィルタ装置9の切り換えポジション、開口絞り8の開度、対応するセンサが設定される。そして、実行ボタン45を操作することで、制御回路13により照明光源2やフィルタ装置9、開口絞り8が駆動され、選択されたセンサの信号を基にアライメント処理が実行される。 Checking the check box 41 selects the manual mode. The manual mode is a mode in which the operator arbitrarily sets the switching position of the filter device 9 based on his own judgment. In the present embodiment, by inputting and designating the wavelength of the illumination light in the wavelength input field 44, the control circuit 13 causes the switching position of the filter device 9 and the opening of the aperture stop 8 according to the lookup table shown in FIG. , The corresponding sensor is set. Then, by operating the execute button 45, the illumination light source 2, the filter device 9, and the aperture stop 8 are driven by the control circuit 13, and the alignment process is executed based on the signal of the selected sensor.
 チェックボックス42をチェックするとシミュレーションモードが選択される。シミュレーションモードは、薄膜に関する既知の情報に基づくシミュレーションによりアライメントに適した条件(ここでは照明光の波長)を特定するモードである。本実施形態では、シミュレーションモデルの表示46を参考にして、条件入力欄47(詳細は図5)に薄膜の屈折率n1、消衰係数k1、厚さt1、パターンの屈折率n2、消衰係数k2、厚さt2を入力する。条件入力後にシミュレーション実行ボタン48を操作することで、メモリ12に格納されたプログラムに従って、シミュレーション回路15によりアライメントに適した条件が特定される。このシミュレーションの原理については後で説明する。シミュレーションの結果として、第1フィルタ後反射光量と第2フィルタ後反射光量のモデルがウィンドウ49に表示され、特定した波長がウィンドウ50に表示される。ウィンドウ49にはフィルタ後反射光量のモデルと共にバー51が表示されており、ウィンドウ50に表示される波長はバー51が指し示す波長に連動している。シミュレーションが完了して結果が表示された時点ではシミュレーション回路15が特定した波長が表示されるが、ウィンドウ49のモデルを見てバー51を左右に動かすことでウィンドウ50に表示される波長の値を調整することができる。ウィンドウ50に表示された波長が指定波長となる。ウィンドウ50に波長が表示された状態で実行ボタン52を操作すると、手動モードの場合と同様に制御回路13により照明光源2やフィルタ装置9、開口絞り8が駆動され、選択されたセンサの信号を基にアライメント処理が実行される。波長の選択がオペレータの入力によるものかシミュレーションによるものかという点は手動モードとシミュレーションモードとで異なるが、その後のアライメントの処理自体は両モードとも同様である。 Checking the check box 42 selects the simulation mode. The simulation mode is a mode in which a condition (here, the wavelength of illumination light) suitable for alignment is specified by a simulation based on known information about the thin film. In this embodiment, referring to the display 46 of the simulation model, the refractive index n1 of the thin film, the extinction coefficient k1, the thickness t1, the refractive index n2 of the pattern, and the extinction coefficient are displayed in the condition input field 47 (details are shown in FIG. 5). Input k2 and thickness t2. By operating the simulation execution button 48 after inputting the conditions, the simulation circuit 15 specifies the conditions suitable for the alignment according to the program stored in the memory 12. The principle of this simulation will be described later. As a result of the simulation, the model of the amount of reflected light after the first filter and the amount of reflected light after the second filter are displayed in the window 49, and the specified wavelength is displayed in the window 50. A bar 51 is displayed in the window 49 together with a model of the amount of reflected light after filtering, and the wavelength displayed in the window 50 is linked to the wavelength indicated by the bar 51. When the simulation is completed and the result is displayed, the wavelength specified by the simulation circuit 15 is displayed, but by looking at the model in the window 49 and moving the bar 51 left and right, the wavelength value displayed in the window 50 is displayed. Can be adjusted. The wavelength displayed in the window 50 becomes the designated wavelength. When the execute button 52 is operated while the wavelength is displayed in the window 50, the illumination light source 2, the filter device 9, and the aperture stop 8 are driven by the control circuit 13 as in the case of the manual mode, and the signal of the selected sensor is displayed. Alignment processing is executed based on this. The difference between the manual mode and the simulation mode in that the selection of the wavelength is based on the operator's input or the simulation is performed, but the subsequent alignment process itself is the same in both modes.
 チェックボックス43をチェックすると自動モードが選択される。自動モードはデータ入力作業を伴わず、アライメント装置にウェハWがセットされた状態で実行ボタン53を操作するのみで良好なアライメント用画像が得られるモードである。このモードにおいては、メモリ12に格納されたプログラムに従って自動撮像回路14により最もアライメントに適した条件が特定され、その条件下でアライメント用画像が取得される。また本実施形態では自動モードで取得されたアライメント用画像によりアライメント処理まで自動的に実行されきる。アライメント処理自体は他のモードと同様である。自動モードにおける自動撮像回路14の処理については後述する。 Checking the check box 43 selects the automatic mode. The automatic mode is a mode in which a good alignment image can be obtained only by operating the execute button 53 in a state where the wafer W is set in the alignment apparatus without any data input work. In this mode, the conditions most suitable for alignment are specified by the automatic imaging circuit 14 according to the program stored in the memory 12, and the alignment image is acquired under the conditions. Further, in the present embodiment, the alignment processing can be automatically executed by the alignment image acquired in the automatic mode. The alignment process itself is similar to other modes. The processing of the automatic image pickup circuit 14 in the automatic mode will be described later.
 なお、操作画面には設定登録欄54も用意されており、ルックアップテーブルに追加するフィルタ装置9の切り換えポジションとセンサの組み合わせを任意に登録することもできる。終了ボタン55を操作すると図4の操作画面は閉じる。 A setting registration field 54 is also prepared on the operation screen, and a combination of the switching position of the filter device 9 and the sensor to be added to the lookup table can be arbitrarily registered. When the end button 55 is operated, the operation screen of FIG. 4 is closed.
 -シミュレーションモード-
 図6はウェハWのモデルの断面図である。まず同図を参照して薄膜を形成したウェハWを照明した場合の反射光量について説明する。第1反射光量は同図中に示した第1反射光の強度を指し、第2反射光量は第2反射光の強度を指す。第1反射光はウェハWにおけるパターンが形成されている部分に照射された照明光についての反射光、第2反射光はウェハWにおけるパターンが形成されていない部分に照射された照明光についての反射光である。薄膜もパターンも程度の差こそ異なるものの光を透過させるため、同図のモデルにおける第1反射光は、厳密には、ウェハWの基材表面及びパターン表面からの各反射光の干渉光と薄膜表面からの反射光との干渉光となる。そのため、第1反射光量は、薄膜の材質や厚さt1、パターンの材質やt2の厚さ、照明光の波長により変化する。第2反射光はウェハWの基材表面からの反射光と薄膜表面からの反射光との干渉光であるため、その光量は薄膜(同)の材質や厚さt1、照明光の波長により変化する。このことから、前述したようにt1,t2,n1,n2,k1,k2の情報を与えてやれば、反射光量演算回路16により第1反射光量及び第2反射光量が求められる。n1,n2,k1,k2は材質に依存する値であるため、材質を選択することで入力されるようにしても良い。
-Simulation mode-
FIG. 6 is a sectional view of a model of the wafer W. First, the amount of reflected light when a wafer W having a thin film formed thereon is illuminated will be described with reference to FIG. The first reflected light amount refers to the intensity of the first reflected light shown in the figure, and the second reflected light amount refers to the intensity of the second reflected light. The first reflected light is the reflected light of the illumination light applied to the portion of the wafer W on which the pattern is formed, and the second reflected light is the reflected light of the illumination light applied to the portion of the wafer W on which the pattern is not formed. Light. Since the thin film and the pattern are different in the degree of light transmission, the first reflected light in the model shown in the figure is strictly the interference light of each reflected light from the substrate surface of the wafer W and the pattern surface and the thin film. It becomes interference light with the reflected light from the surface. Therefore, the first reflected light amount changes depending on the material of the thin film and the thickness t1, the material of the pattern and the thickness t2, and the wavelength of the illumination light. Since the second reflected light is an interference light between the reflected light from the substrate surface of the wafer W and the reflected light from the thin film surface, the amount of light changes depending on the material of the thin film (the same), the thickness t1, and the wavelength of the illumination light. To do. From this, if the information of t1, t2, n1, n2, k1, k2 is given as described above, the first reflected light amount and the second reflected light amount are obtained by the reflected light amount calculation circuit 16. Since n1, n2, k1, and k2 are values that depend on the material, they may be input by selecting the material.
 なお、薄膜部分に照射された照明光についての反射光の光量と波長の関係については、図7に示したようになる。つまり、同じ波長帯域中における反射光量の山谷の数は一般に薄膜が厚いほど増加し、薄いほど減少する。通常は薄膜の材質に比べてパターンの材質の消衰係数は大きいため、パターンを透過した光の光量は少なく、同一波長の照明光を用いた場合、第1反射光量と第2反射光量の差は主に薄膜の厚さに依存して生じる。よって図6のモデルでは、薄膜の厚い部分についての第2反射光に比べ、薄膜の薄い部分についての第1反射光の方が同一波長帯域中における反射光量の山谷の数が少なくなる。 Note that the relationship between the amount of reflected light and the wavelength of the illumination light applied to the thin film portion is as shown in Fig. 7. That is, the number of peaks and troughs of the reflected light amount in the same wavelength band generally increases as the thin film becomes thicker and decreases as it becomes thinner. Since the extinction coefficient of the material of the pattern is usually larger than that of the material of the thin film, the amount of light transmitted through the pattern is small, and when the illumination light of the same wavelength is used, the difference between the first reflected light amount and the second reflected light amount. Occurs mainly depending on the thickness of the thin film. Therefore, in the model of FIG. 6, the number of peaks and troughs of the reflected light amount in the same wavelength band is smaller in the first reflected light of the thin film portion than in the second reflected light of the thick film portion.
 光量と波長との関係が分かれば、これにフィルタ特性(フィルタの光透過率と波長との既知の関係)を乗ずることで(図8)、フィルタ後反射光量(図9)を求めることができる。従って、フィルタ後反射光量演算回路17では、第1反射光量及び第2反射光量の特性とフィルタ装置9の各切り換えポジションのフィルタ特性から、切り換えポジション毎に第1フィルタ後反射光量と第2フィルタ後反射光量が求められる。 If the relationship between the amount of light and the wavelength is known, this can be multiplied by the filter characteristic (known relationship between the light transmittance of the filter and the wavelength) (FIG. 8) to obtain the amount of reflected light after filtering (FIG. 9). . Therefore, the post-filter reflected light amount calculation circuit 17 determines, based on the characteristics of the first reflected light amount and the second reflected light amount and the filter characteristics of each switching position of the filter device 9, the first post-filtered reflected light amount and the second post-filtered light amount for each switching position. The amount of reflected light is obtained.
 第1フィルタ後反射光量と第2フィルタ後反射光量からアライメント用画像を形成するに当たり、少なくとも一方の光量は一定以上の値であることが望ましい。また光量が十分でも第1フィルタ後反射光量と第2フィルタ後反射光量の差が小さいと画像のコントラストが低くなり、薄膜の下にあるパターンが画像上で明瞭にならない。この観点で第1フィルタ後反射光量と第2フィルタ後反射光量の少なくとも一方が設定光量以上になる切り換えポジションの中から両光量の比が最大のものを特定することにより、フィルタ選択回路18により良好なアライメント用画像を得るための条件が得られる。例えば図10において、設定光量をSとした場合、フィルタNo.1-Gの切り換えポジションを選択できる。フィルタNoが決まれば、ルックアップテーブル(図3)に従って使用するセンサや絞り開度も決定する。 When forming an alignment image from the amount of reflected light after the first filter and the amount of reflected light after the second filter, it is desirable that at least one of the amounts of light has a certain value or more. Even if the amount of light is sufficient, if the difference between the amount of reflected light after the first filter and the amount of reflected light after the second filter is small, the contrast of the image becomes low, and the pattern under the thin film is not clear on the image. From this point of view, it is possible to improve the filter selection circuit 18 by specifying the switching position with the maximum ratio of the two light amounts from the switching positions in which at least one of the first filter reflected light amount and the second filter reflected light amount is equal to or greater than the set light amount. Conditions for obtaining a proper alignment image can be obtained. For example, in FIG. 10, when the set light amount is S, the switching position of the filter No. 1-G can be selected. When the filter No. is determined, the sensor used and the aperture opening are also determined according to the look-up table (FIG. 3).
 -自動モード-
 図11は自動撮像回路によるアライメント用画像の自動撮像の手順を含む欠陥検査の手順を表すフローチャートである。同図中のステップS12-S18がアライメント用画像の自動撮像に係る手順、ステップS21-S23がアライメントに係る手順、ステップS31が欠陥検査に係る手順である。
-auto mode-
FIG. 11 is a flowchart showing the procedure of defect inspection including the procedure of automatically capturing the alignment image by the automatic image capturing circuit. In the figure, steps S12 to S18 are procedures relating to automatic image capturing for alignment, steps S21 to S23 are procedures relating to alignment, and step S31 is procedures relating to defect inspection.
 図11の手順を開始したら、全体制御装置300はまず、ウェハ搬送装置102を駆動してウェハWをステージ101のチャック101a上の所定位置にロードする(ステップS11)。全体制御装置300は、その後ステージ101を駆動してウェハWをアライメント装置1の視野内に移動させ、アライメント装置1の処理装置10に指令してアライメント処理(ステップS12-S18,S21-S23)を実行する。 When the procedure of FIG. 11 is started, the overall control device 300 first drives the wafer transfer device 102 to load the wafer W at a predetermined position on the chuck 101a of the stage 101 (step S11). The overall control device 300 then drives the stage 101 to move the wafer W into the field of view of the alignment device 1, and instructs the processing device 10 of the alignment device 1 to perform alignment processing (steps S12-S18, S21-S23). Run.
 処理装置10は、自動撮像回路14を駆動して、照明光源2やセンサ7等を用いてウェハWの全体を撮像して画像を取得し、ウェハWに形成されたウェハマトリクスを認識する(ステップS12)。画像の取得は、ステージ101のRθ座標系で(θステージ101tとXステージ101xを駆動して)同心円状又は螺旋状にウェハWをスキャンして行う。XY座標系により(Xステージ101xとYステージ101yを駆動して)ウェハWをスキャンすることにより画像を得るようにすることもできる。例えば、取得した画像から画像処理によりXw軸方向及びYw軸方向のパターンの繰り返し距離(ピッチ)を算出する。そして算出した繰り返し距離をチップサイズとし、このチップサイズからウェハマトリクスを作成する。なお、ウェハマトリクスとは、図12に示したようにウェハ上において多数の同種のチップ(ダイとも呼ばれる半導体デバイス)が直交座標系の2方向(Xw軸方向及びYw軸方向)に複数並んでマトリクス状をなした形態である。図12ではマトリクス(Xw,Yw)=(9,5)の例を示している。 The processing apparatus 10 drives the automatic image pickup circuit 14, picks up an image of the entire wafer W by using the illumination light source 2, the sensor 7, and the like to acquire an image, and recognizes the wafer matrix formed on the wafer W (step S12). The image is acquired by scanning the wafer W concentrically or spirally in the Rθ coordinate system of the stage 101 (by driving the θ stage 101t and the X stage 101x). It is also possible to obtain an image by scanning the wafer W with the XY coordinate system (driving the X stage 101x and the Y stage 101y). For example, the pattern repeating distance (pitch) in the Xw-axis direction and the Yw-axis direction is calculated from the acquired image by image processing. Then, the calculated repeating distance is used as a chip size, and a wafer matrix is created from this chip size. Note that a wafer matrix is a matrix in which a large number of chips of the same type (semiconductor devices also called dies) are arranged in a plurality of rows in two directions (Xw axis direction and Yw axis direction) of the orthogonal coordinate system on the wafer as shown in FIG. It is in the form of a shape. FIG. 12 shows an example of matrix (Xw, Yw) = (9, 5).
 ウェハマトリクスを作成したら、自動撮像回路14は図12のようにウェハマトリクス内で第1のチップT1及び第2のチップT2を決定し(ステップS13)する。チップT1,T2を決定したら、自動撮像回路14は、チップT1のチップ原点O(例えば上記パターンの繰り返しの起点)の座標をメモリ12に登録する(ステップS14)。基準パターンP(図12)は、チップ原点OからX座標ΔX1及びY座標ΔY2の一定の距離にあるパターンであり、ΔX1及びΔY2は、アライメント時の情報としてメモリ12に予め保存しておく。チップT1,T2はウェハWの回転ずれを計測するための基準となるチップであり、ウェハマトリクス上でYw座標が同一のものである(ウェハWにXw軸と平行な同一軸上に配置されている)。チップT1,T2は、ウェハWの回転ずれの補正精度の観点からなるべく離れたチップが良い。但しこの場合、ウェハWの回転ずれが大きいと、観察位置がチップT1からチップT2に移動したときにチップT2が視野から外れ、アライメントパターン画像を探索する動作が必要になり、画像認識するのに時間を要するケースがある。それに対し、図12の例では、Yw座標が同一の4つのチップ(第1-第4のチップT1-T4)を選択した例を示している。この場合、例えばまずチップ間距離の短いチップT3,T4でアライメントを実施し、次にチップT3,T2、更にチップT2,T1でアライメントを実施するといった要領でチップ間距離を延ばしていくことができる。これにより更に精度良くウェハWの回転ずれを補正し、かつアライメント動作の所要時間が短縮できる。 After creating the wafer matrix, the automatic imaging circuit 14 determines the first chip T1 and the second chip T2 in the wafer matrix as shown in FIG. 12 (step S13). After determining the chips T1 and T2, the automatic imaging circuit 14 registers the coordinates of the chip origin O of the chip T1 (for example, the starting point for repeating the above pattern) in the memory 12 (step S14). The reference pattern P (FIG. 12) is a pattern located at a fixed distance of the X coordinate ΔX1 and the Y coordinate ΔY2 from the chip origin O, and ΔX1 and ΔY2 are stored in advance in the memory 12 as information at the time of alignment. The chips T1 and T2 are reference chips for measuring the rotation deviation of the wafer W, and have the same Yw coordinate on the wafer matrix (they are arranged on the same axis parallel to the Xw axis on the wafer W). Exist). The chips T1 and T2 are preferably separated from each other in terms of correction accuracy of the rotation deviation of the wafer W. However, in this case, if the rotation deviation of the wafer W is large, the chip T2 is out of the field of view when the observation position moves from the chip T1 to the chip T2, and an operation of searching for an alignment pattern image is required, which is necessary for image recognition. There are cases where it takes time. On the other hand, the example in FIG. 12 shows an example in which four chips (first to fourth chips T1 to T4) having the same Yw coordinate are selected. In this case, it is possible to extend the inter-chip distance by, for example, first performing the alignment with the chips T3 and T4 having a short inter-chip distance, and then performing the alignment with the chips T3 and T2, and then the chips T2 and T1. . This makes it possible to more accurately correct the rotation deviation of the wafer W and reduce the time required for the alignment operation.
 次に自動撮像回路14は、選択した各チップ内の基準パターンPを探索し(ステップS15)、基準パターンPがそれぞれ認識可能(コントラストが設定値以上)かを判定する(ステップS16)。画像が低コントラストで認識できない基準パターンPがある場合、自動撮像回路14は設定順序に従ってフィルタ装置9の切り換えポジションと選択センサを変更した上で、ウェハWの新たな画像を取得する(ステップS17)。このとき、ステージ101を駆動して照明光の焦点位置を薄膜の内部に移動させたり、画像の生成に用いたセンサ信号のゲインを補正して画像の明度やコントラストを調整したりするようにしてもよい。一例としては、焦点位置とゲインの組み合わせを予め用意しておき、焦点位置とゲインの組み合わせ毎に、図3のルックアップテーブルの切り換えポジション、センサ及び絞り開度の組み合わせが順次変更されるように構成することができる。この例のように条件変更のルールを予め決めておくことで、ステップS17に手順が移る度に照明光の波長やフォーカス位置等の撮像条件を順次変更して画像を撮影することができる。必要に応じて撮像条件を繰り返し変更した結果、輝度及びコントラストが十分な画像が得られて基準パターンPが明瞭に認識できたら、自動撮像回路14はその画像をアライメント用画像(有効画像)として例えばメモリ12に登録する(ステップS18)。自動撮像回路14は、ステージ101を駆動してウェハWを移動させつつ、このようにしてチップT1-T4(少なくともチップT1,T2)における基準パターンPの明瞭なアライメント用画像を撮像部1Bで撮像しメモリ12に登録する。 Next, the automatic image pickup circuit 14 searches for the reference pattern P in each selected chip (step S15), and determines whether each reference pattern P is recognizable (contrast is a set value or more) (step S16). If there is a reference pattern P that cannot be recognized due to the low contrast of the image, the automatic image pickup circuit 14 changes the switching position of the filter device 9 and the selection sensor according to the setting order, and then acquires a new image of the wafer W (step S17). . At this time, the stage 101 is driven to move the focus position of the illumination light to the inside of the thin film, or the gain of the sensor signal used to generate the image is corrected to adjust the brightness and contrast of the image. Good. As an example, a combination of the focus position and the gain is prepared in advance, and the combination of the switch position of the lookup table, the sensor, and the aperture opening of the lookup table of FIG. 3 is sequentially changed for each combination of the focus position and the gain. Can be configured. By predetermining the condition change rule as in this example, an image can be taken by sequentially changing the imaging conditions such as the wavelength of the illumination light and the focus position each time the procedure moves to step S17. As a result of repeatedly changing the imaging conditions as necessary, if an image with sufficient brightness and contrast is obtained and the reference pattern P can be clearly recognized, the automatic imaging circuit 14 uses the image as an alignment image (effective image), for example. It is registered in the memory 12 (step S18). The automatic image pickup circuit 14 drives the stage 101 to move the wafer W, and thus picks up a clear alignment image of the reference pattern P on the chips T1 to T4 (at least the chips T1 and T2) by the image pickup unit 1B. Then, it is registered in the memory 12.
 アライメント用画像の登録が完了した旨の信号が制御回路13から入力されたら、処理装置10はアライメント回路11によりアライメント処理を実行する(ステップS21)。アライメント処理としては、ステージ101の回転中心からのウェハWの中心の位置ずれ、ウェハWの回転ずれをステージ101の座標系で演算をまず実行する。このアライメント処理の内容については特開2015-40698号公報に詳しく記載されており、本実施形態においても同様の処理を採用することができる。但し、本実施形態においては、ステップS16の手順を経て複数の基準パターンPが良好に認識できているため、同文献に開示された方法に代えて、基準パターンPを利用してウェハWの回転ずれ(θ方向ずれ)を演算することができる。その方法について説明する。 When a signal indicating that the registration of the alignment image is completed is input from the control circuit 13, the processing device 10 causes the alignment circuit 11 to execute the alignment process (step S21). As the alignment processing, the positional deviation of the center of the wafer W from the rotational center of the stage 101 and the rotational deviation of the wafer W are first calculated in the coordinate system of the stage 101. Details of this alignment processing are described in JP-A-2005-40698, and similar processing can be adopted in this embodiment. However, in the present embodiment, since the plurality of reference patterns P can be satisfactorily recognized through the procedure of step S16, the rotation of the wafer W using the reference pattern P instead of the method disclosed in the same document. The deviation (deviation in the θ direction) can be calculated. The method will be described.
 図12の例ではチップT1-T4の各基準パターンPはXw軸に沿って並んでおり、いずれもYw座標が同一である。そのため4つの基準パターンPを通る直線はウェハ座標系のXw軸に平行である。従って4つの基準パターンPを通る直線のステージ座標系(Rθ座標系又はXY座標系)における傾きを計算することで、ウェハWの回転ずれ(傾き)が演算できる。Xw軸と平行な直線を得る上では基準パターンPはXw軸に沿って2つ選択すれば足りるが、本実施形態では4つ選択している。3つ以上の基準パターンPを選択した場合には、例えばそのうちの2つの基準パターンPを通る直線を基準パターンPの選択を変えて複数得て統計処理することで、得られる直線のXw軸に対する平行度が上がる。このように3つ以上の基準パターンPを選択することで、基準パターンPを通る直線を得るに当たってウェハWにおけるチップの製作誤差の影響が抑えられる。基準パターンPの選択数が多いほど回転ずれの演算精度が上がる一方で演算負荷は増すため、精度と演算負荷の双方を考慮して図12では4つの基準パターンPを選択した場合を例示した。基準パターンPはYw座標が同一となる複数が選択できれば良く、その選択数の設定は適宜変更可能である。図12ではXw軸と平行な直線を得るための基準パターンPの選択例を図示したが、基準パターンPはYw軸に沿って複数選択するようにしても良い。ステージ座標系(Rθ座標系又はXY座標系)におけるYw軸の傾きによってもウェハWの回転ずれが演算できる。 In the example of FIG. 12, the reference patterns P of the chips T1 to T4 are lined up along the Xw axis, and the Yw coordinates are the same for both. Therefore, the straight line passing through the four reference patterns P is parallel to the Xw axis of the wafer coordinate system. Therefore, the rotation deviation (tilt) of the wafer W can be calculated by calculating the tilt of the straight line passing through the four reference patterns P in the stage coordinate system (Rθ coordinate system or XY coordinate system). In order to obtain a straight line parallel to the Xw axis, it is sufficient to select two reference patterns P along the Xw axis, but four are selected in this embodiment. When three or more reference patterns P are selected, for example, a straight line passing through two reference patterns P among them is obtained by changing the selection of the reference patterns P and statistically processed to obtain a straight line with respect to the Xw axis. Parallelism increases. By selecting three or more reference patterns P in this way, in obtaining a straight line that passes through the reference patterns P, the influence of chip manufacturing errors on the wafer W can be suppressed. As the number of selected reference patterns P increases, the calculation accuracy of the rotation deviation increases, but the calculation load increases. Therefore, FIG. 12 illustrates the case where four reference patterns P are selected in consideration of both the accuracy and the calculation load. It suffices that a plurality of reference patterns P having the same Yw coordinate can be selected, and the setting of the number of selections can be appropriately changed. Although FIG. 12 illustrates an example of selecting the reference pattern P for obtaining a straight line parallel to the Xw axis, a plurality of reference patterns P may be selected along the Yw axis. The rotation deviation of the wafer W can also be calculated by the inclination of the Yw axis in the stage coordinate system (Rθ coordinate system or XY coordinate system).
 ウェハWの回転ずれと中心位置ずれを演算したら、アライメント回路11はそれらのずれが予め設定された許容値内であるかを判定する(ステップS22)。回転ずれと中心位置ずれの双方が許容値を超えている場合に許容範囲を超えていると判定するか、いずれか一方でも許容値を超えている場合に許容範囲を超えていると判定するかは変更可能であるが、ここでは後者を採用することとする。回転ずれと中心位置ずれのいずれかでも許容値を超える場合、アライメント回路11はアライメント用画像の位置又は角度の少なくとも一方を補正してウェハ座標系をステージ座標系に近付ける画像処理を実行し(ステップS23)、ステップS21に手順を戻す。必要に応じて画像処理を実行した結果、回転ずれ及び位置ずれの双方が許容値内に納まり、所望の検査精度が確保できる状況になったら、アライメント回路11はその旨の信号を出力し、処理装置10から全体制御装置300に伝達される。こうしてアライメント装置1からアライメント完了の信号が入力されたら、全体制御装置300はステージ101を駆動しつつ、検査光源201やセンサ205を用いてウェハWの欠陥検査を実行する(ステップS31)。 After calculating the rotational deviation and the central position deviation of the wafer W, the alignment circuit 11 determines whether the deviations are within a preset allowable value (step S22). If both the rotational deviation and the center position deviation exceed the allowable value, it is judged as exceeding the allowable range, or if either one of them exceeds the allowable value, it is judged as exceeding the allowable range. Can be changed, but the latter is adopted here. If either the rotational deviation or the central positional deviation exceeds the allowable value, the alignment circuit 11 corrects at least one of the position and the angle of the alignment image and executes image processing to bring the wafer coordinate system closer to the stage coordinate system (step S23), and returns the procedure to step S21. As a result of performing image processing as needed, when both the rotational deviation and the positional deviation are within the allowable values and the desired inspection accuracy can be secured, the alignment circuit 11 outputs a signal to that effect, and It is transmitted from the device 10 to the overall control device 300. When the alignment completion signal is input from the alignment apparatus 1 in this way, the overall control apparatus 300 drives the stage 101 and executes the defect inspection of the wafer W using the inspection light source 201 and the sensor 205 (step S31).
 なお、図11を自動モードの手順として説明したが、撮像条件を任意に入力するかシミュレーション結果を参考にして設定するかが異なるのみで、ステップS18以降の手順はシミュレーションモードでも手動モードでも同様である。 Note that FIG. 11 has been described as the procedure of the automatic mode, but the only difference is that the imaging conditions are arbitrarily input or set with reference to the simulation result. The procedure from step S18 is the same in the simulation mode and the manual mode. is there.
 -効果-
 (1)本実施形態においては、照明光によるウェハWからの反射光を色分解光学素子6により分光し、分光した各反射光を対応するセンサで受光する構成とした。そして、分光した複数の反射光から少なくとも1つ(例えば長波長の赤色光線)を選択し、選択した反射光のみを基礎にしてアライメント用画像を生成する。例えば青色光線を表面で殆ど反射してしまう特定材質の薄膜が形成されたウェハでは、波長帯域を制限しない場合には青色光線の反射光が画像生成信号に反映されるとアライメント用画像で薄膜の下側の構造が視認できなくなる。それに対し本実施形態では、薄膜の材質や厚み等を考慮し、薄膜を透過して薄膜の下部の構造物で反射した反射光を抽出してアライメント用画像の基礎とするので、通常では見え難い薄膜の下部の構造が明瞭に写ったアライメント用画像が得られる。またアライメント用画像の基礎とすべき反射光の波長帯域を選択するのに伴って、選択した波長帯域から外れた波長帯域の光を照明光から予めフィルタ装置9によってカットすることで、アライメント用画像をより明瞭なものとすることができる。フィルタを用いることで色分解光学素子6よりも精度良く波長帯域を制限することができ、選択センサに入射する反射光の波長分布をセンサ感度に合わせてより高精度に制御できる。これにより、特定の薄膜に覆われて従来のインライン検査のアライメント装置では確認できずにいたパターンが確認できるようになり、特定の薄膜で覆われた状態でもパターンの明瞭なアライメント用画像をインラインで得て精度良くアライメントができる。よって欠陥検査の検査効率の向上ひいては半導体製造プロセスの歩留り向上に寄与できる。
-effect-
(1) In the present embodiment, the reflected light from the wafer W due to the illumination light is split by the color separation optical element 6, and each split reflected light is received by the corresponding sensor. Then, at least one (for example, a long-wavelength red ray) is selected from the plurality of dispersed reflected lights, and an alignment image is generated based on only the selected reflected lights. For example, in a wafer on which a thin film of a specific material that reflects most of the blue light on the surface is formed, if the reflected light of the blue light is reflected in the image generation signal when the wavelength band is not limited, the thin film of the alignment image The lower structure becomes invisible. On the other hand, in the present embodiment, considering the material and thickness of the thin film, the reflected light that has passed through the thin film and reflected by the structure under the thin film is extracted and used as the basis of the alignment image, so it is difficult to see normally. An alignment image is obtained in which the structure under the thin film is clearly shown. Further, as the wavelength band of the reflected light to be the basis of the alignment image is selected, the light in the wavelength band outside the selected wavelength band is cut from the illumination light by the filter device 9 in advance, so that the alignment image is obtained. Can be made clearer. By using the filter, the wavelength band can be more accurately limited than the color separation optical element 6, and the wavelength distribution of the reflected light incident on the selected sensor can be controlled with higher precision according to the sensor sensitivity. This makes it possible to confirm patterns that were covered with a specific thin film and could not be confirmed with conventional alignment equipment for in-line inspection.In-line alignment images with clear patterns even when covered with a specific thin film can be confirmed. It is possible to obtain accurate alignment. Therefore, it is possible to contribute to the improvement of the inspection efficiency of the defect inspection and the improvement of the yield of the semiconductor manufacturing process.
 なお、色分解光学素子6で分光する代わりに又は加えて、撮像部1Bにおいてフィルタ装置により特定の波長帯域の反射光を抽出して対応するセンサで受光する構成とした場合も同様の効果を得ることができる。照明光学系1Aにおいてブロードバンド光源に代えて波長帯域の異なる複数の光源で構成した照明光源2を用いた場合も同様の効果が得られる。複数の光源で照明光源2を構成した場合にはフィルタ装置9を省略することもできる。また、これらの場合、次の効果(2)-(7)についても同様に得ることができる。 In addition, instead of or in addition to the spectral separation by the color separation optical element 6, the same effect can be obtained when the image pickup unit 1B is configured to extract the reflected light in the specific wavelength band by the filter device and receive the reflected light by the corresponding sensor. be able to. Similar effects can be obtained when the illumination optical system 1A uses the illumination light source 2 configured by a plurality of light sources having different wavelength bands instead of the broadband light source. When the illumination light source 2 is composed of a plurality of light sources, the filter device 9 can be omitted. Further, in these cases, the following effects (2) to (7) can be similarly obtained.
 (2)本実施形態では照明光の波長帯域を制限するため、照明光量が不変であると、選択した波長帯域や使用するフィルタの透過率等によってウェハWに照射される光量が変化してアライメント用画像の輝度がばらつく。そこで本実施形態ではフィルタ装置9の切り換えポジションに応じて開口絞り8の開度が変化する構成とした。これにより使用するフィルタによるアライメント用画像の輝度のばらつきを抑えることができる。但し、上記の本質的効果(1)を得る上で、フィルタ装置9と開口絞り8の連動機能は必ずしも必要ない。また、照明光量を変化させる上では、開口絞り8の開度を調整することに代え、照明光源2の出射光量を調整することも考えられる。 (2) In the present embodiment, since the wavelength band of the illumination light is limited, if the illumination light amount does not change, the light amount irradiated to the wafer W changes depending on the selected wavelength band, the transmittance of the filter used, etc. The brightness of the video image varies. Therefore, in this embodiment, the aperture of the aperture diaphragm 8 is changed according to the switching position of the filter device 9. As a result, it is possible to suppress variation in the brightness of the alignment image due to the filter used. However, in order to obtain the above-mentioned essential effect (1), the interlocking function of the filter device 9 and the aperture stop 8 is not always necessary. Further, in changing the amount of illumination light, it may be possible to adjust the amount of light emitted from the illumination light source 2 instead of adjusting the opening of the aperture stop 8.
 (3)センサとフィルタの組み合わせを選択波長に対応付けたルックアップテーブル(図3)をメモリ12に予め格納したことにより、アライメント用画像の作成に用いる波長を指定することで、センサとフィルタの組み合わせを自動的に決定することができる。従って、薄膜についての分光データ等が予め得られている場合、センサの選択とフィルタの選択をマニュアル操作で行うことなく、波長を指定するのみで撮像条件を設定することができる。但し、上記効果(1)を得る上ではセンサの選択とフィルタの選択をマニュアル操作でのみ行える構成であっても良く、この場合にはルックアップテーブルは必ずしも必要ない。 (3) A lookup table (FIG. 3) in which a combination of a sensor and a filter is associated with a selected wavelength is stored in the memory 12 in advance, so that the wavelength used for creating the alignment image is designated, and thus the sensor and the filter can be selected. The combination can be determined automatically. Therefore, when the spectral data or the like of the thin film is obtained in advance, the imaging condition can be set only by designating the wavelength without manually selecting the sensor and the filter. However, in order to obtain the above effect (1), the sensor selection and the filter selection may be performed only by manual operation, and in this case, the lookup table is not always necessary.
 (4)シミュレーション回路15を実装したことにより、薄膜に関する既知の情報(屈折率、膜厚等)を入力することで、アライメント用画像の適正な撮像条件を特定することができる。薄膜の情報が分かっていても、その情報に基づいてどのような撮像条件を設定すべきか判断できない場合に有用である。但し、上記効果(1)を得る上ではシミュレーション機能は必ずしも必要ない。また、反射光量演算回路16、フィルタ後反射光量演算回路17及びフィルタ選択回路18を含んでシミュレーション回路15を構成した場合を例示した。しかし異なる方法でシミュレーションを実行する場合には、それに応じてシミュレーション回路15の機能も適宜変更可能であることは言うまでもない。 (4) By implementing the simulation circuit 15, it is possible to specify appropriate imaging conditions for the alignment image by inputting known information (refractive index, film thickness, etc.) about the thin film. Even if the information of the thin film is known, it is useful when it is not possible to determine what imaging condition should be set based on the information. However, the simulation function is not always necessary to obtain the effect (1). Further, the case where the simulation circuit 15 is configured to include the reflected light amount calculation circuit 16, the filtered reflected light amount calculation circuit 17, and the filter selection circuit 18 is illustrated. However, it is needless to say that when the simulation is executed by a different method, the function of the simulation circuit 15 can be changed accordingly.
 (5)自動撮像回路14を実装したことにより、仮に薄膜に関する情報が曖昧な場合でも、アライメント装置1において順次条件を変えてウェハWを繰り返し実際に撮像し、自動的に良好なアライメント用画像を取得させることができる。このようなオートシーケンスの場合、オペレータが撮像条件を変えて一々手動操作する手間を省ける。自動撮像の処理を実行している間にオペレータは他の業務を遂行することができ、効率的である。但し、上記効果(1)を得る上では自動撮像機能も必ずしも必要ない。 (5) By mounting the automatic image pickup circuit 14, even if the information about the thin film is ambiguous, the alignment apparatus 1 sequentially changes the conditions and repeatedly picks up the image of the wafer W, and automatically obtains a good alignment image. You can get it. In the case of such an auto sequence, it is possible to save the operator the trouble of changing the imaging conditions and manually operating one by one. It is efficient because the operator can perform other tasks while executing the process of automatic imaging. However, the automatic image capturing function is not always necessary to obtain the effect (1).
 (6)自動撮像回路14に、画像のコントラストが設定値未満の場合、フィルタ装置9の切り換えポジションに代えて又はフィルタ装置9の切り換えポジションと共に、ステージ101をZ方向に駆動してフォーカス位置を変更する機能を実装した。フォーカス位置を薄膜の内部に移動させることで画像におけるウェハWの見え方が変わり、薄膜の下部の構造が明瞭になる場合がある。但し、上記効果(1)を得る上では自動撮像回路14にフォーカス位置の調整機能を持たせる必要は必ずしもない。なお、フィルタ装置9の切り換えポジションに代えてフォーカス位置を変更することは、フィルタを変えて繰り返し撮像しても良好なアライメント用画像が得られない場合に、フィルタを変えずにフォーカス位置を変えて画質の改善を試みることを指す。 (6) When the image contrast is less than the set value, the automatic image pickup circuit 14 drives the stage 101 in the Z direction in place of the switching position of the filter device 9 or together with the switching position of the filter device 9 to change the focus position. I implemented the function to do. By moving the focus position inside the thin film, the appearance of the wafer W in the image may be changed, and the structure of the lower portion of the thin film may become clear. However, in order to obtain the above effect (1), it is not always necessary for the automatic image pickup circuit 14 to have the function of adjusting the focus position. It should be noted that changing the focus position instead of the switching position of the filter device 9 means changing the focus position without changing the filter when a good alignment image cannot be obtained by repeatedly picking up the image by changing the filter. Refers to trying to improve image quality.
 (7)自動撮像回路14に、画像のコントラストが設定値未満の場合、フィルタ装置9の切り換えポジションに代えて又はフィルタ装置9の切り換えポジションと共に、選択センサの信号のゲインを補正する機能を実装した。画像信号のゲインを補正し、画像の見え方を事後的に調整することで、薄膜の下部の構造が明瞭になる場合もある。但し、上記効果(1)を得る上では自動撮像回路14に信号ゲインの調整機能を持たせる必要は必ずしもない。なお、フィルタ装置9の切り換えポジションに代えて信号のゲインを補正することは、フィルタを変えて繰り返し撮像しても良好なアライメント用画像が得られない場合にフィルタを変えずにゲインを補正して画像の調整を試みることを指す。 (7) When the image contrast is less than the set value, the automatic image pickup circuit 14 has a function of correcting the gain of the signal of the selection sensor instead of the switching position of the filter device 9 or together with the switching position of the filter device 9. . The structure of the lower part of the thin film may become clear by correcting the gain of the image signal and adjusting the appearance of the image afterwards. However, in order to obtain the above effect (1), it is not always necessary for the automatic image pickup circuit 14 to have a signal gain adjusting function. It should be noted that correcting the gain of the signal instead of the switching position of the filter device 9 means correcting the gain without changing the filter when a good alignment image cannot be obtained even if the image is repeatedly captured by changing the filter. Refers to trying to adjust the image.
 -変形例-
 以上の実施形態においては、アライメント装置1の位置決め対象として膜付きのパターン付きウェハを例示して説明したが、ベアウェハや膜の付いていないパターン付きウェハ、その他の試料を対象としてもアライメントを実行することができる。また、光学式の欠陥検査ユニット200を搭載した検査装置100を例に挙げて説明したが、欠陥検査ユニット200としてSEMやTEM、STEM等を搭載した検査装置にもアライメント装置1は適用可能である。
-Modification-
In the above embodiment, the patterned wafer with a film is described as an example of the positioning target of the alignment apparatus 1. However, the alignment is performed with a bare wafer, a patterned wafer without a film, and other samples. be able to. Further, although the inspection apparatus 100 equipped with the optical defect inspection unit 200 has been described as an example, the alignment apparatus 1 is also applicable to an inspection apparatus equipped with the SEM, TEM, STEM or the like as the defect inspection unit 200. .
 また、フィルタ装置9の切り換えポジションは複数であれば良く、5つである必要はない。フィルタ装置9の切り換えポジションの数は必要に応じて変更可能である。また、フィルタ装置9の切り換えポジションの数はセンサ数と対応している必要は必ずしもない。例えば単一のセンサに複数のフィルタを対応付け、同一のセンサを用いる場合であっても、フィルタを変えて撮像条件を変更することが考えられ得る。この場合はセンサ数に対してフィルタ装置9の切り換えポジションの数が多くなる傾向にある。波長帯域の異なる複数の光源で照明光源2を構成した場合の光源の数も同様である。 Also, the switching positions of the filter device 9 need only be plural, and need not be five. The number of switching positions of the filter device 9 can be changed as needed. Further, the number of switching positions of the filter device 9 does not necessarily correspond to the number of sensors. For example, even when a plurality of filters are associated with a single sensor and the same sensor is used, it is conceivable to change the imaging condition by changing the filter. In this case, the number of switching positions of the filter device 9 tends to increase with respect to the number of sensors. The same applies to the number of light sources when the illumination light source 2 is composed of a plurality of light sources having different wavelength bands.
 また、一例としてセンサ7R,7G,7B,7C,7Iのいずれか1つを選択的に用いる場合を例に挙げて説明したが、一度のアライメント用画像の作成に用いる選択センサは複数でも良い。例えば波長を制限しない切り換えポジションをフィルタ装置9に加え、波長を制限する必要がない試料については、通常通りセンサ7のRGB全てのセンサ7R,7G,7Bの信号を用いてアライメント用画像を得ることも当然できる。 Also, as an example, the case where any one of the sensors 7R, 7G, 7B, 7C, and 7I is selectively used has been described, but a plurality of selection sensors may be used to create one alignment image. For example, a sample for which it is not necessary to limit the wavelength by adding a switching position that does not limit the wavelength to the filter device 9 and obtains an alignment image by using the signals of all the sensors 7R, 7G, 7B of all the RGB of the sensor 7 as usual. Of course you can.
1…アライメント装置、1A…照明光学系、1B…撮像部、2…照明光源、6…色分解光学素子、7,7B,7C,7G,7I,7R…センサ、8…開口絞り、9…フィルタ装置、10…処理装置(処理部)、11…アライメント回路、12…メモリ、13…制御回路、14…自動撮像回路、15…シミュレーション回路、16…反射光量演算回路、17…フィルタ後反射光量演算回路、18…フィルタ選択回路、100…検査装置、101…ステージ、200…欠陥検査ユニット、n1,n2…薄膜の屈折率、O…チップ原点、P…基準パターン、t1,t2…薄膜の厚さ、W…ウェハ(試料) DESCRIPTION OF SYMBOLS 1 ... Alignment device, 1A ... Illumination optical system, 1B ... Imaging part, 2 ... Illumination light source, 6 ... Color separation optical element, 7, 7B, 7C, 7G, 7I, 7R ... Sensor, 8 ... Aperture stop, 9 ... Filter Device, 10 ... Processing device (processing unit), 11 ... Alignment circuit, 12 ... Memory, 13 ... Control circuit, 14 ... Automatic imaging circuit, 15 ... Simulation circuit, 16 ... Reflected light amount calculation circuit, 17 ... Filtered reflected light amount calculation Circuit, 18 ... Filter selection circuit, 100 ... Inspection device, 101 ... Stage, 200 ... Defect inspection unit, n1, n2 ... Refractive index of thin film, O ... Chip origin, P ... Reference pattern, t1, t2 ... Thin film thickness , W ... Wafer (sample)

Claims (12)

  1.  ステージに保持された試料に対し照明光を照射する照明光学系と、
     前記照明光による前記試料からの反射光を受光し撮像する撮像部と、
     前記照明光学系及び前記撮像部を制御する処理部とを備え、
     前記照明光学系は、前記照明光の波長が切り換え可能であり、
     前記撮像部は、波長に応じて反射光を選択する色分解光学素子又はフィルタ装置の少なくとも一方と、選択された反射光の波長に対応して少なくとも1つが選択される複数のセンサとを備え、
     前記処理部は、選択されたセンサで撮像されたアライメント用画像を基に前記試料と前記ステージとの位置を調整するアライメント回路を備えているアライメント装置。
    An illumination optical system that illuminates the sample held on the stage with illumination light,
    An imaging unit that receives and images reflected light from the sample due to the illumination light,
    A processing unit that controls the illumination optical system and the imaging unit,
    The illumination optical system is capable of switching the wavelength of the illumination light,
    The imaging unit includes at least one of a color separation optical element or a filter device that selects reflected light according to a wavelength, and a plurality of sensors in which at least one is selected corresponding to the wavelength of the selected reflected light,
    The said process part is an alignment apparatus provided with the alignment circuit which adjusts the position of the said sample and the said stage based on the image for alignment imaged with the selected sensor.
  2.  請求項1のアライメント装置において、
     前記処理部は、前記選択されたセンサに応じて前記フィルタ装置を駆動し、前記試料に照射する照明光の波長を制限する制御回路を備えているアライメント装置。
    The alignment apparatus according to claim 1,
    The alignment unit includes a control circuit that drives the filter device according to the selected sensor and limits a wavelength of illumination light with which the sample is irradiated.
  3.  請求項2のアライメント装置において、
     前記照明光学系は、照明光の波長が異なる複数の照明光源を有し、
     前記処理部は、前記選択されたセンサに応じて前記複数の照明光源から1つを選択する制御回路を備えているアライメント装置。
    The alignment apparatus according to claim 2,
    The illumination optical system has a plurality of illumination light sources having different wavelengths of illumination light,
    The processing unit is an alignment apparatus including a control circuit that selects one of the plurality of illumination light sources according to the selected sensor.
  4.  請求項2のアライメント装置において、
     前記照明光学系は、前記照明光の出射光路に設置された開口絞りを備えており、
     前記制御回路は、前記フィルタ装置の切り換えポジションに応じて前記開口絞りを駆動して前記試料に照射される照明光量を制御するアライメント装置。
    The alignment apparatus according to claim 2,
    The illumination optical system includes an aperture stop installed in the emission optical path of the illumination light,
    The control circuit drives the aperture stop according to the switching position of the filter device to control the amount of illumination light with which the sample is irradiated.
  5.  請求項2のアライメント装置において、
     前記選択されたセンサと前記フィルタ装置の切り換えポジションとを対応付けたルックアップテーブルを記憶したメモリを備えており、
     前記制御回路は、オペレータによる入力情報に応じて前記ルックアップテーブルに基づいて前記フィルタ装置を駆動するアライメント装置。
    The alignment apparatus according to claim 2,
    A memory storing a lookup table in which the selected sensor and the switching position of the filter device are associated with each other,
    The said control circuit is an alignment apparatus which drives the said filter apparatus based on the said look-up table according to the input information by an operator.
  6.  請求項2のアライメント装置において、前記制御回路は、前記試料の表面に形成された薄膜に関する入力情報を基にシミュレーションを実行し、前記アライメント用画像が最適化される波長帯域を特定するシミュレーション回路を含んでいるアライメント装置。 3. The alignment apparatus according to claim 2, wherein the control circuit executes a simulation based on input information regarding a thin film formed on the surface of the sample, and specifies a simulation circuit that specifies a wavelength band in which the alignment image is optimized. Including alignment device.
  7.  請求項6のアライメント装置において、前記シミュレーション回路は、
     前記薄膜の厚さと屈折率から前記薄膜に覆われたパターンにおける前記照明光の第1反射光量、及び前記パターンの外側のウェハ基板における前記照明光の第2反射光量を演算する反射光量演算回路と、
     前記第1反射光量及び前記第2反射光量と前記フィルタ装置の各切り換えポジションのフィルタ特性とを基に、前記切り換えポジション毎に第1フィルタ後反射光量及び第2フィルタ後反射光量を演算するフィルタ後反射光量演算回路と、
     前記第1フィルタ後反射光量及び前記第2フィルタ後反射光量のいずれかが設定光量以上となる切り換えポジションのうち前記第1フィルタ後反射光量及び前記第2フィルタ後反射光量の比が最大となるものを前記アライメント用画像が最適化されるポジションとして特定するフィルタ選択回路と
    を含んでいるアライメント装置。
    The alignment apparatus according to claim 6, wherein the simulation circuit is
    A reflected light amount calculation circuit for calculating a first reflected light amount of the illumination light in a pattern covered with the thin film and a second reflected light amount of the illumination light in a wafer substrate outside the pattern from the thickness and refractive index of the thin film. ,
    A post-filter unit for calculating a first post-filter reflected light amount and a second post-filter reflected light amount for each switching position based on the first reflected light amount, the second reflected light amount, and the filter characteristics at each switching position of the filter device. A reflected light amount calculation circuit,
    Among the switching positions in which either the amount of reflected light after the first filter or the amount of reflected light after the second filter is equal to or greater than the set amount of light, the ratio of the amount of reflected light after the first filter and the amount of reflected light after the second filter becomes maximum. And a filter selection circuit that specifies the alignment image as a position where the alignment image is optimized.
  8.  請求項2のアライメント装置において、前記制御回路は、コントラストが設定値以上のアライメント用画像が得られるまで前記選択されたセンサと前記フィルタ装置の切り換えポジションとの組み合わせを順次変更して前記アライメント用画像を繰り返し取得する自動撮像回路を含んでいるアライメント装置。 The alignment apparatus according to claim 2, wherein the control circuit sequentially changes the combination of the selected sensor and the switching position of the filter device until an alignment image having a contrast equal to or higher than a set value is obtained. An alignment apparatus including an automatic image pickup circuit that repeatedly obtains.
  9.  請求項8のアライメント装置において、前記自動撮像回路は、前記アライメント用画像のコントラストが前記設定値未満の場合、前記フィルタ装置の切り換えポジションに代えて又は前記フィルタ装置の切り換えポジションと共に、前記ステージを駆動してフォーカス位置を変更するアライメント装置。 9. The alignment apparatus according to claim 8, wherein the automatic imaging circuit drives the stage in place of the switching position of the filter device or together with the switching position of the filter device when the contrast of the alignment image is less than the set value. Alignment device to change the focus position.
  10.  請求項8のアライメント装置において、前記自動撮像回路は、前記アライメント用画像のコントラストが前記設定値未満の場合、前記フィルタ装置の切り換えポジションに代えて又は前記フィルタ装置の切り換えポジションと共に、前記選択されたセンサの信号のゲインを補正するアライメント装置。 9. The alignment apparatus according to claim 8, wherein when the contrast of the alignment image is less than the set value, the automatic imaging circuit is selected in place of the switching position of the filter device or together with the switching position of the filter device. An alignment device that corrects the gain of the sensor signal.
  11.  前記ステージと、
     前記ステージに保持された試料の欠陥を検査する欠陥検査ユニットと、
     請求項1のアライメント装置と
    を備えた検査装置。
    The stage,
    A defect inspection unit for inspecting defects of the sample held on the stage,
    An inspection apparatus comprising the alignment apparatus according to claim 1.
  12.  ステージに保持された試料に対し照明光を照射して取得したアライメント用画像を基に前記試料と前記ステージとの位置を調整するアライメント方法であって、
     前記照明光による前記試料からの反射光を波長帯域に応じて複数に分光し、
     分光された複数の反射光のうちアライメントに用いる有効反射光を選択し、
     前記有効反射光の選択に応じて前記試料に照射する照明光の波長帯域を制限し、
     前記有効反射光から得たアライメント用画像を基に前記試料と前記ステージとの位置を調整するアライメント方法。
    An alignment method for adjusting the positions of the sample and the stage based on an alignment image obtained by irradiating the sample held on the stage with illumination light,
    Disperse the reflected light from the sample by the illumination light into a plurality according to the wavelength band,
    Select the effective reflected light to be used for alignment from the multiple reflected lights
    Limiting the wavelength band of the illumination light to irradiate the sample according to the selection of the effective reflected light,
    An alignment method for adjusting the positions of the sample and the stage based on an alignment image obtained from the effective reflected light.
PCT/JP2018/038634 2018-10-17 2018-10-17 Alignment device, inspection device, and alignment method WO2020079770A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/038634 WO2020079770A1 (en) 2018-10-17 2018-10-17 Alignment device, inspection device, and alignment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/038634 WO2020079770A1 (en) 2018-10-17 2018-10-17 Alignment device, inspection device, and alignment method

Publications (1)

Publication Number Publication Date
WO2020079770A1 true WO2020079770A1 (en) 2020-04-23

Family

ID=70284457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038634 WO2020079770A1 (en) 2018-10-17 2018-10-17 Alignment device, inspection device, and alignment method

Country Status (1)

Country Link
WO (1) WO2020079770A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669884A (en) * 1985-10-30 1987-06-02 Harris Corporation Variable wavelength optical alignment system
JPH05226220A (en) * 1992-02-10 1993-09-03 Toshiba Corp Alignment measuring apparatus
JP2007147475A (en) * 2005-11-29 2007-06-14 Hitachi High-Technologies Corp Optical inspection device and method therefor
JP2009085826A (en) * 2007-10-01 2009-04-23 Nikon Corp Observation device and method
JP2010171448A (en) * 2005-08-16 2010-08-05 Asml Netherlands Bv Mechanism and method for measuring alignment
JP2011075280A (en) * 2009-09-29 2011-04-14 Hitachi High-Technologies Corp Inspection device and inspection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669884A (en) * 1985-10-30 1987-06-02 Harris Corporation Variable wavelength optical alignment system
JPH05226220A (en) * 1992-02-10 1993-09-03 Toshiba Corp Alignment measuring apparatus
JP2010171448A (en) * 2005-08-16 2010-08-05 Asml Netherlands Bv Mechanism and method for measuring alignment
JP2007147475A (en) * 2005-11-29 2007-06-14 Hitachi High-Technologies Corp Optical inspection device and method therefor
JP2009085826A (en) * 2007-10-01 2009-04-23 Nikon Corp Observation device and method
JP2011075280A (en) * 2009-09-29 2011-04-14 Hitachi High-Technologies Corp Inspection device and inspection method

Similar Documents

Publication Publication Date Title
JP6580771B2 (en) System for examining samples in two separate channels simultaneously
JP7080884B2 (en) Defect finding and recipe optimization for inspection of 3D semiconductor structures
KR101638883B1 (en) System and method for inspecting a wafer
KR101612535B1 (en) System and method for inspecting a wafer
JP4723362B2 (en) Optical inspection apparatus and method
KR101646743B1 (en) System and method for inspecting a wafer
CN102412170B (en) The acquisition system of the light source of multi-direction upper reflection and method
US7400393B2 (en) Method and apparatus for detecting defects in a specimen utilizing information concerning the specimen
TWI536118B (en) Structured illumination for contrast enhancement in overlay metrology
US10739275B2 (en) Simultaneous multi-directional laser wafer inspection
TWI728197B (en) Process module(s) integrated into a metrology and/or inspection tool
TWI816922B (en) System and method for use in semiconductor wafer inspection algorithm selection, and non-transitory computer-readable storage medium
JP2008032433A (en) Substrate inspection device
US11150078B1 (en) High sensitivity image-based reflectometry
WO2020079770A1 (en) Alignment device, inspection device, and alignment method
TWI730133B (en) Systems and methods of using z-layer context in logic and hot spot inspection for sensitivity improvement and nuisance suppression
JP2008175818A (en) Surface inspection apparatus and method
TWI818170B (en) Defect candidate generation for inspection
WO2022044307A1 (en) Alignment device and alignment method
JP2009074815A (en) Lens defect inspection device
KR20230073133A (en) Simultaneous back and/or front and/or bulk defect detection
JP2002333406A (en) Appearance inspection device and appearance inspection method
JP2009074816A (en) Lens defect inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP