WO2020079300A1 - Dispositivo autoajustable de protección de corriente continua - Google Patents
Dispositivo autoajustable de protección de corriente continua Download PDFInfo
- Publication number
- WO2020079300A1 WO2020079300A1 PCT/ES2019/070693 ES2019070693W WO2020079300A1 WO 2020079300 A1 WO2020079300 A1 WO 2020079300A1 ES 2019070693 W ES2019070693 W ES 2019070693W WO 2020079300 A1 WO2020079300 A1 WO 2020079300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- circuit
- state
- fault
- field effect
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
- H02H3/087—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/565—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
- G05F1/569—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
- G05F1/573—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector
- G05F1/5735—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector with foldback current limiting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/02—Details
- H02H3/025—Disconnection after limiting, e.g. when limiting is not sufficient or for facilitating disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
- H02H9/025—Current limitation using field effect transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/082—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
- H03K17/0822—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
Definitions
- the present invention is framed within the technical field corresponding to electrical protections. More specifically, the invention relates, although without limitation, to a device connected in series between a direct current power supply and an electrical load, capable of limiting and interrupting the circulating direct current.
- Overloads and arcs in DC distribution systems up to 1500 volts are problems that affect both direct current electrical sources and loads. Said problems can generate the partial or complete uselessness of said electrical elements or, even, the generation of fires in the order of a few milliseconds in different applications such as data centers and telecommunications, microgrids, intelligent electrical networks or "Smart grids", systems photovoltaic, electric mobility systems or aeronautical and space systems, among others. From this problem arises the need for electrical protections capable of acting quickly, reliably and adapted to possible failures that may arise during the operation of such direct current electrical systems.
- electromechanical electrical protection devices are known in the market, characterized by being slow on a time scale relative to electrical overloads or arcs.
- electrical protection devices faster than electromechanical ones, based on the use of semiconductor devices, which generally make use of programmable digital elements, such as microcontrollers, which increases the complexity and the probability of error in the device, in addition to increasing the potential price of the device, its dimensions and the electrical consumption associated with it.
- a device is disclosed DC protection electronics, prepared to be connected in series between a DC power supply and an electrical load.
- Said device comprises a current measurement resistance and a P-channel MOSFET transistor, which acts as a function of said current measurement. Thanks to this device, the maximum current can be limited and the power supply can be cut, as well as the limitation of the maximum current. For this, the device evolves sequentially through the fault, limitation and open circuit states.
- the limitation time is predetermined and is not a function of the fault intensity.
- this device is based on the use of a microcontroller to carry out the sequential evolution between the different states.
- the use of a P-channel MOSFET transistor has disadvantages with respect to N-channel transistors, in distribution systems above 300 V in direct current due to the high conduction resistance.
- US4835649A describes a current limiter with external reset and shutdown signals, which controls a serial P-channel MOSFET switch for overload protection.
- the resistance of the conduction MOSFET is variable with temperature and self-adjusts the opening point due to overcurrent.
- the opening operation is fast with times between 10 and 50 microseconds.
- the application of the invention of this granted patent is adapted to systems between 15V and 50V.
- US patent US7746613B1 discloses a method and device for adaptively limiting current or maximum power using an electronic circuit based on op amps, a series current measurement resistor, as well as a P-channel MOSFET transistor.
- the object of the present invention refers, although without limitation, to a direct current interrupting device, suitable for connecting in series between a source of direct current and a load, comprising at least four sequential operating states depending on the current circulating in the device:
- Said device comprises at least:
- a fault current detection circuit connected in parallel to the current measurement resistance, configured to restrict the working regime of the field effect transistor to a linear area with currents circulating through the device equal to the limit current;
- a field effect transistor trip circuit connected to the field effect transistor, and the fault current detection circuit.
- Said circuit is configured to operate the device in the states of on, current limitation, off;
- a timing circuit connected to the current measurement circuit and to the interlocking circuit, configured to adjust the duration of the current limiting state as a function of the current measured during the fault state;
- an interlock circuit connected to the fault current detection circuit, to the timing circuit and to the trip circuit, where said interlock circuit is configured to keep the device in the off state;
- the interlocking circuit of the device comprises means for generating a shutdown signal, configured to go from the current limiting state to the shutdown state autonomously.
- the device's reset command circuit comprises means for generating a reset signal, configured to pass from the off state to the on state.
- the device's fault current detection circuit comprises one or more resistors configured to adjust the limiting current.
- the trip circuit of the field effect transistor of the device of the invention comprises one or more resistors configured to adjust the residence time in the fault state.
- the timing circuit of the device comprises one or more resistors configured to adjust the disconnection time, which is made up of the fault and current limiting times.
- the current measuring circuit of the device of the invention comprises one or more resistors configured to adjust the disconnection time, which is made up of the fault and current limitation times.
- the resistors of the device of the invention involved in the configuration of the adjustment parameters comprise resistors or resistive sensors dependent on one or more physical quantities.
- the device is preferably self-adjusting, as the magnitude that affects said dependent resistances is modified.
- Said resistors or resistive sensors of the device of the invention are dependent on the following physical quantities: temperature, electric tension, magnetic field, humidity, presence of gases or light. In this way, the adjustment of the limit current, of the fault time or of the current limitation time, does not require modifying the circuit or introducing external signals.
- the device further comprises a free-flowing diode for inductive loads.
- the present invention also comprises a system composed of at least two devices according to the invention, such as those described above, connected to each other by means of a serial diode in antiparallel, with the aim of operating under conditions of bidirectionality in current.
- the devices of the invention can be used up to the maximum blocking voltage of the transistor used.
- the devices of the invention can be used and can also be used up to the maximum parallel current of the main transistor.
- the devices of the invention can be used by self-adjusting the dwell time in a state of limitation in order to guarantee the integrity of the device, the load and the source, depending on the magnitude of the fault to be protected, without the need for digital systems, nor of the measurement of the dissipated power.
- the devices of the invention can be used autonomously, without the use of auxiliary power supplies.
- the device of the invention works in a voltage range below 1500V, this is due to the fact that the device has a voltage limit established by the blocking capacity of the field effect transistor responsible for the cut and current limitation.
- the voltage limit on commercial field effect transistors is of the order 1500V at present, however, in the future, its update will allow working at higher voltages.
- the field effect transistor is an N-channel transistor. Thanks to this type of transistor, it is possible to connect the device in distribution systems above 300 V in direct current.
- the device is capable of entering the off and locked state by means of an off signal.
- the device is capable of going from the off state to the on state by means of a reset signal.
- the combination of the degree of the detected electrical failure, together with the factors identified through the resistive sensors determines the duration of the protection time conferred by the device of the invention.
- the present invention can be applied in the field of electrical protections, among other applications: electric land vehicles, aircraft, as well as in the aerospace field and more specifically to satellites.
- Figure 1 shows the general block diagram with the connection of the different circuits and elements of which the device is composed, according to a preferred embodiment of the invention.
- Figure 2 shows the time evolution of the current flowing through the field effect transistor and the voltage that blocks said element in the event of a fault, representing the states in which the system evolves sequentially, fault state, state of current limitation and shutdown state, according to a preferred embodiment of the invention.
- Figure 3 shows a preferred embodiment of the electronic circuit implementation of the protection device for solid state direct current with active current limiting and self-adjusting latching time.
- Figure 4 shows an embodiment of the invention, in bidirectional mode, comprising at least two devices, according to the invention, connected to each other in antiparallel with a serial diode in each of them.
- a main object of the invention relates, as described in the preceding sections, and as represented in the block diagram of Figure 1 herein, to an electrical protection device connected in series between a source of direct current and an electrical load, capable of limiting and interrupting current in direct current systems, which generally comprises:
- bias circuit (8) with disconnection command connected between the input terminal (1) and the common terminal (3);
- the invention is prepared to be used together with a direct current electric source, connected between the input terminal (1) and the common terminal (3), and a direct current electric load connected between the output terminal (2 ) and the common terminal (3).
- the electrical input (1), output (2) and common (3) terminals can each be implemented in one or more physical connectors.
- the nominal current flows through the current measurement resistance (5) and through the field effect transistor (4) that is in conduction, as shown in Figure 2 for times t less than t1. Due to the low ignition resistance of the device, it produces very low power losses.
- the device in the event of an event in which the current is increased through the output terminal (2) and exceeds the maximum value established, that is, the limiting current (Limit), the device enters in the fault state.
- the field effect transistor (4) In this operating state, defined by the time interval t1-t2, the field effect transistor (4) is in conduction mode and therefore the current is only limited by the current measurement resistance (5), the equivalent resistance of the field effect transistor (4) in conduction mode, typically called Rdson and the resulting impedance between the output terminal (2) and common terminal (3), simply called load resistance (Rload). Because the current measurement resistance (5) and the Rdson are of very low ohmic value, the magnitude of the fault current (Fault) is practically defined by the load resistance.
- the fault time In order to protect the DC power source, the load and the protection device, the fault time must be reduced and limited between hundreds of nanoseconds and hundreds of microseconds.
- the fault state time is defined by the trip circuit of the field effect transistor (9) and can be self-adjusting with respect to another physical quantity using dependent resistances with said physical quantity.
- the device enters the current limiting state, defined by the interval t2-t3, as shown in Figure 2.
- the current limiting state defined by the interval t2-t3, as shown in Figure 2.
- the device maintains a limit current ( ⁇ Limit) regardless of the magnitude of the fault intensity.
- This operating state can imply, depending on the degree of the failure, a large power dissipation in the field effect transistor (4), so the time in the state of current limitation must be limited accordingly.
- Typical, non-exclusive values can range from several hundred microseconds to tens of seconds.
- the value of the limit intensity ( ⁇ Limit) can be adjusted with respect to another physical quantity using dependent resistances with said physical quantity.
- the device By configuring the current measurement resistance (5), the current measurement circuit (7) and the timing circuit (10), the device automatically adjusts the time in the current limiting state.
- the current limiting state time can be self-adjusting with respect to another physical quantity using dependent resistances with said physical quantity.
- the device After the current limiting state ends, as shown in Figure 2, for time t greater than t3, the device enters the off state. In this state, and thanks to the trip circuit (9) and the interlocking circuit (11), the field effect transistor (4) is in the off state, guaranteeing a high impedance between its terminals regardless of whether the fault continues present or has disappeared.
- the time interval that comprises the interval t1-t3 represented in Figure 2 is called the disconnection time. If the overload time, interval represented in Figure 2 as t1-t4 were less than the disconnection time, the device would evolve back to the on state.
- the device can also go into a shutdown state by means of an external shutdown signal that governs the shutdown command circuit (13) regardless of whether a fault has occurred. From the off state it is evolved to the on state by means of the signal that governs the reset circuit (12). For the correct operation of the device, it has a polarization circuit (8) that can contain a power control command.
- the disconnection of the power supply in the polarization circuit supposes the general shutdown of the device, without electrical consumption by the component blocks and keeping the field effect transistor (4) in the off state. The device will be in the on state once the polarization circuit is activated.
- the fault and limiting current detection circuit (6) is made up of Q1 1, R24, Q15, R32, R33 and R34. This circuit uses R27;
- the current measurement circuit (7) is made up of R25, Q12, R26, Q13, R28, R30, R29, Q14 and R31. This circuit uses R27;
- the polarization circuit with disconnection command (8) is made up of Z1, R8, R10, Q4, R13, R12, J1, R16 and Q6;
- the trip circuit of the field effect transistor (9) is made up of R19, Q9, DF1, R23 and R35;
- the timing circuit (10) is made up of C1, R5, R6, Q3 and R7;
- the interlocking circuit (1 1) is made up of R9, R11, Q5, R14, R15, R17, R18, Q7, D1 and D2;
- the reset command circuit (12) is made up of R1, R2, Q1, R3, Q2 and R4;
- the shutdown command circuit (13) is made up of R20, R21, Q8, R22 and
- - diode D3 is a free-flowing diode for inductive loads (14).
- the polarization of the device is carried out from elements Z1, J 1 and R16.
- J1 and R16 form a current source that allows Z1 to be biased to set a reference voltage below the input terminal voltage.
- Said current source also acts as a current sink for the fault detection circuit (6), current measurement circuit (7), timing circuit (10), tripping circuit of the field effect transistor (9) and interlocking circuit (1 1).
- polarization control by means of a disconnection circuit implemented by elements R8, R10, Q4, R12, R13 and Q6.
- VCC a signal
- Q6 remains open and therefore no current flows through J1.
- Said non-exclusive implementation allows the polarization of the device, and can be modified, eliminating R8, Q4 and R10 and directly controlling Q6, to invert the polarization control logic.
- Q11 With the device in the on state, Q11 remains open, so Q9 remains on through R23 and R24.
- the current flowing through Q9 limited by R19, polarizes the light emitting diode of the photovoltaic tripping circuit, DF1, generating sufficient voltage between the gate and spout terminals of M1, which keep it conductive.
- D1 is driving and keeps C1 unloaded, leaving Q5 in saturation, while Q7 and D2 remain in cut.
- the circuit remains in this state until the current through R27 exceeds a certain value, called Limit. Under these conditions, a negative feedback loop is established that limits the current and is determined by Z1, Q11, R27, Q15, R33 and R34. Said current is reached when Q11 and Q15 have the same emitter-base voltage. Assuming this condition and assuming that the base currents of Q11 and Q15 are negligible, it is concluded that the voltage drop in R27 is equal to the voltage drop in R33. From this equality, the value of the limit current is obtained, as shown in the equation [Eq. 2], where R33 is the preferred, but not exclusive, setting item.
- R33 is also a resistance or set of resistances dependent on a physical quantity, the limit current will vary according to the relationship between R33 and this magnitude.
- Some typical, but not exclusive, examples are temperature dependent resistors, lighting dependent resistors, or magnetic field dependent resistors.
- the feedback loop given by Z1, Q11, R27, Q15, R33 and R34, acts on the trip circuit (9) composed of R19, Q9, DF1, R23, and R35, to keep in M1 the current given by the equation [Eq. 2]
- the voltage between emitter and collector of Q11 is reduced, adjusting the current flowing through Q9 and therefore the voltage at the gate and dispenser terminals of M1.
- the decrease in the voltage between the gate and the M1 jet forces this element to operate in a linear zone, being able to regulate the current and keep the circuit in a current limiting zone.
- R35 is the preferred, but not exclusive, setting item of the fault state time. If R35 is also a resistance or set of resistances dependent on a physical quantity, the fault state time will vary according to the relationship between R35 and said quantity.
- Some typical, but not exclusive, examples are temperature dependent resistors, lighting dependent resistors, or magnetic field dependent resistors.
- D1 Upon entering the fault state, D1 goes into cutoff and the timing circuit (10), consisting of C1, R5, R6, Q3 and R7, begins its function.
- the C1 charge time determines the disconnection time, before entering the off state. Said time, as shown in the equation [Eq. 3], mainly depends on three parameters, the value of the voltage of Z1, the value of C1 and the value of the equivalent resistance (Req) formed by R5, R6, R7, R28 and Q3.
- R5 is the preferred setting element of the current limiting status time. If R5 is also a resistance or set of resistances dependent on a physical quantity, the disconnection time will vary according to the relationship between R5 and said quantity.
- Some typical, but not exclusive, examples are, resistors dependent with temperature, dependent resistors with lighting or resistance dependent on the magnetic field.
- R28 is the preferred, but not exclusive, setting element of the trip time per magnitude of the fault. If, in addition, R28 is a resistance or set of resistances dependent on a physical quantity, the disconnection time per magnitude of the fault current will vary according to the relationship between R28 and said magnitude. In a preferred but not exclusive embodiment, these are temperature dependent resistors, lighting dependent resistors, or magnetic field dependent resistors.
- Q5 goes into cut-off as Q7 enters driving.
- D2 conducts and maintains an emitter-collector voltage at Q11 close to zero. This causes the collector current in Q9 to be zero and M1 to remain off. This state is maintained regardless of whether the fault between the output (2) and common (3) terminals has been extinguished.
- the reset command circuit (12) made up of R1, R2, Q1, R3, Q2 and R4, allows the shutdown state to be exited by means of a signal called RST.
- RST a signal
- Q1 goes into conduction, providing enough voltage at R1 to activate Q2 and produce the C1 discharge.
- the discharge of C1 causes Q5 to start driving and therefore Q7 and D2 go to court. Under these conditions, the collector current through Q9 recirculates, M1 conducts like D1 and thus manages to keep C1 discharged regardless of whether the RST signal has been extinguished.
- OFF a shutdown situation controlled by the signal called OFF.
- Q8 and Q10 go into conduction and force the cut of Q9.
- the shutdown sequence is activated to keep M1 in cut regardless of whether the OFF signal has been extinguished.
- the diode DB In the case of having a circulating current from Terminal A to Terminal B, the diode DB will block the current flow, circulating through the branch formed by A and DA, presenting A behavior similar to that described for the isolated system.
- the diode DA In the case of having a circulating current from Terminal B to Terminal A, the diode DA will block the flow of current, circulating through the branch formed by B and DB, B exhibiting behavior similar to that described for the isolated system.
Landscapes
- Emergency Protection Circuit Devices (AREA)
Abstract
La presente invención se refiere, aunque sin limitación, a un dispositivo para la interrupción de la circulación de corriente continua ante eventos de falla eléctrica, conectado entre una fuente de alimentación de corriente continua y una carga eléctrica. Dicho dispositivo, comprende de forma general: un terminal de salida (2) del dispositivo, un terminal de entrada (1) del dispositivo, un terminal común (3) del dispositivo, un transistor de efecto campo (4), una resistencia de medida de corriente (5), un circuito de detección de corriente de falla (6), un circuito de medida de corriente (7), un circuito de polarización (8), un circuito de disparo (9), un circuito de temporización (10), un circuito de enclavamiento (11), un circuito de rearme (12) y un circuito de comando de apagado (13). El circuito permite ajustar automáticamente la intensidad límite, el tiempo de falla,el tiempo de limitación de corriente además del fondo de escala del circuito de medida de corriente de falla,
Description
DESCRIPCIÓN
DISPOSITIVO AUTOAJUSTABLE DE PROTECCIÓN DE CORRIENTE CONTINUA CAMPO DE LA INVENCIÓN
La presente invención se enmarca dentro del campo técnico correspondiente a las protecciones eléctricas. Más concretamente, la invención está referida, aunque sin limitación, a un dispositivo conectado en serie entre una fuente de alimentación de corriente continua y una carga eléctrica, capaz de limitar e interrumpir la corriente continua circulante.
ANTECEDENTES DE LA INVENCIÓN
Las sobrecargas y los arcos eléctricos en sistemas de distribución en corriente continua hasta 1500 voltios son problemas que afectan tanto a las fuentes eléctricas de corriente continua como a las cargas. Dichos problemas pueden generar la parcial o completa inutilización de dichos elementos eléctricos o, incluso, la generación de incendios en el orden de pocos milisegundos en distintas aplicaciones tales como centros de datos y telecomunicaciones, microrredes, redes eléctricas inteligentes o "Smart grids", sistemas fotovoltaicos, sistemas de movilidad eléctrica o sistemas aeronáuticos y espaciales, entre otras. De este problema surge la necesidad de contar con protecciones eléctricas capaces de actuar de forma rápida, fiable y adaptada a las posibles fallas que puedan surgir durante el funcionamiento de dichos sistemas eléctricos de corriente continua.
En la actualidad, son conocidos en el mercado dispositivos electromecánicos de protección eléctrica, caracterizados por ser lentos en una escala de tiempos relativa a las sobrecargas o arcos eléctricos. Por otro lado, existen otro tipo de dispositivos de protección eléctrica, más rápidos que los electromecánicos, basados en el uso de dispositivos semiconductores, que generalmente hacen uso de elementos digitales programables, como microcontroladores, lo que aumenta la complejidad y las probabilidades de error en el dispositivo, además de aumentar el precio potencial de dispositivo, sus dimensiones y el consumo eléctrico asociado al mismo.
Adicionalmente, son conocidas las siguientes divulgaciones de patentes en el presente campo técnico: en la solicitud de patente US2014354039A1 se divulga un dispositivo
electrónico de protección de corriente continua, preparado para conectarse en serie entre una fuente de alimentación de corriente continua y una carga eléctrica. Dicho dispositivo comprende una resistencia de medida de corriente y un transistor MOSFET de canal P, que actúa en función de dicha medida de corriente. Gracias a este dispositivo se puede limitar la corriente máxima y realizar el corte de la alimentación, así como temporizar la limitación de la corriente máxima. Para ello, el dispositivo evoluciona secuencialmente por los estados de falla, limitación y circuito abierto. Sin embargo, por un lado, el tiempo de limitación está predeterminado y no es función de la intensidad de falla. Además de ello, este dispositivo se basa en el uso de un microcontrolador para realizar la evolución secuencial entre los distintos estados. Por último, el empleo de un transistor MOSFET de canal P presenta desventajas con respecto a transistores de canal N, en sistemas de distribución por encima de 300 V en corriente directa debido a la elevada resistencia en conducción.
El documento US4835649A describe un limitador de corriente con señales externas de rearme y apagado, que controla un interruptor MOSFET de canal P serie para protección contra sobrecargas. La resistencia del MOSFET en conducción es variable con la temperatura y autoajusta el punto de apertura por sobrecorriente. El funcionamiento de apertura es rápido con tiempos entre 10 y 50 microsegundos. Por otro lado, la aplicación de la invención de esta patente concedida está adaptada a sistemas entre 15V y 50V.
Por último, la patente estadounidense US7746613B1 expone un método y dispositivo para limitar adaptativamente la corriente o la potencia máxima empleando un circuito electrónico basado en amplificadores operacionales, una resistencia en serie de medida de corriente, así como un transistor MOSFET de canal P.
Por tanto, en el estado de la técnica no existe una solución autoajustable, autónoma energética y operativamente, que permita realizar las funciones de limitación e interrupción de la corriente continua a altas tensiones, por encima de 300V, permitiendo evolucionar entre estados de encendido, falla, limitación, apagado.
DESCRIPCIÓN BREVE DE LA INVENCIÓN
El objeto de la presente invención se refiere, aunque sin limitación, a un dispositivo de interrupción de corriente continua, apto para conectarse en serie entre una fuente de
corriente continua y una carga, que comprende al menos cuatro estados de funcionamiento secuenciales dependientes de la intensidad circulante por el dispositivo:
- estado encendido, donde la intensidad demandada por la carga es inferior a una intensidad límite fijada en el dispositivo;
- estado de falla, donde la intensidad por el dispositivo es superior a la intensidad límite fijada;
- estado de limitación de corriente, donde la intensidad demandada por la carga es superior a la intensidad fijada por el dispositivo, pero es limitada por el mismo; y
- estado de apagado, donde el dispositivo queda en estado de alta impedancia forzando una intensidad prácticamente nula.
Dicho dispositivo comprende al menos:
- un terminal de entrada del dispositivo;
- un terminal de salida del dispositivo;
- un terminal común del dispositivo;
- un transistor de efecto campo responsable del corte y limitación de la corriente, conectado al terminal de salida;
- una resistencia de medida de corriente, conectada en serie con el transistor de efecto campo;
- un circuito de detección de corriente de falla conectado en paralelo a la resistencia de medida de corriente, configurado para restringir el régimen de trabajo del transistor de efecto campo a una zona lineal con intensidades circulantes por el dispositivo igual a la intensidad límite;
- un circuito de medida de corriente conectado en paralelo a la resistencia de medida para medir la corriente que circula por el dispositivo;
- un circuito de polarización con capacidad de maniobra de desconexión, conectado entre el terminal de entrada y el terminal común;
- un circuito de disparo del transistor de efecto de campo, conectado al transistor de efecto de campo, y al circuito de detección de corriente de falla. Dicho circuito está configurado para hacer funcionar al dispositivo en los estados de encendido, limitación de corriente, apagado;
- un circuito de temporización, conectado al circuito de medida de corriente y al circuito de enclavamiento, configurado para ajustar la duración del estado de limitación de corriente en función de la corriente medida durante el estado de falla;
- un circuito de enclavamiento, conectado al circuito de detección de corriente de falla, al circuito de temporización y al circuito de disparo, donde dicho circuito de enclavamiento está configurado para mantener al dispositivo en el estado apagado;
- un circuito de comando de rearme, conectado al circuito de enclavamiento que permite evolucionar al estado de encendido desde el estado de apagado;
- un circuito de comando de apagado, conectado al circuito de disparo del transistor de efecto campo que permite evolucionar al estado de apagado desde el estado de encendido.
En una forma preferida de realización de la invención, el circuito de enclavamiento del dispositivo comprende unos medios de generación de una señal de apagado, configurada para pasar del estado de limitación de corriente al estado de apagado de forma autónoma.
En otra forma de realización de la invención, el circuito de comando de rearme del dispositivo comprende unos medios de generación de una señal de rearme, configurada para pasar del estado de apagado al estado de encendido.
En otra forma preferida de realización, el circuito de detección de corriente de falla del dispositivo comprende una o más resistencias configuradas para ajustar la intensidad límite.
En una forma más de realización, el circuito de disparo del transistor de efecto campo del dispositivo de la invención, comprende una o más resistencias configuradas para ajustar el tiempo de permanencia en el estado de falla.
En todavía una forma más de realización, el circuito de temporización del dispositivo comprende una o más resistencias configuradas para ajustar el tiempo de desconexión, que se compone de los tiempos de falla y de limitación de corriente.
Aún una forma más de realización, en la que el circuito de medida de corriente del dispositivo de la invención comprende una o más resistencias configuradas para ajustar el tiempo de desconexión, que se compone de los tiempos de falla y de limitación de corriente.
En una forma también preferida de realización, las resistencias del dispositivo de la invención involucradas en la configuración de los parámetros de ajuste, comprenden
resistencias o sensores resistivos dependientes de una o más magnitudes físicas. Así, el dispositivo es preferentemente autoajustable, al modificarse la magnitud que afecta a dichas resistencias dependientes.
Dichas resistencias o sensores resistivos del dispositivo de la invención, según esta forma de realización preferida, son dependientes de las siguientes magnitudes físicas: temperatura, tensión eléctrica, campo magnético, humedad, presencia de gases o luz. De esta forma, el ajuste de la intensidad límite, del tiempo de falla o del tiempo de limitación de corriente, no requiere modificar el circuito, ni introducir señales externas.
En otra realización adicional de la presente invención, el dispositivo comprende además un diodo de libre circulación para cargas inductivas.
La presente invención también comprende un sistema compuesto de, al menos, dos dispositivos según la invención, como los descritos anteriormente, conectados entre sí mediante un diodo serie en antiparalelo, con el objetivo de funcionar en condiciones de bidireccionalidad en corriente.
Los dispositivos de la invención pueden ser utilizados hasta la tensión máxima de bloqueo del transistor empleado.
Los dispositivos de la invención pueden ser utilizados ser también utilizados hasta la corriente máxima de paralelización del transistor principal.
Los dispositivos de la invención pueden ser utilizados autoajustando el tiempo de permanencia en estado de limitación con el fin de garantizar la integridad del dispositivo, la carga y la fuente, en función de la magnitud de la falla a proteger, sin necesidad de sistemas digitales, ni de la medida de la potencia disipada.
Los dispositivos de la invención pueden ser utilizados de forma autónoma, sin el uso de fuentes de alimentación auxiliares.
Por lo general, el dispositivo de la invención trabaja en un rango de tensiones inferior a 1500V, esto es debido a que el dispositivo presenta un límite de tensión establecido por la capacidad de bloqueo del transistor de efecto campo responsable del corte y limitación de corriente. El límite de tensión en los transistores efecto campo comerciales es del orden
de 1500V en la actualidad, sin embargo, en el futuro, su actualización permitirá trabajar a tensiones superiores.
En una realización preferente de la invención, el transistor de efecto de campo es un transistor de canal N. Gracias a este tipo de transistor es posible conectar el dispositivo en sistemas de distribución por encima de 300 V en corriente continua.
En una realización preferente de la invención, el dispositivo es capaz de pasar al estado apagado y enclavado mediante una señal de apagado.
En una realización preferente de la invención, el dispositivo es capaz de pasar del estado de apagado al estado encendido mediante una señal de rearme.
En la presente invención, la combinación del grado del fallo eléctrico detectado, junto con los factores identificados a través de los sensores resistivos, determina la duración del tiempo de protección conferido por el dispositivo de la invención.
La presente invención puede ser aplicada en el ámbito de las protecciones eléctricas, entre otras aplicaciones: vehículos eléctricos terrestres, aeronaves, así como en el ámbito aeroespacial y más específicamente a los satélites.
DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra el diagrama de bloques general con la conexión de los distintos circuitos y elementos de los que se compone el dispositivo, según una realización preferente de la invención.
La Figura 2 muestra la evolución temporal de la corriente que circula por el transistor de efecto de campo y la tensión que bloquea dicho elemento en caso de producirse una falla, representándose los estados en los que evoluciona secuencialmente el sistema, estado de falla, estado de limitación de corriente y estado de apagado, según una realización preferente de la invención.
La Figura 3 muestra una realización preferente de la implementación del circuito electrónico del dispositivo de protección para corriente continua de estado sólido con limitación activa de corriente y tiempo de enclavamiento autoajustables.
La Figura 4 muestra una realización de la invención, en modo bidireccional, que comprende al menos dos dispositivos, según la invención, conectados entre sí en antiparalelo con un diodo serie en cada uno de ellos.
REFERENCIAS NUMÉRICAS UTILIZADAS EN LAS FIGURAS
Con objeto de ayudar a una mejor comprensión de las características técnicas de la invención, las citadas Figuras se acompaña de una serie de referencias numéricas donde, con carácter ilustrativo y no limitativo, se representa lo siguiente:
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Se procede a continuación a describir un ejemplo de realización preferida de la presente invención, aportada con fines ilustrativos, pero no limitativos de la misma.
Un objeto principal de la invención se refiere, tal y como se ha descrito en los apartados precedentes, y según se ha representado en el diagrama de bloques de la Figura 1 del presente documento, a un dispositivo de protección eléctrica conectado en serie entre una fuente de corriente continua y una carga eléctrica, capaz de limitar e interrumpir la corriente en sistemas de corriente continua, que comprende de forma general:
- un terminal de entrada (1) del dispositivo;
- un terminal de salida (2) del dispositivo;
- un terminal común (3) del dispositivo;
- un transistor de efecto campo (4) de corte y limitación de la corriente, conectado al terminal de salida (2);
- una resistencia de medida de corriente (5), conectada en serie con el transistor de efecto campo (4);
- un circuito de detección de corriente de falla (6), conectado en paralelo con la resistencia de medida (5);
- un circuito de medida de corriente (7) conectado en paralelo con la resistencia de medida (5);
- un circuito de polarización (8) con comando de desconexión, conectado entre el terminal de entrada (1) y el terminal común (3);
- un circuito de disparo (9) del transistor de efecto campo (4), con una de sus entradas conectada al circuito de detección de corriente de falla (6) y sus salidas conectadas al transistor de efecto campo (4);
- un circuito de temporización (10), cuya entrada está conectada al circuito de medida de corriente (7);
- un circuito de enclavamiento (1 1), con una entrada conectada al circuito de detección de corriente de falla (6) y otra al circuito de temporización (10), y cuya salida está conectada al circuito de disparo (9);
- un circuito de comando de rearme (12), cuya salida está conectada al circuito de enclavamiento (11);
- un circuito de comando de apagado (13), cuya salida está conectada al circuito de disparo (9);
- un diodo de libre circulación (14) conectado entre los terminales 2 y 3 para ser utilizado con cargas inductivas.
Por tanto, la invención está preparada para ser empleada junto una fuente eléctrica de corriente continua, conectada entre el terminal de entrada (1) y el terminal común (3), y una carga eléctrica de corriente continua conectada entre el terminal de salida (2) y el
terminal común (3). En una realización preferente de la invención, los terminales eléctricos de entrada (1), salida (2) y común (3) pueden implementarse, cada uno de ellos, en uno o varios conectores físicos.
De cara a facilitar la comprensión y la descripción de las características inventivas de la invención, a continuación, se detalla el funcionamiento y la relación entre los bloques del dispositivo. Para ello se describen a continuación los cuatro estados de funcionamiento en los que puede encontrarse el dispositivo:
- estado encendido, donde la intensidad demandada por la carga es inferior a una intensidad límite fijada en el dispositivo;
- estado de falla, donde la intensidad por el dispositivo es superior a la intensidad límite fijada;
- estado de limitación de corriente, donde la intensidad demandada por la carga es superior a la intensidad fijada por el dispositivo, pero es limitada por el mismo; y
- estado de apagado, donde el dispositivo queda en estado de alta impedancia forzando una intensidad prácticamente nula.
En estado encendido, la intensidad nominal circula a través de la resistencia de medida de corriente (5) y por el transistor de efecto campo (4) que se encuentra en conducción, según se muestra en la Figura 2 para tiempos t menor a t1. Debido a la baja resistencia de encendido que presenta el dispositivo, en éste se producen muy bajas pérdidas de potencia.
Según se muestra en la Figura 2, ante la sucesión de un evento en el que se incrementara la corriente por el terminal de salida (2) y superara el valor máximo establecido, es decir, la intensidad límite (¡Limite), el dispositivo entra en el estado de falla. En dicho estado de funcionamiento, definido por el intervalo de tiempo t1-t2, el transistor de efecto campo (4) se encuentra en modo de conducción y por tanto la corriente queda únicamente limitada por la resistencia de medida de corriente (5), la resistencia equivalente del transistor de efecto campo (4) en modo de conducción, denominada típicamente Rdson y la impedancia resultante entre el terminal de salida (2) y terminal común (3), llamada simplemente resistencia de carga (Rcarga). Debido a que la resistencia de medida de corriente (5) y la Rdson son de valor óhmico muy bajo, la magnitud de la intensidad de falla (¡Falla) queda prácticamente definida por la resistencia de carga. Con objeto de proteger la fuente de corriente continua, la carga y el dispositivo de protección, el tiempo en estado de falla debe ser reducido y estar limitado entre centenares de nanosegundos y centenares de
microsegundos. El tiempo de estado de falla queda definido por el circuito de disparo del transistor de efecto campo (9) y puede ser autoajustable respecto a otra magnitud física empleando resistencias dependientes con dicha magnitud física.
Una vez transcurrido el estado de falla, el dispositivo entra en estado de limitación de corriente, definido por el intervalo t2-t3, según se muestra en la Figura 2. En este lapso de tiempo t2-t3, gracias al circuito detector de corriente de falla (6), al circuito de temporización (10), la resistencia de medida de corriente (5) y el transistor de efecto campo (4) funcionando en zona lineal, el dispositivo mantiene una intensidad límite (¡Limite) con independencia de la magnitud de la intensidad de falla. Este estado de funcionamiento puede implicar, en función del grado de la falla, una gran disipación de potencia en el transistor de efecto campo (4), por lo que el tiempo en estado de limitación de corriente debe ser limitado en consecuencia. Valores típicos, no exclusivos, pueden estar entre varios centenares de microsegundos y decenas de segundos. El valor de la intensidad límite (¡Limite) puede ser ajustado respecto a otra magnitud física empleando resistencias dependientes con dicha magnitud física. Mediante la configuración de la resistencia de medida de corriente (5), del circuito de medida de corriente (7) y del circuito de temporización (10), el dispositivo ajusta automáticamente el tiempo en estado de limitación de corriente. El tiempo de estado de limitación de corriente puede ser autoajustable respecto a otra magnitud física empleando resistencias dependientes con dicha magnitud física.
Tras finalizar el estado de limitación de corriente, según se muestra en la Figura 2, para tiempo t mayor que t3, el dispositivo pasa al estado de apagado. En este estado, y gracias al circuito de disparo (9) y al circuito de enclavamiento (11), el transistor de efecto campo (4) se encuentra en estado apagado, garantizando una alta impedancia entre sus terminales con independencia de que la falla siga presente o haya desaparecido. El intervalo de tiempo que comprende el intervalo t1-t3 representado en la Figura 2 se le denomina, tiempo de desconexión. Si el tiempo de sobrecarga, intervalo representado en la Figura 2 como t1-t4 fuese menor al tiempo de desconexión, el dispositivo evolucionaría de nuevo al estado de encendido.
El dispositivo también puede pasar a estado de apagado mediante una señal de apagado externo que gobierna el circuito de comando de apagado (13) con independencia de haberse producido una falla. Del estado de apagado se evoluciona al estado de encendido mediante la señal que gobierna el circuito de rearme (12).
Para el correcto funcionamiento del dispositivo, éste posee un circuito de polarización (8) que puede contener un comando de control de la alimentación. La desconexión de la alimentación en el circuito de polarización supone el apagado general del dispositivo, sin consumo eléctrico por parte de los bloques integrantes y manteniendo el transistor de efecto campo (4) en estado apagado. El dispositivo se encontrará en estado de encendido una vez activado el circuito de polarización.
Una posible realización preferente, no exclusiva, de la invención se encuentra representada en la Figura 3. A continuación se realiza la identificación de los circuitos descritos de la Figura 1 de la invención y los elementos de la Figura 3:
- el transistor de efecto campo (4) como elemento principal de limitación de corriente y corte es M1 ;
- la resistencia de medida de corriente (5) es R27;
- el circuito de detección de corriente de falla y limitación (6) se compone de Q1 1 , R24, Q15, R32, R33 y R34. Este circuito emplea R27;
- el circuito de medida de corriente (7) se compone de R25, Q12, R26, Q13, R28, R30, R29, Q14 y R31. Este circuito emplea R27;
- el circuito de polarización con comando de desconexión (8) se compone de Z1 , R8, R10, Q4, R13, R12, J1 , R16 y Q6;
- el circuito de disparo del transistor de efecto campo (9) se compone de R19, Q9, DF1 , R23 y R35;
- el circuito de temporización (10) se compone de C1 , R5, R6, Q3 y R7;
- el circuito de enclavamiento (1 1) se compone de R9, R11 , Q5, R14, R15, R17, R18, Q7, D1 y D2;
- el circuito de comando de rearme (12) se compone de R1 , R2, Q1 , R3, Q2 y R4;
- el circuito de comando de apagado (13) se compone de R20, R21 , Q8, R22 y
Q10;
- el diodo D3 es un diodo de libre circulación para cargas inductivas (14).
Con la ayuda de la Figura 3, se realiza una exposición detallada de una realización preferente de la invención. En primer lugar, la polarización del dispositivo se realiza a partir de los elementos Z1 , J 1 y R16. J1 y R16 forman una fuente de corriente que permite polarizar a Z1 para fijar una tensión de referencia por debajo de la tensión del terminal de entrada. Dicha fuente de corriente también hace de sumidero de corriente para el circuito de detección de falla (6), circuito de medida de corriente (7), circuito de temporización (10),
circuito de disparo del transistor de efecto campo (9) y circuito de enclavamiento (1 1). Existe la posibilidad de control de la polarización mediante un circuito de desconexión implementado por los elementos R8, R10, Q4, R12, R13 y Q6. El control de la desconexión de la polarización se realiza con una señal, denominada VCC, de forma que, al aparecer un nivel lógico alto, Q6 queda en abierto y por tanto no circula corriente por J1. Dicha implementación, no exclusiva, permite la polarización del dispositivo, y puede ser modificada, eliminando R8, Q4 y R10 y controlando directamente Q6, para invertir la lógica de control de la polarización.
En estado de encendido, existe una tensión continua entre los terminales de entrada (1) y común (3) y una carga eléctrica de corriente continua conectada entre los terminales salida (2) y común (3). La corriente demandada por dicha carga eléctrica se sitúa por debajo de la intensidad límite (¡Limite). En dicho estado de encendido, M1 permanece en modo conducción, presentando una resistencia Rdson entre sus terminales de drenador y surtidor de valor muy reducido. A partir del análisis de la malla formada por Z1 , R27, Q15, R33 y R34 se deduce que la corriente que circula por R34 es la que se muestra en la ecuación [Ec. 1]
Estando el dispositivo en estado encendido, Q11 permanece abierto, de forma que Q9 permanece encendido a través de R23 y R24. La corriente que circula por Q9, limitada por R19, polariza el diodo emisor de luz del circuito de disparo fotovoltaico, DF1 , generando una tensión suficiente entre los terminales de puerta y surtidor de M1 , que lo mantienen en conducción. Por otro lado, D1 , está en conducción y mantiene C1 descargado, quedando Q5 en saturación, mientras que Q7 y D2 permanecen en corte.
El circuito permanece en este estado hasta que la corriente por R27 supera cierto valor, denominada ¡Limite. En estas condiciones se establece un lazo de realimentación negativa que limita la corriente y que está determinado por Z1 , Q11 , R27, Q15, R33 y R34. Dicha corriente se alcanza cuando Q11 y Q15 tienen la misma tensión emisor-base. Asumiendo esta condición y suponiendo que las corrientes de base de Q11 y Q15 son despreciables, se concluye que la caída de tensión en R27 es igual a la caída de tensión en R33. A partir de esta igualdad se obtiene el valor de la corriente límite, según se muestra en la ecuación [Ec. 2], donde R33 es el elemento de ajuste preferido, pero no exclusivo. Si además R33 es una resistencia o conjunto de resistencias dependientes de una magnitud física, el límite
de corriente variará acorde a la relación entre R33 y dicha magnitud. Algunos ejemplos típicos, pero no exclusivos, son, resistencias dependientes con la temperatura, resistencias dependientes con la iluminación o resistencias dependientes del campo magnético.
Una vez se supera la intensidad ¡Limite, el lazo de realimentación dado por Z1 , Q11 , R27, Q15, R33 y R34, actúa sobre el circuito de disparo (9) compuesto por R19, Q9, DF1 , R23, y R35, para mantener en M1 la corriente dada por la ecuación [Ec. 2] Para ello, la tensión entre emisor y colector de Q11 se reduce, ajustando la corriente que circula por Q9 y por ende el voltaje en los terminales puerta y surtidor de M1. La disminución de la tensión entre puerta y surtidor de M1 fuerza a dicho elemento a operar en zona lineal, siendo capaz de regular la corriente y mantener al circuito en zona de limitación de corriente.
Sin embargo, antes de alcanzar al estado de limitación de corriente, el sistema pasa por el estado de falla. Dicho intervalo viene determinado por el tiempo en el que M 1 pasa de modo de conducción a modo lineal y depende de R35, las características dinámicas de M1 y de DF1. R35 es el elemento de ajuste preferido, pero no exclusivo, del tiempo de estado de falla. Si además R35 es una resistencia o conjunto de resistencias dependientes de una magnitud física, el tiempo de estado de falla variará acorde a la relación entre R35 y dicha magnitud. Algunos ejemplos típicos, pero no exclusivos, son, resistencias dependientes con la temperatura, resistencias dependientes con la iluminación o resistencias dependientes del campo magnético.
Al entrar en el estado de falla, D1 pasa a corte y el circuito de temporización (10), compuesto por C1 , R5, R6, Q3 y R7, inicia su función. El tiempo de carga de C1 determina el tiempo de desconexión, antes de entrar en el estado de apagado. Dicho tiempo, según se muestra en la ecuación [Ec. 3], depende principalmente de tres parámetros, el valor de la tensión de Z1 , el valor de C1 y el valor de la resistencia equivalente (Req) formada por R5, R6, R7, R28 y Q3. R5 es el elemento de ajuste preferido del tiempo de estado de limitación de corriente. Si además R5 es una resistencia o conjunto de resistencias dependientes de una magnitud física, el tiempo de desconexión variará acorde a la relación entre R5 y dicha magnitud. Algunos ejemplos típicos, pero no exclusivos, son, resistencias
dependientes con la temperatura, resistencias dependientes con
iluminación o resistencias dependientes del campo magnético.
^onjQi ~ f Y R2Q )
Con el objeto de poder alterar Req y en consecuencia el tiempo de desconexión, del circuito temporizador en función de la magnitud de la corriente de falla, se hace uso de la resistencia R27 y el circuito de medida de corriente, compuesto por R25, Q12, R26, Q13, R28, R30, R29, Q14 y R31 , respectivamente. En el circuito de medida de corriente se establece un lazo de realimentación negativa que fuerza a que Q12 y Q14 mantengan el mismo punto de operación de forma que se genera una corriente por Q13 proporcional a la que circula por R27. Si R25 tiene el mismo valor que R29 y R26 el mismo que R30, el voltaje que aparece en R28 viene aproximado por la ecuación [Ec. 4]
Así pues, la corriente que circula por R27 genera una caída de tensión en R28 que tras alcanzar el valor necesario para activar Q3 permite una variación de Req y por tanto un cambio en el tiempo de desconexión. R28 es el elemento de ajuste preferido, pero no exclusivo, del tiempo de desconexión por magnitud de la falla. Si además R28 es una resistencia o conjunto de resistencias dependientes de una magnitud física, el tiempo de desconexión por magnitud de la corriente de falla variará acorde a la relación entre R28 y dicha magnitud. En una realización preferente, pero no exclusiva, se trata de resistencias dependientes con la temperatura, resistencias dependientes con la iluminación o resistencias dependientes del campo magnético.
Una vez transcurrido el tiempo de desconexión, Q5 pasa a corte al tiempo que Q7 entra en conducción. Igualmente, D2 entra en conducción y mantiene una tensión emisor- colector en Q11 próxima a cero. Esto hace que la corriente de colector en Q9 sea nula y M1 permanezca apagado. Este estado se mantiene con independencia de que la falla entre los terminales de salida (2) y común (3) se haya extinguido.
El circuito de comando de rearme (12), compuesto por R1 , R2, Q1 , R3, Q2 y R4, permite salir del estado de apagado mediante una señal denominada RST. Al proporcionar una tensión suficiente en la entrada RST, es decir un nivel lógico estándar, Q1 pasa a conducción, proporcionando una tensión suficiente en R1 para activar Q2 y producir la
descarga de C1. La descarga de C1 hace que Q5 entre en conducción y por tanto Q7 y D2 pasan a corte. En estas condiciones, la corriente de colector por Q9 vuelve a circular, M1 entra en conducción al igual que D1 y así se consigue mantener C1 descargado con independencia de que la señal RST se haya extinguido.
El circuito de comando de apagado (13), compuesto por R20, R21 , Q8, R22 y Q10, permite el paso a una situación de apagado controlada mediante la señal denominada OFF. Al proporcionar una tensión suficiente en la la entrada OFF, es decir un nivel lógico estándar y durante un tiempo mayor al tiempo de desconexión, Q8 y Q10 pasan a conducción y fuerzan el corte de Q9. En este momento se activa la secuencia de apagado para mantener M1 en corte con independencia de que la señal de OFF se haya extinguido.
El funcionamiento del sistema del sistema configurado para funcionar en bidireccionalidad de corriente es el que se describe a continuación. En función de la dirección de corriente, uno de los dos diodos (DA o DB) en serie con cada dispositivo individual (A y B) bloqueará el paso de corriente, circulando la corriente por el dispositivo adyacente (A o B) y su correspondiente diodo serie (DA o DB).
Para el caso de tener una corriente circulante desde el Terminal A hacia Terminal B, el diodo DB bloqueará el paso de corriente, circulando por la rama formada por A y DA, presentado A un comportamiento análogo al descrito para el sistema aislado.
Para el caso de tener una corriente circulante desde el Terminal B hacia Terminal A, el diodo DA bloqueará el paso de corriente, circulando por la rama formada por B y DB, presentado B un comportamiento análogo al descrito para el sistema aislado.
Claims
REIVINDICACIONES
1 Dispositivo de interrupción de corriente continua, apto para conectarse en serie entre una fuente de alimentación de corriente continua y una carga, que comprende al menos cuatro estados de funcionamiento secuenciales:
- estado encendido, donde la intensidad demandada por la carga es inferior a una intensidad límite fijada en el dispositivo;
- estado de falla, donde la intensidad por el dispositivo es superior a la intensidad límite fijada;
- estado de limitación de corriente, donde la intensidad demandada por la carga es superior a la intensidad fijada por el dispositivo, pero es limitada por el mismo; y
- estado de apagado, donde el dispositivo queda en estado de alta impedancia forzando una intensidad prácticamente nula;
estando dicho dispositivo caracterizado por que comprende al menos:
- un terminal de entrada (1) del dispositivo;
- un terminal de salida (2) del dispositivo;
- un terminal común (3) del dispositivo;
- un transistor de efecto campo (4) responsable del corte y limitación de la corriente, conectado al terminal de salida (2);
- una resistencia de medida de corriente (5), conectada en serie con el transistor de efecto campo (4);
- un circuito de detección de corriente de falla (6) conectado en paralelo a la resistencia de medida de corriente (5), configurado para restringir el régimen de trabajo del transistor de efecto campo (4) a una zona lineal con intensidades circulantes por el dispositivo igual a la intensidad límite;
- un circuito de medida de corriente (7) conectado en paralelo a la resistencia de medida (5) para medir la corriente que circula por el dispositivo;
- un circuito de polarización (8) con capacidad de maniobra de desconexión, conectado entre el terminal de entrada (1) y el terminal común (3);
- un circuito de disparo del transistor de efecto campo (9), con un terminal conectado al transistor de efecto campo (4) y con otro terminal conectado al circuito de detección de corriente de falla (6), donde el circuito de disparo del transistor de efecto campo (9) está configurado para hacer funcionar al dispositivo en los estados de falla, limitación de corriente y de apagado, y que además está configurado para ajustar la duración del estado de falla;
- un circuito de temporización (10), conectado al circuito de medida de corriente (7) configurado para ajustar la duración del estado de limitación de corriente;
- un circuito de enclavamiento (1 1), conectado al circuito de detección de corriente de falla (6), al circuito de temporización (10) y al circuito de disparo (9), donde dicho circuito de enclavamiento (11) está configurado para mantener al dispositivo en el estado apagado;
- un circuito de comando de rearme (12), conectado al circuito de enclavamiento (1 1) que permite evolucionar al estado de encendido desde el estado de apagado;
- un circuito de comando de apagado (13), conectado al circuito de disparo del transistor de efecto campo (9) que permite evolucionar al estado de apagado desde el estado de encendido.
2.- Dispositivo según la reivindicación 1 , donde el circuito de enclavamiento (11) comprende unos medios de generación de una señal de apagado, configurada para pasar del estado de limitación de corriente al estado de apagado de forma autónoma.
3.- Dispositivo según cualquiera de las reivindicaciones anteriores, donde el circuito de comando de rearme (12) comprende unos medios de generación de una señal de rearme, configurada para pasar del estado de apagado al estado de encendido.
4 - Dispositivo según cualquiera de las reivindicaciones anteriores, donde el circuito de detección de corriente de falla (6) comprende una o más resistencias configuradas para ajustar la intensidad límite.
5.- Dispositivo según cualquiera de las reivindicaciones anteriores, donde el circuito de disparo del transistor de efecto campo (9) comprende una o más resistencias (R35) configuradas para ajustar el tiempo de permanencia en el estado de falla.
6.- Dispositivo según cualquiera de las reivindicaciones anteriores, donde el circuito de temporización (10) comprende una o más resistencias configuradas para ajustar el tiempo de desconexión, que se compone de los tiempos de falla y de limitación de corriente.
7.- Dispositivo según cualquiera de las reivindicaciones anteriores, donde el circuito de medida de corriente (7) comprende una o más resistencias (R28) configuradas para ajustar el tiempo de desconexión, que se compone de los tiempos de falla y de limitación de corriente.
8.- Dispositivo según cualquiera de las reivindicaciones anteriores, donde las resistencias comprenden resistencias o sensores resistivos dependientes de una o más magnitudes físicas.
9.- Dispositivo según la reivindicación anterior, que comprende resistencias o sensores resistivos dependientes de las siguientes magnitudes físicas: temperatura, tensión eléctrica, campo magnético, humedad, presencia de gases o luz.
10.- Dispositivo según cualquiera de las reivindicaciones anteriores, que además comprende un diodo de libre circulación para cargas inductivas (14).
1 1.- Sistema que comprende al menos dos dispositivos según cualquiera de las reivindicaciones anteriores, conectados entre sí mediante un diodo serie en antiparalelo con el objetivo de funcionar en condiciones de bidireccionalidad en corriente.
12.- Dispositivo y sistema según las reivindicaciones 1 a 11 para ser utilizados hasta la tensión máxima de bloqueo del transistor empleado.
13.- Dispositivo y sistema según las reivindicaciones 1 a 11 para ser utilizados hasta la corriente máxima de paralelización del transistor principal (4).
14.- Dispositivo y sistema según las reivindicaciones 1 a 11 para ser utilizados autoajustando el tiempo de permanencia en estado de limitación con el fin de garantizar la integridad del dispositivo, la carga y la fuente en función de la magnitud de la falla a proteger, sin necesidad de sistemas digitales, ni de la medida de la potencia disipada.
15.- Dispositivo y sistema según las reivindicaciones 1 a 1 1 para ser utilizados de forma autónoma, sin el uso de fuentes de alimentación auxiliares.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201830998A ES2754800A1 (es) | 2018-10-16 | 2018-10-16 | Dispositivo autoajustable de proteccion de corriente continua |
ESP201830998 | 2018-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020079300A1 true WO2020079300A1 (es) | 2020-04-23 |
Family
ID=70273812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2019/070693 WO2020079300A1 (es) | 2018-10-16 | 2019-10-11 | Dispositivo autoajustable de protección de corriente continua |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2754800A1 (es) |
WO (1) | WO2020079300A1 (es) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0474186A2 (en) * | 1990-09-03 | 1992-03-11 | Hitachi, Ltd. | Method of and device for protecting electrical power system |
WO2004082091A1 (en) * | 2003-03-14 | 2004-09-23 | Magnetek S.P.A. | Electronic circuit breaker |
US20100277847A1 (en) * | 2009-05-04 | 2010-11-04 | Xueqing Li | Solid-State Disconnect Device |
WO2017053333A1 (en) * | 2015-09-21 | 2017-03-30 | Symptote Technologies Llc | One-transistor devices for protecting circuits and autocatalytic voltage conversion therefor |
-
2018
- 2018-10-16 ES ES201830998A patent/ES2754800A1/es active Pending
-
2019
- 2019-10-11 WO PCT/ES2019/070693 patent/WO2020079300A1/es active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0474186A2 (en) * | 1990-09-03 | 1992-03-11 | Hitachi, Ltd. | Method of and device for protecting electrical power system |
WO2004082091A1 (en) * | 2003-03-14 | 2004-09-23 | Magnetek S.P.A. | Electronic circuit breaker |
US20100277847A1 (en) * | 2009-05-04 | 2010-11-04 | Xueqing Li | Solid-State Disconnect Device |
WO2017053333A1 (en) * | 2015-09-21 | 2017-03-30 | Symptote Technologies Llc | One-transistor devices for protecting circuits and autocatalytic voltage conversion therefor |
Also Published As
Publication number | Publication date |
---|---|
ES2754800A1 (es) | 2020-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI506907B (zh) | 整合的過電流及過電壓保護裝置及用於過電流及過電壓保護之方法 | |
US4800331A (en) | Linear current limiter with temperature shutdown | |
ES2261371T3 (es) | Disyuntor electronico. | |
US20080002325A1 (en) | Power Supply Controller | |
ES2589308T3 (es) | Disyuntor electrónico | |
ES2959270T3 (es) | Aparato y método para proteger un relé MOSFET usando un detector de voltaje y un fusible de señal | |
EP2391008B1 (en) | Protection circuit and method for electronic devices | |
ES2733835T3 (es) | Interruptor de circuito de corriente | |
TWI553439B (zh) | Semiconductor device | |
KR101446994B1 (ko) | Mit 기술을 적용한 자동 고온 및 고전류 차단 방법 및 이러한 방법을 사용하는 스위치 | |
CN104363011A (zh) | 一种igbt的过流检测与保护电路 | |
CN104104064A (zh) | 一种热保护电路 | |
US20170012617A1 (en) | Methods and Apparatus for Power Switch Fault Protection | |
WO2018079276A1 (ja) | 電源装置 | |
JP2022047512A (ja) | デプレッションモードmosfetおよびバイメタル温度感知スイッチによる過電流保護 | |
ES2814175T3 (es) | Dispositivo de protección con rutas de corriente paralelas, en las cuales está dispuesto respectivamente un disyuntor, así como procedimiento para el funcionamiento de un tal dispositivo de protección | |
US3624490A (en) | Two terminal current regulator | |
US20190273373A1 (en) | Protection circuit involving positive temperature coefficient device | |
US3691426A (en) | Current limiter responsive to current flow and temperature rise | |
ES2655078T3 (es) | Limitador de corriente de pérdida | |
WO2020079300A1 (es) | Dispositivo autoajustable de protección de corriente continua | |
ES2211352B1 (es) | Circuito de seguridad activa de cargas protegidas por reles de estado solido. | |
ES1274884U (es) | Dispositivo autoajustable de proteccion de corriente continua | |
CN113746063A (zh) | 一种保护电路及电路保护装置 | |
KR102276588B1 (ko) | 기준전압 가변형 igbt 구동회로 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19873796 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19873796 Country of ref document: EP Kind code of ref document: A1 |