WO2020078227A1 - 一种全时无线ptz视频监控系统 - Google Patents

一种全时无线ptz视频监控系统 Download PDF

Info

Publication number
WO2020078227A1
WO2020078227A1 PCT/CN2019/109967 CN2019109967W WO2020078227A1 WO 2020078227 A1 WO2020078227 A1 WO 2020078227A1 CN 2019109967 W CN2019109967 W CN 2019109967W WO 2020078227 A1 WO2020078227 A1 WO 2020078227A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptz
video
time
solar panel
solar
Prior art date
Application number
PCT/CN2019/109967
Other languages
English (en)
French (fr)
Inventor
王兴国
穆科明
郑伟国
崔黎芸
Original Assignee
南京杰迈视讯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京杰迈视讯科技有限公司 filed Critical 南京杰迈视讯科技有限公司
Publication of WO2020078227A1 publication Critical patent/WO2020078227A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/188Capturing isolated or intermittent images triggered by the occurrence of a predetermined event, e.g. an object reaching a predetermined position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the technical field of video monitoring, and relates to an image acquisition, an intelligent system and an alarm system, in particular to a full-time wireless PTZ video monitoring system.
  • the PTZ camera has horizontal and vertical rotation, and has a field of view covering all scenes. At the same time, through the zoom optical zoom, you can monitor the full picture and details of the target scene.
  • the overall power consumption of the system is relatively large, generally reaching more than ten watts.
  • the existing solar power supply monitoring system lacks systematic energy consumption optimization mechanisms and equipment, and high power consumption leads to the need to configure large-scale solar panels and batteries, which is not only economical but also susceptible to wind damage. In addition, the solar panels cannot follow the direction of the sunlight, and the power generation efficiency is low. In the case of long rainy weather, the system does not work properly due to insufficient power supply.
  • WIFI transmission Due to the large number of devices in the WIFI open frequency band, the channels are increasingly crowded, the transmission distance and bandwidth cannot be guaranteed, and delayed packet loss occurs from time to time.
  • wireless relays, directional antennas and other means has been improved to a certain extent, the cost pressure for implementation of operation and maintenance has also increased synchronously.
  • the present invention proposes a full-time wireless PTZ video monitoring system for the problems of implementation and maintenance difficulties caused by the laying of power supply lines and transmission networks, low solar panel power generation efficiency, and data integrity of WIFI transmission.
  • the board angle adjustment mechanism ensures the best light receiving angle of the solar panel and intelligently supplies power to the PTZ camera.
  • the camera performs local storage of full-time video structured data through local intelligent analysis.
  • the 4G wireless transceiver module is usually in a low-power monitoring mode. When a platform instruction or an alarm event is received, the 4G sending function is turned on to send the event and user-focused video. Data to remote alarm monitoring center and user terminal.
  • the technical solution proposed by the present invention is a full-time wireless PTZ video surveillance system, including a smart solar tracking solar power supply subsystem and a smart power supply wireless PTZ network camera subsystem.
  • the former consists of a solar power generation module, a battery and a solar panel
  • the angle adjustment control module is provided to provide all-weather power supply for the entire system.
  • the solar power generation module is connected to the battery to charge it; the latter is composed of the power module, PT head, zoom auto focus lens, GPS module, camera core, memory, 4G / 5G communication module And peripheral interface circuit; the camera core controls the angle of the solar panel according to GPS positioning information and time, ensures that the solar panel is rotated to the best light receiving angle, and controls the PT head and zoom autofocus lens according to the set monitoring field of view to maintain Full-time video collection and intelligent analysis, sending alarm events and structured video to the alarm monitoring center and user-side applications through the peripheral interface circuit when receiving trigger alarms, video event detection, and user manipulation commands. Describe the 4G / 5G communication module Line transmission function return waiting position to the operating state, all the structures on the local camera video data is stored in the scroll.
  • the above camera core controls the angle of the solar panel according to GPS positioning information and time.
  • the latitude and longitude of the location of the video monitoring system and the current time are obtained through the GPS module, and the altitude and azimuth of the sun are calculated, and the corresponding solar panel position is set based on this.
  • the solar panel rotates on several preset positions.
  • the above preset positions use timing control to turn on the power. After turning to a predetermined position, the motor is turned off. Wait until the next time point to start the motor to turn to the next preset position to save electricity for the motor.
  • the present invention can configure the space size of the memory according to the structured video data storage time.
  • the motor is controlled to turn on to the corresponding position, then the motor is turned off, and the motor is turned on when the next command triggers To the next position.
  • Step1 The system is powered on and initialized
  • Step2 Obtain the local geographic location according to the GPS module and set the solar panel preset position according to the time information;
  • Step3 According to the requirements of the monitoring field of view, control the PTZ to be powered on, and the motor stops after the drive motor reaches the PTZ position;
  • Step4 Start to wait for monitoring video analysis and structured video storage, turn the solar panel to the corresponding preset position according to time to achieve the best light reception, wait for the event alarm or remote monitoring command;
  • Step5 When receiving an alarm triggered by a peripheral or an internal video analysis event, immediately start the alarm event and structured video upload, otherwise return to Step4 to wait for video monitoring;
  • Step6 According to the requirements of the predetermined trigger event, determine whether it is necessary to change the monitoring field of view. If it is to return to Step3 to adjust the PTZ position; if it is not necessary to adjust the monitoring field of view, return to Step4 to continue to wait for video surveillance.
  • the PTZ camera since the PTZ camera only monitors the preset waiting field of view, the PTZ, ZOOM, and FOCUS functions can be turned off. The above functions are only activated when an event trigger and user command are received, and the corresponding call is called. The PTZ position of the camera can reduce the power consumption of the camera;
  • GPS module uses the sunshine time and the latitude and longitude of the location of the device to obtain the height and azimuth of the sun, set the solar panel to achieve the best light receiving angle as possible, so as to improve the solar panel power generation efficiency, extend solar charging and equipment power supply time;
  • the preset position of the solar panel adopts timing control, power-on rotation, and the motor is turned off after turning to a predetermined position. Wait until the next time point to start the motor to turn to the next preset position, saving motor power.
  • Figure 1 is a functional block diagram of a full-time wireless PTZ video surveillance system.
  • FIG. 2 is a schematic structural diagram of a low-power wireless camera.
  • FIG. 3 is the working flow chart of the full-time wireless PTZ video surveillance system.
  • the invention provides a full-time wireless PTZ video monitoring system composed of two subsystems: an intelligent power supply wireless PTZ network camera and an intelligent solar tracking solar power supply subsystem.
  • the PTZ camera refers to the horizontal and vertical direction of rotation, and the field of view covering all scenes. At the same time, through the zoom optical zoom, you can monitor the full picture and details of the target scene.
  • the overall power consumption of the system is relatively large, generally reaching more than ten watts.
  • the invention provides intelligent power supply to the PTZ camera, usually shuts down the PTZ motor, and only supplies power to the PTZ when a user command or event is triggered, and executes the PTZ action to ensure the most energy-saving power supply, taking into account both real-time and wide-field functions.
  • PTZ network camera has local storage function, no matter waiting, event triggering, alarming, user triggering, all data records are guaranteed.
  • Event triggering refers to acquiring structured video data through video analysis inside the camera, such as texture analysis, motion detection, pattern recognition, feature matching and other algorithms.
  • Alarm means that the camera receives the alarm signal triggered by the sensor connected to it. Annotated video through events and alarms to obtain structured data is conducive to rapid storage, retrieval and efficient remote access of video data.
  • the camera communicates with the monitoring and alarm center server and the user terminal through the 4G / 5G wireless module.
  • the 4G / 5G transceiver module is usually in a low-power monitoring mode.
  • the 4G sending function is turned on and the active alarm event is initiated.
  • the power consumption of the 4G / 5G communication module in transceiver mode and data transmission are asymmetric, the power consumption in the reception mode is very low (such as 20mw), the power consumption in the transmission mode is high (such as 2W), and the data transmission is also much tighter than the data reception bandwidth resources. .
  • Using alarm event triggering and user request triggering to start the sending mode can effectively reduce power consumption and save data traffic resources.
  • the system can also trigger alarms through sensors, such as PIR, gas leak sensors, water level sensors, magnetic door switches, etc. Similar alarm events trigger, start 4G communication module to send notifications and structured video to remote monitoring alarm platform and user terminal.
  • the intelligent solar tracking solar power supply subsystem obtains the latitude and longitude of the device location and the current time through the GPS module, obtains the altitude and azimuth of the sun, and sets the corresponding solar panel position to achieve the optimal light receiving angle.
  • the position of solar panel can be rotated by using several preset positions, improve the efficiency of solar panel power generation, and extend the time of solar charging and equipment power supply.
  • the preset position of the solar panel adopts timing control to turn on the power. After turning to the predetermined position, the motor is turned off. Wait until the next time point to start the motor to turn to the next preset position.
  • FIG. 1 is a diagram of the full-time wireless PTZ video monitoring module of the present invention.
  • the system is composed of an intelligent power supply wireless PTZ network camera and an intelligent solar tracking solar power supply subsystem.
  • the solar power supply subsystem is composed of a solar power generation module, a storage battery, and a solar panel angle adjustment control module, providing all-weather power supply for the entire system.
  • the PTZ camera subsystem is composed of a power module, a PT head, a zoom autofocus lens, a GPS module, a camera core, a memory, a 4G / 5G communication module, and a peripheral interface circuit.
  • the solar power supply subsystem is composed of a solar power generation module, a storage battery, and a solar panel angle adjustment control module.
  • the power configuration of the solar panel is determined by the power consumption of the system and the power required for battery charging, to ensure that the solar power panel can supply power to the camera and provide sufficient charging current for charging the battery.
  • the size of the battery is configured according to the needs of the system to support continuous rainy weather.
  • the camera movement adjusts the angle of the solar panel through the panel angle adjustment controller.
  • the entire monitoring system is controlled and controlled by the movement.
  • the movement is always in working state.
  • the angle of the solar panel is adjusted to adjust the execution and switching of the motor, to ensure that the solar panel is rotated to the best light receiving angle, saving the power of the motor. Consume.
  • the PTZ control is turned on according to the set monitoring field of view, and the video collection and intelligent analysis have been maintained throughout the period, and the alarm event and structured video are sent to the alarm monitoring center and the user when receiving alarms from external devices, video event detection, user control commands End application, close the 4G / 5G wireless sending function after the task is completed, and reply to the working state of the waiting position.
  • All structured video data is stored on the local camera on a rolling basis, and the size of the on-board memory is configured according to the storage time.
  • Figure 2 is a low-power wireless camera implementation diagram.
  • the movement is composed of CMOS image sensor, ISP image processor, application processor, input / output I / O, data storage, codec, video processor VSP, and network interface Network.
  • the movement controls the power of the PTZ motor through the cloud mirror control module and sends the execution position command; connects to the peripheral sensor through the I / O interface and receives external alarms; connects to the 4G / 5G communication module through the Network interface to realize the data and user data Communication; control the solar panel angle through the solar panel angle adjustment module.
  • FIG. 3 is a flowchart of the camera core of the present invention.
  • Step 1 The system completes power-on initialization
  • Step 2 First obtain the local geographic location according to GPS and set the solar panel preset position according to the time information;
  • Step 3 According to the requirements of the monitoring field of view, control the PTZ to power on, and drive the motor to stop after the PTZ position is reached;
  • Step 4 Start waiting for monitoring video analysis and structured video storage, turn the solar panel according to time to reach the corresponding preset position to achieve the best light reception, wait for event alarm or remote monitoring command;
  • Step 5 When receiving an alarm triggered by a peripheral or an internal video analysis event, immediately start the alarm event and structured video upload, otherwise return to step 4 to wait for video monitoring;
  • Step 6 Determine whether the monitoring field of view needs to be changed according to the predetermined trigger event requirements. If it is, go back to step 3. Adjust the PTZ position. If you do not need to adjust the monitoring field of view, go back to step 4.
  • the alarm is triggered 30 times per day, each time lasts for 2 minutes, the gimbal triggers 10 times per day, zooms 20 times, the focusing time is 3 seconds, the solar panel rotates 8 times per day, and each motor action requires 5 Seconds
  • this video surveillance system is very energy-saving under the premise of rich functions and supporting intelligent analysis, which is basically only the power consumption of the smart camera movement.
  • the invention solves the two bottlenecks of the traditional video monitoring system.
  • One is the difficulty of implementation and maintenance, especially the laying of power supply lines and transmission networks, the construction cost is high.
  • the amount of data is large, and the real-time management is poor. It is difficult to solve the problems of data integrity and real-time information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

本发明公开了一种全时无线PTZ视频监控系统,包含智能日照跟踪太阳能供电子系统和智能供电无线PTZ网络摄像机子系统。前者由太阳能发电模块、蓄电池和太阳能面板角度调节控制模块组成,为整个系统提供全天候供电,太阳能发电模块联接蓄电池为其充电;后者由电源模块、PT云台、变焦自动聚焦镜头、GPS模块、摄像机芯、存储器、4G/5G通信模块和外设接口电路组成。摄像机芯根据GPS定位信息和时间控制太阳能面板的角度,保证转动太阳能面板到最佳受光角度,根据设定的监控视野控制PT云台和变焦自动聚焦镜头,保持全时段视频采集和智能分析。本发明有效降低了摄像机功耗,尽可能达到最佳受光角度,从而提高太阳能板发电效率,延长太阳能充电和设备供电时间。

Description

一种全时无线PTZ视频监控系统 技术领域
本发明属于视频监控技术领域,涉及图像采集、智能系统和报警系统,具体涉及一种全时无线PTZ视频监控系统。
背景技术
目前,视频监控已经广泛应用于社会安全管理、智能交通、智能工厂、生态环保监管等各个领域。采用的主流技术方案一般是有线供电、光纤收发传输、视频集中中心存储方案,供电和传输线路的铺设和维护存在工作量大、成本高的缺陷。
PTZ摄像机具备水平、垂直方向转动,具备覆盖全部场景的视野,同时通过Zoom光学变倍,可以监控目标场景的全貌和细节。PTZ摄像机里面与至少四个电机和减速机构,分别用于控制Pan水平转动、Tilt垂直转动、Zoom摄像机变焦、Focus摄像机聚焦,系统整体功耗较大,一般达到十几瓦以上。现有的太阳能供电监控系统由于缺乏系统性能耗优化机制和设备,功耗高导致需要配置大型的太阳能板和蓄电池,不仅不经济而且容易受到风力的破坏。另外,太阳能板无法跟随日照方向采光,发电效率低,遇到较长阴雨天气,系统供电不足不能正常工作。
现有的无线视频监控系统通常采用WIFI方式传输,由于WIFI开放频段的设备数量非常多,信道日益拥挤,传输距离和带宽无法得到保证,延时丢包现象时有发生。采用无线中继、定向天线等手段后虽然得到一定程度的改善,但是实施运维的成本压力也同步增加。
目前,全国范围内4G网络建设已经完成,5G也在快速发展之中,无线带宽资源非常丰富,组网容易,不需要象WIFI那样需要专门布设通信收发装置。由于视频监控中只有极少的事件、报警、现场查看等用户关注的数据需要远程传输,采用事件触发、报警上传、远程唤醒等机制,不仅能够省电,也能有效地解决视频流量费用问题。同时,完整的结构化视频数据只存在本地,不需要使用数据流量,还节省无线发送功耗。
发明内容
本发明针对上述铺设供电线路和传输网路导致的实施运维困难、太阳能板发电效率低,以及WIFI传输存在的数据完整性等问题提出一种全时无线PTZ视频监控系统,通过采用日照跟踪太阳能板角度调节机制,保证太阳能面板最佳受光角度,并且对PTZ摄像机智能供电。摄像机通过本地智能分析进行全时段视频结构化数据本地存储,4G无线收发模块平时处于低功耗监听模式,收到平台指令或接收到报警事件时,开启4G发送功能,发送事件和用户关注的视频数据到远程报警监控中心和用户端。
为达到上述目的,本发明提出的技术方案为一种全时无线PTZ视频监控系统,包含智能日照跟踪太阳能供电子系统和智能供电无线PTZ网络摄像机子系统,前者由太阳能发电模块、蓄电池和太阳能面板角度调节控制模块组成,为整个系统提供全天候供电,太阳能发电模块联接蓄电池为其充电;后者由电源模块、PT云台、变焦自动聚焦镜头、GPS模块、摄像机芯、存储器、4G/5G通信模块和外设接口电路组成;所述摄像机芯根据GPS定位信息和时 间控制太阳能面板的角度,保证转动太阳能面板到最佳受光角度,根据设定的监控视野控制PT云台和变焦自动聚焦镜头,保持全时段视频采集和智能分析,通过所述外设接口电路在收到触发报警、视频事件检测、用户操控命令时发送报警事件和结构化视频到报警监控中心和用户端应用,任务完成后关闭所述4G/5G通信模块的无线发送功能,回复到守候位置工作状态,所有结构化视频数据滚动存储在本地摄像机上。
上述摄像机芯根据GPS定位信息和时间控制太阳能面板的角度是通过GPS模块获得视频监控系统所在位置的经纬度和当前时间,计算得到太阳的高度角和方位角,基于此设定对应的太阳能板位置。
为提高太阳能板发电效率,延长太阳能充电和设备供电时间,太阳能面板在数个设定的预置位上进行转动。
上述预置位采用定时控制上电转动,转动到预定位置后电机关机,等到下一个时间点启动电机转动到下一个预置位点,节省电机用电。
作为优选,本发明可根据上述结构化视频数据保存时间配置所述存储器的空间大小。
为节省电机用电,摄像机芯发送命令给PT云台垂直和水平转动电机、机芯变倍和聚焦电机时,控制电机上电转动到相应位置,然后电机关机,等到下一个命令触发启动电机转动到下一个位置。
上述摄像机芯的工作流程具体如下:
Step1:系统上电初始化;
Step2:根据GPS模块获取当地地理位置并按照时间信息,设置太阳能面板预置位;
Step3:根据监控视野要求,控制PTZ上电,驱动电机到达PTZ位置后电机停止;
Step4:开始守候监控视频分析和结构化视频存储,根据时间转动太阳能面板到达相应预置位实现最佳受光,等待事件报警或远程监控命令;
Step5:当收到来自外设触发报警或内部视频分析事件,立刻启动报警事件和结构化视频上传,否则回到Step4守候视频监控;
Step6:根据预定触发事件要求,判别是否需要改变监控视野,如果是回到Step3调整PTZ位置;如果不需要调整监控视野,回到Step4继续守候视频监控。
与现有技术相比,本发明的有益效果在于:
1,由于PTZ摄像机平时仅对预设守候视野进行监控,可以关闭云台(PT)、变焦(ZOOM)和聚焦(FOCUS)功能,仅在收到事件触发和用户命令时启动上述功能,调用相应的PTZ位置,因此可以达到降低摄像机功耗的目的;
2,通过GPS模块利用日照时间和设备所在位置的经纬度,得到太阳的高度角和方位角,设定太阳能板,尽可能达到最佳受光角度,从而提高太阳能板发电效率,延长太阳能充电和设备供电时间;
3,太阳能面板预置位采用定时控制、上电转动,转动到预定位置后电机关机,等到下一个时间点启动电机转动到下一个预置位点,节省电机用电。
4,通过采用智能结构化视频存储、报警、上传设计方案可以节省网络传输资源和无线发送功耗。
附图说明
图1为全时无线PTZ视频监控系统的原理框图。
图2为低功耗无线摄像机的结构示意图。
图3为全时无线PTZ视频监控系统的工作流程图。
具体实施方式
现结合附图对本发明的具体实施方式作进一步的说明。
本发明提出一种全时无线PTZ视频监控系统有两个子系统组成:智能供电无线PTZ网络摄像机和智能日照跟踪太阳能供电子系统。PTZ摄像机是指具备水平、垂直方向转动,具备覆盖全部场景的视野,同时通过Zoom光学变倍,可以监控目标场景的全貌和细节。PTZ摄像机里面有至少四个电机和减速机构,分别用于控制Pan水平转动、Tilt垂直转动、Zoom摄像机变焦、Focus摄像机聚焦,系统整体功耗较大,一般达到十几瓦以上。本发明对PTZ摄像机智能供电,将PTZ电机平时关闭,只有收到用户命令或者事件触发的时候,对PTZ进行供电,执行PTZ动作,保证最节省的供电,同时兼顾实时性和广视野功能。
PTZ网络摄像机具备本地存储功能,无论处于守候、事件触发、报警、用户触发都保证数据的全部记录。事件触发是指通过摄像机内部的视频分析,比如基于纹理分析、运动检测、模式识别、特征匹配等算法获取结构化视频数据。报警是指摄像机收到与之相连的传感器触发的报警信号。通过事件和报警标注视频获得结构化数据,有利于视频数据快速存储、检索和高效远程访问。
摄像机通过4G/5G无线模块与监控报警中心服务器以及用户端通信,平常4G/5G收发模块平时处于低功耗监听模式,收到平台指令或接收到报警事件时,开启4G发送功能,主动报警事件,上结构化视频数据。4G/5G通信模块收发模式的功耗和数据传输都是不对称的,接收模式功耗很低(比如20mw),发送模式功耗高(比如2W),数据发送也比数据接收带宽资源紧张很多。采用报警事件触发和用户请求触发启动发送模式的方法可以有效的降低功耗,节省数据流量资源。本系统还可以通过传感器触发报警,比如PIR、气体泄漏传感器、水位传感器、门磁开关等,类似的报警事件触,启动4G通信模块发通知和结构化视频到远程监控报警平台和用户端。
智能日照跟踪太阳能供电子系统,通过GPS模块获得设备所在位置的经纬度和当前时间,得到太阳的高度角和方位角,设定对应的太阳能板位置,达到最佳受光角度。简化机电结构设计,太阳能面板位置可以采用数个设定的预置位进行转动,提高太阳能板发电效率,延长太阳能充电和设备供电时间。太阳能面板预置位采用定时控制上电转动,转动到预定位置后电机关机,等到下一个时间点启动电机转动到下一个预置位点。
图1所示为本发明全时无线PTZ视频监控模块图,系统由智能供电无线PTZ网络摄像机和智能日照跟踪太阳能供电子系统组成。太阳能供电子系统由太阳能发电模块、蓄电池和太阳能面板角度调节控制模块组成,为整个系统提供全天候供电。PTZ摄像机子系统由电源模块、PT云台、变焦自动聚焦镜头、GPS模块、摄像机芯、存储器、4G/5G通信模块和外设接口电路组成。
本系统中,太阳能供电子系统由太阳能发电模块、蓄电池和太阳能面板角度调节控制模块组成。太阳能面板功率配置由系统功耗和蓄电池充电需要的功率决定,保证太阳 能发电面板能够给摄像机供电的同时还能给蓄电池充电提供足够的充电电流。根据系统工作需要支持连续阴雨天气的时间配置蓄电池大小,摄像机机芯通过面板角度调节控制器调节太阳能面板的角度。
整个监控系统由机芯负责核心管理与控制,机芯一直处于工作状态,根据GPS定位和时间控制太阳能面板的角度调节电机的执行和开关,保证转动太阳能面板到最佳受光角度,节省电机的功耗。同时根据设定的监控视野开启PTZ控制,一直保持全时段视频采集和智能分析,收到来自外设触发报警、视频事件检测、用户操控命令时发送报警事件和结构化视频到报警监控中心和用户端应用,任务完成后关闭4G/5G无线发送功能,回复到守候位置工作状态。所有结构化视频数据滚动存储在本地摄像机上,根据保存时间配置机上存储器的空间大小。
图2为低功耗无线摄像机实现图。机芯由CMOS图像传感器,ISP图像处理器,应用处理器,输入输出I/O,数据存储,编解码Codec,视频处理器VSP,网络接口Network组成。机芯通过云镜控制模块控制PTZ电机的电源并发送执行位置指令;通过I/O接口与外设传感器连接,接受外界报警;通过Network接口与4G/5G通信模块相连,实现数据和用户数据的通信;通过太阳能面板角度调节模块控制太阳能面板角度。
图3为本发明的摄像机芯工作的流程图。
步骤1:系统完成上电初始化;
步骤2:首先根据GPS获取当地地理位置并按照时间信息,设置太阳能面板预置位点位;
步骤3:根据监控视野要求,控制PTZ上电,驱动电机到达PTZ位置后电机停止;
步骤4:开始守候监控视频分析和结构化视频存储,根据时间转动太阳能面板到达相应预置位实现最佳受光,等待事件报警或远程监控命令;
步骤5:当收到来自外设触发报警或内部视频分析事件,立刻启动报警事件和结构化视频上传,否则回到步骤4守候视频监控;
步骤6:根据预定触发事件要求,判别是否需要改变监控视野,如果是回到步骤3.调整PTZ位置,如果不需要调整监控视野,回到步骤4。
以下为典型的系统功耗对比分析情况:
(1)太阳能面板转动机构功耗:Ps
(2)云台PT转动功耗:Pt
(3)镜头变倍Zoom和聚焦Focus功耗:Pz
(4)摄像机机芯功耗:Pc
(5)4G/5G通信模块接收功耗:Pi
(6)4G/5G通信模块发送功耗:Po
典型的模块功耗:Ps=5W,Pt=5W,Pz=0.5W,Pc=2W,Pi=20mW,Po=2W;
通常的无线视频监控系统模块功耗和总功耗:
PTot=∑Ppart=Ps+Pt+Pz+Pc+Pi+Po
PTot=(5+5+0.5+2+0.02+2)W=14.52W。
假设摄像机一直处于循环存储,每天报警触发30次,每次持续时间2分钟,云台每天触发10次,变焦20次,聚焦时间3秒,太阳能板每天转动8次,执行每次电机动作需要5秒 钟;
采用本发明方法的系统总功耗:
Ps’=Ps*8*5/3600*24=5W*8*5/3600*24=0.002W
Pt’=Pt*10*5/3600*24=5W*5*10/3600*24=0.003W
Pz’=Pz*20*5/3600*24=0.5W*20*3/3600*24=0.0003W
Pc’=Pc
Pi’=Pi
Po’=Po*30*2*60/3600*24=2W*30*2*60/3600*24=0.08W
PTot’=∑Ppart’=Ps’+Pt’+Pz’+Pc’+Pi’+Po’
PTot’=0.002+0.003+0.0003+2+0.02+0.08W=2.1W
由此可见,本视频监控系统在功能丰富、支持智能分析的前提下非常节省能源,基本上只是智能摄像机机芯的功耗。
鉴于有些应用场景不需要摄像机全时段工作,只要外部触发报警,如PIR运动检测,这时监控系统功耗会更低,代价是无法全时工作,有些时段场景会丢失视频数据和事件信息。
本发明解决传统视频监控系统的两个瓶颈,一是实施运维困难,特别是铺设供电线路和传输网路,建设成本高。另外数据量大,人工管理实时性差,难以解决数据的完整性和信息的实时性问题。
需要说明的是,本发明所提供的上述实施例仅具有示意性,不具有限定本发明的具体实施的范围的作用。本发明的保护范围应包括那些对于本领域的普通技术人员来说显而易见的变换或替代方案。

Claims (7)

  1. 一种全时无线PTZ视频监控系统,其特征在于,包含智能日照跟踪太阳能供电子系统和智能供电无线PTZ网络摄像机子系统,前者由太阳能发电模块、蓄电池和太阳能面板角度调节控制模块组成,为整个系统提供全天候供电,太阳能发电模块联接蓄电池为其充电;后者由电源模块、PT云台、变焦自动聚焦镜头、GPS模块、摄像机芯、存储器、4G/5G通信模块和外设接口电路组成;所述摄像机芯根据GPS定位信息和时间控制太阳能面板的角度,保证转动太阳能面板到最佳受光角度,根据设定的监控视野控制PT云台和变焦自动聚焦镜头,保持全时段视频采集和智能分析,通过所述外设接口电路在收到触发报警、视频事件检测、用户操控命令时发送报警事件和结构化视频到报警监控中心和用户端应用,任务完成后关闭所述4G/5G通信模块的无线发送功能,回复到守候位置工作状态,所有结构化视频数据滚动存储在本地摄像机上。
  2. 根据权利要求1所述的全时无线PTZ视频监控系统,其特征在于,所述摄像机芯根据GPS定位信息和时间控制太阳能面板的角度是通过GPS模块获得视频监控系统所在位置的经纬度和当前时间,计算得到太阳的高度角和方位角,基于此设定对应的太阳能板位置。
  3. 根据权利要求1所述的全时无线PTZ视频监控系统,其特征在于,所述太阳能面板在数个设定的预置位上进行转动,以提高太阳能板发电效率,延长太阳能充电和设备供电时间。
  4. 根据权利要求3所述的全时无线PTZ视频监控系统,其特征在于,所述太阳能面板预置位采用定时控制上电转动,转动到预定位置后电机关机,等到下一个时间点启动电机转动到下一个预置位点,节省电机用电。
  5. 根据权利要求1所述的全时无线PTZ视频监控系统,其特征在于,根据所述结构化视频数据保存的时间配置所述存储器的空间大小。
  6. 根据权利要求1所述的全时无线PTZ视频监控系统,其特征在于,摄像机芯发送命令给PT云台垂直和水平转动电机、机芯变倍和聚焦电机时,控制电机上电转动到相应位置,然后电机关机,等到下一个命令触发启动电机转动到下一个位置,节省电机用电。
  7. 根据权利要求1所述的全时无线PTZ视频监控系统,其特征在于所述摄像机芯的工作流程如下:
    Step1:系统上电初始化;
    Step2:根据GPS模块获取当地地理位置并按照时间信息,设置太阳能面板预置位;
    Step3:根据监控视野要求,控制PTZ上电,驱动电机到达PTZ位置后电机停止;
    Step4:开始守候监控视频分析和结构化视频存储,根据时间转动太阳能面板到达相应预置位实现最佳受光,等待事件报警或远程监控命令;
    Step5:当收到来自外设触发报警或内部视频分析事件,立刻启动报警事件和结构化视频上传,否则回到Step4守候视频监控;
    Step6:根据预定触发事件要求,判别是否需要改变监控视野,如果是回到Step3调整PTZ位置;如果不需要调整监控视野,回到Step4继续守候视频监控。
PCT/CN2019/109967 2018-10-15 2019-10-08 一种全时无线ptz视频监控系统 WO2020078227A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811196082.6A CN109672854A (zh) 2018-10-15 2018-10-15 一种全时无线ptz视频监控系统
CN201811196082.6 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020078227A1 true WO2020078227A1 (zh) 2020-04-23

Family

ID=66141695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109967 WO2020078227A1 (zh) 2018-10-15 2019-10-08 一种全时无线ptz视频监控系统

Country Status (2)

Country Link
CN (1) CN109672854A (zh)
WO (1) WO2020078227A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111601025A (zh) * 2020-05-22 2020-08-28 深圳金三立视频科技股份有限公司 一种摄像机装置及电源管理方法
CN114079715A (zh) * 2020-08-13 2022-02-22 北京慧行实达科技有限公司 一种基于图像视频的智能识别技术及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109672854A (zh) * 2018-10-15 2019-04-23 南京杰迈视讯科技有限公司 一种全时无线ptz视频监控系统
WO2023112014A1 (en) * 2021-12-14 2023-06-22 Solarspace Ltd A system for generating energy from hidden solar panels
CN114777341B (zh) * 2022-05-12 2022-11-22 江苏航运职业技术学院 一种太阳能光热光电系统
CN118784981A (zh) * 2023-04-07 2024-10-15 深圳海翼智新科技有限公司 云台摄像设备的控制方法、系统、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220503A (zh) * 2013-04-09 2013-07-24 四川长虹电器股份有限公司 野外视频监控系统
CN203522941U (zh) * 2013-10-31 2014-04-02 广东王牌网络科技有限公司 一种节能环保的车载移动视频智能化监控系统
CN103823479A (zh) * 2012-11-19 2014-05-28 陕西科林能源发展股份有限公司 一种安装在建筑外墙的光伏跟踪控制系统
US20170012578A1 (en) * 2012-10-26 2017-01-12 Sunculture Solar, Inc. Solar panel heat removal system and associated method
CN207937607U (zh) * 2018-01-31 2018-10-02 成都草寓科技有限公司 一种基于3d激光雷达的牧场监控系统
CN109672854A (zh) * 2018-10-15 2019-04-23 南京杰迈视讯科技有限公司 一种全时无线ptz视频监控系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170012578A1 (en) * 2012-10-26 2017-01-12 Sunculture Solar, Inc. Solar panel heat removal system and associated method
CN103823479A (zh) * 2012-11-19 2014-05-28 陕西科林能源发展股份有限公司 一种安装在建筑外墙的光伏跟踪控制系统
CN103220503A (zh) * 2013-04-09 2013-07-24 四川长虹电器股份有限公司 野外视频监控系统
CN203522941U (zh) * 2013-10-31 2014-04-02 广东王牌网络科技有限公司 一种节能环保的车载移动视频智能化监控系统
CN207937607U (zh) * 2018-01-31 2018-10-02 成都草寓科技有限公司 一种基于3d激光雷达的牧场监控系统
CN109672854A (zh) * 2018-10-15 2019-04-23 南京杰迈视讯科技有限公司 一种全时无线ptz视频监控系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111601025A (zh) * 2020-05-22 2020-08-28 深圳金三立视频科技股份有限公司 一种摄像机装置及电源管理方法
CN114079715A (zh) * 2020-08-13 2022-02-22 北京慧行实达科技有限公司 一种基于图像视频的智能识别技术及系统
CN114079715B (zh) * 2020-08-13 2024-02-23 北京慧行实达科技有限公司 一种基于图像视频的智能识别系统

Also Published As

Publication number Publication date
CN109672854A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2020078227A1 (zh) 一种全时无线ptz视频监控系统
WO2021208313A1 (zh) 一种供热、供电、制冷一体自然能源智慧系统及控制方法
CN203038441U (zh) 一种输电线路防外力破坏智能监测/预警系统
WO2021077864A1 (zh) 一种太阳能云台监控摄像头
CN104697587A (zh) 一种用于地下排水管网的监测装置及其工作机制
CN103760849A (zh) 一种基于无线传感网的家居监测控制系统
WO2016053812A1 (en) Device, method and system for collecting and processing weather data and images
CN111757059A (zh) 一种铁塔远程监控设备、监控方法及监控系统
JP2011228884A (ja) 撮像装置及び撮像装置の制御方法
CN216595971U (zh) 一种输电边缘智能终端设备及监控系统
CN206117815U (zh) 一种Wi‑Fi无线网络摄像机和监控摄像系统
CN102299665A (zh) 基于dsPIC30F4013的太阳能跟踪控制系统
CN206441023U (zh) 一种低温防冻云台
CN104132490A (zh) 一种太阳能半导体制冷控制系统
CN210771851U (zh) 一种具有无线视频传输功能的城市路灯照明装置
CN207612365U (zh) 无人值守野外架空线视频监控装置
CN107037744B (zh) 一种具备云端远程唤醒功能的电源自动控制系统
KR102383320B1 (ko) 양식장 모니터링 시스템
WO2022048612A1 (zh) 基于监测手机的粘虫板害虫自动监测装置
CN111683226B (zh) 区域监控系留系统
CN107820055B (zh) 无人值守野外架空线视频监控方法及装置
CN202759544U (zh) 通过无线网络远程监测沙丘移动的摄像系统
CN205647822U (zh) 一种放牧用电子望远镜系统
CN216291197U (zh) 一种长远距离控制拍摄与数据回传装置
CN218941191U (zh) 一种智能跟踪监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873162

Country of ref document: EP

Kind code of ref document: A1