WO2020078872A1 - Störfallregelung für einen windpark mit prioritisierung der externen sollwertvorgaben - Google Patents

Störfallregelung für einen windpark mit prioritisierung der externen sollwertvorgaben Download PDF

Info

Publication number
WO2020078872A1
WO2020078872A1 PCT/EP2019/077719 EP2019077719W WO2020078872A1 WO 2020078872 A1 WO2020078872 A1 WO 2020078872A1 EP 2019077719 W EP2019077719 W EP 2019077719W WO 2020078872 A1 WO2020078872 A1 WO 2020078872A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind farm
wind
control unit
network
fault
Prior art date
Application number
PCT/EP2019/077719
Other languages
English (en)
French (fr)
Inventor
Johannes BROMBACH
Original Assignee
Wobben Properties Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wobben Properties Gmbh filed Critical Wobben Properties Gmbh
Priority to CA3114659A priority Critical patent/CA3114659C/en
Priority to EP19787237.7A priority patent/EP3867988A1/de
Priority to CN201980067769.6A priority patent/CN112868156A/zh
Priority to US17/285,041 priority patent/US11482862B2/en
Publication of WO2020078872A1 publication Critical patent/WO2020078872A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • H02J3/0012Contingency detection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • F03D9/257Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • H02J3/00125Transmission line or load transient problems, e.g. overvoltage, resonance or self-excitation of inductive loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/18The network being internal to a power source or plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages

Definitions

  • the present invention relates to a method for controlling a wind farm
  • Wind farms usually have a large number of wind turbines that
  • the wind farm network In order to feed the electrical power generated by the wind energy plants into an electrical supply network, the wind farm network is usually used
  • a connecting line and a wind farm transformer connected to the electrical supply network.
  • the object of the present invention is therefore to address one of the above-mentioned learners, to improve the general state of the art or to provide an alternative to what is known up to now.
  • improved controllability of wind farms should be provided in the event of a malfunction in the electrical supply network.
  • a method for controlling a wind farm operated by means of a wind farm control unit which comprises a large number of wind power plants having wind power plant controls, which are connected to one another via a common wind farm network which is connected to an electrical supply network of a network operator by means of a wind farm transformer the steps: receiving at least one fault bit at the wind farm control unit, in particular at least one fault bit from the network operator; Deactivating all external setpoint specifications on the wind farm control unit, except those of the network operator, after receipt of the fault bit; Activation of an accident control implemented in the wind farm control unit after successful deactivation of all external setpoint specifications, except those of the network operator.
  • a method for controlling a wind farm is therefore proposed which has a large number of wind energy installations which are connected to one another via a common wind farm network.
  • the wind farm has a central wind farm control unit which is at least set up to receive data from a network operator and also or alternatively to control the individual wind turbines of the wind farm.
  • the wind energy plants themselves preferably also have at least one wind energy plant control unit, which is preferably set up to communicate with the wind farm control unit, that is to say to send data to it and to receive data from it.
  • the wind farm control unit now receives a fault bit, in particular the fault bit of a network operator.
  • a safe line between the wind farm control unit and the network operator can be provided for this purpose.
  • the secure line can be provided, for example, by an underground cable or by a radio link.
  • the secure line can also be a fiber optic line or a VPN tunnel, especially a smart meter gateway.
  • the fault bit itself is preferably to be understood as a separate signal, which in the simplest case consists of only one bit, that is either “0” or “1”, and is intended to trigger a fault control in the wind farm control unit, that is to say a separate operating case or one operating mode: accident control.
  • the fault bit is preferably designed such that a signal is only present in the event of a fault, ie “1”.
  • an accident control or an operating mode accident control implemented in the wind farm control unit is activated, in particular as described below.
  • the accident control itself, at least the following properties are preferably fulfilled: deactivation of all external setpoint specifications, except via the network operator interface; Deactivating all positioning range restrictions, in particular by means of wind farm regulation or by the wind farm control unit; Setting a starting block in the event of temporary lack of voltage or setting the active power to zero after voltage recovery.
  • the wind farm thus has at least one operating mode: normal operation and one operating mode: accident control, in particular as described below.
  • different parameter sets are preferably stored in the wind farm control unit.
  • the wind farm control unit preferably has a setting range limitation and the method further comprises the step: deactivating the setting range limitation after receipt of the fault bit. It is thus proposed in particular that, provided that the wind farm control unit and / or the wind farm has an adjustable adjustment range that can be restricted, it can be deactivated.
  • the wind farm has a setting range for the reactive power, which is limited to a cos (Phi) of 0.95. This is done, for example, when the network connection guidelines only require such a setting range. This avoids additional losses caused by the application of reactive power that is not required. Physically, however, the wind farm has a setting range of 0.5 P nominal, for example.
  • the wind farm control unit preferably has an active power setpoint specification for the plurality of wind energy plants and the method further comprises the step: setting the active power setpoint specification to a value equal to zero.
  • the wind turbines of the wind farm then initially do not feed any power into the wind farm network during the accident control.
  • the method preferably further comprises the step: interrogating a status of the wind energy installations by the wind farm control unit at the wind energy installation controls.
  • the wind farm control unit queries the state of the wind energy plants during the accident control, for example whether the wind energy plants are ready for operation, in particular are ready for the accident control.
  • the wind farm control unit also queries the active power to be expected from the wind energy plants.
  • the control of the wind energy plants has, for example, a power forecasting unit which is set up to predict an expected effective power as a function of a weather forecast.
  • the wind farm control unit is supplied with the expected power values of the wind energy plants, for example reports them to the network operator, or uses them to regulate the wind farm more efficiently in the event of an accident control.
  • the method preferably further comprises the step: transferring warning signals through the wind power plant controls to the wind farm control units and / or transfer of warning signals by the wind farm control unit to the network operator.
  • a wind calm occurs in the area of the wind farm, which means that the wind farm can no longer or not fully implement its accident control system.
  • the controllability of the wind farm as such can also fail. If this has been determined by the wind farm control unit, for example by warning signals from the individual wind energy plants, a corresponding warning message is sent to the network operator.
  • the network operator always knows from the warning messages whether the wind farm can participate in the accident control and / or whether the wind farm is still part of the accident control. The network operator is therefore always able to recognize that a wind farm is not participating and to request or activate a corresponding accident control system from another wind farm.
  • the fault bit is preferably received when the electrical supply network has gone black. It is therefore proposed in particular that the fault bit be used to activate a network reconstruction mode.
  • the network operator transmits the malfunction bit to the wind farm control unit, which thereby activates its malfunction control.
  • a wind farm network reconstruction mode can also be activated, which is part of the accident control.
  • the accident control is thus preferably designed for the network restoration of the electrical supply network.
  • the accident control is preferably activated when the wind farm feeds electrical power into the electrical supply network that is zero. In principle, it is also conceivable to activate the accident control when the wind farm is still feeding electrical power into the electrical supply network.
  • the wind park first freezes its electrical power feed after receiving the fault bit and then starts its power in accordance with the accident control, preferably by means of power ramps.
  • the wind farm control unit preferably has a travel time that is shorter than the travel time of the plurality of wind energy plants.
  • a wind farm comprising a plurality of wind energy plants, a wind farm network connecting the plurality of wind energy plants and a wind farm control unit which is set up to carry out at least one method described above or below.
  • the wind farm control unit is thus in particular set up to operate the wind farm in one operating mode: normal operation and in one operating mode: accident control.
  • the operating mode accident control, for example, another parameter set is provided, the accident parameter set.
  • the accident parameter set is preferred stored in the wind farm control unit and also or alternatively in the wind turbine control units.
  • the fault parameter set preferably includes at least one function from the list below: a) With the electrical supply network temporarily de-energized: start-up of all wind turbines and preparation for feed-in, the active and reactive power setpoint being transferred from the wind farm control unit to the wind turbine control unit passed, remains at zero; b) upon activation of the operating mode: normal operation: setting the active power setpoint of the wind turbine control units by the wind farm control unit to a current feed-in power; c) when activating the operating mode: Incident control: Deactivating all setting range restrictions of the wind farm control unit; d) Active power control with reserve power and P (f) characteristic without dead band; e) predefined active power ramps (control speed) for new setpoints; f) no allowance of setpoints greater than P available 10% P available (q (1qG P nominal), in particular
  • the voltage and frequency are preferably regulated, in particular with a maximum possible dynamic range, e.g. twice pnenn per second or ten times qnenn per second, especially in both positive and negative directions.
  • the wind farm control unit preferably has at least one operator interface, which is set up to receive external setpoint values, and a network operator interface, which is set up to receive the fault bit.
  • the wind farm control unit thus has at least two interfaces for data exchange outside the wind farm, one interface being provided exclusively for the network operator, namely the network operator interface, by means of which the fault bit is preferably received.
  • the wind farm control unit also has at least one wind turbine interface, which is set up to transmit setpoints to the wind turbine.
  • the wind farm control unit preferably also has a wind power plant warning interface that is set up to receive warning signals from wind power plants, and also or alternatively a wind farm warning interface that is set up to send warning signals to the network operator.
  • the warning signals are preferably provided to reflect a status of the wind turbine or the wind farm.
  • the wind farm control unit preferably has at least one interface or a further interface which fulfills at least one of the following functions: activation of an operating mode: accident control; Switch off or ignore all external setpoint specifications except from the network operator; Entry of new setpoint, such as setpoint frequency; Receiving and / or sending warning signals, in particular regarding primary control capacity, reactive power setting range, accessibility to the wind farm, status signals, P-available, Q-available, current primary control capacity or the operating mode: Incident control.
  • the wind farm preferably further comprises an uninterruptible voltage supply, which is set up to supply the wind farm control unit and / or the plurality of wind power plants with electrical power for a predetermined period of time in such a way that the wind farm can carry out a black start, even if the electrical supply network does not Has tension.
  • an uninterruptible voltage supply which is set up to supply the wind farm control unit and / or the plurality of wind power plants with electrical power for a predetermined period of time in such a way that the wind farm can carry out a black start, even if the electrical supply network does not Has tension.
  • the uninterruptible power supply is at least in the form that at least the communication between the wind farm control unit and the network operator can be maintained.
  • the predetermined time period is preferably at least 4, preferably at least 8, hours. It is thus proposed in particular that the uninterruptible power supply is dimensioned such that the wind farm can carry out its accident control for at least 4, preferably at least 8, hours independently, even when there is no wind. In a particularly preferred embodiment, the predetermined period is at least 48 hours.
  • the wind power plants preferably each have a wind power plant control which is set up to be operated with at least one operating parameter set and one fault parameter set and to switch between the operating parameter set and the fault parameter set on a signal from the wind farm control unit.
  • the wind turbines of the wind farm can be operated with at least two different parameter sets, at least one parameter set being provided for the accident control.
  • the incident parameter set has the functions described above or below, in particular the same functions that the incident parameter set of the wind farm control unit also has.
  • the wind energy plants are thus designed and set up for at least two different operating modes, one operating mode being provided specifically for accident control.
  • the wind farm control unit is preferably set up to record at least one size of the electrical supply network, which indicates a fault in the electrical supply network, in order to generate the fault bit and to generate the fault bit. It is therefore proposed in particular that the wind farm control unit automatically detects a malfunction and automatically initiates the malfunction control without the network operator having to call the malfunction. It is particularly advantageous here that the automatic detection of the incident by the wind farm is significantly faster than the incident detection by the network operator.
  • a wind power plant of a wind farm described above or below comprising a wind power plant control which is set up to be operated with at least one operating parameter set and a fault parameter set and to switch the wind power plant control to a signal of the wind farm control unit between the operating parameter set and the fault parameter set , in particular to participate in a method described above or below.
  • FIG. 1 shows a schematic view of a wind power installation according to the invention of a wind farm according to the invention
  • Fig. 2 shows a schematic structure of a wind farm according to the invention in one embodiment
  • FIG. 3 shows a schematic sequence of a method according to the invention for controlling a wind farm, in particular activating the accident control of a wind farm control unit.
  • FIG. 1 shows a wind turbine 100 according to the invention of a wind farm according to the invention.
  • the wind energy installation 100 has a tower 102 and a nacelle 104.
  • An aerodynamic rotor 106 with three rotor blades 108 and a spinner 110 is arranged on the nacelle 104.
  • the rotor 106 is set into a rotary movement by the wind and thereby drives a generator in the nacelle 104.
  • the generator generates a current, which is fed by means of a full converter to a wind turbine transformer which is connected to a wind farm network.
  • the wind energy installation has a wind energy installation control unit which is set up to control the full converter, in particular with an operating parameter set and an accident parameter set.
  • FIG. 2 shows a schematic structure of a wind farm 1000 according to the invention in one embodiment.
  • the wind farm 1000 comprises a multiplicity of wind energy plants 1100, as shown for example in FIG. 1, which are connected to one another via a common wind farm network 1200.
  • the wind farm network 1200 is connected to an electrical supply network 2000 by means of a wind farm transformer 1300 in order to feed in an electrical wind farm power Ppar k , which is composed of a sum of the individual electrical wind power plant powers Pwea.
  • the wind farm 1000 has a wind farm control unit 1400 for controlling the wind farm 1000.
  • the wind farm control unit 1400 includes an operator interface 1410, a network operator interface 1420 and a wind turbine interface 1430.
  • the operator interface 1410 is set up to receive external setpoint specifications Sown, which are predefined, for example, by a wind farm operator 3000.
  • the network operator interface 1420 is set up to receive at least one fault bit S1 / 0 from a network operator 4000.
  • the wind turbine interface 1430 is set up to transmit 1000 setpoints, for example reactive power setpoints Qs, to the wind turbines 1100 of the wind farm in order to control the wind farm 1000 and in particular the electrical wind farm power Ppar k .
  • the wind farm control unit 1400 is set up to record at least one quantity of the electrical supply network, in particular the grid voltage Ugrid, which indicates a fault in the electrical supply network 2000, in particular in order to generate the fault bit S1 / 0 itself.
  • the wind farm control unit 1400 is thus also set up to trigger the accident control itself, and in particular automatically.
  • an uninterruptible voltage supply 1500 is provided, which is set up to supply the wind farm control unit 1400 and optionally the large number of wind energy plants 1100 with electrical power Pusv for a predetermined period of time in such a way that the wind farm 1000 can carry out a black start, even if the electrical supply network 2000 has no tension.
  • the predetermined time period is, for example, at least 8 hours.
  • the wind energy plants 1 100 each have a wind energy plant control 1180, which receive the target values Q s of the wind farm control unit 1400 and are set up to be operated with at least one operating parameter set and one fault parameter set in order to control the wind energy plants 1100 in accordance with the above or below.
  • the wind turbine controls 1180 are further configured to switch between the operating parameter set and the fault parameter set on a signal Sn / s of the wind farm control unit 1400 in order to operate the wind turbine 1 100 in accordance with the above or below.
  • FIG. 3 shows a schematic sequence of a method 5000 according to the invention for controlling a wind farm, in particular as shown in FIG. 2.
  • a first step 5100 the fault bit S1 / 0 of the network operator is received at the wind farm control unit 1400.
  • a second step 5200 all external setpoint values Sown on the wind farm control unit 1400 are deactivated.
  • a third step 5300 an accident control implemented in the wind farm control unit 1400 is activated, which preferably deactivates the limitation of the operating range of the wind farm control unit 1400.
  • the wind farm 1000 and in particular the wind energy plants 1100 of the wind farm 1000, is operated in an operating mode: accident control which has at least one of the above functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Steuern eines mittels einer Windparksteuereinheit betriebenen Windparks, der eine Vielzahl von Windenergieanlagensteuerungen aufweisende Windenergieanlagen umfasst, die über ein gemeinsames Wind parknetz miteinander verbunden sind, welches mittels eines Windparktransformators an ein elektrisches Versorgungsnetz eines Netzbetreibers angeschlossen ist, umfassend die Schritte: Empfangen wenigstens eines Störungsbits an der Windparksteuereinheit, insbesondere wenigstens eines Störungsbits des Netzbetreibers, Deaktivieren aller externen Sollwertvorgaben an der Windparksteuereinheit, außer denen des Netzbetreibers, nach Empfang des Störungsbits, Aktivieren einer in der Windparksteuereinheit implementierten Störfallregelung, nach erfolgreicher Deaktivierung aller externen Sollwertvorgaben, außer denen des Netzbetreibers.

Description

STÖRFALLREGELUNG FÜR EINEN WINDPARK MIT PRIORITISIERUNG DER EXTERNEN SOLLWERTVORGABEN
Die vorliegende Erfindung betrifft ein Verfahren zum Steuern eines Windparks sowie
einen solchen Windpark.
Windparks weisen üblicherweise eine Vielzahl von Windenergieanlagen auf, die
über ein gemeinsames Windparknetz miteinander verbunden sind.
Um die mittels der Windenergieanlagen erzeugte elektrische Leistung in ein elektrisches Versorgungsnetz einzuspeisen, wird das Windparknetz üblicherweise mittels
einer Verbindungsleitung und eines Windparktransformators an das elektrische Versorgungsnetz angeschlossen.
5 Die zunehmende Durchdringung des elektrischen Versorgungsnetzes mit umrichtergesteuerten Erzeugern, wie bspw. Windenergieanlagen oder Photovoltaikanlagen,
führt zu einer zunehmenden Verdrängung konventioneller Erzeuger, wie bspw. Kohlekraftwerken, die üblicherweise für den Netzwiederaufbau des elektrischen Versorgungsnetzes zuständig sind, wenn dieses einen schweren Netzfehler, wie bspw. ei- 10 nen Schwarzfall, aufweist. Da in einem elektrischen Versorgungsnetz mit hoher Durchdringung umrichtergesteuerter Erzeuger die Netzeigenschaften des elektrischen Versorgungsnetzes verschoben sind, sind bekannte Windenergieanlagen nur bedingt dazu geeignet, an einem effektiven Netzwiederaufbau des elektrischen Versorgungsnetzes teilzuneh- men.
Das Deutsche Patent- und Markenamt hat in der Prioritätsanmeldung zu vorliegender PCT-Anmeldung folgenden Stand der Technik recherchiert: DE 102016 123 384 A1 , DE 10 2016 124 840 A1 und DE 10 2008 062 356 A1.
Aufgabe der vorliegenden Erfindung ist es daher, eines der oben genannten Prob- lerne zu adressieren, den allgemeinen Stand der Technik zu verbessern oder eine Alternative zu bisher Bekanntem bereitzustellen. Insbesondere soll eine verbesserte Steuerbarkeit von Windparks im Störfall des elektrischen Versorgungsnetzes bereitgestellt werden.
Erfindungsgemäß wird somit ein Verfahren zum Steuern eines mittels einer Wind- parksteuereinheit betriebenen Windparks vorgeschlagen, der eine Vielzahl von Windenergieanlagensteuerungen aufweisende Windenergieanlagen umfasst, die über ein gemeinsames Windparknetz miteinander verbunden sind, welches mittels eines Wind parktransformators an ein elektrisches Versorgungsnetz eines Netzbetreibers angeschlossen ist, umfassend die Schritte: Empfangen wenigstens eines Störungsbits an der Windparksteuereinheit, insbesondere wenigstens eines Störungsbits des Netzbetreibers; Deaktivieren aller externen Sollwertvorgaben an der Windparksteuereinheit, außer denen des Netzbetreibers, nach Empfang des Störungsbits; Aktivieren einer in der Windparksteuereinheit implementierten Störfallregelung nach erfolgreicher Deaktivierung aller externen Sollwertvorgaben, außer de- nen des Netzbetreibers.
Es wird somit ein Verfahren zum Steuern eines Windparks vorgeschlagen, der eine Vielzahl von Windenergieanlagen aufweist, die über ein gemeinsames Windparknetz miteinander verbunden sind.
Hierzu weist der Windpark eine zentrale Windparksteuereinheit auf, die wenigstens dazu eingerichtet ist, Daten eines Netzbetreibers zu empfangen und außerdem oder alternativ die einzelnen Windenergieanlagen des Windparks zu steuern. Die Windenergieanlagen selbst weisen hierfür bevorzugt ebenfalls wenigstens eine Windenergieanlagensteuereinheit auf, die bevorzugt dazu eingerichtet ist, mit der Windparksteuereinheit zu kommunizieren, also Daten an diese zu senden und Daten von dieser zu empfangen. In einem ersten Schritt des erfindungsgemäßen Verfahrens empfängt nun die Windparksteuereinheit ein Störungsbit, insbesondere das Störungsbit eines Netzbetreibers.
Hierfür kann bspw. eine sichere Leitung zwischen Windparksteuereinheit und Netzbetreiber vorgesehen sein. Die sichere Leitung kann bspw. durch ein Erdkabel oder durch eine Funkverbindung bereitgestellt werden. Die sichere Leitung kann aber auch eine Glasfaserleitung oder ein VPN-Tunnel, insbesondere eines Smart-Meter- Gateways, sein.
Das Störungsbit selbst ist bevorzugt als gesondertes Signal zu verstehen, welches im einfachsten Fall nur aus einem Bit besteht, also entweder„0“ oder„1“ ist, und dazu vorgesehen ist, in der Windparksteuereinheit eine Störfallregelung auszulösen, also einen gesonderten Betriebsfall bzw. einen Betriebsmodus: Störfallregelung.
Bevorzugt ist das Störungsbit so ausgeführt, dass nur im Störfall ein Signal anliegt, also„1“.
Nach Empfang des Störungsbits werden alle anderen externen Sollwertvorgaben deaktiviert. Dies bedeutet insbesondere, dass der Anlagenbetreiber oder Direktver- markter oder andere Dritte keinen Zugriff mehr auf die Steuerung des Windparks, insbesondere die Windparksteuereinheit, haben.
Es wird somit insbesondere vorgeschlagen, dass im Störfall des elektrischen Versorgungsnetzes der Netzbetreiber den Windpark in eine autonome Störfallregelung versetzen kann.
In einem nächsten Schritt wird dann eine in der Windparksteuereinheit implementierte Störfallregelung bzw. ein Betriebsmodus: Störfallregelung aktiviert, insbesondere wie nachstehend beschrieben. In der Störfallregelung selbst werden dabei bevorzugt wenigstens folgende Eigenschaften erfüllt: Deaktivieren aller externen Sollwertvorgaben, außer über die Netzbetreiberschnittstelle; Deaktivieren aller Stellbereichsbeschränkungen, insbesondere durch Windparkregelung bzw. durch die Windparksteuereinheit; Setzen einer Anfahrblockierung bei zeitweiser Spannungslosigkeit, bzw. Setzen der Wirkleistung auf Null nach Spannungswiederkehr.
Es wird somit insbesondere auch vorgeschlagen, dass beim Aktivieren der Störfallregelung auf eine an den Netzbetreiber angepasste Betriebsstrategie umgeschaltet wird, insbesondere so, dass der Windpark eine an den Netzbetreiber angepasste Betriebsstrategie aufweist. Dies bedeutet insbesondere auch, dass sowohl die Parameter der Windparksteuereinheit als auch die Parameter der Windenergieanlagensteuereinheit geändert werden.
Der Windpark weist somit wenigstens einen Betriebsmodus: Normalbetrieb und einen Betriebsmodus: Störfallregelung auf, insbesondere wie nachstehend beschrie- ben. Hierfür sind in der Windparksteuereinheit bevorzugt unterschiedliche Parametersätze hinterlegt.
Vorzugsweise weist die Windparksteuereinheit eine Stellbereichsbeschränkung auf und das Verfahren umfasst ferner den Schritt: Deaktivieren der Stellbereichsbeschränkung nach Empfang des Störungsbits. Es wird somit insbesondere vorgeschlagen, dass, sofern die Windparksteuereinheit und/oder der Windpark einen einstellbaren Stellbereich aufweist, der beschränkbar ist, diesen zu deaktivieren.
Bspw. weist der Windpark einen Stellbereich für die Blindleistung auf, der auf einen cos(Phi) von 0,95 beschränkt ist. Dies wird bspw. dann durchgeführt, wenn die Netz- anschlussrichtlinien nur einen solchen Stellbereich fordern. Somit werden zusätzliche Verluste durch die Ausbringung nicht geforderter Blindleistung vermieden. Physikalisch weist der Windpark aber beispielsweise einen Stellbereich von 0 ,5 P nenn auf.
Hierzu wird nun vorgeschlagen, diese Stellbereichsbeschränkung zu deaktivieren, insbesondere um den Windpark an der Grenze seiner physikalischen Stellfähigkeit zu betreiben, um das elektrische Versorgungsnetz im Störfall bestmöglich zu stützen bzw. den Netzwiederaufbau bestmöglich zu unterstützen.
Vorzugsweise weist die Windparksteuereinheit eine Wirkleistungssollwertvorgabe für die Vielzahl der Windenergieanlagen auf und das Verfahren umfasst ferner den Schritt: Setzen der Wirkleistungssollwertvorgabe auf einen Wert gleich Null.
Es wird somit insbesondere vorgeschlagen, dass, sofern die Windparksteuereinheit eine Wirkleistungssollwertvorgabe für die Vielzahl der Windenergieanlagen aufweist, diese auf Null zu setzen.
Die Windenergieanlagen des Windparks speisen dann also zunächst keine Wirkleis- tung während der Störfallregelung in das Windparknetz ein.
Vorzugsweise umfasst das Verfahren ferner den Schritt: Abfragen eines Status der Windenergieanlagen durch die Windparksteuereinheit bei den Windenergieanlagensteuerungen.
Es wird somit insbesondere vorgeschlagen, dass die Windparksteuereinheit wäh- rend der Störfallregelung den Zustand der Windenergieanlagen abfragt, bspw. ob die Windenergieanlagen betriebsbereit sind, insbesondere für die Störfallregelung betriebsbereit sind.
In einer besonders bevorzugten Ausführungsform fragt die Windparksteuereinheit bei den Windenergieanlagen ferner eine zu erwartende Wirkleistung ab. Hierfür weisen die Windenergieanlagen in ihrer Steuerung bspw. eine Leistungsprognoseeinheit auf, die dazu eingerichtet ist, in Abhängigkeit einer Wettervorhersage eine zu erwartende Wirkleistung zu prognostizieren.
Besonders vorteilhaft hierbei ist, dass die Windparksteuereinheit mit den zu erwartenden Leistungswerten der Windenergieanlagen versorgt wird, diese bspw. dann an den Netzbetreiber meldet oder dazu verwendet, den Windpark im Falle der Störfallregelung effizienter zu regeln.
Vorzugsweise umfasst das Verfahren ferner den Schritt: Übergeben von Warnsignalen durch die Windenergieanlagensteuerungen an die Windparksteuereinheiten und/oder Übergeben von Warnsignalen durch die Windparksteuereinheit an den Netzbetreiber.
Es wird somit insbesondere vorgeschlagen, Daten zwischen den Windparksteuereinheiten und der Windparksteuereinheit und außerdem oder alternativ zwischen der Windparksteuereinheit und dem Netzbetreiber zu übermitteln, die den Status der Windenergieanlagen bzw. des Windparks wiedergeben, insbesondere um den zu erwartenden Funktionsumfang des Netzwiederaufbaus sicherzustellen.
Bspw. tritt im Bereich des Windparks eine Windflaute auf, die dazu führt, dass der Windpark seine Störfallreglung nicht mehr bzw. nicht mehr vollständig ausführen kann. Auch kann bspw. die Steuerbarkeit des Windparks als solches ausfallen. Sofern dies durch die Windparksteuereinheit, bspw. durch Warnsignale der einzelnen Windenergieanlagen, festgestellt wurde, wird eine entsprechende Warnmeldung an den Netzbetreiber versandt. Der Netzbetreiber weiß also durch die Warnmeldungen stets, ob der Windpark an der Störfallregelung teilnehmen kann und/oder ob der Windpark noch Bestandteil der Störfallregelung ist. Der Netzbetreiber ist also jederzeit in der Lage, eine Nichtteilnahme eines Windparks zu erkennen und bei einem anderen Windpark eine entsprechende Störfallregelung anzufragen bzw. zu aktivieren.
Dies ist besonders vorteilhaft, wenn der Netzbetreiber bspw. eine Mindestleistung benötigt, um das elektrische Versorgungsnetz wiederaufzubauen, nachdem es schwarzgefallen ist, also im Wesentlichen keine Versorgungsnetzspannung mehr aufgewiesen hat.
Vorzugsweise wird das Störungsbit empfangen, wenn das elektrische Versorgungsnetz schwarzgefallen ist. Es wird somit insbesondere vorgeschlagen, dass das Störungsbit dazu verwendet wird, einen Netzwiederaufbau modus zu aktivieren.
Bspw. wird hierfür in einem ersten Schritt das Störungsbit durch den Netzbetreiber an die Windparksteuereinheit übermittelt, die hierdurch ihre Störfallregelung aktiviert. In einem zweiten Schritt kann dann zusätzlich ein Windparknetzwiederaufbau- modus aktiviert werden, der Bestandteil der Störfallregelung ist. Die Störfallregelung ist somit bevorzugt für den Netzwiederaufbau des elektrischen Versorgungsnetzes ausgelegt.
Vorzugsweise wird die Störfallregelung aktiviert, wenn der Wind park eine elektrische Leistung in das elektrische Versorgungsnetz einspeist, die Null ist. Grundsätzlich ist auch denkbar, die Störfallregelung zu aktivieren, wenn der Windpark noch elektrische Leistung in das elektrische Versorgungsnetz einspeist.
In einer bevorzugten Ausführungsform wird aber vorgeschlagen, dass der Wind park zunächst nach Erhalt des Störungsbits seine Einspeisung elektrischer Leistung einfriert und anschließend entsprechend der Störfallregelung seine Leistung anfährt, bevorzugt per Leistungsrampen.
Vorzugsweise weist die Windparksteuereinheit eine Anfahrtszeit auf, die kleiner ist als die Anfahrtszeit der Vielzahl der Windenergieanlagen.
Es wird somit insbesondere vorgeschlagen, die Windparksteuereinheit so zu konzipieren, dass sie im Falle eines Systemausfalles als erstes voll betriebsfähig ist, ins- besondere noch bevor die Windenergieanlagen wieder voll betriebsfähig sind. Somit wird sichergestellt, dass das Störbit empfangen werden kann und an die Windenergieanlagen weitergegeben werden kann, bevor die Windenergieanlagen ungesteuert mit der Leistungseinspeisung beginnen.
Erfindungsgemäß wird ferner ein Windpark vorgeschlagen, umfassend eine Vielzahl von Windenergieanlagen, ein die Vielzahl von Windenergieanlagen verbindendes Windparknetz und eine Windparksteuereinheit, die dazu eingerichtet ist, wenigstens ein vorstehend oder nachstehend beschriebenes Verfahren auszuführen.
Die Windparksteuereinheit ist somit insbesondere dazu eingerichtet, den Windpark in einem Betriebsmodus: Normalbetrieb und in einem Betriebsmodus: Störfallrege- lung zu betreiben.
Für den Betriebsmodus: Störfallregelung ist bspw. ein weiterer Parametersatz vorgesehen, der Störfallparametersatz. Der Störfallparametersatz ist dabei bevorzugt in der Windparksteuereinheit und außerdem oder alternativ in den Windenergieanlagensteuereinheiten hinterlegt. Der Störfall parametersatz umfasst dabei bevorzugt wenigstens eine Funktion der nachfolgenden Liste: a) bei zeitweiser Spannungslosigkeit des elektrischen Versorgungsnetzes: An- fahren aller Windenergieanlagen und Vorbereiten auf Einspeisung, wobei der Wirk- und der Blindleistungs-Sollwert, der von der Wind parksteuereinheit an die Windenergieanlagensteuereinheit übergeben wird, auf Null bleibt; b) bei Aktivierung des Betriebsmodus: Normalbetrieb: Setzen des Wirkleistungs- Sollwertes der Windenergieanlagensteuereinheiten durch die Windparksteuerein- heit auf eine aktuelle Einspeiseleistung; c) bei Aktivierung des Betriebsmodus: Störfallregelung: Deaktivieren aller Stellbereichsbeschränkungen der Windparksteuereinheit; d) Wirkleistungsregelung mit Vorhalteleistung und P(f)-Kennlinie ohne Totband; e) vordefinierte Wirkleistungsrampen (Regelgeschwindigkeit) bei neuen Sollwer- ten; f) kein Zulassen von Sollwerten größer P available 10 % P available (q(1qG P nenn), insbesondere, um eine Regelreserve sicherzustellen; g) langsames Herunterrampen, bspw. in 15 Minuten, der Sollwerte bei eingeschränkter Regelreserve; h) Vorgabe einer neuen Sollfrequenz, die insbesondere ungleich einer Netz- Nenn-Frequenz ist; i) Blindleistungsregelung mit angepasster Q(U)-Kennlinie ohne Totband; j) vordefinierte Blindleistungsrampe (Blindleistungsregelgeschwindigkeit) bei neuen Sollwerten k) schwungmassenabhängige Betriebsweise; L) Anpassen der Wirkleistungsrampen und der Regelgeschwindigkeit an Schwungmasse im System; m) Fault-Ride-Through-Strategie für elektrische Versorgungsnetze mit kleinem Schwungmasseanteil; In einer bevorzugten Ausführungsform weisen die Windenergieanlagen des Windparks jeweils eine Windenergieanlagensteuereinheit auf, die dazu eingerichtet ist, mit der Windparksteuereinheit Daten auszutauschen, bevorzugt Sollwerte und/oder Warn- oder Statussignale.
Ferner wird vorgeschlagen, dass in der Störfallregelung die Reaktion auf Span- nungs- und Frequenzevents im elektrischen Versorgungsnetz möglichst schnell erfolgt. Es sollen also neue Sollwerte entsprechend einer vordefinierten Rampe angefahren werden. Bevorzugt erfolgt die Regelung der Spannung und der Frequenz, insbesondere mit einer maximal möglichen Dynamik, z.B. zweimal Pnenn pro Sekunde oder zehnmal Qnenn pro Sekunde, insbesondere sowohl in positiver als auch in negativer Richtung.
Es wird daher vorgeschlagen, die vorstehend oder nachstehend beschriebenen Funktionen möglichst nahe an den Windenergieanlagen zu platzieren, insbesondere, um System laufzeiten zu verringern. So ist es beispielsweise sinnvoll, Parameter für eine Fault-Ride-Through-Strategie oder eine Leistungs-Frequenz-Regelung durch die Windparksteuereinheit vorzugeben, aber die Durchführung durch die Windenergieanlagen selbst, also insbesondere durch die Windenergieanlagensteuereinheit, zu realisieren.
Vorzugsweise weist die Windparksteuereinheit wenigstens eine Betreiberschnittstelle auf, die dazu eingerichtet ist, externe Sollwertvorgaben zu empfangen, und eine Netzbetreiberschnittstelle, die dazu eingerichtet ist, das Störungsbit zu empfangen.
Die Windparksteuereinheit weist somit wenigstens zwei Schnittstellen für einen windparkexternen Datenaustausch auf, wobei eine Schnittstelle exklusiv für den Netzbetreiber vorgesehen ist, nämlich die Netzbetreiberschnittstelle, mittels derer bevorzugt das Störungsbit empfangen wird. In einer weiter bevorzugten Ausführungsform weist die Windparksteuereinheit zudem wenigstens eine Windenergieanlagenschnittstelle auf, die dazu eingerichtet ist, Sollwerte an die Windenergieanlagen zu übersenden.
Bevorzugt weist die Windparksteuereinheit zudem eine Windenergieanlagenwarn- Schnittstelle auf, die dazu eingerichtet ist, Warnsignale von Windenergieanlagen zu empfangen, und außerdem oder alternativ eine Windparkwarnschnittstelle, die dazu eingerichtet ist, Warnsignale an den Netzbetreiber zu versenden.
Die Warnsignale sind dabei bevorzugt dazu vorgesehen, einen Status der Windenergieanlage bzw. des Windparks wiederzugeben. Ferner bevorzugt weist die Windparksteuereinheit wenigstens eine Schnittstelle bzw. eine weitere Schnittstelle auf, die wenigstens eine der nachfolgenden Funktionen erfüllt: Aktivieren eines Betriebsmodus: Störfallregelung; Abschalten bzw. Ignorieren aller externen Sollwertvorgaben außer vom Netzbetreiber; Eingabe neuer Sollwert, wie bspw. Sollfrequenz; Empfangen und/oder Versenden von Warnsignalen, insbesondere zur Primärregelleistungsfähigkeit, zum Blindleistungsstellbereich, zur Erreichbarkeit des Windparks, zu Statussignalen, zum P-Available, zum Q-Available, zur aktuellen Primärregelleistungsfähigkeit oder zum Betriebsmodus: Störfallregelung.
Vorzugsweise umfasst der Windpark ferner eine unterbrechungsfreie Spannungs- Versorgung, die dazu eingerichtet ist, die Windparksteuereinheit und/oder die Vielzahl der Windenergieanlagen so mit elektrischer Leistung für einen vorbestimmten Zeitraum zu versorgen, dass der Windpark einen Schwarzstart durchführen kann, auch wenn das elektrische Versorgungsnetz keine Spannung aufweist.
In einer bevorzugten Ausführungsform ist die unterbrechungsfreie Spannungsver- sorgung wenigstens der Gestalt, dass zumindest die Kommunikation der Windparksteuereinheit mit dem Netzbetreiber aufrecht erhalten werden kann.
Vorzugsweise beträgt der vorbestimmte Zeitraum wenigstens 4, bevorzugt wenigstens 8, Stunden. Es wird somit insbesondere vorgeschlagen, dass die unterbrechungsfreie Spannungsversorgung so dimensioniert ist, dass der Windpark autark, also auch bei völliger Windflaute, für wenigstens 4, bevorzugt wenigstens 8, Stunden seine Störfallregelung ausführen kann. In einer besonders bevorzugten Ausführungsform beträgt der vorbestimmte Zeitraum wenigstens 48 Stunden.
Vorzugsweise weisen die Windenergieanlagen jeweils eine Windenergieanlagensteuerung auf, die dazu eingerichtet ist, wenigstens mit einem Betriebsparametersatz und einem Störfallparametersatz betrieben zu werden und auf ein Signal der Windparksteuereinheit zwischen dem Betriebsparametersatz und dem Störfallparametersatz zu wechseln.
Es wird somit insbesondere vorgeschlagen, dass die Windenergieanlagen des Windparks mit wenigstens zwei verschiedenen Parametersätzen betreibbar sind, wobei wenigstens ein Parametersatz für die Störfallregelung vorgesehen ist. Der Störfallparametersatz weist dabei die vorstehend oder nachstehend beschriebenen Funktionen auf, insbesondere dieselben, die auch der Störfallparametersatz der Windparksteuereinheit aufweist.
Die Windenergieanlagen sind somit für wenigstens zwei unterschiedliche Betriebsmodi ausgelegt und eingerichtet, wobei ein Betriebsmodus speziell für die Störfall- regelung vorgesehen ist.
Vorzugsweise ist die Windparksteuereinheit dazu eingerichtet, wenigstens eine Größe des elektrischen Versorgungsnetzes zu erfassen, die auf einen Störfall im elektrischen Versorgungsnetz hindeutet, um das Störungsbit zu generieren, und das Störungsbit zu generieren. Es wird somit insbesondere vorgeschlagen, dass die Windparksteuereinheit einen Störfall selbstständig erkennt und automatisch die Störfallregelung einleitet, ohne dass der Netzbetreiber den Störfall ausrufen muss. Besonders vorteilhaft hierbei ist, dass die automatische Erkennung des Störfalles durch den Windpark deutlich schneller ist, als die Störfallerkennung des Netzbetreibers.
Erfindungsgemäß wird ferner eine Windenergieanlage eines vorstehend oder nach- stehend beschriebenen Windparks vorgeschlagen, umfassend eine Windenergieanlagensteuerung, die dazu eingerichtet ist, wenigstens mit einem Betriebsparametersatz und einem Störfallparametersatz betrieben zu werden und die Windenergieanlagensteuerung auf ein Signal der Windparksteuereinheit zwischen dem Betriebsparametersatz und dem Störfallparametersatz zu wechseln, ins-besondere um an ei- nem vorstehend oder nachstehend beschriebenen Verfahren teilzunehmen.
Die vorliegende Erfindung wird nun nachfolgend exemplarisch und anhand von Ausführungsbeispielen unter Bezugnahme auf die begleitenden Figuren näher erläutert, wobei für ähnliche oder funktionsgleiche Komponenten dieselben Bezugszeichen verwendet werden. Fig. 1 zeigt eine schematische Ansicht einer erfindungsgemäßen Windenergieanlage eines erfindungsgemäßen Windparks,
Fig. 2 zeigt einen schematischen Aufbau eines erfindungsgemäßen Windparks in einer Ausführungsform und
Fig. 3 zeigt einen schematischen Ablauf eines erfindungsgemäßen Verfahrens zum Steuern eines Windparks, insbesondere das Aktivieren der Störfallregelung einer Windparksteuereinheit.
Fig. 1 zeigt eine erfindungsgemäße Windenergieanlage 100 eines erfindungsgemäßen Windparks.
Die Windenergieanlage 100 weist hierzu einen Turm 102 und eine Gondel 104 auf. An der Gondel 104 ist ein aerodynamischer Rotor 106 mit drei Rotorblättern 108 und einem Spinner 1 10 angeordnet. Der Rotor 106 wird im Betrieb durch den Wind in eine Drehbewegung versetzt und treibt dadurch einen Generator in der Gondel 104 an. Der Generator erzeugt hierdurch einen Strom, der mittels eines Vollumrichters auf einen Windenergieanlagentransformator gegeben wird, der mit einem Windparknetz verbunden ist.
Hierfür weist die Windenergieanlage eine Windenergieanlagensteuereinheit auf, die dazu eingerichtet ist, den Vollumrichter anzusteuern, insbesondere mit einem Betriebsparametersatz und einem Störfallparametersatz.
Fig. 2 zeigt einen schematischen Aufbau eines erfindungsgemäßen Windparks 1000 in einer Ausführungsform.
Der Windpark 1000 umfasst eine Vielzahl von Windenergieanlagen 1100, wie bspw. in Fig. 1 gezeigt, die über ein gemeinsames Windparknetz 1200 miteinander verbunden sind.
Das Windparknetz 1200 ist mittels eines Windparktransformators 1300 an ein elektrisches Versorgungsnetz 2000 angeschlossen, um eine elektrische Windparkleistung Ppark einzuspeisen, welche sich aus einer Summe der einzelnen elektrischen Windenergieanlagenleistungen Pwea zusammensetzt.
Ferner weist der Windpark 1000 eine Windparksteuereinheit 1400 zum Steuern des Windparks 1000 auf.
Die Windparksteuereinheit 1400 umfasst eine Betreiberschnittstelle 1410, eine Netzbetreiberschnittstelle 1420 und eine Windenergieanlagenschnittstelle 1430. Die Betreiberschnittstelle 1410 ist dazu eingerichtet, externe Sollwertvorgaben Sown zu empfangen, die bspw. von einem Windparkbetreiber 3000 vorgegeben werden.
Die Netzbetreiberschnittstelle 1420 ist dazu eingerichtet, wenigstens ein Störungsbit S1/0 von einem Netzbetreiber 4000 zu empfangen.
Die Windenergieanlagenschnittstelle 1430 ist dazu eingerichtet, den Windenergie- anlagen 1100 des Windparks 1000 Sollwerte zu übermitteln, bspw. Blindleistungssollwerte Qs, um den Windpark 1000 und insbesondere die elektrische Windparkleistung Ppark zu steuern. Ferner ist die Windparksteuereinheit 1400 dazu eingerichtet, wenigstens eine Größe des elektrischen Versorgungsnetzes, insbesondere die Netzspannung Ugrid, zu erfassen, die auf einen Störfall im elektrischen Versorgungsnetz 2000 hindeutet, insbesondere um das Störungsbit S1/0 selbst zu generieren. Die Windparksteuereinheit 1400 ist somit auch dazu eingerichtet, die Störfallregelung selbst, und insbesondere automatisch, auszulösen.
Ferner ist eine unterbrechungsfreie Spannungsversorgung 1500 vorgesehen, die dazu eingerichtet ist, die Windparksteuereinheit 1400 und optional die Vielzahl der Windenergieanlagen 1100 so mit elektrischer Leistung Pusv für einen vorbestimmten Zeitraum zu versorgen, dass der Windpark 1000 einen Schwarzstart durchführen kann, auch wenn das elektrische Versorgungsnetz 2000 keine Spannung aufweist. Der vorbestimmte Zeitraum beträgt dabei bspw. wenigstens 8 Stunden.
Ferner weisen die Windenergieanlagen 1 100 jeweils eine Windenergieanlagensteuerung 1180 auf, die die Sollwerte Qs der Windparksteuereinheit 1400 empfangen und dazu eingerichtet sind, wenigstens mit einem Betriebsparametersatz und einem Störfallparametersatz betrieben zu werden, um die Windenergieanlagen 1100 entsprechend wie vorstehend oder nachstehend beschrieben zu steuern.
Die Windenergieanlagensteuerungen 1180 sind ferner dazu eingerichtet, auf ein Signal Sn/s der Windparksteuereinheit 1400 zwischen dem Betriebsparametersatz und dem Störfallparametersatz zu wechseln, um die Windenergieanlagen 1 100 entsprechend wie vorstehend oder nachstehend beschrieben zu betreiben.
Fig. 3 zeigt einen schematischen Ablauf eines erfindungsgemäßen Verfahrens 5000 zum Steuern eines Windparks, insbesondere wie in Fig. 2 gezeigt.
In einem ersten Schritt 5100 wird das Störungsbit S1/0 des Netzbetreibers an der Windparksteuereinheit 1400 empfangen.
Hieraufhin werden in einem zweiten Schritt 5200 alle externen Sollwertvorgaben Sown an der Windparksteuereinheit 1400 deaktiviert. Anschließend wird in einem dritten Schritt 5300 eine in der Windparksteuereinheit 1400 implementierten Störfallregelung aktiviert, die bevorzugt die Stellbereichsbeschränkung der Windparksteuereinheit 1400 deaktiviert.
Abschließend wird in einem letzten Schritt 5400 der Windpark 1000, und insbeson- dere die Windenergieanlagen 1100 des Windparks 1000, in einem Betriebsmodus: Störfallregelung betrieben, die wenigstens eine der vorstehenden Funktionen aufweist.

Claims

Ansprüche
1. Verfahren zum Steuern eines mittels einer Windparksteuereinheit betriebenen Windparks, der eine Vielzahl von Windenergieanlagensteuerungen aufweisende Windenergieanlagen umfasst, die über ein gemeinsames Windparknetz miteinander verbunden sind, welches mittels eines Windparktransformators an ein elektrisches Versorgungsnetz eines Netzbetreibers angeschlossen ist, umfassend die Schritte:
Empfangen wenigstens eines Störungsbits an der Windparksteuereinheit, insbesondere wenigstens eines Störungsbits des Netzbetreibers,
Deaktivieren aller externen Sollwertvorgaben an der Windparksteuereinheit, außer denen des Netzbetreibers, nach Empfang des Störungsbits,
Aktivieren einer in der Windparksteuereinheit implementierten Störfallregelung, nach erfolgreicher Deaktivierung aller externen Sollwertvorgaben, außer denen des Netzbetreibers.
2. Verfahren zum Steuern nach Anspruch 1 , wobei die Windparksteuereinheit eine Stellbereichsbeschränkung aufweist, ferner umfassend den Schritt:
Deaktivieren der Stellbereichsbeschränkung nach Empfang des Störungsbits.
3. Verfahren zum Steuern nach Anspruch 1 oder 2, wobei die Windparksteuereinheit eine Wirkleistungssollwertvorgabe für die Vielzahl der Windenergieanlagen aufweist, ferner umfassend den Schritt: - Setzen der Wirkleistungssollwertvorgabe auf einen Wert gleich Null.
4. Verfahren nach einem der vorstehenden Ansprüche, ferner umfassend den Schritt:
Abfragen eines Status der Windenergieanlagen durch die Windparksteuereinheit bei den Windenergieanlagensteuerungen.
5. Verfahren nach einem der vorstehenden Ansprüche, ferner umfassend den Schritt:
Übergeben von Warnsignalen durch die Windenergieanlagensteuerungen an die Windparksteuereinheiten und/oder
Übergeben von Warnsignalen durch die Windparksteuereinheit an den Netzbetrei- ber.
6. Verfahren nach einem der vorstehenden Ansprüche, wobei das Störungsbit empfangen wird, wenn das elektrische Versorgungsnetz schwarzgefallen ist.
7. Verfahren nach einem der vorstehenden Ansprüche, wobei - die Störfallregelung aktiviert wird, wenn der Windpark eine elektrische Leistung in das elektrische Versorgungsnetz einspeist, die Null ist.
8. Verfahren nach einem der vorstehenden Ansprüche, wobei die Windparksteuereinheit eine Anfahrtszeit aufweist, die kleiner ist als die Anfahrtszeit der Vielzahl der Windenergieanlagen.
9. Windpark wenigstens umfassend: eine Vielzahl von Windenergieanlagen, ein die Vielzahl von Windenergieanlagen verbindendes Windparknetz und eine Windparksteuereinheit, die dazu eingerichtet ist, wenigstens ein Verfahren nach einem der Ansprüche 1 bis 8 auszuführen.
10. Windpark nach Anspruch 9, wobei die Windparksteuereinheit wenigstens: eine Betreiberschnittstelle aufweist, die dazu eingerichtet ist, externe Sollwertvorgaben zu empfangen und - eine Netzbetreiberschnittstelle, die dazu eingerichtet ist, das Störungsbit zu empfangen.
11. Windpark nach Anspruch 9 oder 10, ferner umfassend: eine unterbrechungsfreie Spannungsversorgung, die dazu eingerichtet ist, die Windparksteuereinheit und/oder die Vielzahl der Windenergieanlagen so mit elektrischer Leis- tung für einen vorbestimmten Zeitraum zu versorgen, dass der Windpark einen Schwarzstart durchführen kann, auch wenn das elektrische Versorgungsnetz keine Spannung aufweist.
12. Windpark nach Anspruch 11 , wobei der vorbestimmte Zeitraum wenigstens 4, bevorzugt wenigstens 8, Stunden beträgt.
13. Windpark nach einem der Ansprüche 9 bis 12, wobei die Windenergieanlagen jeweils eine Windenergieanlagensteuerung aufweisen, die dazu eingerichtet ist: wenigstens mit einem Betriebsparametersatz und einem Störfallparametersatz betrieben zu werden und - die Windenergieanlagensteuerung auf ein Signal der Windparksteuereinheit zwischen dem Betriebsparametersatz und dem Störfallparametersatz zu wechseln.
14. Windpark nach einem der Ansprüche 9 bis 13, wobei die Windparksteuereinheit dazu eingerichtet ist: wenigstens eine Größe des elektrischen Versorgungsnetzes zu erfassen, die auf einen Störfall im elektrischen Versorgungsnetz hindeutet, um das Stö- rungsbit zu generieren, und das Störungsbit zu generieren.
15. Windenergieanlage eines Windparks nach einem der Ansprüche 9 bis 14, wenigstens umfassend eine Windenergieanlagensteuerung, die dazu eingerichtet ist: wenigstens mit einem Betriebsparametersatz und einem Störfallparameter- satz betrieben zu werden und die Windenergieanlagensteuerung auf ein Signal der Windparksteuereinheit zwischen dem Betriebsparametersatz und dem Störfallparametersatz zu wechseln, insbesondere um an einem Verfahren nach einem der Ansprüche 1 bis 9 teilzunehmen.
PCT/EP2019/077719 2018-10-15 2019-10-14 Störfallregelung für einen windpark mit prioritisierung der externen sollwertvorgaben WO2020078872A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3114659A CA3114659C (en) 2018-10-15 2019-10-14 Fault control for a wind farm with prioritization of the external setpoint-value specifications
EP19787237.7A EP3867988A1 (de) 2018-10-15 2019-10-14 Störfallregelung für einen windpark mit prioritisierung der externen sollwertvorgaben
CN201980067769.6A CN112868156A (zh) 2018-10-15 2019-10-14 在外部预设期望值优先的情况下风电场的故障情况调控
US17/285,041 US11482862B2 (en) 2018-10-15 2019-10-14 Fault control for a wind farm with prioritization of the external setpoint-value specifications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018125445.8 2018-10-15
DE102018125445.8A DE102018125445A1 (de) 2018-10-15 2018-10-15 Störfallregelung für einen Windpark

Publications (1)

Publication Number Publication Date
WO2020078872A1 true WO2020078872A1 (de) 2020-04-23

Family

ID=68242692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/077719 WO2020078872A1 (de) 2018-10-15 2019-10-14 Störfallregelung für einen windpark mit prioritisierung der externen sollwertvorgaben

Country Status (6)

Country Link
US (1) US11482862B2 (de)
EP (1) EP3867988A1 (de)
CN (1) CN112868156A (de)
CA (1) CA3114659C (de)
DE (1) DE102018125445A1 (de)
WO (1) WO2020078872A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3832130B1 (de) * 2019-12-05 2024-05-29 Wobben Properties GmbH Verfahren zur steuerung einer windenergieanlage und/oder eines windparks

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3761472A1 (de) * 2019-07-05 2021-01-06 Siemens Gamesa Renewable Energy A/S Schwarzstart eines windparks
EP4002626A1 (de) 2020-11-19 2022-05-25 Wobben Properties GmbH Definierte schalterstellung bei einem windpark vor ausfall der dc-versorgung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008062356A1 (de) 2008-12-18 2010-07-08 Repower Systems Ag Verfahren und Stromerzeugungsanlage zum Stabilisieren eines Stromverteilungsnetzes
EP2636894A2 (de) * 2012-03-06 2013-09-11 RWE Innogy GmbH Offshore- Windenergiesystem
DE102016123384A1 (de) 2016-12-02 2018-06-07 Wobben Properties Gmbh Verfahren zum Wiederaufbau eines elektrischen Versorgungsnetzes
DE102016124840A1 (de) 2016-12-19 2018-06-21 Wobben Properties Gmbh Verfahren zum Steuern eines Netzwiederaufbaus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007049251A1 (de) * 2007-10-12 2009-04-23 Repower Systems Ag Windenergieanlagen mit Regelung für Netzfehler und Betriebsverfahren hierfür
CA2697236C (en) * 2007-12-14 2013-06-25 Mitsubishi Heavy Industries, Ltd. Wind turbine generator
DE102010056457A1 (de) * 2010-12-29 2012-07-05 Repower Systems Ag Windpark und Verfahren zum Betreiben eines Windparks
EP3075051B1 (de) * 2013-11-28 2020-01-08 Vestas Wind Systems A/S Steuerung der blindleistung bei einer windkraftanlage
DE102016009413A1 (de) * 2016-08-04 2018-02-08 Senvion Gmbh Verfahren zum Regeln der Blindleistungsabgabe eines Windparks sowie ein entsprechender Windpark

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008062356A1 (de) 2008-12-18 2010-07-08 Repower Systems Ag Verfahren und Stromerzeugungsanlage zum Stabilisieren eines Stromverteilungsnetzes
EP2636894A2 (de) * 2012-03-06 2013-09-11 RWE Innogy GmbH Offshore- Windenergiesystem
DE102016123384A1 (de) 2016-12-02 2018-06-07 Wobben Properties Gmbh Verfahren zum Wiederaufbau eines elektrischen Versorgungsnetzes
DE102016124840A1 (de) 2016-12-19 2018-06-21 Wobben Properties Gmbh Verfahren zum Steuern eines Netzwiederaufbaus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3832130B1 (de) * 2019-12-05 2024-05-29 Wobben Properties GmbH Verfahren zur steuerung einer windenergieanlage und/oder eines windparks

Also Published As

Publication number Publication date
DE102018125445A8 (de) 2020-11-26
US20210328429A1 (en) 2021-10-21
EP3867988A1 (de) 2021-08-25
US11482862B2 (en) 2022-10-25
CA3114659A1 (en) 2020-04-23
DE102018125445A1 (de) 2020-04-16
CA3114659C (en) 2024-04-30
CN112868156A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
EP2994971B1 (de) Verfahren zum einspeisen elektrischer leistung in ein elektrisches versorgungsnetz
EP2326835B1 (de) Verfahren zur regelung eines windparks
EP1665494B1 (de) Verfahren zum betrieb bzw. regelung einer windenergieanlage sowie verfahren zur bereitstellung von primärregelleistung mit windenergieanlagen
EP2826121B1 (de) Verfahren zum steuern einer anordnung zum einspeisen elektrischen stroms in ein versorgungsnetz
EP3008334B1 (de) Verfahren zum einspeisen elektrischer leistung in ein elektrisches versorgungsnetz
EP3639340B1 (de) Verfahren zum einspeisen elektrischer leistung mittels einer umrichtergeführten erzeugungseinheit, insbesondere windenergieanlage
WO2020078872A1 (de) Störfallregelung für einen windpark mit prioritisierung der externen sollwertvorgaben
EP2659138B1 (de) Windpark und verfahren zum betreiben eines windparks
WO2014173695A2 (de) Verfahren zum einspeisen elektrischer leistung in ein elektrisches versorgungsnetz
DE102010056458A1 (de) Windpark und Verfahren zum Betreiben eines Windparks
WO2015067408A1 (de) Verfahren zum betreiben einer windenergieanlage
EP3563462A1 (de) Verfahren zum steuern eines elektrischen verteilnetzes
EP3533125A1 (de) Verfahren zum betreiben einer windenergieanlage
EP3549226A1 (de) Verfahren zum wiederaufbau eines elektrischen versorgungsnetzes
EP3453096A1 (de) Verfahren zur kompensation von einzuspeisenden strömen eines windparks
EP3754178A1 (de) Verfahren zum betreiben eines windparks
WO2018114324A1 (de) Verfahren zum steuern eines netzwiederaufbaus
WO2020078876A1 (de) Dynamisches windkraftwerk
EP4022731B1 (de) Verfahren zum betreiben einer elektrischen speicherstation
EP3848576B1 (de) Verfahren zum steuern eines zuschaltvorgangs einer windenergieanlage sowie eine solche windenergieanlage
EP3829017A1 (de) Verfahren zum bereitstellen einer angeforderten wirkleistung
EP4080041A1 (de) Verfahren zum steuern einer windenergieanlage mit einer leitstelle sowie leitstelle und system dafür
EP4358347A1 (de) Verfahren zum vermessen einer als testanlage ausgewählten windenergieanlage
EP3991264A1 (de) Verfahren zur optimierung der wirkleistungseinspeisung eines windparks
EP4002632A1 (de) Verfahren zur bereitstellung von blindleistung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19787237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3114659

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019787237

Country of ref document: EP

Effective date: 20210517